Sample records for african savanna fires

  1. Seasonal Distribution of African Savanna Fires

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; O'Neill, Katherine P.

    1992-01-01

    Savannas consist of a continuous layer of grass interspersed with scattered trees or shrubs, and cover approx. 10 million square kilometers of tropical Africa. African savanna fires, almost all resulting from human activities, may produce as much as a third of the total global emissions from biomass burning. Little is known, however, about the frequency and location of these fires, and the area burned each year. Emissions from African savanna burning are known to be transported over the mid-Atlantic, south Pacific and Indian oceans; but to study fully the transport of regional savanna burning and the seasonality of the atmospheric circulation must be considered simultaneously. Here we describe the temporal and spatial distribution of savanna fires over the entire African continent, as determined from night-time satellite imagery. We find that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires will aid monitoring of the climatically important trace gases emitted from burning biomass.

  2. Seasonal distribution of African savanna fires

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; O'Neill, Katherine P.

    1992-01-01

    The temporal and spatial distribution of savanna fires over the entire African continent, as determined from nighttime satellite imagery, is described. It is found that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires is helpful in the monitoring of climatically important trace gases emitted from burning biomass.

  3. North African savanna fires and atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Iacobellis, Sam F.; Frouin, Robert; Razafimpanilo, Herisoa; Somerville, Richard C. J.; Piper, Stephen C.

    1994-01-01

    The effect of north African savanna fires on atmospheric CO2 is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO2 concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO2 sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO2 concentrations in South America. The effect is more pronounced during the period from January through March, when biomass burning in South America is almost nonexistent. During this period, atmospheric CO2 concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO2 concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO2 concentration increase at 970 mbar. At higher levels in the atmosphere, less CO2 emitted by north African savanna fires reaches South America, and at 100 mbar no significant amount of CO2 is transported across the Atlantic Ocean. The vertical

  4. North African savanna fires and atmospheric carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacobellis, S.F.; Frouni, Razafimpaniolo, H.

    1994-04-20

    The effect of north African savanna fires on atmospheric CO{sub 2} is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO{sub 2} concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO{sub 2} sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO{sub 2} concentrations in South America. The effect is more pronounced during the period from January through March,more » when biomass burning in South America is almost nonexistent. During this period, atmospheric CO{sub 2} concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO{sub 2} concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO{sub 2} concentration increase at 970 mbar. 20 refs., 15 figs., 1 tab.« less

  5. The extent of burning in African savanna

    NASA Technical Reports Server (NTRS)

    Cahoon, D. R. JR.; Levine, J. S.; Cofer, W. R. Iii; Stocks, B. J.

    1994-01-01

    The temporal and spatial distribution of African savanna grassland fires has been examined, and the areal extent of these fires has been estimated for the subequatorial African continent. African savanna fires have been investigated using remote sensing techniques and imagery collected by low-light sensors on Defense Meteorological Satellite Program (DMSP) satellites and by the Advanced Very High Resolution Radiometer (AVHRR) which is aboard polar orbiting National Oceanic and Atmospheric Administration (NOAA) satellites. DMSP imagery has been used to map the evolution of savanna burning over all of the African continent and the analysis of AVHRR imagery has been used to estimate the areal extent of the burning in the southern hemispheric African savannas. The work presented primarily reflects the analysiscompleted for the year 1987. However, comparisons have been made with other years and the representativeness of the 1987 analysis is discussed.

  6. Human impacts in African savannas are mediated by plant functional traits.

    PubMed

    Osborne, Colin P; Charles-Dominique, Tristan; Stevens, Nicola; Bond, William J; Midgley, Guy; Lehmann, Caroline E R

    2018-05-28

    Tropical savannas have a ground cover dominated by C 4 grasses, with fire and herbivory constraining woody cover below a rainfall-based potential. The savanna biome covers 50% of the African continent, encompassing diverse ecosystems that include densely wooded Miombo woodlands and Serengeti grasslands with scattered trees. African savannas provide water, grazing and browsing, food and fuel for tens of millions of people, and have a unique biodiversity that supports wildlife tourism. However, human impacts are causing widespread and accelerating degradation of savannas. The primary threats are land cover-change and transformation, landscape fragmentation that disrupts herbivore communities and fire regimes, climate change and rising atmospheric CO 2 . The interactions among these threats are poorly understood, with unknown consequences for ecosystem health and human livelihoods. We argue that the unique combinations of plant functional traits characterizing the major floristic assemblages of African savannas make them differentially susceptible and resilient to anthropogenic drivers of ecosystem change. Research must address how this functional diversity among African savannas differentially influences their vulnerability to global change and elucidate the mechanisms responsible. This knowledge will permit appropriate management strategies to be developed to maintain ecosystem integrity, biodiversity and livelihoods. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  7. Determinants of woody cover in African savannas

    USGS Publications Warehouse

    Sankaran, M.; Hanan, N.P.; Scholes, Robert J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le, Roux X.; Ludwig, F.; Ardo, J.; Banyikwa, F.; Bronn, A.; Bucini, G.; Caylor, K.K.; Coughenour, M.B.; Diouf, A.; Ekaya, W.; Feral, C.J.; February, E.C.; Frost, P.G.H.; Hiernaux, P.; Hrabar, H.; Metzger, K.L.; Prins, H.H.T.; Ringrose, S.; Sea, W.; Tews, J.; Worden, J.; Zambatis, N.

    2005-01-01

    Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties 1-3. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover1,2,4,5, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than ???650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of ???650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation 6 may considerably affect their distribution and dynamics. ?? 2005 Nature Publishing Group.

  8. Projections of 21st Century African Climate: Implications for African Savanna Fire Dynamics, Human Health and Food Security

    NASA Astrophysics Data System (ADS)

    Adegoke, J. O.

    2015-12-01

    Fire is a key agent of change in the African savannas, which are shaped through the complex interactions between trees, C4 grasses, rainfall, temperature, CO2 and fire. These fires and their emitted smoke can have numerous direct and indirect effects on the environment, water resources, air quality, and climate. For instance, veld fires in southern Africa cause large financial losses to agriculture, livestock production and forestry on an annual basis. This study contributes to our understanding of the implications of projected surface temperature evolution in Africa for fire risk, human health and agriculture over the coming decades. We use an ensemble of high-resolution regional climate model simulations of African climate for the 21st century. Regional dowscalings and recent global circulation model projections obtained for Africa indicate that African temperatures are likely to rise at 1.5 times the global rate of temperature increase in the tropics, and at almost twice the global rate of increase in the subtropics. Warming is projected to occur during the 21st century, with increases of 4-6 °C over the subtropics and 3-5 °C over the tropics plausible by the end of the century relative to present-day climate under the A2 (low mitigation) scenario. We explore the significance of the projected warming by documenting increases in projected high fire danger days and heat-wave days. General drying is projected across the continent, even for areas (e.g. tropical Africa) where an increase in rainfall is plausible. This is due to the drastic increases in temperature that are projected, which leads to drier soils (through enhanced evaporation) despite the rainfall increases. This will likely impact negatively on crop yield, particularly on the maize crop that is of crucial importance in terms of African food security.

  9. Synergistic effects of fire and elephants on arboreal animals in an African savanna.

    PubMed

    Pringle, Robert M; Kimuyu, Duncan M; Sensenig, Ryan L; Palmer, Todd M; Riginos, Corinna; Veblen, Kari E; Young, Truman P

    2015-11-01

    Disturbance is a crucial determinant of animal abundance, distribution and community structure in many ecosystems, but the ways in which multiple disturbance types interact remain poorly understood. The effects of multiple-disturbance interactions can be additive, subadditive or super-additive (synergistic). Synergistic effects in particular can accelerate ecological change; thus, characterizing such synergies, the conditions under which they arise, and how long they persist has been identified as a major goal of ecology. We factorially manipulated two principal sources of disturbance in African savannas, fire and elephants, and measured their independent and interactive effects on the numerically dominant vertebrate (the arboreal gekkonid lizard Lygodactylus keniensis) and invertebrate (a guild of symbiotic Acacia ants) animal species in a semi-arid Kenyan savanna. Elephant exclusion alone (minus fire) had negligible effects on gecko density. Fire alone (minus elephants) had negligible effects on gecko density after 4 months, but increased gecko density twofold after 16 months, likely because the decay of fire-damaged woody biomass created refuges and nest sites for geckos. In the presence of elephants, fire increased gecko density nearly threefold within 4 months of the experimental burn; this occurred because fire increased the incidence of elephant damage to trees, which in turn improved microhabitat quality for geckos. However, this synergistic positive effect of fire and elephants attenuated over the ensuing year, such that only the main effect of fire was evident after 16 months. Fire also altered the structure of symbiotic plant-ant assemblages occupying the dominant tree species (Acacia drepanolobium); this influenced gecko habitat selection but did not explain the synergistic effect of fire and elephants. However, fire-driven shifts in plant-ant occupancy may have indirectly mediated this effect by increasing trees' susceptibility to elephant damage. Our

  10. Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas.

    PubMed

    Beale, Colin M; Courtney Mustaphi, Colin J; Morrison, Thomas A; Archibald, Sally; Anderson, T Michael; Dobson, Andrew P; Donaldson, Jason E; Hempson, Gareth P; Probert, James; Parr, Catherine L

    2018-04-01

    Fire is a fundamental process in savannas and is widely used for management. Pyrodiversity, variation in local fire characteristics, has been proposed as a driver of biodiversity although empirical evidence is equivocal. Using a new measure of pyrodiversity (Hempson et al.), we undertook the first continent-wide assessment of how pyrodiversity affects biodiversity in protected areas across African savannas. The influence of pyrodiversity on bird and mammal species richness varied with rainfall: strongest support for a positive effect occurred in wet savannas (> 650 mm/year), where species richness increased by 27% for mammals and 40% for birds in the most pyrodiverse regions. Range-restricted birds were most increased by pyrodiversity, suggesting the diversity of fire regimes increases the availability of rare niches. Our findings are significant because they explain the conflicting results found in previous studies of savannas. We argue that managing savanna landscapes to increase pyrodiversity is especially important in wet savannas. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  11. Fire in Australian savannas: from leaf to landscape

    PubMed Central

    Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri

    2015-01-01

    Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. PMID:25044767

  12. Fire in Australian savannas: from leaf to landscape.

    PubMed

    Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri

    2015-01-01

    Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Savanna fire and the origins of the 'underground forests' of Africa.

    PubMed

    Maurin, Olivier; Davies, T Jonathan; Burrows, John E; Daru, Barnabas H; Yessoufou, Kowiyou; Muasya, A Muthama; van der Bank, Michelle; Bond, William J

    2014-10-01

    The origin of fire-adapted lineages is a long-standing question in ecology. Although phylogeny can provide a significant contribution to the ongoing debate, its use has been precluded by the lack of comprehensive DNA data. Here, we focus on the 'underground trees' (=geoxyles) of southern Africa, one of the most distinctive growth forms characteristic of fire-prone savannas. We placed geoxyles within the most comprehensive dated phylogeny for the regional flora comprising over 1400 woody species. Using this phylogeny, we tested whether African geoxyles evolved concomitantly with those of the South American cerrado and used their phylogenetic position to date the appearance of humid savannas. We found multiple independent origins of the geoxyle life-form mostly from the Pliocene, a period consistent with the origin of cerrado, with the majority of divergences occurring within the last 2 million yr. When contrasted with their tree relatives, geoxyles occur in regions characterized by higher rainfall and greater fire frequency. Our results indicate that the geoxylic growth form may have evolved in response to the interactive effects of frequent fires and high precipitation. As such, geoxyles may be regarded as markers of fire-maintained savannas occurring in climates suitable for forests. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  14. Emissions From Miombo Woodland and Dambo Grassland Savanna Fires in Southern Africa

    NASA Astrophysics Data System (ADS)

    Sinha, P.; Hobbs, P. V.; Yokelson, R. J.; Blake, D. R.; Gao, S.; Kirchstetter, T. W.

    2003-12-01

    African savanna fires are the largest source of biomass burning emissions worldwide, and the miombo woodland ecosystem is the most abundant type of savanna in southern Africa. Dambo grasslands are major enclaves within miombo woodlands. Savanna fires in these two ecosystems accounted for over one-third of the total area burned in southern Africa during the dry season of 2000. Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in plots of miombo woodland and dambo grassland were obtained on September 1 and September 5, 2000, respectively. These measurements provide emission factors for a number of gaseous species including carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), dimethyl sulfide (DMS), nitrogen oxides (NOx), ammonia (NH3), hydrogen cyanide (HCN), methane (CH4), non-methane hydrocarbons (NMHC), halocarbons, oxygenated compounds, as well as for particulates. Emission factors for the two fires are combined with measurements of fuel loading, combustion completeness, and burned area to estimate the emissions of trace gases and particles from miombo woodland and dambo grassland fires in southern Africa during the dry season of 2000. These estimates indicate that in August and September of 2000 miombo woodland and dambo grassland fires in southern Africa accounted for about 30%, 25%, 15%, and 64% of the emissions of CO2, CO, total hydrocarbons, and total particulate matter, respectively, emitted from all types of savanna fires in southern Africa. It is also estimated that the ratios of dry season emissions from miombo woodland and dambo grassland fires in Zambia to annual emissions from the use of biofuels in Zambia for CO2, CO, NOx, formic acid, CH4, NH3, ethane, ethene, propene, acetylene, formaldehyde, methanol, and acetic acid are 3.2, 1.5, 7.2, 2.5, 0.2, 0.6, 0.2, 0.5, 0.4, 0.3, 0.6, 0.3, and 0.5, respectively.

  15. Emissions from miombo woodland and dambo grassland savanna fires

    NASA Astrophysics Data System (ADS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2004-06-01

    Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in Zambia are described. The measurements include profiles through the smoke plumes of condensation nucleus concentrations and normalized excess mixing ratios of particles and gases, emission factors for 42 trace gases and seven particulate species, and vertical profiles of ambient conditions. The fires were ignited in plots of miombo woodland savanna, the most prevalent savanna type in southern Africa, and dambo grassland savanna, an important enclave of miombo woodland ecosystems. Emission factors for the two fires are combined with measurements of fuel loading, combustion factors, and burned area (derived from satellite burn scar retrievals) to estimate the emissions of trace gases and particles from woodland and grassland savanna fires in Zambia and southern Africa during the dry season (May-October) of 2000. It is estimated that the emissions of CO2, CO, total hydrocarbons, nitrogen oxides (NOx as NO), sulfur dioxide (SO2), formaldehyde, methyl bromide, total particulate matter, and black carbon from woodland and grassland savanna fires during the dry season of 2000 in southern Africa contributed 12.3%, 12.6%, 5.9%, 10.3%, 7.5%, 24.2%, 2.8%, 17.5%, and 11.1%, respectively, of the average annual emissions from all types of savanna fires worldwide. In 2000 the average annual emissions of methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, and acetic acid from the use of biofuels in Zambia were comparable to or exceeded dry season emissions of these species from woodland and grassland savanna fires in Zambia.

  16. Emissions from Miombo Woodland and Dambo Grassland Savanna Fires

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2004-01-01

    Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in Zambia are described. The measurements include profiles through the smoke plumes of condensation nucleus concentrations and normalized excess mixing ratios of particles and gases, emission factors for 42 trace gases and seven particulate species, and vertical profiles of ambient conditions. The fires were ignited in plots of miombo woodland savanna, the most prevalent savanna type in southern Africa, and dambo grassland savanna, an important enclave of miombo woodland ecosystems. Emission factors for the two fires are combined with measurements of fuel loading, combustion factors, and burned area (derived from satellite burn scar retrievals) to estimate the emissions of trace gases and particles from woodland and grassland savanna fires in Zambia and southern Africa during the dry season (May-October) of 2000. It is estimated that the emissions of CO2, CO, total hydrocarbons, nitrogen oxides (NOx as NO), sulfur dioxide (SO2), formaldehyde, methyl bromide, total particulate matter, and black carbon from woodland and grassland savanna fires during the dry season of 2000 in southern Africa contributed 12.3%, 12.6%, 5.9%, 10.3%, 7.5%, 24.2%, 2.8%, 17.5%, and 11.1%, respectively, of the average annual emissions from all types of savanna fires worldwide. In 2000 the average annual emissions of methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, and acetic acid from the use of biofuels in Zambia were comparable to or exceeded dry season emissions of these species from woodland and grassland savanna fires in Zambia.

  17. Effects of controlled fire and livestock grazing on bird communities in East African savannas.

    PubMed

    Gregory, Nathan C; Sensenig, Ryan L; Wilcove, David S

    2010-12-01

    In East Africa fire and grazing by wild and domestic ungulates maintain savannas, and pastoralists historically set fires and herded livestock through the use of temporary corrals called bomas. In recent decades traditional pastoral practices have declined, and this may be affecting biodiversity. We investigated the effects of prescribed fires and bomas on savanna bird communities in East Africa during the first and second dry seasons of the year (respectively before and after the rains that mark the onset of breeding for most birds). We compared abundance, richness, and community composition on 9-ha burned plots, recently abandoned bomas, and control plots in the undisturbed matrix habitat over a 3-year period. Generally, recently burned areas and abandoned bomas attracted greater densities of birds and had different community assemblages than the surrounding matrix. The effects of disturbances were influenced by interactions between primary productivity, represented by the normalized difference vegetation index, and time. Bird densities were highest and a greater proportion of species was observed on burned plots in the months following the fires. Drought conditions equalized bird densities across treatments within 1 year, and individuals from a greater proportion of species were more commonly observed on abandoned bomas. Yearly fluctuations in abundance were less pronounced on bomas than on burns, which indicate that although fire may benefit birds in the short term, bomas may have a more-lasting positive effect and provide resources during droughts. Several Palearctic migrants were attracted to burned plots regardless of rainfall, which indicates continued fire suppression may threaten their already-declining populations. Most notably, the paucity of birds observed on the controls suggests that the current structure of the matrix developed as a result of fire suppression. Traditional pastoralism appears critical to the maintenance of avian diversity in these

  18. Fire-free land use in pre-1492 Amazonian savannas

    PubMed Central

    Iriarte, José; Power, Mitchell J.; Rostain, Stéphen; Mayle, Francis E.; Jones, Huw; Watling, Jennifer; Whitney, Bronwen S.; McKey, Doyle B.

    2012-01-01

    The nature and scale of pre-Columbian land use and the consequences of the 1492 “Columbian Encounter” (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions. PMID:22493248

  19. Climate change and long-term fire management impacts on Australian savannas.

    PubMed

    Scheiter, Simon; Higgins, Steven I; Beringer, Jason; Hutley, Lindsay B

    2015-02-01

    Tropical savannas cover a large proportion of the Earth's land surface and many people are dependent on the ecosystem services that savannas supply. Their sustainable management is crucial. Owing to the complexity of savanna vegetation dynamics, climate change and land use impacts on savannas are highly uncertain. We used a dynamic vegetation model, the adaptive dynamic global vegetation model (aDGVM), to project how climate change and fire management might influence future vegetation in northern Australian savannas. Under future climate conditions, vegetation can store more carbon than under ambient conditions. Changes in rainfall seasonality influence future carbon storage but do not turn vegetation into a carbon source, suggesting that CO₂ fertilization is the main driver of vegetation change. The application of prescribed fires with varying return intervals and burning season influences vegetation and fire impacts. Carbon sequestration is maximized with early dry season fires and long fire return intervals, while grass productivity is maximized with late dry season fires and intermediate fire return intervals. The study has implications for management policy across Australian savannas because it identifies how fire management strategies may influence grazing yield, carbon sequestration and greenhouse gas emissions. This knowledge is crucial to maintaining important ecosystem services of Australian savannas. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Validation of behave fire behavior predictions in oak savannas

    USGS Publications Warehouse

    Grabner, Keith W.; Dwyer, John; Cutter, Bruce E.

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (short grass), Fuel Model 2 (timber and grass), Fuel Model 3 (tall grass), and Fuel Model 9 (hardwood litter). Also, a customized oak savanna fuel model (COSFM) was created and validated. Results indicate that standardized fuel model 2 and the COSFM reliably estimate mean rate-of-spread (MROS). The COSFM did not appreciably reduce MROS variation when compared to fuel model 2. Fuel models 1, 3, and 9 did not reliably predict MROS. Neither the standardized fuel models nor the COSFM adequately predicted flame lengths. We concluded that standardized fuel model 2 should be used with BEHAVE when predicting fire rates-of-spread in established oak savannas.

  1. Trace Gas Measurements in Nascent, Aged and Cloud-processed Smoke from Africa Savanna Fires by Airborne Fourier Transform Infrared Spectroscopy (AFTIR)

    NASA Technical Reports Server (NTRS)

    Yokelson, Robert J.; Bertschi, Isaac T.; Christian, Ted J.; Hobbs, Peter V.; Ward, Darold E.; Hao, Wei Min

    2003-01-01

    We measured stable and reactive trace gases with an airborne Fourier transform infrared spectrometer (AFTIR) on the University of Washington Convair-580 research aircraft in August/September 2000 during the SAFARI 2000 dry season campaign in Southern Africa. The measurements included vertical profiles of C02, CO, H20, and CH4 up to 5.5 km on six occasions above instrumented ground sites and below the TERRA satellite and ER-2 high-flying research aircraft. We also measured the trace gas emissions from 10 African savanna fires. Five of these fires featured extensive ground-based fuel characterization, and two were in the humid savanna ecosystem that accounts for most African biomass burning. The major constituents we detected in nascent CH3OOH, HCHO, CH30H, HCN, NH3, HCOOH, and C2H2. These are the first quantitative measurements of the initial emissions of oxygenated volatile organic compounds (OVOC), NH3, and HCN from African savanna fires. On average, we measured 5.3 g/kg of OVOC and 3.6 g/kg of hydrocarbons (including CH4) in the initial emissions from the fires. Thus, the OVOC will have profound, largely unexplored effects on tropical tropospheric chemistry. The HCN emission factor was only weakly dependent on fire type; the average value (0.53 g/kg) is about 20 times that of a previous recommendation. HCN may be useful as a tracer for savanna fires. Delta O3/Delta CO and Delta CH3COO/Delta CO increased to as much as 9% in <1 h of photochemical processing downwind of fires. Direct measurements showed that cloud processing of smoke greatly reduced CH30H, NH3, CH3COOH, SO2, and NO2 levels, but significantly increased HCHO and NO.

  2. Determinants of woody encroachment and cover in African savannas.

    PubMed

    Devine, Aisling P; McDonald, Robbie A; Quaife, Tristan; Maclean, Ilya M D

    2017-04-01

    Savanna ecosystems are an integral part of the African landscape and sustain the livelihoods of millions of people. Woody encroachment in savannas is a widespread phenomenon but its causes are widely debated. We review the extensive literature on woody encroachment to help improve understanding of the possible causes and to highlight where and how future scientific efforts to fully understand these causes should be focused. Rainfall is the most important determinant of maximum woody cover across Africa, but fire and herbivory interact to reduce woody cover below the maximum at many locations. We postulate that woody encroachment is most likely driven by CO 2 enrichment and propose a two-system conceptual framework, whereby mechanisms of woody encroachment differ depending on whether the savanna is a wet or dry system. In dry savannas, the increased water-use efficiency in plants relaxes precipitation-driven constraints and increases woody growth. In wet savannas, the increase of carbon allocation to tree roots results in faster recovery rates after disturbance and a greater likelihood of reaching sexual maturity. Our proposed framework can be tested using a mixture of experimental and earth observational techniques. At a local level, changes in precipitation, burning regimes or herbivory could be driving woody encroachment, but are unlikely to be the explanation of this continent-wide phenomenon.

  3. Trace gas emissions to the atmosphere by biomass burning in the west African savannas

    NASA Technical Reports Server (NTRS)

    Frouin, Robert J.; Iacobellis, Samuel F.; Razafimpanilo, Herisoa; Somerville, Richard C. J.

    1994-01-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer_(AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of north African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linear method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.

  4. Spiny plants, mammal browsers, and the origin of African savannas.

    PubMed

    Charles-Dominique, Tristan; Davies, T Jonathan; Hempson, Gareth P; Bezeng, Bezeng S; Daru, Barnabas H; Kabongo, Ronny M; Maurin, Olivier; Muasya, A Muthama; van der Bank, Michelle; Bond, William J

    2016-09-20

    Savannas first began to spread across Africa during the Miocene. A major hypothesis for explaining this vegetation change is the increase in C4 grasses, promoting fire. We investigated whether mammals could also have contributed to savanna expansion by using spinescence as a marker of mammal herbivory. Looking at the present distribution of 1,852 tree species, we established that spinescence is mainly associated with two functional types of mammals: large browsers and medium-sized mixed feeders. Using a dated phylogeny for the same tree species, we found that spinescence evolved at least 55 times. The diversification of spiny plants occurred long after the evolution of Afrotherian proboscideans and hyracoids. However, it is remarkably congruent with diversification of bovids, the lineage including the antelope that predominantly browse these plants today. Our findings suggest that herbivore-adapted savannas evolved several million years before fire-maintained savannas and probably, in different environmental conditions. Spiny savannas with abundant mammal herbivores occur in drier climates and on nutrient-rich soils, whereas fire-maintained savannas occur in wetter climates on nutrient-poor soils.

  5. Spiny plants, mammal browsers, and the origin of African savannas

    PubMed Central

    Charles-Dominique, Tristan; Davies, T. Jonathan; Hempson, Gareth P.; Bezeng, Bezeng S.; Kabongo, Ronny M.; Maurin, Olivier; Muasya, A. Muthama; van der Bank, Michelle; Bond, William J.

    2016-01-01

    Savannas first began to spread across Africa during the Miocene. A major hypothesis for explaining this vegetation change is the increase in C4 grasses, promoting fire. We investigated whether mammals could also have contributed to savanna expansion by using spinescence as a marker of mammal herbivory. Looking at the present distribution of 1,852 tree species, we established that spinescence is mainly associated with two functional types of mammals: large browsers and medium-sized mixed feeders. Using a dated phylogeny for the same tree species, we found that spinescence evolved at least 55 times. The diversification of spiny plants occurred long after the evolution of Afrotherian proboscideans and hyracoids. However, it is remarkably congruent with diversification of bovids, the lineage including the antelope that predominantly browse these plants today. Our findings suggest that herbivore-adapted savannas evolved several million years before fire-maintained savannas and probably, in different environmental conditions. Spiny savannas with abundant mammal herbivores occur in drier climates and on nutrient-rich soils, whereas fire-maintained savannas occur in wetter climates on nutrient-poor soils. PMID:27601649

  6. Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example.

    PubMed

    Russell-Smith, Jeremy; Yates, Cameron P; Edwards, Andrew C; Whitehead, Peter J; Murphy, Brett P; Lawes, Michael J

    2015-01-01

    Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings.

  7. Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example

    PubMed Central

    Russell-Smith, Jeremy; Yates, Cameron P.; Edwards, Andrew C.; Whitehead, Peter J.; Murphy, Brett P.; Lawes, Michael J.

    2015-01-01

    Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings. PMID:26630453

  8. The impact of inter-annual rainfall variability on African savannas changes with mean rainfall.

    PubMed

    Synodinos, Alexis D; Tietjen, Britta; Lohmann, Dirk; Jeltsch, Florian

    2018-01-21

    Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Predicting the Effects of Woody Encroachment on Mammal Communities, Grazing Biomass and Fire Frequency in African Savannas.

    PubMed

    Smit, Izak P J; Prins, Herbert H T

    2015-01-01

    With grasslands and savannas covering 20% of the world's land surface, accounting for 30-35% of worldwide Net Primary Productivity and supporting hundreds of millions of people, predicting changes in tree/grass systems is priority. Inappropriate land management and rising atmospheric CO2 levels result in increased woody cover in savannas. Although woody encroachment occurs world-wide, Africa's tourism and livestock grazing industries may be particularly vulnerable. Forecasts of responses of African wildlife and available grazing biomass to increases in woody cover are thus urgently needed. These predictions are hard to make due to non-linear responses and poorly understood feedback mechanisms between woody cover and other ecological responders, problems further amplified by the lack of long-term and large-scale datasets. We propose that a space-for-time analysis along an existing woody cover gradient overcomes some of these forecasting problems. Here we show, using an existing woody cover gradient (0-65%) across the Kruger National Park, South Africa, that increased woody cover is associated with (i) changed herbivore assemblage composition, (ii) reduced grass biomass, and (iii) reduced fire frequency. Furthermore, although increased woody cover is associated with reduced livestock production, we found indigenous herbivore biomass (excluding elephants) remains unchanged between 20-65% woody cover. This is due to a significant reorganization in the herbivore assemblage composition, mostly as a result of meso-grazers being substituted by browsers at increasing woody cover. Our results suggest that woody encroachment will have cascading consequences for Africa's grazing systems, fire regimes and iconic wildlife. These effects will pose challenges and require adaptation of livelihoods and industries dependent on conditions currently prevailing.

  10. A grass-fire cycle eliminates an obligate-seeding tree in a tropical savanna.

    PubMed

    Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P

    2014-11-01

    A grass-fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha(-1)). Experimental fires, with fuel loads >10 t·ha(-1), typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota.

  11. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna

    PubMed Central

    Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P

    2014-01-01

    A grass–fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha−1). Experimental fires, with fuel loads >10 t·ha−1, typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota. PMID:25505543

  12. Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models

    Treesearch

    Keith Grabner; John Dwyer; Bruce Cutter

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...

  13. Impacts of savanna trees on forage quality for a large African herbivore

    PubMed Central

    De Kroon, Hans; Prins, Herbert H. T.

    2008-01-01

    Recently, cover of large trees in African savannas has rapidly declined due to elephant pressure, frequent fires and charcoal production. The reduction in large trees could have consequences for large herbivores through a change in forage quality. In Tarangire National Park, in Northern Tanzania, we studied the impact of large savanna trees on forage quality for wildebeest by collecting samples of dominant grass species in open grassland and under and around large Acacia tortilis trees. Grasses growing under trees had a much higher forage quality than grasses from the open field indicated by a more favourable leaf/stem ratio and higher protein and lower fibre concentrations. Analysing the grass leaf data with a linear programming model indicated that large savanna trees could be essential for the survival of wildebeest, the dominant herbivore in Tarangire. Due to the high fibre content and low nutrient and protein concentrations of grasses from the open field, maximum fibre intake is reached before nutrient requirements are satisfied. All requirements can only be satisfied by combining forage from open grassland with either forage from under or around tree canopies. Forage quality was also higher around dead trees than in the open field. So forage quality does not reduce immediately after trees die which explains why negative effects of reduced tree numbers probably go initially unnoticed. In conclusion our results suggest that continued destruction of large trees could affect future numbers of large herbivores in African savannas and better protection of large trees is probably necessary to sustain high animal densities in these ecosystems. PMID:18309522

  14. Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.

    PubMed

    Schertzer, E; Staver, A C; Levin, S A

    2015-01-01

    The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.

  15. Fire feedbacks facilitate invasion of pine savannas by Brazilian pepper (Schinus terebinthifolius).

    PubMed

    Stevens, Jens T; Beckage, Brian

    2009-10-01

    * Fire disturbance can mediate the invasion of ecological communities by nonnative species. Nonnative plants that modify existing fire regimes may initiate a positive feedback that can facilitate their continued invasion. Fire-sensitive plants may successfully invade pyrogenic landscapes if they can inhibit fire in the landscape. * Here, we investigated whether the invasive shrub Brazilian pepper (Schinus terebinthifolius) can initiate a fire-suppression feedback in a fire-dependent pine savanna ecosystem in the southeastern USA. * We found that prescribed burns caused significant (30-45%) mortality of Brazilian pepper at low densities and that savannas with more frequent fires contained less Brazilian pepper. However, high densities of Brazilian pepper reduced fire temperature by up to 200 degrees C, and experienced as much as 80% lower mortality. * A cellular automaton model was used to demonstrate that frequent fire may control low-density populations, but that Brazilian pepper may reach a sufficient density during fire-free periods to initiate a positive feedback that reduces the frequency of fire and converts the savanna to an invasive-dominated forest.

  16. Patterns in woody vegetation structure across African savannas

    NASA Astrophysics Data System (ADS)

    Axelsson, Christoffer R.; Hanan, Niall P.

    2017-07-01

    Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal

  17. Post-fire reproduction of herbs at a savanna-gallery forest boundary in Distrito Federal, Brazil.

    PubMed

    Massi, K G; Eugênio, C U O; Franco, A C

    2017-11-01

    In Cerrado, studies of post-fire vegetation recovery show that some herbaceous species are able to flower shortly after fires. However, these were mainly short-term studies that focused on grasslands and savannas. Little is known about the effects of fire on ground layer of forests that border the savannas in Central Brazil. Thus, an accidental burning gave us the opportunity to describe the reproductive activity of the ground layer vegetation after a fire event along a savanna-forest boundary at the IBGE Ecological Reserve, Brasília, Brazil. During the 16-month of the inventory, we registered 170 herbaceous species flowering or fruiting, of which 52 species (31%) may have been influenced by fire that changed their times of reproduction. In the savanna plots reproduction peaked at the end of the rainy season. Of the total number of reproducing species, 90 species occurred only in the savanna and four in the forest. Five herbs were recorded in the forest, savanna and border environments. Late dry season fire probably lead the majority of herbaceous species to have their reproduction spread throughout the study time.

  18. Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.

    PubMed

    Levick, Shaun R; Asner, Gregory P; Smit, Izak P J

    2012-12-01

    Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.

  19. Nutrient vectors and riparian nutrient processing in African semiarid savanna ecosystems

    USGS Publications Warehouse

    Jacobs, Shayne M.; Bechtold, J.S.; Biggs, Harry C.; Grimm, N. B.; McClain, M.E.; Naiman, R.J.; Perakis, Steven S.; Pinay, G.; Scholes, M.C.

    2007-01-01

    This review article describes vectors for nitrogen and phosphorus delivery to riparian zones in semiarid African savannas, the processing of nutrients in the riparian zone and the effect of disturbance on these processes. Semiarid savannas exhibit sharp seasonality, complex hillslope hydrology and high spatial heterogeneity, all of which ultimately impact nutrient fluxes between riparian, upland and aquatic environments. Our review shows that strong environmental drivers such as fire and herbivory enhance nitrogen, phosphorus and sediment transport to lower slope positions by shaping vegetative patterns. These vectors differ significantly from other arid and semiarid ecosystems, and from mesic ecosystems where the impact of fire and herbivory are less pronounced and less predictable. Also unique is the presence of sodic soils in certain hillslopes, which substantially alters hydrological flowpaths and may act as a trap where nitrogen is immobilized while sediment and phosphorus transport is enhanced. Nutrients and sediments are also deposited in the riparian zone during seasonal, intermittent floods while, during the dry season, subsurface movement of water from the stream into riparian soils and vegetation further enrich riparian zones with nutrients. As is found in mesic ecosystems, nutrients are immobilized in semiarid riparian corridors through microbial and plant uptake, whereas dissimilatory processes such as denitrification may be important where labile nitrogen and carbon are in adequate supply and physical conditions are suitablea??such as in seeps, wallows created by animals, ephemeral wetlands and stream edges. Interaction between temporal hydrologic connectivity and spatial heterogeneity are disrupted by disturbances such as large floods and extended droughts, which may convert certain riparian patches from sinks to sources for nitrogen and phosphorus. In the face of increasing anthropogenic pressure, the scientific challenges are to provide a basic

  20. The characterisation and management of greenhouse gas emissions from fires in northern Australian savannas

    NASA Astrophysics Data System (ADS)

    Cook, G. D.; Liedloff, A. C.; Richards, A. E.; Meyer, M.

    2016-12-01

    Australia is the only OECD country with a significant area of tropical savannas within it borders. Approximately 220 000 km2 of these savannas burn every year releasing 2 to 4 % of Australia's accountable greenhouse gas emissions. Reduction in uncertainty in the quantification of these emissions of methane and nitrous has been fundamental to improving both the national GHG inventory and developing approaches to better manage land to reduce these emissions. Projects to reduce pyrogenic emissions have been adopted across 30% of Australia's high rainfall savannas. Recent work has focussed on quantifying the additional benefit of increased carbon stocks in fine fuel and coarse woody debris (CWD) resulting from improvements in fire management. An integrated set of equations have been developed to enable seemless quantification of emissions and sequestration in these frequently burnt savannas. These show that increases in carbon stored in fine fuel and CWD comprises about 3 times the emissions abatement from improvements in fire management that have been achieved in a project area of 28 000 km2. Future work is focussing on improving the understanding of spatial and temporal variation in fire behaviour across Australia's savanna biome, improvements in quantification of carbon dynamics of CWD and improved quantification of the effects of fire on carbon dynamics in soils of the savannas.

  1. Fuel moisture content estimation: a land-surface modelling approach applied to African savannas

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Spessa, A.; Kaduk, J.; Balzter, H.

    2009-04-01

    Despite the importance of fire to the global climate system, in terms of emissions from biomass burning, ecosystem structure and function, and changes to surface albedo, current land-surface models do not adequately estimate key variables affecting fire ignition and propagation. Fuel moisture content (FMC) is considered one of the most important of these variables (Chuvieco et al., 2004). Biophysical models, with appropriate plant functional type parameterisations, are the most viable option to adequately predict FMC over continental scales at high temporal resolution. However, the complexity of plant-water interactions, and the variability associated with short-term climate changes, means it is one of the most difficult fire variables to quantify and predict. Our work attempts to resolve this issue using a combination of satellite data and biophysical modelling applied to Africa. The approach we take is to represent live FMC as a surface dryness index; expressed as the ratio between the Normalised Difference Vegetation Index (NDVI) and land-surface temperature (LST). It has been argued in previous studies (Sandholt et al., 2002; Snyder et al., 2006), that this ratio displays a statistically stronger correlation to FMC than either of the variables, considered separately. In this study, simulated FMC is constrained through the assimilation of remotely sensed LST and NDVI data into the land-surface model JULES (Joint-UK Land Environment Simulator). Previous modelling studies of fire activity in Africa savannas, such as Lehsten et al. (2008), have reported significant levels of uncertainty associated with the simulations. This uncertainty is important because African savannas are among some of the most frequently burnt ecosystems and are a major source of greenhouse trace gases and aerosol emissions (Scholes et al., 1996). Furthermore, regional climate model studies indicate that many parts of the African savannas will experience drier and warmer conditions in future

  2. Seasonal Variation and Ecosystem Dependence of Emission Factors for Selected Trace Gases and PM2.5 for Southern African Savanna Fires

    NASA Technical Reports Server (NTRS)

    Korontzi, S.; Ward, D. E.; Susott, R. A.; Yokelson, R. J.; Justice, C. O.; Hobbs, P. V.; Smithwick, E. A. H.; Hao, W. M.

    2003-01-01

    In this paper we present the first early dry season (early June-early August) emission factor measurements for carbon dioxide (CO2), carbon monoxide (CO), methane (Ca), nonmethane hydrocarbons (NMHC), and particulates with a diameter less than 2.5 microns (pM2.5) for southern African grassland and woodland fires. Seasonal emission factors for grassland fires correlate linearly with the proportion of green grass, used as a surrogate for the fuel moisture content, and are higher for products of incomplete combustion in the early part of the dry season compared with later in the dry season. Models of emission factors for NMHC and PM(sub 2.5) versus modified combustion efficiency (MCE) are statistically different in grassland compared with woodland ecosystems. We compare predictions based on the integration of emissions factors from this study, from the southern African Fire-Atmosphere Research Initiative 1992 (SAFARI-92), and from SAFARI-2000 with those based on the smaller set of ecosystem-specific emission factors to estimate the effects of using regional-average rather than ecosystem-specific emission factors. We also test the validity of using the SAFARI-92 models for emission factors versus MCE to predict the early dry season emission factors measured in this study. The comparison indicates that the largest discrepancies occur at the low end (0.907) and high end (0.972) of MCE values measured in this study. Finally, we combine our models of MCE versus proportion of green grass for grassland fires with emission factors versus MCE for selected oxygenated volatile organic compounds measured in the SAFARI-2000 campaign to derive the first seasonal emission factors for these compounds. The results of this study demonstrate that seasonal variations in savanna fire emissions are important and should be considered in modeling emissions at regional to continental scales.

  3. Ecosystem management can mitigate vegetation shifts induced by climate change in African savannas

    NASA Astrophysics Data System (ADS)

    Scheiter, Simon; Savadogo, Patrice

    2017-04-01

    The welfare of people in the tropics and sub-tropics strongly depends on goods and services that ecosystems supply. Flows of these ecosystem services are strongly influenced by interactions between climate change and land use. A prominent example are savannas, covering approximately 20% of the Earth's land surface. Key ecosystem services in these areas are fuel wood for cooking and heating, food production and livestock. Changes in the structure and dynamics of savanna vegetation may strongly influence local people's living conditions, as well as the climate system and biogeochemical cycles. We used a dynamic vegetation model to explore interactive effects of climate and land use on the vegetation structure, distribution and carbon cycling of African savannas under current and future conditions. More specifically, we simulate long term impacts of fire management, grazing and fuel wood harvesting. The model projects that under future climate without human land use impacts, large savanna areas would shift towards more wood dominated vegetation due to CO2 fertilization effects and changes in water use efficiency. However, land use activities can mitigate climate change impacts on vegetation to maintain desired ecosystem states that ensure fluxes of important ecosystem services. We then use optimization algorithms to identify sustainable land use strategies that maximize the utility of people managing savannas while preserving a stable vegetation state. Our results highlight that the development of land use policy for tropical and sub-tropical areas needs to account for climate change impacts on vegetation.

  4. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds

    PubMed Central

    Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502

  5. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    PubMed

    Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  6. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon

    2011-05-01

    Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions

  7. Allocation strategies of savanna and forest tree seedlings in response to fire and shading: outcomes of a field experiment

    NASA Astrophysics Data System (ADS)

    Gignoux, Jacques; Konaté, Souleymane; Lahoreau, Gaëlle; Le Roux, Xavier; Simioni, Guillaume

    2016-12-01

    The forest-savanna ecotone may be very sharp in fire-prone areas. Fire and competition for light play key roles in its maintenance, as forest and savanna tree seedlings are quickly excluded from the other ecosystem. We hypothesized a tradeoff between seedling traits linked to fire resistance and to competition for light to explain these exclusions. We compared growth- and survival-related traits of two savanna and two forest species in response to shading and fire in a field experiment. To interpret the results, we decomposed our broad hypothesis into elementary tradeoffs linked to three constraints, biomass allocation, plant architecture, and shade tolerance, that characterize both savanna and adjacent forest ecosystems. All seedlings reached similar biomasses, but forest seedlings grew taller. Savanna seedlings better survived fire after topkill and required ten times less biomass than forest seedlings to survive. Finally, only savanna seedlings responded to shading. Although results were consistent with the classification of our species as mostly adapted to shade tolerance, competition for light in the open, and fire tolerance, they raised new questions: how could savanna seedlings survive better with a 10-times lower biomass than forest seedlings? Is their shade intolerance sufficient to exclude them from forest understory?

  8. Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna.

    PubMed

    Dohn, Justin; Augustine, David J; Hanan, Niall P; Ratnam, Jayashree; Sankaran, Mahesh

    2017-02-01

    The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation. Interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-yr longitudinal study of spatially explicit growth patterns of woody vegetation in an East African savanna following exclusion of large herbivores and in the absence of fire. We examined plant spatial patterns and quantified the degree of competition among woody individuals. Woody plants in this semiarid savanna exhibit strongly clumped spatial distributions at scales of 1-5 m. However, analysis of woody plant growth rates relative to their conspecific and heterospecific neighbors revealed evidence for strong competitive interactions at neighborhood scales of up to 5 m for most woody plant species. Thus, woody plants were aggregated in clumps despite significantly decreased growth rates in close proximity to neighbors, indicating that the spatial distribution of woody plants in this region depends on dispersal and establishment processes rather than on competitive, density-dependent mortality. However, our documentation of suppressive effects of woody plants on neighbors also suggests a potentially important role for tree-tree competition in controlling vegetation structure and indicates that the balanced-competition hypothesis may contribute to well-known patterns in maximum tree cover across rainfall gradients in Africa. © 2016 by the Ecological Society of America.

  9. Trace gas emissions to the atmosphere by biomass burning in the west African savannas. Final report, 1 October 1991-31 March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frouin, R.J.; Iacobellis, S.F.; Razafimpanilo, H.

    1994-08-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer (AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of North African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linearmore » method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.« less

  10. Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna.

    PubMed

    Kimuyu, Duncan M; Sensenig, Ryan L; Riginos, Corinna; Veblen, Kari E; Young, Truman P

    2014-06-01

    Despite the importance of fire and herbivory in structuring savanna systems, few replicated experiments have examined the interactive effects of herbivory and fire on plant dynamics. In addition, the effects of fire on associated ant-tree mutualisms have been largely unexplored. We carried out small controlled burns in each of 18 herbivore treatment plots of the Kenya Long-term Exclosure Experiment (KLEE), where experimentally excluding elephants has resulted in 42% greater tree densities. The KLEE design includes six different herbivore treatments that allowed us to examine how different combinations of megaherbivore wildlife, mesoherbivore wildlife, and cattle affect fire temperatures and subsequent loss of ant symbionts from Acacia trees. Before burning, we quantified herbaceous fuel loads and plant community composition. We tagged all trees, measured their height and basal diameter, and identified the resident ant species on each. We recorded weather conditions during the burns and used ceramic tiles painted with fire-sensitive paints to estimate fire temperatures at different heights and in different microsites (under vs. between trees). Across all treatments, fire temperatures were highest at 0-50 cm off the ground and hotter in the grass under trees than in the grassy areas between trees. Plots with more trees burned hotter than plots with fewer trees, perhaps because of greater fine woody debris. Plots grazed by wildlife and by cattle prior to burning had lower herbaceous fuel loads and experienced lower burn temperatures than ungrazed plots. Many trees lost their ant colonies during the burns. Ant survivorship differed by ant species and at the plot level was positively associated with previous herbivory (and lower fire temperatures). Across all treatments, ant colonies on taller trees were more likely to survive, but even some of the tallest trees lost their ant colonies. Our study marks a significant step in understanding the mechanisms that underlie the

  11. Oak savanna restoration: Oak response to fire and thinning through 28 years

    Treesearch

    Ronald E. Masters; Jack R. Waymire

    2012-01-01

    We used a small plot study on Pushmataha Wildlife Management Area in southeast Oklahoma to determine the efficacy of fire frequency and thinning as management tools for restoration of oak savanna, oak woodlands, pine-bluestem woodlands, and pine savanna for application on a landscape scale. On selected experimental units, we initially reduced stand density to favor...

  12. Modeling pulsed soil respiration in an African savanna ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Zhaosheng; Neff, Jason C.; Hanan, Niall P.

    2015-01-01

    Savannas cover 60% of the African continent and play an important role in the global carbon (C) emissions from fire and land use. To better characterize the biophysical controls over soil respiration in these settings, half-hourly observations of volumetric soil-water content, temperature, and the concentration of carbon dioxide (CO2) at different soil depths were continually measured from 2005 to 2007 under trees ("sub-canopy") and between trees ("inter-canopy") in a savanna vegetation near Skukuza, Kruger National Park, South Africa. The measured soil climate and CO2 concentration data were assimilated into a process-based model that estimates the CO2 production and flux withmore » coupled dynamics of dissolved organic C (DOC) and microbial biomass C. Our results show that temporal and spatial variations in CO2 flux were strongly influenced by precipitation and vegetation cover, with two times greater CO2 flux in the subcanopy plots (similar to 2421 g CO2 m(-2) yr(-1)) than in the inter-canopy plots (similar to 1290 g CO2 m(-2) yr(-1)). Precipitation influenced soil respiration by changing soil temperature and moisture; however, our modeling analysis suggests that the pulsed response of soil respiration to precipitation events (known as "Birch effect") is a key control on soil fluxes at this site. At this site, "Birch effect" contributed to approximately 50% and 65% of heterotrophic respiration or 20% and 39% of soil respiration in the sub-canopy and inter-canopy plots, respectively. These results suggest that pulsed response of respiration to precipitation events is an important component of the C cycle of savannas and should be considered in both measurement and modeling studies of carbon exchange in similar ecosystems. (C) 2014 Elsevier B.V. All rights reserved.« less

  13. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    PubMed Central

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  14. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    PubMed

    Platt, William J; Orzell, Steve L; Slocum, Matthew G

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993-2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997-2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  15. Nutrient limitation in tropical savannas across multiple scales and mechanisms.

    PubMed

    Pellegrini, Adam F A

    2016-02-01

    Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape

  16. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    NASA Astrophysics Data System (ADS)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  17. Assessing fire emissions from tropical savanna and forests of central Brazil

    Treesearch

    Philip J. Riggan; James A. Brass; Robert N. Lockwood

    1993-01-01

    Wildfires in tropical forest and savanna are a strong source of trace gas and particulate emissions to the atmosphere, but estimates of the continental-scale impacts are limited by large uncertainties in the rates of fire occurrence and biomass combustion. Satellite-based remote sensing offers promise for characterizing fire physical properties and impacts on the...

  18. Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna.

    PubMed

    Schutz, Alexander Ernest Noel; Bond, William J; Cramer, Michael D

    2009-05-01

    In frequently burnt mesic savannas, trees can get trapped into a cycle of surviving fire-induced stem death (i.e. topkill) by resprouting, only to be topkilled again a year or two later. The ability of savanna saplings to resprout repeatedly after fire is a key component of recent models of tree-grass coexistence in savannas. This study investigated the carbon allocation and biomass partitioning patterns that enable a dominant savanna tree, Acacia karroo, to survive frequent and repeated topkill. Root starch depletion and replenishment, foliage recovery and photosynthesis of burnt and unburnt plants were compared over the first year after a burn. The concentration of starch in the roots of the burnt plants (0.08 +/- 0.01 g g(-1)) was half that of the unburnt plant (0.16 +/- 0.01 g g(-1)) at the end of the first growing season after topkill. However, root starch reserves of the burnt plants were replenished over the dry season and matched that of unburnt plants within 1 year after topkill. The leaf area of resprouting plants recovered to match that of unburnt plants within 4-5 months after topkill. Shoot growth of resprouting plants was restricted to the first few months of the wet season, whereas photosynthetic rates remained high into the dry season, allowing replenishment of root starch reserves. (14)C labeling showed that reserves were initially utilized for shoot growth after topkill. The rapid foliage recovery and the replenishment of reserves within a single year after topkill implies that A. karroo is well adapted to survive recurrent topkill and is poised to take advantage of unusually long fire-free intervals to grow into adults. This paper provides some of the first empirical evidence to explain how savanna trees in frequently burnt savannas are able to withstand frequent burning as juveniles and survive to become adults.

  19. Late Holocene vegetation and fire dynamics from a savanna-forest ecotone in Roraima state, northern Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    da Silva Meneses, Maria Ecilene Nunes; da Costa, Marcondes Lima; Behling, Hermann

    2013-03-01

    Two sediment cores from Mauritia flexuosa palm swamps have been studied by pollen and charcoal analysis. The cores Fazenda Cigana (FC) and Terra Indígena Aningal (TIA) were taken from a savanna-forest ecotone area in the Roraima State, northern Brazilian Amazon. Based on 5 radiocarbon dates, these records allow the reconstruction of the vegetation fire and climate dynamics during the past 1550 years. At the FC site was recorded a higher proportion of forest cover, suggesting local wetter climatic conditions favorable for forest expansion, especially by gallery forests, between 1550 and 1400 cal yr BP. Stands of M. flexuosa started to establish on the site indicating sufficient soil moisture. From 1400 to 1050 cal yr BP, forest cover retreated while savanna, and the Mauritia palm swamp expanded considerably. The FC site was marked by savanna and Mauritia cover with a slight increase of forest between ca. 1050 and 900 cal yr BP. From 900 to 300 cal yr BP the savanna and palm swamp taxa became dominant and the forest area decreased. At the TIA site the savanna cover was dominant between 1200 and 1000 cal yr BP. From 1000 to 700 forest expanded while savanna and Mauritia palm swamp reduced. Between 700 and 300 cal yr BP savanna and Mauritia palm swamp increased and forest area decreased. The high amount of charred particles found in the sediments, indicate fires with a marked increase between 1400 to 1000 cal yr BP (FC site) and 700 to 300 cal yr BP (TIA site), and probably caused the retreat of forest cover during these two time intervals. The relatively lower fire activity after 300 cal yr BP until present-day favored the increase of forested area at both TIA and FC sites. The arrival of the European settler and the subsequent introduction of cattle, is suggested as the main reason for the decrease of fire in the study region. The results point the fire caused by indigenous people as the principal controlling factor for forest and savanna dynamics during the past

  20. The roles of fire in Holocene ecosystem changes of West Africa

    NASA Astrophysics Data System (ADS)

    Dupont, L. M.; Schefuß, E.

    2018-01-01

    The climate changes associated with the Holocene wet phase in the Sahara, the African Humid Period, are subject to ongoing debate discussing interactions between climate and vegetation and possible feedbacks between vegetation, albedo, desertification, and dust. However, very little attention has been given to the role of fire in shaping the land cover, although it is known that fires are important in the formation and consolidation of the African savanna. To fill this gap, we investigated the interaction between precipitation changes, vegetation shifts, and fire occurrence in West Africa by combining stable isotope measurements on plant waxes with pollen and micro-charcoal counts of marine sediments retrieved offshore of Cape Blanc. Our study focuses on the roles of fire at the dry limit of savanna during the Holocene evolution of precipitation changes indicating that the impact of fire during a relative wet climate differs from that during aridification. During the humid early Holocene, increased savanna extension and diversification ran parallel to increased fire occurrence. In contrast, after aridification of northern Africa started at the end of the African Humid Period, a maximum in fire occurrence correlated with a deterioration of the vegetation promoting desertification.

  1. Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes.

    PubMed

    Pellegrini, Adam F A; Franco, Augusto C; Hoffmann, William A

    2016-03-01

    Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought-fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire-driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2-million km(2) Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait-based differences in fire tolerance is critical for determining the climate-carbon-fire feedback in tropical savanna and forest biomes. © 2015 John Wiley & Sons Ltd.

  2. Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics.

    PubMed

    De Michele, Carlo; Accatino, Francesco

    2014-01-01

    Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna-forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.

  3. Emissions of Trace Gases and Particles from Savanna Fires in Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Bertschi, Isaac T.; Blake, Donald R.; Simpson, Isobel J.; Gao, Song; Kirchstetter, Thomas W.; Novakov, Tica

    2003-01-01

    Airborne measurements made on initial smoke from 10 savanna fires in southern Africa provide quantitative data on emissions of 50 gaseous and particulate species, including carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen oxides, methane, ammonia, dimethyl sulfide, nonmethane organic compounds, halocarbons, gaseous organic acids, aerosol ionic components, carbonaceous aerosols, and condensation nuclei (CN). Measurements of several of the gaseous species by gas chromatography and Fourier transform infrared spectroscopy are compared. Emission ratios and emission factors are given for eight species that have not been reported previously for biomass burning of savanna in southern Africa (namely, dimethyl sulfide, methyl nitrate, five hydrocarbons, and particles with diameters from 0.1 to 3 microns). The emission factor that we measured for ammonia is lower by a factor of 4, and the emission factors for formaldehyde, hydrogen cyanide, and CN are greater by factors of about 3, 20, and 3 - 15, respectively, than previously reported values. The new emission factors are used to estimate annual emissions of these species from savanna fires in Africa and worldwide.

  4. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-12-01

    New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year-1 with significant interannual variability during 1997-2001 (2.8 Pg C year-1 in 1998 and 1.6 Pg C year-1 in 2001). Globally, emissions during 2002-2007 were relatively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg C year-1) and 2009 (1.5 Pg C year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and

  5. Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania.

    PubMed

    Tarimo, Beatrice; Dick, Øystein B; Gobakken, Terje; Totland, Ørjan

    2015-12-01

    Anthropogenic uses of fire play a key role in regulating fire regimes in African savannas. These fires contribute the highest proportion of the globally burned area, substantial biomass burning emissions and threaten maintenance and enhancement of carbon stocks. An understanding of fire regimes at local scales is required for the estimation and prediction of the contribution of these fires to the global carbon cycle and for fire management. We assessed the spatio-temporal distribution of fires in miombo woodlands of Tanzania, utilizing the MODIS active fire product and Landsat satellite images for the past ~40 years. Our results show that up to 50.6% of the woodland area is affected by fire each year. An early and a late dry season peak in wetter and drier miombo, respectively, characterize the annual fire season. Wetter miombo areas have higher fire activity within a shorter annual fire season and have shorter return intervals. The fire regime is characterized by small-sized fires, with a higher ratio of small than large burned areas in the frequency-size distribution (β = 2.16 ± 0.04). Large-sized fires are rare, and occur more frequently in drier than in wetter miombo. Both fire prevalence and burned extents have decreased in the past decade. At a large scale, more than half of the woodland area has less than 2 years of fire return intervals, which prevent the occurrence of large intense fires. The sizes of fires, season of burning and spatial extent of occurrence are generally consistent across time, at the scale of the current analysis. Where traditional use of fire is restricted, a reassessment of fire management strategies may be required, if sustainability of tree cover is a priority. In such cases, there is a need to combine traditional and contemporary fire management practices.

  6. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.

    PubMed

    Radford, Ian J; Gibson, Lesley A; Corey, Ben; Carnes, Karin; Fairman, Richard

    2015-01-01

    Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity'), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius) and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the

  7. Sources and sinks of methane in the African Savanna. CH4 emissions from biomass burning

    NASA Astrophysics Data System (ADS)

    Delmas, R. A.; Marenco, A.; Tathy, J. P.; Cros, B.; Baudet, J. G. R.

    1991-04-01

    Sources and sinks of atmospheric methane are studied in savanna regions of west and central Africa. Flux measured over dry savanna soils, using static chambers, is always negative the average uptake rate being 2×1010 molecules/cm2/s. In these regions, sources are linked to biomass burning. Methane and CO2 emission from combustion of savanna plants and wood is studied by both field experiments and laboratory experiments using a combustion chamber. For savanna plants most of the carbon (85%) contained in the biomaterial is volatilized as CO2 and 0.1 to 0.25% as methane. For graminaceous plants like loudetia simplex the ratio C-CH4/C-CO2 is 0.11%; it is 0.28% for hyparrhenia the other main type of savanna plants and it attains 1.4% for the combustion of wood. In natural fire plumes this ratio is around 0.26% for savanna fires and 0.56 to 2.22% for forest fires. These results show that methane release is highly dependent on the type of combustion. Methane to CO2 ratios are also studied in vertical profiles in the troposphere taken during the TROPOZ I campaign, an aerial research expedition carried out over west Africa during the bushfire period. Within polluted layers, the average ratio of CH4 to CO2 excess over ambient air concentration is 0.34%. These results show that biomass burning in tropical Africa constitutes an important source of atmospheric methane estimated to about 9.2×106 T(CH4)/yr.

  8. Fire History of a Forest, Savanna, and Fen Mosaic at White Ranch State Forest

    Treesearch

    Daniel C. Dey; Ricahrd P. Guyette; Michael C. Stambaugh

    2004-01-01

    We present the fire history of a 1-km2 area that is a mosaic of oak forest, savanna, and fen on the White Ranch State Forest, Howell County, Missouri. We dated 135 fire scars on 35 cross-sections of post oak ( Quercus stellata) trees and constructed a fire chronology dating from 1705 to 1997. Mean fire return intervals by periods were 3.7 years (...

  9. Estimating vegetation dryness to optimize fire risk assessment with spot vegetation satellite data in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.

    2005-10-01

    The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.

  10. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Verola Mataveli, Guilherme Augusto; Siqueira Silva, Maria Elisa; Pereira, Gabriel; da Silva Cardozo, Francielle; Shinji Kawakubo, Fernando; Bertani, Gabriel; Cezar Costa, Julio; de Cássia Ramos, Raquel; Valéria da Silva, Viviane

    2018-01-01

    In the Brazilian savannas (Cerrado biome) fires are natural and a tool for shifting land use; therefore, temporal and spatial patterns result from the interaction of climate, vegetation condition and human activities. Moreover, orbital sensors are the most effective approach to establish patterns in the biome. We aimed to characterize fire, precipitation and vegetation condition regimes and to establish spatial patterns of fire occurrence and their correlation with precipitation and vegetation condition in the Cerrado. The Cerrado was first and second biome for the occurrence of burned areas (BA) and hotspots, respectively. Occurrences are higher during the dry season and in the savanna land use. Hotspots and BA tend to decrease, and concentrate in the north, but more intense hotspots are not necessarily located where concentration is higher. Spatial analysis showed that averaged and summed values can hide patterns, such as for precipitation, which has the lowest average in August, but minimum precipitation in August was found in 7 % of the Cerrado. Usually, there is a 2-3-month lag between minimum precipitation and maximum hotspots and BA, while minimum VCI and maximum hotspots and BA occur in the same month. Hotspots and BA are better correlated with VCI than precipitation, qualifying VCI as an indicator of the susceptibility of vegetation to ignition.

  11. The long term recovery of heat and moisture fluxes to the atmosphere following fire in Australia's tropical savanna

    NASA Astrophysics Data System (ADS)

    Tapper, N.; Beringer, J.; Hutley, L.; Coutts, A.

    2003-04-01

    Fire is probably the greatest natural and anthropogenic environmental disturbance in Australia's tropical savannas, with the vast area burned each year (up to 250,000 km^2) likely to increase with predicted regional climate change. Globally savanna ecosystems cover 11.5% of the global landscape (Scholes and Hall 1996). As much as 75% of this landscape burns annually (Hao et al., 1990), accounting for more than 40% of all global biomass consumed (Hao and Ward 1993). These landscape-scale fires undoubtedly have massive impacts on regional water, energy and carbon dioxide exchanges and as a result may have important feedbacks to the atmosphere and regional climate. Fire may influence climate directly through the emission of smoke and trace gases from burning, but there are other important impacts of fire that may affect the atmosphere. Fire and the subsequent fire scars are likely to radically alter the surface energy budgets of tropical savannas through reduced surface albedo, increased available energy for partitioning into the convective fluxes, and increased substrate heat flux. The aerodynamic and biological properties of the ecosystem may also change, affecting surface-atmosphere coupling. There is a clear potential to influence atmospheric motion and moist convection at a range of scales. Potential fire scar impacts such as those mentioned above have previously been largely ignored and are the focus of the Savanna Fire Experiment (SAFE). Tower measurements of radiation, heat, moisture and CO_2 fluxes above burned and unburned savanna near Darwin, Australia, were initiated in August 2001 to observe the impacts of fire and fire scarring on flux exchange with the atmosphere, along with the longer term post-fire recovery of fluxes. Intensive field campaigns were mounted in the dry (fire) seasons of both 2001 and 2002, with flux recovery observed into the each of the subsequent monsoon seasons. Results and an early analysis of the time series of heat and moisture

  12. Soil properties in fire-consumed log burnout openings in a Missouri oak savanna

    Treesearch

    Charles C. Rhoades; A. J. Meier; A. J. Rebertus

    2004-01-01

    Downed logs are known to increase species diversity in many forest ecosystems by increasing resource and structural complexity and by altering fire behavior in fire-prone ecosystems. In a frequently burned oak savanna in central Missouri, combustion of downed logs formed patches that have remained free of herbaceous vegetation for more than 3 years. To assess the...

  13. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  14. Effects of an accidental dry-season fire on the reproductive phenology of two Neotropical savanna shrubs.

    PubMed

    Dodonov, P; Zanelli, C B; Silva-Matos, D M

    2017-10-30

    Fire is a recurrent disturbance in savanna vegetation and savanna species are adapted to it. Even so, fire may affect various aspects of plant ecology, including phenology. We studied the effects of a spatially heterogeneous fire on the reproductive phenology of two dominant woody plant species, Miconia albicans (Melastomataceae) and Schefflera vinosa (Araliaceae), in a savanna area in South-eastern Brazil. The study site was partially burnt by a dry-season accidental fire in August 2006, and we monitored the phenolology of 30 burnt and 30 unburnt individuals of each species between September 2007 and September 2008. We used restricted randomizations to assess phenological differences between the burnt and unburnt individuals. Fire had negative effects on the phenology of M. albicans, with a smaller production of reproductive structures in general and of floral buds, total fruits, and ripe fruits in burnt plants. All unburnt but only 16% of the burnt M. albicans plants produced ripe fruits during the study. Fire effects on S. vinosa were smaller, but there was a greater production of floral buds and fruits (but not ripe fruits) by burnt plants; approximately 90% of the individuals of S. vinosa produced ripe fruits during the study, regardless of having been burnt or not. The differences between the two species may be related to S. vinosa's faster growth and absence from the seed bank at the study site, whereas M. albicans grows more slowly and is dominant in the seed bank.

  15. Episodic nitrous oxide soil emissions in Brazilian savanna (cerrado) fire-scars

    NASA Technical Reports Server (NTRS)

    Nobre, A. D.; Crill, P. M.; Harriss, R. C.

    1994-01-01

    The seasonally burned cerrados of Brazil are the largest savanna-type ecosystem of South America and their contribution to the global atmospheric nitrous oxide (N20) budget is unknown. Four types of fire-scarred cerrado along a vegetation gradient from grassland to forest were investigated during the wet season of 1992/93. The effect of fire and subsequent water additions on epiodic emissions of N2O and the associated profile dynamic of soil/gas phase N2O concentrations were studied for several months. Additionally, the effect on episodic emissions of N2O of nitrate and glucose additions to a cerrado soil after fire and the associated profile dynamic of soil/gas phase N2O mixing ratios were determined. Finally, N2O episodic emissions in cerrado converted to corn, soybean, and pasture fields were investigated during one growing/wet season. Results showed N2O consumption/emission for the four fire-scared savanna ecosystems, for nitrogen and carbon fertilization, and for agriculture/pasture ranging from -0.3 to +0.7, 1.8 to 9.1, and 0.5 to 3.7 g N2O-N ha(exp -1) d(exp -1), respectively. During the wet season the cerrado biome does not appear to be a major source of N2O to the troposphere, even following fire events. However, the results of this study suggest that conversion of the cerrado to high input agriculture, with liming and fertilization, can increase N2O emissions more than ten fold.

  16. Soil Texture Mediates the Response of Tree Cover to Rainfall Intensity in African Savannas

    NASA Astrophysics Data System (ADS)

    Case, M. F.; Staver, A. C.

    2017-12-01

    Global circulation models predict widespread shifts in the frequency and intensity of rainfall, even where mean annual rainfall does not change. Resulting changes in soil moisture dynamics could have major consequences for plant communities and ecosystems, but the direction of potential vegetation responses can be challenging to predict. In tropical savannas, where tree and grasses coexist, contradictory lines of evidence have suggested that tree cover could respond either positively or negatively to less frequent, more intense rainfall. Here, we analyzed remote sensing data and continental-scale soils maps to examine whether soil texture or fire could explain heterogeneous responses of savanna tree cover to intra-annual rainfall variability across sub-Saharan Africa. We find that tree cover generally increases with mean wet-season rainfall, decreases with mean wet-season rainfall intensity, and decreases with fire frequency. However, soil sand content mediates these relationships: the response to rainfall intensity switches qualitatively depending on soil texture, such that tree cover decreases dramatically with less frequent, more intense rainfall on clay soils but increases with rainfall intensity on sandy soils in semi-arid savannas. We propose potential ecohydrological mechanisms for this heterogeneous response, and emphasize that predictions of savanna vegetation responses to global change should account for interactions between soil texture and changing rainfall patterns.

  17. Fire scar mapping in a southern African savanna

    Treesearch

    Andrew T. Hudak; Bruce H. Brockett; Carol A. Wessman

    1998-01-01

    Multitemporal principal components analyses (PCAs) of pre- and post-burn Landsat Thematic Mapper images were used to map fire scars in Madikwe Game Reserve (MGR), South Africa. Prior to MGR's inception in 1991, when the land was used for extensive cattle ranching, overgrazing and fire suppression lead to bush encroachment. Fire is currently being used to control...

  18. Influence of savanna fire on Australian monsoon season precipitation and circulation as simulated using a distributed computing environment

    NASA Astrophysics Data System (ADS)

    Lynch, Amanda H.; Abramson, David; Görgen, Klaus; Beringer, Jason; Uotila, Petteri

    2007-10-01

    Fires in the Australian savanna have been hypothesized to affect monsoon evolution, but the hypothesis is controversial and the effects have not been quantified. A distributed computing approach allows the development of a challenging experimental design that permits simultaneous variation of all fire attributes. The climate model simulations are distributed around multiple independent computer clusters in six countries, an approach that has potential for a range of other large simulation applications in the earth sciences. The experiment clarifies that savanna burning can shape the monsoon through two mechanisms. Boundary-layer circulation and large-scale convergence is intensified monotonically through increasing fire intensity and area burned. However, thresholds of fire timing and area are evident in the consequent influence on monsoon rainfall. In the optimal band of late, high intensity fires with a somewhat limited extent, it is possible for the wet season to be significantly enhanced.

  19. Assessing fire emissions from tropical savanna and forests of central Brazil

    NASA Technical Reports Server (NTRS)

    Riggan, Philip J.; Brass, James A.; Lockwood, Robert N.

    1993-01-01

    Wildfires in tropical forest and savanna are a strong source of trace gas and particulate emissions to the atmosphere, but estimates of the continental-scale impacts are limited by large uncertainties in the rates of fire occurrence and biomass combustion. Satellite-based remote sensing offers promise for characterizing fire physical properties and impacts on the environment, but currently available sensors saturate over high-radiance targets and provide only indications of regions and times at which fires are extensive and their areal rate of growing as recorded in ash layers. Here we describe an approach combining satellite- and aircraft-based remote sensing with in situ measurements of smoke to estimate emissions from central Brazil. These estimates will improve global accounting of radiation-absorbing gases and particulates that may be contributing to climate change and will provide strategic data for fire management.

  20. Seasonal variations in methane and nitrous oxide emissions factors in northern Australian savanna woodlands

    NASA Astrophysics Data System (ADS)

    Meyer, C. P.(Mick); Cook, Garry; Reisen, Fabienne; Russell-Smith, Jeremy; Maier, Stefan; Schatz, Jon; Yates, Cameron; Watt, Felicity

    2010-05-01

    Burning of savannas and grasslands consumes more than one third of the total annual biomass burning globally. In Australia, savanna fires emit annually from 2% to 4% of Australia's greenhouse gas emissions. This has led to efforts to reduce savanna burning emissions through early season prescribed burning. These programs aim to change the fire seasonality from predominantly high intensity late season fires which are characterized by low levels of patchiness and high burning efficiencies to early-season fires characterized by low intensity, a high degree of patchiness and low burning efficiency. The result is a net reduction in fire area and associated carbon emissions. Mitigation of greenhouse gas emissions is predicated on there being little change in methane (CH4) or nitrous oxide (N2O) emission factors (EFs) as the fire season progresses, however, recent analysis of the emission characteristics of African savanna fires by Korontzi et al., indicates CH4-EF, in particular, could decline substantially as the fire season progresses. If this also occurs in Australian savanna woodlands, then the current mitigation strategy could be ineffective. To address the issue a series of field campaigns were undertaken in the savanna woodlands of Western Arnhem land, Australia to quantify the variability in CH4 and N2O EFs throughout the fire season. This study compared CH4 and N2O EFs measured in smoke sampled from prescribed burning in late June/early July with those from late season fires in early October. It concentrated on the two major vegetation classes in Western Arnhemland; eucalypt open woodland, in which the fuel is composed predominantly tree leaf-litter supplemented by senescent native Sorghum, and sandstone heaths which are dominated by Spinifex hummocks. There were no significant differences in CH4 EFs between early or late season fires, however there were substantial differences between vegetation classes. The woodland emitted 0.3% of fuel carbon as CH4 compared

  1. A New Application to Facilitate Post-Fire Recovery and Rehabilitation in Savanna Ecosystems

    NASA Technical Reports Server (NTRS)

    Carroll, Mark L.; Schnase, John L.; Weber, Keith T.; Brown, Molly E.; Gill, Roger L.; Haskett, George W.; Gardner, Tess A.

    2013-01-01

    The U.S. government spends an estimated $3billion per year to fight forest fires in the United States. Post-fire rehabilitation activities represent a small but essential portion of that total. The Rehabilitation Capability Convergence for Ecosystem Recovery (RECOVER) system is currently under development for Savanna ecosystems in the western U.S. The prototype of this system has been built and will have realworld testing during the summer 2013 fire season. When fully deployed, the RECOVER system will provide the emergency rehabilitation teams with critical and timely information for management decisions regarding stabilization and rehabilitation strategies.

  2. The distribution of grasslands, savannas and forests in Africa: a new look at the relationships between vegetation, fire and climate at continental scale

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara

    2017-04-01

    Savannas occupy about a fifth of the global land surface and store approximately 15% of the terrestrial carbon. They also encompass about 85% of the global land area burnt annually. Along an increasing rainfall gradient, they are the intermediate biome between grassland and forest. Undergoing and predicted increasing temperature and CO2 concentration, modified precipitation regimes, as well as increasing land-use intensity, are expected to induce important shifts in savanna structure and in the distribution of grasslands, savannas and forests. Owing to the large extent and productivity of savanna biomes, these changes could have larger impacts on the global biogeochemical cycle and precipitation than for any other biome, thus influencing the vegetation-climate system. The dynamics of these biomes has been long studied, and the current theory postulates that while arid savannas are observed because of tree-water limitation, and competition with grasses, in mesic conditions savannas persist because a grass-fire feedback exists, which can maintain them as an alternatively stable state to closed forests. This feedback is reinforced by the different responses of savanna and forest tree type. In this context, despite their relevance, grasses and tree types have been studied mostly in small scale ecological studies, while continental analyses focused on total tree cover only. Here we analyze a recent MODIS product including explicitly the non-tree vegetation cover, allowing us to illustrate for the first time at continental scale the importance of grass cover and of tree-fire responses in determining the emergence of the different biomes. We analyze the relationships of woody and herbaceous cover with fire return time (all from MODIS satellite observations), rainfall annual average and seasonality (from TRMM satellite measurements), and we include tree phenology information, based on the ESA Global Land Cover map, also used to exclude areas with large anthropogenic land

  3. Fire frequency, agricultural history and the multivariate control of pine savanna understorey plant diversity

    Treesearch

    Joseph W. Veldman; Lars A. Brudvig; Ellen I. Damschen; John L. Orrock; W. Brett Mattingly; Joan L. Walker

    2014-01-01

    Question: Human-altered disturbance regimes and agricultural land uses are broadly associated with reduced plant species diversity in terrestrial ecosystems. In this study, we seek to understand how fire frequency and agricultural land-use history influence savanna understorey plant diversity through complex relationships (i.e. indirect effects) among multiple...

  4. Effects of overstory stand density and fire on ground layer vegetation in oak woodland and savanna habitats

    Treesearch

    John B. Taft

    2009-01-01

    Vegetation changes underway in oak woodland and savanna communities in the eastern and midwestern United States, primarily a result of reduced fire frequency or fire absence, include increased tree density and shading and loss of species diversity in the ground layer. However, some habitats, particularly on dry-mesic to xeric sites, retain considerable restoration...

  5. Lightning fires in North Dakota grasslands and in pine-savanna lands of South Dakota and Montana

    USGS Publications Warehouse

    Higgins, K.F.

    1984-01-01

    Lightning strike fires which occurred between 1940 and 1981 were studied in mixed-grass prairie grasslands and in pine-savanna lands in the Northern Great Plains region. A majority (73%) of ignitions occurred during July and August, while a lesser number was recorded in April, May, June, and September. The April-September period is also the average time of the freeze-free period and approximates the average distribution period for thunderstorm activity in this region. The area burned by each of 293 lightning fires (most of which were suppressed) ranged from 0.004-1158.3 ha (mean = 10.8 ha). The frequency of lightning fires in mixed-grass prairie grasslands averaged 6.0/yr per 10,000 km2 in eastern North Dakota, 22.4/yr per 10,000 km2 in southcentral North Dakota, 24.7/yr per 10,000 km2 in western North Dakota, and 91.7/yr per 10,000 km2 in pine-savanna lands in northwestern South Dakota and southeastern Montana. The ecological role of lightning-set fires is discussed relative to the development of resource research and management plans and to the interpretation of historical records of natural fire occurrence in the Northern Great Plains region.

  6. Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna

    NASA Astrophysics Data System (ADS)

    Ficken, Cari D.; Wright, Justin P.

    2017-01-01

    Many ecosystems experience drastic changes to soil nutrient availability associated with fire, but the magnitude and duration of these changes are highly variable among vegetation and fire types. In pyrogenic pine savannas across the southeastern United States, pulses of soil inorganic nitrogen (N) occur in tandem with ecosystem-scale nutrient losses from prescribed burns. Despite the importance of this management tool for restoring and maintaining fire-dependent plant communities, the contributions of different mechanisms underlying fire-associated changes to soil N availability remain unclear. Pulses of N availability following fire have been hypothesized to occur through (1) changes to microbial cycling rates and (2) direct ash deposition. Here, we document fire-associated changes to N availability across the growing season in a longleaf pine savanna in North Carolina. To differentiate between possible mechanisms driving soil N pulses, we measured net microbial cycling rates and changes to soil δ15N before and after a burn. Our findings refute both proposed mechanisms: we found no evidence for changes in microbial activity, and limited evidence that ash deposition could account for the increase in ammonium availability to more than 5-25 times background levels. Consequently, we propose a third mechanism to explain post-fire patterns of soil N availability, namely that (3) changes to plant sink strength may contribute to ephemeral increases in soil N availability, and encourage future studies to explicitly test this mechanism.

  7. The biodiversity cost of carbon sequestration in tropical savanna.

    PubMed

    Abreu, Rodolfo C R; Hoffmann, William A; Vasconcelos, Heraldo L; Pilon, Natashi A; Rossatto, Davi R; Durigan, Giselda

    2017-08-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha -1 year -1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

  8. The biodiversity cost of carbon sequestration in tropical savanna

    PubMed Central

    Abreu, Rodolfo C. R.; Hoffmann, William A.; Vasconcelos, Heraldo L.; Pilon, Natashi A.; Rossatto, Davi R.; Durigan, Giselda

    2017-01-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha−1 year−1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation. PMID:28875172

  9. The climatic sensitivity of the forest, savanna and forest-savanna transition in tropical South America.

    PubMed

    Hirota, Marina; Nobre, Carlos; Oyama, Marcos Daisuke; Bustamante, Mercedes M C

    2010-08-01

    *We used a climate-vegetation-natural fire (CVNF) conceptual model to evaluate the sensitivity and vulnerability of forest, savanna, and the forest-savanna transition to environmental changes in tropical South America. *Initially, under current environmental conditions, CVNF model results suggested that, in the absence of fires, tropical forests would extend c. 200 km into the presently observed savanna domain. *Environmental changes were then imposed upon the model in temperature, precipitation and lightning strikes. These changes ranged from 2 to 6 degrees C warming, +10 to -20% precipitation change and 0 to 15% increase in lightning frequency, which, in aggregate form, represent expected future climatic changes in response to global warming and deforestation. *The most critical vegetation changes are projected to take place over the easternmost portions of the basin, with a widening of the forest-savanna transition. The transition width would increase from 150 to c. 300 km, with tree cover losses ranging from 20 to 85%. This means that c. 6% of the areas currently covered by forests could potentially turn into grass-dominated savanna landscapes. The mechanism driving tree cover reduction consists of the combination of less favorable climate conditions for trees and more fire activity. In addition, this sensitivity analysis predicts that the current dry shrubland vegetation of northeast Brazil could potentially turn into a bare soil landscape.

  10. Characteristics and behavior of a cool-season prescribed fire in the oak savannas of the Southwestern Borderlands

    Treesearch

    Karen A. Koestner; Daniel G. Neary; Gerald J. Gottfired; Ruben Morales

    2008-01-01

    Oak-savannas and woodlands comprise over 80,000 km2 (31,000 mi2) in the mountains and high valleys of the southwestern United States and northern Mexico (Figure 1). Fire, which was once the most important natural disturbance in this system, has been excluded due to over-grazing and fire suppression practices. This has resulted in ecosystem changes and fuel...

  11. On the relative role of fire and rainfall in determining vegetation patterns in tropical savannas: a simulation study

    NASA Astrophysics Data System (ADS)

    Spessa, Allan; Fisher, Rosie

    2010-05-01

    Tropical savannas cover 18% of the world's land surface and are amongst the most productive terrestrial systems in the world. They comprise 15% of the total terrestrial carbon stock, with an estimated mean net primary productivity (NPP) of 7.2 tCha-1yr-1 or two thirds of NPP in tropical forests. Tropical savannas are the most frequently burnt biome, with fire return intervals in highly productive areas being typically 1-2 years. Fires shape vegetation species composition, tree to grass ratios and nutrient redistribution, as well as the biosphere-atmosphere exchange of trace gases, momentum and radiative energy. Tropical savannas are a major source of emissions, contributing 38 % of total annual CO2 from biomass burning, 30% CO, 19 % CH4 and 59 % NOx. Climatically, they occur in regions subject to a strongly seasonal ‘wet-dry' regime, usually under monsoonal control from the movement of the inter-tropical convergence zone. In general, rainfall during the prior wet season(s) determines the amount of grass fuel available for burning while the length of the dry season influences fuel moisture content. Rainfall in tropical savannas exhibits high inter-annual variability, and under future climate change, is projected to change significantly in much of Africa, South America and northern Australia. Process-based simulation models of fire-vegetation dynamics and feedbacks are critical for determining the impacts of wildfires under projected future climate change on i) ecosystem structure and function, and ii) emissions of trace gases and aerosols from biomass burning. A new mechanistic global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within Dynamic Global Vegetation Models (DGVMs). SPITFIRE has been applied in coupled mode globally and southern Africa, both as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa, while coupled to the

  12. Microbial properties and litter and soil nutrients after two prescribed fires in developing savannas in an upland Missouri Ozark Forest

    Treesearch

    Felix, Jr. Ponder; Mahasin Tadros; Edward F. Loewenstein

    2009-01-01

    On some landscapes periodic fire may be necessary to develop and maintain oak-dominated savannas. We studied the effects of two annual prescribed burns to determine their effect on microbial activity and soil and litter nutrients 1 year after the last burn. Surface litter and soil from the upper 0?5 cm soil layer in three developing savannas (oak-hickory, ...

  13. Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa.

    PubMed

    Colombaroli, Daniele; Ssemmanda, Immaculate; Gelorini, Vanessa; Verschuren, Dirk

    2014-09-01

    Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity. © 2014 John Wiley & Sons Ltd.

  14. A Landscape-Scale, Applied Fire Management Experiment Promotes Recovery of a Population of the Threatened Gouldian Finch, Erythrura gouldiae, in Australia's Tropical Savannas.

    PubMed

    Legge, Sarah; Garnett, Stephen; Maute, Kim; Heathcote, Joanne; Murphy, Steve; Woinarski, John C Z; Astheimer, Lee

    2015-01-01

    Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species--one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)--from two large areas (> 2,830 km2) with initial contrasting fire regimes ('extreme': frequent, extensive, intense fire; versus 'benign': less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the 'benign' fire regime

  15. Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Axelsson, C.; Hanan, N. P.

    2016-12-01

    High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.

  16. Fire effects on herbaceous plants and shrubs in the oak savannas of the Southwestern Borderlands

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried; Hui Chen; Cody L. Stropki; Daniel G. Neary

    2012-01-01

    Much has been learned in recent years about the ecological, hydrologic, and environmental characteristics of the oak (encinal) woodlands of the Southwestern Borderlands. Comparable information for the lower-elevation oak savannas, including the impacts of fire on ecosystem resources, is also necessary to enhance the knowledge of the oak ecosystems in the region. Oak...

  17. Dynamics of the Leaf-Litter Arthropod Fauna Following Fire in a Neotropical Woodland Savanna

    PubMed Central

    Vasconcelos, Heraldo L.; Pacheco, Renata; Silva, Raphael C.; Vasconcelos, Pedro B.; Lopes, Cauê T.; Costa, Alan N.; Bruna, Emilio M.

    2009-01-01

    Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of

  18. A Landscape-Scale, Applied Fire Management Experiment Promotes Recovery of a Population of the Threatened Gouldian Finch, Erythrura gouldiae, in Australia’s Tropical Savannas

    PubMed Central

    Legge, Sarah; Garnett, Stephen; Maute, Kim; Heathcote, Joanne; Murphy, Steve; Woinarski, John C. Z.; Astheimer, Lee

    2015-01-01

    Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species–one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)—from two large areas (> 2,830 km2) with initial contrasting fire regimes (‘extreme’: frequent, extensive, intense fire; versus ‘benign’: less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the

  19. IDESSA: An Integrative Decision Support System for Sustainable Rangeland Management in Southern African Savannas

    NASA Astrophysics Data System (ADS)

    Meyer, Hanna; Authmann, Christian; Dreber, Niels; Hess, Bastian; Kellner, Klaus; Morgenthal, Theunis; Nauss, Thomas; Seeger, Bernhard; Tsvuura, Zivanai; Wiegand, Kerstin

    2017-04-01

    Bush encroachment is a syndrome of land degradation that occurs in many savannas including those of southern Africa. The increase in density, cover or biomass of woody vegetation often has negative effects on a range of ecosystem functions and services, which are hardly reversible. However, despite its importance, neither the causes of bush encroachment, nor the consequences of different resource management strategies to combat or mitigate related shifts in savanna states are fully understood. The project "IDESSA" (An Integrative Decision Support System for Sustainable Rangeland Management in Southern African Savannas) aims to improve the understanding of the complex interplays between land use, climate patterns and vegetation dynamics and to implement an integrative monitoring and decision-support system for the sustainable management of different savanna types. For this purpose, IDESSA follows an innovative approach that integrates local knowledge, botanical surveys, remote-sensing and machine-learning based time-series of atmospheric and land-cover dynamics, spatially explicit simulation modeling and analytical database management. The integration of the heterogeneous data will be implemented in a user oriented database infrastructure and scientific workflow system. Accessible via web-based interfaces, this database and analysis system will allow scientists to manage and analyze monitoring data and scenario computations, as well as allow stakeholders (e. g. land users, policy makers) to retrieve current ecosystem information and seasonal outlooks. We present the concept of the project and show preliminary results of the realization steps towards the integrative savanna management and decision-support system.

  20. Conservation lessons from large-mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments

    USDA-ARS?s Scientific Manuscript database

    African savannas support an iconic fauna, but they are undergoing large-scale population declines and extinctions of large (>5 kg) mammals. Long-term, controlled, replicated experiments that explore the consequences of this defaunation (and its replacement with livestock) are rare. The Mpala Researc...

  1. Brief communication: Reaction to fire by savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal: Conceptualization of "fire behavior" and the case for a chimpanzee model.

    PubMed

    Pruetz, Jill D; LaDuke, Thomas C

    2010-04-01

    The use and control of fire are uniquely human traits thought to have come about fairly late in the evolution of our lineage, and they are hypothesized to correlate with an increase in intellectual complexity. Given the relatively sophisticated cognitive abilities yet small brain size of living apes compared to humans and even early hominins, observations of wild chimpanzees' reactions to naturally occurring fire can help inform hypotheses about the likely responses of early hominins to fire. We use data on the behavior of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during two encounters with wildfires to illuminate the similarities between great apes and humans regarding their reaction to fire. Chimpanzees' close relatedness to our lineage makes them phylogenetically relevant to the study of hominid evolution, and the open, hot and dry environment at Fongoli, similar to the savanna mosaic thought to characterize much of hominid evolution, makes these apes ecologically important as a living primate model as well. Chimpanzees at Fongoli calmly monitor wildfires and change their behavior in anticipation of the fire's movement. The ability to conceptualize the "behavior" of fire may be a synapomorphic trait characterizing the human-chimpanzee clade. If the cognitive underpinnings of fire conceptualization are a primitive hominid trait, hypotheses concerning the origins of the control and use of fire may need revision. We argue that our findings exemplify the importance of using living chimpanzees as models for better understanding human evolution despite recently published suggestions to the contrary. (c) 2009 Wiley-Liss, Inc.

  2. Termites and large herbivores influence seed removal rates in an African savanna.

    PubMed

    Acanakwo, Erik Francis; Sheil, Douglas; Moe, Stein R

    2017-12-01

    Seed removal can influence plant community dynamics, composition, and resulting vegetation characteristics. In the African savanna, termites and large herbivores influence vegetation in various ways, likely including indirect effects on seed predators and secondary dispersers. However, the intensity and variation of seed removal rates in African savannas has seldom been studied. We experimentally investigated whether termites and large herbivores were important factors in the mechanisms contributing to observed patterns in tree species composition on and off mounds, in Lake Mburo National Park, Uganda. Within fenced (excluding large herbivores) and unfenced termite mound and adjacent savanna plots, we placed seeds of nine native tree species within small open "cages," accessed by all animals, roofed cages that only allowed access to small vertebrates and invertebrates, and closed cages that permitted access by smaller invertebrates only (5 mm wire mesh). We found that mean seed removal rate was high (up to 87.3% per 3 d). Mound habitats experienced significantly higher removal rates than off-mound habitats. The mean removal rate of native seeds from closed cages was 11.1% per 3 d compared with 19.4% and 23.3% removed per 3 d in the roofed and open cages, respectively. Smaller seeds experienced higher removal rates than larger seeds. Large herbivore exclusion on mounds reduced native seed removal rates by a mean of 8.8% in the open cages, but increased removal rates by 1.7% in the open cages when off-mound habitats were fenced. While removal rates from open cages were higher on active mounds (30.9%) than on inactive mounds (26.7%), the removal rates from closed cages were lower on active vs. inactive mounds (6.1% vs. 11.6%, respectively). Thus, we conclude that large herbivores and Macrotermes mounds influence seed removal rates, though these effects appear indirect. © 2017 by the Ecological Society of America.

  3. The distribution, abundance, and the effects of fire on mound building termites (Trinervitermes and Cubitermes spp., Isoptera: Termitidae) in northern guinea savanna West Africa.

    PubMed

    Benzie, John A H

    1986-11-01

    Termite mound densities in typical guinea savanna, Detarium, and grassland (boval) habitats in northern guinea savanna were determined by random quadratting of 2-3 sites in each habitat (100, 10x10 m quadrats per habitat). Dominant species in guinea savanna were T. geminatus (46 mounds ha -1 ) and T. oeconomus (21 mounds ha -1 ), in Detarium T. geminatus (59 mounds ha -1 ) and C. curtatus (45 mounds ha -1 ) and in boval C. curtatus (72 mounds ha -1 ) and T. geminatus (22 mounds ha -1 ). Only C. curtatus densities and total densities differed significantly between sites within habitats, but all species differed significantly in abundance between habitats. The composition of each community was related to general environment but no particular environmental variable was shown to be a major determinant of termite distribution. Evidence for the limitation of termite populations was obtained from indirect evidence of competition between colonies in Detarium, and by experimental manipulation of fire regimes in the typical guinea savanna habitat. Harvester termites increased four-five fold over two years in fire-protected plots as a result of increased food supplies. Total termite densities in the fire-protected community equilibrated to the new population density (100 mounds ha -1 ) after only two-three years.

  4. Fire-induced albedo change and surface radiative forcing in sub-Saharan Africa savanna ecosystems: Implications for the energy balance

    NASA Astrophysics Data System (ADS)

    Dintwe, Kebonye; Okin, Gregory S.; Xue, Yongkang

    2017-06-01

    Surface albedo is a critical parameter that controls surface energy balance. In dryland ecosystems, fires play a significant role in decreasing surface albedo, resulting in positive radiative forcing. Here we investigate the long-term effect of fire on surface albedo. We devised a method to calculate short-, medium-, and long-term effect of fire-induced radiative forcing and their relative effects on energy balance. We used Moderate Resolution Imaging Spectroradiometer (MODIS) data in our analysis, covering different vegetation classes in sub-Saharan Africa (SSA). Our analysis indicated that mean short-term fire-induced albedo change in SSA was -0.022, -0.035, and -0.041 for savannas, shrubland, and grasslands, respectively. At regional scale, mean fire-induced albedo change in savannas was -0.018 and -0.024 for northern sub-Saharan of Africa and the southern hemisphere Africa, respectively. The short-term mean fire-induced radiative forcing in burned areas in sub-Saharan Africa (SSA) was 5.41 W m-2, which contributed continental and global radiative forcings of 0.25 and 0.058 W m-2, respectively. The impact of fire in surface albedo has long-lasting effects that varies with vegetation type. The long-term energetic effects of fire-induced albedo change and associated radiative forcing were, on average, more than 19 times greater across SSA than the short-term effects, suggesting that fires exerted far more radiative forcing than previously thought. Taking into account the actual duration of fire's effect on surface albedo, we conclude that the contribution of SSA fires, globally and throughout the year, is 0.12 W m-2. These findings provide crucial information on possible impact of fire on regional climate variability.

  5. Comparison of nitrogen monoxide emissions from several African tropical ecosystems and influence of season and fire

    NASA Astrophysics Data System (ADS)

    SerçA, D.; Delmas, R.; Le Roux, X.; Parsons, D. A. B.; Scholes, M. C.; Abbadie, L.; Lensi, R.; Ronce, O.; Labroue, L.

    1998-12-01

    NO emission rates from soils were measured for twelve major African ecosystems in four countries (Congo, Niger, Ivory Coast, and South Africa) and within four major phytogeographic domains: the Guineo-Congolese, Guinean, Sahelian, and Zambezian domains. Measurements were performed during wet and/or dry seasons. All the measurements were made with the same dynamic chamber device, which allowed true comparisons to be made. This study showed that emission rates strongly differed between ecosystems and exhibited a marked temporal variability. Ecosystem effect was highly significant during both the dry and wet seasons. Emission rates were low (<0.6 ng NO-N m-2 s-1) in Hyparrhenia and Loudetia savannas of the Guinean or Guineo-Congolese domains. Intermediate NO fluxes were obtained in rain forest and gallery forest ecosystems, in a broad-leafed savanna and in a seasonally wetted grassland (sandy soil) of the Zambezian domain, and in a dry fallow savanna of the Sahelian domain. Emission rates were maximum (>7 ng NO-N m-2 s-1) in a seasonally wetted grassland (site 2) and in particular sites subjected to various disturbances, for example soil fauna activity (termite mounds) or past human disturbance (Acacia patches-settlement site). Microbial activity potentials (i.e., carbon mineralization, nitrification, denitrification, and total net N mineralization) were determined for most of the soils where NO fluxes were measured. In some sites, these potential activities were useful to identify the major processes controlling NO emission rates. Denitrification potential was very low and could not explain substantial NO fluxes from broad- and fine-leafed savannas and Hyperihelia savannas of the Zambezian domain. Very low potentials of both nitrification and denitrification could be related to the low NO fluxes for the three Guinean savanna sites studied. NO fluxes were significantly higher during the wet season than the dry season in both savanna and forest ecosystems. Emission

  6. Burning, fire prevention and landscape productions among the Pemon, Gran Sabana, Venezuela: toward an intercultural approach to wildland fire management in Neotropical Savannas.

    PubMed

    Sletto, Bjørn; Rodriguez, Iokiñe

    2013-01-30

    Wildland fire management in savanna landscapes increasingly incorporates indigenous knowledge to pursue strategies of controlled, prescriptive burning to control fuel loads. However, such participatory approaches are fraught with challenges because of contrasting views on the role of fire and the practices of prescribed burning between indigenous and state fire managers. Also, indigenous and state systems of knowledge and meanings associated with fire are not monolithic but instead characterized by conflicts and inconsistencies, which require new, communicative strategies in order to develop successful, intercultural approaches to fire management. This paper is based on long-term research on indigenous Pemon social constructs, rules and regulations regarding fire use, and traditional system of prescribed burning in the Gran Sabana, Venezuela. The authors review factors that act as constraints against successful intercultural fire management in the Gran Sabana, including conflicting perspectives on fire use within state agencies and in indigenous communities, and propose strategies for research and communicative planning to guide future efforts for more participatory and effective fire management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Modeling the effects of anthropogenic habitat change on savanna snake invasions into African rainforest.

    PubMed

    Freedman, Adam H; Buermann, Wolfgang; Lebreton, Matthew; Chirio, Laurent; Smith, Thomas B

    2009-02-01

    We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus), olympic lined snake (Dromophis lineatus), and African house snake (Lamprophis fuliginosus). Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.

  8. Improving the prediction of African savanna vegetation variables using time series of MODIS products

    NASA Astrophysics Data System (ADS)

    Tsalyuk, Miriam; Kelly, Maggi; Getz, Wayne M.

    2017-09-01

    African savanna vegetation is subject to extensive degradation as a result of rapid climate and land use change. To better understand these changes detailed assessment of vegetation structure is needed across an extensive spatial scale and at a fine temporal resolution. Applying remote sensing techniques to savanna vegetation is challenging due to sparse cover, high background soil signal, and difficulty to differentiate between spectral signals of bare soil and dry vegetation. In this paper, we attempt to resolve these challenges by analyzing time series of four MODIS Vegetation Products (VPs): Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), and Fraction of Photosynthetically Active Radiation (FPAR) for Etosha National Park, a semiarid savanna in north-central Namibia. We create models to predict the density, cover, and biomass of the main savanna vegetation forms: grass, shrubs, and trees. To calibrate remote sensing data we developed an extensive and relatively rapid field methodology and measured herbaceous and woody vegetation during both the dry and wet seasons. We compared the efficacy of the four MODIS-derived VPs in predicting vegetation field measured variables. We then compared the optimal time span of VP time series to predict ground-measured vegetation. We found that Multiyear Partial Least Square Regression (PLSR) models were superior to single year or single date models. Our results show that NDVI-based PLSR models yield robust prediction of tree density (R2 = 0.79, relative Root Mean Square Error, rRMSE = 1.9%) and tree cover (R2 = 0.78, rRMSE = 0.3%). EVI provided the best model for shrub density (R2 = 0.82) and shrub cover (R2 = 0.83), but was only marginally superior over models based on other VPs. FPAR was the best predictor of vegetation biomass of trees (R2 = 0.76), shrubs (R2 = 0.83), and grass (R2 = 0.91). Finally, we addressed an enduring challenge in the remote sensing of semiarid

  9. Large-scale impacts of herbivores on the structural diversity of African savannas

    PubMed Central

    Asner, Gregory P.; Levick, Shaun R.; Kennedy-Bowdoin, Ty; Knapp, David E.; Emerson, Ruth; Jacobson, James; Colgan, Matthew S.; Martin, Roberta E.

    2009-01-01

    African savannas are undergoing management intensification, and decision makers are increasingly challenged to balance the needs of large herbivore populations with the maintenance of vegetation and ecosystem diversity. Ensuring the sustainability of Africa's natural protected areas requires information on the efficacy of management decisions at large spatial scales, but often neither experimental treatments nor large-scale responses are available for analysis. Using a new airborne remote sensing system, we mapped the three-dimensional (3-D) structure of vegetation at a spatial resolution of 56 cm throughout 1640 ha of savanna after 6-, 22-, 35-, and 41-year exclusions of herbivores, as well as in unprotected areas, across Kruger National Park in South Africa. Areas in which herbivores were excluded over the short term (6 years) contained 38%–80% less bare ground compared with those that were exposed to mammalian herbivory. In the longer-term (> 22 years), the 3-D structure of woody vegetation differed significantly between protected and accessible landscapes, with up to 11-fold greater woody canopy cover in the areas without herbivores. Our maps revealed 2 scales of ecosystem response to herbivore consumption, one broadly mediated by geologic substrate and the other mediated by hillslope-scale variation in soil nutrient availability and moisture conditions. Our results are the first to quantitatively illustrate the extent to which herbivores can affect the 3-D structural diversity of vegetation across large savanna landscapes. PMID:19258457

  10. Understory plant communities and the functional distinction between savanna trees, forest trees, and pines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veldman, Joseph W.; Mattingly, W. Brett; Brudvig, Lars A.

    Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in firemore » frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are more fire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity.« less

  11. Aerosol emissions by tropical forest and savanna biomass burning: Characteristic trace elements and fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echalar, F.; Gaudichet, A.; Cachier, H.

    1995-11-15

    This report characterizes and compares trace element emissions from fires of three different types of savannas and from the southwestern amazonian rain forest. This study tries to verify a fingerprint that may characterize savanna fires or tropical biomass burning.

  12. Changes in Carbon Emissions in Colombian Savannas Derived From Recent Land use and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Etter, A.; Sarmiento, A.

    2007-12-01

    The global contribution of carbon emissions from land use dynamics and change to the global carbon (C) cycle is still uncertain, a major concern in global change modeling. Carbon emission from fires in the tropics is significant and represents 9% of the net primary production, and 50% of worldwide C emissions from fires are attributable to savanna fires. Such emissions may vary significantly due to differences in ecosystem types. Most savanna areas are devoted to grazing land uses making methane emissions also important in savanna ecosystems. Land use change driven by intensification of grazing and cropping has become a major factor affecting C emission dynamics from savanna regions. Colombia has some 17 MHa of mesic savannas which have been historically burned. Due to changes in market demands and improved accessibility during the last 20 years, important areas of savannas changed land use from predominantly extensive grazing to crops and intensive grazing systems. This research models and evaluates the impacts of such land use changes on the spatial and temporal burning patterns and C emissions in the Orinoco savannas of Colombia. We address the effects of land use change patterns using remote sensing data from MODIS and Landsat, ecosystem mapping products, and spatial GIS analysis. First we map the expansion of the agricultural frontier from the 1980s-2000s. We then model the changes in land use from the 1980s using a statistical modeling approach to analyze and quantify the impact of accessibility, ecosystem type and land tenure. We calculate the effects on C emissions from fire regimes and other sources of C based on patterns and extent of burned areas in the 2000s for different savanna ecosystem types and land uses. In the Llanos the fire regime exhibits a marked seasonal variability with most fire events occurring during the dry season between December-March. Our analysis shows that fire frequencies vary consistently between 0.6 and 2.8 fires.yr-1 per 2

  13. Inferences of Present and Past Changes at Isolated Enclaves and Matrix of Savannas by Carbon Isotopes in a Transitional Forest-Savanna Area in Northern Amazonia

    NASA Astrophysics Data System (ADS)

    Couto-Santos, F. R.; Luizao, F. J.; Camargo, P. B.

    2013-12-01

    The evolutionary history of savannas influenced by short term climate cycles, during the Quaternary Period, could prompt variations in forest cover often related to movements of the forest-savanna boundary. In this study we investigated current and past changes in the structure of vegetation and the origins of savannas of different natures in a biogeographically and climatic transitional forest-savanna area in northern Amazonia. Variations in the isotopic composition of soil organic matter (δ13C) from surface soils (0-10 cm) along forest-savanna boundaries, detected by a sigmoidal non-linear function, were used to identify current changes in vegetation, while past changes were inferred by discontinuities in the evolution of δ13C with soil depth using piecewise regression associated with radiocarbon dating (14C). By comparing small isolated savanna enclaves inside a strictly protected nature reserve (ESEC Maracá) with its outskirts unprotected continuous savanna matrix, we found that origins and the patterns of dynamics were distinct between these areas and did not respond in the same way to climate change and fire events, either in the last decades or during the Holocene. The stability of the present boundaries of the surrounding savanna matrix reflects the resilience of the transitional forests under a recent intensified fire regime and favorable climate, while the deep forest soil isotopic signal indicated a forest shrinkage of at least 70 m occurring since its origin in early Holocene until 780 years BP associated with a climate drier than the current one. Contrarily, the protected enclaves inside ESEC Maracá, remained stable since the middle Holocene, suggesting a non-anthropogenic origin related to soil edaphic conditions, but with recent dynamics of advancing forest by 8 m century-1 favored by current climate and lacking fire events. A detailed understanding of the origins of savannas of distinct natures and the way they are affected by climate and fire

  14. The global extent and determinants of savanna and forest as alternative biome states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon A

    2011-10-14

    Theoretically, fire-tree cover feedbacks can maintain savanna and forest as alternative stable states. However, the global extent of fire-driven discontinuities in tree cover is unknown, especially accounting for seasonality and soils. We use tree cover, climate, fire, and soils data sets to show that tree cover is globally discontinuous. Climate influences tree cover globally but, at intermediate rainfall (1000 to 2500 millimeters) with mild seasonality (less than 7 months), tree cover is bimodal, and only fire differentiates between savanna and forest. These may be alternative states over large areas, including parts of Amazonia and the Congo. Changes in biome distributions, whether at the cost of savanna (due to fragmentation) or forest (due to climate), will be neither smooth nor easily reversible.

  15. An Overview of Nitrogen Cycling in a Semiarid Savanna: Some Implications for Management and Conservation in a Large African Park

    NASA Astrophysics Data System (ADS)

    Coetsee, Corli; Jacobs, Shayne; Govender, Navashni

    2012-02-01

    Nitrogen (N) is a major control on primary productivity and hence on the productivity and diversity of secondary producers and consumers. As such, ecosystem structure and function cannot be understood without a comprehensive understanding of N cycling and dynamics. This overview describes the factors that govern N distribution and dynamics and the consequences that variable N dynamics have for structure, function and thresholds of potential concern (TPCs) for management of a semiarid southern African savanna. We focus on the Kruger National Park (KNP), a relatively intact savanna, noted for its wide array of animal and plant species and a prized tourist destination. KNP's large size ensures integrity of most ecosystem processes and much can be learned about drivers of ecosystem structure and function using this park as a baseline. Our overview shows that large scale variability in substrates exists, but do not necessarily have predictable consequences for N cycling. The impact of major drivers such as fire is complex; at a landscape scale little differences in stocks and cycling were found, though at a smaller scale changes in woody cover can lead to concomitant changes in total N. Contrasting impacts of browsers and grazers on N turnover has been recorded. Due to the complexity of this ecosystem, we conclude that it will be complicated to draw up TPCs for most transformations and pools involved with the N cycle. However, we highlight in which cases the development of TPCs will be possible.

  16. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  17. Fires in the Cenozoic: a late flowering of flammable ecosystems

    PubMed Central

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  18. Challenges and opportunities in land surface modelling of savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Whitley, Rhys; Beringer, Jason; Hutley, Lindsay B.; Abramowitz, Gabriel; De Kauwe, Martin G.; Evans, Bradley; Haverd, Vanessa; Li, Longhui; Moore, Caitlin; Ryu, Youngryel; Scheiter, Simon; Schymanski, Stanislaus J.; Smith, Benjamin; Wang, Ying-Ping; Williams, Mathew; Yu, Qiang

    2017-10-01

    The savanna complex is a highly diverse global biome that occurs within the seasonally dry tropical to sub-tropical equatorial latitudes and are structurally and functionally distinct from grasslands and forests. Savannas are open-canopy environments that encompass a broad demographic continuum, often characterised by a changing dominance between C3-tree and C4-grass vegetation, where frequent environmental disturbances such as fire modulates the balance between ephemeral and perennial life forms. Climate change is projected to result in significant changes to the savanna floristic structure, with increases to woody biomass expected through CO2 fertilisation in mesic savannas and increased tree mortality expected through increased rainfall interannual variability in xeric savannas. The complex interaction between vegetation and climate that occurs in savannas has traditionally challenged terrestrial biosphere models (TBMs), which aim to simulate the interaction between the atmosphere and the land surface to predict responses of vegetation to changing in environmental forcing. In this review, we examine whether TBMs are able to adequately represent savanna fluxes and what implications potential deficiencies may have for climate change projection scenarios that rely on these models. We start by highlighting the defining characteristic traits and behaviours of savannas, how these differ across continents and how this information is (or is not) represented in the structural framework of many TBMs. We highlight three dynamic processes that we believe directly affect the water use and productivity of the savanna system: phenology, root-water access and fire dynamics. Following this, we discuss how these processes are represented in many current-generation TBMs and whether they are suitable for simulating savanna fluxes.Finally, we give an overview of how eddy-covariance observations in combination with other data sources can be used in model benchmarking and

  19. The effects of past climate variability on fire and vegetation in the cerrãdo savanna ecosystem of the Huanchaca Mesetta, Noel Kempff Mercado National Park, NE Bolivia

    NASA Astrophysics Data System (ADS)

    Maezumi, S. Y.; Power, M. J.; Mayle, F. E.; McLauchlan, K.; Iriarte, J.

    2015-01-01

    Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are predicted to increase by ~ 3 °C coupled with a precipitation decrease of ~ 20%. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500 year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed for phytoliths, stable isotopes and charcoal. A non-analogue, cold-adapted vegetation community dominated the Late Glacial-Early Holocene period (14 500-9000 ka), that included trees and C3 Pooideae and C4 Panicoideae grasses. The Late Glacial vegetation was fire sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the Early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly fire-dependent during the Middle Holocene with the expansion of C4 fire adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels, and (2) decreased frequency and duration of surazos leading to increased temperature minima. Natural (soil, climate, fire) drivers rather

  20. Tropical savannas and dry forests.

    PubMed

    Pennington, R Toby; Lehmann, Caroline E R; Rowland, Lucy M

    2018-05-07

    In the tropics, research, conservation and public attention focus on rain forests, but this neglects that half of the global tropics have a seasonally dry climate. These regions are home to dry forests and savannas (Figures 1 and 2), and are the focus of this Primer. The attention given to rain forests is understandable. Their high species diversity, sheer stature and luxuriance thrill biologists today as much as they did the first explorers in the Age of Discovery. Although dry forest and savanna may make less of a first impression, they support a fascinating diversity of plant strategies to cope with stress and disturbance including fire, drought and herbivory. Savannas played a fundamental role in human evolution, and across Africa and India they support iconic megafauna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. SOIL EMISSIONS OF N2O, NO AND CO2 IN BRAZILIAN SAVANNAS: EFFECTS OF VEGETATION TYPE, SEASONALITY, AND PRESCRIBED FIRES

    EPA Science Inventory

    Using closed chamber techniques, soil fluxes of NO, N20 and C02 were measured from September 1999 through October 2000 in savanna areas in central Brazil (Cerrado) subjected to prescribed fires. Our studies focused on two vegetation types, cerrado stricto sensu (20-50% canopy cov...

  2. Emission estimates of selected volatile organic compounds from tropical savanna burning in northern Australia

    NASA Astrophysics Data System (ADS)

    Shirai, T.; Blake, D. R.; Meinardi, S.; Rowland, F. S.; Russell-Smith, J.; Edwards, A.; Kondo, Y.; Koike, M.; Kita, K.; Machida, T.; Takegawa, N.; Nishi, N.; Kawakami, S.; Ogawa, T.

    2003-02-01

    Here we present measurements of a range of carbon-based compounds: carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nonmethane hydrocarbons (NMHCs), methyl halides, and dimethyl sulfide (DMS) emitted by Australian savanna fires studied as part of the Biomass Burning and Lightning Experiment (BIBLE) phase B aircraft campaign, which took place during the local late dry season (28 August to 13 September 1999). Significant enhancements of short-lived NMHCs were observed in the boundary layer (BL) over the region of intensive fires and indicate recent emissions for which the mean transport time was estimated to be about 9 hours. Emission ratios relative to CO were determined for 20 NMHCs, 3 methyl halides, DMS, and CH4 based on the BL enhancements in the source region. Tight correlations with CO were obtained for most of those compounds, indicating the homogeneity of the local savanna source. The emission ratios were in good agreement with some previous measurements of savanna fires for stable compounds but indicated the decay of emission ratios during transport for several reactive compounds. Based on the observed emission ratios, emission factors were derived and compared to previous studies. While emission factors (g species/kg dry mole) of CO2 varied little according to the vegetation types, those of CO and NMHCs varied significantly. Higher combustion efficiency and a lower emission factor for methane in this study, compared to forest fires, agreed well with results for savanna fires in other tropical regions. The amount of biomass burned was estimated by modeling methods using available satellite data, and showed that 1999 was an above average year for savanna burning. The gross emissions of the trace gases from Australian savanna fires were estimated.

  3. Reliability of biomass burning estimates from savanna fires: Biomass burning in northern Australia during the 1999 Biomass Burning and Lightning Experiment B field campaign

    NASA Astrophysics Data System (ADS)

    Russell-Smith, Jeremy; Edwards, Andrew C.; Cook, Garry D.

    2003-02-01

    This paper estimates the two-daily extent of savanna burning and consumption of fine (grass and litter) fuels from an extensive 230,000 km2 region of northern Australia during August-September 1999 encompassing the Australian continental component of the Biomass Burning and Lightning Experiment B (BIBLE B) campaign [, 2002]. The extent of burning for the study region was derived from fire scar mapping of imagery from the advanced very high resolution radiometer (AVHRR) on board the National Oceanic and Atmospheric Administration (NOAA) satellite. The mapping was calibrated and verified with reference to one Landsat scene and associated aerial transect validation data. Fine fuel loads were estimated using published fuel accumulation relationships for major regional fuel types. It is estimated that more than 43,000 km2 was burnt during the 25 day study period, with about 19 Mt of fine (grass and litter) fuels. This paper examines assumptions and errors associated with these estimates. It is estimated from uncalibrated fire mapping derived from AVHRR imagery that 417,500 km2 of the northern Australian savanna was burnt in 1999, of which 136,405 km2, or 30%, occurred in the Northern Territory study region. Using generalized fuel accumulation equations, such biomass burning consumed an estimated 212.3 Mt of fine fuels, but no data are available for consumption of coarse fuels. This figure exceeds a recent estimate, based on fine fuels only, for the combined Australian savanna and temperate grassland biomass burning over the period 1990-1999 but is lower than past estimates derived from classification approaches. We conclude that (1) fire maps derived from coarse-resolution optical imagery can be applied relatively reliably to estimate the extent of savanna fires, generally with 70-80% confidence using the approach adopted here, over the major burning period in northern Australia and (2) substantial further field assessment and associated modeling of fuel accumulation

  4. Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on Savanna vegetation.

    PubMed

    Campo-Bescós, Miguel A; Muñoz-Carpena, Rafael; Kaplan, David A; Southworth, Jane; Zhu, Likai; Waylen, Peter R

    2013-01-01

    Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global

  5. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation

    PubMed Central

    Campo-Bescós, Miguel A.; Muñoz-Carpena, Rafael; Kaplan, David A.; Southworth, Jane; Zhu, Likai; Waylen, Peter R.

    2013-01-01

    Background Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). Conclusions/Significance We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of

  6. Evaluating the Effects of Fire on Semi-Arid Savanna Ecosystem Productivity Using Integrated Spectral and Gas Exchange Measurements

    NASA Astrophysics Data System (ADS)

    Raub, H. D.; Jimenez, J. R.; Gallery, R. E.; Sutter, L., Jr.; Barron-Gafford, G.; Smith, W. K.

    2017-12-01

    Drylands account for 40% of the land surface and have been identified as increasingly important in driving interannual variability of the land carbon sink. Yet, understanding of dryland seasonal ecosystem productivity dynamics - termed Gross Primary Productivity (GPP) - is limited due to complex interactions between vegetation health, seasonal drought dynamics, a paucity of long-term measurements across these under-studied regions, and unanticipated disturbances from varying fire regimes. For instance, fire disturbance has been found to either greatly reduce post-fire GPP through vegetation mortality or enhance post-fire GPP though increased resource availability (e.g., water, light, nutrients, etc.). Here, we explore post-fire ecosystem recovery by evaluating seasonal GPP dynamics for two Ameriflux eddy covariance flux tower sites within the Santa Rita Experimental Range of southeastern Arizona: 1) the US-SRG savanna site dominated by a mix of grass and woody mesquite vegetation that was burned in May 2017, and 2) the US-SRM savanna site dominated by similar vegetation but unburned for the full measurement record. For each site, we collected leaf-level spectral and gas exchange measurements, as well as leaf-level chemistry and soil chemistry to characterize differences in nutrient availability and microbial activity throughout the 2017 growing season. From spectral data, we derived and evaluated multiple common vegetation metrics, including normalized difference vegetation index (NDVI), photochemical reflectivity index (PRI), near-infrared reflectance (NIRv), and MERIS terrestrial chlorophyll index (MTCI). Early results suggest rates of photosynthesis were enhanced at the burned site, with productivity increasing immediately following the onset of monsoonal precipitation; whereas initial photosynthesis at the unburned site remained relatively low following first monsoonal rains. MTCI values for burned vegetation appear to track higher levels of leaf-level nitrogen

  7. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    PubMed

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Silviculture to restore oak savannas and woodlands

    Treesearch

    Daniel C. Dey; John M. Kabrick; Callie J. Schweitzer

    2017-01-01

    Variability in historic fire regimes in eastern North America resulted in an array of oak natural communities that were dominant across the region. In the past century, savannas and woodlands have become scarce because of conversion to agriculture or development of forest structure in the absence of fire. Their restoration is a primary goal for public agencies and...

  9. Using Paleoecology to Inform Land Management as Climates Change: An Example from an Oak Savanna Ecosystem.

    PubMed

    Spencer, Jessica D; Brunelle, Andrea; Hepola, Tim

    2017-12-01

    Oak savanna, a transitional ecosystem between open prairie and dense oak forest, was once widespread in Minnesota. Upon European settlement much of the oak savanna was destroyed. Recently, efforts to restore this ecosystem have increased and often include the reintroduction of fire. Though fire is known to serve an important role within oak savannas, there are currently few studies which address fire regimes on timescales longer than the last century. This research presents a paleoecological history of Sherburne National Wildlife Refuge (SNWR) in MN, USA, spanning the last ~8000 years. The objectives of this study were to use charcoal, pollen, and magnetic susceptibility of lake sediments collected from Johnson Slough (JS) within the refuge to evaluate the natural range of variability and disturbance history of the oak savanna within the refuge, assess the success of current restoration strategies, and add to the regional paleoecological history. The mid/late Holocene period of the JS record shows a period of high fire activity from ca. 6500 to 2600 cal year BP, with a shift from prairie to oak savanna occurring over this same period. A (possibly agricultural) disturbance to JS sediments affected the period from ca. 2600 cal year BP to 1963 AD, which includes the time of Euro-American settlement. However, the destruction and subsequent restoration of the oak savanna is evident in a pollen ratio of Quercus:Poaceae, indicating that current restoration efforts have been successful at restoring the oak savanna to within the natural range of variability seen just prior to destruction.

  10. Using Paleoecology to Inform Land Management as Climates Change: An Example from an Oak Savanna Ecosystem

    NASA Astrophysics Data System (ADS)

    Spencer, Jessica D.; Brunelle, Andrea; Hepola, Tim

    2017-12-01

    Oak savanna, a transitional ecosystem between open prairie and dense oak forest, was once widespread in Minnesota. Upon European settlement much of the oak savanna was destroyed. Recently, efforts to restore this ecosystem have increased and often include the reintroduction of fire. Though fire is known to serve an important role within oak savannas, there are currently few studies which address fire regimes on timescales longer than the last century. This research presents a paleoecological history of Sherburne National Wildlife Refuge (SNWR) in MN, USA, spanning the last 8000 years. The objectives of this study were to use charcoal, pollen, and magnetic susceptibility of lake sediments collected from Johnson Slough (JS) within the refuge to evaluate the natural range of variability and disturbance history of the oak savanna within the refuge, assess the success of current restoration strategies, and add to the regional paleoecological history. The mid/late Holocene period of the JS record shows a period of high fire activity from ca. 6500 to 2600 cal year BP, with a shift from prairie to oak savanna occurring over this same period. A (possibly agricultural) disturbance to JS sediments affected the period from ca. 2600 cal year BP to 1963 AD, which includes the time of Euro-American settlement. However, the destruction and subsequent restoration of the oak savanna is evident in a pollen ratio of Quercus:Poaceae, indicating that current restoration efforts have been successful at restoring the oak savanna to within the natural range of variability seen just prior to destruction.

  11. Opposing resonses to ecological gradients structure amphibian and reptile communities across a temperate grassland-savanna-forest landscape

    USGS Publications Warehouse

    Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.

    2014-01-01

    Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.

  12. Origin and dynamics of the northern South American coastal savanna belt during the Holocene - the role of climate, sea-level, fire and humans

    NASA Astrophysics Data System (ADS)

    Alizadeh, Kamaleddin; Cohen, Marcelo; Behling, Hermann

    2015-08-01

    Presence of a coastal savanna belt expanding from British Guiana to northeastern Brazil cannot be explained by present-day climate. Using pollen and charcoal analyses on an 11.6 k old sediment core from a coastal depression in the savanna belt near the mouth of the Amazon River we investigated the paleoenvironmental history to shed light on this question. Results indicate that small areas of savanna accompanied by a forest type composed primarily by the genus Micropholis (Sapotaceae) that has no modern analog existed at the beginning of the Holocene. After 11,200 cal yr BP, savanna accompanied by few trees replaced the forest. In depressions swamp forest developed and by ca 10,000 cal yr BP replaced by Mauritia swamps. Between 8500 and 5600 cal yr BP gallery forest (composed mainly of Euphorbiaceae) and swamp forest succeeded the treeless savanna. The modern vegetation with alternating gallery forest and savanna developed after 5600 cal yr BP. We suggest that the early Holocene no-analog forest is a relict of previously more extensive forest under cooler and moister Lateglacial conditions. The early Holocene savanna expansion indicates a drier phase probably related to the shift of the Intertropical Convergence Zone (ITCZ) towards its northernmost position. The mid-Holocene forest expansion is probably a result of the combined influence of equatorwards shift of ITCZ joining the South Atlantic Convergence Zone (SACZ). The ecosystem variability during the last 5600 cal yr BP, formed perhaps under influence of intensified ENSO condition. High charcoal concentrations, especially during the early Holocene, indicate that natural and/or anthropogenic fires may have maintained the savanna. However, our results propose that climate change is the main driving factor for the formation of the coastal savanna in this region. Our results also show that the early Holocene sea level rise established mangroves near the study site until 7500 cal yr BP and promoted swamp formation in

  13. Analysis of causal factors of fire regimes in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Palumbo, I.; Lehsten, V.; Balzter, H.

    2009-04-01

    Wildfires are a wide spread global phenomenon. Their activity peaks in the tropical savannas, especially in the African continent, where fires are a key component of ecosystem dynamics. Fires affect the ecological balance between trees and grasses in savannas with concomitant effects on biodiversity, soil fertility and biogeochemical cycles. Large amounts of trace greenhouse gases and aerosols from wildfires are emitted each year in Africa, but the underlying dynamics of such wildfires and what drives them remain poorly understood. In general terms, the magnitude and the inter-annual variability of fire activity depend on fire frequency and its spatial distribution, also referred to as fire regimes. These are, in turn, determined by the environmental conditions at the time of burning, ignition sources, fuel type, fuel availability, and its moisture content. This study analysed the driving factors of fire regimes at continental level for a period of 5 years (2002-2007). We considered the following variables: climate (rainfall, temperature, humidity), population density, land cover and the burned areas derived from the MODIS MCD45A1 product at 500m resolution. GIS and multi-variate regression techniques were used to analyse the data. Understanding fire driving factors is fundamentally important for developing process-based simulation models of fire occurrence under future climate and environmental change scenarios. This is particularly relevant if we consider that the IPCC 4th Assessment report indicates that a change in the rainfall patterns has been observed in the last 40 years over most of Africa with a decrease of precipitation around 20-40% in West Africa and more intense and widespread droughts in Southern Africa. The simultaneous increase of temperatures can potentially lead to higher fire occurrence and modify the current fire regimes. This work contributes to climate change research with new insights and understanding about how fires are controlled by

  14. Plant-soil feedback in East-African savanna trees.

    PubMed

    Rutten, Gemma; Prati, Daniel; Hemp, Andreas; Fischer, Markus

    2016-02-01

    Research in savannas has focused on tree-grass interactions, whereas tree species coexistence received little attention. A leading hypothesis to explain tree coexistence is the Janzen-Connell model, which proposes an accumulation of host-specific enemies, e.g., soil organisms. While it has been shown in several non-savanna case studies that seedlings dispersed away from the mother perform better than seedlings that stay close (home-away effect), few studies tested whether foreign seedling species can replace own seedlings under conspecific adults (replacement effect). Some studies additionally tested for negative effects of conspecific biota (conspecific effect) to demonstrate the accumulation of enemies. We tested these effects by reciprocally growing seedlings of four tree species on soil collected beneath adults of all species, with and without applying a soil sterilization treatment. We found negative home-away effects suggesting that dispersal is advantageous and negative replacement effects suggesting species replacement under adults. While negative conspecific effects indicate accumulated enemies, positive heterospecific effects indicate an accumulation of mutualists rather than enemies for some species. We suggest that plant-soil feedbacks may well contribute to tree coexistence in savannas due to both negative conspecific and positive heterospecific feedbacks.

  15. Metapopulation Dynamics of the Mistletoe and Its Host in Savanna Areas with Different Fire Occurrence

    PubMed Central

    Teodoro, Grazielle Sales; van den Berg, Eduardo; Arruda, Rafael

    2013-01-01

    Mistletoes are aerial hemiparasitic plants which occupy patches of favorable habitat (host trees) surrounded by unfavorable habitat and may be possibly modeled as a metapopulation. A metapopulation is defined as a subdivided population that persists due to the balance between colonization and extinction in discrete habitat patches. Our aim was to evaluate the dynamics of the mistletoe Psittacanthus robustus and its host Vochysia thyrsoidea in three Brazilian savanna areas using a metapopulation approach. We also evaluated how the differences in terms of fire occurrence affected the dynamic of those populations (two areas burned during the study and one was fire protected). We monitored the populations at six-month intervals. P. robustus population structure and dynamics met the expected criteria for a metapopulation: i) the suitable habitats for the mistletoe occur in discrete patches; (ii) local populations went extinct during the study and (iii) colonization of previously non-occupied patches occurred. The ratio of occupied patches decreased in all areas with time. Local mistletoe populations went extinct due to two different causes: patch extinction in area with no fire and fire killing in the burned areas. In a burned area, the largest decrease of occupied patch ratios occurred due to a fire event that killed the parasites without, however, killing the host trees. The greatest mortality of V. thyrsoidea occurred in the area without fire. In this area, all the dead trees supported mistletoe individuals and no mortality was observed for parasite-free trees. Because P. robustus is a fire sensitive species and V. thyrsoidea is fire tolerant, P. robustus seems to increase host mortality, but its effect is lessened by periodic burning that reduces the parasite loads. PMID:23776554

  16. Estimating fire severity and carbon emissions over Australian tropical savannas based on passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Chen, X.; Liu, Y.; Evans, J. P.; Parinussa, R.

    2017-12-01

    Carbon emissions from large-scale fire activity over the Australian tropical savannas have strong inter-annual variability, due mainly to variations in fuel accumulation in response to rainfall. We investigated the use of a recently developed satellite-based vegetation optical depth (VOD) dataset to estimate fire severity and carbon emission. VOD is sensitive to the dynamics of all aboveground vegetation and available nearly every two days. For areas burned during 2003 - 2010, we calculated the VOD change (ΔVOD) pre- and post-fire and the associated loss in above ground biomass carbon. Both results compare well with widely-accepted approaches: ΔVOD agreed well with the Normalized Burn Ratio change (ΔNBR) and carbon loss with modelled emissions from the Global Fire Emissions Database (GFED). We found that the ΔVOD and ΔNBR are generally linearly related. The Pearson correlation coefficients (R) between VOD- and GFED-based fire carbon emissions for monthly and annual total estimates are very high, 0.92 and 0.96 respectively. A key feature of fire carbon emissions is the strong inter-annual variation, ranging from 21.1 million tonnes in 2010 to 84.3 million tonnes in 2004. This study demonstrates that a reasonable estimate of fire carbon emissions can be achieved in a timely manner based on multiple satellite observations over the regions where the emissions are primarily from aboveground vegetation loss, which can be complementary to the currently used approaches.

  17. Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests

    NASA Astrophysics Data System (ADS)

    Trugman, Anna T.; Medvigy, David; Hoffmann, William A.; Pellegrini, Adam F. A.

    2018-01-01

    Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.

  18. Burned area detection based on Landsat time series in savannas of southern Burkina Faso

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiu; Heiskanen, Janne; Maeda, Eduardo Eiji; Pellikka, Petri K. E.

    2018-02-01

    West African savannas are subject to regular fires, which have impacts on vegetation structure, biodiversity and carbon balance. An efficient and accurate mapping of burned area associated with seasonal fires can greatly benefit decision making in land management. Since coarse resolution burned area products cannot meet the accuracy needed for fire management and climate modelling at local scales, the medium resolution Landsat data is a promising alternative for local scale studies. In this study, we developed an algorithm for continuous monitoring of annual burned areas using Landsat time series. The algorithm is based on burned pixel detection using harmonic model fitting with Landsat time series and breakpoint identification in the time series data. This approach was tested in a savanna area in southern Burkina Faso using 281 images acquired between October 2000 and April 2016. An overall accuracy of 79.2% was obtained with balanced omission and commission errors. This represents a significant improvement in comparison with MODIS burned area product (67.6%), which had more omission errors than commission errors, indicating underestimation of the total burned area. By observing the spatial distribution of burned areas, we found that the Landsat based method misclassified cropland and cloud shadows as burned areas due to the similar spectral response, and MODIS burned area product omitted small and fragmented burned areas. The proposed algorithm is flexible and robust against decreased data availability caused by clouds and Landsat 7 missing lines, therefore having a high potential for being applied in other landscapes in future studies.

  19. Trait shifts associated with the subshrub life-history strategy in a tropical savanna.

    PubMed

    Giroldo, A B; Scariot, A; Hoffmann, W A

    2017-10-01

    Over the past 10 million years, tropical savanna environments have selected for small growth forms within woody plant lineages. The result has been the evolution of subshrubs (geoxyles), presumably as an adaptation to frequent fire. To evaluate the traits associated with the shift from tree to subshrub growth forms, we compared seed biomass, germination, survival, resprouting, biomass allocation, and photosynthesis between congeneric trees and subshrubs, and quantified phylogenetic conservatism. Despite large differences in adult morphology between trees and subshrub species, the differences are modest in seedlings, and most of the variation in traits was explained by genus, indicating considerable phylogenic conservatism. Regardless, tree seedlings invested more heavily in aboveground growth, compared to subshrubs, which is consistent with the adult strategy of savanna trees, which depend on a large resistant-fire stem. Subshrub seedlings also invest in greater non-structural carbohydrate reserves, likely as an adaptation to the high fire frequencies typical of tropical savannas. The modest differences as seedlings suggest that selective pressures during early development may not have contributed substantially to the evolution of the subshrub growth form and that the distinct allocation and life history must arise later in life. This is consistent with the interpretation that the subshrub growth form arose as a life-history strategy in which maturity is reached at a small stem size, allowing them to reproduce despite repeated fire-induced topkill. The convergent evolution of subshrubs within multiple tree lineages reaffirms the importance of fire in the origin and diversification of the flora of mesic savannas.

  20. Distinctiveness, use, and value of midwestern oak savannas and woodlands as avian habitats

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2007-01-01

    Oak savannas and woodlands historically covered millions of hectares in the midwestern United States but are rare today. We evaluated the ecological distinctiveness and conservation value of savannas and woodlands by examining bird distributions across a fire-maintained woody-vegetation gradient in northwest Indiana encompassing five habitats—open habitats with low canopy cover, savannas, woodlands, scrublands, and forests—during migration, breeding, and overwintering. Savannas and woodlands were significantly different in overall bird species composition from open and forest habitats but were often intermediate between open and forest in guild densities. Few bird species were consistently and highly concentrated in savannas or woodlands, and the Red-headed Woodpecker (Melanerpes erythrocephalus) was the only species significantly more abundant in savannas and woodlands than in open, scrub, and forest habitats. Fire frequency over a 15-year interval was a significant predictor of bird community composition and was positively related to species diversity, spring transient migrant density, and density of the most threatened species. Each habitat type had characteristics potentially important for avian conservation. Scrub had the highest density of transient migrants, which suggests it plays an important role as migration stopover habitat. More species were significantly concentrated in open or forest habitats than in the other habitats. Lack of species concentration and intermediate community composition suggested that birds experienced savannas and woodlands more as ecotones than as habitats distinct from forests or grasslands. However, this intermediate character can benefit conservation, as evidenced by savannas and woodlands having the highest density of the most threatened species along this woody-vegetation gradient.

  1. Trends in fire patterns in a southern African savanna under alternative land use practices

    Treesearch

    A. T. Hudak; D. H. K. Fairbanks; B. H. Brockett

    2004-01-01

    Climate, topography, vegetation and land use interact to influence fire regimes.Variable fire regimes may promote landscape heterogeneity, diversification in vegetation pattern and biotic diversity. The objective was to compare effects of alternative land use practices on landscape heterogeneity. Patch characteristics of fire scars were measured from 21 annual burn...

  2. Woody overstorey effects on soil carbon and nitrogen pools in South African savanna

    Treesearch

    A. T. Hudak; C. A. Wessman; T. R. Seastedt

    2003-01-01

    Woody plant encroachment in savannas may alter carbon (C) and nitrogen (N) pools over the longterm, which could have regional or global biogeochemical implications given the widespread encroachment observed in the vast savanna biome. Soil and litter %C and %N were surveyed across four soil types in two encroached, semiarid savanna landscapes in northern South Africa....

  3. Disaggregating tree and grass phenology in tropical savannas

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang

    Savannas are mixed tree-grass systems and as one of the world's largest biomes represent an important component of the Earth system affecting water and energy balances, carbon sequestration and biodiversity as well as supporting large human populations. Savanna vegetation structure and its distribution, however, may change because of major anthropogenic disturbances from climate change, wildfire, agriculture, and livestock production. The overstory and understory may have different water use strategies, different nutrient requirements and have different responses to fire and climate variation. The accurate measurement of the spatial distribution and structure of the overstory and understory are essential for understanding the savanna ecosystem. This project developed a workflow for separating the dynamics of the overstory and understory fractional cover in savannas at the continental scale (Australia, South America, and Africa). Previous studies have successfully separated the phenology of Australian savanna vegetation into persistent and seasonal greenness using time series decomposition, and into fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS) using linear unmixing. This study combined these methods to separate the understory and overstory signal in both the green and senescent phenological stages using remotely sensed imagery from the MODIS (MODerate resolution Imaging Spectroradiometer) sensor. The methods and parameters were adjusted based on the vegetation variation. The workflow was first tested at the Australian site. Here the PV estimates for overstory and understory showed best performance, however NPV estimates exhibited spatial variation in validation relationships. At the South American site (Cerrado), an additional method based on frequency unmixing was developed to separate green vegetation components with similar phenology. When the decomposition and frequency methods were compared, the frequency

  4. Age Determination by Back Length for African Savanna Elephants: Extending Age Assessment Techniques for Aerial-Based Surveys

    PubMed Central

    Trimble, Morgan J.; van Aarde, Rudi J.; Ferreira, Sam M.; Nørgaard, Camilla F.; Fourie, Johan; Lee, Phyllis C.; Moss, Cynthia J.

    2011-01-01

    Determining the age of individuals in a population can lead to a better understanding of population dynamics through age structure analysis and estimation of age-specific fecundity and survival rates. Shoulder height has been used to accurately assign age to free-ranging African savanna elephants. However, back length may provide an analog measurable in aerial-based surveys. We assessed the relationship between back length and age for known-age elephants in Amboseli National Park, Kenya, and Addo Elephant National Park, South Africa. We also compared age- and sex-specific back lengths between these populations and compared adult female back lengths across 11 widely dispersed populations in five African countries. Sex-specific Von Bertalanffy growth curves provided a good fit to the back length data of known-age individuals. Based on back length, accurate ages could be assigned relatively precisely for females up to 23 years of age and males up to 17. The female back length curve allowed more precise age assignment to older females than the curve for shoulder height does, probably because of divergence between the respective growth curves. However, this did not appear to be the case for males, but the sample of known-age males was limited to ≤27 years. Age- and sex-specific back lengths were similar in Amboseli National Park and Addo Elephant National Park. Furthermore, while adult female back lengths in the three Zambian populations were generally shorter than in other populations, back lengths in the remaining eight populations did not differ significantly, in support of claims that growth patterns of African savanna elephants are similar over wide geographic regions. Thus, the growth curves presented here should allow researchers to use aerial-based surveys to assign ages to elephants with greater precision than previously possible and, therefore, to estimate population variables. PMID:22028925

  5. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in

  6. Elephants, fire, and frost can determine community structure and composition in Kalahari Woodlands.

    PubMed

    Holdo, Ricardo M

    2007-03-01

    Fire, elephants, and frost are important disturbance factors in many African savannas, but the relative magnitude of their effects on vegetation and their interactions have not been quantified. Understanding how disturbance shapes savanna structure and composition is critical for predicting changes in tree cover and for formulating management and conservation policy. A simulation model was used to investigate how the disturbance regime determines vegetation structure and composition in a mixed Kalahari sand woodland savanna in western Zimbabwe. The model consisted of submodels for tree growth, tree damage caused by disturbance, mortality, and recruitment that were parameterized from field data collected over a two-year period. The model predicts that, under the current disturbance regime, tree basal area in the study area will decline by two-thirds over the next two decades and become dominated by species unpalatable to elephants. Changes in the disturbance regime are predicted to greatly modify vegetation structure and community composition. Elephants are the primary drivers of woodland change in this community at present-day population densities, and their impacts are exacerbated by the effects of fire and frost. Frost, in particular, does not play an important role when acting independently but appears to be a key secondary factor in the presence of elephants and/or fire. Unlike fire and frost, which cannot suppress the woodland phase on their own in this ecosystem, elephants can independently drive the vegetation to the scrub phase. The results suggest that elephant and fire management may be critical for the persistence of certain woodland communities within dry-season elephant habitats in the eastern Kalahari, particularly those dominated by Brachystegia spiciformis and other palatable species.

  7. Grass competition suppresses savanna tree growth across multiple demographic stages.

    PubMed

    Riginos, Corinna

    2009-02-01

    Savanna ecosystems, defined by the codominance of trees and grasses, cover one-fifth of the world's land surface and are of great socioeconomic and biological importance. Yet, the fundamental question of how trees and grasses coexist to maintain the savanna state remains poorly understood. Many models have been put forward to explain tree-grass coexistence, but nearly all have assumed that grasses do not limit tree growth and demography beyond the sapling stage. This assumption, however, has rarely been tested. Here I show that grass can strongly suppress the growth of trees. I removed grass around trees of three size classes in an Acacia drepanolobium savanna in Laikipia, Kenya. For even the largest trees, grass removal led to a doubling in growth and a doubling in the probability of transitioning to the next size class over two years. These results suggest that grass competition in productive (nutrient-rich) savannas may limit tree growth as much as herbivory and fire (the main factors thought to determine tree demography within a rainfall region) and should be incorporated into savanna models if tree-grass coexistence and savanna dynamics are to be understood.

  8. EFFECTS OF PRESCRIBED FIRES ON NITROGEN FLUXES IN SAVANNA FORMATIONS OF CENTRAL BRAZIL

    EPA Science Inventory

    Savanna ecosystems are controlled by the interactions between water and nutrient availability. The savannas of Central Brazil (Cerrado) are the second most extensive plant formation in tropical South America with two million km2 of area. The Cerrado landscape contains different ...

  9. Undergraduate Research Experiences in Support of Dryland Monitoring: Field and Satellite Remote Sensing of Change in Savanna Structure, Biomass, and Carbon after Prescribed Fires

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.; Twidwell, D. L., Jr.; Mendieta, V. P.; Delgado, A.; Redman, B.; Trollope, W. S.; Trollope, L.; Govender, N.; Smit, I.; Popescu, S. C.; de Bruno Austin, C.; Reeves, M. C.

    2009-12-01

    The status and trend of degradation in the world’s Drylands, that support over 1.2 billion people, is unknown because monitoring & assessment has not occurred on a globally consistent basis and skilled personnel with a cultivated interest in natural resource science and management are lacking. A major monitoring dataset is the 37-year Landsat data archive that has been released free to the world, but this dataset requires persons who understand how to process and interpret this and similar datasets applicable to the desertification problem. The College of Agriculture & Life Sciences (COALS) at Texas A&M University (TAMU) has an initiative to provide undergraduates with both international and research experiences. The lead author used start-up money, USFS project funds for livestock footprint studies in the US, and seed money from COALS to 1) develop academic mentor contacts in Mozambique, Namibia, Botswana, South Africa, and Tunisia to prepare a National Science Foundation Research Experience for Undergraduates (NSF-REU) Site proposal and 2) launch a pilot REU for two TAMU undergraduate students. Mr. Delgado and Mr. Redman received lidar processing and visualization, field survey training on global positioning systems (GPS), terrestrial LIDAR, and ground penetrating radar technologies and conducted carbon change studies by collecting pre- and post-fire laser scans on experimental burn (EPB) sites in Texas and South Africa. Mr. Redman also developed GIS databases of Landsat timeseries for these EPBs and others in southern Africa. Mr. Delgado participated in the Savanna Fire Ignition Research Experiment (SavFIRE) in Kruger National Park (KNP) by collected laser scan data on 3 EPBs. He also received mentoring from Dr. Winston Trollope, a prominent fire ecologist, and Mr. Chris Austin both of Working with Fire International and Navashni Govender, KNP’s Fire Ecologist. He also was an active participant in a NASA sponsored workshop on remote sensing of global

  10. African Savanna-Forest Boundary Dynamics: A 20-Year Study.

    PubMed

    Cuni-Sanchez, Aida; White, Lee J T; Calders, Kim; Jeffery, Kathryn J; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L; Lewis, Simon L

    2016-01-01

    Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types.

  11. Trace gas and particle emissions from open biomass burning in Mexico

    Treesearch

    R. J. Yokelson; I. R. Burling; Shawn Urbanski; E. L. Atlas; K. Adachi; P. R. Buseck; C. Wiedinmyer; S. K. Akagi; D. W. Toohey; C. E. Wold

    2011-01-01

    We report airborne measurements of emission factors (EF) for trace gases and PM2.5 made in southern Mexico in March of 2006 on 6 crop residue fires, 3 tropical dry forest fires, 8 savanna fires, 1 garbage fire, and 7 mountain pine-oak forest fires. The savanna fire EF were measured early in the local dry season and when compared to EF measured late in the African dry...

  12. Management impacts on fire occurrence: A comparison of fire regimes of African and South American tropical savannas in different protected areas.

    PubMed

    Alvarado, Swanni T; Silva, Thiago Sanna Freire; Archibald, Sally

    2018-07-15

    Humans can alter fire dynamics in grassland systems by changing fire frequency, fire seasonality and fuel conditions. These changes have effects on vegetation structure and recovery, species composition, and ecosystem function. Understanding how human management can affect fire regimes is vital to detect potential changes in the resilience of plant communities, and to predict vegetation responses to human interventions. We evaluated the fire regimes of two recently protected areas in Madagascar (Ibity and Itremo NPA) and one in Brazil (Serra do Cipó NP) before and after livestock exclusion and fire suppression policies. We compare the pre- and post-management fire history in these areas and analyze differences in terms of total annual burned area, density of ignitions, burn scar size distribution, fire return period and seasonal fire distribution. More than 90% of total park areas were burned at least once during the studied period, for all parks. We observed a significant reduction in the number of ignitions for Ibity NPA and Serra do Cipó NP after livestock exclusion and active fire suppression, but no significant change in total burned area for each protected area. We also observed a seasonal shift in burning, with fires happening later in the fire season (October-November) after management intervention. However, the protected areas in Madagascar had shorter fire return intervals (3.23 and 1.82 years) than those in Brazil (7.91 years). Our results demonstrate that fire exclusion is unattainable, and probably unwarranted in tropical grassland conservation areas, but show how human intervention in fire and vegetation patterns can alter various aspects of the fire regimes. This information can help with formulating realistic and effective fire management policies in these valuable conservation areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Positive and negative effects of grass, cattle, and wild herbivores on Acacia saplings in an East African savanna.

    PubMed

    Riginos, Corinna; Young, Truman P

    2007-10-01

    Plant-plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree-grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the

  14. Fuel model selection for BEHAVE in midwestern oak savannas

    USGS Publications Warehouse

    Grabner, K.W.; Dwyer, J.P.; Cutter, B.E.

    2001-01-01

    BEHAVE, a fire behavior prediction system, can be a useful tool for managing areas with prescribed fire. However, the proper choice of fuel models can be critical in developing management scenarios. BEHAVE predictions were evaluated using four standardized fuel models that partially described oak savanna fuel conditions: Fuel Model 1 (Short Grass), 2 (Timber and Grass), 3 (Tall Grass), and 9 (Hardwood Litter). Although all four models yielded regressions with R2 in excess of 0.8, Fuel Model 2 produced the most reliable fire behavior predictions.

  15. Seasonality of semi-arid and savanna-type ecosystems in an Earth system model

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Swenson, S. C.; Lombardozzi, D.; Kamoske, A.

    2016-12-01

    Recent work has identified semi-arid and savanna-type (SAST) ecosystems as a critical component of interannual variability in the Earth system (Poulter et al. 2014, Ahlström et al. 2015), yet our understanding of the spatial and temporal patterns present in these systems remains limited. There are three major factors that contribute to the complex behavior of SAST ecosystems, globally. First is leaf phenology, the timing of the appearance, presence, and senescence of plant leaves. Plants grow and drop their leaves in response to a variety of cues, including soil moisture, rainfall, day length, and relative humidity, and alternative phenological strategies might often co-exist in the same location. The second major factor in savannas is soil moisture. The complex nature of soil behavior under extremely dry, then extremely wet conditions is critical to our understanding of how savannas function. The third factor is fire. Globally, virtually all savanna-type ecosystems operate with some non-zero fire return interval. Here we compare model output from the Community Land Model (CLM5-BGC) in SAST regions to remotely sensed data on these three variables - phenology (MODIS LAI), soil moisture (SMAP), and fire (GFED4) - assessing both annual spatial patterns and intra-annual variability, which is critical in these highly variable systems. We present new SAST-specific first- and second-order benchmarks, including numbers of annual LAI peaks (often >1 in SAST systems) and correlations between soil moisture, LAI, and fire. Developing a better understanding of how plants respond to seasonal patterns is a critical first step in understanding how SAST ecosystems will respond to and influence climate under future scenarios.

  16. Large herbivores facilitate savanna tree establishment via diverse and indirect pathways.

    PubMed

    Goheen, Jacob R; Palmer, Todd M; Keesing, Felicia; Riginos, Corinna; Young, Truman P

    2010-03-01

    1. Savanna ecosystems are defined largely by tree-grass mixtures, and tree establishment is a key driver of community structure and ecosystem function in these systems. The factors controlling savanna tree establishment are understudied, but likely involve some combination of seed, microsite and predator/fire limitation. In African savannas, suppression and killing of adult trees by large mammals like elephants (Loxodonta africana Blumenbach, 1797) and giraffes (Giraffa camelopardalis Linnaeus, 1758) can maintain tree-grass co-dominance, although the impacts of even these conspicuous herbivores on tree establishment also are poorly understood. 2. We combined seed addition and predator exclusion experiments with a large-scale, long-term field manipulation of large herbivores to investigate the relative importance of seeds, microsites and predators in limiting establishment of a monodominant tree (Acacia drepanolobium Sjostedt) in a Kenyan savanna. 3. Both wild and domestic (i.e. cattle; Bos taurus Linnaeus, 1758) large herbivores facilitated tree establishment by suppressing abundances of rodents, the most important seed and seedling predators. However, this indirect, positive effect of wild herbivores was negated by wild herbivores' suppression of seed production. Cattle did not have this direct, negative impact; rather, they further assisted tree establishment by reducing cover of understorey grasses. Thus, the impacts of both groups of large herbivores on tree establishment were largely routed through other taxa, with a negligible net effect of wild herbivores and a positive net effect of cattle on tree establishment. 4. The distinction between the (positive) net effect of cattle and (neutral) net effect of wild herbivores is due to the inclusion of browsers and mixed feeders within the assemblage of wild herbivores. Browsing by wild herbivores limited seed production, which reduced tree recruitment; grazing by cattle was more pronounced than that by wild

  17. Relationships between fire frequency and woody canopy cover in a semi-arid African savanna

    Treesearch

    Andrew T. Hudak; Bruce H. Brockett

    2003-01-01

    Landscape-scale fire patterns result from complex interactions among weather, ignition sources, vegetation type and the biophysical environment (Hargrove et al. 2000, Morgan et al. 2001, Keane et al. 2002, Hudak, Fairbanks & Brockett in press). Patch characteristics (e.g. woody canopy cover) influence fire characteristics, which in turn influence patch...

  18. RECOVER - An Automated Burned Area Emergency Response Decision Support System for Post-fire Rehabilitation Management of Savanna Ecosystems in the Western US

    NASA Astrophysics Data System (ADS)

    Weber, K.; Schnase, J. L.; Carroll, M.; Brown, M. E.; Gill, R.; Haskett, G.; Gardner, T.

    2013-12-01

    In partnership with the Department of Interior's Bureau of Land Management (BLM) and the Idaho Department of Lands (IDL), we are building and evaluating the RECOVER decision support system. RECOVER - which stands for Rehabilitation Capability Convergence for Ecosystem Recovery - is an automatically deployable, context-aware decision support system for savanna wildfires that brings together in a single application the information necessary for post-fire rehabilitation decision-making and long-term ecosystem monitoring. RECOVER uses state-of-the-art cloud-based data management technologies to improve performance, reduce cost, and provide site-specific flexibility for each fire. The RECOVER Server uses Integrated Rule-Oriented Data System (iRODS) data grid technology deployed in the Amazon Elastic Compute Cloud (EC2). The RECOVER Client is an Adobe Flex web map application that is able to provide a suite of convenient GIS analytical capabilities. In a typical use scenario, the RECOVER Server is provided a wildfire name and geospatial extent. The Server then automatically gathers Earth observational data and other relevant products from various geographically distributed data sources. The Server creates a database in the cloud where all relevant information about the wildfire is stored. This information is made available to the RECOVER Client and ultimately to fire managers through their choice of web browser. The Server refreshes the data throughout the burn and subsequent recovery period (3-5 years) with each refresh requiring two minutes to complete. Since remediation plans must be completed within 14 days of a fire's containment, RECOVER has the potential to significantly improve the decision-making process. RECOVER adds an important new dimension to post-fire decision-making by focusing on ecosystem rehabilitation in semiarid savannas. A novel aspect of RECOVER's approach involves the use of soil moisture estimates, which are an important but difficult

  19. Efficacy of landscape scale woodland and savanna restoration at multiple spatial and temporal scales

    USGS Publications Warehouse

    Pittman, H. Tyler; Krementz, David G.

    2016-01-01

    The loss of historic ecosystem conditions has led forest managers to implement woodland and savanna ecosystem restoration on a landscape scale (≥10,000 ha) in the Ozark Plateau of Arkansas. Managers are attempting to restore and conserve these ecosystems through the reintroduction of disturbance, mainly short-rotation early-growing-season prescribed fire. Short-rotation early-growing season prescribed fire in the Ozarks typically occurs immediately before bud-break, through bud-break, and before leaf-out, and fire events occur on a three-to five-year interval. We examined short-rotation early-growing season prescribed fire as a restoration tool on vegetation characteristics. We collected vegetation measurements at 70 locations annually from 2011 to 2012 in and around the White Rock Ecosystem Restoration Area (WRERA), Ozark-St. Francis National Forest, Arkansas, and used generalized linear models to investigate the impact and efficacy of prescribed fire on vegetation structure. We found the number of large shrubs (>5 cm base diameter) decreased and small shrubs (<5 cm ground diameter) increased with prescribed fire severity. We found that horizontal understory cover from ground level to 1 m in height increased with time-since-prescribed-fire and woody ground cover decreased with the number of prescribed fire treatments. Using LANDFIRE datasets at the landscape scale, we found that since the initiation of a short-rotation early-growing season prescribed fire management regime, forest canopy cover has not reverted to levels characteristic of woodlands and savannas or reached restoration objectives over large areas. Without greater reductions in forest canopy cover and increases in forest-canopy cover heterogeneity, advanced regeneration will be limited in success, and woodland and savanna conditions will not return soon or to the extent desired.

  20. African Savanna-Forest Boundary Dynamics: A 20-Year Study

    PubMed Central

    Cuni-Sanchez, Aida; White, Lee J. T.; Calders, Kim; Jeffery, Kathryn J.; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L.; Lewis, Simon L.

    2016-01-01

    Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types. PMID:27336632

  1. Stratifying Tropical Fires by Land Cover: Insights into Amazonian Fires, Aerosol Loading, and Regional Deforestation

    NASA Technical Reports Server (NTRS)

    TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.

    2010-01-01

    This study analyzes changes in the number of fires detected on forest, grass, and transition lands during the 2002-2009 biomass burning seasons using fire detection data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the total number of detected fires correlates well with MODIS mean aerosol optical depth (AOD) from year to year, in accord with other studies. However, we also show that the ratio of forest to savanna fires varies substantially from year to year. Forest fires have trended downward, on average, since the beginning of 2006 despite a modest increase in 2007. Our study suggests that high particulate matter loading detected in 2007 was likely due to a large number of savanna/agricultural fires that year. Finally, we illustrate that the correlation between annual Brazilian deforestation estimates and MODIS fires is considerably higher when fires are stratified by MODIS-derived land cover classifications.

  2. The role of fire in the pan-tropical carbon budget

    NASA Astrophysics Data System (ADS)

    van der Werf, G.; Randerson, J. T.; Giglio, L.; Baccini, A.; Morton, D. C.; DeFries, R. S.

    2012-12-01

    Fires are an important management tool in the tropics and subtropics, and are used in the deforestation process, to manage savanna areas, and burn agricultural waste. Satellite-derived datasets of precipitation, aboveground tree biomass, and burned area are now available with over a decade worth of data for precipitation and burned area. Here we used these datasets to assess fire carbon emissions, to better understand relations between interannual variability in precipitation rates and fire activity, and to test ecological hypotheses centered on the role of fire and climate in governing biomass loads in the tropics and subtropics. We show that while most fire carbon emissions are from savanna fires, fires in deforestation regions are crucial from a net carbon emissions perspective and for emissions of reduced trace gases. These tropical fires burning in the dry season increase the amplitude of the CO2 exchange seasonality, in contrast to fires in the boreal region. We then show the large interannual variability of fires and highlight the difference in response of fires to changes in precipitation rates between dry and wet regions. Finally, by studying relations between fire, climate, and biomass, we show that savanna areas that saw fires over the past decade had lower tree biomass than those that did not, but only in medium or high rainfall areas. In areas up to about a meter of rain annually, tree biomass increased monotonically whether there were fires or not. In higher rainfall areas, precipitation seasonality appeared to be a crucial factor in explaining potential biomass. These results show that a world without fires may change the savanna carbon landscape less dramatically than often thought.

  3. Large herbivores promote habitat specialization and beta diversity of African savanna trees.

    PubMed

    Pringle, Robert M; Prior, Kirsten M; Palmer, Todd M; Young, Truman P; Goheen, Jacob R

    2016-10-01

    Edaphic variation in plant community composition is widespread, yet its underlying mechanisms are rarely understood and often assumed to be physiological. In East African savannas, Acacia tree species segregate sharply across soils of differing parent material: the ant-defended whistling thorn, A. drepanolobium (ACDR), is monodominant on cracking clay vertisols that are nutrient rich but physically stressful, whereas poorly defended species such as A. brevispica (ACBR) dominate on nutrient-poor but otherwise less-stressful sandy loams. Using a series of field experiments, we show that large-mammal herbivory interacts with soil properties to maintain this pattern. In the absence of large herbivores, transplanted saplings of both species established on both soil types. Browsers strongly suppressed survival and growth of ACDR saplings on sandy soil, where resource limitation constrained defensive investment. On clay soil, ACBR saplings established regardless of herbivory regime, but elephants prevented recruitment to maturity, apparently because trees could not tolerate the combination of biotic and abiotic stressors. Hence, each tree species was filtered out of one habitat by browsing in conjunction with different edaphic factors and at different ontogenetic stages. Browser abundance was greater on sandy soil, where trees were less defended, consistent with predicted feedbacks between plant community assembly and herbivore distributions. By exploring two inversely related axes of soil "quality" (abiotic stress and nutrient content), our study extends the range of mechanisms by which herbivores are known to promote edaphic specialization, illustrates how the high cost of a protection mutualism can constrain the realized niche of host trees, and shows that large-scale properties of savanna ecosystems are shaped by species interactions in cryptic ways that mimic simple abiotic determinism. These results suggest that ongoing declines in large-herbivore populations may

  4. Carnivore stable carbon isotope niches reflect predator-prey size relationships in African savannas.

    PubMed

    Codron, Jacqueline; Avenant, Nico L; Wigley-Coetsee, Corli; Codron, Daryl

    2018-03-01

    Predator-prey size relationships are among the most important patterns underlying the structure and function of ecological communities. Indeed, these relationships have already been shown to be important for understanding patterns of macroevolution and differential extinction in the terrestrial vertebrate fossil record. Stable isotope analysis (SIA) is a powerful remote approach to examining animal diets and paleodiets. The approach is based on the principle that isotope compositions of consumer tissues reflect those of their prey. In systems where resource isotope compositions are distributed along a body size gradient, SIA could be used to reconstruct predator-prey size relationships. We analyzed stable carbon isotope distributions amongst mammalian herbivores in extant and Plio-Pleistocene African savanna assemblages, and show that the range of δ 13 C values among mammalian prey species (herbivores and rodents) increases with body mass (BM), because C 4 plant feeding (essentially grazing) is more common among larger taxa. Consequently, δ 13 C values of mammalian carnivores in these systems are related to species' BM, reflecting a higher average C 4 prey component in the diets of larger-bodied carnivores. This pattern likely emerges because only the largest carnivores in these systems have regular access to the C 4 prey base, whereas smaller carnivores do not. The δ 13 C-BM relationship observed in mammalian carnivores is a potentially powerful approach for reconstructing and parameterizing predator-prey size relationships in contemporary and fossil savanna assemblages, and for interpreting how various behavioral, ecological and environmental factors influence prey size selection. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  5. Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina

    Treesearch

    Joan Walker; Robert K. Peet

    1983-01-01

    Fire-maintained, species-rich pines wiregrass savannas in the Green Swamp, North Carolina were sampled over their natural range of environmental conditions and fire frequencies. Species composition, species richness, diversity (Exp H', I/ C), and aboveground production were documented and fertilization experiments conducted to assess possible mechanisms for the...

  6. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna.

    PubMed

    Cernusak, Lucas A; Hutley, Lindsay B; Beringer, Jason; Tapper, Nigel J

    2006-04-01

    We measured stem CO2 efflux and leaf gas exchange in a tropical savanna ecosystem in northern Australia, and assessed the impact of fire on these processes. Gas exchange of mature leaves that flushed after a fire showed only slight differences from that of mature leaves on unburned trees. Expanding leaves typically showed net losses of CO2 to the atmosphere in both burned and unburned trees, even under saturating irradiance. Fire caused stem CO2 efflux to decline in overstory trees, when measured 8 weeks post-fire. This decline was thought to have resulted from reduced availability of C substrate for respiration, due to reduced canopy photosynthesis caused by leaf scorching, and to priority allocation of fixed C towards reconstruction of a new canopy. At the ecosystem scale, we estimated the annual above-ground woody-tissue CO2 efflux to be 275 g C m(-2) ground area year(-1) in a non-fire year, or approximately 13% of the annual gross primary production. We contrasted the canopy physiology of two co-dominant overstory tree species, one of which has a smooth bark on its branches capable of photosynthetic re-fixation (Eucalyptus miniata), and the other of which has a thick, rough bark incapable of re-fixation (Eucalyptus tetrodonta). Eucalyptus miniata supported a larger branch sapwood cross-sectional area in the crown per unit subtending leaf area, and had higher leaf stomatal conductance and photosynthesis than E. tetrodonta. Re-fixation by photosynthetic bark reduces the C cost of delivering water to evaporative sites in leaves, because it reduces the net C cost of constructing and maintaining sapwood. We suggest that re-fixation allowed leaves of E. miniata to photosynthesize at higher rates than those of E. tetrodonta, while the two invested similar amounts of C in the maintenance of branch sapwood.

  7. Restoring a disappearing ecosystem: the Longleaf Pine Savanna.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, Timothy B.; Miller, Karl V.; Park, Noreen

    Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the worlds most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as logging, farming, and fire exclusion have reduced this once-widespread ecosystem to only 3 percent of its original range. At six longleaf pine plantations in South Carolina, Tim Harrington with the Pacific Northwest Research Station and collaborators with the Southern Research Station used various treatments (including prescribed burns, treemore » thinning, and herbicide applications) to alter the forest structure and tracked how successful each one was in advancing savanna restoration over a 14-year period. They found that typical planting densities for wood production in plantations create dense understory shade that excludes many native herbaceous species important to savannas and associated wildlife. The scientists found that although tree thinning alone did not result in sustained gains, a combination of controlled burning, thinning, and herbicide treatments to reduce woody plants was an effective strategy for recovering the savanna ecosystem. The scientists also found that these efforts must be repeated periodically for enduring benefits.« less

  8. Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna

    USDA-ARS?s Scientific Manuscript database

    The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation; interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-year longitudinal study of spatially explicit growth patterns of woody ve...

  9. Vegetation-climate feedbacks in the conversion of tropical savanna to grassland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, W.A.; Jackson, R.B.

    2000-05-01

    Tropical savannas have been heavily impacted by human activity, with large expanses transformed from a mixture of trees and grasses to open grassland and agriculture. The National Center for Atmospheric Research (NCAR) CCM3 general circulation model, coupled with the NCAR Land Surface Model, was used to simulate the effects of this conversion on regional climate. Conversion of savanna to grassland reduced precipitation by approximately 10% in four of the five savanna regions under study; only the northern African savannas showed no significant decline. Associated with this decline was an increase in the frequency of dry periods within the wet season,more » a change that could be particularly damaging to shallow-rooted crops. The overall decline in precipitation is almost equally attributable to changes in albedo and roughness length. Conversion to grassland increased mean surface air temperature of all the regions by 0.5 C, primarily because of reductions in surface roughness length. Rooting depth, which decreases dramatically with the conversion of savanna to grassland, contributed little to the overall effect of savanna conversion, but deeper rooting had a small positive effect on latent heat flux with a corresponding reduction in sensible heat flux. The authors propose that the interdependence of climate and vegetation in these regions is manifested as a positive feedback loop in which anthropogenic impacts on savanna vegetation are exacerbated by declines in precipitation.« less

  10. Hydraulic lift as a determinant of tree-grass coexistence on savannas.

    PubMed

    Yu, Kailiang; D'Odorico, Paolo

    2015-09-01

    The coexistence of woody plants and grasses in savannas is determined by a complex set of interacting factors that determine access to resources and demographic dynamics, under the control of external drivers and vegetation feedbacks with the physical environment. Existing theories explain coexistence mainly as an effect of competitive relations and/or disturbances. However, theoretical studies on the way facilitative interactions resulting from hydraulic lift affect tree-grass coexistence and the range of environmental conditions in which savannas are stable are still lacking. We investigated the role of hydraulic lift in the stability of tree-grass coexistence in savannas. To that end, we developed a new mechanistic model that accounts for both competition for soil water in the shallow soil and fire-induced disturbance. We found that hydraulic lift favors grasses, which scavenge the water lifted by woody plants. Thus, hydraulic lift expands (at the expenses of woodlands) the range of environmental conditions in which savannas are stable. These results indicate that hydraulic lift can be an important mechanism responsible for the coexistence of woody plants and grasses in savannas. Grass facilitation by trees through the process of hydraulic lift could allow savannas to persist stably in mesic regions that would otherwise exhibit a forest cover. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Fuel management in the Subtropical and Savanna divisions

    Treesearch

    Kenneth W. Outcalt

    2012-01-01

    The Subtropical Division (230) and Savanna Division (410), both based on Bailey’s (1996) ecoregions, are found in the Southern United States (http://www.na.fs.fed.us/fire/cwedocs/map%20new_divisions.pdf). The Subtropical Division occupies the southern Atlantic and Gulf coastal areas. It is characterized by a humid subtropical climate with hot humid summers (chapter 3...

  12. A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas

    NASA Astrophysics Data System (ADS)

    Whitley, Rhys; Beringer, Jason; Hutley, Lindsay B.; Abramowitz, Gab; De Kauwe, Martin G.; Duursma, Remko; Evans, Bradley; Haverd, Vanessa; Li, Longhui; Ryu, Youngryel; Smith, Benjamin; Wang, Ying-Ping; Williams, Mathew; Yu, Qiang

    2016-06-01

    The savanna ecosystem is one of the most dominant and complex terrestrial biomes, deriving from a distinct vegetative surface comprised of co-dominant tree and grass populations. While these two vegetation types co-exist functionally, demographically they are not static but are dynamically changing in response to environmental forces such as annual fire events and rainfall variability. Modelling savanna environments with the current generation of terrestrial biosphere models (TBMs) has presented many problems, particularly describing fire frequency and intensity, phenology, leaf biochemistry of C3 and C4 photosynthesis vegetation, and root-water uptake. In order to better understand why TBMs perform so poorly in savannas, we conducted a model inter-comparison of six TBMs and assessed their performance at simulating latent energy (LE) and gross primary productivity (GPP) for five savanna sites along a rainfall gradient in northern Australia. Performance in predicting LE and GPP was measured using an empirical benchmarking system, which ranks models by their ability to utilise meteorological driving information to predict the fluxes. On average, the TBMs performed as well as a multi-linear regression of the fluxes against solar radiation, temperature and vapour pressure deficit but were outperformed by a more complicated nonlinear response model that also included the leaf area index (LAI). This identified that the TBMs are not fully utilising their input information effectively in determining savanna LE and GPP and highlights that savanna dynamics cannot be calibrated into models and that there are problems in underlying model processes. We identified key weaknesses in a model's ability to simulate savanna fluxes and their seasonal variation, related to the representation of vegetation by the models and root-water uptake. We underline these weaknesses in terms of three critical areas for development. First, prescribed tree-rooting depths must be deep enough

  13. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna.

    PubMed

    Palmer, Todd M; Stanton, Maureen L; Young, Truman P; Goheen, Jacob R; Pringle, Robert M; Karban, Richard

    2008-01-11

    Mutualisms are key components of biodiversity and ecosystem function, yet the forces maintaining them are poorly understood. We investigated the effects of removing large mammals on an ant-Acacia mutualism in an African savanna. Ten years of large-herbivore exclusion reduced the nectar and housing provided by plants to ants, increasing antagonistic behavior by a mutualistic ant associate and shifting competitive dominance within the plant-ant community from this nectar-dependent mutualist to an antagonistic species that does not depend on plant rewards. Trees occupied by this antagonist suffered increased attack by stem-boring beetles, grew more slowly, and experienced doubled mortality relative to trees occupied by the mutualistic ant. These results show that large mammals maintain cooperation within a widespread symbiosis and suggest complex cascading effects of megafaunal extinction.

  14. Large wood dynamics and biophysical consequences for riparian forests: A comparison of an unconfined alluvial river in a temperate rainforest and a bedrock confined river in a semi-arid South African savanna.

    NASA Astrophysics Data System (ADS)

    Latterell, J. J.; Pettit, N. E.; Naiman, R. J.

    2005-05-01

    Large wood shapes the geomorphology and ecology of rivers. We determined the origin, distribution, and fate of large wood in two rivers from contrasting environments. The Queets is an unstable temperate, rainforest river running from the Olympic Mountains (USA) through a glacial valley with colossal trees. In most years, the channel erodes a variety of forested landforms which forms jams that sculpt habitats. Many are displaced in a few years. Remaining jams initiate landform development and forest renewal. Thus, wood is stockpiled in the floodplain where it may become buried. Channel movements recapture most logs within 50 years. In contrast, the Sabie is a perennial river running through a confined bedrock channel in a fire-prone semi-arid South African savanna. Riparian trees are relatively small and many sink in water. A recent flood (February 2000) devastated the riparian forest, introducing wood to the channel. Jams formed on toppled trees, transported logs, and bedrock outcrops. Many trees survived and resprouted. Jams facilitated the establishment of woody plant seedlings and the intrusion of fire into riparian areas. Sunken wood formed unique depositional features. The Queets and Sabie rivers are strikingly different systems. However, large wood appears to promote the renewal and development of complex riparian forests in both rivers.

  15. SEASONAL SOIL FLUXES OF CARBON MONOXIDE IN BURNED AND UNBURNED BRAZILIAN SAVANNAS

    EPA Science Inventory

    Soil-atmosphere fluxes of carbon monoxide (CO) were measured from September 1999 through November 2000 in savanna areas in central Brazil (Cerrado) under different fire regimes using transparent and opaque static chambers. Studies focused on two vegetation types, cerrado stricto...

  16. Climate controls on fire pattern in African and Australian continents

    NASA Astrophysics Data System (ADS)

    Zubkova, M.; Boschetti, L.; Abatzoglou, J. T.

    2017-12-01

    Studies have primarily attributed the recent decrease in global fire activity in many savanna and grassland regions as detected by the Global Fire Emission Database (GFEDv4s) to anthropogenic changes such as deforestation and cropland expansion (Andela et al. 2017, van der Werf et al. 2008). These changes have occurred despite increases in fire weather season length (Jolly et al. 2015). Efforts to better resolve retrospective and future changes in fire activity require refining the host of influences on societal and environmental factors on fire activity. In this study, we analyzed how climate variability influences interannual fire activity in Africa and Australia, the two continents most affected by fire and responsible for over half of the global pyrogenic emissions. We expand on the analysis presented in Andela et al. (2017) by using the most recent Collection 6 MODIS MCD64 Burned Area Product and exploring the explanatory power of a broader suite of climate variables that have been previously shown to explain fire variability (Bowman et al. 2017). We examined which climate metrics show a strong interannual relationship with the amount of burned area and fire size accounting for antecedent and in-season atmospheric conditions. Fire characteristics were calculated using the 500m resolution MCD64A1 product (2002-2016); the analysis was conducted at the ecoregion scale, and further stratified by landcover using a broad aggregation (forest, shrublands and grasslands) of the Landcover CCI maps (CCI-LC, 2014); all agricultural areas fires were excluded from the analysis. The results of the analysis improve our knowledge of climate controls on fire dynamics in the most fire-prone places in the world which is critical for statistical fire and vegetation models. Being able to predict the impact of climate on fire activity has a strategic importance in designing future fire management scenarios, help to avoid degradation of biodiversity and ecosystem services and improve

  17. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change.

    PubMed

    Pellegrini, Adam F A; Anderegg, William R L; Paine, C E Timothy; Hoffmann, William A; Kartzinel, Tyler; Rabin, Sam S; Sheil, Douglas; Franco, Augusto C; Pacala, Stephen W

    2017-03-01

    Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models. © 2017 John Wiley & Sons Ltd/CNRS.

  18. Fires in Central and Southern Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Fire scars and smoke plumes result from biomass burning in the savannas of southern Democratic Republic of Congo. Astronauts aboard the International Space Station observed the seasonal increase in savanna burning, which traditionally peaks in June in southern Democratic Republic of Congo. This image, taken on May 16, 2002, is centered near 8.6S, 27.4 E. These fires, likely the result of human activities, are thought to contribute significant emissions to the atmosphere (Cahoon, et al, 1992). The darker area in the foreground is a more heavily wooded hillside; most burning occurs in the grassier savannas which appear red-brown. Credits: Astronaut photograph ISS004-E-11958 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  19. Spatial pattern enhances ecosystem functioning in an African savanna.

    PubMed

    Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M

    2010-05-25

    The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.

  20. Textural analysis of historical aerial photography to characterize woody plant encroachment in South African savanna

    Treesearch

    Andrew T. Hudak; Carol A. Wessman

    1998-01-01

    Transitions from grassland to shrubland through woody plant encroachment result in potentially significant shifts in savanna ecosystem function. Given high resolution imagery, a textural index could prove useful for mapping woody plant densities and monitoring woody plant encroachment across savanna landscapes. Spatial heterogeneity introduced through mixtures of...

  1. Loss of a large grazer impacts savanna grassland plant communities similarly in North America and South Africa.

    PubMed

    Eby, Stephanie; Burkepile, Deron E; Fynn, Richard W S; Burns, Catherine E; Govender, Navashni; Hagenah, Nicole; Koerner, Sally E; Matchett, Katherine J; Thompson, Dave I; Wilcox, Kevin R; Collins, Scott L; Kirkman, Kevin P; Knapp, Alan K; Smith, Melinda D

    2014-05-01

    Large herbivore grazing is a widespread disturbance in mesic savanna grasslands which increases herbaceous plant community richness and diversity. However, humans are modifying the impacts of grazing on these ecosystems by removing grazers. A more general understanding of how grazer loss will impact these ecosystems is hampered by differences in the diversity of large herbivore assemblages among savanna grasslands, which can affect the way that grazing influences plant communities. To avoid this we used two unique enclosures each containing a single, functionally similar large herbivore species. Specifically, we studied a bison (Bos bison) enclosure at Konza Prairie Biological Station, USA and an African buffalo (Syncerus caffer) enclosure in Kruger National Park, South Africa. Within these enclosures we erected exclosures in annually burned and unburned sites to determine how grazer loss would impact herbaceous plant communities, while controlling for potential fire-grazing interactions. At both sites, removal of the only grazer decreased grass and forb richness, evenness and diversity, over time. However, in Kruger these changes only occurred with burning. At both sites, changes in plant communities were driven by increased dominance with herbivore exclusion. At Konza, this was caused by increased abundance of one grass species, Andropogon gerardii, while at Kruger, three grasses, Themeda triandra, Panicum coloratum, and Digitaria eriantha increased in abundance.

  2. The role of savannas in the terrestrial Si cycle: A case-study from Lamto, Ivory Coast

    NASA Astrophysics Data System (ADS)

    Alexandre, Anne; Bouvet, Mickael; Abbadie, Luc

    2011-08-01

    Savannas currently occupy a fifth of the earth's land surface and are predicted to expand in the next few centuries at the expense of tropical forests, mainly as a result of deforestation and human fires. Can such a vegetation trend impact, through changes in plant Si cycling, the lithogenic silicon (LSi) release into soils (through chemical weathering) and the net dissolved Si (DSi) outputs from soils to stream water (through chemical denudation)? The first step of an investigation requires quantifying the net Si fluxes involved in the plant/soil system. Here, a schematic steady-state Si cycle, established for a tropical humid savanna (Lamto, Ivory Coast) that developed on a ferruginous soil and is subjected to annual fires, is presented. Erosion was assumed to be insignificant. LSi and biogenic Si (BSi under the form of phytoliths) pools were measured, and Si fluxes were estimated from Si concentrations and mass balance calculation. Identification of plant and soil phytoliths indicated that the soil BSi pool is in equilibrium with the current BSi input by the savanna. In the soil column, mixing between a young rapidly recycled BSi pool and an old stable BSi pool is attested by a mixing line equation. Storage of the old BSi pool is assimilated as a BSi output from the plant/soil system. A BSi output additionally occurs after annual fires, when ashes are exported. Both BSi outputs decrease as much the BSi dissolution. In order to uptake constant DSi flux, the savanna increases by three to eight times the net LSi release, depending upon the post-fire ash exportation scenario. A comparison between savanna and rainforest Si cycles that maximizes the differences in plant/soil systems and minimizes differences in climate is presented. The comparison revealed that BSi storage is higher in the savanna soil than in the rainforest soil, mainly due to BSi production that is twice higher in the savanna (127 vs 67 kg/ha/yr). The resulting LSi release that is enhanced by plant

  3. The role of savannas in the terrestrial Si cycle: A case-study from Lamto, Ivory Coast

    NASA Astrophysics Data System (ADS)

    Alexandre, A. E.; Abbadie, L.

    2011-12-01

    Savannas currently occupy a fifth of the earth's land surface and are predicted to expand in the next few centuries at the expense of tropical forests, mainly as a result of deforestation and human fires. Can such a vegetation trend impact, through changes in plant Si cycling, the lithogenic silicon (LSi) release into soils (through chemical weathering) and the net dissolved Si (DSi) outputs from soils to stream water (through chemical denudation)? The first step of an investigation requires quantifying the net Si fluxes involved in the plant/soil system. Here, a schematic steady-state Si cycle, established for a tropical humid savanna (Lamto, Ivory Coast) that developed on a ferruginous soil and is subjected to annual fires, is presented. Erosion was assumed to be insignificant. LSi and biogenic Si (BSi under the form of phytoliths) pools were measured, and Si fluxes were estimated from Si concentrations and mass balance calculation. Identification of plant and soil phytoliths indicated that the soil BSi pool is in equilibrium with the current BSi input by the savanna. In the soil column, mixing between a young rapidly recycled BSi pool and an old stable BSi pool is attested by a mixing line equation. Storage of the old BSi pool is assimilated as a BSi output from the plant/soil system. A BSi output additionally occurs after annual fires, when ashes are exported. Both BSi outputs decrease as much the BSi dissolution. In order to uptake constant DSi flux, the savanna increases by three to eight times the net LSi release, depending upon the post-fire ash exportation scenario. A comparison between savanna and rainforest Si cycles that maximizes the differences in plant/soil systems and minimizes differences in climate is presented. The comparison revealed that BSi storage is higher in the savanna soil than in the rainforest soil, mainly due to BSi production that is twice higher in the savanna (127 vs 67 kg/ha/yr). The resulting LSi release that is enhanced by plant

  4. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    NASA Technical Reports Server (NTRS)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  5. The magnitude and persistence of soil NO, N20, CH4, and C02 fluxes from burned tropical savanna in Brazil

    Treesearch

    Mark Poth; Iris Cofman Anderson; Heloisa Sinatora Miranda; Antonia Carlos Miranda; Philip J. Riggan

    1995-01-01

    Among all global ecosystems, tropical savannas are the most severely and extensively affected by anthropogenic burning. Frequency of fire in cerrado, a type of tropical savanna covering 25% of Brazil, is 2 to 4 years. In 1992 we measured soil fluxes of NO, N20, CH4, and C02 from cerrado sites that had...

  6. Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna.

    Treesearch

    William A. Hoffmann; Edson Rangel da Silva; Gustavo C. Machado; Sandra Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer

    2005-01-01

    Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants 1-m tall), in the Brazilian...

  7. Climate-biomes, pedo-biomes and pyro-biomes: which world view explains the tropical forest - savanna boundary in South America?

    NASA Astrophysics Data System (ADS)

    Langan, Liam; Higgins, Steven; Scheiter, Simon

    2015-04-01

    Elucidating the drivers of broad vegetation formations improves our understanding of earth system functioning. The biome, defined primarily by the dominance of a particular growth strategy, is commonly employed to group vegetation into similar units. Predicting tropical forest and savanna biome boundaries in South America has proven difficult. Process based DGVMs (Dynamic global vegetation models) are our best tool to simulate vegetation patterns, make predictions for future changes and test theory, however, many DGVMs fail to accurately simulate the spatial distribution or indeed presence of the South American savanna biome which can result in large differences in modelled ecosystem structural properties. Evidence suggests fire plays a significant role in mediating these forest and savanna biome boundaries, however, fire alone does not appear to be sufficient to predict these boundaries in South America using DGVMs hinting at the presence of one or more missing environmental factors. We hypothesise that soil depth, which affects plant available water by determining maximum storage potential and influences temporal availability, may be one of these missing environmental factors. To test our hypothesis we use a novel vegetation model, the aDGVM2. This model has been specifically designed to allow plant trait strategies, constrained by trade-offs between traits, evolve based on the abiotic and biotic conditions where the resulting community trait suites are emergent properties of model dynamics. Furthermore it considers root biomass in multiple soil layers and therefore allows the consideration of alternative rooting strategies, which in turn allows us to explore in more detail the role of soil hydraulic factors in controlling biome boundary distributions. We find that changes in soil depth, interacting with fire, affect the relative dominance of tree and grass strategies and thus the presence and spatial distribution of forest and savanna biomes in South America

  8. Soil erosion and deposition before and after fire in oak savannas

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried; Hui Chen; Aaron T. Kauffman; Cody L. Stropki; Daniel G. Neary

    2013-01-01

    Effects of low severity prescribed burning treatments and a wildfire on soil erosion and deposition in the oak savannas in the Southwestern Borderlands are reported. Measurements in the spring and fall, respectively, characterize soil movements following winter rains and high-intensity summer rainstorms. Annual values are also presented. Relationships between soil...

  9. Carbon Accumulation and Nitrogen Pool Recovery during Transitions from Savanna to Forest in Central Brazil

    NASA Astrophysics Data System (ADS)

    Pellegrini, A.; Hoffmann, W. A.; Franco, A. C.

    2014-12-01

    The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to firedriven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate : ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical

  10. Native ungulates of diverse body sizes collectively regulate long-term woody plant demography and structure of a semi-arid savanna

    USDA-ARS?s Scientific Manuscript database

    Large mammalian herbivores and fire are both well recognized to play important roles in regulating tree cover and biomass in savannas. However, the extent to which browsing ungulates are capable of regulating tree populations in the absence of other synergistic disturbances such as fire is unclear. ...

  11. Spatially-Explicit Estimates of Greenhouse Gas Emissions from Fire and Land-Use Change in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Galford, G. L.; Spera, S. A.; Coe, M. T.; Costa, C., Jr.

    2014-12-01

    Understanding the multiple types of land-use changes that can occur within an ecosystem provides a comprehensive picture of the human's impact on natural systems. We use the Cerrado (savanna) of Brazil to examine the primary and secondary impacts of land-use change on greenhouse gas emissions. The primary land-use changes include fires for land-clearing, conversions to pasture and row-crop agriculture, and shifting management practices of agricultural lands. Secondary land-use changes include savanna degradation due to fires that escape from intended burn areas. These escape fires typically have a lower combustion completion coefficient than clearing fires, so it is important to distinguish them to correctly estimate the regional greenhouse gas budget. We have created a first-order spatio-temporal model of greenhouse gas emissions that can be easily modified for other savanna regions using globally available data products as inputs. Our data inputs are derived from publically available remote sensing imagery. Initial biomass is estimated by Baccini et al. 2012, which is derived from LiDAR and MODIS imagery. All other input data sets give annual estimates. Clearing of the savanna is documented by LAPIG of Universidade Federal de Goias using MODIS (MOD13Q1), LANDSAT and CBERS images. MODIS burned area products delineate annual fires; in combination with the savanna clearing database we determine primary and escape fires. Pastures and row-crop agriculture are documented by LAPIG and Spera et al. 2014, respectively. The row-crop agriculture dataset enables us to estimate greenhouse gas emissions associated with specific crops (e.g., soy or maize) and management (e.g., fertilizer use). Recent contributions to the literature have provided many in situ measurements from the land-use changes of interest needed to estimate a regional greenhouse gas budget, including combustion coefficients of savanna sub-types, carbon emission soil stocks, nitrogen emissions from fertilizer

  12. Strategic management of livestock to improve biodiversity conservation in African savannahs: A conceptual basis for wildlife-livestock coexistence

    USDA-ARS?s Scientific Manuscript database

    African savannas are complex socio-ecological systems with diverse wild and domestic herbivore assemblages, which utilize functional heterogeneity of habitats to adapt to intra- and inter-annual variation in forage quantity and quality, predation and disease risks. As African savannas become increas...

  13. Environmental determinants of tropical forest and savanna distribution: A quantitative model evaluation and its implication

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenzhong; Chen, Anping; Piao, Shilong; Rabin, Sam; Shen, Zehao

    2014-07-01

    The distributions of tropical ecosystems are rapidly being altered by climate change and anthropogenic activities. One possible trend—the loss of tropical forests and replacement by savannas—could result in significant shifts in ecosystem services and biodiversity loss. However, the influence and the relative importance of environmental factors in regulating the distribution of tropical forest and savanna biomes are still poorly understood, which makes it difficult to predict future tropical forest and savanna distributions in the context of climate change. Here we use boosted regression trees to quantitatively evaluate the importance of environmental predictors—mainly climatic, edaphic, and fire factors—for the tropical forest-savanna distribution at a mesoscale across the tropics (between 15°N and 35°S). Our results demonstrate that climate alone can explain most of the distribution of tropical forest and savanna at the scale considered; dry season average precipitation is the single most important determinant across tropical Asia-Australia, Africa, and South America. Given the strong tendency of increased seasonality and decreased dry season precipitation predicted by global climate models, we estimate that about 28% of what is now tropical forest would likely be lost to savanna by the late 21st century under the future scenario considered. This study highlights the importance of climate seasonality and interannual variability in predicting the distribution of tropical forest and savanna, supporting the climate as the primary driver in the savanna biogeography.

  14. Forage nutritive quality in the Serengeti ecosystem: The roles of fire and herbivory

    USGS Publications Warehouse

    Anderson, T.M.; Ritchie, M.E.; Mayemba, E.; Eby, S.; Grace, J.B.; McNaughton, S.J.

    2007-01-01

    Fire and herbivory are important determinants of nutrient availability in savanna ecosystems. Fire and herbivory effects on the nutritive quality of savanna vegetation can occur directly, independent of changes in the plant community, or indirectly, via effects on the plant community. Indirect effects can be further subdivided into those occurring because of changes in plant species composition or plant abundance (i.e., quality versus quantity). We studied relationships between fire, herbivory, rainfall, soil fertility, and leaf nitrogen (N), phosphorus (P), and sodium (Na) at 30 sites inside and outside of Serengeti National Park. Using structural equation modeling, we asked whether fire and herbivory influences were largely direct or indirect and how their signs and strengths differed within the context of natural savanna processes. Herbivory was associated with enhanced leaf N and P through changes in plant biomass and community composition. Fire was associated with reduced leaf nutrient concentrations through changes in plant community composition. Additionally, fire had direct positive effects on Na and nonlinear direct effects on P that partially mitigated the indirect negative effects. Key mechanisms by which fire reduced plant nutritive quality were through reductions of Na-rich grasses and increased abundance of Themeda triandra, which had below-average leaf nutrients. ?? 2007 by The University of Chicago. All rights reserved.

  15. Response of bird species densities to habitat structure and fire history along a Midwestern open-forest gradient

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2007-01-01

    Oak savannas were historically common but are currently rare in the Midwestern United States. We assessed possible associations of bird species with savannas and other threatened habitats in the region by relating fire frequency and vegetation characteristics to seasonal densities of 72 bird species distributed across an open-forest gradient in northwestern Indiana. About one-third of the species did not exhibit statistically significant relationships with any combination of seven vegetation characteristics that included vegetation cover in five vertical strata, dead tree density, and tree height. For 40% of the remaining species, models best predicting species density incorporated tree density. Therefore, management based solely on manipulating tree density may not be an adequate strategy for managing bird populations along this open-forest gradient. Few species exhibited sharp peaks in predicted density under habitat conditions expected in restored savannas, suggesting that few savanna specialists occur among Midwestern bird species. When fire frequency, measured over fifteen years, was added to vegetation characteristics as a predictor of species density, it was incorporated into models for about one-quarter of species, suggesting that fire may modify habitat characteristics in ways that are important for birds but not captured by the structural habitat variables measured. Among those species, similar numbers had peaks in predicted density at low, intermediate, or high fire frequency. For species suggested by previous studies to have a preference for oak savannas along the open-forest gradient, estimated density was maximized at an average fire return interval of about one fire every three years. ?? The Cooper Ornithological Society 2007.

  16. Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savannahs

    Treesearch

    Alistair M.S. Smith; Martin J. Wooster; Nick A. Drake; Frederick M. Dipotso; Michael J. Falkowski; Andrew T. Hudak

    2005-01-01

    The remote sensing of fire severity is a noted goal in studies of forest and grassland wildfires. Experiments were conducted to discover and evaluate potential relationships between the characteristics of African savannah fires and post-fire surface spectral reflectance in the visible to shortwave infrared spectral region. Nine instrumented experimental fires were...

  17. Evolution of Gases and Particles from a Savanna Fire in South Africa

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.; Sinha, Parikhit; Yokelson, Robert J.; Christian, Ted J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.; Novakov, Tica; Pilewskie, Peter

    2003-01-01

    Airborne measurements of particles and gases fiom a 1000-ha savanna fire in South Africa are presented. These measurements represent the most extensive data set reported on the aging of biomass smoke. The measurements include total concentrations of particles (CN), particle sizes, particulate organic carbon and black carbon, light-scattering coefficients, downwelling UV fluxes, and mixing ratios for 42 trace gases and 7 particulate species. The ratios of excess nitrate, ozone, and gaseous acetic acid to excess CO increased significantly as the smoke aged over approximately 40-45 min, indicating that these species were formed by photochemistry in the plume. For 17 other species, the excess mixing ratio normalized by the excess mixing ratio of CO decreased significantly with ' smoke age. The relative rates of decrease for a number of chemical species imply that the average OH concentration in the plume was approximately 1.7 x l0(exp 7) molecules /cubic centimeter. Excess CN, normalized by excess CO, decreased rapidly during the first approximately 5 min of aging, probably due to coagulation, and then increased, probably due to gas-to-particle conversion. The CO-normalized concentrations of particles < 1.5 microns in diameter decreased, and particles >1.5 micron diameter increased, with smoke age. The spectral depletion of solar radiation by the smoke is depicted. The downwelling UV flux near the vertical center of the plume was about two-thirds of that near the top of the plume.

  18. Phytoliths as a tool to track plant community changes after fire regime shift

    NASA Astrophysics Data System (ADS)

    Kirchholtes, R.; van Mourik, J. M.; Johnson, B. R.

    2016-12-01

    Anthropogenically induced changes to the historical fire regime are excellent analogues to study the dynamics of terrestrial ecosystem responses to present-day environmental changes. Fire suppression and loss of indigenous burning practices in the Willamette Valley, Oregon (USA) has led to near disappearance of the Oregon white oak savanna. The specific goal of this study was to better understand the pace and character with which the Oregon oak savannas are disappearing. Under suppressed fire regimes the shade-intolerant Garry oaks (Quercus garryana) are outcompeted by Douglas-fir (Pseudotsuga menziesii). As a consequence, the Oregon white oak savanna has been reduced to <5% of its former extent. While detrimental to the regional biodiversity due to habitat loss and fragmentation of the many savanna-dependent plant and animal species, this system does capture a long-term continuous record of the plant community response to ecological disturbances. Because conventional indicators used in floristic reconstructions (pollen, spores etc.) are seldom preserved in the dry, oxidized sediments of savannas, we used phytoliths to establish the change in plant communities. Phytoliths are small yet robust silica particles produced by most plants. Many phytoliths take on cell shapes diagnostic of specific plant lineages, acting as indicators of their past presence. By reconstructing the vegetation patterns at the Jim's Creek Research Area using phytoliths, we confirm the pattern of rapid tree encroachment. In addition to grasses, the phytolith assemblages which represent the landscape from about 150 years ago, also document the presence of pines and firs. This suggests that (1) the Willamette Valley savannas did not exclusively consist of grass and oaks and (2) it took less than 150 years to change from and open landscape to a densely forested one. Under a warming climate and changing precipitation patterns, reducing fire risk, fire intensity and fuel loading is critical

  19. Linking complex forest fuel structure and fire behavior at fine scales

    Treesearch

    EL Loudermilk; Joseph O' Brien; RJ Mitchell; JK Hiers; WP Cropper; S Grunwald; J Grego; J Fernandez

    2012-01-01

    Improved fire management of savannas and open woodlands requires better understanding of the fundamental connection between fuel heterogeneity, variation in fire behaviour and the influence of fire variation on vegetation feedbacks. In this study, we introduce a novel approach to predicting fire behaviour at the submetre scale, including measurements of forest...

  20. Effect of wildfires on surface reflectance from a savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Gatebe, C. K.; Ichoku, C. M.; Varnai, T.

    2015-12-01

    During an airborne field campaign in South Africa in 2005, NASA's Cloud Absorption Radiometer (CAR) flew aboard South Africa Weather Service, Aerocommander 690A and measured surface bidirectional reflectance-distribution function (BRDF) over savanna comprised mostly of grasses and a few scattered trees. Savannas cover half the surface of Africa, large areas of Australia, South America, and India. . The region that was studied is located in Kruger National Park in northeastern South Africa, which was heavily affected by the wildfires. The CAR measured surface reflectance along its flight path covering both burned and unburned areas. . In this study, we compared surface reflectance between burnt and un-burnt areas at various wavelengths (340nm, 380nm, 472nm, 682nm, 870nm, 1036nm, 1219nm, 1273nm, and 2205nm) at satellite sub-pixel scales. We found a relative burnt surface reflectance decrease of between 8 and 65% due to fires. These results not only serve to highlight the importance of biomass burning and effects on the energy budgets, but also the need to determine the effects of albedo changes due to fires on soil moisture budget, evapotranspiration, infiltration, and runoff, all of which govern the land-surface component of the water cycle.

  1. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  2. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.

    PubMed

    Pellegrini, Adam F A; Ahlström, Anders; Hobbie, Sarah E; Reich, Peter B; Nieradzik, Lars P; Staver, A Carla; Scharenbroch, Bryant C; Jumpponen, Ari; Anderegg, William R L; Randerson, James T; Jackson, Robert B

    2018-01-11

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  3. Experiences of African American and Caucasian women who survive urban residential fires.

    PubMed

    Jepson, C; Pickett, M; Keane, A; Tax, A; McCorkle, R

    1996-01-01

    This study examined differences in socioeconomic characteristics, traumatic experiences suffered, and psychological distress in African American and Caucasian women 3 months after urban residential fires. Distress was measured by the Brief Symptom Inventory (BSI). The sample included 310 women (224 African Americans and 86 Caucasians). The African American women had lower levels of education and income than the Caucasian women, and were more likely to be unmarried. Injury and deaths of loved ones were similar in the two groups; African American women reported greater loss of possessions, less insurance coverage, and less displacement than Caucasian women. African American and Caucasian women scored similarly on the BSI. Scores on the BSI for both groups were higher than the norms reported in the literature.

  4. Preferential production and transport of grass-derived pyrogenic carbon in NE-Australian savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Saiz, Gustavo; Goodrick, Iain; Wurster, Christopher; Nelson, Paul N.; Wynn, Jonathan; Bird, Michael

    2017-12-01

    Understanding the main factors driving fire regimes in grasslands and savannas is critical to better manage their biodiversity and functions. Moreover, improving our knowledge on pyrogenic carbon (PyC) dynamics, including formation, transport and deposition, is fundamental to better understand a significant slow-cycling component of the global carbon cycle, particularly as these ecosystems account for a substantial proportion of the area globally burnt. However, a thorough assessment of past fire regimes in grass-dominated ecosystems is problematic due to challenges in interpreting the charcoal record of sediments. It is therefore critical to adopt appropriate sampling and analytical methods to allow the acquisition of reliable data and information on savanna fire dynamics. This study uses hydrogen pyrolysis (HyPy) to quantify PyC abundance and stable isotope composition (δ13C) in recent sediments across 38 micro-catchments covering a wide range of mixed C3/C4 vegetation in north Queensland, Australia. We exploited the contrasting δ13C values of grasses (i.e. C4; δ13C >-15‰) and woody vegetation (i.e. C3; δ13C <-24‰) to assess the preferential production and transport of grass-derived PyC in savanna ecosystems. Analyses were conducted on bulk and size-fractionated samples to determine the fractions into which PyC preferentially accumulates. Our data show that the δ13C value of PyC in the sediments is decoupled from the δ13C value of total organic carbon, which suggests that a significant component of PyC may be derived from incomplete grass combustion, even when the proportion of C4 grass biomass in the catchment was relatively small. Furthermore, we conducted 16 experimental burns that indicate that there is a comminution of PyC produced in-situ to smaller particles, which facilitates the transport of this material, potentially affecting its preservation potential. Savanna fires preferentially burn the grass understory rather than large trees, leading to

  5. Fire history and age structure analysis in the Sherburne National Wildlife Refuge: Establishing reference conditions in a remnant oak savanna woodland

    Treesearch

    Kurt F. Kipfmueller; Tim Hepola

    2007-01-01

    Oak savanna woodlands were once a dominant ecotone throughout the upper Midwest. These ecosystems represented a transitional zone between prairie communities to the west that eventually graded into Big Woods forest. Most of the oak savanna landscapes of most of the Midwest were extensively homesteaded and farmed during the middle 1800s and few intact savanna landscapes...

  6. Management of south Texas shrublands with prescribed fire

    Treesearch

    C. Wayne Hanselka; D. Lynn Drawe; D.C. III Ruthven

    2007-01-01

    The Rio Grande Plains (RGP) and Coastal Prairie (CP) of South Texas is the southernmost extension of the Great Plains Grasslands. Fire, along with other climatic variables, such as drought, presumably maintained mesquite (Prosopis glandulosa Torr.) savannas and interspersed grasslands of pre- European settlement South Texas. Frequency of fire...

  7. Biodiversity effects on ecosystem function due to land use: The case of buffel savannas in the Sky Islands Seas in the central region of Sonora

    Treesearch

    A. E. Castellanos; H. Celaya; C. Hinojo; A. Ibarra; J. R. Romo

    2013-01-01

    Buffel savannas have been an important landscape on cattle grazing ranches in Sonora over the past 50 years or more. Changes in land use result in biodiversity changes that may produce ecosystem functional changes; however, these are less well documented. Although fire driven processes have been proposed for Buffel savannas, this is not generally the case, and other...

  8. Fire in Eastern North American Oak Ecosystems: Filling the Gaps

    Treesearch

    Julian (Morgan) Varner; Mary Arthur; Stacy Clark; Daniel C. Dey; Justin Hart; Callie Schweitzer

    2016-01-01

    This special issue of Fire Ecology is focused on the fire ecology of eastern USA oak (Quercus L.) forests, woodlands, and savannas. The papers were presented as part of the Fifth Fire in Eastern Oak Forests Conference in Tuscaloosa, Alabama, USA, in 2015. The topic of fire in eastern oak ecosystems is one that has received insufficient interest from the...

  9. SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign

    NASA Astrophysics Data System (ADS)

    Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.

    2010-12-01

    We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.

  10. Are cattle surrogate wildlife? Savanna plant community composition explained by total herbivory, not herbivore identity

    USDA-ARS?s Scientific Manuscript database

    The replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: 1) loss or reduction in numbers of individual wildlife species or guilds, and 2) addition of livestock to the system. Yet very few studies have addressed the individual, c...

  11. Investigating the effect of fire dynamics on aboveground carbon storage in the Bateke landscape, Republic of Congo

    NASA Astrophysics Data System (ADS)

    Nieto Quintano, P.; Mitchard, E. T.; Ryan, C.; Tim, R.

    2016-12-01

    It is estimated that 68% of Africa's surface area burns every year (Roy et al. 2008), being the savanna biome the most continuously affected by burning with strong environmental and social impacts (Romero-Ruiz et al., 2010). Most fires in Africa are anthropogenic and occur during the Late Dry Season, but their dynamics and effects remain understudied. Sankaran et al. (2005) suggested that if disturbances by fire, browsers and humans were absent, then large areas of Africa would become forests. The main objective of this research is to understand the woody cover, productivity, carbon storage and fire regime of the complex forest/savanna system of the Bateke Plateau. The Bateke Plateau is a landscape composed of frequently burned grassland savanna surrounded by tropical forest, situated in the centre of the Republic of Congo. This study combines two approaches: firstly experimental, with long term field experiments where the fire regime is manipulated, and then observational, using remote sensing to study the past history of fire regime in the region. Field experiments suggest that late dry season fires are more intense and have higher mortality rates. We also investigated aboveground biomass, fire occurrence and intensity, using Landsat, ALOS PALSAR and the fire products of MODIS. We found that most savanna areas burnt at least once every 4 years, with more frequent fires occurring in the late dry season and around roads and settlements. This two approaches will be then combined to create a novel model of vegetation-fire-climate interactions in order to predict the vegetation response to different future scenarios. The results will be used to promote better management of this area to enhance carbon storage, as well as increase our understanding of vegetation dynamics in this understudied ecosystem and help orient policy and conservation.

  12. Molecular phylogeny of Panaspis and Afroablepharus skinks (Squamata: Scincidae) in the savannas of sub-Saharan Africa.

    PubMed

    Medina, Maria F; Bauer, Aaron M; Branch, William R; Schmitz, Andreas; Conradie, Werner; Nagy, Zoltán T; Hibbitts, Toby J; Ernst, Raffael; Portik, Daniel M; Nielsen, Stuart V; Colston, Timothy J; Kusamba, Chifundera; Behangana, Mathias; Rödel, Mark-Oliver; Greenbaum, Eli

    2016-07-01

    African snake-eyed skinks are relatively small lizards of the genera Panaspis and Afroablepharus. Species allocation of these genera frequently changed during the 20th century based on morphology, ecology, and biogeography. Members of these genera occur primarily in savanna habitats throughout sub-Saharan Africa and include species whose highly conserved morphology poses challenges for taxonomic studies. We sequenced two mitochondrial (16S and cyt b) and two nuclear genes (PDC and RAG1) from 76 Panaspis and Afroablepharus samples from across eastern, central, and southern Africa. Concatenated gene-tree and divergence-dating analyses were conducted to infer phylogenies and biogeographic patterns. Molecular data sets revealed several cryptic lineages, with most radiations occurring during the mid-Miocene to Pliocene. We infer that rifting processes (including the formation of the East African Rift System) and climatic oscillations contributed to the expansion and contraction of savannas, and caused cladogenesis in snake-eyed skinks. Species in Panaspis and Afroablepharus used in this study, including type species for both genera, formed a monophyletic group. As a result, the latter genus should be synonymized with the former, which has priority. Conservatively, we continue to include the West African species P. breviceps and P. togoensis within an expanded Panaspis, but note that they occur in relatively divergent clades, and their taxonomic status may change with improved taxon sampling. Divergence estimates and cryptic speciation patterns of snake-eyed skinks were consistent with previous studies of other savanna vertebrate lineages from the same areas examined in this study. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Amazonian forest-savanna bistability and human impact

    NASA Astrophysics Data System (ADS)

    Wuyts, Bert; Champneys, Alan R.; House, Joanna I.

    2017-05-01

    A bimodal distribution of tropical tree cover at intermediate precipitation levels has been presented as evidence of fire-induced bistability. Here we subdivide satellite vegetation data into those from human-unaffected areas and those from regions close to human-cultivated zones. Bimodality is found to be almost absent in the unaffected regions, whereas it is significantly enhanced close to cultivated zones. Assuming higher logging rates closer to cultivated zones and spatial diffusion of fire, our spatiotemporal mathematical model reproduces these patterns. Given a gradient of climatic and edaphic factors, rather than bistability there is a predictable spatial boundary, a Maxwell point, that separates regions where forest and savanna states are naturally selected. While bimodality can hence be explained by anthropogenic edge effects and natural spatial heterogeneity, a narrow range of bimodality remaining in the human-unaffected data indicates that there is still bistability, although on smaller scales than claimed previously.

  14. Fire ecology in the southeastern United States

    USGS Publications Warehouse

    ,

    2000-01-01

    Fire has played an important role in the structure of natural ecosystems throughout North America. As a natural process, fire helps clear away dead and dying plant matter and increases the production of native species that occur in fire prone habitats. It also reduces the invasion of exotic species and the succession to woody species in pitcher plant bogs, pine savannas, coastal prairies, marshes, and other natural plant communities of the southeastern United States.

  15. Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna

    PubMed Central

    Pringle, Robert M.; Young, Truman P.; Rubenstein, Daniel I.; McCauley, Douglas J.

    2007-01-01

    Despite conceptual recognition that indirect effects initiated by large herbivores are likely to have profound impacts on ecological community structure and function, the existing literature on indirect effects focuses largely on the role of predators. As a result, we know neither the frequency and extent of herbivore-initiated indirect effects nor the mechanisms that regulate their strength. We examined the effects of ungulates on taxa (plants, arthropods, and an insectivorous lizard) representing several trophic levels, using a series of large, long-term, ungulate-exclusion plots that span a landscape-scale productivity gradient in an African savanna. At each of six sites, lizards, trees, and the numerically dominant order of arthropods (Coleoptera) were more abundant in the absence of ungulates. The effect of ungulates on arthropods was mediated by herbaceous vegetation cover. The effect on lizards was simultaneously mediated by both tree density (lizard microhabitat) and arthropod abundance (lizard food). The magnitudes of the experimental effects on all response variables (trees, arthropods, and lizards) were negatively correlated with two distinct measures of primary productivity. These results demonstrate strong cascading effects of ungulates, both trophic and nontrophic, and support the hypothesis that productivity regulates the strength of these effects. Hence, the strongest indirect effects (and thus, the greatest risks to ecosystem integrity after large mammals are extirpated) are likely to occur in low-productivity habitats. PMID:17190823

  16. Ecological Restoration Through Silviculture--A Savanna Management Demonstration Area, Sinkin Experimental Forest, Missouri

    Treesearch

    Edward F. Loewenstein; Kenneth R. Davidson

    2002-01-01

    In 1998, a project was initiated to demonstrate techniques and evaluate the efficacy of reducing overstory tree density and reintroducing fire in order to develop the tree composition, structure, and herbaceous complex typical of a savanna. On three study areas, two dominated by oak and one by shortleaf pine, the total basal area of all trees = 1.6 inches DBH was...

  17. Monitoring African savanna water use and water stress from local to regional scale: supporting rangeland management (pilot experience in Kruger National Park, South Africa).

    NASA Astrophysics Data System (ADS)

    Andreu, Ana; Dube, Timothy; Nieto, Hector; González-Dugo, Maria P.; Hülsmann, Stephan

    2017-04-01

    Drought periods and erratic rainfall patterns across large parts of Africa result in water-limited environments like savannas, highly sensitive to land management practices and changes in climate. Over the Southern part of the continent, savannas are key productive landscapes supporting livestock, crops and rural livelihoods. Monitoring water use and the natural vegetation stress over these semi-arid complex ecosystems can support rangeland management, to maintain long-term productivity. However, the precision/resolution/accuracy of the information required for management will differ at each scale: farm-local (e.g. evaluating the effect of management practices, livestock densities, crop production and grazing), to watershed (e.g. evaluating the effect of fire, detection of vulnerable areas) and regional (e.g. early prediction of drought). To overcome these constrains, TIGER project 401 combines two approaches that take advantage of different conceptual and operational capabilities of Earth Observation data sources. Sentinel 2 high spatial (10 m) and temporal ( 5 days) resolution VIS/NIR images are used for a continuous monitoring of vegetation cover and unstressed evapotranspiration (ET - using Kc-FAO56 method). This methodology will provide the required resolution for farm-local scales, tracking separately the seasonal variations of each canopy layer growth (grass and trees). Meanwhile, lower spatial resolution (1 km) MODIS thermal data allow to determine a regional water stress index (ratio between actual ET, estimated using Two Source Energy Balance-TSEB, and potential ET), supporting the detection of vulnerable areas. The model framework was tested and validated over savanna-type experimental areas (Skukuza & Malopeni), and later applied over the whole Kruger National Park during 2015-2016.

  18. Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa: Djougou (Benin)

    NASA Astrophysics Data System (ADS)

    Akpo, A. B.; Galy-Lacaux, C.; Laouali, D.; Delon, C.; Liousse, C.; Adon, M.; Gardrat, E.; Mariscal, A.; Darakpa, C.

    2015-08-01

    In the framework of the IDAF (IGAC/DEBITS/AFrica) international program, this study aims to study the chemical composition of precipitation and associated wet deposition at the rural site of Djougou in Benin, representative of a West and Central African wet savanna. Five hundred and thirty rainfall samples were collected at Djougou, Benin, from July 2005 to December 2009 to provide a unique database. The chemical composition of precipitation was analyzed for inorganic (Ca2+, Mg2+, Na+, NH4+, K+, NO3-, Cl-, SO42-) and organic (HCOO-, CH3COO-, C2H5COO-, C2O42-) ions, using ion chromatography. The 530 collected rain events represent a total of 5706.1 mm of rainfall compared to the measured pluviometry 6138.9 mm, indicating that the collection efficiency is about 93%. The order of total annual loading rates for soluble cations is NH4+ > Ca2+ > Mg2+ > K+. For soluble anions the order of loading is carbonates > HCOO- > NO3- > CH3COO- > SO42- > Cl- > C2O42- > C2H5COO-. In the wet savanna of Djougou, 86% of the measured pH values range between 4.7 and 5.7 with a median pH of 5.19, corresponding to a VWM (Volume Weighed Mean) H+ concentration of 6.46 μeq·L-1. This acidity results from a mixture of mineral and organic acids. The annual sea salt contribution was computed for K+, Mg2+, Ca2+ and SO42- and represents 4.2% of K+, 41% of Mg2+, 1.3% of Ca2+, and 7.4% of SO42-. These results show that K+, Ca2+, SO42-, and Mg2+ were mainly of non-marine origin. The marine contribution is estimated at 9%. The results of the chemical composition of rainwater of Djougou indicates that, except for the carbonates, ammonium has the highest VWM concentration (14.3 μeq·L-1) and nitrate concentration is 8.2 μeq·L-1. The distribution of monthly VWM concentration for all ions is computed and shows the highest values during the dry season, comparing to the wet season. Identified nitrogenous compound sources (NOx and NH3) are domestic animals, natural emissions from savanna soils, biomass

  19. Production of CO{sub 2}, CO and hydrocarbons from biomass fires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, W.M.; Ward, D.E.; Olbu, G.

    1995-12-01

    Emissions of CO{sub 2}, CO, CH{sub 4}, C{sub 2}-C{sub 6} alkanes and alkenes, and aromatic compounds from various biomass fires have been quantified. These gases play important roles in tropospheric chemistry, stratospheric chemistry, and global climate. The fires were used for deforestation and shifting cultivation in tropical forests and for growth of fresh grass in tropical savannas. Smoke samples were collected in stainless steel canisters and were analyzed by gas chromatographs with flame ionization detectors. We investigate and compare the differences in the combustion efficiency, the emission factor of each compound, and the relationship among emitted compounds between forest andmore » savanna fires. The contributions of biomass burning to the sources of these gases in the atmosphere are estimated. We will also assess the potential impact of biomass fires on changes in atmospheric chemistry and global climate.« less

  20. The fire—oak literature of eastern North America: synthesis and guidelines

    Treesearch

    Patrick H. Brose; Daniel C. Dey; Thomas A. Waldrop

    2014-01-01

    Guidelines for using prescribed fire to regenerate and restore upland oak forests, woodlands, and savannas in eastern North America were developed by synthesizing the results of more than 100 scientific publications. The first four chapters provide background information on the values of oak ecosystems, eastern fire history, oak's adaptations to fire, and the...

  1. Response of birds to fire in the American southwest

    Treesearch

    Carl E. Bock; William M. Block

    2005-01-01

    Fire was a common prehistoric disturbance in most southwestern grasslands, oak savannas, and coniferous forests, but not in Sonoran and Mojave desertscrub, or in riparian ecosystems. Prescribed burning should be applied, but under experimental conditions that facilitate studying its impacts on birds and other components of biodiversity. Fire plays a critical role in...

  2. Using remote sensing to create indicators of ecosystem variability for a semi-arid savanna watershed in the Kavango-Zambezi region of Southern Africa

    NASA Astrophysics Data System (ADS)

    Pricope, Narcisa Gabriela

    This dissertation addresses changes in land and resource availability occurring as a result of climate, water variability and changes in fire regimes in a semi-arid savanna region in Southern Africa. The research combines geospatial analyses of climatological and hydrologic data and various remotely-sensed datasets to create measures of ecosystem variability and adaptability to natural and anthropogenic changes in sensitive ecosystems. The study area is the Chobe River Basin (CRB), a watershed shared between Botswana and Namibia situated at the heart of one of the world.s largest transfrontier conservation areas, where different land-use management strategies and economic policies affect both the ecosystem and the livelihoods support system differentially. The southern African savanna is a highly variable environment and people have adapted to its harshness through the generations. However, in light of past and ongoing environmental changes, their ability to adapt may become threatened. By mapping and then analyzing the spatial and temporal variability of two important factors, namely flooding and fires, in conjunction with indices of vegetation health and productivity, the findings of this research can ultimately contribute to enhancing our understanding of local adaptation mechanisms to future environmental change. This is the first reconstruction of the spatial and temporal patterns of inundation for the last 25 years in the CRB, a transboundary basin with an unusual hydrologic regime and an important water resource for both human and wildlife populations. In the context of increasing temperatures, decreasing precipitation trends and increasing frequencies and intensities of El Nino episodes in southern Africa (Boko et al., 2007), I also investigated changes in fire incidences and marked shifts in fire seasonality both within and outside of protected areas of central Kavango Zambezi Transfrontier Conservation Area (KAZA TFCA). These changes are likely to have a

  3. The role of prescribed burn associations in the application of prescribed fires in rangeland ecosystems.

    PubMed

    Toledo, David; Kreuter, Urs P; Sorice, Michael G; Taylor, Charles A

    2014-01-01

    Risk and liability concerns regarding fire affect people's attitudes toward fire and have led to human-induced alterations of fire regimes. This has, in turn, contributed to brush encroachment and degradation of many grasslands and savannas. Efforts to successfully restore such degraded ecosystems at the landscape scale in regions of the United States with high proportions of private lands require the reintroduction of fire. Prescribed Burn Associations (PBA) provide training, equipment, and labor to apply fire safely, facilitating the application of this rangeland management tool and thereby reducing the associated risk. PBAs help build networks and social capital among landowners who are interested in using fire. They can also change attitudes toward fire and enhance the social acceptability of using prescribed fire as a management practice. PBAs are an effective mechanism for promoting the widespread use of prescribed fire to restore and maintain the biophysical integrity of grasslands and savannas at the landscape scale. We report findings of a project aimed at determining the human dimensions of using prescribed fire to control woody plant encroachment in three different eco-regions of Texas. Specifically, we examine membership in PBAs as it relates to land manager decisions regarding the use of prescribed fire. Perceived risk has previously been identified as a key factor inhibiting the use of prescribed fire by landowners. Our results show that perceived constraints, due to lack of skill, knowledge, and access to equipment and membership in a PBAs are more important factors than risk perceptions in affecting landowner decisions about the use of fire. This emphasizes the potential for PBAs to reduce risk perceptions regarding the application of prescribed fire and, therefore, their importance for restoring brush-encroached grasslands and savannas. Published by Elsevier Ltd.

  4. Carbon balance of a grazed savanna grassland ecosystem in South Africa

    NASA Astrophysics Data System (ADS)

    Räsänen, Matti; Aurela, Mika; Vakkari, Ville; Beukes, Johan P.; Tuovinen, Juha-Pekka; Van Zyl, Pieter G.; Josipovic, Miroslav; Venter, Andrew D.; Jaars, Kerneels; Siebert, Stefan J.; Laurila, Tuomas; Rinne, Janne; Laakso, Lauri

    2017-03-01

    Tropical savannas and grasslands are estimated to contribute significantly to the total primary production of all terrestrial vegetation. Large parts of African savannas and grasslands are used for agriculture and cattle grazing, but the carbon flux data available from these areas are limited. This study explores carbon dioxide fluxes measured with the eddy covariance method for 3 years at a grazed savanna grassland in Welgegund, South Africa. The tree cover around the measurement site, grazed by cattle and sheep, was around 15 %. The night-time respiration was not significantly dependent on either soil moisture or soil temperature on a weekly temporal scale, whereas on an annual timescale higher respiration rates were observed when soil temperatures were higher. The carbon dioxide balances of the years 2010-2011, 2011-2012 and 2012-2013 were -85 ± 16, 67 ± 20 and 139 ± 13 gC m-2 yr-1, respectively. The yearly variation was largely determined by the changes in the early wet season fluxes (September to November) and in the mid-growing season fluxes (December to January). Early rainfall enhanced the respiratory capacity of the ecosystem throughout the year, whereas during the mid-growing season high rainfall resulted in high carbon uptake.

  5. Effects of ashes from a Brazilian savanna wildfire on water, soil and biota: An ecotoxicological approach.

    PubMed

    Oliveira-Filho, Eduardo C; Brito, Darlan Q; Dias, Zelia M B; Guarieiro, Mayara S; Carvalho, Esther L; Fascineli, Maria L; Niva, Cintia C; Grisolia, Cesar K

    2018-03-15

    Wildfire is very common in Brazilian savannas, and its effects on water, soil and aquatic/soil organisms are poorly understood. In this study, we observed the effects of fire, especially of ashes, on surface soil and subsurface water in a typical Brazilian savanna (Cerrado sensu strictu) for one year. Soil analyses (pH, organic matter content, potential acidity, K, Ca, Mg and P) and subsurface water analyses (NO 3- , PO 4 3- Mg 2+ , Ca 2+ and K + ) were assessed. We evaluated the ecotoxicological effects of ashes on three different endpoints and species, in fish Danio rerio (embryonic development), aquatic snail Biomphalaria glabrata (reproduction) and a soil species Enchytraeus sp. (reproduction). We found a higher amount of exchangeable cations and organic matter content in short-term fire effects on soil, but the higher availability of nutrients did not affect the soil pH in field plots. The effects of ashes on soil and subsurface water did not persist for one-year post-fire, except for organic matter content in burned areas. No toxic effects were observed on hatching success and incidences of developmental abnormalities in D. rerio embryos. However, ash input had adverse effects on reproduction in snails and enchytraeids. We reported a statistically significant decrease in snail eggs exposed to the 50g.L -1 and 100g.L -1 of ashes after four weeks (p<0.05, Dunnett's test and Tukey test). Enchytraeus sp. reproduction was negatively influenced by the natural soil, which presents high acidity, and also when exposed directly to the ashes from burned area, suggesting that pH and other ash compounds may limit the growth of enchytraeids. More studies in burned areas are strongly encouraged, addressing the potential important routes of exposure to ashes in order to understand the impact of intense fires on soil and aquatic biota in tropical savannas. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Competition between trees and grasses for both soil water and mineral nitrogen in dry savannas.

    PubMed

    Donzelli, D; De Michele, C; Scholes, R J

    2013-09-07

    The co-existence of trees and grasses in savannas in general can be the result of processes involving competition for resources (e.g. water and nutrients) or differential response to disturbances such as fire, animals and human activities; or a combination of both broad mechanisms. In moist savannas, the tree-grass coexistence is mainly attributed to of disturbances, while in dry savannas, limiting resources are considered the principal mechanism of co-existence. Virtually all theoretical explorations of tree-grass dynamics in dry savannas consider only competition for soil water. Here we investigate whether coexistence could result from a balanced competition for two resources, namely soil water and mineral nitrogen. We introduce a simple dynamical resource-competition model for trees and grasses. We consider two alternative hypotheses: (1) trees are the superior competitors for nitrogen while grasses are superior competitors for water, and (2) vice-versa. We study the model properties under the two hypotheses and test each hypothesis against data from 132 dry savannas in Africa using Kendall's test of independence. We find that Hypothesis 1 gets much more support than Hypothesis 2, and more support than the null hypothesis that neither is operative. We further consider gradients of rainfall and nitrogen availability and find that the Hypothesis 1 model reproduces the observed patterns in nature. We do not consider our results to definitively show that tree-grass coexistence in dry savannas is due to balanced competition for water and nitrogen, but show that this mechanism is a possibility, which cannot be a priori excluded and should thus be considered along with the more traditional explanations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Herbaceous Forage and Selection Patterns by Ungulates across Varying Herbivore Assemblages in a South African Savanna

    PubMed Central

    Treydte, Anna Christina; Baumgartner, Sabine; Heitkönig, Ignas M. A.; Grant, Catharina C.; Getz, Wayne M.

    2013-01-01

    Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African savanna in and adjacent to the Kruger National Park, South Africa. We compared mixed and mono-specific herbivore assemblages of varying density and investigated similarities in vegetation patterns under wildlife and livestock herbivory. Grass species composition differed significantly, standing biomass and grass height were almost twice as high at sites of low density compared to high density mixed wildlife species. Selection of various grass species by herbivores was positively correlated with greenness, nutrient content and palatability. Nutrient-rich Urochloa mosambicensis Hack. and Panicum maximum Jacq. grasses were preferred forage species, which significantly differed in abundance across sites of varying grazing pressure. Green grasses growing beneath trees were grazed more frequently than dry grasses growing in the open. Our results indicate that grazing herbivores appear to base their grass species preferences on nutrient content cues and that a characteristic grass species abundance and herb layer structure can be matched with mammalian herbivory types. PMID:24358228

  8. Conservation lessons from large-mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments.

    PubMed

    Goheen, Jacob R; Augustine, David J; Veblen, Kari E; Kimuyu, Duncan M; Palmer, Todd M; Porensky, Lauren M; Pringle, Robert M; Ratnam, Jayashree; Riginos, Corinna; Sankaran, Mahesh; Ford, Adam T; Hassan, Abdikadir A; Jakopak, Rhiannon; Kartzinel, Tyler R; Kurukura, Samson; Louthan, Allison M; Odadi, Wilfred O; Otieno, Tobias O; Wambua, Alois M; Young, Hillary S; Young, Truman P

    2018-05-11

    African savannas support an iconic fauna, but they are undergoing large-scale population declines and extinctions of large (>5 kg) mammals. Long-term, controlled, replicated experiments that explore the consequences of this defaunation (and its replacement with livestock) are rare. The Mpala Research Centre in Laikipia County, Kenya, hosts three such experiments, spanning two adjacent ecosystems and environmental gradients within them: the Kenya Long-Term Exclosure Experiment (KLEE; since 1995), the Glade Legacies and Defaunation Experiment (GLADE; since 1999), and the Ungulate Herbivory Under Rainfall Uncertainty experiment (UHURU; since 2008). Common themes unifying these experiments are (1) evidence of profound effects of large mammalian herbivores on herbaceous and woody plant communities; (2) competition and compensation across herbivore guilds, including rodents; and (3) trophic cascades and other indirect effects. We synthesize findings from the past two decades to highlight generalities and idiosyncrasies among these experiments, and highlight six lessons that we believe are pertinent for conservation. The removal of large mammalian herbivores has dramatic effects on the ecology of these ecosystems; their ability to rebound from these changes (after possible refaunation) remains unexplored. © 2018 New York Academy of Sciences.

  9. Habitat differences in dung beetle assemblages in an African savanna-forest ecotone: implications for secondary seed dispersal.

    PubMed

    Kunz, Britta K; Krell, Frank-Thorsten

    2011-06-01

    The probability and pattern of secondary seed dispersal by dung beetles (Scarabaeinae) depend on their community structure and composition at the site of primary deposition, which, in turn, seem to be strongly determined by vegetation. Consequently, we expected pronounced differences in secondary seed dispersal between forest and savanna in the northern Ivory Coast, West Africa. We found 99 dung beetle species at experimentally exposed dung piles of the olive baboon (Papio anubis (Lesson, 1827)), an important primary seed disperser in West Africa. Seventy-six species belonged to the roller and tunneler guilds, which are relevant for secondary seed dispersal. Most species showed a clear habitat preference. Contrary to the Neotropics, species number and abundance were much higher in the savanna than in the forest. Rollers and tunnelers each accounted for approximately 50% of the individuals in the savanna, but in the forest rollers made up only 4%. Seeds deposited into the savanna by an omnivorous primary disperser generally have a higher overall probability of being more rapidly dispersed secondarily by dung beetles than seeds in the forest. Also, rollers disperse seeds over larger distances. In contrast to other studies, small rollers were active in dispersal of large seeds, which were seemingly mistaken for dung balls. Our results suggest that rollers can remove seeds from any plant dispersed in primate dung in this ecosystem. © 2011 ISZS, Blackwell Publishing and IOZ/CAS.

  10. Influence of daily versus monthly fire emissions on atmospheric model applications in the tropics

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; Voulgarakis, A.; Faluvegi, G.; Shindell, D. T.; DeFries, R. S.

    2012-12-01

    Fires are widely used throughout the tropics to create and maintain areas for agriculture, but are also significant contributors to atmospheric trace gas and aerosol concentrations. However, the timing and magnitude of fire activity can vary strongly by year and ecosystem type. For example, frequent, low intensity fires dominate in African savannas whereas Southeast Asian peatland forests are susceptible to huge pulses of emissions during regional El Niño droughts. Despite the potential implications for modeling interactions with atmospheric chemistry and transport, fire emissions have commonly been input into global models at a monthly resolution. Recognizing the uncertainty that this can introduce, several datasets have parsed fire emissions to daily and sub-daily scales with satellite active fire detections. In this study, we explore differences between utilizing the monthly and daily Global Fire Emissions Database version 3 (GFED3) products as inputs into the NASA GISS-E2 composition climate model. We aim to understand how the choice of the temporal resolution of fire emissions affects uncertainty with respect to several common applications of global models: atmospheric chemistry, air quality, and climate. Focusing our analysis on tropical ozone, carbon monoxide, and aerosols, we compare modeled concentrations with available ground and satellite observations. We find that increasing the temporal frequency of fire emissions from monthly to daily can improve correlations with observations, predominately in areas or during seasons more heavily affected by fires. Differences between the two datasets are more evident with public health applications: daily resolution fire emissions increases the number of days exceeding World Health Organization air quality targets.

  11. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar

    PubMed Central

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632

  12. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    PubMed

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  13. Fire-probability maps for the Brazilian Amazonia

    NASA Astrophysics Data System (ADS)

    Cardoso, M.; Nobre, C.; Obregon, G.; Sampaio, G.

    2009-04-01

    Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.

  14. Fire-probability maps for the Brazilian Amazonia

    NASA Astrophysics Data System (ADS)

    Cardoso, Manoel; Sampaio, Gilvan; Obregon, Guillermo; Nobre, Carlos

    2010-05-01

    Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.

  15. Past and current trends of change in a dune prairie/oak savanna reconstructed through a multiple-scale history

    USGS Publications Warehouse

    Cole, K.L.; Taylor, R.S.

    1995-01-01

    The history of a rapidly changing mosaic of prairie and oak savanna in northern Indiana was reconstructed using several methods emphasizing different time scales ranging from annual to millennial. Vegetation change was monitored for 8 yr using plots and for 30 yr using aerial photographs. A 20th century fire history was reconstructed from the stand structure of multiple-stemmed trees and fire scars. General Land Office Survey data were used to reconstruct the forest of A.D. 1834. Fossil pollen and charcoal records were used to reconstruct the last 4000 yr of vegetation and fire history. Since its deposition along the shore of Lake Michigan about 4000 yr ago, the area has followed a classical primary dune successional sequence, gradually changing from pine forest to prairie/oak savanna between A.D. 264 and 1007. This successional trend, predicted in the models of Henry Cowles, occurred even though the climate cooled and prairies elsewhere in the region retreated. Severe fires in the 19th century reduced most tree species but led to a temporary increase in Populus tremuloides. During the last few decades, the prairie has been invaded by oaks and other woody species, primarily because of fire suppression since A.D. 1972. The rapid and complex changes now occurring are a response to the compounded effects of plant succession, intense burning and logging in the 19th century, recent fire suppression, and possibly increased airborne deposition of nitrates. The compilation of several historical research techniques emphasizing different time scales allows this study of the interactions between multiple disturbance variables

  16. A second-order impact model for forest fire regimes.

    PubMed

    Maggi, Stefano; Rinaldi, Sergio

    2006-09-01

    We present a very simple "impact" model for the description of forest fires and show that it can mimic the known characteristics of wild fire regimes in savannas, boreal forests, and Mediterranean forests. Moreover, the distribution of burned biomasses in model generated fires resemble those of burned areas in numerous large forests around the world. The model has also the merits of being the first second-order model for forest fires and the first example of the use of impact models in the study of ecosystems.

  17. Comparison of the driving forces of spring phenology among savanna landscapes by including combined spatial and temporal heterogeneity.

    PubMed

    Zhu, Likai; Southworth, Jane; Meng, Jijun

    2015-10-01

    Understanding spatial and temporal dynamics of land surface phenology (LSP) and its driving forces are critical for providing information relevant to short- and long-term decision making, particularly as it relates to climate response planning. With the third generation Global Inventory Monitoring and Modeling System (GIMMS3g) Normalized Difference Vegetation Index (NDVI) data and environmental data from multiple sources, we investigated the spatio-temporal changes in the start of the growing season (SOS) in southern African savannas from 1982 through 2010 and determined its linkage to environmental factors using spatial panel data models. Overall, the SOS occurs earlier in the north compared to the south. This relates in part to the differences in ecosystems, with northern areas representing high rainfall and dense tree cover (mainly tree savannas), whereas the south has lower rainfall and sparse tree cover (mainly bush and grass savannas). From 1982 to 2010, an advanced trend was observed predominantly in the tree savanna areas of the north, whereas a delayed trend was chiefly found in the floodplain of the north and bush/grass savannas of the south. Different environmental drivers were detected within tree- and grass-dominated savannas, with a critical division being represented by the 800 mm isohyet. Our results supported the importance of water as a driver in this water-limited system, specifically preseason soil moisture, in determining the SOS in these water-limited, grass-dominated savannas. In addition, the research pointed to other, often overlooked, effects of preseason maximum and minimum temperatures on the SOS across the entire region. Higher preseason maximum temperatures led to an advance of the SOS, whereas the opposite effects of preseason minimum temperature were observed. With the rapid increase in global change research, this work will prove helpful for managing savanna landscapes and key to predicting how projected climate changes will affect

  18. Reconciling Apparent Conflicts between Mitochondrial and Nuclear Phylogenies in African Elephants

    PubMed Central

    Georgiadis, Nicholas J.; David, Victor A.; Zhao, Kai; Stephens, Robert M.; Kolokotronis, Sergios-Orestis; Roca, Alfred L.

    2011-01-01

    Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest “F” and savanna “S” mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure

  19. New evidence for hybrid zones of forest and savanna elephants in Central and West Africa.

    PubMed

    Mondol, Samrat; Moltke, Ida; Hart, John; Keigwin, Michael; Brown, Lisa; Stephens, Matthew; Wasser, Samuel K

    2015-12-01

    The African elephant consists of forest and savanna subspecies. Both subspecies are highly endangered due to severe poaching and habitat loss, and knowledge of their population structure is vital to their conservation. Previous studies have demonstrated marked genetic and morphological differences between forest and savanna elephants, and despite extensive sampling, genetic evidence of hybridization between them has been restricted largely to a few hybrids in the Garamba region of northeastern Democratic Republic of Congo (DRC). Here, we present new genetic data on hybridization from previously unsampled areas of Africa. Novel statistical methods applied to these data identify 46 hybrid samples--many more than have been previously identified--only two of which are from the Garamba region. The remaining 44 are from three other geographically distinct locations: a major hybrid zone along the border of the DRC and Uganda, a second potential hybrid zone in Central African Republic and a smaller fraction of hybrids in the Pendjari-Arli complex of West Africa. Most of the hybrids show evidence of interbreeding over more than one generation, demonstrating that hybrids are fertile. Mitochondrial and Y chromosome data demonstrate that the hybridization is bidirectional, involving males and females from both subspecies. We hypothesize that the hybrid zones may have been facilitated by poaching and habitat modification. The localized geography and rarity of hybrid zones, their possible facilitation from human pressures, and the high divergence and genetic distinctness of forest and savanna elephants throughout their ranges, are consistent with calls for separate species classification. © 2015 John Wiley & Sons Ltd.

  20. Gran Sabana fires (SE Venezuela): a paleoecological perspective

    NASA Astrophysics Data System (ADS)

    Montoya, Encarni; Rull, Valentí

    2011-11-01

    Fires are among the most important risks for tropical ecosystems in a future climatic change scenario. Recently, paleoecological research has been addressed to discern the role played by fire in neotropical landscapes. However, given the magnitude of the Neotropics, many studies are relegated to infer just local trends. Here we present the compilation of the paleo-fire records developed until now in the southern Gran Sabana (SE Venezuela) with the aim to describe the fire history as well as to infer the possible forcing factors implied. In this sense, southern Gran Sabana has been under fire perturbation since the Lateglacial, with the concomitant effects upon vegetation, and persisted during the Holocene. Around 2000 cal yr BP onwards, the fire activity highly increased promoting the expansion of pre-existing savannas, the decrease of forests and the appearance and establishment of Mauritia palm swamps. The continuous fire incidence registered for several thousands of years has likely promoted the supremacy of treeless savannas upon other vegetation types and the degradation to secondary landscapes. Based on the available evidence, the anthropogenic nature of this high fire activity has been postulated. If so, it could be hypothesized that the timing arrival of Pemón, the present-day indigenous culture in the Gran Sabana, would be ca 2000 cal yr BP onwards, rather than the last centuries, as it has been formerly assumed. The implications of these ancient practices in the area are also discussed for present Gran Sabana landscapes sustainability and future conservation strategies.

  1. Integrating in-situ, Landsat, and MODIS data for mapping in Southern African savannas: experiences of LCCS-based land-cover mapping in the Kalahari in Namibia.

    PubMed

    Hüttich, Christian; Herold, Martin; Strohbach, Ben J; Dech, Stefan

    2011-05-01

    Integrated ecosystem assessment initiatives are important steps towards a global biodiversity observing system. Reliable earth observation data are key information for tracking biodiversity change on various scales. Regarding the establishment of standardized environmental observation systems, a key question is: What can be observed on each scale and how can land cover information be transferred? In this study, a land cover map from a dry semi-arid savanna ecosystem in Namibia was obtained based on the UN LCCS, in-situ data, and MODIS and Landsat satellite imagery. In situ botanical relevé samples were used as baseline data for the definition of a standardized LCCS legend. A standard LCCS code for savanna vegetation types is introduced. An object-oriented segmentation of Landsat imagery was used as intermediate stage for downscaling in-situ training data on a coarse MODIS resolution. MODIS time series metrics of the growing season 2004/2005 were used to classify Kalahari vegetation types using a tree-based ensemble classifier (Random Forest). The prevailing Kalahari vegetation types based on LCCS was open broadleaved deciduous shrubland with an herbaceous layer which differs from the class assignments of the global and regional land-cover maps. The separability analysis based on Bhattacharya distance measurements applied on two LCCS levels indicated a relationship of spectral mapping dependencies of annual MODIS time series features due to the thematic detail of the classification scheme. The analysis of LCCS classifiers showed an increased significance of life-form composition and soil conditions to the mapping accuracy. An overall accuracy of 92.48% was achieved. Woody plant associations proved to be most stable due to small omission and commission errors. The case study comprised a first suitability assessment of the LCCS classifier approach for a southern African savanna ecosystem.

  2. Fire effects on tree overstories in the oak savannas of the Southwestern Borderlands Region

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried; Cody L. Stropki; Hui Chen; Daniel G. Neary

    2011-01-01

    Effects of cool-season and warm-season prescribed burning treatments and a wildfire on tree overstories in oak savannas on the Cascabel Watersheds of the Southwestern Borderlands Region are reported in this paper. Information on the initial survival, levels of crown damage, species compositions and densities, annual growth rates, and basal sprouting following these...

  3. Evapotranspiration partitioning in a semi-arid African savanna using stable isotopes of water vapor

    NASA Astrophysics Data System (ADS)

    Soderberg, K.; Good, S. P.; O'Connor, M.; King, E. G.; Caylor, K. K.

    2012-04-01

    Evapotranspiration (ET) represents a major flux of water out of semi-arid ecosystems. Thus, understanding ET dynamics is central to the study of African savanna health and productivity. At our study site in central Kenya (Mpala Research Centre), we have been using stable isotopes of water vapor to partition ET into its constituent parts of plant transpiration (T) and soil evaporation (E). This effort includes continuous measurement (1 Hz) of δ2H and δ18O in water vapor using a portable water vapor isotope analyzer mounted on a 22.5 m eddy covariance flux tower. The flux tower has been collecting data since early 2010. The isotopic end-member of δET is calculated using a Keeling Plot approach, whereas δT and δE are measured directly via a leaf chamber and tubing buried in the soil, respectively. Here we report on a two recent sets of measurements for partitioning ET in the Kenya Long-term Exclosure Experiment (KLEE) and a nearby grassland. We combine leaf level measurements of photosynthesis and water use with canopy-scale isotope measurements for ET partitioning. In the KLEE experiment we compare ET partitioning in a 4 ha plot that has only seen cattle grazing for the past 15 years with an adjacent plot that has undergone grazing by both cattle and wild herbivores (antelope, elephants, giraffe). These results are compared with a detailed study of ET in an artificially watered grassland.

  4. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

    NASA Astrophysics Data System (ADS)

    Saiz, G.; Wynn, J. G.; Wurster, C. M.; Goodrick, I.; Nelson, P. N.; Bird, M. I.

    2015-03-01

    Widespread burning of mixed tree-grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 experimental burns on a rainfall transect through northern Australian savannas with C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these fluxes also partitioned into proximal components (>125 μm), likely to remain close to the site of burning, and distal components (<125 μm), likely to be transported from the site of burning. The median (range) PyC production across all burns was 16.0 (11.5) % of total carbon exposed (TCE), with HyPyC accounting for 2.5 (4.9) % of TCE. Both PyC and HyPyC were dominantly partitioned into the proximal flux. Production of HyPyC was strongly related to fire residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope (δ13C) compositions of PyC and HyPyC were generally lower by 1-3‰ relative to the original biomass, with marked depletion up to 7‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion were computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, as well as for global 13C isotopic disequilibria calculations.

  5. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

    NASA Astrophysics Data System (ADS)

    Saiz, G.; Wynn, J. G.; Wurster, C. M.; Goodrick, I.; Nelson, P. N.; Bird, M. I.

    2014-10-01

    Widespread burning of mixed tree-grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive, and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted sixteen experimental burns on a rainfall transect in northern Australian savannas with C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these also partitioned into proximal (> 125 μm) and distal (< 125 μm) fluxes. The median [range] PyC production across all burns was 16.0 [11.5]% of total carbon exposed (TCE), with HyPyC accounting for 2.5 [4.9]% of TCE. Both PyC and HyPyC were dominantly partitioned into the proximal flux, likely to remain (initially) close to the site of production. Production of HyPyC was strongly related to fire residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope (δ13C) compositions of PyC and HyPyC were generally lower by 1-3‰ relative to the original biomass, with marked depletion up to 7 ‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion was computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, and for global 13C isotopic disequilibria calculations.

  6. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid savanna.

    PubMed

    Davidson, Zeke; Valeix, Marion; Van Kesteren, Freya; Loveridge, Andrew J; Hunt, Jane E; Murindagomo, Felix; Macdonald, David W

    2013-01-01

    Large carnivores inhabiting ecosystems with heterogeneously distributed environmental resources with strong seasonal variations frequently employ opportunistic foraging strategies, often typified by seasonal switches in diet. In semi-arid ecosystems, herbivore distribution is generally more homogeneous in the wet season, when surface water is abundant, than in the dry season when only permanent sources remain. Here, we investigate the seasonal contribution of the different herbivore species, prey preference and distribution of kills (i.e. feeding locations) of African lions in Hwange National Park, Zimbabwe, a semi-arid African savanna structured by artificial waterholes. We used data from 245 kills and 74 faecal samples. Buffalo consistently emerged as the most frequently utilised prey in all seasons by both male (56%) and female (33%) lions, contributing the most to lion dietary biomass. Jacobs' index also revealed that buffalo was the most intensively selected species throughout the year. For female lions, kudu and to a lesser extent the group "medium Bovidae" are the most important secondary prey. This study revealed seasonal patterns in secondary prey consumption by female lions partly based on prey ecology with browsers, such as giraffe and kudu, mainly consumed in the early dry season, and grazers, such as zebra and suids, contributing more to female diet in the late dry season. Further, it revealed the opportunistic hunting behaviour of lions for prey as diverse as elephants and mice, with elephants taken mostly as juveniles at the end of the dry season during droughts. Jacobs' index finally revealed a very strong preference for kills within 2 km from a waterhole for all prey species, except small antelopes, in all seasons. This suggested that surface-water resources form passive traps and contribute to the structuring of lion foraging behaviour.

  7. Seasonal Diet and Prey Preference of the African Lion in a Waterhole-Driven Semi-Arid Savanna

    PubMed Central

    Van Kesteren, Freya; Loveridge, Andrew J.; Hunt, Jane E.; Murindagomo, Felix; Macdonald, David W.

    2013-01-01

    Large carnivores inhabiting ecosystems with heterogeneously distributed environmental resources with strong seasonal variations frequently employ opportunistic foraging strategies, often typified by seasonal switches in diet. In semi-arid ecosystems, herbivore distribution is generally more homogeneous in the wet season, when surface water is abundant, than in the dry season when only permanent sources remain. Here, we investigate the seasonal contribution of the different herbivore species, prey preference and distribution of kills (i.e. feeding locations) of African lions in Hwange National Park, Zimbabwe, a semi-arid African savanna structured by artificial waterholes. We used data from 245 kills and 74 faecal samples. Buffalo consistently emerged as the most frequently utilised prey in all seasons by both male (56%) and female (33%) lions, contributing the most to lion dietary biomass. Jacobs’ index also revealed that buffalo was the most intensively selected species throughout the year. For female lions, kudu and to a lesser extent the group “medium Bovidae” are the most important secondary prey. This study revealed seasonal patterns in secondary prey consumption by female lions partly based on prey ecology with browsers, such as giraffe and kudu, mainly consumed in the early dry season, and grazers, such as zebra and suids, contributing more to female diet in the late dry season. Further, it revealed the opportunistic hunting behaviour of lions for prey as diverse as elephants and mice, with elephants taken mostly as juveniles at the end of the dry season during droughts. Jacobs’ index finally revealed a very strong preference for kills within 2 km from a waterhole for all prey species, except small antelopes, in all seasons. This suggested that surface-water resources form passive traps and contribute to the structuring of lion foraging behaviour. PMID:23405121

  8. Phytolith analysis as a tool for palaeo-environmental studies: a case study of the reconstruction of the historical extent of oak savanna in the Willamette Valley, Oregon

    NASA Astrophysics Data System (ADS)

    Kirchholtes, Renske; van Mourik, Jan; Johnson, Bart

    2014-05-01

    Landscape-level restorations can be costly, so the effectiveness of the approach and the objectives of the restoration should be supported by a comprehensive investigation. The goal of the research presented here is to provide the basis for such a restoration effort using phytolith analyses. Fire suppression and loss of indigenous burning in the Willamette Valley, Oregon (USA) has led to near disappearance of the Oregon white oak savanna. Under suppressed fire regimes the shade-intolerant Garry oaks (Quercus garryana) are outcompeted by Douglas-fir (Pseudotsuga menziesii). As a consequence, the Oregon white oak savanna has been reduced to <5% of its former extent. This range contraction has had significant impacts on regional biodiversity due to habitat loss and fragmentation of the many savanna-dependent plant and animal species. Landscape-level restorations of oak savannas are needed to conserve biodiversity. Creating a more open landscape in which wildfires play a vital role, ties in with efforts to reduce fuel loads. Under a warming climate and changing precipitation patterns, reducing fire risk, fire intensity and fuel loading is critical. Frequent, low-intensity burning of both natural and Native American origin created open spaces in the otherwise densely forested hills and mountains of the Cascade Range. Thus, determining an appropriate "restoration point" (estimate of percent forest cover,) requires a pre-settlement paleoenvironmental reconstruction. However, the conventional indicators used in floristic reconstructions (pollen and spores) are seldom preserved in the dry, oxidized sediments of savannahs, meaning an alternative line of evidence is required for their historical study. Phytoliths are small yet robust silica particles produced by most plants. Many phytoliths take on cell shapes diagnostic of specific plant lineages, acting as indicators of their past presence. Unlike pollen grains, phytoliths readily preserve in well-drained soils during

  9. Restoring fire to long-unburned Pinus palustris ecosystems: novel fire effects and consequences for long-unburned ecosystems

    Treesearch

    Morgan J. Varner; Doria r. Gordon; Francis E. Putz; J. Kevin Hiers

    2005-01-01

    Biologically rich savannas and woodlands dominated by Pinus palustris once dominated the southeastern U.S. landscape. With European settlement, fire suppression, and landscape fragmentation, this ecosystem has been reduced in area by 97%. Half of remnant forests are not burned with sufficient frequency, leading to declines in plant and animal species...

  10. Probabilistic calibration of the SPITFIRE fire spread model using Earth observation data

    NASA Astrophysics Data System (ADS)

    Gomez-Dans, Jose; Wooster, Martin; Lewis, Philip; Spessa, Allan

    2010-05-01

    There is a great interest in understanding how fire affects vegetation distribution and dynamics in the context of global vegetation modelling. A way to include these effects is through the development of embedded fire spread models. However, fire is a complex phenomenon, thus difficult to model. Statistical models based on fire return intervals, or fire danger indices need large amounts of data for calibration, and are often prisoner to the epoch they were calibrated to. Mechanistic models, such as SPITFIRE, try to model the complete fire phenomenon based on simple physical rules, making these models mostly independent of calibration data. However, the processes expressed in models such as SPITFIRE require many parameters. These parametrisations are often reliant on site-specific experiments, or in some other cases, paremeters might not be measured directly. Additionally, in many cases, changes in temporal and/or spatial resolution result in parameters becoming effective. To address the difficulties with parametrisation and the often-used fitting methodologies, we propose using a probabilistic framework to calibrate some areas of the SPITFIRE fire spread model. We calibrate the model against Earth Observation (EO) data, a global and ever-expanding source of relevant data. We develop a methodology that tries to incorporate the limitations of the EO data, reasonable prior values for parameters and that results in distributions of parameters, which can be used to infer uncertainty due to parameter estimates. Additionally, the covariance structure of parameters and observations is also derived, whcih can help inform data gathering efforts and model development, respectively. For this work, we focus on Southern African savannas, an important ecosystem for fire studies, and one with a good amount of EO data relevnt to fire studies. As calibration datasets, we use burned area data, estimated number of fires and vegetation moisture dynamics.

  11. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    PubMed

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1)), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1), respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1) at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems.

  12. Relationships between bat occupancy and habitat and landscape structure along a savanna, woodland, forest gradient in the Missouri Ozarks

    Treesearch

    Clarissa A. Starbuck; Sybill K. Amelon; Frank R. III Thompson

    2015-01-01

    Many land-management agencies are restoring savannas and woodlands using prescribed fire and forest thinning, and information is needed on how wildlife species respond to these management activities. Our objectives were to evaluate support for relationships of bat site occupancy with vegetation structure and management and landscape composition and structure across a...

  13. Oak savanna restoration in central Iowa: Assessing indicators of forest health for ecological monitoring (PROJECT NC-F-04-02)

    Treesearch

    Heidi Asbjornsen; Lars Brudvig

    2013-01-01

    Savanna ecosystems were once a dominant feature of the Midwestern Corn Belt Plains ecoregion, occurring within the dynamic boundary between prairies to the west and forests to the east, and maintained in the landscape by complex interactions between fire, climate, topography, and human activities (Anderson 1998). Characterized by their continuous understory layer and...

  14. Intra-seasonal risk of agriculturally-relevant weather extremes in West African Sudan Savanna

    NASA Astrophysics Data System (ADS)

    Boansi, David; Tambo, Justice A.; Müller, Marc

    2018-01-01

    Using household survey data and historical daily climate data for 29 communities across Upper East Ghana and Southwest Burkina Faso, we document climatic conditions deemed major threat to farming in the West African Sudan Savanna and assess risks posed by such conditions over the period 1997-2014. Based on farmers' perception, it is found that drought, low rainfall, intense precipitation, flooding, erratic rainfall pattern, extremely high temperatures, delayed rains, and early cessation of rains are the major threats farmers face. Using first-order Markov chain model and relevant indices for monitoring weather extremes, it is discovered that climatic risk is a general inherent attribute of the rainy season in the study area. Due to recent changes in onset of rains and length of the rainy season, some farmers have either resorted to early planting of drought-hardy crops, late planting of drought-sensitive crops, or spreading of planting across the first 3 months of the season to moderate harm. Each of these planting decisions however has some risk implications. The months of May, June, and October are found to be more susceptible to relatively longer duration of dry and hot spells, while July, August, and September are found to be more susceptible to intense precipitation and flooding. To moderate harm from anticipated weather extremes, farmers need to adjust their cropping calendar, adopt appropriate crop varieties, and implement soil and water management practices. For policy makers and other stakeholders, we recommend the supply of timely and accurate weather forecasts to guide farmers in their seasonal cropping decisions and investment in/installation of low cost irrigation facilities to enhance the practice of supplemental irrigation.

  15. Fire history and age structure analysis in the Sherburne National Wildlife Refuge, Minnesota: establishing reference conditions in a remnant oak savanna woodland

    Treesearch

    Kurt F. Kipfmueller; Tim Hepola

    2009-01-01

    Oak savanna woodlands were once a dominant ecotone in southwestern Minnesota and throughout the upper Midwest. These ecosystems represented a transitional zone between prairie communities to the west that eventually graded into Big Woods forest. Most of the oak savanna landscape of southern Minnesota (and indeed most of the Midwest) were extensively homesteaded and...

  16. Conflicting short and long-term management goals: Fire effects in endangered golden-cheeked warbler (Setophaga chrysoparia) habitat

    Treesearch

    Christina M. Andruk; Norma L. Fowler

    2015-01-01

    Decades of fire suppression have significantly altered the vegetation structure and composition of savannas, woodlands, and forests. The presence of endangered species and other species of conservation concern in these fire-suppressed systems makes re-introducing fire more challenging. In oak-juniper woodlands of central Texas, we are presented with the challenge of re...

  17. Cascabel prescribed fire long-term watershed study: an opportunity to monitor climate change

    Treesearch

    Gerald Gottfried; Daniel Neary; Peter Ffolliott; Karen Koestner

    2012-01-01

    Experimental watershed studies can provide answers to new challenges facing land managers and society including the impacts of fires and climate change on upstream and regional hydrology. The Cascabel Watersheds long-term prescribed fire study provides a unique opportunity to monitor climate change because of its location in an oak savanna situated between deserts or...

  18. Tree foliar chemistry in an African savanna and its relation to life history strategies and environmental filters.

    PubMed

    Colgan, Matthew S; Martin, Roberta E; Baldeck, Claire A; Asner, Gregory P

    2015-01-01

    Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ(13)C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.

  19. Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D.E.; Susott, R.A.; Babbitt, R.E.

    1992-09-20

    Fires of the tropical forests and savannas are a major source of particulate matter and trace gases affecting the atmosphere globally. A paucity of quantitative information exists for these ecosystems with respect to fuel biomass, smoke emissions, and fire behavior conditions affecting the release of emissions. Five test fires were performed during August and September 1990 in the cerrado (savannalike region) in central Brazil (three fires) and tropical moist forest (two fires) in the eastern Amazon. This paper details the gases released, the ratios of the gases to each other and to particulate matter, fuel loads and the fraction consumedmore » (combustion factors), and the fire behavior associated with biomass consumption. Models are presented for evaluating emission factors for CH{sub 4}, CO{sub 2}, CO, H{sub 2}, and particles less than 2.5 {mu}m diameter (PM2.5) as a function of combustion efficiency. The ratio of carbon released as CO{sub 2} (combustion efficiency) for the cerrado fires averaged 0.94 and for the deforestation fires it decreased from 0.88 for the flaming phase to <0.80 during the smoldering phase of combustion. For tropical ecosystems, emissions of most products of incomplete combustion are projected to be lower than previous estimates for savanna ecosystems and somewhat higher for fires used for deforestation purposes. 59 refs., 9 figs., 10 tabs.« less

  20. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015)

    NASA Astrophysics Data System (ADS)

    van Marle, Margreet J. E.; Kloster, Silvia; Magi, Brian I.; Marlon, Jennifer R.; Daniau, Anne-Laure; Field, Robert D.; Arneth, Almut; Forrest, Matthew; Hantson, Stijn; Kehrwald, Natalie M.; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stéphane; Yue, Chao; Kaiser, Johannes W.; van der Werf, Guido R.

    2017-09-01

    Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data have shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently, there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visibility observations. These proxies provide opportunities to extrapolate emission estimates back in time based on satellite data starting in 1997, but each proxy has strengths and weaknesses regarding, for example, the spatial and temporal extents over which they are representative. We developed a new historic biomass burning emissions dataset starting in 1750 that merges the satellite record with several existing proxies and uses the average of six models from the Fire Model Intercomparison Project (FireMIP) protocol to estimate emissions when the available proxies had limited coverage. According to our approach, global biomass burning emissions were relatively constant, with 10-year averages varying between 1.8 and 2.3 Pg C yr-1. Carbon emissions increased only slightly over the full time period and peaked during the 1990s after which they decreased gradually. There is substantial uncertainty in these estimates, and patterns varied depending on choices regarding data representation, especially on regional scales. The observed pattern in fire carbon emissions is for a large part driven by African fires, which accounted for 58 % of global fire carbon emissions. African fire emissions declined since about 1950 due to conversion of savanna to cropland, and this decrease is partially compensated for by increasing emissions in deforestation zones of South America and Asia. These global fire emission estimates are mostly suited for global analyses and will be used in the Coupled

  1. Rapid assessment and mapping of tree cover in southern African savanna woodlands using a new iPhone App and Landsat 8 imagery

    NASA Astrophysics Data System (ADS)

    Fuller, D. O.

    2016-12-01

    Tree cover is a key parameter in climate modeling. It strongly influences CO2 exchanges between the land surface and atmosphere and surface energy balance. We measured percent woody canopy cover (PWCC) in the savanna woodlands of eastern Zambia over a 10-day period in May 2016 using a new iPhone App (CanopyApp) and related these field measurements to Landsat 8 (L8) Band 4 (red) imagery acquired approximately the same time. We then used parameters from the band 4 digital numbers (DNs)-PWCC linear regression to derive a new map of PWCC for the entire L8 scene. Consistent with theory and previous empirical studies, we found that the relationship between L8 band 4 DNs- PWCC was negative and linear (r2 = 0.61, p < 0.05). Interestingly, the relationship between PWCC and L8 band 4 surface reflectance was weaker (r2 = 0.46, p < 0.05) than that for DNs. This suggests that the scene model used in L8 atmospheric correction may not account well for within-pixel shadowing effects and other spatial inhomogeneities from variable soil and background reflectance. Our PWCC map agreed qualitatively with similar percent tree-cover maps based on Landsat level 1 products and past field studies in the area conducted using a hemispherical lens. Our results also compared favorably with other remote sensing studies that have used complex multivariate approaches to estimate tree cover, which suggests that use of a single L8 band 4 is sufficient to estimate PWCC when spectral contrast exists between the grass, soil and tree layers during the austral fall period in southern African savannas.

  2. Water, land, fire, and forest: Multi-scale determinants of rainforests in the Australian monsoon tropics.

    PubMed

    Ondei, Stefania; Prior, Lynda D; Williamson, Grant J; Vigilante, Tom; Bowman, David M J S

    2017-03-01

    The small rainforest fragments found in savanna landscapes are powerful, yet often overlooked, model systems to understand the controls of these contrasting ecosystems. We analyzed the relative effect of climatic variables on rainforest density at a subcontinental level, and employed high-resolution, regional-level analyses to assess the importance of landscape settings and fire activity in determining rainforest density in a frequently burnt Australian savanna landscape. Estimates of rainforest density (ha/km 2 ) across the Northern Territory and Western Australia, derived from preexisting maps, were used to calculate the correlations between rainforest density and climatic variables. A detailed map of the northern Kimberley (Western Australia) rainforests was generated and analyzed to determine the importance of geology and topography in controlling rainforests, and to contrast rainforest density on frequently burnt mainland and nearby islands. In the northwestern Australian, tropics rainforest density was positively correlated with rainfall and moisture index, and negatively correlated with potential evapotranspiration. At a regional scale, rainforests showed preference for complex topographic positions and more fertile geology. Compared with mainland areas, islands had significantly lower fire activity, with no differences between terrain types. They also displayed substantially higher rainforest density, even on level terrain where geomorphological processes do not concentrate nutrients or water. Our multi-scale approach corroborates previous studies that suggest moist climate, infrequent fires, and geology are important stabilizing factors that allow rainforest fragments to persist in savanna landscapes. These factors need to be incorporated in models to predict the future extent of savannas and rainforests under climate change.

  3. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America

    PubMed Central

    2016-01-01

    Fire plays an increasingly significant role in tropical forest and savanna ecosystems, contributing to greenhouse gas emissions and impacting on biodiversity. Emerging research shows the potential role of Indigenous land-use practices for controlling deforestation and reducing CO2 emissions. Analysis of satellite imagery suggests that Indigenous lands have the lowest incidence of wildfires, significantly contributing to maintaining carbon stocks and enhancing biodiversity. Yet acknowledgement of Indigenous peoples' role in fire management and control is limited, and in many cases dismissed, especially in policy-making circles. In this paper, we review existing data on Indigenous fire management and impact, focusing on examples from tropical forest and savanna ecosystems in Venezuela, Brazil and Guyana. We highlight how the complexities of community owned solutions for fire management are being lost as well as undermined by continued efforts on fire suppression and firefighting, and emerging approaches to incorporate Indigenous fire management into market- and incentive-based mechanisms for climate change mitigation. Our aim is to build a case for supporting Indigenous fire practices within all scales of decision-making by strengthening Indigenous knowledge systems to ensure more effective and sustainable fire management. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216507

  4. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America.

    PubMed

    Mistry, Jayalaxshmi; Bilbao, Bibiana A; Berardi, Andrea

    2016-06-05

    Fire plays an increasingly significant role in tropical forest and savanna ecosystems, contributing to greenhouse gas emissions and impacting on biodiversity. Emerging research shows the potential role of Indigenous land-use practices for controlling deforestation and reducing CO2 emissions. Analysis of satellite imagery suggests that Indigenous lands have the lowest incidence of wildfires, significantly contributing to maintaining carbon stocks and enhancing biodiversity. Yet acknowledgement of Indigenous peoples' role in fire management and control is limited, and in many cases dismissed, especially in policy-making circles. In this paper, we review existing data on Indigenous fire management and impact, focusing on examples from tropical forest and savanna ecosystems in Venezuela, Brazil and Guyana. We highlight how the complexities of community owned solutions for fire management are being lost as well as undermined by continued efforts on fire suppression and firefighting, and emerging approaches to incorporate Indigenous fire management into market- and incentive-based mechanisms for climate change mitigation. Our aim is to build a case for supporting Indigenous fire practices within all scales of decision-making by strengthening Indigenous knowledge systems to ensure more effective and sustainable fire management.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  5. Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems

    PubMed Central

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = −2.48 tonnes C ha−1), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha−1, respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha−1 at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1–2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30–60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems. PMID:23335986

  6. Fire in upper Midwestern oak forest ecosystems: an oak forest restoration and management handbook

    Treesearch

    Lee E. Frelich; Peter B. Reich; David W. Peterson

    2015-01-01

    We reviewed the literature to synthesize what is known about the use of fire to maintain and restore oak forests, woodlands, and savannas of the upper Midwestern United States, with emphasis on Minnesota, Wisconsin, and Michigan. Included are (1) known physical and ecological effects of fire on oaks from acorn through seedling, established sapling, and mature stages of...

  7. Unprecedented Fires in Southern Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The fires that raged across southern Africa this August and September produced a thick 'river of smoke' over the region. NASA-supported studies currently underway on the event will contribute to improved air pollution policies in the region and a better understanding of its impact on climate change. This year the southern African fire season peaked in early September. The region is subject to some of the highest levels of biomass burning in the world. The heaviest burning was in western Zambia, southern Angola, northern Namibia, and northern Botswana. Some of the blazes had fire fronts 20 miles long that lasted for days. In this animation, multiple fires are burning across the southern part of the African continent in September 2000. The fires, indicated in red, were observed by the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 satellite. The fires generated large amounts of heat-absorbing aerosols (the dark haze), which were observed with the Earth Probe Total Ozone Mapping Spectrometer (TOMS) instrument. These observations were collected as part of a NASA-supported field campaign called SAFARI 2000 (Southern African Regional Science Initiative). The recent six-week 'dry-season' portion of this experiment was planned to coincide with the annual fires. SAFARI 2000 planners tracked the changing location of fires with daily satellite maps provided by researchers at NASA's Goddard Space Flight Center. 'Every year African biomass burning greatly exceeds the scale of the fires seen this year in the western United States,' says Robert Swap of the University of Virginia, one of the campaign organizers. 'But the southern African fire season we just observed may turn out to be an extreme one even by African standards. It was amazing how quickly this region went up in flames.' The thick haze layer from these fires was heavier than campaign participants had seen in previous field studies in the Amazon Basin and during the Kuwati oil fires

  8. History of fire and Douglas-fir establishment in a savanna and sagebrush-grassland mosaic, southwestern Montana, USA

    Treesearch

    Emily K. Heyerdahl; Richard F. Miller; Russell A. Parsons

    2006-01-01

    Over the past century, trees have encroached into grass- and shrublands across western North America. These include Douglas-fir trees (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco) encroaching into mountain big sagebrush Nutt. ssp. vaseyana (Rydb.) Beetle) from stable islands of savanna in...

  9. Time series analysis of forest carbon dynamics: recovery of Pinus palustris physiology following a prescribed fire

    Treesearch

    G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien

    2015-01-01

    Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...

  10. Savanna tree density, herbivores, and the herbaceous community: bottom-up vs. top-down effects.

    PubMed

    Riginos, Corinna; Grace, James B

    2008-08-01

    Herbivores choose their habitats both to maximize forage intake and to minimize their risk of predation. For African savanna herbivores, the available habitats range in woody cover from open areas with few trees to dense, almost-closed woodlands. This variation in woody cover or density can have a number of consequences for herbaceous species composition, cover, and productivity, as well as for ease of predator detection and avoidance. Here, we consider two alternative possibilities: first, that tree density affects the herbaceous vegetation, with concomitant "bottom-up" effects on herbivore habitat preferences; or, second, that tree density affects predator visibility, mediating "top-down" effects of predators on herbivore habitat preferences. We sampled sites spanning a 10-fold range of tree densities in an Acacia drepanolobium-dominated savanna in Laikipia, Kenya, for variation in (1) herbaceous cover, composition, and species richness; (2) wild and domestic herbivore use; and (3) degree of visibility obstruction by the tree layer. We then used structural equation modeling to consider the potential influences that tree density may have on herbivores and herbaceous community properties. Tree density was associated with substantial variation in herbaceous species composition and richness. Cattle exhibited a fairly uniform use of the landscape, whereas wild herbivores, with the exception of elephants, exhibited a strong preference for areas of low tree density. Model results suggest that this was not a response to variation in herbaceous-community characteristics, but rather a response to the greater visibility associated with more open places. Elephants, in contrast, preferred areas with higher densities of trees, apparently because of greater forage availability. These results suggest that, for all but the largest species, top-down behavioral effects of predator avoidance on herbivores are mediated by tree density. This, in turn, appears to have cascading effects

  11. SOIL EMISSIONS OF CO2 AND CO IN TROPICAL SAVANNAS OF CENTRAL BRAZIL UNDER DIFFERENT FIRE REGIMES

    EPA Science Inventory

    The Cerrado is a tropical savanna in which herbaceous vegetation (mainly C4 grasses) coexists with trees and shrubs. It covers more than two million square kilometers and accounts for 22% of the total area of Brazil. In general, cerrado soils are old, deep, well drained, well s...

  12. Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park.

    PubMed

    Varga, Timothy A; Asner, Gregory P

    2008-04-01

    Alien invasive grasses threaten to transform Hawaiian ecosystems through the alteration of ecosystem dynamics, especially the creation or intensification of a fire cycle. Across sub-montane ecosystems of Hawaii Volcanoes National Park on Hawaii Island, we quantified fine fuels and fire spread potential of invasive grasses using a combination of airborne hyperspectral and light detection and ranging (LiDAR) measurements. Across a gradient from forest to savanna to shrubland, automated mixture analysis of hyperspectral data provided spatially explicit fractional cover estimates of photosynthetic vegetation, non-photosynthetic vegetation, and bare substrate and shade. Small-footprint LiDAR provided measurements of vegetation height along this gradient of ecosystems. Through the fusion of hyperspectral and LiDAR data, a new fire fuel index (FFI) was developed to model the three-dimensional volume of grass fuels. Regionally, savanna ecosystems had the highest volumes of fire fuels, averaging 20% across the ecosystem and frequently filling all of the three-dimensional space represented by each image pixel. The forest and shrubland ecosystems had lower FFI values, averaging 4.4% and 8.4%, respectively. The results indicate that the fusion of hyperspectral and LiDAR remote sensing can provide unique information on the three-dimensional properties of ecosystems, their flammability, and the potential for fire spread.

  13. Reptile and amphibian responses to restoration of fire-maintained pine woodlands

    Treesearch

    Roger W Perry; D. Craig Rudolph; Ronald E. Thill

    2009-01-01

    Fire-maintained woodlands and savannas are important ecosystems for vertebrates in many regions of the world. These ecosystems are being restored by forest managers, but little information exists on herpetofaunal responses to this restoration in areas dominated by shortleaf pine (Pinus echinata). We compared habitat characteristics and...

  14. Reconciling Agricultural Needs with Biodiversity and Carbon Conservation in a Savanna Transformation Frontier

    NASA Astrophysics Data System (ADS)

    Spiegel, M. P.; Estes, L. D.; Caylor, K. K.; Searchinger, T.

    2015-12-01

    Zambia is a major hotspot for agricultural development in the African savannas, which will be targeted for agricultural expansion to relieve food shortages and economic insecurity in the next few decades. Recent scholarship rejects the assumption that the large reserves of arable land in the African savannas could be converted to cropland with low ecological costs. In light of these findings, the selection of land for agricultural expansion must consider not only its potential productivity, but also the increase in greenhouse gas emissions and biodiversity loss that would result from the land conversion. To examine these tradeoffs, we have developed a multi-objective optimization technique to seek scenarios for agricultural development in Zambia that simultaneously achieve production targets and minimize carbon, biodiversity, and economic cost constraints, while factoring in the inter-annual variability in crop production in this highly uncertain climate. Potential production is determined from well-characterized yield potential estimates while robust metrics of biodiversity and high resolution mapping of carbon storage provide fine scale estimates of ecological impact. We draw production targets for individual crops from potential development pathways, primarily export, commodity-crop driven expansion and identify ecologically responsible agricultural development scenarios that are resilient to climate change and meet these demands. In order to achieve a doubling of production of nine key crops, assuming a modest 20% overall increase in yield potential, we find a range of scenarios that use less than 1600 km2 of new land without infringing on any protected areas or exceeding 6.7 million tons of carbon emissions.

  15. Mammals of Australia's Tropical Savannas: A Conceptual Model of Assemblage Structure and Regulatory Factors in the Kimberley Region

    PubMed Central

    Radford, Ian J.; Dickman, Christopher R.; Start, Antony N.; Palmer, Carol; Carnes, Karin; Everitt, Corrin; Fairman, Richard; Graham, Gordon; Partridge, Thalie; Thomson, Allan

    2014-01-01

    We construct a state-and-transition model for mammals in tropical savannas in northern Australia to synthesize ecological knowledge and understand mammalian declines. We aimed to validate the existence of alternative mammal assemblage states similar to those in arid Australian grasslands, and to speculate on transition triggers. Based on the arid grassland model, we hypothesized that assemblages are partitioned across rainfall gradients and between substrates. We also predicted that assemblages typical of arid regions in boom periods would be prevalent in savannas with higher and more regular rainfall. Data from eight mammal surveys from the Kimberley region, Western Australia (1994 to 2011) were collated. Survey sites were partitioned across rainfall zones and habitats. Data allowed us to identify three assemblage states: State 0:- low numbers of mammals, State II:- dominated by omnivorous rodents and State III:- dominated by rodents and larger marsupials. Unlike arid grasslands, assemblage dominance by insectivorous dasyurids (State I) did not occur in savannas. Mammal assemblages were partitioned across rainfall zones and between substrates as predicted, but—unlike arid regions—were not related strongly to yearly rainfall. Mammal assemblage composition showed high regional stability, probably related to high annual rainfall and predictable wet season resource pulses. As a consequence, we speculate that perpetually booming assemblages in savannas allow top-down control of the ecosystem, with suppression of introduced cats by the dingo, the region's top predator. Under conditions of low or erratic productivity, imposed increasingly by intense fire regimes and introduced herbivore grazing, dingoes may not limit impacts of cats on native mammals. These interacting factors may explain contemporary declines of savanna mammals as well as historical declines in arid Australia. The cat-ecosystem productivity hypothesis raised here differs from the already

  16. Mammals of Australia's tropical savannas: a conceptual model of assemblage structure and regulatory factors in the Kimberley region.

    PubMed

    Radford, Ian J; Dickman, Christopher R; Start, Antony N; Palmer, Carol; Carnes, Karin; Everitt, Corrin; Fairman, Richard; Graham, Gordon; Partridge, Thalie; Thomson, Allan

    2014-01-01

    We construct a state-and-transition model for mammals in tropical savannas in northern Australia to synthesize ecological knowledge and understand mammalian declines. We aimed to validate the existence of alternative mammal assemblage states similar to those in arid Australian grasslands, and to speculate on transition triggers. Based on the arid grassland model, we hypothesized that assemblages are partitioned across rainfall gradients and between substrates. We also predicted that assemblages typical of arid regions in boom periods would be prevalent in savannas with higher and more regular rainfall. Data from eight mammal surveys from the Kimberley region, Western Australia (1994 to 2011) were collated. Survey sites were partitioned across rainfall zones and habitats. Data allowed us to identify three assemblage states: State 0:--low numbers of mammals, State II:--dominated by omnivorous rodents and State III:--dominated by rodents and larger marsupials. Unlike arid grasslands, assemblage dominance by insectivorous dasyurids (State I) did not occur in savannas. Mammal assemblages were partitioned across rainfall zones and between substrates as predicted, but-unlike arid regions-were not related strongly to yearly rainfall. Mammal assemblage composition showed high regional stability, probably related to high annual rainfall and predictable wet season resource pulses. As a consequence, we speculate that perpetually booming assemblages in savannas allow top-down control of the ecosystem, with suppression of introduced cats by the dingo, the region's top predator. Under conditions of low or erratic productivity, imposed increasingly by intense fire regimes and introduced herbivore grazing, dingoes may not limit impacts of cats on native mammals. These interacting factors may explain contemporary declines of savanna mammals as well as historical declines in arid Australia. The cat-ecosystem productivity hypothesis raised here differs from the already-articulated cat

  17. Demographic responses of Pinguicula ionantha to prescribed fire: a regression-design LTRE approach.

    PubMed

    Kesler, Herbert C; Trusty, Jennifer L; Hermann, Sharon M; Guyer, Craig

    2008-06-01

    This study describes the use of periodic matrix analysis and regression-design life table response experiments (LTRE) to investigate the effects of prescribed fire on demographic responses of Pinguicula ionantha, a federally listed plant endemic to the herb bog/savanna community in north Florida. Multi-state mark-recapture models with dead recoveries were used to estimate survival and transition probabilities for over 2,300 individuals in 12 populations of P. ionantha. These estimates were applied to parameterize matrix models used in further analyses. P. ionantha demographics were found to be strongly dependent on prescribed fire events. Periodic matrix models were used to evaluate season of burn (either growing or dormant season) for fire return intervals ranging from 1 to 20 years. Annual growing and biannual dormant season fires maximized population growth rates for this species. A regression design LTRE was used to evaluate the effect of number of days since last fire on population growth. Maximum population growth rates calculated using standard asymptotic analysis were realized shortly following a burn event (<2 years), and a regression design LTRE showed that short-term fire-mediated changes in vital rates translated into observed increases in population growth. The LTRE identified fecundity and individual growth as contributing most to increases in post-fire population growth. Our analyses found that the current four-year prescribed fire return intervals used at the study sites can be significantly shortened to increase the population growth rates of this rare species. Understanding the role of fire frequency and season in creating and maintaining appropriate habitat for this species may aid in the conservation of this and other rare herb bog/savanna inhabitants.

  18. Effects of Precommercial Thinning and Midstory Control on Avian and Small Mammal Communities during Longleaf Pine Savanna Restoration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Vanessa R; Kilgo, John C

    Abstract - Restoring longleaf pine (Pinus palustris Mill.) savanna is a goal of many southern land managers, and longleaf plantations may provide a mechanism for savanna restoration. However, the effects of silvicultural treatments used in the management of longleaf pine plantations on wildlife communities are relatively unknown. Beginning in 1994, we examined effects of longleaf pine restoration with plantation silviculture on avian and small mammal communities using four treatments in four 8- to 11- year-old plantations within the Savannah River Site in South Carolina. Treatments included prescribed burning every 3 to 5 years, plus: (1) no additional treatment (burn-only control);more » (2) precommercial thinning; (3) non-pine woody control with herbicides; and (4) combined thinning and woody control. We surveyed birds (1996-2003) using 50-m point counts and small mammals with removal trapping. Thinning and woody control alone had short-lived effects on avian communities, and the combination treatment increased avian parameters over the burn-only control in all years. Small mammal abundance showed similar trends as avian abundance for all three treatments when compared with the burn-only control, but only for 2 years post-treatment. Both avian and small mammal communities were temporarily enhanced by controlling woody vegetation with chemicals in addition to prescribed fire and thinning. Therefore, precommercial thinning in longleaf plantations, particularly when combined with woody control and prescribed fire, may benefit early-successional avian and small mammal communities by developing stand conditions more typical of natural longleaf stands maintained by periodic fire.« less

  19. Improving satellite retrievals of NO2 in biomass burning regions

    NASA Astrophysics Data System (ADS)

    Bousserez, N.; Martin, R. V.; Lamsal, L. N.; Mao, J.; Cohen, R. C.; Anderson, B. E.

    2010-12-01

    The quality of space-based nitrogen dioxide (NO2) retrievals from solar backscatter depends on a priori knowledge of the NO2 profile shape as well as the effects of atmospheric scattering. These effects are characterized by the air mass factor (AMF) calculation. Calculation of the AMF combines a radiative transfer calculation together with a priori information about aerosols and about NO2 profiles (shape factors), which are usually taken from a chemical transport model. In this work we assess the impact of biomass burning emissions on the AMF using the LIDORT radiative transfer model and a GEOS-Chem simulation based on a daily fire emissions inventory (FLAMBE). We evaluate the GEOS-Chem aerosol optical properties and NO2 shape factors using in situ data from the ARCTAS summer 2008 (North America) and DABEX winter 2006 (western Africa) experiments. Sensitivity studies are conducted to assess the impact of biomass burning on the aerosols and the NO2 shape factors used in the AMF calculation. The mean aerosol correction over boreal fires is negligible (+3%), in contrast with a large reduction (-18%) over African savanna fires. The change in sign and magnitude over boreal forest and savanna fires appears to be driven by the shielding effects that arise from the greater biomass burning aerosol optical thickness (AOT) above the African biomass burning NO2. In agreement with previous work, the single scattering albedo (SSA) also affects the aerosol correction. We further investigated the effect of clouds on the aerosol correction. For a fixed AOT, the aerosol correction can increase from 20% to 50% when cloud fraction increases from 0 to 30%. Over both boreal and savanna fires, the greatest impact on the AMF is from the fire-induced change in the NO2 profile (shape factor correction), that decreases the AMF by 38% over the boreal fires and by 62% of the savanna fires. Combining the aerosol and shape factor corrections together results in small differences compared to the

  20. Implication of Forest-Savanna Dynamics on Biomass and Carbon Stock: Effectiveness of an Amazonian Ecological Station

    NASA Astrophysics Data System (ADS)

    Couto-Santos, F. R.; Luizao, F. J.

    2014-12-01

    The forests-savanna advancement/retraction process seems to play an important role in the global carbon cycle and in the climate-vegetation balance maintenance in the Amazon. To contribute with long term carbon dynamics and assess effectiveness of a protected area in reduce carbon emissions in Brazilian Amazon transitional areas, variations in forest-savanna mosaics biomass and carbon stock within Maraca Ecological Station (MES), Roraima/Brazil, and its outskirts non-protected areas were compared. Composite surface soil samples and indirect methods based on regression models were used to estimate aboveground tree biomass accumulation and assess vegetation and soil carbon stock along eleven 0.6 ha transects perpendicular to the forest-savanna limits. Aboveground biomass and carbon accumulation were influenced by vegetation structure, showing higher values within protected area, with great contribution of trees above 40 cm in diameter. In the savanna environments of protected areas, a higher tree density and carbon stock up to 30 m from the border confirmed a forest encroachment. This pointed that MES acts as carbon sink, even under variations in soil fertility gradient, with a potential increase of the total carbon stock from 9 to 150 Mg C ha-1. Under 20 years of fire and disturbance management, the results indicated the effectiveness of this protected area to reduce carbon emissions and mitigate greenhouse and climate change effects in a forest-savanna transitional area in Brazilian Northern Amazon. The contribution of this study in understanding rates and reasons for biomass and carbon variation, under different management strategies, should be considered the first approximation to assist policies of reducing emissions from deforestation and forest degradation (REDD) from underresearched Amazonian ecotone; despite further efforts in this direction are still needed. FINANCIAL SUPPORT: Boticário Group Foundation (Fundação Grupo Boticário); National Council for

  1. Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region.

    PubMed

    McDonough, Molly M; Šumbera, Radim; Mazoch, Vladimír; Ferguson, Adam W; Phillips, Caleb D; Bryja, Josef

    2015-10-01

    Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity. © 2015 John Wiley & Sons Ltd.

  2. Evaporation from cultivated and semi-wild Sudanian Savanna in west Africa

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie C.; Mande, Theophile; van de Giesen, Nick; Tyler, Scott; Yacouba, Hamma; Parlange, Marc B.

    2017-08-01

    Rain-fed farming is the primary livelihood of semi-arid west Africa. Changes in land cover have the potential to affect precipitation, the critical resource for production. Turbulent flux measurements from two eddy-covariance towers and additional observations from a dense network of small, wireless meteorological stations combine to relate land cover (savanna forest and agriculture) to evaporation in a small (3.5 km2) catchment in Burkina Faso, west Africa. We observe larger sensible and latent heat fluxes over the savanna forest in the headwater area relative to the agricultural section of the watershed all year. Higher fluxes above the savanna forest are attributed to the greater number of exposed rocks and trees and the higher productivity of the forest compared to rain-fed, hand-farmed agricultural fields. Vegetation cover and soil moisture are found to be primary controls of the evaporative fraction. Satellite-derived vegetation index (NDVI) and soil moisture are determined to be good predictors of evaporative fraction, as indicators of the physical basis of evaporation. Our measurements provide an estimator that can be used to derive evaporative fraction when only NDVI is available. Such large-scale estimates of evaporative fraction from remotely sensed data are valuable where ground-based measurements are lacking, which is the case across the African continent and many other semi-arid areas. Evaporative fraction estimates can be combined, for example, with sensible heat from measurements of temperature variance, to provide an estimate of evaporation when only minimal meteorological measurements are available in remote regions of the world. These findings reinforce local cultural beliefs of the importance of forest fragments for climate regulation and may provide support to local decision makers and rural farmers in the maintenance of the forest areas.

  3. Fire history of Everglades National Park and Big Cypress National Preserve, southern Florida

    USGS Publications Warehouse

    Smith, Thomas J.; Foster, Ann M.; Jones, John W.

    2015-01-01

    Fire has been used as a management tool in various ecosystems around the world. Prairies, grasslands, and savannas are fire-maintained ecosystems where fire is used to deter invasion by shrubs and trees (Grant and others, 2009; Scheintaub and others, 2009). Similarly, fire plays an important role in woodlands and forests by influencing species composition and succession such, as the use of fire in coniferous forests to prevent encroachment by hardwoods (Phillippe and others, 2011). Fire also has been used to manage wetland ecosystems for more than 50 years (Lynch, 1941; Frost, 1995). Uses have included returning marshes to early successional states, increasing forage for wildlife (Lynch, 1941). In all fire-influenced ecosystems, prescribed burns are routinely used to reduce fuel loads, reducing the possibility of catastrophic fires.

  4. A Crown Cover Chart for Oak Savannas

    Treesearch

    Jay Law; Paul Johnson; Gary Houf

    1994-01-01

    Although oak savannas have been defined in many ways, they are characterized by scattered trees, largely comprised of oaks, and a sparse ground layer rich in grasses and forbs (Haney and Apfelbaum 1990). Nuzzo (1986, p. 11) more specifically defined oak savannas as plant communities "...dominated by oaks having between 10 and 80 percent canopy, with or without a...

  5. Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia

    NASA Astrophysics Data System (ADS)

    Bristow, Mila; Hutley, Lindsay B.; Beringer, Jason; Livesley, Stephen J.; Edwards, Andrew C.; Arndt, Stefan K.

    2016-11-01

    The clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHGs); however there is large uncertainty relating to the magnitude of this flux. Australia's tropical savannas occupy the northern quarter of the continent, a region of increasing interest for further exploitation of land and water resources. Land use decisions across this vast biome have the potential to influence the national greenhouse gas budget. To better quantify emissions from savanna deforestation and investigate the impact of deforestation on national GHG emissions, we undertook a paired site measurement campaign where emissions were quantified from two tropical savanna woodland sites; one that was deforested and prepared for agricultural land use and a second analogue site that remained uncleared for the duration of a 22-month campaign. At both sites, net ecosystem exchange of CO2 was measured using the eddy covariance method. Observations at the deforested site were continuous before, during and after the clearing event, providing high-resolution data that tracked CO2 emissions through nine phases of land use change. At the deforested site, post-clearing debris was allowed to cure for 6 months and was subsequently burnt, followed by extensive soil preparation for cropping. During the debris burning, fluxes of CO2 as measured by the eddy covariance tower were excluded. For this phase, emissions were estimated by quantifying on-site biomass prior to deforestation and applying savanna-specific emission factors to estimate a fire-derived GHG emission that included both CO2 and non-CO2 gases. The total fuel mass that was consumed during the debris burning was 40.9 Mg C ha-1 and included above- and below-ground woody biomass, course woody debris, twigs, leaf litter and C4 grass fuels. Emissions from the burning were added to the net CO2 fluxes as measured by the eddy covariance tower for other post-deforestation phases to provide a total GHG emission from

  6. Mexican forest fires and their decadal variations

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Graciela

    2016-11-01

    A high forest fire season of two to three years is regularly observed each decade in Mexican forests. This seems to be related to the presence of the El Niño phenomenon and to the amount of total solar irradiance. In this study, the results of a multi-cross wavelet analysis are reported based on the occurrence of Mexican forest fires, El Niño and the total solar irradiance for the period 1970-2014. The analysis shows that Mexican forest fires and the strongest El Niño phenomena occur mostly around the minima of the solar cycle. This suggests that the total solar irradiance minima provide the appropriate climatological conditions for the occurrence of these forest fires. The next high season for Mexican forest fires could start in the next solar minimum, which will take place between the years 2017 and 2019. A complementary space analysis based on MODIS active fire data for Mexican forest fires from 2005 to 2014 shows that most of these fires occur in cedar and pine forests, on savannas and pasturelands, and in the central jungles of the Atlantic and Pacific coasts.

  7. Indirect effects of domestic and wild herbivores on butterflies in an African savanna

    PubMed Central

    Wilkerson, Marit L; Roche, Leslie M; Young, Truman P

    2013-01-01

    Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long-term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle-only, wildlife-only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well-managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock. PMID:24198932

  8. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  9. The effect of urban growth on landscape-scale restoration for a fire-dependent songbird

    USGS Publications Warehouse

    Pickens, Bradley A.; Marcus, Jeffrey F.; Carpenter, John P.; Anderson, Scott; Taillie, Paul J.; Collazo, Jaime A.

    2017-01-01

    A landscape-scale perspective on restoration ecology has been advocated, but few studies have informed restoration with landscape metrics or addressed broad-scale threats. Threats such as urban growth may affect restoration effectiveness in a landscape context. Here, we studied longleaf pine savanna in the rapidly urbanizing southeastern United States where a habitat-specialist bird, Bachman's sparrow (Peucaea aestivalis), is closely associated with savanna vegetation structure and frequent fire. Our objectives were to construct a species distribution model for Bachman's sparrow, determine the relationship between fire and urbanization, quantify the urban growth effect (2010–2090), identify potential restoration areas, and determine the interaction between restoration potential and urban growth by 2050. Number of patches, patch size, and isolation metrics were used to evaluate scenarios. The species distribution model was 88% accurate and emphasized multiscale canopy cover characteristics, fire, and percent habitat. Fires were less common <600 m from urban areas, and this fire suppression effect exacerbated urban growth effects. For restoration scenarios, canopy cover reduction by 30% resulted in nearly double the amount of habitat compared to the prescribed fire scenario; canopy cover reduction resulted in larger patch sizes and less patch isolation compared to current conditions. The effect of urban growth on restoration scenarios was unequal. Seventy-four percent of restoration areas from the prescribed fire scenario overlapped with projected urban growth, whereas the canopy cover reduction scenario only overlapped by 9%. We emphasize the benefits of simultaneously considering the effects of urban growth and landscape-scale restoration potential to promote a landscape with greater patch sizes and less isolation.

  10. Competition between a Lawn-Forming Cynodon dactylon and a Tufted Grass Species Hyparrhenia hirta on a South-African Dystrophic Savanna.

    PubMed

    Zwerts, J A; Prins, H H T; Bomhoff, D; Verhagen, I; Swart, J M; de Boer, W F

    2015-01-01

    South African savanna grasslands are often characterised by indigestible tufted grass species whereas lawn grasses are far more desirable in terms of herbivore sustenance. We aimed to investigate the role of nutrients and/or the disturbance (grazing, trampling) by herbivores on the formation of grazing lawns. We conducted a series of common garden experiments to test the effect of nutrients on interspecific competition between a typical lawn-forming grass species (Cynodon dactylon) and a species that is frequently found outside grazing lawns (Hyparrhenia hirta), and tested for the effect of herbivore disturbance in the form of trampling and clipping. We also performed a vegetation and herbivore survey to apply experimentally derived insights to field observations. Our results showed that interspecific competition was not affected by soil nutrient concentrations. C. dactylon did show much more resilience to disturbance than H. hirta, presumably due to the regenerative capacity of its rhizomes. Results from the field survey were in line with these findings, describing a correlation between herbivore pressure and C. dactylon abundance. We conclude that herbivore disturbance, and not soil nutrients, provide C. dactylon with a competitive advantage over H. hirta, due to vegetative regeneration from its rhizomes. This provides evidence for the importance of concentrated, high herbivore densities for the creation and maintenance of grazing lawns.

  11. Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada

    USGS Publications Warehouse

    Keeley, Jon E.; Lubin, Daniel; Fotheringham, C.J.

    2003-01-01

    Patterns of native and alien plant diversity in response to disturbance were examined along an elevational gradient in blue oak savanna, chaparral, and coniferous forests. Total species richness, alien species richness, and alien cover declined with elevation, at scales from 1 to 1000 m2. We found no support for the hypothesis that community diversity inhibits alien invasion. At the 1-m2 point scale, where we would expect competitive interactions between the largely herbaceous flora to be most intense, alien species richness as well as alien cover increased with increasing native species richness in all communities. This suggests that aliens are limited not by the number of native competitors, but by resources that affect establishment of both natives and aliens.Blue oak savannas were heavily dominated by alien species and consistently had more alien than native species at the 1-m2 scale. All of these aliens are annuals, and it is widely thought that they have displaced native bunchgrasses. If true, this means that aliens have greatly increased species richness. Alternatively, there is a rich regional flora of native annual forbs that could have dominated these grasslands prior to displacement by alien grasses. On our sites, livestock grazing increased the number of alien species and alien cover only slightly over that of sites free of livestock grazing for more than a century, indicating some level of permanency to this invasion.In chaparral, both diversity and aliens increased markedly several years after fire. Invasive species are rare in undisturbed shrublands, and alien propagules fail to survive the natural crown fires in these ecosystems. Thus, aliens necessarily must colonize after fire and, as a consequence, time since fire is an important determinant of invasive presence. Blue oak savannas are an important propagule source for alien species because they maintain permanent populations of all alien species encountered in postfire chaparral, and because the

  12. Evaluation of a chemical proxy for fire intensity: A potential tool for studying fire-climate feedbacks

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; White, J. D.; Von Bargen, J.; Yao, J.

    2015-12-01

    The legacy of wildfire is recorded in the geologic record, due to the stability of charcoal. Well-preserved charcoal is abundant in paleo-soils and sediments, documenting paleo-fires affecting even the earliest land plants. The dominant role of fire in shaping the biosphere is evidenced by some 40% of the land surface which is occupied by fire-prone and fire-adapted biomes: boreal forest, savanna, grassland, and Mediterranean shrubland. While fire ecologists appreciate the role that fire played in the evolution of these ecosystems, and climate scientists appreciate the role of these biomes in the regulation of Earth's climate, our understanding of the system of fire-vegetation-climate feedbacks is poor. This knowledge gap exists because we lack tools for evaluating change in fire regimes of the past for which climate proxy records exist. Fire regime is a function of fire frequency and fire intensity. Although fire frequency estimates are available from laminated sediment and tree ring records, tools for estimating paleo-fire intensity are lacking. We have recently developed a chemical proxy for fire intensity that is based upon the molecular structure of charcoal, assessed using solid-state nuclear magnetic resonance (NMR) spectroscopy. The molecular dimensions of aromatic domains in charcoal increased linearly (R2 = 0.9) with the intensity (temperature x duration) of heating. Our initial field-based validation in prescribed fires shows a promising correlation (R2 = 0.7) between the proxy-based estimates and thermistor-based measurements of fire intensity. This presentation will discuss the competencies and potential limitations of this novel proxy.

  13. Crown cover chart for oak savannas. Forest Service technical brief

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, J.R.; Johnson, P.S.; Houf, G.

    1994-07-01

    Although oak savannas have been defined in many ways, they are characterized by scattered trees, largely comprised of oaks, and a sparse ground layer rich in grasses and forbs. The crown cover chart can be used to estimate the crown cover of trees as a percent of total area. Potential applications of the chart include monitoring changes in savanna crown cover, determining needed reductions in crown cover, and defining the savanna state. in restoring savannas that have grown into closed canopy stands, one can use the chart to estimate initial crown cover before restoration work is begun and again aftermore » crown cover has been reduced.« less

  14. Genesis of an oak-fire science consortium

    USGS Publications Warehouse

    Grabner, K.W.; Stambaugh, M. C.; Guyette, R.P.; Dey, D. C.; Willson, G.D.; Dey, D. C.; Stambaugh, M. C.; Clark, S.L.; Schweitzer, C. J.

    2012-01-01

    With respect to fire management and practices, one of the most overlooked regions lies in the middle of the country. In this region there is a critical need for both recognition of fire’s importance and sharing of fire information and expertise. Recently we proposed and were awarded funding by the Joint Fire Science Program to initiate the planning phase for a regional fire consortium. The purpose of the consortium will be to promote the dissemination of fire information across the interior United States and to identify fire information needs of oak-dominated communities such as woodlands, forests, savannas, and barrens. Geographically, the consortium region will cover: 1) the Interior Lowland Plateau Ecoregion in Illinois, Indiana, central Kentucky and Tennessee; 2) the Missouri, Arkansas, and Oklahoma Ozarks; 3) the Ouachita Mountains of Arkansas and Oklahoma; and 4) the Cross Timbers Region in Texas, Oklahoma, and Kansas. This region coincides with the southwestern half of the Central Hardwoods Forest Region. The tasks of this consortium will be to disseminate fire information, connect fire professionals, and efficiently address fire issues within our region. If supported, the success and the future direction of the consortium will be driven by end-users, their input, and involvement.

  15. Textural analysis of high resolution imagery to quantify bush encroachment in Madikwe Game Reserve, South Africa, 1955-1996

    Treesearch

    A. T. Hudak; C.A. Wessman

    2001-01-01

    Fire suppression associated with decades of cattle grazing can result in bush encroachment in savannas. Textural analyses of historical, high resolution images was used to characterize bush densities across a South African study landscape. A control site, where vegetation was assumed to have changed minimally for the duration of the image record (1955-1996), was used...

  16. Development and characterization of microsatellite markers in the African forest elephant (Loxodonta cyclotis).

    PubMed

    Gugala, Natalie A; Ishida, Yasuko; Georgiadis, Nicholas J; Roca, Alfred L

    2016-07-26

    African elephants comprise two species, the savanna elephant (Loxodonta africana) and the forest elephant (L. cyclotis), which are distinct morphologically and genetically. Forest elephants are seriously threatened by poaching for meat and ivory, and by habitat destruction. However, microsatellite markers have thus far been developed only in African savanna elephants and Asian elephants, Elephas maximus. The application of microsatellite markers across deeply divergent lineages may produce irregular patterns such as large indels or null alleles. Thus we developed novel microsatellite markers using DNA from two African forest elephants. One hundred microsatellite loci were identified in next generation shotgun sequences from two African forest elephants, of which 53 were considered suitable for testing. Twenty-three microsatellite markers successfully amplified elephant DNA without amplifying human DNA; these were further characterized in 15 individuals from Lope National Park, Gabon. Three of the markers were monomorphic and four of them carried only two alleles. The remaining sixteen polymorphic loci carried from 3 to 8 alleles, with observed heterozygosity ranging from 0.27 to 0.87, expected heterozygosity from 0.40 to 0.86, and the Shannon diversity index from 0.73 to 1.86. Linkage disequilibrium was not detected between loci, and no locus deviated from Hardy-Weinberg equilibrium. The markers developed in this study will be useful for genetic analyses of the African forest elephant and contribute to their conservation and management.

  17. Global Burned Area and Biomass Burning Emissions from Small Fires

    NASA Technical Reports Server (NTRS)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  18. Good neighbors make good defenses: associational refuges reduce defense investment in African savanna plants.

    PubMed

    Coverdale, Tyler C; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2018-06-25

    Intraspecific variation in plant defense phenotype is common and has wide-ranging ecological consequences. Yet prevailing theories of plant defense allocation, which primarily account for interspecific differences in defense phenotype, often fail to predict intraspecific patterns. Furthermore, although individual variation in defense phenotype is often attributed to ecological interactions, few general mechanisms have been proposed to explain the ubiquity of variable defense phenotype within species. Here, we show experimentally that associational refuges and induced resistance interact to create predictable intraspecific variation in defense phenotype in African savanna plants. Physically defended species from four families (Acanthaceae, Asparagaceae, Cactaceae, and Solanaceae) growing in close association with spinescent Acacia trees had 39-78% fewer spines and thorns than did isolated conspecifics. For a subset of these species, we used a series of manipulative experiments to show that this variability is maintained primarily by a reduction in induced responses among individuals that seldom experience mammalian herbivory, whether due to association with Acacia trees or to experimental herbivore exclusion. Unassociated plants incurred 4- to 16-fold more browsing damage than did associated individuals and increased spine density by 16-38% within one month following simulated browsing. In contrast, experimental clipping induced no net change in spine density among plants growing beneath Acacia canopies or inside long-term herbivore exclosures. Associated and unassociated individuals produced similar numbers of flowers and seeds, but seedling recruitment and survival were vastly greater in refuge habitats, suggesting a net fitness benefit of association. We conclude that plant-plant associations consistently decrease defense investment in this system by reducing both the frequency of herbivory and the intensity of induced responses, and that inducible responses

  19. A review of fire and oak regeneration and overstory recruitment

    Treesearch

    Daniel C. Dey; Zhaofei Fan

    2009-01-01

    Fire has played a prominent role in the history of oak in eastern North America, and it is useful today for promoting oak regeneration where competition with other woody vegetation is a problem and for managing savannas and woodlands. We spent the last century extinguishing wildfire from forests for good reason, but now we must spend some time relearning how to use...

  20. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from

  1. Deforestation and Forest Fires in Roraima and Their Relationship with Phytoclimatic Regions in the Northern Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 103 km2 (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 103 km2 (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  2. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  3. Evaluating channel morphology in small watersheds of oak savannas Southeastern New Mexico, USA: Do seasonal prescribed burn treatments have a significant impact on sediment processes?

    NASA Astrophysics Data System (ADS)

    Koestner, Karen; Neary, Daniel; Gottfried, Gerald; Tecle, Aregai

    2010-05-01

    Oak-savannas comprise over 80,000 km2 of the southwestern United States and northern Mexico. However, there is a paucity of data to assist in the management of this vast ecotype. Fire, which was once the most important natural disturbance in this system, has been excluded due to over-grazing and fire suppression practices. This has resulted in ecosystem changes and fuel accumulations. Prescribed fire is one management technique to restore natural processes within southwestern oak-savannas by reducing woody species density, increasing herbaceous plant production, and creating vegetative mosaics on the landscape. However, questions concerning the seasonality of burn treatments and the overall effects of these treatments on physical and ecological processes need to be addressed prior to broad management application. The Cascabel Watershed Study is a collaborative effort between multiple government agencies, universities, local land managers, and environmental interest groups to evaluate the impacts of warm and cool season burn treatments on an array of ecosystem processes. Established in 2000, the Cascabel Watershed study takes an "ecosystem approach" to watershed research by examining an array of physical and biological components, including geomorphologic, climatologic, hydrologic, and biologic (flora and fauna) data to determine ecosystem response to prescribed fire. The 182.6 ha study area is located in the eastern Peloncillo Mountains, New Mexico at about the 1,640 m elevation. It consists of 12 small watersheds dominated by an oak (Quercus spp.) overstory and bunch-grass (Bouteloua spp.), savanna component. The parent material is fine-grained Tertiary rhyolite that is part of an extensive lava field that was formed about 25 to 27 M ybp. A US Forest Service soil survey in the area classified 45% of the soils as Typic Haplustolls, coarse-loamy, mixed, mesic, 25% as Typic Haplustalfs, and 15% rock outcrops. Here, we evaluate within-channel processes to establish

  4. Adenovirus infection in savanna chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley, Tanzania.

    PubMed

    Dadáková, Eva; Brožová, Kristýna; Piel, Alex K; Stewart, Fiona A; Modrý, David; Celer, Vladimír; Hrazdilová, Kristýna

    2018-01-01

    Adenoviruses are a widespread cause of diverse human infections with recently confirmed zoonotic roots in African great apes. We focused on savanna-dwelling chimpanzees in the Issa Valley (Tanzania), which differ from those from forested sites in many aspects of behavior and ecology. PCR targeting the DNA polymerase gene detected AdV in 36.7% (69/188) of fecal samples. We detected five groups of strains belonging to the species Human mastadenovirus E and two distinct groups within the species Human mastadenovirus C based on partial hexon sequence. All detected AdVs from the Issa Valley are related to those from nearby Mahale and Gombe National Parks, suggesting chimpanzee movements and pathogen transmission.

  5. Competition between a Lawn-Forming Cynodon dactylon and a Tufted Grass Species Hyparrhenia hirta on a South-African Dystrophic Savanna

    PubMed Central

    Zwerts, J. A.; Prins, H. H. T.; Bomhoff, D.; Verhagen, I.; Swart, J. M.; de Boer, W. F.

    2015-01-01

    South African savanna grasslands are often characterised by indigestible tufted grass species whereas lawn grasses are far more desirable in terms of herbivore sustenance. We aimed to investigate the role of nutrients and/or the disturbance (grazing, trampling) by herbivores on the formation of grazing lawns. We conducted a series of common garden experiments to test the effect of nutrients on interspecific competition between a typical lawn-forming grass species (Cynodon dactylon) and a species that is frequently found outside grazing lawns (Hyparrhenia hirta), and tested for the effect of herbivore disturbance in the form of trampling and clipping. We also performed a vegetation and herbivore survey to apply experimentally derived insights to field observations. Our results showed that interspecific competition was not affected by soil nutrient concentrations. C. dactylon did show much more resilience to disturbance than H. hirta, presumably due to the regenerative capacity of its rhizomes. Results from the field survey were in line with these findings, describing a correlation between herbivore pressure and C. dactylon abundance. We conclude that herbivore disturbance, and not soil nutrients, provide C. dactylon with a competitive advantage over H. hirta, due to vegetative regeneration from its rhizomes. This provides evidence for the importance of concentrated, high herbivore densities for the creation and maintenance of grazing lawns. PMID:26510157

  6. Susceptibility of eastern U.S. habitats to invasion of Celastrus orbiculatus (oriental bittersweet) following fire

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Pavlovic, Noel B.; Grundel, Ralph

    2013-01-01

    Fire effects on invasive species are an important land management issue in areas subjected to prescribed fires as well as wildfires. These effects on invasive species can be manifested across life stages. The liana Celastrus orbiculatus (oriental bittersweet) is a widespread invader of eastern US habitats including those where fire management is in practice. This study examined if prescribed fire makes these habitats more susceptible to invasion of C. orbiculatus by seed at Indiana Dunes National Lakeshore. Four treatments (control, litter removed, high and low intensity fire) were applied in six habitat types (sand savanna/woodland, sand prairie, moraine prairie, sand oak forest, beech-maple forest, and oak-hickory forest) and germinating seedlings were tracked over two growing seasons. Treatment did not have a significant effect on the germination, survival, or biomass of C. orbiculatus. However, habitat type did influence these responses mostly in the first growing season. Moraine prairie, beech-maple forest, and oak-hickory forests had the greatest peak percentage of germinants. Moraine prairie had significantly greater survival than oak forest and savanna habitats. Control plots with intact litter, and the moraine prairie habitat had the tallest seedlings at germination, while tallest final heights and greatest aboveground biomass were highest in oak forest. Thus, fire and litter removal did not increase the susceptibility of these habitats to germination and survival of C. orbiculatus. These results indicate that most eastern US habitats are vulnerable to invasion by this species via seed regardless of the level or type of disturbance to the litter layer.

  7. Fire forbids fifty-fifty forest

    PubMed Central

    Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E.; Flores, Bernardo M.; Xu, Chi; Scheffer, Marten

    2018-01-01

    Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse. PMID:29351323

  8. Fire forbids fifty-fifty forest.

    PubMed

    van Nes, Egbert H; Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E; Flores, Bernardo M; Xu, Chi; Scheffer, Marten

    2018-01-01

    Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse.

  9. New perspectives in fire management in South American savannas: The importance of intercultural governance.

    PubMed

    Mistry, Jayalaxshmi; Schmidt, Isabel Belloni; Eloy, Ludivine; Bilbao, Bibiana

    2018-05-11

    Wildfires continue to cause damage to property, livelihoods and environments around the world. Acknowledging that dealing with wildfires has to go beyond fire-fighting, governments in countries with fire-prone ecosystems have begun to recognize the multiple perspectives of landscape burning and the need to engage with local communities and their practices. In this perspective, we outline the experiences of Brazil and Venezuela, two countries where fire management has been highly contested, but where there have been recent advances in fire management approaches. Success of these new initiatives have been measured by the reduction in wildfire extent through prescribed burning, and the opening of a dialogue on fire management between government agencies and local communities. Yet, it is clear that further developments in community participation need to take place in order to avoid the appropriation of local knowledge systems by institutions, and to better reflect more equitable fire governance.

  10. The effect of urban growth on landscape-scale restoration for a fire-dependent songbird.

    PubMed

    Pickens, Bradley A; Marcus, Jeffrey F; Carpenter, John P; Anderson, Scott; Taillie, Paul J; Collazo, Jaime A

    2017-04-15

    A landscape-scale perspective on restoration ecology has been advocated, but few studies have informed restoration with landscape metrics or addressed broad-scale threats. Threats such as urban growth may affect restoration effectiveness in a landscape context. Here, we studied longleaf pine savanna in the rapidly urbanizing southeastern United States where a habitat-specialist bird, Bachman's sparrow (Peucaea aestivalis), is closely associated with savanna vegetation structure and frequent fire. Our objectives were to construct a species distribution model for Bachman's sparrow, determine the relationship between fire and urbanization, quantify the urban growth effect (2010-2090), identify potential restoration areas, and determine the interaction between restoration potential and urban growth by 2050. Number of patches, patch size, and isolation metrics were used to evaluate scenarios. The species distribution model was 88% accurate and emphasized multiscale canopy cover characteristics, fire, and percent habitat. Fires were less common <600 m from urban areas, and this fire suppression effect exacerbated urban growth effects. For restoration scenarios, canopy cover reduction by 30% resulted in nearly double the amount of habitat compared to the prescribed fire scenario; canopy cover reduction resulted in larger patch sizes and less patch isolation compared to current conditions. The effect of urban growth on restoration scenarios was unequal. Seventy-four percent of restoration areas from the prescribed fire scenario overlapped with projected urban growth, whereas the canopy cover reduction scenario only overlapped by 9%. We emphasize the benefits of simultaneously considering the effects of urban growth and landscape-scale restoration potential to promote a landscape with greater patch sizes and less isolation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Modeling the Distribution of African Savanna Elephants in Kruger National Park: AN Application of Multi-Scale GLOBELAND30 Data

    NASA Astrophysics Data System (ADS)

    Xu, W.; Hays, B.; Fayrer-Hosken, R.; Presotto, A.

    2016-06-01

    The ability of remote sensing to represent ecologically relevant features at multiple spatial scales makes it a powerful tool for studying wildlife distributions. Species of varying sizes perceive and interact with their environment at differing scales; therefore, it is important to consider the role of spatial resolution of remotely sensed data in the creation of distribution models. The release of the Globeland30 land cover classification in 2014, with its 30 m resolution, presents the opportunity to do precisely that. We created a series of Maximum Entropy distribution models for African savanna elephants (Loxodonta africana) using Globeland30 data analyzed at varying resolutions. We compared these with similarly re-sampled models created from the European Space Agency's Global Land Cover Map (Globcover). These data, in combination with GIS layers of topography and distance to roads, human activity, and water, as well as elephant GPS collar data, were used with MaxEnt software to produce the final distribution models. The AUC (Area Under the Curve) scores indicated that the models created from 600 m data performed better than other spatial resolutions and that the Globeland30 models generally performed better than the Globcover models. Additionally, elevation and distance to rivers seemed to be the most important variables in our models. Our results demonstrate that Globeland30 is a valid alternative to the well-established Globcover for creating wildlife distribution models. It may even be superior for applications which require higher spatial resolution and less nuanced classifications.

  12. A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C

    PubMed Central

    Holdo, Ricardo M.; Sinclair, Anthony R. E.; Dobson, Andrew P.; Metzger, Kristine L.; Bolker, Benjamin M.; Ritchie, Mark E.; Holt, Robert D.

    2009-01-01

    Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-space model to show that the wildebeest population irruption that followed disease (rinderpest) eradication in the Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks for C may be fundamentally linked to the control of disease outbreaks and poaching. PMID:19787022

  13. Mapping Fire Scars in the Brazilian Cerrado Using AVHRR Imagery

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A.; Ambrosia, V. G.; Brass, J. A.; Rezendez, A.; Alexander, S.; Guild, L. S.; Peterson, David L. (Technical Monitor)

    1995-01-01

    The Brazilian cerrado, or savanna, spans an area of 1,800,000 square kilometers on the great plateau of Central Brazil. Large fires covering hundreds of square kilometers, frequently occur in wildland areas of the cerrado, dominated by grasslands or grasslands mixed with shrubs and small trees, and also within area in the cerrado used for agricultural purposes, particularly for grazing. Smaller fires, typically extending over arm of a few square kilometers or less, are associated with the clewing of crops, such as dry land rice. A method for mapping fire scars and differentiating them from extensive areas of bare sod with AVHRR bands 1 (.55 -.68 micrometer) and 3 (3.5 - 3.9 micrometers) and measures of performance based on comparison with maps of fires with Landsat imagery will be presented. Methods of estimating total area burned from the AVHRR fire scar map will be discussed and related to land use and scar size.

  14. Fire as a Removal Mechanism of Pyrogenic Carbon in Soils: Effects of Fire Characteristics and Pyrogenic Carbon Properties

    NASA Astrophysics Data System (ADS)

    Santin, C.; Doerr, S.; Merino, A.

    2016-12-01

    Pyrogenic carbon (PyC) produced during vegetation fires represents one of the most degradation resistant organic carbon pools and has important implications for the global carbon cycle. Its long-term fate in the environment and the processes leading to its degradation are the subject of much debate. Its consumption in subsequent fires is usually highlighted in the literature as a possible major abiotic loss mechanism of PyC in soils. However, the only two studies that have empirically tested this hypothesis found only minor losses of existing PyC, suggesting that subsequent fire is not a major cause of PyC loss (Santin et al. 2013 median mass losses <15% in an experimental boreal forest fire and Saiz et al. 2014 average mass losses <8% in a prescribed fire in an open savannah woodland). Here we present new empirical data obtained in i) a high-intensity crown fire; ii) a surface low-intensity fire, and iii) a smouldering wildfire in boreal forests and show that the actual PyC combustion during subsequent fires is very variable and depends on both the characteristics of the fire and on the properties of the PyC. References- Saiz G, Goodrick I, Wurster C, Zimmermann MPN, Bird MI (2014) Charcoal recombustion efficiency in tropical savannas. Geoderma, 219, 40-45. - Santin C, Doerr SH, Preston C, Bryant R (2013) Consumption of residual pyrogenic carbon by wildfire. International Journal of Wildland Fire, 22, 1072-1077.

  15. N2-fixation dynamics during ecosystem recovery in longleaf pine savannas

    NASA Astrophysics Data System (ADS)

    Tierney, J. A.

    2016-12-01

    Biological nitrogen fixation (BNF) can alleviate nitrogen (N) deficiencies that inhibit ecosystem recovery. BNF may be particularly important in ecosystems recovering from land-use change and perturbations from fire, as these disturbances can exacerbate N limitation. Here, we investigated how BNF dynamics change throughout ecosystem development in restored longleaf pine savannas, and how BNF responds to fire. We conducted this study in 59 1-ha plots of longleaf pine distributed across gradients of stand age and fire frequency at two sites in the southeastern US. We determined BNF contributions by three functional groups of N2-fixers (herbaceous legumes, biological soil crusts, and asymbiotic N2-fixing bacteria) by quantifying their abundances, assessing nitrogenase activity, and scaling these estimates up to the plot-level. To determine aboveground N demands, we measured tree growth using diameter increments and allometric equations paired with tissue-specific N concentrations. We fit linear models to evaluate the effects of stand age and time since fire on BNF and N demands throughout stand development, and performed separate analyses on mature stands to determine how fire return interval affects BNF. We observed distinct temporal patterns of N2-fixation across stand development among the three groups of N2 fixers. N2-fixation by legumes and asymbiotic bacteria remained low until stands reached maturity, while N2-fixation by biological soil crusts (BSCs) was high in juvenile stands and decreased with stand age. These patterns suggest a compensatory shift in the importance of these functional groups throughout stand development such that contributions from BSCs are critical for meeting N demands when disturbances may hinder the establishment of legumes and asymbiotic bacteria. N2-fixation by BSCs and asymbiotic bacteria throughout stand development was not affected by time since fire, but legume abundance increased the year following fire, suggesting a recovery

  16. Deforestation and forest fires in Roraima and their relationship with phytoclimatic regions in the northern Brazilian Amazon.

    PubMed

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  17. Vulnerability of native savanna trees and exotic Khaya senegalensis to seasonal drought.

    PubMed

    Arndt, Stefan K; Sanders, Gregor J; Bristow, Mila; Hutley, Lindsay B; Beringer, Jason; Livesley, Stephen J

    2015-07-01

    Seasonally dry ecosystems present a challenge to plants to maintain water relations. While native vegetation in seasonally dry ecosystems have evolved specific adaptations to the long dry season, there are risks to introduced exotic species. African mahogany, Khaya senegalensis Desr. (A. Juss.), is an exotic plantation species that has been introduced widely in Asia and northern Australia, but it is unknown if it has the physiological or phenotypic plasticity to cope with the strongly seasonal patterns of water availability in the tropical savanna climate of northern Australia. We investigated the gas exchange and water relations traits and adjustments to seasonal drought in K. senegalensis and native eucalypts (Eucalyptus tetrodonta F. Muell. and Corymbia latifolia F. Muell.) in a savanna ecosystem in northern Australia. The native eucalypts did not exhibit any signs of drought stress after 3 months of no rainfall and probably had access to deeper soil moisture late into the dry season. Leaf water potential, stomatal conductance, transpiration and photosynthesis all remained high in the dry season but osmotic adjustment was not observed. Overstorey leaf area index (LAI) was 0.6 in the native eucalypt savanna and did not change between wet and dry seasons. In contrast, the K. senegalensis plantation in the wet season was characterized by a high water potential, high stomatal conductance and transpiration and a high LAI of 2.4. In the dry season, K. senegalensis experienced mild drought stress with a predawn water potential -0.6 MPa. Overstorey LAI was halved, and stomatal conductance and transpiration drastically reduced, while minimum leaf water potentials did not change (-2 MPa) and no osmotic adjustment occurred. Khaya senegalensis exhibited an isohydric behaviour and also had a lower hydraulic vulnerability to cavitation in leaves, with a P50 of -2.3 MPa. The native eucalypts had twice the maximum leaf hydraulic conductance but a much higher P50 of -1.5 MPa

  18. Regional variations in biomass distribution in Brazilian savanna woodland

    Treesearch

    S.d.C. de Miranda; M. Bustamente; M. Palace; S. Hagen; M. Keller; L.G. Ferreira

    2014-01-01

    The Cerrado, the savanna biome in central Brazil, mostly comprised of woodland savanna, is experiencing intense and fast land use changes. To understand the changes in Cerrado carbon stocks, we present an overview of biomass distribution in different Cerrado vegetation types (i.e., grasslands, shrublands and forestlands). We surveyed 26 studies including 170 Cerrado...

  19. Water economy of neotropical savanna trees: six paradigms revisited.

    Treesearch

    Guillermo Goldstein; Fredrick C. Meinzer; Sandra J. Bucci

    2008-01-01

    Biologists have long been puzzled by the striking morphological and anatomical characteristics of Neotropical savanna trees which have large scleromorphic leaves, allocate more than half of their total biomass to belowground structures and produce new leaves during the peak of the dry season. Based on results of ongoing interdisciplinary projects in the savannas of...

  20. Assessment of bird populations in a high quality savanna/woodland: a banding approach

    USGS Publications Warehouse

    Wilmore, Sandra L.; Glowacki, Gary A.; Grundel, Ralph

    2005-01-01

    During the course of this six year study, the fall migration capture rate declined significantly, suggesting that reduced productivity may have occurred in bird populations. There was a positive response during the spring migration to earlier spring wildfires, indicated by high capture rates in 2000 and 2002 that corresponded with fires affecting most of the bird banding net locations. For several common species found at the Miller Woods site, the ratio of juveniles to adults was compared to ratios at other banding stations in the north central U.S. Breeding site fidelity was documented for 20 species, all common breeders. Variation in capture rates among net locations demonstrated the role of the shrub layer within the savanna habitat mosaic during migration stopover.

  1. East African Cenozoic vegetation history.

    PubMed

    Linder, Hans Peter

    2017-11-01

    The modern vegetation of East Africa is a complex mosaic of rainforest patches; small islands of tropic-alpine vegetation; extensive savannas, ranging from almost pure grassland to wooded savannas; thickets; and montane grassland and forest. Here I trace the evolution of these vegetation types through the Cenozoic. Paleogene East Africa was most likely geomorphologically subdued and, as the few Eocene fossil sites suggest, a woodland in a seasonal climate. Woodland rather than rainforest may well have been the regional vegetation. Mountain building started with the Oligocene trap lava flows in Ethiopia, on which rainforest developed, with little evidence of grass and none of montane forests. The uplift of the East African Plateau took place during the middle Miocene. Fossil sites indicate the presence of rainforest, montane forest and thicket, and wooded grassland, often in close juxtaposition, from 17 to 10 Ma. By 10 Ma, marine deposits indicate extensive grassland in the region and isotope analysis indicates that this was a C 3 grassland. In the later Miocene rifting, first of the western Albertine Rift and then of the eastern Gregory Rift, added to the complexity of the environment. The building of the high strato-volcanos during the later Mio-Pliocene added environments suitable for tropic-alpine vegetation. During this time, the C 3 grassland was replaced by C 4 savannas, although overall the extent of grassland was reduced from the mid-Miocene high to the current low level. Lake-level fluctuations during the Quaternary indicate substantial variation in rainfall, presumably as a result of movements in the intertropical convergence zone and the Congo air boundary, but the impact of these fluctuations on the vegetation is still speculative. I argue that, overall, there was an increase in the complexity of East African vegetation complexity during the Neogene, largely as a result of orogeny. The impact of Quaternary climatic fluctuation is still poorly understood

  2. Fire-related carbon emissions from land use transitions in southern Amazonia

    NASA Astrophysics Data System (ADS)

    DeFries, R. S.; Morton, D. C.; van der Werf, G. R.; Giglio, L.; Collatz, G. J.; Randerson, J. T.; Houghton, R. A.; Kasibhatla, P. K.; Shimabukuro, Y.

    2008-11-01

    Various land-use transitions in the tropics contribute to atmospheric carbon emissions, including forest conversion for small-scale farming, cattle ranching, and production of commodities such as soya and palm oil. These transitions involve fire as an effective and inexpensive means for clearing. We applied the DECAF (DEforestation CArbon Fluxes) model to Mato Grosso, Brazil to estimate fire emissions from various land-use transitions during 2001-2005. Fires associated with deforestation contributed 67 Tg C/yr (17 and 50 Tg C/yr from conversion to cropland and pasture, respectively), while conversion of savannas and existing cattle pasture to cropland contributed 17 Tg C/yr and pasture maintenance fires 6 Tg C/yr. Large clearings (>100 ha/yr) contributed 67% of emissions but comprised only 10% of deforestation events. From a policy perspective, results imply that intensification of agricultural production on already-cleared land and policies to discourage large clearings would reduce the major sources of emissions from fires in this region.

  3. Prescribed burning for oak savanna restoration in central Minnesota.

    Treesearch

    Alan S. White

    1986-01-01

    Low intensity, spring prescribed burns have been used since 1964 at the Cedar Creek Natural History Area in Minnesota in an attempt to restore the area to an oak savanna. Burned areas are now more savanna like (having greater grass and forb and lower shrub and lower tree representation) than unburned areas but still have higher overstory densities than apparently...

  4. Land use scenarios development and impacts assessment on vegetation carbon/nitrogen sequestration in the West African Sudan savanna watershed, Benin

    NASA Astrophysics Data System (ADS)

    Chabi, A.

    2015-12-01

    ackground: Reduced Emissions from Deforestation and Degradation (REDD+), being developed through the United Nations Framework Convention on Climate Change (UNFCCC) requires information on the carbon/nitrogen stocks in the plant biomass for predicting future climate under scenarios development. The development of land use scenarios in West Africa is needed to predict future impacts of change in the environment and the socio-economic status of rural communities. The study aims at developing land use scenario based on mitigation strategy to climate change as an issue of contributing for carbon and nitrogen sequestration, the condition 'food focused' as a scenario based crop production and 'financial investment' as scenario based on an economic development pathway, and to explore the possible future temporal and spatial impacts on vegetation carbon/nitrogen sequestration/emission and socio-economic status of rural communities. Preliminary results: BEN-LUDAS (Benin-Land Use DyNamic Simulator) model, carbon and nitrogen equations, remote sensing and socio-economic data were used to predict the future impacts of each scenario in the environment and human systems. The preliminary results which are under analysis will be presented soon. Conclusion: The proposed BEN-LUDAS models will help to contribute to policy decision making at the local and regional scale and to predict future impacts of change in the environment and socio-economic status of the rural communities. Keywords: Land use scenarios development, BEN-LUDAS, socio-economic status of rural communities, future impacts of change, assessment, West African Sudan savanna watershed, Benin

  5. Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana).

    PubMed

    Schlossberg, Scott; Chase, Michael J; Griffin, Curtice R

    2016-01-01

    Accurate counts of animals are critical for prioritizing conservation efforts. Past research, however, suggests that observers on aerial surveys may fail to detect all individuals of the target species present in the survey area. Such errors could bias population estimates low and confound trend estimation. We used two approaches to assess the accuracy of aerial surveys for African savanna elephants (Loxodonta africana) in northern Botswana. First, we used double-observer sampling, in which two observers make observations on the same herds, to estimate detectability of elephants and determine what variables affect it. Second, we compared total counts, a complete survey of the entire study area, against sample counts, in which only a portion of the study area is sampled. Total counts are often considered a complete census, so comparing total counts against sample counts can help to determine if sample counts are underestimating elephant numbers. We estimated that observers detected only 76% ± SE of 2% of elephant herds and 87 ± 1% of individual elephants present in survey strips. Detectability increased strongly with elephant herd size. Out of the four observers used in total, one observer had a lower detection probability than the other three, and detectability was higher in the rear row of seats than the front. The habitat immediately adjacent to animals also affected detectability, with detection more likely in more open habitats. Total counts were not statistically distinguishable from sample counts. Because, however, the double-observer samples revealed that observers missed 13% of elephants, we conclude that total counts may be undercounting elephants as well. These results suggest that elephant population estimates from both sample and total counts are biased low. Because factors such as observer and habitat affected detectability of elephants, comparisons of elephant populations across time or space may be confounded. We encourage survey teams to

  6. A Summary of the Scientific Literature on the Effects of Fire on the Concentration of Nutrients in Surface Waters

    DTIC Science & Technology

    2004-01-01

    forests, alpine forests, and so forth); (2) had a range of sampling frequency and dura- tion, such as during and immediately following a fire (from the...1) were done in a variety of environments (savannas, grass- lands, temperate forests, alpine forests, and so forth), (2) had a range of sampling...of Nutrients in Surface Waters Gresswell, R.E., 1999, Fire and aquatic ecosystems in forested biomes of North America: Transactions of the American

  7. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S. (Editor)

    1991-01-01

    The present volume discusses the biomass burning (BMB) studies of the International Global Atmospheric Chemistry project, GEO satellite estimation of Amazonian BMB, remote sensing of BMB in West Africa with NOAA-AVHRR, an orbital view of the great Chinese fire of 1987, BMB's role in tropical rainforest reduction, CO and O3 measurements of BMB in the Amazon, effects of vegetation burning on the atmospheric chemistry of the Venezuelan savanna, an assessment of annually-burned biomass in Africa, and light hydrocarbon emissions from African savanna burnings. Also discussed are BMB in India, trace gas and particulate emissions from BMB in temperate ecosystems, ammonia and nitric acid emissions from wetlands and boreal forest fires, combustion emissions and satellite imagery of BMB, BMB in the perspective of the global carbon cycle, modeling trace-gas emissions from BMB, NO(x) emissions from BMB, and cloud-condensation nuclei from BMB.

  8. Chapter 10 - The roles of fire, overstory thinning, and understory seeding for the restoration of Iowa Oak Savannas (Project NC-F-07-1)

    Treesearch

    Lars A. Brudvig; Heidi Asbjornsen

    2014-01-01

    Savanna ecosystems historically comprised more than 10 million ha of the Midwestern United States, forming a transition zone between western prairies and eastern deciduous forest that extended from Texas into Canada (Nuzzo 1986).

  9. The global distribution of ecosystems in a world without fire.

    PubMed

    Bond, W J; Woodward, F I; Midgley, G F

    2005-02-01

    This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.

  10. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire

    PubMed Central

    Simon, Marcelo F.; Grether, Rosaura; de Queiroz, Luciano P.; Skema, Cynthia; Pennington, R. Toby; Hughes, Colin E.

    2009-01-01

    The relative importance of local ecological and larger-scale historical processes in causing differences in species richness across the globe remains keenly debated. To gain insight into these questions, we investigated the assembly of plant diversity in the Cerrado in South America, the world's most species-rich tropical savanna. Time-calibrated phylogenies suggest that Cerrado lineages started to diversify less than 10 Mya, with most lineages diversifying at 4 Mya or less, coinciding with the rise to dominance of flammable C4 grasses and expansion of the savanna biome worldwide. These plant phylogenies show that Cerrado lineages are strongly associated with adaptations to fire and have sister groups in largely fire-free nearby wet forest, seasonally dry forest, subtropical grassland, or wetland vegetation. These findings imply that the Cerrado formed in situ via recent and frequent adaptive shifts to resist fire, rather than via dispersal of lineages already adapted to fire. The location of the Cerrado surrounded by a diverse array of species-rich biomes, and the apparently modest adaptive barrier posed by fire, are likely to have contributed to its striking species richness. These findings add to growing evidence that the origins and historical assembly of species-rich biomes have been idiosyncratic, driven in large part by unique features of regional- and continental-scale geohistory and that different historical processes can lead to similar levels of modern species richness. PMID:19918050

  11. Complexity in African savannas: Direct, indirect, and cascading effects of animal densities, rainfall and vegetation availability

    PubMed Central

    Leeuwis, Tim; Peel, Mike

    2018-01-01

    Savanna ecosystems are popular subjects for interaction studies. Multiple studies have been done on the impact of elephants on vegetation, the impact of grass and browse availability on animal densities or on competition between herbivore species. Previous studies showed that elephant densities are frequently negatively correlated with densities of tall trees, and that browse and grass availability are correlated with browser and grazer density respectively. Additionally, a competition effect between browse and grass availability has been reported. These relationships are usually analysed by testing direct relationships between e.g., herbivore densities and food availability, without addressing competition effects or other indirect effects. In this study, multiple interactions in a savanna system have been analysed simultaneously using Partial Least Square-Path Modelling (PLS-PM) using mammal and vegetation data from three different wildlife reserves in southern KwaZulu-Natal. The results showed that the processes that three separate models for the three areas provided the best understanding of the importance of the different interactions. These models suggest that elephants had a negative impact on trees, but also on grass availability. The impact is stronger when elephants are not able to migrate during the dry season. Browsers and grazers were correlated with browse and grass availability, but competition between browse and grass was not detected. This study shows that due to the complexity of the interactions in an ecosystem and differences in environmental factors, these interactions are best studied per area. PLS-PM can be a useful tool for estimating direct, indirect, and cascading effects of changing animal densities in conservation areas. PMID:29768481

  12. Chemical and Physical Weathering of Granites in a Semi-Arid Savanna

    NASA Astrophysics Data System (ADS)

    Khomo, L.; Hartshorn, A.; Chadwick, O.; Kurtz, A.; Heimsath, A.; Rogers, K.

    2005-12-01

    The catena concept describes soil properties on hillslopes and implies a hydrological mass redistribution process that has been applied differently in different parts of the Earth. In tectonically active regions, it is mostly used to describe the redistribution of mass by overland flow leading to thickening soil mantles downslope. This application is somewhat different from its initial and still popular usage in tectonically inactive areas of Africa, where it defines long-term soil property differentiation along hillslopes as controlled by internal soil hydrology as opposed to overland flow. Many ecologists have found the "African" catena concept to be useful as an organizing principal for savanna studies, but there has been little recent research on catenas per se in Africa. Elsewhere however, there is a growing body of research that places the concept ever more strongly into a landscape evolution context. Here, we apply these new approaches to catenas in a South African savanna underlain by a heterogeneous suite of Basement granites straddling a gradient in effective precipitation. We constrain the weathering extent of hilly terrains formed on these oldrocks by calculating element losses with solid-phase mass-balance calculations augmented by cosmogenic (26Al/10Be) derived rates of landscape denudation. We test the efficacy of Ti, Zr and Nb as immobile elements to benchmark chemical losses and gains in these semi-arid weathering environments. We also trace and quantify the abundance of the host minerals for these elements (Ti = rutile and ilmenite, Nb = columbite and Zr = zircon and baddleyite) in a variety of rocks in the basement complex. This analysis provides the boundary conditions for assigning immobile elements to parent materials required for the mass balance calculations. We calculate total denudation using the cosmogenic isotopes and then partition it into chemical and physical loss vectors using the mass balance calculations for representative

  13. Tree and stand transpiration in a Midwestern bur oak savanna after elm encroachment and restoration thinning

    USGS Publications Warehouse

    Asbjornsen, H.; Tomer, M.D.; Gomez-Cardenas, M.; Brudvig, L.A.; Greenan, C.M.; Schilling, K.

    2007-01-01

    Oak savannas, once common in the Midwest, are now isolated remnants within agricultural landscapes. Savanna remnants are frequently encroached by invasive trees to become woodlands. Thinning and prescribed burning can restore savanna structure, but the ecohydrological effects of managing these remnants are poorly understood. In this study, we measured sap flow (Js) to quantify transpiration in an Iowa bur oak (Quercus macrocarpa) savanna woodland encroached by elms (Ulmus americana), and in an adjacent restored savanna after thinning to remove elms, during summer 2004. Savanna oaks had greater mean daily Js (35.9 L dm-2 day-1) than woodland oaks (20.7 L dm-2 day-1) and elms (12.4 L dm-2 day-1). The response of Js to vapor pressure deficit (D) was unexpectedly weak, although oaks in both stands showed negative correlation between daily Js and D for D > 0.4 kPa. An earlier daily peak in Js in the elm trees showed a possible advantage for water uptake. As anticipated, the woodland's stand transpiration was greater (1.23 mm day-1) than the savanna's (0.35 mm day-1), yet the savanna achieved 30% of the woodland's transpiration with only 11% of its sapwood area. The difference in transpiration influenced water table depths, which were 2 m in the savanna and 6.5 m in the woodland. Regionally, row-crop agriculture has increased groundwater recharge and raised water tables, providing surplus water that perhaps facilitated elm encroachment. This has implications for restoration of savanna remnants. If achieving a savanna ecohydrology is an aim of restoration, then restoration strategies may require buffers, or targeting of large or hydrologically isolated remnants. ?? 2007.

  14. Impact of fire on global land carbon, water, and energy budgets and climate during the 20th century through changing ecosystems

    NASA Astrophysics Data System (ADS)

    Li, F.; Lawrence, D. M.; Bond-Lamberty, B. P.; Levis, S.

    2016-12-01

    Fire is an integral Earth system process and the primary form of terrestrial ecosystem disturbance on a global scale. Here we provide the first quantitative assessment and understanding on fire's impact on global land carbon, water, and energy budgets and climate through changing ecosystems. This is done by quantifying the difference between 20th century fire-on and fire-off simulations using the Community Earth System Model (CESM1.2). Results show that fire decreases the net carbon gain of global terrestrial ecosystems by 1.0 Pg C/yr averaged across the 20th century, as a result of biomass and peat burning (1.9 Pg C/yr) partly offset by changing gross primary productivity, respiration, and land-use carbon loss (-0.9 Pg C/yr). In addition, fire's effect on global carbon budget intensifies with time. Fire significantly reduces land evapotranspiration (ET) by 600 km3/yr and increases runoff, but has limited impact on precipitation. The impact on ET and runoff is most clearly seen in the tropical savannas, African rainforest, and some boreal and Southern Asian forests mainly due to fire-induced reduction in the vegetation canopy. It also weakens both the significant upward trend in global land ET prior to the 1950s and the downward trend from 1950 to 1985 by 35%. Fire-induced changes in land ecosystems affects global energy budgets by significantly reducing latent heating and surface net radiation. Fire changes surface radiative budget dominantly by raising surface upward longwave radiation and net longwave radiation. It also increases the global land average surface air temperature (Tas) by 0.04°C, and significantly increases wind speed and decreases surface relative humidity. The fire-induced change in wind speed, Tas, and relative humidity implies a positive feedback loop between fire and climate. Moreover, fire-induced changes in land ecosystems contribute 20% of strong global land warming during 1910-1940, which provides a new mechanism for the early 20th

  15. Seasonality of the activity pattern of Callithrix penicillata (Primates, Callitrichidae) in the cerrado (scrub savanna vegetation).

    PubMed

    Vilela, S L; de Faria, D S

    2004-05-01

    Two wild groups of Callithrix penicillata, the Black Pincelled Marmoset, were observed from January to September 1998, in two areas, one an area of dense scrub savanna vegetation (cerrado) and the other, a semidecidual woodland (cerradão), both within the boundaries of the Ecological Reserve of IBGE (Brazilian Institute of Geography and Statistics), in an environmentally protected area, the APA (Portuguese abbreviation for "environmental protected area") Gama/Cabeça-de-Veado, Brasília, DF. The behavioral data collected during the rainy (January 15 to April 15) and dry season (June 1 to September 15) were compared. Because of the proximity to the Reserve facilities, the group from the dense scrub savanna vegetation (CD) was submitted to antropic impacts different from the group in the semidecidual woodland (CE), which was using as territory an area that had been suffering from man-made fires every two years as part of a long-term experimental project on fire impacts. The behavioral data was quantified by instantaneous cross-section ("scan sampling") every ten minutes with records of locomotion, rest, foraging for insects, use of exudate, and feeding. During the whole year, the greatest percentage of time spent by CE and CD was in foraging for insects, with 44% and 39%, respectively. It was evident when comparing the data for the two seasons that, for both groups, foraging for insects was more intense during the dry season, possibly to complement the shortage of food, and locomotion increased during the rainy season. The greater the availability and distribution of fruit in the areas, the greater the locomotion of the groups to obtain these resources. None of the other behavioral patterns, including the use of exudates, presented significant differences between the two seasons. Both groups foraged more frequently during the dry season and locomoted more during the rainy one.

  16. Analysis of the pattern of potential woody cover in Texas savanna

    NASA Astrophysics Data System (ADS)

    Yang, Xuebin; Crews, Kelley A.; Yan, Bowei

    2016-10-01

    While woody plant encroachment has been observed worldwide in savannas and adversely affected the ecosystem structure and function, a thorough understanding of the nature of this phenomenon is urgently required for savanna management and restoration. Among others, potential woody cover (the maximum realizable woody cover that a given site can support), especially its variation over environment has huge implication on the encroachment management in particular, and on tree-grass interactions in general. This project was designed to explore the pattern of potential woody cover in Texas savanna, an ecosystem with a large rainfall gradient in west-east direction. Substantial random pixels were sampled across the study area from MODIS Vegetation Continuous Fields (VCF) tree cover layer (250 m). Since potential woody cover is suggested to be limited by water availability, a nonlinear 99th quantile regression was performed between the observed woody cover and mean annual precipitation (MAP) to model the pattern of potential woody cover. Research result suggests a segmented relationship between potential woody cover and MAP at MODIS scale. Potential biases as well as the practical and theoretical implications were discussed. Through this study, the hypothesis about the primary role of water availability in determining savanna woody cover was further confirmed in a relatively understudied US-located savanna.

  17. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.

    PubMed

    Hao, Guang-You; Hoffmann, William A; Scholz, Fabian G; Bucci, Sandra J; Meinzer, Frederick C; Franco, Augusto C; Cao, Kun-Fang; Goldstein, Guillermo

    2008-03-01

    Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.

  18. Contrasting physiological responses to excess heat and irradiance in two tropical savanna sedges

    PubMed Central

    John-Bejai, C.; Farrell, A. D.; Cooper, F. M.; Oatham, M. P.

    2013-01-01

    Tropical hyperseasonal savannas provide a rare example of a tropical climax community dominated by graminoid species. Species living in such savannas are frequently exposed to excess heat and light, in addition to drought and waterlogging, and must possess traits to avoid or tolerate these stress factors. Here we examine the contrasting heat and light stress adaptations of two dominant savanna sedges: Lagenocarpus guianensis, which is restricted to the sheltered forest edge, and Lagenocarpus rigidus, which extends from the forest edge to the open savanna. An ecotone extending from the forest edge to the open savanna was used to assess differences in a range of physiological traits (efficiency of photosystem II, cell membrane thermostability, stomatal conductance, leaf surface reflectance and canopy temperature depression) and a range of leaf functional traits (length : width ratio, specific leaf area and degree of folding). Lagenocarpus guianensis showed significantly less canopy temperature depression than L. rigidus, which may explain why this species was restricted to the forest edge. The range of leaf temperatures measured was within the thermal tolerance of L. guianensis and allowed photosystem II to function normally, at least within the cool forest edge. The ability of L. rigidus to extend into the open savanna was associated with an ability to decouple leaf temperature from ambient temperature combined with enhanced cell membrane thermostability. The high degree of canopy temperature depression seen in L. rigidus was not explained by enhanced stomatal conductance or leaf reflectance, but was consistent with a capacity to increase specific leaf area and reduce leaf length: width ratio in the open savanna. Plasticity in leaf functional traits and in cell membrane thermostability are key factors in the ability of this savanna sedge to survive abiotic stress. PMID:24379971

  19. Biogeography: An interweave of climate, fire, and humans

    USGS Publications Warehouse

    Stambaugh, Michael C.; Varner, J. Morgan; Jackson, Stephen T.

    2017-01-01

    Longleaf pine (Pinus palustris) is an icon of the southeastern United States and has been considered a foundation species in forests, woodlands, and savannas of the region (Schwarz 1907; Platt 1999). Longleaf pine is an avatar for the extensive pine-dominated, fire-dependent ecosystems (Figure 2.1) that provide habitats for thousands of species and have largely vanished from the landscape. Longleaf pine is one of the world's most resilient and fire-adapted trees (Keeley and Zedler 1998), widely perceived as the sole dominant in forests across a large area of the Southeast (Sargent 1884; Mohr 1896; Wahlenberg 1946). Longleaf pine was once a primary natural resource, providing high-quality timber, resins, and naval stores that fueled social changes and economic growth through the 19th and early 20th centuries.

  20. The relationship between satellite-derived indices and species diversity across African savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Mapfumo, Ratidzo B.; Murwira, Amon; Masocha, Mhosisi; Andriani, R.

    2016-10-01

    The ability to use remotely sensed diversity is important for the management of ecosystems at large spatial extents. However, to achieve this, there is still need to develop robust methods and approaches that enable large-scale mapping of species diversity. In this study, we tested the relationship between species diversity measured in situ with the Normalized Difference Vegetation Index (NDVI) and the Coefficient of Variation in the NDVI (CVNDVI) derived from high and medium spatial resolution satellite data at dry, wet and coastal savanna woodlands. We further tested the effect of logging on NDVI along the transects and between transects as disturbance may be a mechanism driving the patterns observed. Overall, the results of this study suggest that high tree species diversity is associated with low and high NDVI and at intermediate levels is associated with low tree species diversity and NDVI. High tree species diversity is associated with high CVNDVI and vice versa and at intermediate levels is associated with high tree species diversity and CVNDVI.

  1. The Role of Temporal Evolution in Modeling Atmospheric Emissions from Tropical Fires

    NASA Technical Reports Server (NTRS)

    Marlier, Miriam E.; Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Gregory S.; Henry, Candise L.; Randerson, James T.

    2014-01-01

    Fire emissions associated with tropical land use change and maintenance influence atmospheric composition, air quality, and climate. In this study, we explore the effects of representing fire emissions at daily versus monthly resolution in a global composition-climate model. We find that simulations of aerosols are impacted more by the temporal resolution of fire emissions than trace gases such as carbon monoxide or ozone. Daily-resolved datasets concentrate emissions from fire events over shorter time periods and allow them to more realistically interact with model meteorology, reducing how often emissions are concurrently released with precipitation events and in turn increasing peak aerosol concentrations. The magnitude of this effect varies across tropical ecosystem types, ranging from smaller changes in modeling the low intensity, frequent burning typical of savanna ecosystems to larger differences when modeling the short-term, intense fires that characterize deforestation events. The utility of modeling fire emissions at a daily resolution also depends on the application, such as modeling exceedances of particulate matter concentrations over air quality guidelines or simulating regional atmospheric heating patterns.

  2. Complex systems approach to fire dynamics and climate change impacts

    NASA Astrophysics Data System (ADS)

    Pueyo, S.

    2012-04-01

    I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire

  3. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment

    NASA Astrophysics Data System (ADS)

    Naidoo, L.; Cho, M. A.; Mathieu, R.; Asner, G.

    2012-04-01

    The accurate classification and mapping of individual trees at species level in the savanna ecosystem can provide numerous benefits for the managerial authorities. Such benefits include the mapping of economically useful tree species, which are a key source of food production and fuel wood for the local communities, and of problematic alien invasive and bush encroaching species, which can threaten the integrity of the environment and livelihoods of the local communities. Species level mapping is particularly challenging in African savannas which are complex, heterogeneous, and open environments with high intra-species spectral variability due to differences in geology, topography, rainfall, herbivory and human impacts within relatively short distances. Savanna vegetation are also highly irregular in canopy and crown shape, height and other structural dimensions with a combination of open grassland patches and dense woody thicket - a stark contrast to the more homogeneous forest vegetation. This study classified eight common savanna tree species in the Greater Kruger National Park region, South Africa, using a combination of hyperspectral and Light Detection and Ranging (LiDAR)-derived structural parameters, in the form of seven predictor datasets, in an automated Random Forest modelling approach. The most important predictors, which were found to play an important role in the different classification models and contributed to the success of the hybrid dataset model when combined, were species tree height; NDVI; the chlorophyll b wavelength (466 nm) and a selection of raw, continuum removed and Spectral Angle Mapper (SAM) bands. It was also concluded that the hybrid predictor dataset Random Forest model yielded the highest classification accuracy and prediction success for the eight savanna tree species with an overall classification accuracy of 87.68% and KHAT value of 0.843.

  4. Aquatic ecotoxicity of ashes from Brazilian savanna wildfires.

    PubMed

    Brito, Darlan Q; Passos, Carlos José S; Muniz, Daphne H F; Oliveira-Filho, Eduardo C

    2017-08-01

    In a global scenario of climate change, several studies have predicted an increase in fires in different parts of the world. With the occurrence of rains following the fires in the Brazilian savanna (Cerrado biome), the compounds present in ashes may enter aquatic environments and cause adverse effects to these ecosystems. In this context, this study evaluated the potential toxicity of ashes from two areas of Cerrado and an area of pasture, through ecotoxicological bioassays and using three aquatic species from distinct trophic levels, which were exposed to different dilutions of ashes: the microcrustacean Ceriodaphnia dubia, the fish Danio rerio and the mollusc Biomphalaria glabrata. The ashes from the three sampled areas showed higher concentrations of some elements in relation to the soil samples (B, Ca, K, Mg, Mn, P, S, Si, Sr, Zn), but only a small quantity of these compounds was solubilised. Our data showed that all ash samples caused acute toxicity to C. dubia (48hs-LC 50  = 13.4 g L -1 ; 48hs-LC 50  = 6.33 g L -1 ; 48hs-LC 50  = 9.73 g L -1 respectively for transition area, pasture, typical cerrado areas), while in relation to D. rerio and B. glabrata, no acute toxicity was observed when they were exposed to ashes from native Cerrado vegetation and pasture areas. Ashes from a transition area showed toxicity for D. rerio (48hs-LC 50  = 25.0 g L -1 ); possibly, this was due to the combination of multiple preponderant inorganic elements of ashes with other organic compounds not analysed, such as polycyclic aromatic hydrocarbons (PAHs). In summary, these results suggest that wildfires may pose risks to zooplankton communities and emphasize the need for more studies to better understand the complexity of the ecological effects of fire on aquatic ecosystems.

  5. Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna.

    PubMed

    Fox-Dobbs, Kena; Doak, Daniel F; Brody, Alison K; Palmer, Todd M

    2010-05-01

    The mechanisms by which even the clearest of keystone or dominant species exert community-wide effects are only partially understood in most ecosystems. This is especially true when a species or guild influences community-wide interactions via changes in the abiotic landscape. Using stable isotope analyses, we show that subterranean termites in an East African savanna strongly influence a key ecosystem process: atmospheric nitrogen fixation by a monodominant tree species and its bacterial symbionts. Specifically, we applied the 15N natural abundance method in combination with other biogeochemical analyses to assess levels of nitrogen fixation by Acacia drepanolobium and its effects on co-occurring grasses and forbs in areas near and far from mounds and where ungulates were or were not excluded. We find that termites exert far stronger effects than do herbivores on nitrogen fixation. The percentage of nitrogen derived from fixation in Acacia drepanolobium trees is higher (55-80%) away from mounds vs. near mounds (40-50%). Mound soils have higher levels of plant available nitrogen, and Acacia drepanolobium may preferentially utilize soil-based nitrogen sources in lieu of fixed nitrogen when these sources are readily available near termite mounds. At the scale of the landscape, our models predict that termite/soil derived nitrogen sources influence >50% of the Acacia drepanolobium trees in our system. Further, the spatial extent of these effects combine with the spacing of termite mounds to create highly regular patterning in nitrogen fixation rates, resulting in marked habitat heterogeneity in an otherwise uniform landscape. In summary, we show that termite-associated effects on nitrogen processes are not only stronger than those of more apparent large herbivores in the same system, but also occur in a highly regular spatial pattern, potentially adding to their importance as drivers of community and ecosystem structure.

  6. Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna

    NASA Astrophysics Data System (ADS)

    Faye, Babacar; Webber, Heidi; Naab, Jesse B.; MacCarthy, Dilys S.; Adam, Myriam; Ewert, Frank; Lamers, John P. A.; Schleussner, Carl-Friedrich; Ruane, Alex; Gessner, Ursula; Hoogenboom, Gerrit; Boote, Ken; Shelia, Vakhtang; Saeed, Fahad; Wisser, Dominik; Hadir, Sofia; Laux, Patrick; Gaiser, Thomas

    2018-03-01

    To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 °C above pre-industrial levels, with the ambition to keep warming to 1.5 °C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 °C versus 2.0 °C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 °C compared to 1.5 °C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.

  7. Sources and sinks of ozone in savanna and forest areas during EXPRESSO: Airborne turbulent flux measurements

    NASA Astrophysics Data System (ADS)

    Cros, B.; Delon, C.; Affre, C.; Marion, T.; Druilhet, A.; Perros, P. E.; Lopez, A.

    2000-12-01

    An airborne study of ozone concentrations and fluxes in the lower layers of the atmosphere was conducted over the Central African Republic (CAR) and northern Congo in November/December 1996, within the framework of the Experiment of Regional Sources and Sinks of Oxidants (EXPRESSO). The first 4 km of the atmosphere above savanna, rain forest, and the transitional area between them, were investigated with the French research aircraft Avion de Recherche Atmosphérique et de Télédétection (ARAT). Turbulent fluxes and deposition velocities of ozone were determined using the Eddy Correlation (EC) method. A specific methodology was developed to obtain accurate airborne turbulent flux measurements. This methodology is linked to the turbulence stationarity. The average values of ozone fluxes and ozone deposition velocities in the Atmospheric Boundary Layer (ABL) increase appreciably from savanna to forest. Near the ground, the ozone fluxes range between -0.115 +/-0.073 ppbv m/s above savanna and -0.350 +/-0.115 ppbv m/s above forest; for the deposition, the ranges are 0.0042 +/-0.0018 m/s and 0.015 +/-0.004 m/s. A simple empirical relationship between deposition velocity and Leaf Area Index (LAI) is proposed, giving an estimation of the deposition velocity for a whole latitudinal band. Vertical inputs of ozone to the ABL are estimated according to entrainment fluxes. The role of advection is neglected for horizontal transport of ozone in the ABL. The photochemical ozone production is deduced from the photo-stationary state deviation, and compared to the net ozone increase in the ABL during the flights performed above the forest. A tentative ozone budget based on the aircraft measurements is proposed in the ABL of the rain forest. Around noon, the photochemical production dominates with a net production of about 10 ppbv/h.

  8. The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes.

    PubMed

    Bond, William; Zaloumis, Nicholas P

    2016-06-05

    Africa has the most extensive C4 grassy biomes of any continent. They are highly flammable accounting for greater than 70% of the world's burnt area. Much of Africa's savannas and grasslands occur in climates warm enough and wet enough to support closed forests. The combination of open grassy systems and the frequent fires they support have long been interpreted as anthropogenic artefacts caused by humans igniting frequent fires. True grasslands, it was believed, would be restricted to climates too dry or too cold to support closed woody vegetation. The idea that higher-rainfall savannas are anthropogenic and that fires are of human origin has led to initiatives to 'reforest' Africa's open grassy systems paid for by carbon credits under the assumption that the net effect of converting these system to forests would sequester carbon, reduce greenhouse gases and mitigate global warming. This paper reviews evidence for the antiquity of African grassy ecosystems and for the fires that they sustain. Africa's grassy biomes and the fires that maintain them are ancient and there is no support for the idea that humans caused large-scale deforestation. Indicators of old-growth grasslands are described. These can help distinguish secondary grasslands suitable for reforestation from ancient grasslands that should not be afforested.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  9. The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes

    PubMed Central

    Zaloumis, Nicholas P.

    2016-01-01

    Africa has the most extensive C4 grassy biomes of any continent. They are highly flammable accounting for greater than 70% of the world's burnt area. Much of Africa's savannas and grasslands occur in climates warm enough and wet enough to support closed forests. The combination of open grassy systems and the frequent fires they support have long been interpreted as anthropogenic artefacts caused by humans igniting frequent fires. True grasslands, it was believed, would be restricted to climates too dry or too cold to support closed woody vegetation. The idea that higher-rainfall savannas are anthropogenic and that fires are of human origin has led to initiatives to ‘reforest’ Africa's open grassy systems paid for by carbon credits under the assumption that the net effect of converting these system to forests would sequester carbon, reduce greenhouse gases and mitigate global warming. This paper reviews evidence for the antiquity of African grassy ecosystems and for the fires that they sustain. Africa's grassy biomes and the fires that maintain them are ancient and there is no support for the idea that humans caused large-scale deforestation. Indicators of old-growth grasslands are described. These can help distinguish secondary grasslands suitable for reforestation from ancient grasslands that should not be afforested. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216527

  10. Smoke and fire characteristics for cerrado and deforestation burns in Brazil - BASE-B experiment

    NASA Technical Reports Server (NTRS)

    Ward, D. E.; Susott, R. A.; Kauffman, J. B.; Babbitt, R. E.; Cummings, D. L.; Dias, B.; Holben, B. N.; Kaufman, Y. J.; Rasmussen, R. A.; Setzer, A. W.

    1992-01-01

    Five test fires were performed during August and September 1990 in the cerrado (savannalike region) in central Brazil (three fires) and tropical moist forest (two fires) in the eastern Amazon. This paper details the gases released, the ratios of the gases to each other and to particulate matter, fuel loads, and the fraction consumed (combustion factors), and the fire behavior associated with biomass consumption. Models are presented for evaluating emission factors for CH4, CO2, CO, H2, and particles less than 2.5 micron diam (PM2.5) as a function of combustion efficiency. The ratio of carbon released as CO2 (combustion efficiency) for the cerrado fires averaged 0.94 and for the deforestation fires it decreased from 0.88 for the flaming phase to less than 0.80 during the smoldering phase of combustion. For tropical ecosystems, emissions of most products of incomplete combustion are projected to be lower than previous estimates for savanna ecosystems and somewhat higher for fires used for deforestation purposes.

  11. Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A

    NASA Astrophysics Data System (ADS)

    Olson, Jennifer R.; Baum, Bryan A.; Cahoon, Donald R.; Crawford, James H.

    1999-03-01

    Advanced very high resolution radiometer 1.1 km resolution satellite radiance data were used to locate active fires throughout much of the tropical region during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics (PEM-Tropics A) aircraft campaign, held in September and October 1996. The spatial and temporal distributions of the fires in Australia, southern Africa, and South America are presented here. The number of fires over northern Australia, central Africa, and South America appeared to decrease toward the end of the mission period. Fire over eastern Australia was widespread, and temporal patterns showed a somewhat consistent amount of burning with periodic episodes of enhanced fire counts observed. At least one episode of enhanced fire counts corresponded to the passage of a frontal system which brought conditions conducive to fire to the region, with strong westerlies originating over the hot, dry interior continent. Regions that were affected by lower than normal rainfall during the previous wet season (e.g., northern Australia and southwestern Africa) showed relatively few fires during this period. This is consistent with a drought-induced decrease in vegetation and therefore a decreased availability of fuel for burning. Alternatively, a heavier than normal previous wet season along the southeastern coast of South Africa may have contributed to high fuel loading and an associated relatively heavy amount of burning compared to data from previous years.

  12. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa)

    NASA Astrophysics Data System (ADS)

    Brümmer, Christian; Papen, Hans; Wassmann, Reiner; Brüggemann, Nicolas

    2009-03-01

    The contribution of West African savanna ecosystems to global greenhouse gas budgets is highly uncertain. In this study we quantified soil-atmosphere CH4 and CO2 fluxes in the southwest of Burkina Faso from June to September 2005 and from April to September 2006 at four different agricultural fields planted with sorghum (n = 2), cotton, and peanut and at a natural savanna site with termite (Cubitermes fungifaber) mounds. During the rainy season both CH4 uptake and CH4 emission were observed in the savanna, which was on average a CH4 source of 2.79 and 2.28 kg CH4-C ha-1 a-1 in 2005 and 2006, respectively. The crop sites were an average CH4 sink of -0.67 and -0.70 kg CH4-C ha-1 a-1 in the 2 years, without significant seasonal variation. Mean annual soil respiration ranged between 3.86 and 5.82 t CO2-C ha-1 a-1 in the savanna and between 2.50 and 4.51 t CO2-C ha-1 a-1 at the crop sites. CH4 emission from termite mounds was 2 orders of magnitude higher than soil CH4 emissions, whereas termite CO2 emissions were of the same order of magnitude as soil CO2 emissions. Termite CH4 and CO2 release in the savanna contributed 8.8% and 0.4% to the total soil CH4 and CO2 emissions, respectively. At the crop sites, where termite mounds had been almost completely removed because of land use change, termite fluxes were insignificant. Mound density-based upscaling of termite CH4 fluxes resulted in a global termite CH4 source of 0.9 Tg a-1, which corresponds to 0.15% of the total global CH4 budget of 582 Tg a-1, hence significantly lower than those obtained previously by biomass-based calculations. This study emphasizes that land use change, which is of high relevance in this region, has particularly affected soil CH4 fluxes in the past and might still do so in the future.

  13. Allometric Convergence in Savanna Trees and Implications for the Use of Plant Scaling Models in Variable Ecosystems

    PubMed Central

    Tredennick, Andrew T.; Bentley, Lisa Patrick; Hanan, Niall P.

    2013-01-01

    Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of ‘universal’ scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and ‘global’ (i.e. interspecific) scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST), Geometric Similarity, and Stress Similarity) in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass) the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and those

  14. Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.

    PubMed

    Price, Bronwyn; McAlpine, Clive A; Kutt, Alex S; Ward, Doug; Phinn, Stuart R; Ludwig, John A

    2013-01-01

    In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha) and landscape (100-1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.

  15. Disentangling How Landscape Spatial and Temporal Heterogeneity Affects Savanna Birds

    PubMed Central

    Price, Bronwyn; McAlpine, Clive A.; Kutt, Alex S.; Ward, Doug; Phinn, Stuart R.; Ludwig, John A.

    2013-01-01

    In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1–100 ha) and landscape (100–1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes. PMID:24066138

  16. Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana)

    PubMed Central

    Schlossberg, Scott; Chase, Michael J.; Griffin, Curtice R.

    2016-01-01

    Accurate counts of animals are critical for prioritizing conservation efforts. Past research, however, suggests that observers on aerial surveys may fail to detect all individuals of the target species present in the survey area. Such errors could bias population estimates low and confound trend estimation. We used two approaches to assess the accuracy of aerial surveys for African savanna elephants (Loxodonta africana) in northern Botswana. First, we used double-observer sampling, in which two observers make observations on the same herds, to estimate detectability of elephants and determine what variables affect it. Second, we compared total counts, a complete survey of the entire study area, against sample counts, in which only a portion of the study area is sampled. Total counts are often considered a complete census, so comparing total counts against sample counts can help to determine if sample counts are underestimating elephant numbers. We estimated that observers detected only 76% ± SE of 2% of elephant herds and 87 ± 1% of individual elephants present in survey strips. Detectability increased strongly with elephant herd size. Out of the four observers used in total, one observer had a lower detection probability than the other three, and detectability was higher in the rear row of seats than the front. The habitat immediately adjacent to animals also affected detectability, with detection more likely in more open habitats. Total counts were not statistically distinguishable from sample counts. Because, however, the double-observer samples revealed that observers missed 13% of elephants, we conclude that total counts may be undercounting elephants as well. These results suggest that elephant population estimates from both sample and total counts are biased low. Because factors such as observer and habitat affected detectability of elephants, comparisons of elephant populations across time or space may be confounded. We encourage survey teams to

  17. Local versus landscape-scale effects of savanna trees on grasses

    USGS Publications Warehouse

    Riginos, C.; Grace, J.B.; Augustine, D.J.; Young, T.P.

    2009-01-01

    1. Savanna ecosystems - defined by the coexistence of trees and grasses - cover more than one-fifth the world's land surface and harbour most of the world's rangelands, livestock and large mammal diversity. Savanna trees can have a variety of effects on grasses, with consequences for the wild and domestic herbivores that depend on them. 2.Studies of these effects have focused on two different spatial scales. At the scale of individual trees, many studies have shown net positive effects of trees on sub-canopy grass nutrient concentrations and biomass. At the landscape scale, other studies have shown negative effects of high tree densities on grass productivity. These disparate results have led to different conclusions about the effects of trees on forage quality and ungulate nutrition in savannas. 3.We integrate these approaches by examining the effects of trees on grasses at both spatial scales and across a range of landscape-scale tree densities. 4.We quantified grass biomass, species composition and nutrient concentrations in these different contexts in an Acacia drepanolobium savanna in Laikipia, Kenya. Individual trees had positive effects on grass biomass, most likely because trees enrich soil nitrogen. Grass leaf phosphorus in sub-canopy areas, however, was depressed. The effects of individual trees could explain the effects of increasing landscape-scale tree cover for the biomass of only two of the four dominant grass species. 5.The negative effects of trees on grass and soil phosphorus, combined with depressed grass productivity in areas of high tree cover, suggest that ungulate nutrition may be compromised in areas with many trees. 6.Synthesis. We conclude that few, isolated trees may have positive local effects on savanna grasses and forage, but in areas of high tree density the negative landscape-scale effects of trees are likely to outweigh these positive effects. In savannas and other patchy landscapes, attempts to predict the consequences of changes

  18. Hillslope soil movement in the oak savannas of the Southwestern Borderlands Region

    Treesearch

    Aaron Kauffman

    2009-01-01

    Oak woodlands and savannas comprise more than 31,000 square miles (80,290 square kilometers) in the southwestern United States and northern Mexico and provide various resources including forage for livestock, wildlife habitat, fuelwood, and recreational areas. Increased woody-plant encroachment into the more open savanna ecosystems has presented a problem to managers...

  19. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States

    Treesearch

    I. R. Burling; R. J. Yokelson; S. K. Akagi; Shawn Urbanski; Cyle Wold; D. W. T. Griffith; T. J. Johnson; J. Reardon; D. R. Weise

    2011-01-01

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada 5 mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass...

  20. Impact of savanna conversion to oil palm plantations on C stocks dynamics and soil fertility

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Guillaume, Thomas; Buttler, Alexandre; Ruegg, Johanna

    2017-04-01

    Large-scale expansion of oil palm cultivation on forested land in South-East Asia during the last decades lead to high negative environmental impacts. Because rainforests store high amount of C, their conversion to oil palm plantations results in large net CO2 emissions. Oil palm cultivation in tropical ecosystems such as savanna that store less C than forests is seen as an alternative to reduce greenhouse gas emissions of future oil palm development. While this option is more and more frequently mentioned, few data are available on the effective gain in C storage. Furthermore negative impact on soil organic carbon and soil fertility could offset gains of C storage in oil palm biomass. Here, we present results on aboveground and belowground C stocks and soil nutrient dynamics over a full rotation cycle of oil palm plantations established on tropical savanna grasslands. Three natural savanna grasslands as reference sites and 9 oil palm plantations ranging from two to twenty-seven years old were selected in the Llanos in Colombia. Oxisols were sampled down to 70 cm in each management zones of oil palm plantations (weeded circle, interrow, frond piles and harvesting path). Taking advantages of a shift from C4 to C3 vegetation, we quantified savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC stabilization rates and how they were affected by management practices (mineral fertilization, organic amendments, etc.). Results show that, in opposite to forest conversion, C storage increases when savannas are converted to oil palm plantations. Because soil C storage was very low in natural conditions, SOC changes had little effects on overall C storage. Substitution of savanna-derived SOC by oil palm-derived SOC was very fast in the topsoil and highest under frond pile and weeded circle where C and nutrients inputs are highest. However, stabilization of oil palm-derived SOC compensated loss of savanna-derived SOC rather than increased SOC stocks

  1. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our

  2. Vegetation-site relationships and fire history of a savanna-glade-woodland mosaic in the Ozarks

    Treesearch

    Sean E. Jenkins; Richard Guyette; Alan J. Rebertus

    1997-01-01

    There is a growing interest in reconstructing past disturbance regimes and how they influenced plant composition, structure and landscape pattern. Such information is useful to resource managers for determining the effects of fire suppression on vegetation or tailoring prescribed fires to restore community and landscape diversity. In the spring of 1995, the National...

  3. Herbivory and drought interact to enhance spatial patterning and diversity in a savanna understory.

    PubMed

    Porensky, Lauren M; Wittman, Sarah E; Riginos, Corinna; Young, Truman P

    2013-10-01

    The combination of abiotic stress and consumer stress can have complex impacts on plant community structure. Effective conservation and management of semi-arid ecosystems requires an understanding of how different stresses interact to structure plant communities. We explored the separate and combined impacts of episodic drought, livestock grazing, and wild ungulate herbivory on species co-occurrence and diversity patterns in a relatively productive, semi-arid Acacia savanna. Specifically, we analyzed 9 years of biannual plant community data from the Kenya long-term exclosure experiment, a broad-scale manipulative experiment that has excluded different combinations of large mammalian herbivores from 18 4-ha plots since 1995. During droughts, we observed low species diversity and random species co-occurrence patterns. However, when rain followed a major drought, areas exposed to moderate cattle grazing displayed high species diversity and evidence of significant species aggregation. These patterns were not apparent in the absence of cattle, even if other large herbivores were present. To explore possible mechanisms, we examined patterns separately for common and rare species. We found that aggregation patterns were likely driven by rare species responding similarly to the availability of open micro-sites. Our results indicate that in a productive, fire-suppressed savanna, the combination of periodic drought and moderate cattle grazing can enhance plant biodiversity and fine-scale spatial heterogeneity by opening up space for species that are otherwise rare or cryptic. Our findings also emphasize that domestic herbivores can have significantly stronger impacts on plant community dynamics than wild herbivores, even in an ecosystem with a long history of grazing.

  4. Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence

    PubMed Central

    Smitz, Nathalie; Berthouly, Cécile; Cornélis, Daniel; Heller, Rasmus; Van Hooft, Pim; Chardonnet, Philippe; Caron, Alexandre; Prins, Herbert; van Vuuren, Bettine Jansen; De Iongh, Hans; Michaux, Johan

    2013-01-01

    The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today. PMID:23437100

  5. Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span

    PubMed Central

    Zhang, Jiao-Lin; Poorter, L.; Hao, Guang-You; Cao, Kun-Fang

    2012-01-01

    Background and Aims Photosynthetic thermotolerance (PT) is important for plant survival in tropical and sub-tropical savannas. However, little is known about thermotolerance of tropical and sub-tropical wild plants and its association with leaf phenology and persistence. Longer-lived leaves of savanna plants may experience a higher risk of heat stress. Foliar Ca is related to cell integrity of leaves under stresses. In this study it is hypothesized that (1) species with leaf flushing in the hot-dry season have greater PT than those with leaf flushing in the rainy season; and (2) PT correlates positively with leaf life span, leaf mass per unit area (LMA) and foliar Ca concentration ([Ca]) across woody savanna species. Methods The temperature-dependent increase in minimum fluorescence was measured to assess PT, together with leaf dynamics, LMA and [Ca] for a total of 24 woody species differing in leaf flushing time in a valley-type savanna in south-west China. Key Results The PT of the woody savanna species with leaf flushing in the hot-dry season was greater than that of those with leaf flushing in the rainy season. Thermotolerance was positively associated with leaf life span and [Ca] for all species irrespective of the time of flushing. The associations of PT with leaf life span and [Ca] were evolutionarily correlated. Thermotolerance was, however, independent of LMA. Conclusions Chinese savanna woody species are adapted to hot-dry habitats. However, the current maximum leaf temperature during extreme heat stress (44·3 °C) is close to the critical temperature of photosystem II (45·2 °C); future global warming may increase the risk of heat damage to the photosynthetic apparatus of Chinese savanna species. PMID:22875810

  6. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA

    Treesearch

    Roger D. Ottmar; John I. Blake; William T. Crolly

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...

  7. Savanna elephant numbers are only a quarter of their expected values

    PubMed Central

    Robson, Ashley S.; Trimble, Morgan J.; Purdon, Andrew; Young-Overton, Kim D.; Pimm, Stuart L.; van Aarde, Rudi J.

    2017-01-01

    Savannas once constituted the range of many species that human encroachment has now reduced to a fraction of their former distribution. Many survive only in protected areas. Poaching reduces the savanna elephant, even where protected, likely to the detriment of savanna ecosystems. While resources go into estimating elephant populations, an ecological benchmark by which to assess counts is lacking. Knowing how many elephants there are and how many poachers kill is important, but on their own, such data lack context. We collated savanna elephant count data from 73 protected areas across the continent estimated to hold ~50% of Africa’s elephants and extracted densities from 18 broadly stable population time series. We modeled these densities using primary productivity, water availability, and an index of poaching as predictors. We then used the model to predict stable densities given current conditions and poaching for all 73 populations. Next, to generate ecological benchmarks, we predicted such densities for a scenario of zero poaching. Where historical data are available, they corroborate or exceed benchmarks. According to recent counts, collectively, the 73 savanna elephant populations are at 75% of the size predicted based on current conditions and poaching levels. However, populations are at <25% of ecological benchmarks given a scenario of zero poaching (~967,000)—a total deficit of ~730,000 elephants. Populations in 30% of the 73 protected areas were <5% of their benchmarks, and the median current density as a percentage of ecological benchmark across protected areas was just 13%. The ecological context provided by these benchmark values, in conjunction with ongoing census projects, allow efficient targeting of conservation efforts. PMID:28414784

  8. Indigenous burning as conservation practice: neotropical savanna recovery amid agribusiness deforestation in Central Brazil.

    PubMed

    Welch, James R; Brondízio, Eduardo S; Hetrick, Scott S; Coimbra, Carlos E A

    2013-01-01

    International efforts to address climate change by reducing tropical deforestation increasingly rely on indigenous reserves as conservation units and indigenous peoples as strategic partners. Considered win-win situations where global conservation measures also contribute to cultural preservation, such alliances also frame indigenous peoples in diverse ecological settings with the responsibility to offset global carbon budgets through fire suppression based on the presumed positive value of non-alteration of tropical landscapes. Anthropogenic fire associated with indigenous ceremonial and collective hunting practices in the Neotropical savannas (cerrado) of Central Brazil is routinely represented in public and scientific conservation discourse as a cause of deforestation and increased CO2 emissions despite a lack of supporting evidence. We evaluate this claim for the Xavante people of Pimentel Barbosa Indigenous Reserve, Brazil. Building upon 23 years of longitudinal interdisciplinary research in the area, we used multi-temporal spatial analyses to compare land cover change under indigenous and agribusiness management over the last four decades (1973-2010) and quantify the contemporary Xavante burning regime contributing to observed patterns based on a four year sample at the end of this sequence (2007-2010). The overall proportion of deforested land remained stable inside the reserve (0.6%) but increased sharply outside (1.5% to 26.0%). Vegetation recovery occurred where reserve boundary adjustments transferred lands previously deforested by agribusiness to indigenous management. Periodic traditional burning by the Xavante had a large spatial distribution but repeated burning in consecutive years was restricted. Our results suggest a need to reassess overreaching conservation narratives about the purported destructiveness of indigenous anthropogenic fire in the cerrado. The real challenge to conservation in the fire-adapted cerrado biome is the long

  9. Indigenous Burning as Conservation Practice: Neotropical Savanna Recovery amid Agribusiness Deforestation in Central Brazil

    PubMed Central

    Welch, James R.; Brondízio, Eduardo S.; Hetrick, Scott S.; Coimbra, Carlos E. A.

    2013-01-01

    International efforts to address climate change by reducing tropical deforestation increasingly rely on indigenous reserves as conservation units and indigenous peoples as strategic partners. Considered win-win situations where global conservation measures also contribute to cultural preservation, such alliances also frame indigenous peoples in diverse ecological settings with the responsibility to offset global carbon budgets through fire suppression based on the presumed positive value of non-alteration of tropical landscapes. Anthropogenic fire associated with indigenous ceremonial and collective hunting practices in the Neotropical savannas (cerrado) of Central Brazil is routinely represented in public and scientific conservation discourse as a cause of deforestation and increased CO2 emissions despite a lack of supporting evidence. We evaluate this claim for the Xavante people of Pimentel Barbosa Indigenous Reserve, Brazil. Building upon 23 years of longitudinal interdisciplinary research in the area, we used multi-temporal spatial analyses to compare land cover change under indigenous and agribusiness management over the last four decades (1973–2010) and quantify the contemporary Xavante burning regime contributing to observed patterns based on a four year sample at the end of this sequence (2007–2010). The overall proportion of deforested land remained stable inside the reserve (0.6%) but increased sharply outside (1.5% to 26.0%). Vegetation recovery occurred where reserve boundary adjustments transferred lands previously deforested by agribusiness to indigenous management. Periodic traditional burning by the Xavante had a large spatial distribution but repeated burning in consecutive years was restricted. Our results suggest a need to reassess overreaching conservation narratives about the purported destructiveness of indigenous anthropogenic fire in the cerrado. The real challenge to conservation in the fire-adapted cerrado biome is the long

  10. Brazil Fire Characterization and Burn Area Estimation Using the Airborne Infrared Disaster Assessment (AIRDAS) System

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Riggan, P. J.; Ambrosia, V. G.; Lockwood, R. N.; Pereira, J. A.; Higgins, R. G.; Peterson, David L. (Technical Monitor)

    1995-01-01

    Remotely sensed estimations of regional and global emissions from biomass combustion have been used to characterize fire behavior, determine fire intensity, and estimate burn area. Highly temporal, low resolution satellite data have been used to calculate estimates of fire numbers and area burned. These estimates of fire activity and burned area have differed dramatically, resulting in a wide range of predictions on the ecological and environmental impacts of fires. As part of the Brazil/United States Fire Initiative, an aircraft campaign was initiated in 1992 and continued in 1994. This multi-aircraft campaign was designed to assist in the characterization of fire activity, document fire intensity and determine area burned over prescribed, agricultural and wildland fires in the savanna and forests of central Brazil. Using a unique, multispectral scanner (AIRDAS), designed specifically for fire characterization, a variety of fires and burned areas were flown with a high spatial and high thermal resolution scanner. The system was used to measure flame front size, rate of spread, ratio of smoldering to flaming fronts and fire intensity. In addition, long transects were flown to determine the size of burned areas within the cerrado and transitional ecosystems. The authors anticipate that the fire activity and burned area estimates reported here will lead to enhanced information for precise regional trace gas prediction.

  11. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands.

    Treesearch

    D.W. Peterson; P.B. Reich; K.J. Wrage

    2007-01-01

    We measured plant functional group cover and tree canopy cover on permanent plots within a long-term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Understory woody plant cover was highest in unburned woodlands and was negatively correlated with fire...

  12. Simulating fire-induced ecological succession with the dynamically coupled fire-vegetation model, ED-SPIFTIRE

    NASA Astrophysics Data System (ADS)

    Spessa, A.; Fisher, R.

    2009-04-01

    The simulation of fire-vegetation feedbacks is crucial for determining fire-induced changes to ecosystem structure and function, and emissions of trace gases and aerosols under future climate change. A new global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within DGVM frameworks (Thonicke et al. 2008). SPITFIRE has been applied in coupled mode globally (Thonicke et al. 2008) and northern Australia (Spessa et al. unpubl.) as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa (Lehsten et al. 2008) as part of the LPJ-GUESS vegetation model (Smith et al. 2001). Recently, Spessa & Fisher (unpubl.) completed the coupling of SPIFTIRE to the Ecosystem Demography (ED) model (Moorecroft et al. 2001), which has been globalised by Dr R. Fisher as part of the development of the new land surface scheme JULES (Joint UK Environment Simulator) within the QUEST Earth System Model (http://www.quest-esm.ac.uk/). In contrast to the LPJ DGVM, ED is a ‘size and age structured' approximation of an individual based gap model. The major innovation of the ED-SPITFIRE model compared with LPJ-SPITFIRE is the categorisation of each climatic grid cell into a series of non-spatially contiguous patches which are defined by a common ‘age since last disturbance'. In theory, the age-class structure of ED facilitates ecologically realistic processes of succession and re-growth to be represented. By contrast, LPJ DGVM adopts an ‘area-based approach' that implicitly averages individual and patch differences across a wider area and across ‘populations' of PFTs. This presentation provides an overview of SPITFIRE, and provides preliminary results from ED-SPITFIRE applied to northern Australian savanna ecosystems which, due to spatio-temporal variation in fire disturbance, comprise a patchwork of grasses and trees at different stages of post-fire succession

  13. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees.

    PubMed

    Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A

    2010-06-01

    Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.

  14. Evaporation over a Heterogeneous Mixed Savanna-Agricultural Catchment using a Distributed Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Vetterli, M.; Yacouba, H.; Repetti, A.; Parlange, M. B.

    2010-12-01

    Small scale rain fed agriculture is the primary livelihood for a large part of the population of Burkina Faso. Regional climate change means that this population is becoming increasingly vulnerable. Additionally, as natural savanna is converted for agriculture, hydrological systems are observed to become less stable as infiltration is decreased and rapid runoff is increased to the detriment of crop productivity, downstream populations and local water sources. The majority of the Singou River Basin, located in South East Burkina Faso is managed by hunting reserves, geared to maintaining high populations of wild game; however, residents surrounding the protected areas have been forced to intensify agriculture that has resulted in soil degradation as well as increases in the frequency and severity of flooding and droughts. Agroforestry, or planting trees in cultivated fields, has been proposed as a solution to help buffer these negative consequences, however the specific hydrologic behavior of the watershed land cover is unknown. We have installed a distributed sensor network of 17 Sensorscope wireless meteorological stations. These stations are dispersed across cultivated rice and millet fields, natural savanna, fallow fields, and around agroforestry fields. Sensorscope routes data through the network of stations to be delivered by a GPRS connection to a main server. This multi hop network allows data to be gathered over a large area and quickly adapts to changes in station performance. Data are available in real time via a website that can be accessed by a mobile phone. The stations are powered autonomously by small photovoltaic panels. This deployment is the first time that these meteorological stations have been used on the African continent. Initial calibration with measures from 2 eddy covariance stations allows us to calculate the energy balance at each of the Sensorscope stations. Thus, we can observe variation in evaporation over the various land cover in the

  15. Restoration of temperate savannas and woodlands

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  16. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant

  17. Plant diversity and invasives in blue oak savannas of the southern Sierra Nevada

    Treesearch

    Jon E. Keeley

    2002-01-01

    Blue oak savannas were found to be substantially more diverse at all scales from localized point diversity to the community scale, than higher elevation shrubland and coniferous forests in the southern Sierra Nevada. Also, alien plants were more diverse and represented a substantial fraction of the understory flora in these blue oak savannas, comprising three-fourths...

  18. CO2 and fire influence tropical ecosystem stability in response to climate change.

    PubMed

    Shanahan, Timothy M; Hughen, Konrad A; McKay, Nicholas P; Overpeck, Jonathan T; Scholz, Christopher A; Gosling, William D; Miller, Charlotte S; Peck, John A; King, John W; Heil, Clifford W

    2016-07-18

    Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28-15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.

  19. CO2 and fire influence tropical ecosystem stability in response to climate change

    NASA Astrophysics Data System (ADS)

    Shanahan, Timothy M.; Hughen, Konrad A.; McKay, Nicholas P.; Overpeck, Jonathan T.; Scholz, Christopher A.; Gosling, William D.; Miller, Charlotte S.; Peck, John A.; King, John W.; Heil, Clifford W.

    2016-07-01

    Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28-15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.

  20. Effects of tornado damage, prescribed fire, and salvage logging on natural oak (Quercus spp.) regeneration in a xeric southern USA Coastal Plain oak/pine forest

    Treesearch

    Jeffery B. Cannon; J. Stephen Brewer

    2013-01-01

    Due in large part to fire exclusion, many oak-dominated (Quercus spp.) forests, woodlands, and savannas throughout eastern North America are being replaced by less diverse forest ecosystems. In the interior coastal plain of the southern United States, these forests are dominated in the mid- and understory by mesophytic species such as Acer...

  1. The discovery of fire by humans: a long and convoluted process.

    PubMed

    Gowlett, J A J

    2016-06-05

    Numbers of animal species react to the natural phenomenon of fire, but only humans have learnt to control it and to make it at will. Natural fires caused overwhelmingly by lightning are highly evident on many landscapes. Birds such as hawks, and some other predators, are alert to opportunities to catch animals including invertebrates disturbed by such fires and similar benefits are likely to underlie the first human involvements with fires. Early hominins would undoubtedly have been aware of such fires, as are savanna chimpanzees in the present. Rather than as an event, the discovery of fire use may be seen as a set of processes happening over the long term. Eventually, fire became embedded in human behaviour, so that it is involved in almost all advanced technologies. Fire has also influenced human biology, assisting in providing the high-quality diet which has fuelled the increase in brain size through the Pleistocene. Direct evidence of early fire in archaeology remains rare, but from 1.5 Ma onward surprising numbers of sites preserve some evidence of burnt material. By the Middle Pleistocene, recognizable hearths demonstrate a social and economic focus on many sites. The evidence of archaeological sites has to be evaluated against postulates of biological models such as the 'cooking hypothesis' or the 'social brain', and questions of social cooperation and the origins of language. Although much remains to be worked out, it is plain that fire control has had a major impact in the course of human evolution.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Authors.

  2. The discovery of fire by humans: a long and convoluted process

    PubMed Central

    2016-01-01

    Numbers of animal species react to the natural phenomenon of fire, but only humans have learnt to control it and to make it at will. Natural fires caused overwhelmingly by lightning are highly evident on many landscapes. Birds such as hawks, and some other predators, are alert to opportunities to catch animals including invertebrates disturbed by such fires and similar benefits are likely to underlie the first human involvements with fires. Early hominins would undoubtedly have been aware of such fires, as are savanna chimpanzees in the present. Rather than as an event, the discovery of fire use may be seen as a set of processes happening over the long term. Eventually, fire became embedded in human behaviour, so that it is involved in almost all advanced technologies. Fire has also influenced human biology, assisting in providing the high-quality diet which has fuelled the increase in brain size through the Pleistocene. Direct evidence of early fire in archaeology remains rare, but from 1.5 Ma onward surprising numbers of sites preserve some evidence of burnt material. By the Middle Pleistocene, recognizable hearths demonstrate a social and economic focus on many sites. The evidence of archaeological sites has to be evaluated against postulates of biological models such as the ‘cooking hypothesis' or the ‘social brain’, and questions of social cooperation and the origins of language. Although much remains to be worked out, it is plain that fire control has had a major impact in the course of human evolution. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216521

  3. Land use change and the impact on greenhouse gas exchange in north Australian savanna soils

    NASA Astrophysics Data System (ADS)

    Grover, S. P. P.; Livesley, S. J.; Hutley, L. B.; Jamali, H.; Fest, B.; Beringer, J.; Butterbach-Bahl, K.; Arndt, S. K.

    2011-09-01

    Savanna ecosystems are subject to accelerating land use change as human demand for food and forest products increases. Land use change has been shown to both increase and decrease greenhouse gas fluxes from savannas and considerable uncertainty exists about the non-CO2 fluxes from the soil. We measured methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) over a complete wet-dry seasonal cycle at three replicated sites of each of three land uses: savanna, young pasture and old pasture (converted from savanna 5-7 and 25-30 yr ago, respectively) in the Douglas Daly region of northern Australia. The effect of break of season rains at the end of the dry season was investigated with two irrigation experiments. Land use change from savanna to pasture increased net greenhouse gas fluxes from the soil. Pasture sites were a weaker sink for CH4 than savanna sites and, under wet conditions, old pastures turned from being sinks to a significant source of CH4. Nitrous oxide emissions were generally very low, in the range of 0 to 5 μg N2O-N m-2 h-1, and under dry conditions soil uptake of N2O was apparent. Break of season rains produced a small, short lived pulse of N2O up to 20 μg N2O-N m-2 h-1, most evident in pasture soil. Annual cumulative soil CO2 fluxes increased after clearing, with savanna (14.6 t CO2-C ha-1 yr-1) having the lowest fluxes compared to old pasture (18.5 t CO2-C ha-1 yr-1) and young pasture (20.0 t CO2-C ha-1 yr-1). Clearing savanna increased soil-based greenhouse gas emissions from 53 to ~70 t CO2-equivalents, a 30% increase dominated by an increase in soil CO2 emissions and shift from soil CH4 sink to source. Seasonal variation was clearly driven by soil water content, supporting the emerging view that soil water content is a more important driver of soil gas fluxes than soil temperature in tropical ecosystems where temperature varies little among seasons.

  4. Land use change and the impact on greenhouse gas exchange in north Australian savanna soils

    NASA Astrophysics Data System (ADS)

    Grover, S. P. P.; Livesley, S. J.; Hutley, L. B.; Jamali, H.; Fest, B.; Beringer, J.; Butterbach-Bahl, K.; Arndt, S. K.

    2012-01-01

    Savanna ecosystems are subjected to accelerating land use change as human demand for food and forest products increases. Land use change has been shown to both increase and decrease greenhouse gas fluxes from savannas and considerable uncertainty exists about the non-CO2 fluxes from the soil. We measured methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) over a complete wet-dry seasonal cycle at three replicate sites of each of three land uses: savanna, young pasture and old pasture (converted from savanna 5-7 and 25-30 yr ago, respectively) in the Douglas Daly region of Northern Australia. The effect of break of season rains at the end of the dry season was investigated with two irrigation experiments. Land use change from savanna to pasture increased net greenhouse gas fluxes from the soil. Pasture sites were a weaker sink for CH4 than savanna sites and, under wet conditions, old pastures turned from being sinks to a significant source of CH4. Nitrous oxide emissions were generally very low, in the range of 0 to 5 μg N2O-N m-2 h-1, and under dry conditions soil uptake of N2O was apparent. Break of season rains produced a small, short lived pulse of N2O up to 20 μg N2O-N m-2 h-1, most evident in pasture soil. Annual cumulative soil CO2 fluxes increased after clearing, with savanna (14.6 t CO2-C ha-1 yr-1) having the lowest fluxes compared to old pasture (18.5 t CO2-C ha-1 yr-1) and young pasture (20.0 t CO2-C ha-1 yr-1). Clearing savanna increased soil-based greenhouse gas emissions from 53 to ∼ 70 t CO2-equivalents, a 30% increase dominated by an increase in soil CO2 emissions and shift from soil CH4 sink to source. Seasonal variation was clearly driven by soil water content, supporting the emerging view that soil water content is a more important driver of soil gas fluxes than soil temperature in tropical ecosystems where temperature varies little among seasons.

  5. Variation in the outcomes of an ant-plant system: Fire and leaf fungus infection reduce benefits to plants with extrafloral nectaries

    PubMed Central

    Pires, L. P.; Del-Claro, K.

    2014-01-01

    Abstract Interactions between species are evolutionary malleable and may suffer changes in small timescales. Environmental disturbances, such as fire, can deeply affect species interactions, but how they influence the outcome of a mutualistic interaction has yet to be studied. In order to test the hypothesis that an environmental disturbance, in this case fire, may produce differences in the outcome of the association of ants with the extrafloral-nectaries-bearing plant Qualea multiflora Mart. (Myrtales: Vochysiaceae), a previous study was replicated, but this time after fire incidence, at the same study site and with the same plant species. Eight ant species visited Q. multiflora , and the most abundant genera were Crematogaster , Cephalotes , and Camponotus . Herbivores were found in branches with and without ants with no statistical difference, but foliar herbivory was always higher in branchs where ants were absent. Leaves were infested by fungi, and fungi spots were higher in branches where ants were present. Compared to the previous study, it was clearly observed that ant benefits to Q. multiflora varied over time. The most common ant species still protected leaves against chewing herbivores, but a new kind of leaf damage appeared, namely fungi spots. Data also support that ants may be acting as vectors of fungi spores on plants, as ant visited branches had higher fungus incidence than non-visited branches. Fire is a major source of disturbance in tropical savannas, and we suggest that it can cause strong variation in the outcomes of interactions between ants and plants with extrafloral nectaries in the Brazilian tropical savanna. PMID:25368040

  6. Perspectives on prescribed fire in the south: does ethnicity matter?

    Treesearch

    Siew Hoon Lim; J.M. Bowker; Cassandra Y. Johnson; H. Ken Cordell

    2009-01-01

    Using a household survey and regression methods, we assessed preferences for prescribed fire in the southern United States. We found that the majority of the respondents favored the use of prescribed fire. However, we observed pronounced racial variation in opinions on prescribed fire and its side effects. African Americans and Hispanics were less supportive and were...

  7. Ecological release in lizard assemblages of neotropical savannas.

    PubMed

    Mesquita, Daniel Oliveira; Colli, Guarino Rinaldi; Vitt, Laurie J

    2007-08-01

    We compare lizard assemblages of Cerrado and Amazonian savannas to test the ecological release hypothesis, which predicts that niche dimensions and abundance should be greater in species inhabiting isolated habitat patches with low species richness (Amazonian savannas and isolated Cerrado patches) when compared with nonisolated areas in central Cerrado with greater species richness. We calculated microhabitat and diet niche breadths with data from 14 isolated Cerrado patches and Amazon savanna areas and six central Cerrado populations. Morphological data were compared using average Euclidean distances, and lizard abundance was estimated using the number of lizards captured in pitfall traps over an extended time period. We found no evidence of ecological release with respect to microhabitat use, suggesting that historical factors are better microhabitat predictors than ecological factors. However, data from individual stomachs indicate that ecological release occurs in these areas for one species (Tropidurus) but not others (Ameiva ameiva, Anolis, Cnemidophorus, and Micrablepharus), suggesting that evolutionary lineages respond differently to environmental pressures, with tropidurids being more affected by ecological factors than polychrotids, teiids, and gymnophthalmids. We found no evidence that ecological release occurs in these areas using morphological data. Based on abundance data, our results indicate that the ecological release (density compensation) hypothesis is not supported: lizard species are not more abundant in isolated areas than in nonisolated areas. The ecology of species is highly conservative, varying little from assemblage to assemblage. Nevertheless, increases in niche breadth for some species indicate that ecological release occurs as well.

  8. Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient

    USGS Publications Warehouse

    Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B.

    2010-01-01

    Given bees' central effect on vegetation communities, it is important to understand how and why bee distributions vary across ecological gradients. We examined how plant community composition, plant diversity, nesting suitability, canopy cover, land use, and fire history affected bee distribution across an open-forest gradient in northwest Indiana, USA, a gradient similar to the historic Midwest United States landscape mosaic. When considered with the other predictors, plant community composition was not a significant predictor of bee community composition. Bee abundance was negatively related to canopy cover and positively to recent fire frequency, bee richness was positively related to plant richness and abundance of potential nesting resources, and bee community composition was significantly related to plant richness, soil characteristics potentially related to nesting suitability, and canopy cover. Thus, bee abundance was predicted by a different set of environmental characteristics than was bee species richness, and bee community composition was predicted, in large part, by a combination of the significant predictors of bee abundance and richness. Differences in bee community composition along the woody vegetation gradient were correlated with relative abundance of oligolectic, or diet specialist, bees. Because oligoleges were rarer than diet generalists and were associated with open habitats, their populations may be especially affected by degradation of open habitats. More habitat-specialist bees were documented for open and forest/scrub habitats than for savanna/woodland habitats, consistent with bees responding to habitats of intermediate woody vegetation density, such as savannas, as ecotones rather than as distinct habitat types. Similarity of bee community composition, similarity of bee abundance, and similarity of bee richness between sites were not significantly related to proximity of sites to each other. Nestedness analysis indicated that species

  9. Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form.

    PubMed

    Rossatto, Davi Rodrigo; Franco, Augusto Cesar

    2017-04-01

    The assessment of leaf strategies has been a common theme in ecology, especially where multiple sources of environmental constraints (fire, seasonal drought, nutrient-poor soils) impose a strong selection pressure towards leaf functional diversity, leading to inevitable tradeoffs among leaf traits, and ultimately to niche segregation among coexisting species. As diversification on leaf functional strategies is dependent on integration at whole plant level, we hypothesized that regardless of phylogenetic relatedness, leaf trait functional syndromes in a multivariate space would be associated with the type of growth form. We measured traits related to leaf gas exchange, structure and nutrient status in 57 coexisting species encompassing all Angiosperms major clades, in a wide array of plant morphologies (trees, shrubs, sub-shrubs, herbs, grasses and palms) in a savanna of Central Brazil. Growth forms differed in mean values for the studied functional leaf traits. We extracted 4 groups of functional typologies: grasses (elevated leaf dark respiration, light-saturated photosynthesis on a leaf mass and area basis, lower values of leaf Ca and Mg), herbs (high values of SLA, leaf N and leaf Fe), palms (high values of stomatal conductance, leaf transpiration and leaf K) and woody eudicots (sub-shrubs, shrubs and trees; low SLA and high leaf Ca and Mg). Despite the large range of variation among species for each individual trait and the independent evolutionary trajectory of individual species, growth forms were strongly associated with particular leaf trait combinations, suggesting clear evolutionary constraints on leaf function for morphologically similar species in savanna ecosystems.

  10. Size-dependent enhancement of water relations during post-fire resprouting.

    PubMed

    Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A

    2014-04-01

    In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.

  11. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    Fire is a global phenomenon and tightly interacts with the biosphere and climate. This study provides the first quantitative assessment of fire’s influence on the global land air temperature during the 20th century through its impact on terrestrial ecosystems. We quantify the impact of fire by comparing 20th century fire-on and fire-off simulations with the Community Earth System Model (CESM) as the model platform. Here, results show that fire-induced changes in terrestrial ecosystems increased global land surface air temperature by 0.04 °C. Such changes significantly warmed the tropical savannas and southern Asia mainly by reducing latent heat flux, but cooledmore » Southeast China by enhancing the East Asian winter monsoon. 20% of the early 20th century global land warming can be attributed to fire-induced changes in terrestrial ecosystems, providing a new mechanism for explaining the poorly-understood climate change.« less

  12. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems

    DOE PAGES

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2017-04-03

    Fire is a global phenomenon and tightly interacts with the biosphere and climate. This study provides the first quantitative assessment of fire’s influence on the global land air temperature during the 20th century through its impact on terrestrial ecosystems. We quantify the impact of fire by comparing 20th century fire-on and fire-off simulations with the Community Earth System Model (CESM) as the model platform. Here, results show that fire-induced changes in terrestrial ecosystems increased global land surface air temperature by 0.04 °C. Such changes significantly warmed the tropical savannas and southern Asia mainly by reducing latent heat flux, but cooledmore » Southeast China by enhancing the East Asian winter monsoon. 20% of the early 20th century global land warming can be attributed to fire-induced changes in terrestrial ecosystems, providing a new mechanism for explaining the poorly-understood climate change.« less

  13. Future fire emissions associated with projected land use change in Indonesia

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; DeFries, R. S.; Pennington, D.; Ordway, E.; Nelson, E.; Mickley, L.; Koplitz, S.

    2013-12-01

    Indonesia has experienced rapid land use change in past decades as forests and peatlands are cleared for agricultural development, including oil palm and timber plantations1. Fires are the predominant method of clearing and the subsequent emissions can have important public health impacts by contributing to regional particulate matter and ozone concentrations2. This regional haze was dramatically seen in Singapore during June 2013 due to the transport of emissions from fires in Sumatra. Our study is part of a larger project that will quantify the public health impact of various land use development scenarios for Sumatra over the coming decades. Here, we describe how we translate economic projections of land use change into future fire emissions inventories for GEOS-Chem atmospheric transport simulations. We relate past GFED3 fire emissions3 to detailed 1-km land use change data and MODIS fire radiative power observations, and apply these relationships to future estimates of land use change. The goal of this interdisciplinary project is to use modeling results to interact with policy makers and influence development strategies in ways that protect public health. 1Miettinen et al. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol.,17 (7), 2261-2270. 2Marlier et al. 2013. El Niño and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change, 3, 131-136. 3van der Werf et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Physics, 10 (23), 11707-11735.

  14. More an Exception Than the Rule: Fire has Little Effect on the Magnetic Properties of Loessic Soils Along the Prairie - Forest Ecotone in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Geiss, C. E.

    2016-12-01

    The analysis of a soil profile in western Iowa suggests that forest fires along the prairie-forest ecotone have little effect on the overall magnetic properties of the soil. The studied soil profile is located at Hitchcock Nature Center near Honey Creek, Iowa (41°25'15"N, -95°51'56"W) and developed in a narrow ravine in the Iowa Loess Hills. The surrounding vegetation consists of hardwoods, while the surrounding ridges are vegetated by oak savanna. The area has been subjected to prescribed fires for almost 20 years and is estimated to have burned approximately every 5 years in pre-European times [Stambaugh et al., 2006]. The profile contains several buried soils interspersed by often rapidly deposited loess. Paleosols consist of strongly developed A-horizons but show only weak magnetic enhancement in terms of magnetic susceptibility or ARM/IRM ratios. In a plot of χARM/χFD vs. χARM/χ, all but one sample plot far from the region that is generally associated with past burning [Oldfield and Crowther, 2007]. As shown earlier for prairie environments, fires in oak savanna do not seem to burn hot enough to cause widespread magnetic mineral transformations. Oldfield, F., and J. Crowther (2007), Establishing fire incidence in temperate soils using magnetic measurements, Paleogeogr. Paleoclim. Paleoecol., 249, 362-369. Stambaugh, M. C., R. P. Guyette, E. R. McMurry, and D. C. Dey (2006), Fire history at the eastern Great Plains margin, Missouri River Loess Hills, Great Plains Research, 16, 149-159.

  15. Effects of a natural fire on a Kuenzler's hedgehog cactus (Echinocereus fendleri var. kuenzleri) and nylon hedgehog cactus (Echinocereus viridiflorus) population in Southeastern New Mexico

    Treesearch

    Robert C. Sivinski

    2007-01-01

    During the summer of 1992, a natural wildfire burned 250 acres of juniper savanna on Rawhide Ridge in the Guadalupe Mountains of southeastern New Mexico. This fire burned through the center of a Kuenzler's hedgehog cactus population. This threatened cactus is locally sympatric with the more abundant nylon hedgehog cactus, which has similar growth form and stature...

  16. Modeling the Optical Properties of Biomass Burning Aerosols: Young Smoke Aerosols From Savanna Fires and Comparisons to Observations from SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Matichuk, R. I.; Smith, J. A.; Toon, O. B.; Colarso, P. R.

    2006-01-01

    Annually, farmers in southern Africa manage their land resources and prepare their fields for cultivation by burning crop residual debris, with a peak in the burning season occurring during August and September. The emissions from these fires in southern Africa are among the greatest from fires worldwide, and the gases and aerosol particles produced adversely affect air quality large distances from their source regions, and can even be tracked in satellite imagery as they cross the Atlantic and Pacific Ocean basins. During August and September 2000 an international group of researchers participating in the Southern African Regional Science Initiate field experiment (SAFARI 2000) made extensive ground-based, airborne, and satellite measurements of these gases and aerosols in order to quantify their amounts and effects on Earth's atmosphere. In this study we interpreted the measurements of smoke aerosol particles made during SAFARI 2000 in order to better represent these particles in a numerical model simulating their transport and fate. Typically, smoke aerosols emitted from fires are concentrated by mass in particles about 0.3 micrometers in diameter (1,000,000 micrometers = 1 meter, about 3 feet); for comparison, the thickness of a human hair is about 50 micrometers, almost 200 times as great. Because of the size of these particles, at the surface they can be easily inhaled into the lungs, and in high concentrations have deleterious health effects on humans. Additionally, these particles reflect and absorb sunlight, impacting both visibility and the balance of sunlight reaching -Earth's surface, and ultimately play a role in modulating Earth's climate. Because of these important effects, it is important that numerical models used to estimate Earth's climate response to changes in atmospheric composition accurately represent the quantity and evolution of smoke particles. In our model, called the Community Aerosol and Radiation Model for Atmospheres (CARMA) we used

  17. Songbirds in managed and non-managed savannas and woodlands in the central hardwoods region

    Treesearch

    Frank R., III Thompson; Jennifer L. Reidy; Sarah W. Kendrick; Jane A. Fitzgerald

    2012-01-01

    We know little about the response of birds to savanna and woodland restoration in the Ozarks or how important such habitats are to birds of conservation concern. Bird species such as red-headed woodpecker, prairie warbler, field sparrow, and blue-winged warbler are species of regional concern, and declines of these species may be due to historical declines in savannas...

  18. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity.

    PubMed

    Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S

    2015-05-01

    Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has

  19. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity

    PubMed Central

    Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S

    2015-01-01

    Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has

  20. Evaluation of DGVMs in tropical areas: linking patterns of vegetation cover, climate and fire to ecological processes

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara

    2017-04-01

    Many current Dynamic Global Vegetation Models (DGVMs), including those incorporated into Earth System Models (ESMs), are able to realistically reproduce the distribution of the most worldwide biomes. However, they display high uncertainty in predicting the forest, savanna and grassland distributions and the transitions between them in tropical areas. These biomes are the most productive terrestrial ecosystems, and owing to their different biogeophysical and biogeochemical characteristics, future changes in their distributions could have also impacts on climate states. In particular, expected increasing temperature and CO2, modified precipitation regimes, as well as increasing land-use intensity could have large impacts on global biogeochemical cycles and precipitation, affecting the land-climate interactions. The difficulty of the DGVMs in simulating tropical vegetation, especially savanna structure and occurrence, has been associated with the way they represent the ecological processes and feedbacks between biotic and abiotic conditions. The inclusion of appropriate ecological mechanisms under present climatic conditions is essential for obtaining reliable future projections of vegetation and climate states. In this work we analyse observed relationships of tree and grass cover with climate and fire, and the current ecological understanding of the mechanisms driving the forest-savanna-grassland transition in Africa to evaluate the outcomes of a current state-of-the-art DGVM and to assess which ecological processes need to be included or improved within the model. Specifically, we analyse patterns of woody and herbaceous cover and fire return times from MODIS satellite observations, rainfall annual average and seasonality from TRMM satellite measurements and tree phenology information from the ESA global land cover map, comparing them with the outcomes of the LPJ-GUESS DGVM, also used by the EC-Earth global climate model. The comparison analysis with the LPJ

  1. Influences of prior wildfires on vegetation response to subsequent fire in a reburned Southwestern landscape.

    PubMed

    Coop, Jonathan D; Parks, Sean A; McClernan, Sarah R; Holsinger, Lisa M

    2016-03-01

    Large and severe wildfires have raised concerns about the future of forested landscapes in the southwestern United States, especially under repeated burning. In 2011, under extreme weather and drought conditions, the Las Conchas fire burned over several previous burns as well as forests not recently exposed to fire. Our purpose was to examine the influences of prior wildfires on plant community composition and structure, subsequent burn severity, and vegetation response. To assess these relationships, we used satellite-derived measures of burn severity and a nonmetric multidimensional scaling of pre- and post- Las Conchas field samples. Earlier burns were associated with shifts from forested sites to open savannas and meadows, oak scrub, and ruderal communities. These non-forested vegetation types exhibited both resistance to subsequent fire, measured by reduced burn severity, and resilience to reburning, measured by vegetation recovery relative to forests not exposed to recent prior fire. Previous shifts toward non-forested states were strongly reinforced by reburning. Ongoing losses of forests and their ecological values confirm the need for restoration interventions. However, given future wildfire and climate projections, there may also be opportunities presented by transformations toward fire-resistant and resilient vegetation types within portions of the landscape.

  2. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  3. The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae)

    USGS Publications Warehouse

    King, S.E.; Grace, J.B.

    2000-01-01

    Cogongrass is a nonindigenous species perceived to threaten native communities of the southeastern United States through modification of species composition and alteration of community processes. To examine how gap size and disturbance type influence the invasion of wet pine savannas by cogongrass, we performed three field experiments to evaluate the response of cogongrass seeds and transplanted seedlings to four different gap sizes, four types of site disturbance, and recent burning of savanna vegetation. Cogongrass germinated, survived, and grew in all gap sizes, from 0 to 100 cm in diameter. Similarly, disturbance type had no effect on germination or seedling and transplant survival. Tilling, however, significantly enhanced transplanted seedling growth, resulting in a tenfold increase in biomass over the other disturbance types. Seedling survival to 1 and 2 mo was greater in burned savanna than unburned savanna, although transplant survival and growth were not affected by burning. Results of this study suggest that cogongrass can germinate, survive, and grow in wet pine savanna communities regardless of gap size or type of disturbance, including burning. Burning of savanna vegetation may enhance establishment by improving early seedling survival, and soil disturbance can facilitate invasion of cogongrass by enhancing plant growth.

  4. The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae).

    PubMed

    King, S E; Grace, J B

    2000-09-01

    Cogongrass is a nonindigenous species perceived to threaten native communities of the southeastern United States through modification of species composition and alteration of community processes. To examine how gap size and disturbance type influence the invasion of wet pine savannas by cogongrass, we performed three field experiments to evaluate the response of cogongrass seeds and transplanted seedlings to four different gap sizes, four types of site disturbance, and recent burning of savanna vegetation. Cogongrass germinated, survived, and grew in all gap sizes, from 0 to 100 cm in diameter. Similarly, disturbance type had no effect on germination or seedling and transplant survival. Tilling, however, significantly enhanced transplanted seedling growth, resulting in a tenfold increase in biomass over the other disturbance types. Seedling survival to 1 and 2 mo was greater in burned savanna than unburned savanna, although transplant survival and growth were not affected by burning. Results of this study suggest that cogongrass can germinate, survive, and grow in wet pine savanna communities regardless of gap size or type of disturbance, including burning. Burning of savanna vegetation may enhance establishment by improving early seedling survival, and soil disturbance can facilitate invasion of cogongrass by enhancing plant growth.

  5. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  6. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems

    Treesearch

    Guang You Hao; William A. Hoffmann; Fabian G. Scholz; Sandra J. Bucci; Frederick C. Meinzer; Augusto C. Franco; Kun Fang Cao; Guillermo Goldstein

    2008-01-01

    Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna...

  7. Tiger-Moths in Savannas in Eastern Amazon: First Assessment of Diversity and Seasonal Aspects.

    PubMed

    Valente, D M P; Zenker, M M; Teston, J A

    2018-01-06

    Biodiversity knowledge on insects is urgently needed due to the ever growing demand for food and the consequent deforestation process and loss of natural habitats in many understudied tropical regions. In this paper, we describe the outcome of a biodiversity research on tiger moths performed for the first time in a poorly studied Amazonian landscape-the savanna. We sampled tiger moths monthly with UV automatic light traps for 12 consecutive months in two sampling points in an area of savanna in eastern Amazon, and we compared our results to previously available data for eastern Amazon. We found a total of 91 species of which 80 were identified to species level. The most species-rich subtribes were Phaegopterina and Euchromiina with 32 species each. Species richness and abundance did not differ among sampling sites, but in general the species richness was higher during the dry season while abundance was higher during the wet season. This seasonal diversity pattern differs from the most common patterns recorded for savannas in other parts of the world. The species composition also changed in wet and dry seasons and correlated significantly with temperature and relative humidity. Our results suggest that the alpha diversity of the Amazonian savannas in our sampling area is lower than that in nearby rain forests and similar to that in agriculturally disturbed areas surrounded by rain forests. However, the species composition differed considerably from natural and disturbed areas. These results highlight the need of basic biodiversity surveys of insects in Amazonian savannas.

  8. Restoration of midwestern oak woodlands and savannas

    Treesearch

    Dan C. Dey; John M. Kabrick

    2015-01-01

    There are various definitions for savanna and woodland in the ecological literature. Characteristic elements of each community are broadly defined and often overlap according to the authorities (Curtis 1959; Nuzzo 1986; Nelson 2010). Some confusion is inevitable when categorizing what is in reality a continuum of states from prairie to forest in which there can be much...

  9. Triangulating the provenance of African elephants using mitochondrial DNA

    PubMed Central

    Ishida, Yasuko; Georgiadis, Nicholas J; Hondo, Tomoko; Roca, Alfred L

    2013-01-01

    African elephant mitochondrial (mt) DNA follows a distinctive evolutionary trajectory. As females do not migrate between elephant herds, mtDNA exhibits low geographic dispersal. We therefore examined the effectiveness of mtDNA for assigning the provenance of African elephants (or their ivory). For 653 savanna and forest elephants from 22 localities in 13 countries, 4258 bp of mtDNA was sequenced. We detected eight mtDNA subclades, of which seven had regionally restricted distributions. Among 108 unique haplotypes identified, 72% were found at only one locality and 84% were country specific, while 44% of individuals carried a haplotype detected only at their sampling locality. We combined 316 bp of our control region sequences with those generated by previous trans-national surveys of African elephants. Among 101 unique control region haplotypes detected in African elephants across 81 locations in 22 countries, 62% were present in only a single country. Applying our mtDNA results to a previous microsatellite-based assignment study would improve estimates of the provenance of elephants in 115 of 122 mis-assigned cases. Nuclear partitioning followed species boundaries and not mtDNA subclade boundaries. For taxa such as elephants in which nuclear and mtDNA markers differ in phylogeography, combining the two markers can triangulate the origins of confiscated wildlife products. PMID:23798975

  10. Plant composition in oak savanna and woodland restoration at Prairie Fork Conservation Area in Missouri

    Treesearch

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; Jamie Coe; Warren Taylor

    2007-01-01

    The wooded areas of the Prairie Fork Conservation Area in central Missouri are typical of the oak/hickory forest/prairie transition zone that will require active management to restore pre-settlement, grass dominated savannas and open woodlands to improve habitat for wildlife. We initiated a management program to restore savannas and woodlands by reducing the midstory (...

  11. Near real-time estimation of burned area using VIIRS 375 m active fire product

    NASA Astrophysics Data System (ADS)

    Oliva, P.; Schroeder, W.

    2016-12-01

    Every year, more than 300 million hectares of land burn globally, causing significant ecological and economic consequences, and associated climatological effects as a result of fire emissions. In recent decades, burned area estimates generated from satellite data have provided systematic global information for ecological analysis of fire impacts, climate and carbon cycle models, and fire regimes studies, among many others. However, there is still need of near real-time burned area estimations in order to assess the impacts of fire and estimate smoke and emissions. The enhanced characteristics of the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m channels on board the Suomi National Polar-orbiting Partnesship (S-NPP) make possible the use of near real-time active fire detection data for burned area estimation. In this study, consecutive VIIRS 375 m active fire detections were aggregated to produce the VIIRS 375 m burned area (BA) estimation over ten ecologically diverse study areas. The accuracy of the BA estimations was assessed by comparison with Landsat-8 supervised burned area classification. The performance of the VIIRS 375 m BA estimates was dependent on the ecosystem characteristics and fire behavior. Higher accuracy was observed in forested areas characterized by large long-duration fires, while grasslands, savannas and agricultural areas showed the highest omission and commission errors. Complementing those analyses, we performed the burned area estimation of the largest fires in Oregon and Washington states during 2015 and the Fort McMurray fire in Canada 2016. The results showed good agreement with NIROPs airborne fire perimeters proving that the VIIRS 375 m BA estimations can be used for near real-time assessments of fire effects.

  12. Nocturnal behavior by a diurnal ape, the West African chimpanzee (Pan troglodytes verus), in a savanna environment at Fongoli, Senegal.

    PubMed

    Pruetz, Jill D

    2018-02-08

    I report on the nocturnal behavior of Fongoli chimpanzees in a savanna mosaic during different seasons and lunar phases and test the hypothesis that hot daytime temperatures influence activity at night. I predicted that apes would be more active at night during periods of greater lunar illuminosity given diurnal primates' lack of visual specializations for low-light conditions and in dry season months when water scarcity exacerbated heat stress. I observed chimpanzees for 403 hrs on 40 nights between 2007 and 2013 and categorized their activity as social, movement, or vocalization. I scored their activity as occurring after moonrise or before moonset and considered the influence of moon phase (fuller versus darker phases) as well as season on chimpanzee nocturnal behavior in the analyses. Results indicate that apes were more active after moonrise or before moonset during fuller moon phases in the dry season but not the wet season. Most night-time activity involved movement (travel or forage), followed by social behavior, and long-distance vocal communication. Animals in highly seasonal habitats often exhibit thermoregulatory adaptations but, like other primates, chimpanzees lack physiological mechanisms to combat thermal stress. This study provides evidence that they may exhibit behaviors that allow them to avoid high temperatures in a savanna environment, such as feeding and socializing at night during the hottest time of year and in the brightest moon phases. The results support theories invoking thermal stress as a selective pressure for hominins in open environments where heat would constrain temporal foraging niches, and suggest an adaptability of sleeping patterns in response to external factors. © 2018 Wiley Periodicals, Inc.

  13. Techniques for spatio-temporal analysis of vegetation fires in the topical belt of Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brivio, P.A.; Ober, G.; Koffi, B.

    1995-12-31

    Biomass burning of forests and savannas is a phenomenon of continental or even global proportions, capable of causing large scale environmental changes. Satellite space observations, in particular from NOAA-AVHRR GAC data, are the only source of information allowing one to document burning patterns at regional and continental scale and over long periods of time. This paper presents some techniques, such as clustering and rose-diagram, useful in the spatial-temporal analysis of satellite derived fires maps to characterize the evolution of spatial patterns of vegetation fires at regional scale. An automatic clustering approach is presented which enables one to describe and parameterizemore » spatial distribution of fire patterns at different scales. The problem of geographical distribution of vegetation fires with respect to some location of interest, point or line, is also considered and presented. In particular rose-diagrams are used to relate fires patterns to some reference point, as experimental sites of tropospheric chemistry measurements. Different temporal data-sets in the tropical belt of Africa, covering both Northern and Southern Hemisphere dry seasons, using these techniques were analyzed and showed very promising results when compared with data from rain chemistry studies at different sampling sites in the equatorial forest.« less

  14. Dynamics of Vegetatin Indices in Tropical and Subtropical Savannas Defined by Ecoregions and Moderate Resolution Imaging Spectoradiometer (MODIS) Land Cover

    NASA Technical Reports Server (NTRS)

    Hill, Michael J.; Roman, Miguel O.; Schaaf, Crytal B.

    2011-01-01

    In this study, we explored the capacity of vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance products to characterize global savannas in Australia, Africa and South America. The savannas were spatially defined and subdivided using the World Wildlife Fund (WWF) global ecoregions and MODIS land cover classes. Average annual profiles of Normalized Difference Vegetation Index, shortwave infrared ratio (SWIR32), White Sky Albedo (WSA) and the Structural Scattering Index (SSI) were created. Metrics derived from average annual profiles of vegetation indices were used to classify savanna ecoregions. The response spaces between vegetation indices were used to examine the potential to derive structural and fractional cover measures. The ecoregions showed distinct temporal profiles and formed groups with similar structural properties, including higher levels of woody vegetation, similar forest savanna mixtures and similar grassland predominance. The potential benefits from the use of combinations of indices to characterize savannas are discussed.

  15. Cryptic herbivores mediate the strength and form of ungulate impacts on a long-lived savanna tree.

    PubMed

    Maclean, Janet E; Goheen, Jacob R; Doak, Daniel F; Palmer, Todd M; Young, Truman P

    2011-08-01

    Plant populations are regulated by a diverse array of herbivores that impose demographic filters throughout their life cycle. Few studies, however, simultaneously quantify the impacts of multiple herbivore guilds on the lifetime performance or population growth rate of plants. In African savannas, large ungulates (such as elephants) are widely regarded as important drivers of woody plant population dynamics, while the potential impacts of smaller, more cryptic herbivores (such as rodents) have largely been ignored. We combined a large-scale ungulate exclusion experiment with a five-year manipulation of rodent densities to quantify the impacts of three herbivore guilds (wild ungulates, domestic cattle, and rodents) on all life stages of a widespread savanna tree. We utilized demographic modeling to reveal the overall role of each guild in regulating tree population dynamics, and to elucidate the importance of different demographic hurdles in driving population growth under contrasting consumer communities. We found that wild ungulates dramatically reduced population growth, shifting the population trajectory from increase to decline, but that the mechanisms driving these effects were strongly mediated by rodents. The impact of wild ungulates on population growth was predominantly driven by their negative effect on tree reproduction when rodents were excluded, and on adult tree survival when rodents were present. By limiting seedling survival, rodents also reduced population growth; however, this effect was strongly dampened where wild ungulates were present. We suggest that these complex interactions between disparate consumer guilds can have important consequences for the population demography of long-lived species, and that the effects of a single consumer group are often likely to vary dramatically depending on the larger community in which interactions are embedded.

  16. Satellite Remote Sensing of Fires, Smoke and Regional Radiative Energy Budgets

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Barbieri, Kristine; Welch, Ronald M.; Yang, Shi-Keng

    1997-01-01

    Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 and 1986 biomass burning season. The results are characterized for four major eco-systems, namely: (1) Tropical Rain Forest (TRF), (2) Tropical Broadleaf Seasonal (TBS), (3) Mild/Warm/Hot Grass/Shrub (MGS), and (4) Savanna/Grass and Seasonal Woods (SGW). Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment [ERBE) data, the direct regional radiative forcing of biomass burning aerosols are computed. The results show that more than 70% of the fires occur in the MGS and SGW eco-systems due to agricultural practices. The smoke generated from biomass burning has negative net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires have mean net radiative forcing values ranging between -25.6 to -33.9 W/sq m for 1985 and between -12.9 to -40.8 W/sq m for 1986. These results confirm that the regional net radiative impact of biomass burning is one of cooling.

  17. Will Elephants Soon Disappear from West African Savannahs?

    PubMed Central

    Bouché, Philippe; Douglas-Hamilton, Iain; Wittemyer, George; Nianogo, Aimé J.; Doucet, Jean-Louis; Lejeune, Philippe; Vermeulen, Cédric

    2011-01-01

    Precipitous declines in Africa's native fauna and flora are recognized, but few comprehensive records of these changes have been compiled. Here, we present population trends for African elephants in the 6,213,000 km2 Sudano-Sahelian range of West and Central Africa assessed through the analysis of aerial and ground surveys conducted over the past 4 decades. These surveys are focused on the best protected areas in the region, and therefore represent the best case scenario for the northern savanna elephants. A minimum of 7,745 elephants currently inhabit the entire region, representing a minimum decline of 50% from estimates four decades ago for these protected areas. Most of the historic range is now devoid of elephants and, therefore, was not surveyed. Of the 23 surveyed elephant populations, half are estimated to number less than 200 individuals. Historically, most populations numbering less than 200 individuals in the region were extirpated within a few decades. Declines differed by region, with Central African populations experiencing much higher declines (−76%) than those in West Africa (−33%). As a result, elephants in West Africa now account for 86% of the total surveyed. Range wide, two refuge zones retain elephants, one in West and the other in Central Africa. These zones are separated by a large distance (∼900 km) of high density human land use, suggesting connectivity between the regions is permanently cut. Within each zone, however, sporadic contacts between populations remain. Retaining such connectivity should be a high priority for conservation of elephants in this region. Specific corridors designed to reduce the isolation of the surveyed populations are proposed. The strong commitment of governments, effective law enforcement to control the illegal ivory trade and the involvement of local communities and private partners are all critical to securing the future of elephants inhabiting Africa's northern savannas. PMID:21731620

  18. Restoration of temperate savannas and woodlands [Chapter 11

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  19. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon.

    PubMed

    Domingues, Tomas Ferreira; Ishida, F Yoko; Feldpausch, Ted R; Grace, John; Meir, Patrick; Saiz, Gustavo; Sene, Olivier; Schrodt, Franziska; Sonké, Bonaventure; Taedoumg, Herman; Veenendaal, Elmar M; Lewis, Simon; Lloyd, Jon

    2015-07-01

    Photosynthesis/nutrient relationships of proximally growing forest and savanna trees were determined in an ecotonal region of Cameroon (Africa). Although area-based foliar N concentrations were typically lower for savanna trees, there was no difference in photosynthetic rates between the two vegetation formation types. Opposite to N, area-based P concentrations were-on average-slightly lower for forest trees; a dependency of photosynthetic characteristics on foliar P was only evident for savanna trees. Thus savanna trees use N more efficiently than their forest counterparts, but only in the presence of relatively high foliar P. Along with some other recent studies, these results suggest that both N and P are important modulators of woody tropical plant photosynthetic capacities, influencing photosynthetic metabolism in different ways that are also biome specific. Attempts to find simple unifying equations to describe woody tropical vegetation photosynthesis-nutrient relationships are likely to meet with failure, with ecophysiological distinctions between forest and savanna requiring acknowledgement.

  20. Greenhouse gas exchange in West African savanna ecosystems - how important are emissions from termite mounds?

    NASA Astrophysics Data System (ADS)

    Brümmer, C.; Brüggemann, N.

    2012-04-01

    Savannas cover large areas of the Earth's surface and play an important role in global carbon and nitrogen cycling. In this study, we present the soil-atmosphere exchange of N2O, CH4, and CO2 during two field campaigns throughout the growing seasons 2005 and 2006 at a natural savanna site that was not subject to human disturbances except for annual burning, and four agricultural sites planted with sorghum (n=2), cotton and peanut in Burkina Faso. The annual N2O emission of the nature reserve site amounted to 0.52 kg N2O-N ha-1 yr-1 in 2005 and to 0.67 kg N2O-N ha-1 yr-1 in 2006, whereas the calculated average annual N2O release of the crop sites was only 0.19 and 0.20 kg N2O-N ha-1 yr-1 in 2005 and 2006, respectively. As a result of a temporal up-scaling approach, a lower bound of annual N2O release could be given for two fertilized sorghum plots, that is, 0.83 kg N2O-N ha-1 yr-1 for a highly fertilized plot and 0.44 kg N2O-N ha-1 yr-1 for a moderately fertilized plot. During the rainy season both CH4 uptake in the range of up to 20 μg CH4-C m-2 h-1 as well as CH4 emission up to 300 μg CH4-C m-2 h-1 were observed at the nature reserve site, which was on average a CH4 source of 87.4 and 30.8 μg CH4-C m-2 h-1 in 2005 and 2006, respectively. All crop sites were on average weak CH4 sinks without significant seasonal variation. Uptake rates ranged between 2.5 and 8.7 μg CH4-C m-2 h-1. Occasionally very low net CH4 emission was observed after heavy rainfall events. Mean annual CH4 rates could be estimated to 2.48 kg CH4-C ha-1 yr-1 and -0.68 kg CH4-C ha-1 yr-1 for the nature reserve site and the crop sites, respectively. Trace gas emissions from termite (Cubitermes fungifaber) mounds that were almost exclusively found at the nature reserve were one order of magnitude higher for N2O and CO2, and two orders of magnitude higher for CH4 than soil emissions of the respective trace gas. Termite N2O, CH4 and CO2 release at the nature reserve contributed only 3.2%, 8.1% and

  1. Mesoscale Modeling of Smoke Particles Distribution and Their Radiative Feedback over Northern Sub-Saharan African Region

    NASA Astrophysics Data System (ADS)

    Yue, Y.; Wang, J.; Ichoku, C. M.; Ellison, L.

    2015-12-01

    Stretching from southern boundary of Sahara to the equator and expanding west to east from Atlantic Ocean coasts to the India Ocean coasts, the northern sub-Saharan African (NSSA) region has been subject to intense biomass burning. Comprised of savanna, shrub, tropical forest and a number of agricultural crops, the extensive fires burn belt covers central and south of NSSA during dry season (from October to March) contributes to one of the highest biomass burning rate per km2 in the world. Due to smoke particles' absorption effects of solar radiation, they can modify the surface and atmosphere temperature and thus change atmospheric stability, height of the boundary layer, regional atmospheric circulation, evaporation rate, cloud formation, and precipitation. Hence, smoke particles emitted from biomass burning over NSSA region has a significant influence to the air quality, weather and climate variability. In this study, the first version of this Fire Energetics and Emissions Research (FEER.v1) emissions of several smoke constituents including light-absorbing organic carbon (OC) and black carbon (BC) are applied to a state-of-science meteorology-chemistry model as NOAA Weather Research and Forecasting Model with Chemistry (WRF-Chem). We analyzed WRF-Chem simulations of surface and vertical distribution of various pollutants and their direct radiative effects in conjunction with satellite observation data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIPSO) to strengthen the importance of combining space measured emission products like FEER.v1 emission inventory with mesoscale model over intense biomass burning region, especially in area where ground-based air-quality and radiation-related observations are limited or absent.

  2. Modeling soil moisture memory in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants

  3. The impact of antecedent fire area on burned area in southern California coastal ecosystems

    USGS Publications Warehouse

    Price, Owen F.; Bradstock, Ross A.; Keeley, Jon E.; Syphard, Alexandra D.

    2012-01-01

    Frequent wildfire disasters in southern California highlight the need for risk reduction strategies for the region, of which fuel reduction via prescribed burning is one option. However, there is no consensus about the effectiveness of prescribed fire in reducing the area of wildfire. Here, we use 29 years of historical fire mapping to quantify the relationship between annual wildfire area and antecedent fire area in predominantly shrub and grassland fuels in seven southern California counties, controlling for annual variation in weather patterns. This method has been used elsewhere to measure leverage: the reduction in wildfire area resulting from one unit of prescribed fire treatment. We found little evidence for a leverage effect (leverage = zero). Specifically our results showed no evidence that wildfire area was negatively influenced by previous fires, and only weak relationships with weather variables rainfall and Santa Ana wind occurrences, which were variables included to control for inter-annual variation. We conclude that this is because only 2% of the vegetation burns each year and so wildfires rarely encounter burned patches and chaparral shrublands can carry a fire within 1 or 2 years after previous fire. Prescribed burning is unlikely to have much influence on fire regimes in this area, though targeted treatment at the urban interface may be effective at providing defensible space for protecting assets. These results fit an emerging global model of fire leverage which position California at the bottom end of a continuum, with tropical savannas at the top (leverage = 1: direct replacement of wildfire by prescribed fire) and Australian eucalypt forests in the middle (leverage ∼ 0.25).

  4. The impact of antecedent fire area on burned area in southern California coastal ecosystems.

    PubMed

    Price, Owen F; Bradstock, Ross A; Keeley, Jon E; Syphard, Alexandra D

    2012-12-30

    Frequent wildfire disasters in southern California highlight the need for risk reduction strategies for the region, of which fuel reduction via prescribed burning is one option. However, there is no consensus about the effectiveness of prescribed fire in reducing the area of wildfire. Here, we use 29 years of historical fire mapping to quantify the relationship between annual wildfire area and antecedent fire area in predominantly shrub and grassland fuels in seven southern California counties, controlling for annual variation in weather patterns. This method has been used elsewhere to measure leverage: the reduction in wildfire area resulting from one unit of prescribed fire treatment. We found little evidence for a leverage effect (leverage = zero). Specifically our results showed no evidence that wildfire area was negatively influenced by previous fires, and only weak relationships with weather variables rainfall and Santa Ana wind occurrences, which were variables included to control for inter-annual variation. We conclude that this is because only 2% of the vegetation burns each year and so wildfires rarely encounter burned patches and chaparral shrublands can carry a fire within 1 or 2 years after previous fire. Prescribed burning is unlikely to have much influence on fire regimes in this area, though targeted treatment at the urban interface may be effective at providing defensible space for protecting assets. These results fit an emerging global model of fire leverage which position California at the bottom end of a continuum, with tropical savannas at the top (leverage = 1: direct replacement of wildfire by prescribed fire) and Australian eucalypt forests in the middle (leverage ~ 0.25). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Early recruitment responses to interactions between frequent fires, nutrients, and herbivory in the southern Amazon.

    PubMed

    Massad, Tara Joy; Balch, Jennifer K; Mews, Cândida Lahís; Porto, Pábio; Marimon Junior, Ben Hur; Quintino, Raimundo Mota; Brando, P M; Vieira, Simone A; Trumbore, Susan E

    2015-07-01

    Understanding tropical forest diversity is a long-standing challenge in ecology. With global change, it has become increasingly important to understand how anthropogenic and natural factors interact to determine diversity. Anthropogenic increases in fire frequency are among the global change variables affecting forest diversity and functioning, and seasonally dry forest of the southern Amazon is among the ecosystems most affected by such pressures. Studying how fire will impact forests in this region is therefore important for understanding ecosystem functioning and for designing effective conservation action. We report the results of an experiment in which we manipulated fire, nutrient availability, and herbivory. We measured the effects of these interacting factors on the regenerative capacity of the ecotone between humid Amazon forest and Brazilian savanna. Regeneration density, diversity, and community composition were severely altered by fire. Additions of P and N + P reduced losses of density and richness in the first year post-fire. Herbivory was most important just after germination. Diversity was positively correlated with herbivory in unburned forest, likely because fire reduced the number of reproductive individuals. This contrasts with earlier results from the same study system in which herbivory was related to increased diversity after fire. We documented a significant effect of fire frequency; diversity in triennially burned forest was more similar to that in unburned than in annually burned forest, and the community composition of triennially burned forest was intermediate between unburned and annually burned areas. Preventing frequent fires will therefore help reduce losses in diversity in the southern Amazon's matrix of human-altered landscapes.

  6. Biomass Burning, Land-Cover Change, and the Hydrological Cycle in Northern Sub-Saharan Africa

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Ellison, Luke T.; Willmot, K. Elena; Matsui, Toshihisa; Dezfuli, Amin K.; Gatebe, Charles K.; Wang, Jun; Wilcox, Eric M.; Lee, Jejung; Adegoke, Jimmy; hide

    2016-01-01

    The Northern Sub-Saharan African (NSSA) region, which accounts for 20%-25%of the global carbon emissions from biomass burning, also suffers from frequent drought episodes and other disruptions to the hydrological cycle whose adverse societal impacts have been widely reported during the last several decades. This paper presents a conceptual framework of the NSSA regional climate system components that may be linked to biomass burning, as well as detailed analyses of a variety of satellite data for 2001-2014 in conjunction with relevant model-assimilated variables. Satellite fire detections in NSSA show that the vast majority (greater than 75%) occurs in the savanna and woody savanna land-cover types. Starting in the 2006-2007 burning season through the end of the analyzed data in 2014, peak burning activity showed a net decrease of 2-7% /yr in different parts of NSSA, especially in the savanna regions. However, fire distribution shows appreciable coincidence with land-cover change. Although there is variable mutual exchange of different land cover types, during 2003-2013, cropland increased at an estimated rate of 0.28% /yr of the total NSSA land area, with most of it (0.18% /yr) coming from savanna.During the last decade, conversion to croplands increased in some areas classified as forests and wetlands, posing a threat to these vital and vulnerable ecosystems. Seasonal peak burning is anti-correlated with annual water-cycle indicators such as precipitation, soil moisture, vegetation greenness, and evapotranspiration, except in humid West Africa (5 deg-10 deg latitude),where this anti-correlation occurs exclusively in the dry season and burning virtually stops when monthly mean precipitation reaches 4 mm/d. These results provide observational evidence of changes in land-cover and hydrological variables that are consistent with feedbacks from biomass burning in NSSA, and encourage more synergistic modeling and observational studies that can elaborate this feedback

  7. Grand challenges in developing a predictive understanding of global fire dynamics

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Wiggins, E. B.; Andela, N.; Morton, D. C.; Veraverbeke, S.; van der Werf, G.

    2017-12-01

    High quality satellite observations of burned area and fire thermal anomalies over the past two decades have transformed our understanding of climate, ecosystem, and human controls on the spatial and temporal distribution of landscape fires. The satellite observations provide evidence for a rapid and widespread loss of fire from grassland and savanna ecosystems worldwide. Continued expansion of industrial agriculture suggests that observed declines in global burned area are likely to continue in future decades, with profound consequences for ecosystem function and the habitat of many endangered species. Satellite time series also highlight the importance of El Niño-Southern Oscillation and other climate modes as drivers of interannual variability. In many regions, lead times between climate indices and fire activity are considerable, enabling the development of early warning prediction systems for fire season severity. With the recent availability of high-resolution observations from Suomi NPP, Landsat 8, and Sentinel 2, the field of global fire ecology is poised to make even more significant breakthroughs over the next decade. With these new observations, it may be possible to reduce uncertainties in the spatial pattern of burned area by several fold. It is difficult to overstate the importance of these new data constraints for improving our understanding of fire impacts on human health and radiative forcing of climate change. A key research challenge in this context is to understand how the loss of global burned area will affect magnitude of the terrestrial carbon sink and trends in atmospheric composition. Advances in prognostic fire modeling will require new approaches linking agriculture with landscape fire dynamics. A critical need in this context is the development of predictive models of road networks and other drivers of land fragmentation, and a closer integration of fragmentation information with algorithms predicting fire spread. Concurrently, a better

  8. Restoring a disappearing ecosystem: the longleaf pine savanna

    Treesearch

    Tim Harrington; Karl Miller; Noreen Parks

    2013-01-01

    Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the world’s most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as...

  9. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland.

    PubMed

    Scolforo, Henrique Ferraco; Scolforo, Jose Roberto Soares; Mello, Carlos Rogerio; Mello, Jose Marcio; Ferraz Filho, Antonio Carlos

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna.

  10. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland

    PubMed Central

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna. PMID:26066508

  11. Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna

    Treesearch

    Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; William A. Hoffmann; Frederick C. Meinzer; Augusto C. Franco; Thomas Giambelluca; Fernando Miralles-Wilhelm

    2008-01-01

    Environmental controls of stand-level tree transpiration (E) and seasonal patterns of soil water utilization were studied in five central Brazilian savanna (Cerrado) sites differing in tree density. Tree density of Cerrado vegetation in the study area consistently changes along topographic gradients from ~1,000 trees ha-1 in open savannas (campo...

  12. The effect of carbon credits on savanna land management and priorities for biodiversity conservation.

    PubMed

    Douglass, Lucinda L; Possingham, Hugh P; Carwardine, Josie; Klein, Carissa J; Roxburgh, Stephen H; Russell-Smith, Jeremy; Wilson, Kerrie A

    2011-01-01

    Carbon finance offers the potential to change land management and conservation planning priorities. We develop a novel approach to planning for improved land management to conserve biodiversity while utilizing potential revenue from carbon biosequestration. We apply our approach in northern Australia's tropical savanna, a region of global significance for biodiversity and carbon storage, both of which are threatened by current fire and grazing regimes. Our approach aims to identify priority locations for protecting species and vegetation communities by retaining existing vegetation and managing fire and grazing regimes at a minimum cost. We explore the impact of accounting for potential carbon revenue (using a carbon price of US$14 per tonne of carbon dioxide equivalent) on priority areas for conservation and the impact of explicitly protecting carbon stocks in addition to biodiversity. Our results show that improved management can potentially raise approximately US$5 per hectare per year in carbon revenue and prevent the release of 1-2 billion tonnes of carbon dioxide equivalent over approximately 90 years. This revenue could be used to reduce the costs of improved land management by three quarters or double the number of biodiversity targets achieved and meet carbon storage targets for the same cost. These results are based on generalised cost and carbon data; more comprehensive applications will rely on fine scale, site-specific data and a supportive policy environment. Our research illustrates that the duel objective of conserving biodiversity and reducing the release of greenhouse gases offers important opportunities for cost-effective land management investments.

  13. The Effect of Carbon Credits on Savanna Land Management and Priorities for Biodiversity Conservation

    PubMed Central

    Douglass, Lucinda L.; Possingham, Hugh P.; Carwardine, Josie; Klein, Carissa J.; Roxburgh, Stephen H.; Russell-Smith, Jeremy; Wilson, Kerrie A.

    2011-01-01

    Carbon finance offers the potential to change land management and conservation planning priorities. We develop a novel approach to planning for improved land management to conserve biodiversity while utilizing potential revenue from carbon biosequestration. We apply our approach in northern Australia's tropical savanna, a region of global significance for biodiversity and carbon storage, both of which are threatened by current fire and grazing regimes. Our approach aims to identify priority locations for protecting species and vegetation communities by retaining existing vegetation and managing fire and grazing regimes at a minimum cost. We explore the impact of accounting for potential carbon revenue (using a carbon price of US$14 per tonne of carbon dioxide equivalent) on priority areas for conservation and the impact of explicitly protecting carbon stocks in addition to biodiversity. Our results show that improved management can potentially raise approximately US$5 per hectare per year in carbon revenue and prevent the release of 1–2 billion tonnes of carbon dioxide equivalent over approximately 90 years. This revenue could be used to reduce the costs of improved land management by three quarters or double the number of biodiversity targets achieved and meet carbon storage targets for the same cost. These results are based on generalised cost and carbon data; more comprehensive applications will rely on fine scale, site-specific data and a supportive policy environment. Our research illustrates that the duel objective of conserving biodiversity and reducing the release of greenhouse gases offers important opportunities for cost-effective land management investments. PMID:21935363

  14. Advanced Fire Information System - A real time fire information system for Africa

    NASA Astrophysics Data System (ADS)

    Frost, P. E.; Roy, D. P.

    2012-12-01

    The Council for Scientific and Industrial Research (CSIR) lead by the Meraka Institute and supported by the South African National Space Agency (SANSA) developed the Advanced Fire Information System (AFIS) to provide near real time fire information to a variety of operational and science fire users including disaster managers, fire fighters, farmers and forest managers located across Southern and Eastern Africa. The AFIS combines satellite data with ground based observations and statistics and distributes the information via mobile phone technology. The system was launched in 2004, and Eskom (South Africa' and Africa's largest power utility) quickly became the biggest user and today more than 300 Eskom line managers and support staff receive cell phone and email fire alert messages whenever a wildfire is within 2km of any of the 28 000km of Eskom electricity transmission lines. The AFIS uses Earth observation satellites from NASA and Europe to detect possible actively burning fires and their fire radiative power (FRP). The polar orbiting MODIS Terra and Aqua satellites provide data at around 10am, 15pm, 22am and 3am daily, while the European Geostationary MSG satellite provides 15 minute updates at lower spatial resolution. The AFIS processing system ingests the raw satellite data and within minutes of the satellite overpass generates fire location and FRP based fire intensity information. The AFIS and new functionality are presented including an incident report and permiting system that can be used to differentiate between prescribed burns and uncontrolled wild fires, and the provision of other information including 5-day fire danger forecasts, vegetation curing information and historical burned area maps. A new AFIS mobile application for IOS and Android devices as well as a fire reporting tool are showcased that enable both the dissemination and alerting of fire information and enable user upload of geo tagged photographs and on the fly creation of fire reports

  15. Emissions of trace gases from Australian temperate forest fires: emission factors and dependence on modified combustion efficiency

    NASA Astrophysics Data System (ADS)

    Guérette, Elise-Andrée; Paton-Walsh, Clare; Desservettaz, Maximilien; Smith, Thomas E. L.; Volkova, Liubov; Weston, Christopher J.; Meyer, Carl P.

    2018-03-01

    We characterised trace gas emissions from Australian temperate forest fires through a mixture of open-path Fourier transform infrared (OP-FTIR) measurements and selective ion flow tube mass spectrometry (SIFT-MS) and White cell FTIR analysis of grab samples. We report emission factors for a total of 25 trace gas species measured in smoke from nine prescribed fires. We find significant dependence on modified combustion efficiency (MCE) for some species, although regional differences indicate that the use of MCE as a proxy may be limited. We also find that the fire-integrated MCE values derived from our in situ on-the-ground open-path measurements are not significantly different from those reported for airborne measurements of smoke from fires in the same ecosystem. We then compare our average emission factors to those measured for temperate forest fires elsewhere (North America) and for fires in another dominant Australian ecosystem (savanna) and find significant differences in both cases. Indeed, we find that although the emission factors of some species agree within 20 %, including those of hydrogen cyanide, ethene, methanol, formaldehyde and 1,3-butadiene, others, such as acetic acid, ethanol, monoterpenes, ammonia, acetonitrile and pyrrole, differ by a factor of 2 or more. This indicates that the use of ecosystem-specific emission factors is warranted for applications involving emissions from Australian forest fires.

  16. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems

    NASA Astrophysics Data System (ADS)

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2017-04-01

    Fire is a global phenomenon and tightly interacts with the biosphere and climate. This study provides the first quantitative assessment and understanding of fire’s influence on the global annual land surface air temperature and energy budget through its impact on terrestrial ecosystems. Fire impacts are quantified by comparing fire-on and fire-off simulations with the Community Earth System Model (CESM). Results show that, for the 20th century average, fire-induced changes in terrestrial ecosystems significantly increase global land annual mean surface air temperature by 0.18 °C, decrease surface net radiation and latent heat flux by 1.08 W m-2 and 0.99 W m-2, respectively, and have limited influence on sensible heat flux (-0.11 W m-2) and ground heat flux (+0.02 W m-2). Fire impacts are most clearly seen in the tropical savannas. Our analyses suggest that fire increases surface air temperature predominantly by reducing latent heat flux, mainly due to fire-induced damage to the vegetation canopy, and decreases net radiation primarily because fire-induced surface warming significantly increases upward surface longwave radiation. This study provides an integrated estimate of fire and induced changes in ecosystems, climate, and energy budget at a global scale, and emphasizes the importance of a consistent and integrated understanding of fire effects.

  17. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan.

    PubMed

    Ardö, Jonas; Mölder, Meelis; El-Tahir, Bashir Awad; Elkhidir, Hatim Abdalla Mohammed

    2008-12-01

    Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle. The dry season (represented by Julian day 35-46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266-273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 mumol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 mumol m-2s-1 and then levels off. Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season

  18. Shifts on reproductive phenology of tropical cerrado savanna trees and climate changes

    NASA Astrophysics Data System (ADS)

    Morellato, Patricia

    2010-05-01

    Phenology is the study of cyclic biological events and its relationship to abiotic factors. Timing of flowering, fruiting and leafing is highly correlated to environmental factors such as temperature, precipitation, irradiance and isolation. Accordingly, any change in these factors may have a direct effect on the initiation, intensity and duration of different phenophases. Tropical phenology has not contributed much for climatic change research since historical data sets are scarce and the absence of sharp seasons and distinct factors driving phenology makes difficult the detection of changes over time. One way to have insights on climate driven phenology shifts on tropical plants is through the comparison of plant phenology under different environmental conditions. Fragmentation of natural landscape has exposed plants to edge effects - the interaction between two adjacent ecosystems, when the two are separated by an abrupt transition - the edge, including both abiotic and biological changes on environmental conditions that likely affect plant phenology. The microclimatic conditions along edges have important direct biological effects on the reproductive phenology and fitness of plant species. One can expected that the abiotic edge effects on plant phenology may be similar to some extent to certain effects induced by climate change on plant phenology since both involve shifts on environmental conditions. Due to the threatened status and rich biodiversity of Brazilian Neotropical savanna, or the Brazilian Cerrado, the present study aimed to understand edge effects on cerrado savanna species. We compared micro environmental factors and phenology of several species on the edge and in the interior of cerrado savanna. Our first results indicated that shifts on the micro environmental condition may have driven changes in time, duration and intensity of species phenology and may give us insights on savanna responses to climate changes.

  19. Nesting success of grassland and savanna birds on reclaimed surface coal mines of the midwestern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galligan, E.W.; DeVault, T.L.; Lima, S.L.

    2006-12-15

    Reclaimed surface coal mines in southwestern Indiana support many grassland and shrub/savanna bird species of conservation concern. We examined the nesting success of birds on these reclaimed mines to assess whether such 'unnatural' places represent productive breeding habitats for such species. We established eight study sites on two large, grassland-dominated mines in southwestern Indiana and classified them into three categories (open grassland, shrub/savanna, and a mixture of grassland and shrub/savanna) based on broad vegetation and landscape characteristics. During the 1999 and 2000 breeding seasons, we found and monitored 911 nests of 31 species. Daily nest survival for the most commonlymore » monitored grassland species ranged from 0.903 (Dickcissel, Spiza americana) to 0.961 (Grasshopper Sparrow, Ammodramus savannarum). Daily survival estimates for the dominant shrub/savanna nesting species ranged from 0.932 (Brown Thrasher, Toxostoma rufum) to 0.982 (Willow Flycatcher, Empidonax traillii). Vegetation and landscape effects on nesting success were minimal, and only Eastern Meadowlarks (Sturnella magna) showed a clear time-of-season effect, with greater nesting success in the first half of the breeding season. Rates of Brown-headed Cowbird (Molothrus ater) parasitism were only 2.1% for grassland species and 12.0% for shrub/savanna species. The nesting success of birds on reclaimed mine sites was comparable to that in other habitats, indicating that reclaimed habitats on surface mines do not necessarily represent reproductive traps for birds.« less

  20. Synergistic impacts of deforestation, climate change and fire on the future biomes distribution in Amazonia

    NASA Astrophysics Data System (ADS)

    Sampaio, G.; Cardoso, M. F.; Nobre, C. A.; Salazar, L. F.

    2013-05-01

    Several studies indicate future increase of environmental risks for the ecosystems in the Amazon region as a result of climate and land-use change, and their synergistic interactions. Modeling studies (e.g. Oyama and Nobre 2004, Salazar et al. 2007, Malhi et al. 2008) project rapid and irreversible replacement of forests by savannas with large-scale losses of biodiversity and livelihoods for people in the region. This process is referred to as the Amazon Dieback, where accelerated plant mortality due to environmental changes lead to forest collapse and savannas expansion after "tipping points" in climate and land surface changes are achieved. In this study we performed new analyses to quantify how deforestation, climate change and fire may combine to affect the distribution of major biomes in Amazonia. Changes in land use consider deforestation scenarios of 0%, 20%, 40%, and 50% (Sampaio et al., 2007), with and without fires (Cardoso et al., 2008), under the two greenhouse gases scenarios B1 and A2 and three "representative concentration pathways" (RCPs): 2.6, 4.5 and 8.5, for years 2015-2034 and 2040-2059 ("2025" and "2050" time-slices), from IPCC AR4 and CMIP5. The results show that the area affected in scenarios A2 and RCP 8.5 is larger than in the climate scenario B1 and RCP 2.6, and in both cases the effect is progressively higher in time. Most important changes occur in the East and South of the Amazon, with replacement of tropical forest by seasonal forest and savanna. The effect of fire in this region is important in all scenarios. The Northwest Amazon presents the smallest changes in the area of tropical forest, indicating that even for substantial land-use modifications and global climate change, the resulting atmospheric conditions would still support tropical forest in the region. In summary, we conclude that the synergistic combination of deforestation, climate change resulting from global warming, and the potential for higher fire occurrence may lead

  1. Greenhouse gas and air pollutant emissions from land and forest fire in Indonesia during 2015 based on satellite data

    NASA Astrophysics Data System (ADS)

    Pribadi, A.; Kurata, G.

    2017-01-01

    Land and forest fire still become a major problem in environmental management in Indonesia. In this study, we conducted quantitatively assessment of land and forest fire emissions in Indonesia during 2015. We applied methodology of emission inventory based on burned area, biomass density, combustion factor and emission factor for each land cover type using several satellite data such as MODIS burned area, Pantropical National Level Carbon Stock Dataset, as well as Vegetation Condition Index. The greenhouse gases emissions from land and forest fire in Indonesia during 2015 were (in Gg) 806,406 CO2, 8,002 CH4, 96 N2O, while pollutants emissions were (in Gg) 85,268 CO, 1,168 NOx, 340 SO2, 3,093 NMVOC, 1,041 NH3, 259 BC, 1,957 OC, 4,118 PM2.5 and 5,468 PM10. September was the peak of fire season that generate 58% (species average) of total emissions for this year. The largest contribution was from shrubland/savanna burning which account for 66% (species average) of the total emissions, while about 81% of the total emissions were generated from peatland fire. The results of this study emphasizethe importance of proper peatland management in Indonesia as land and forest fire countermeasures strategy.

  2. Tree species from different functional groups respond differently to environmental changes during establishment.

    PubMed

    Barbosa, Eduardo R M; van Langevelde, Frank; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T

    2014-04-01

    Savanna plant communities change considerably across time and space. The processes driving savanna plant species diversity, coexistence and turnover along environmental gradients are still unclear. Understanding how species respond differently to varying environmental conditions during the seedling stage, a critical stage for plant population dynamics, is needed to explain the current composition of plant communities and to enable us to predict their responses to future environmental changes. Here we investigate whether seedling response to changes in resource availability, and to competition with grass, varied between two functional groups of African savanna trees: species with small leaves, spines and N-fixing associations (fine-leaved species), and species with broad leaves, no spines, and lacking N-fixing associations (broad-leaved species). We show that while tree species were strongly suppressed by grass, the effect of resource availability on seedling performance varied considerably between the two functional groups. Nutrient inputs increased stem length only of broad-leaved species and only under an even watering treatment. Low light conditions benefited mostly broad-leaved species' growth. Savannas are susceptible to ongoing global environment changes. Our results suggest that an increase in woody cover is only likely to occur in savannas if grass cover is strongly suppressed (e.g. by fire or overgrazing). However, if woody cover does increase, broad-leaved species will benefit most from the resulting shaded environments, potentially leading to an expansion of the distribution of these species. Eutrophication and changes in rainfall patterns may also affect the balance between fine- and broad-leaved species.

  3. Rooting strategies in a subtropical savanna: a landscape-scale three-dimensional assessment.

    PubMed

    Zhou, Yong; Boutton, Thomas W; Wu, X Ben; Wright, Cynthia L; Dion, Anais L

    2018-04-01

    In resource-limited savannas, the distribution and abundance of fine roots play an important role in acquiring essential resources and structuring vegetation patterns and dynamics. However, little is known regarding the three-dimensional distribution of fine roots in savanna ecosystems at the landscape scale. We quantified spatial patterns of fine root density to a depth of 1.2 m in a subtropical savanna landscape using spatially specific sampling. Kriged maps revealed that fine root density was highest at the centers of woody patches, decreased towards the canopy edges, and reached lowest values within the grassland matrix throughout the entire soil profile. Lacunarity analyses indicated that spatial heterogeneities of fine root density decreased continuously to a depth of 50 cm and then increased in deeper portions of the soil profile across this landscape. This vertical pattern might be related to inherent differences in root distribution between trees/shrubs and herbaceous species, and the presence/absence of an argillic horizon across this landscape. The greater density of fine roots beneath woody patches in both upper and lower portions of the soil profile suggests an ability to acquire disproportionately more resources than herbaceous species, which may facilitate the development and persistence of woody patches across this landscape.

  4. Effects of precommercial thinning and midstory control on avian and small mammal communities during longleaf pine Savanna restoration

    Treesearch

    Vanessa R. Lane; Robert P. Simmons; Kristina J. Brunjes; John C. Kilgo; Timothy B. Harrington; Richard F. Daniels; W. Mark Ford; Karl V. Miller

    2015-01-01

    Restoring longleaf pine (Pinus palustris Mill.) savanna is a goal of many southern land managers, and longleaf plantations may provide a mechanism for savanna restoration. However, the effects of silvicultural treatments used in the management of longleaf pine plantations on wildlife communities are relatively unknown. Beginning in 1994, we examined effects of longleaf...

  5. Community-Based Ecological Restoration: The Wingra Oak Savanna Project.

    ERIC Educational Resources Information Center

    Bader, Brian J.; Egan, Dave

    1999-01-01

    The University of Wisconsin-Madison Arboretum, a pioneer in ecological restoration, is involving the local community in restoring a site to its presettlement condition as an oak savanna. Besides providing the manual labor of restoration, volunteers learn about the land and the ecological processes that tie nature and culture together. A 60-hour…

  6. Colleters in Rubiaceae from forest and savanna: the link between secretion and environment

    NASA Astrophysics Data System (ADS)

    Tresmondi, Fernanda; Canaveze, Yve; Guimarães, Elza; Machado, Silvia Rodrigues

    2017-04-01

    This study aims to investigate colleters' secretory function, on cellular level, in Rubiaceae species from contrasting environments looking to explore the association between secretion and environment. We collected samples from eight species of Rubiaceae growing in forest and savanna having standard-type colleters with diverse histochemistry (hydrophilic, lipophilic and mixed secretions) and processed for both conventional and cytochemical study under transmission electron microscopy (TEM). The standard colleters, although similar in morphology and anatomy, exhibited marked differences on cellular level, especially in the abundance and topology of Golgi bodies, endoplasmic reticulum and plastids when comparing forest and savanna species. These differences were clearly aligned with the chemical nature of the secretions they produce, with predominance of hydrophilic secretions in forest species and lipophilic or mixed secretions in savanna species. The combination of methods in electron microscopy revealed the sites of synthesis and intracellular compartmentation of substances, the mechanisms of their secretion from the protoplast and confirmed the involvement of the outer walls of the epithelial cells in the elimination of exudates to the gland surface. Our study suggests a potential environment-associated plasticity of the secretory cells of standard-type colleters in modulating their secretory function performance.

  7. Tree stocking affects winter bird densities across a gradient of savanna, woodland, and forest in the Missouri Ozarks

    Treesearch

    Sarah W. Kendrick; Frank R., III Thompson

    2013-01-01

    Savanna and woodland were historically prevalent in the midwestern United States, and managers throughout the area are currently attempting to restore these communities. Better knowledge of the responses of breeding and non-breeding birds to savanna and woodland restoration is needed to inform management.We surveyed abundance of winter resident birds across a gradient...

  8. Body temperature responses of Savanna Brown goat to the harmattan and hot-dry season

    NASA Astrophysics Data System (ADS)

    Igono, M. O.; Molokwu, E. C. I.; Aliu, Y. O.

    1982-09-01

    Rectal and vaginal temperature responses of the Savanna Brown goat indigenous to the Nigerian guinea savanna were determined during the harmattan and the hot-dry season. Measurements were made at 06:00h and at 14:00h after 8h exposure to field conditions. At the 06:00h measurements during the harmattan, all animals were observed to shiver. A significant (P<0.01) positive correlation was found between rectal (Tre) and vaginal temperatures. During the harmattan, mean Tre was 38.2‡C at 06:00h and 39.7‡C at 14:00h; the mean difference, δTre was 1.5‡C. During the hot-dry season, Tre at 06:00h was 38.1‡C, and at 14:00h, 38.7; δTre was 0.6‡C. It is concluded that the harmattan is thermally more stressful than the hot-dry season and that passive thermolability may not be an important mechanism in the Savanna Brown goat in adaptation to thermal stress.

  9. Surface Albedo Darkening from wildfires in Northern Sub-Saharan Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Ichoku, C. M.; Poudal, R.; Roman, M. O.; Wilcox, E.

    2014-01-01

    Wildfires are recognized as a key physical disturbance of terrestrial ecosystems and a major source of atmospheric trace gases and aerosols. They are known to produce changes in landscape patterns and lead to changes in surface albedo that can persist for long periods. Here, we estimate the darkening of surface albedo due to wildfires in different land cover ecosystems in the Northern Sub-Saharan Africa using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). We determined a decrease in albedo after fires over most land cover types (e.g. woody savannas: (-0.00352 0.00003) and savannas: (- 0.003910.00003), which together accounted for >86% of the total MODIS fire count between 2003 and 2011). Grasslands had a higher value (-0.00454 0.00003) than the savannas, but accounted for only about 5% of the total fire count. A few other land cover types (e.g. Deciduous broad leaf: (0.00062 0.00015), and barren: 0.00027 0.00019), showed an increase in albedo after fires, but accounted for less than 1% of the total fires. Albedo change due to wildfires is more important during the fire season (October-February). The albedo recovery progresses rapidly during the first year after fires, where savannas show the greatest recovery (>77%) within one year, while deciduous broadleaf, permanent wetlands and barren lands show the least one-year recovery (56%). The persistence of surface albedo darkening in most land cover types is limited to about six to seven years, after which at least 98% of the burnt pixels recover to their pre-fire albedo.

  10. Global fire emissions estimates during 1997-2016

    NASA Astrophysics Data System (ADS)

    van der Werf, Guido R.; Randerson, James T.; Giglio, Louis; van Leeuwen, Thijs T.; Chen, Yang; Rogers, Brendan M.; Mu, Mingquan; van Marle, Margreet J. E.; Morton, Douglas C.; Collatz, G. James; Yokelson, Robert J.; Kasibhatla, Prasad S.

    2017-09-01

    Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997-2016. The modeling system, based on the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2 × 1015 grams of carbon per year (Pg C yr-1) during 1997-2016, with a maximum in 1997 (3.0 Pg C yr-1) and minimum in 2013 (1.8 Pg C yr-1). These estimates were 11 % higher than our previous estimates (GFED3) during 1997-2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (-19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between

  11. The role of fire in deep time ecosystems

    NASA Astrophysics Data System (ADS)

    Scott, Andrew C.; Bond, William J.; Collinson, Margaret E.; Glasspool, Ian J.; Brown, Sarah; Braman, Dennis R.

    2010-05-01

    Fires are very widespread in the world today and fire has also been common in the deep past. Fire is important in structuring contemporary World vegetation maintaining extensive open vegetation where the climate has the potential to support closed forests. The influence of fire on the structure of vegetation and plant traits present in a community vary depending on the fire regime. The fire regime is the characteristic pattern of fire frequency, severity (amount of biomass removed) and spatial extent. Fire regimes depend on the synergy between external physical factors and the properties of vegetation. Changes in the fire regime can be brought about by changes in external conditions such as climate, but also by changes in vegetation such as changes in flammability or productivity that influence the amount of fuel. For example, invasion of grasses into closed wooded habitats has initiated a ‘grass fire cycle' in many parts of the world triggering cascading changes in vegetation structure and composition from forest to open grassland or savanna woodland. The spread of flammable invasive species, especially grasses, has even altered fire regimes of fire-dependent flammable communities causing catastrophic ecosystem changes. We suggest that the spread of angiosperms in the Cretaceous was promoted by the development of novel fire regimes linked to the evolution of novel, highly productive (and flammable) plants. Within the limits of physical constraints on fire occurrence, Cretaceous angiosperms would have initiated a positive feedback analogous to the grass-fire cycle rapidly accumulating fuel that promoted more frequent fires, which maintained open habitats in which rapid growth-traits of angiosperms would be most favoured promoting rapid fuel accumulation etc. Frequent fires would have altered vegetation structure and composition both by increasing mortality rates of fire-damaged trees and reducing recruitment rates of seedlings and saplings where fires recurred

  12. Airborne and ground-based measurements of the trace gases and particles emitted from prescribed fires in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burling, Ian; Yokelson, Robert J.; Akagi, Sheryl

    2011-12-07

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissionsmore » of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous suggestions that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured the emissions in the convective smoke plume from our airborne platform at the same time the unlofted residual smoldering combustion emissions were measured with our ground-based platform after the flame front passed through. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including significant 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level, and we show that the normally-ignored unlofted emissions can also significantly impact estimates of total emissions. Preliminary evidence of large emissions of monoterpenes was seen in the residual smoldering spectra, but we have not yet quantified these emissions. These data should lead to an improved capacity to model the impacts of biomass burning in similar

  13. FATAL ENCEPHALOMYOCARDITIS VIRUS INFECTION IN AN AFRICAN SAVANNA ELEPHANT (LOXODONTA AFRICANA) IN A FRENCH ZOO.

    PubMed

    Lamglait, Benjamin; Joris, Antoine; Romey, Aurore; Bakkali-Kassimi, Labib; Lemberger, Karin

    2015-06-01

    A fatal case of encephalomyocarditis virus (EMCV) involving an African elephant ( Loxodonta africana ) occurred in November 2013 at the Réserve Africaine de Sigean, France. An adult female was found dead without any preliminary symptoms. Gross pathologic changes consisted of petechiae and hemorrhages on mucosae and internal organs, abundant transudate in the abdominal and pericardial cavities, and myocarditis. Histopathologic examination showed extensive degeneration and necrosis of ventricular cardiomyocytes with concurrent lymphoplasmocytic and eosinophilic infiltrate. An EMCV was isolated from several organs and considered the causative agent of the myocarditis. The same strain of virus was also isolated in rodents captured on zoo premises and considered to be the reservoir of the virus. To the authors' knowledge, this is the first EMCV case in a captive African elephant in Europe.

  14. Hydraulic redistribution of soil water by neotropical savanna trees.

    Treesearch

    Fabian G. Scholz; Sandra J. Bucci; Guillermo Goldstein; et al.

    2002-01-01

    The magnitude and direction of water transport by the roots of eight dominant Brazilian savanna (Cerrado) allowed bidirectional measurements of sap flow. The patterns of sap flow observed during the dry season in species with dimorphic roots systems were consistent with the occurrence of hydraulic redistribution of soil water, the movement of water from moist to drier...

  15. Structure and tree species composition in different habitats of savanna used by indigenous people in the Northern Brazilian Amazon.

    PubMed

    de Oliveira, Rodrigo Leonardo Costa; Farias, Hugo Leonardo Sousa; Perdiz, Ricardo de Oliveira; Scudeller, Veridiana Vizoni; Imbrozio Barbosa, Reinaldo

    2017-01-01

    Woody plant diversity from the Amazonian savannas has been poorly quantified. In order to improve the knowledge on wood plants of these regional ecosystems, a tree inventory was carried out in four different habitats used by indigenous people living in the savanna areas of the Northern Brazilian Amazon. The habitats were divided into two types (or groups) of vegetation formations: forest (riparian forest, forest island, and buritizal = Mauritia palm formation) and non-forest (typical savanna). The inventory was carried out in two hectares established in the Darora Indigenous Community region, north of the state of Roraima. The typical savanna is the most densely populated area (709 stems ha -1 ); however, it has the lowest tree species richness (nine species, seven families) in relation to typical forest habitats: riparian forest (22 species, 13 families and 202 stems ha -1 ), forest islands (13 species, 10 families and 264 stems ha -1 ), and buritizal (19 species, 15 families and 600 stems ha -1 ). The tree structure (density and dominance) of the forest habitats located in the savanna areas studied in this work is smaller in relation to forest habitats derived from continuous areas of other parts of the Amazon. These environments are derived from Paleoclimatic fragmentation, and are currently affected by the impact of intensive use of natural resources as timberselective logging and some land conversion for agriculture.

  16. Influence of Vegetation Cover on Rain Pulse Responses in Semi-Arid Savannas in Central Texas

    NASA Astrophysics Data System (ADS)

    Litvak, M.; Heilman, J.; McInnes, K.; Thijs, A.; Kjelgaard, J.

    2007-12-01

    Savannas in central Texas are dominated by live oak (Quercus virginiana) and Ashe juniper (Juniperus asheii) underlain by perennial, C3/C4 grasslands, and are increasingly becoming juniper and mesquite dominated due to overgrazing and suppression of wildfires. Since 2004, we have been investigating how carbon, water and energy exchange in these rain-limited savannas respond to rainfall variability and this observed vegetation change. In semi-arid regions, rainfall pulses provide inputs of soil moisture and trigger biotic activity in the form of plant gas exchange and microbial metabolism as well as water dependent physical processes in the soil. Each of these components has a different characteristic response curve to soil moisture and integrates soil water content over a different range of depths. Here we focus on examining how the observed increase of woody species in central Texas savannas alters the response of net ecosystem exchange and its components, ecosystem respiration and gross ecosystem exchange, to rain pulses. Using data we have collected over the last three years from three Ameriflux tower sites at Freeman Ranch near San Marcos, TX (C3/C4 grassland, juniper/mesquite savanna with 50 percent woody cover, and oak/juniper woodland), we quantify the responses of both ecosystem respiration and daily carbon uptake to rainfall pulses throughout the year. Specifically, we look at the enhancement and persistence of ecosystem respiration and carbon uptake responses following a pulse, and isolate the main controlling factors on the observed response: seasonality, antecedent soil moisture and temperature, or previous pulses. In all three land covers, the general response to precipitation pulses is a respiration pulse followed by an increase in total carbon uptake. Differences in pulse responses observed at the savanna site compared to the grassland and woodland sites can be explained, in part, by the observed differences in rooting structure and photosynthetic

  17. Seasonal, inter-annual and decadal drivers of tree and grass productivity in an Australian tropical savanna.

    NASA Astrophysics Data System (ADS)

    Moore, C.; Beringer, J.; Hutley, L. B.; Evans, B. J.; Tapper, N. J.; Donohue, R. J.; Exbrayat, J. F.

    2016-12-01

    Tree-grass savannas are a widespread biome and are highly valued for their ecosystem services. Natural or anthropogenic shifts in the savanna tree-grass ratio have wide-reaching implications for food production, timber harvesting, biodiversity, the water cycle and carbon sequestration. It is important to understand the long-term dynamics and drivers of both tree and grass productivity separately, in order to successfully manage savannas in the future. This study investigates the inter-annual variability (IAV) of tree (overstory) and grass (understory) productivity at the Howard Springs OzFlux/Fluxnet site by combining a long-term (15 year) eddy covariance flux record and DIFFUSE model estimates of tree and grass productivity inferred from satellite remote sensing. On a seasonal basis, the primary drivers of overstory and understory productivity were solar radiation in the wet season and soil moisture in the dry season, with deeper soil layers becoming more important as the dry season progressed. On an inter-annual basis, variability in the amount of annual rainfall and length of the rainy season determined soil water availability, which had a positive effect on overstory productivity and a negative effect on understory productivity. No linear trend in the tree-grass ratio was observed over the 15-year study period, indicating that woody encroachment was not occurring to a significant degree at the study site. However, the tree-grass ratio was well correlated with modes of climate variability, namely the Southern Oscillation Index. This study has provided important insight into the long-term contributions of trees and grasses to savanna productivity, along with the respective drivers of IAV. The results will contribute towards model development and building better links with remote sensing techniques in order to more comprehensively monitor savanna structure and function across space and time.

  18. Soil microbial communities following bush removal in a Namibian savanna

    USDA-ARS?s Scientific Manuscript database

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the grazing value of the land and hence the carrying capacity for wildlife and livestock. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil at a chronose...

  19. Assessing the Roles of Fire Frequency and Precipitation in Determining Woody Plant Expansion in Central U.S. Grasslands

    NASA Astrophysics Data System (ADS)

    Brunsell, N. A.; Van Vleck, E. S.; Nosshi, M.; Ratajczak, Z.; Nippert, J. B.

    2017-10-01

    Woody plant expansion into grasslands and savannas is occurring and accelerating worldwide and often impacts ecosystem processes. Understanding and predicting the environmental and ecological impacts of encroachment has led to a variety of methodologies for assessing its onset, transition, and stability, generally relying on dynamical systems approaches. Here we continue this general line of investigation to facilitate the understanding of the roles of precipitation frequency and intensity and fire frequency on the conversion of grasslands to woody-dominated systems focusing on the central United States. A low-dimensional model with stochastic precipitation and fire disturbance is introduced to examine the complex interactions between precipitation and fire as mechanisms that may suppress or facilitate increases in woody cover. By using Lyapunov exponents, we are able to ascertain the relative control exerted on woody encroachment through these mechanisms. Our results indicate that precipitation frequency is a more important control on woody encroachment than the intensity of individual precipitation events. Fire, however, exerts a much more dominant impact on the limitation of encroachment over the range of precipitation variability considered here. These results indicate that fire management may be an effective strategy to slow the onset of woody species into grasslands. While climate change might predict a reduced potential for woody encroachment in the near future, these results indicate a reduction in woody fraction may be unlikely when considering anthropogenic fire suppression.

  20. Eastern wood-pewee (Contopus virens) breeding demography across a gradient of savanna, woodland, and forest in the Missouri Ozarks

    Treesearch

    Sarah W. Kendrick; Frank R. Thompson; Jennifer L. Reidy

    2013-01-01

    Better knowledge of bird response to savanna and woodland restoration is needed to inform management of these communities. We related temporal and habitat variables to breeding demography and densities of the Eastern Wood-Pewee (Contopus virens) across a gradient of savanna, woodland, and forest. We determined nest success, clutch size, young fledged...

  1. Bird species and numbers of birds in oak savannas of the Southwestern Borderlands region including effects of burning

    Treesearch

    Peter F. Ffolliott; Hui Chen; Gerald J. Gottfried

    2011-01-01

    Oak savannas of the Southwestern Borderlands region provide food, cover, and sites for nesting, roosting, and perching for a diversity of bird species. The results of a five-year (2003-2007) study of bird species, numbers of birds, and their diversities in the naturally occurring (unburned) oak savannas of the region are reported in this paper. Effects of cool-season...

  2. Compound Specific Isotope Analysis of Fatty Acids in Southern African Aerosols

    NASA Astrophysics Data System (ADS)

    Billmark, K. A.; Macko, S. A.; Swap, R. J.

    2003-12-01

    This study, conducted as a part of the Southern African Regional Science Initiative (SAFARI 2000), applied compound specific isotope analysis to describe aerosols at source regions and rural locations. Stable carbon isotopic compositions of individual fatty acids were determined for aerosol samples collected at four sites throughout southern Africa. Mongu, Zambia and Skukuza, South Africa were chosen for their location within intense seasonal Miombo woodland savanna and bushveld savanna biomass burning source regions, respectively. Urban aerosols were collected at Johannesburg, South Africa and rural samples were collected at Sua Pan, Botswana. Fatty acid isotopic compositions varied temporally. Urban aerosols showed significant isotopic enrichment of selected short chain fatty acids (C < 20) compared to aerosols produced during biomass combustion. Sua Pan short chain fatty acid signatures were significantly different from the other non-urban sites, which suggests that sources other than biomass combustion products, such as organic eolian material, impact the Sua Pan aerosol profile. However, a high degree of correlation between Sua Pan and Skukuza long chain fatty acid δ 13C values confirm atmospheric linkages between the two areas and that isotopic signatures of combusted fatty acids are unaltered during atmospheric transport highlighting their potential for use as a conservative tracer.

  3. Evaluating fire danger in Brazilian biomes: present and future patterns

    NASA Astrophysics Data System (ADS)

    Silva, Patrícia; Bastos, Ana; DaCamara, Carlos; Libonati, Renata

    2017-04-01

    Climate change is expected to have a significant impact on fire occurrence and activity, particularly in Brazil, a region known to be fire-prone [1]. The Brazilian savanna, commonly referred to as cerrado, is a fire-adapted biome covering more than 20% of the country's total area. It presents the highest numbers of fire events, making it particularly susceptible to changes in climate. It is thus essential to understand the present fire regimes in Brazilian biomes, in order to better evaluate future patterns. The CPTEC/INPE, the Brazilian Center for Weather Forecasting and Climate Research at the Brazilian National Institute of Space Research developed a fire danger index based on the occurrence of hundreds of thousands of fire events in the main Brazilian biomes [2]: the Meteorological Fire Danger Index (MFDI). This index indicates the predisposition of vegetation to be burned on a given day, for given climate conditions preceding that day. It relies on daily values of air temperature, relative humidity, accumulated precipitation and vegetation cover. In this study we aim to access the capability of the MFDI to accurately replicate present fire conditions for different biomes, with a special focus on cerrado. To this end, we assess the link between the MFDI as calculated by three different reanalysis (ERA-Interim, NCEP/DOE Reanalysis 2 and MERRA-2) and the observed burned area. We further calculate the validated MFDI using a regional climate model, the RCA4 as forced by EC-Earth from CORDEX, to understand the ability of the model to characterize present fire danger. Finally, the need to calibrate the model to better characterize future fire danger was also evaluated. This work was developed within the framework of the Brazilian Fire-Land-Atmosphere System (BrFLAS) Project financed by the Portuguese and Brazilian science foundations, FCT and FAPESP (project references FAPESP/1389/2014 and 2014/20042-2). [1] KRAWCHUK, M.A.; MORITZ, M.A.; PARISIEN, M.A.; VAN DORN, J

  4. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink

    NASA Astrophysics Data System (ADS)

    Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang

    2017-02-01

    Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha-1 yr-1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and -1.30 tC ha-1 yr-1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha-1 yr-1 in the dry season and a considerable carbon sink of 1.14 tC ha-1 yr-1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes.

  5. Possible Effects of Seasonal Fires on Drought Across the Northern Sub-Saharan African Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2010-01-01

    Recent satellite-based studies have revealed that the northern sub-Saharan African (NSSA) region has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be a major driver of the regional carbon, energy, and water cycles. We acknowledge that the rainy season in the NSSA region is from April to September while biomass burning occurs mainly during the dry season (October to March). Nevertheless, these two phenomena are indirectly coupled to each other through a chain of complex processes and conditions, including land-cover and surface-albedo changes, the carbon cycle, evapotranspiration, drought, desertification, surface water runoff, ground water recharge, and variability in atmospheric composition, heating rates, and circulation. In this presentation, we will examine the theoretical linkages between these processes, discuss the preliminary results based on satellite data analysis, and provide an overview of plans for more integrated research to be conducted over the next few years.

  6. Spatial and temporal distribution of tropical biomass burning

    NASA Astrophysics Data System (ADS)

    Hao, Wei Min; Liu, Mei-Huey

    1994-12-01

    A database for the spatial and temporal distribution of the amount of biomass burned in tropical America, Africa, and Asia during the late 1970s is presented with a resolution of 5° latitude × 5° longitude. The sources of burning in each grid cell have been quantified. Savanna fires, shifting cultivation, deforestation, fuel wood use, and burning of agricultural residues contribute about 50, 24, 10, 11, and 5%, respectively, of total biomass burned in the tropics. Savanna fires dominate in tropical Africa, and forest fires dominate in tropical Asia. A similar amount of biomass is burned from forest and savanna fires in tropical America. The distribution of biomass burned monthly during the dry season has been derived for each grid cell using the seasonal cycles of surface ozone concentrations. Land use changes during the last decade could have a profound impact on the amount of biomass burned and the amount of trace gases and aerosol particles emitted.

  7. Tropospheric Ozone and Biomass Burning

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Ziemke, J. R.; Bhartia, P. K.

    2001-05-01

    This paper studies the significance of pyrogenic (e.g., biomass burning) emissions in the production of tropospheric ozone in the tropics associated with the forest and savanna fires in the African, South American, and Indonesian regions. Using aerosol index (AI) and tropospheric column ozone (TCO) time series from 1979 to 2000 derived from the Nimbus-7 and Earth Probe TOMS measurements, our study shows significant differences in the seasonal and spatial characteristics of pyrogenic emissions north and south of the equator in the African region and Brazil in South America. In general, they are not related to the seasonal and spatial characteristics of tropospheric ozone in these regions. In the Indonesian region, the most significant increase in TCO occurred during September and October 1997, following large-scale forest and savanna fires associated with the El Niño-induced dry condition. However, the increase in TCO extended over most of the western Pacific well outside the burning region and was accompanied by a decrease in the eastern Pacific resembling a west-to-east dipole about the dateline. The net increase in TCO integrated over the tropical region between 15N and 15S was about 6-8 Tg (terragram) over the mean climatological value of about 72 Tg. This increase is within the range of interannual variability of TCO in the tropical region and does not necessarily suggest a photochemical source related to biomass burning. The interannual variability in TCO appears to be out of phase with the interannual variability of stratospheric column ozone (SCO). These variabilities seem to be manifestations of solar cycle and quasi-biennial oscillations.

  8. Tropospheric Ozone and Biomass Burning

    NASA Technical Reports Server (NTRS)

    Chandra, Sushil; Ziemke, J. R.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This paper studies the significance of pyrogenic (e.g., biomass burning) emissions in the production of tropospheric ozone in the tropics associated with the forest and savanna fires in the African, South American, and Indonesian regions. Using aerosol index (Al) and tropospheric column ozone (TCO) time series from 1979 to 2000 derived from the Nimbus-7 and Earth Probe TOMS measurements, our study shows significant differences in the seasonal and spatial characteristics of pyrogenic emissions north and south of the equator in the African region and Brazil in South America. In general, they are not related to the seasonal and spatial characteristics of tropospheric ozone in these regions. In the Indonesian region, the most significant increase in TCO occurred during September and October 1997, following large-scale forest and savanna fires associated with the El Nino-induced dry season. However, the increase in TCO extended over most of the western Pacific well outside the burning region and was accompanied by a decrease in the eastern Pacific resembling a west-to-east dipole about the date-line. The net increase in TCO integrated over the tropical region between 15 deg N and 15 deg S was about 6-8 Tg (1 Tg = 10(exp 12) gm) over the mean climatological value of about 72 Tg. This increase is well within the range of interannual variability of TCO in the tropical region and does not necessarily suggest a photochemical source related to biomass burning. The interannual variability in TCO appears to be out of phase with the interannual variability of stratospheric column ozone (SCO). These variabilities seem to be manifestations of solar cycle and quasibiennial oscillations.

  9. Vegetative characteristics of oak savannas in the southwestern United States: a comparative analysis with oak woodlands in the region

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried

    2005-01-01

    Much has been learned about the oak woodlands of the Southwestern United States in recent years. However, comparable characterizations of the companion oak savannas are needed to help in enhancing the knowledge of all oak ecosystems in the Madrean Archipelago region. Oak savannas differ from oak woodlands in that they are more open in their structure with fewer trees...

  10. Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia.

    PubMed

    Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza; Barbosa, Reinaldo Imbrozio

    2017-01-01

    Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms.

  11. Using ground- and satellite-based measurements and models to quantify response to multiple disturbances and climate change in South African semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Falge, Eva; Brümmer, Christian; Schmullius, Christiane; Scholes, Robert; Twine, Wayne; Mudau, Azwitamisi; Midgley, Guy; Hickler, Thomas; Bradshaw, Karen; Lück, Wolfgang; Thiel-Clemen, Thomas; du Toit, Justin; Sankaran, Vaith; Kutsch, Werner

    2016-04-01

    Sub-Saharan Africa currently experiences significant changes in shrubland, savanna and mixed woodland ecosystems driving degradation, affecting fire frequency and water availability, and eventually fueling climate change. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. For a network of research clusters along an aridity gradient in South Africa, we measure greenhouse gas exchange, ecosystem structure and eco-physiological properties as affected by land use change at paired sites with natural and altered vegetation. We set up dynamic vegetation models and individual-based models to predict ecosystem dynamics under (post) disturbance managements. We monitor vegetation amount and heterogeneity using remotely sensed images and aerial photography over several decades to examine time series of land cover change. Finally, we investigate livelihood strategies with focus on carbon balance components to develop sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation of estimates obtained from eddy covariance, model approaches and satellite derivations. We envision our methodological approach on a network of research clusters a valuable means to investigate potential linkages to concepts of adaptive resilience.

  12. Grassland, shrubland and savanna stewardship: where do we go from here?

    USDA-ARS?s Scientific Manuscript database

    Scientific efforts to understand grasslands, shrublands and savannas and thereby develop sustainable management practices are roughly 100 years old. What have we learned in that time? Several assumptions made by scientists and policymakers early in the 20th century have proved mistaken, resulting in...

  13. A hydroclimatic model of global fire patterns

    NASA Astrophysics Data System (ADS)

    Boer, Matthias

    2015-04-01

    (i.e. F_0.99 ) was explained by two terms of the climatic water balance: i) mean annual actual evapotranspiration (AET), which is a proxy for fuel productivity, and ii) mean annual water deficit (D=PET-AET, where PET is mean annual potential evapotranspiration), which is a measure of fuel drying potential. As expected, F_0.99 was close to zero in environments of low AET (e.g. deserts) or low D (e.g. wet forests), due to strong fuel productivity or fuel dryness constraints, and maximum for environments of intermediate AET and D (e.g. tropical savannas). The topography of the F_0.99 response surface was analysed to explore how the relative importance of fuel productivity and fuel dryness constraints varied with the climatic water balance, and geographically across the continents. Consistent with current understanding of global pyrogeography, the hydroclimatic fire model predicted that fire activity is mostly constrained by fuel productivity in arid environments with grassy fuels and by fuel dryness in humid environments with litter fuels derived from woody shrubs and trees. The model provides a simple, yet biophysically-based, approach to evaluating potential for incremental change in fire activity or transformational change in fire types under future climate conditions.

  14. Developing Remote Sensing Methodology to Characterize Savanna Vegetation Structure and Composition for Rangeland Monitoring and Conservation Applications

    NASA Astrophysics Data System (ADS)

    Tsalyuk, M.; Kelly, M.; Getz, W.

    2012-12-01

    Rangeland ecosystems cover more than fifty percent of earth's land surface, host considerable biodiversity and provide vital ecosystem services. However, rangelands around the world face degradation due to climate change, land use change and overgrazing. Human-driven changes to fire and grazing regimes enhance degradation processes. The purpose of this research is to develop a remote sensing methodology to characterize the structure and composition of savanna vegetation, in order to improve the ability of conservation managers to monitor and address such degradation processes. Our study site, Etosha National Park, is a 22,270 km^2 semi-arid savanna located in north-central Namibia. Fencing and provision of artificial water sources for wildlife have changed the natural grazing patterns, which has caused bush encroachment and vegetation degradation across the park. We used MODIS and Landsat ETM+ 7 satellite imagery to map the vegetation type, dominant species, density, cover and biomass of herbaceous and woody vegetation in Etosha. We used imagery for 2007-2012 together with extensive field sampling, both in the wet and the dry seasons. At each sampling point, we identified the dominant species and measured the density, canopy size, height and diameter of the trees and shrubs. At only 31% of the sampling points, the identified vegetation type matched the class assigned at the 1996 classification. This may indicate significant habitat modifications in Etosha. We used two parallel analytical approaches to correlate between radiometric and field data. First, we show that traditional supervised classification identifies well five classes: bare soil, grassland, steppe, shrub savanna and tree savanna. We then refined this classification to enable us to identify the species composition in an area utilizing the phenological differences in timing and duration of greenness of the dominant tree and shrub species in Etosha. Specifically, using multi-date images we were able to

  15. Mapping Brazilian savanna vegetation gradients with Landsat time series

    NASA Astrophysics Data System (ADS)

    Schwieder, Marcel; Leitão, Pedro J.; da Cunha Bustamante, Mercedes Maria; Ferreira, Laerte Guimarães; Rabe, Andreas; Hostert, Patrick

    2016-10-01

    Global change has tremendous impacts on savanna systems around the world. Processes related to climate change or agricultural expansion threaten the ecosystem's state, function and the services it provides. A prominent example is the Brazilian Cerrado that has an extent of around 2 million km2 and features high biodiversity with many endemic species. It is characterized by landscape patterns from open grasslands to dense forests, defining a heterogeneous gradient in vegetation structure throughout the biome. While it is undisputed that the Cerrado provides a multitude of valuable ecosystem services, it is exposed to changes, e.g. through large scale land conversions or climatic changes. Monitoring of the Cerrado is thus urgently needed to assess the state of the system as well as to analyze and further understand ecosystem responses and adaptations to ongoing changes. Therefore we explored the potential of dense Landsat time series to derive phenological information for mapping vegetation gradients in the Cerrado. Frequent data gaps, e.g. due to cloud contamination, impose a serious challenge for such time series analyses. We synthetically filled data gaps based on Radial Basis Function convolution filters to derive continuous pixel-wise temporal profiles capable of representing Land Surface Phenology (LSP). Derived phenological parameters revealed differences in the seasonal cycle between the main Cerrado physiognomies and could thus be used to calibrate a Support Vector Classification model to map their spatial distribution. Our results show that it is possible to map the main spatial patterns of the observed physiognomies based on their phenological differences, whereat inaccuracies occurred especially between similar classes and data-scarce areas. The outcome emphasizes the need for remote sensing based time series analyses at fine scales. Mapping heterogeneous ecosystems such as savannas requires spatial detail, as well as the ability to derive important

  16. Mapping fire scars in a southern African savannah using Landsat imagery

    Treesearch

    A. T. Hudak; B. H. Brockett

    2004-01-01

    The spectral, spatial and temporal characteristics of the Landsat data record make it appropriate for mapping fire scars. Twenty-two annual fire scar maps from 1972-­2002 were produced from historical Landsat imagery for a semi-arid savannah landscape on the South Africa-­Botswana border, centred over Madikwe Game Reserve (MGR) in South Africa. A principal components...

  17. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink

    PubMed Central

    Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang

    2017-01-01

    Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha−1 yr−1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and −1.30 tC ha−1 yr−1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha−1 yr−1 in the dry season and a considerable carbon sink of 1.14 tC ha−1 yr−1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes. PMID:28145459

  18. Biogenic volatile organic compound emissions from vegetation fires

    PubMed Central

    CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO

    2014-01-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  19. Biogenic volatile organic compound emissions from vegetation fires.

    PubMed

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  20. Savanna chimpanzee (Pan troglodytes verus) nesting ecology at Bagnomba (Kedougou, Senegal).

    PubMed

    Badji, L; Ndiaye, P I; Lindshield, S M; Ba, C T; Pruetz, J D

    2018-05-01

    We studied the nesting behavior of the critically endangered West African chimpanzee (Pan troglodytes verus). We assumed that the nesting data stemmed from a single, unhabituated community at the Bagnomba hill site in the savanna-woodlands of southeastern Senegal. The aim of this study was to examine chimpanzees' nesting habits in terms of the tree species utilized and sleeping nest heights. We recorded a total of 550 chimpanzee nests at Bagnomba between January 2015 and December 2015. The chimpanzees here made nests in particular tree species more often than others. The majority of nests (63%) were in two tree species: Diospyros mespiliformis and Pterocarpus erinaceus. The average height of nesting trees was 10.54 m (SD 3.91, range, 0.0-29.0 m) and average nest height was 7.90 m (SD 3.62, range, 0.0-25.0 m). The result of a linear regression analysis (r = 0.7874; n = 550; p < 0.05) is consistent with a preference for nesting at a particular height. Bagnomba chimpanzees rarely made ground nests (0.36% of nests), but the presence of any ground nesting was unexpected, given that at least one leopard (Panthera pardus) also occupied the hill. This knowledge will enable stakeholders involved in the protection of chimpanzees specifically and of biodiversity in general to better understand chimpanzee ecology and inform a conservation action plan in Senegal where the survival of this species is threatened.

  1. A Cretaceous origin for fire adaptations in the Cape flora.

    PubMed

    He, Tianhua; Lamont, Byron B; Manning, John

    2016-10-05

    Fire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world's most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute strongly to the overall flora. It is hypothesized that the current fire regimes in the Cape could be as old as 6-8 million years (My), while indirect evidence indicates that the onset of fire could have reached 18 million years ago (Ma). Here, we trace the origin of fire-dependent traits in two monocot families that are significant elements in the fire-prone Cape flora. Our analysis shows that fire-stimulated flowering originated in the Cape Haemodoraceae 81 Ma, while fire-stimulated germination arose in the African Restionaceae at least 70 Ma, implying that wildfires have been a significant force in the evolution of the Cape flora at least 60 My earlier than previous estimates. Our results provide strong evidence for the presence of fire adaptations in the Cape from the Cretaceous, leading to the extraordinary persistence of a fire-adapted flora in this biodiversity hotspot, and giving support to the hypothesis that Cretaceous fire was a global phenomenon that shaped the evolution of terrestrial floras.

  2. Fire, Lava Flows, and Human Evolution

    NASA Astrophysics Data System (ADS)

    Medler, M. J.

    2015-12-01

    Richard Wrangham and others argue that cooked food has been obligate for our ancestors since the time of Homo erectus. This hypothesis provides a particularly compelling explanation for the smaller mouths and teeth, shorter intestines, and larger brains that separate us from other hominins. However, natural ignitions are infrequent and it is unclear how earlier hominins may have adapted to cooked food and fire before they developed the necessary intelligence to make or control fire. To address this conundrum, we present cartographical evidence that the massive and long lasting lava flows in the African Rift could have provided our ancestors with episodic access to heat and fire as the front edges of these flows formed ephemeral pockets of heat and ignition and other geothermal features. For the last several million years major lava flows have been infilling the African Rift. After major eruptions there were likely more slowly advancing lava fronts creating small areas with very specific adaptive pressures and opportunities for small isolated groups of hominins. Some of these episodes of isolation may have extended for millennia allowing these groups of early hominins to develop the adaptations Wrangham links to fire and cooked food. To examine the potential veracity of this proposal, we developed a series of maps that overlay the locations of prominent hominin dig sites with contemporaneous lava flows. These maps indicate that many important developments in hominin evolution were occurring in rough spatial and temporal proximity to active lava flows. These maps indicate it is worth considering that over the last several million years small isolated populations of hominins may have experienced unique adaptive conditions while living near the front edges of these slowly advancing lava flows.

  3. The influence of fire on the assemblage structure of foraging birds in grasslands of the Serra da Canastra National Park, Brazil.

    PubMed

    Reis, Matheus G; Fieker, Carolline Z; Dias, Manoel M

    2016-05-13

    Grasslands are the most threatened physiognomies of the Cerrado biome (Brazilian savanna), a biodiversity hotspot with conservation as a priority. The Serra da Canastra National Park protects the most important remnants of the Cerrado's southern grasslands, which are under strong anthropogenic pressure. The present study describes the structure of bird assemblages that directly use food resources in burned areas, comparing areas affected by natural fire to the areas where controlled fires were set (a management strategy to combat arson). The tested null hypothesis was that different bird assemblages are structured in a similar manner, regardless of the post-fire period or assessed area. Between December/2012 and January/2015, 92 species were recorded foraging in the study areas. The results indicate that both types of burnings triggered profound and immediate changes in bird assemblages, increasing the number of species and individuals. Natural fires exhibited a more significant influence on the structure (diversity and dominance) than prescribed burnings. Nevertheless, all the differences were no longer noticeable after a relatively short time interval of 2-3 months after prescribed burnings and 3-4 after natural fires. The findings may help the understanding of prescribed burnings as a management strategy for bird conservation in grasslands.

  4. The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis on African acacias.

    PubMed

    Bouchenak-Khelladi, Yanis; Maurin, Olivier; Hurter, Johan; van der Bank, Michelle

    2010-11-01

    The systematics of Mimosoideae has been in a state of flux, which reflects overall poor knowledge of the evolution and biogeography of this group. Preliminary molecular phylogenetic analyses suggest the tribal system of Mimosoideae needs a complete revision. This has led to the use of new generic names for Acacia sensu lato (s.l. hereafter) following the re-typification of Acacia with an Australian type: (i) Acacia sensu stricto (s.s. hereafter), Vachellia, Senegalia, Acaciella and Mariosousa. This study reconstructs the evolutionary history of Mimosoideae, using the most comprehensive sampling to date, with an emphasis on African species. It aims to reconstruct the phylogenetic relationships among the five recognized genera within Acacieae as the precursor to elucidate the paleo-biogeography of mimosoids and their adaptation to open habitats in the Cenozoic. The basal position of Mimoseae lineages with regards to Vachellia and Senegalia+Mariosousa+Acaciella+Ingeae+Acacia s.s. clades is a novel finding. Vachellia (formerly Acacia subgenus Acacia) is found monophyletic. A grade including the remaining Mimoseae lineages is found sister to the Senegalia+Mariosousa+Acaciella+Ingeae+Acacia s.s. clade. The major clades originated in the late Oligocene-early Miocene (∼25mya). The transitions from close to open habitats occurred during the Miocene for at least four mimosoid lineages. These are interpreted as responses to increased seasonality leading to fire climates and drying trends in the Miocene, which allowed the expansion of open habitats, such as savannas, worldwide. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.

    PubMed

    Okullo, Paul; Moe, Stein R

    2012-09-01

    Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.

  6. Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia

    PubMed Central

    Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza

    2017-01-01

    Abstract Background Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. New information We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms. PMID:28848372

  7. Future changes in South American biomass distributions, biome distributions and plant trait spectra is dependent on applied atmospheric forcings.

    NASA Astrophysics Data System (ADS)

    Langan, Liam; Scheiter, Simon; Higgins, Steven

    2017-04-01

    It remains poorly understood why the position of the forest-savanna biome boundary, in a domain defined by precipitation and temperature, differs in South America, Africa and Australia. Process based Dynamic Global Vegetation Models (DGVMs) are a valuable tool to investigate the determinants of vegetation distributions, however, many DGVMs fail to predict the spatial distribution or indeed presence of the South American savanna biome. Evidence suggests fire plays a significant role in mediating forest-savanna biome boundaries, however, fire alone appear to be insufficient to predict these boundaries in South America. We hypothesize that interactions between precipitation, constraints on tree rooting depth and fire, affect the probability of savanna occurrence and the position of the savanna-forest boundary. We tested our hypotheses at tropical forest and savanna sites in Brazil and Venezuela using a novel DGVM, aDGVM2, which allows plant trait spectra, constrained by trade-offs between traits, to evolve in response to abiotic and biotic conditions. Plant hydraulics is represented by the cohesion-tension theory, this allowed us to explore how soil and plant hydraulics control biome distributions and plant traits. The resulting community trait distributions are emergent properties of model dynamics. We showed that across much of South America the biome state is not determined by climate alone. Interactions between tree rooting depth, fire and precipitation affected the probability of observing a given biome state and the emergent traits of plant communities. Simulations where plant rooting depth varied in space provided the best match to satellite derived biomass estimates and generated biome distributions that reproduced contemporary biome maps well. Future projections showed that biomass distributions, biome distributions and plant trait spectra will change, however, the magnitude of these changes are highly dependent on the applied atmospheric forcings.

  8. Researching the Link Between Biomass Burning and Drought Across the Northern Sub-Saharan African Savanna/Sahel Belt

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Ellison, Luke

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded by the Sahara, Equator, and the West and East African coastlines, is subjected to intense biomass burning every year during the dry season. This is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle anomalies that probably contribute to drought and desertification. In this presentation, we will discuss a new multi-disciplinary research in the NSSA region, review progress, evaluate preliminary results, and interact with the research and user communities to examine how best to coordinate with other research activities in order to address related environmental issues most effectively.

  9. Water-use-efficiency of annual-dominated and bunchgrass-dominated savanna intercanopy space

    USDA-ARS?s Scientific Manuscript database

    In semiarid savannas, annual or perennial grasses intercanopy dominance may alter partitioning of ecosystem water and carbon fluxes. This could affect ecosystem water use efficiency, WUEe, the ratio of net ecosystem carbon dioxide exchange (NEE) to evapotranspiration (ET), an important metric of te...

  10. New insights on palaeofires and savannisation in northern South America

    NASA Astrophysics Data System (ADS)

    Rull, Valentí; Montoya, Encarni; Vegas-Vilarrúbia, Teresa; Ballesteros, Tania

    2015-08-01

    Understanding the origin and ecological dynamics of tropical savannas in terms of natural and human drivers of change is a hot topic that may be crucial for conservation. The case of the Gran Sabana (GS), a huge savanna island within the Amazon-Orinoco rainforests, is presented as a pilot study for the Neotropics. A vivid debate exists on whether or not forests formerly covered the GS and on the potential role of anthropogenic fires in the establishment of present-day savannas. This debate has generated a conflict between conservation ecologists defending the ancient forests hypothesis and indigenous inhabitants (Pemones), for whom the use of fire is an inalienable cultural trait. Here we discuss the latest palaeoecological findings documenting past vegetation dynamics and the shaping of present GS landscapes. At the beginning of the Younger Dryas (YD), the GS was more forested than it is today but an abrupt, hitherto irreversible, shift toward savannisation, likely caused by coupled climate-fire synergies, was recorded between the mid-YD and the Early Holocene. It is suggested that fires could have been ignited by the first South American settlers in their eastward migration from the Panama Isthmus through the so called Atlantic Route. The Pemones would have established in the GS during the Late Holocene when savannas already covered the region. A simplistic debate between either forest or savanna as the "original" GS vegetation is unrealistic and should be replaced by a more dynamic approach. The term "original" vegetation itself is misleading and should not be used.

  11. Climate, herbivory, and fire controls on tropical African forest for the last 60ka

    NASA Astrophysics Data System (ADS)

    Ivory, Sarah J.; Russell, James

    2016-09-01

    The Last Glacial Maximum (LGM) in Africa was drier than today and was followed by rapid step-wise climate changes during the last deglacial period. In much of Africa, these changes led to a drastic reduction of lowland forest area during the LGM, followed by recolonization of the lowlands by forest and woodland in concert with regional warming and wetting. However, the history of southeastern African vegetation contrasts with that observed further north. In particular, forest expansion appears to have occurred in southeastern Africa during episodes of high-latitude northern hemisphere cooling. Although vegetation history in Africa is generally assumed to relate purely to climate, previous studies have not addressed potential feedbacks between climate, vegetation, and disturbance regimes (fire, herbivory) that may create tipping points in ecosystems. This climate-vegetation history has profound implications for our understanding of the modern architecture of lowland and highland forests, both thought to be at risk from future climate change. Here we present analyses of fossil pollen, charcoal, and Sporormiella (dung fungus) on a continuous 60 kyr record from central Lake Tanganyika, Southeast Africa, that illustrates the interplay of climate and disturbance regimes in shaping vegetation composition and structure. We observe that extensive forests dominated the region during the last glacial period despite evidence of decreased rainfall. At the end of the LGM, forest opening at ∼17.5 ka followed warming temperatures but preceded rising precipitation, suggesting that temperature-induced water stress and disturbance from fire and herbivory affected initial landscape transformation. Our Sporormiella record indicates that mega-herbivore populations increased at the early Holocene. This higher animal density increased plant species richness and encouraged landscape heterogeneity until the mid-Holocene. At this time, regional drying followed by the onset of the Iron Age

  12. Long range lateral root activity by neo-tropical savanna trees.

    Treesearch

    Leonel da S. L. Sternberg; Sandra Bucci; Augusto Franco; Guillermo Goldstein; William A. Hoffman; Frederick C. Meinzer; Marcelo Z. Moreira; Fabian Scholz

    2004-01-01

    The extent of water uptake by lateral roots of savanna trees in the Brazilian highlands was measured by irrigating two 2 by 2 m plots with deuterium-enriched water and assaying for the abundance of deuterium in stem water from trees inside and at several distances from the irrigation plots. Stem water of trees inside the irrigation plots was highly enriched compared to...

  13. Atmospheric redistribution of reactive nitrogen and phosphorus by wildfires and implications for global carbon cycling

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.

    2017-12-01

    Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.

  14. Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant-plant-herbivore interactions

    NASA Astrophysics Data System (ADS)

    Alves-Silva, Estevão; Del-Claro, Kleber

    2013-06-01

    Fires in the Cerrado savanna are a severe form of disturbance, but some species are capable of resprouting afterwards. It is unknown, however, how and whether post-fire resprouting represents a stressful condition to plants and how their rapid re-growth influences both the production of biochemical compounds, and interactions with mutualistic ants. In this study, we examined the influence of post-fire resprouting on biotic interactions (ant-plant-herbivore relationships) and on plant stress. The study was performed on two groups of the extrafloral nectaried shrub Banisteriopsis campestris (Malpighiaceae); one group was recovering from fire while the other acted as control. With respect to biotic interactions, we examined whether resprouting influenced extrafloral nectar concentration (milligrams per microliter), the abundance of the ant Camponotus crassus and leaf herbivory rates. Plant stress was assessed via fluctuating asymmetry (FA) analysis, which refers to deviations from perfect symmetry in bilaterally symmetrical traits (e.g., leaves) and indicates whether species are under stress. Results revealed that FA, sugar concentration, and ant abundance were 51.7 %, 35.7 % and 21.7 % higher in resprouting plants. Furthermore, C. crassus was significantly associated with low herbivory rates, but only in resprouting plants. This study showed that post-fire resprouting induced high levels of plant stress and influenced extrafloral nectar quality and ant-herbivore relationships in B. campestris. Therefore, despite being a stressful condition to the plant, post-fire resprouting individuals had concentrated extrafloral nectar and sustained more ants, thus strengthening the outcomes of ant-plant mutualism.

  15. A summary of the scientific literature on the effects of fire on the concentration of nutrients in surface waters

    USGS Publications Warehouse

    Ranalli, Anthony J.

    2004-01-01

    This paper provides a detailed review of the chemical changes that occur in soil during a fire, the pathways by which nutrients are transferred from soil to surface-water bodies following a fire, and the temporal and spatial effects of fires on the concentration of nutrients in surface-water bodies during and following a fire that have been reported in the scientific literature. Thirty-nine papers from the scientific literature that represent studies that (1) were done in a variety of environments (savannas, grasslands, temperate forests, alpine forests, and so forth); (2) had a range of sampling frequency and duration, such as during and immediately following a fire (from the start of fire to 1 year later), short-term sampling (from end of fire to 3 years later), and long term-sampling (sampling for greater than 3 years following a fire); and (3) incorporated watersheds with various burn intensities, severities, and histories were reviewed and summarized. The review of the scientific literature has revealed that measurable effects of fires on streamwater quality are most likely to occur if the fire was severe enough to burn large amounts of organic matter, if windy conditions were present during the fire, if heavy rain occurred following the fire, and if the fire occurred in a watershed with steep slopes and soils with little cation-exchange capacity. Measurable effects of fires on lake- and reservoir-water quality are most likely to occur if, in addition to the factors listed for streams, the lake or reservoir is oligotrophic or mesotrophic and the residence time of water in the lake or reservoir is short relative to the length of time elevated concentrations of nutrients occur in runoff. Knowledge of whether a lake or reservoir is nitrogen or phosphorus limited is important because eutrophication of nitrogen-limited lakes may occur following a fire due to increasing nitrogen:phosphorus ratios caused by prolonged increases of nitrogen concentrations, especially

  16. Managing the human component of fire regimes: lessons from Africa

    PubMed Central

    Archibald, Sally

    2016-01-01

    Human impacts on fire regimes accumulated slowly with the evolution of modern humans able to ignite fires and manipulate landscapes. Today, myriad voices aim to influence fire in grassy ecosystems to different ends, and this is complicated by a colonial past focused on suppressing fire and preventing human ignitions. Here, I review available evidence on the impacts of people on various fire characteristics such as the number and size of fires, fire intensity, fire frequency and seasonality of fire in African grassy ecosystems, with the intention of focusing the debate and identifying areas of uncertainty. Humans alter seasonal patterns of fire in grassy systems but tend to decrease total fire emissions: livestock have replaced fire as the dominant consumer in many parts of Africa, and fragmented landscapes reduce area burned. Humans alter the season and time of day when fires occur, with important implications for fire intensity, tree–grass dynamics and greenhouse gas (GHG) emissions. Late season fires are more common when fire is banned or illegal: these later fires are far more intense but emit fewer GHGs. The types of fires which preserve human livelihoods and biodiversity are not always aligned with the goal of reducing GHG concentrations. Current fire management challenges therefore involve balancing the needs of a large rural population against national and global perspectives on the desirability of different types of fire, but this cannot happen unless the interests of all parties are equally represented. In the future, Africa is expected to urbanize and land use to intensify, which will imply different trajectories for the continent's fire regimes. This article is part of the themed issue ‘The interaction of fire and mankind. PMID:27216516

  17. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees.

    Treesearch

    Sandra J. Bucci; Guillermo Goldstein; Frederick C. Meinzer; Augusto C. Franco; Paula Campanello; Fabián G. Scholz

    2005-01-01

    Seasonal regulation of leaf water potential (ΨL) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum Ψ...

  18. Using Google Earth Engine To Apply Spectral Mixture Analysis Over Landsat 5TM Imagery To Map Fire Scars In The Alto Teles Pires River Basin, Mato Grosso State, Brazil.

    NASA Astrophysics Data System (ADS)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2016-12-01

    The two most extensive biomes in Brazil, the Amazon Forest and the Cerrado (the Brazilian savanna), are subject to many fire events every dry season. Both biomes are well-known for their ecological and environmental importance but, due to the intensive human occupation over the last decades, they have been experiencing high deforestation rates with much of their natural landscape being converted to agriculture and pasture uses. The Cerrado, as a savanna, has naturally evolved adapted to fire. According to some researchers, this biome has been exposed to fire for the last 25 million years, forging the diversification of many C4 grass species, for example. The Amazon forest does not have similar characteristics and studies have shown that forest areas that have been already burned become more prone to recurrent burns. Forest patches that are close to open areas have their edges exposed to higher insolation and greater turbulence, drying the understory vegetation and litter, turning those areas more susceptible to fire events. In cases where grass species become established in the understory they can be a renewable source of fuel for recurrent burns. This study aimed to identify and map fire scars present in the region of Alto Teles Pires river basin, State of Mato Grosso - Brazil, during 10 years (2002-2011). This region is located in the transition zone between the two biomes and is known for its high deforestation rates. By taking advantage of the Landsat 5TM imagery collection present in Google Earth Engine platform as well as applying Spectral Mixture Analysis (SMA) techniques over them it was possible to estimate fractions of Green Vegetation (GV), Non-Photosynthetic Vegetation (NPV), and Soil targets, which are the surfaces that compose the vast majority of the landscape in the study region. Iteratively running SMA analysis over the imagery using burned vegetation endmembers allowed us to further identify fire scars present in the region, returning excellent

  19. Effects of anabolic and catabolic nutrients on woody plant encroachment after long-term experimental fertilization in a South African savanna

    PubMed Central

    Milewski, Antoni V.; Snyman, Dirk; Jordaan, Jorrie J.

    2017-01-01

    The causes of the worldwide problem of encroachment of woody plants into grassy vegetation are elusive. The effects of soil nutrients on competition between herbaceous and woody plants in various landscapes are particularly poorly understood. A long-term experiment of 60 plots in a South African savanna, comprising annual applications of ammonium sulphate (146–1166 kg ha-1 yr-1) and superphosphate (233–466 kg ha-1 yr-1) over three decades, and subsequent passive protection over another three decades, during which indigenous trees encroached on different plots to extremely variable degrees, provided an opportunity to investigate relationships between soil properties and woody encroachment. All topsoils were analysed for pH, acidity, EC, water-dispersible clay, Na, Mg, K, Ca, P, S, C, N, NH4, NO3, B, Mn, Cu and Zn. Applications of ammonium sulphate (AS), but not superphosphate (SP), greatly constrained tree abundance relative to control plots. Differences between control plots and plots that had received maximal AS application were particularly marked (16.3 ± 5.7 versus 1.2 ± 0.8 trees per plot). Soil properties most affected by AS applications included pH (H2O) (control to maximal AS application: 6.4 ± 0.1 to 5.1 ± 0.2), pH (KCl) (5.5 ± 0.2 to 4.0 ± 0.1), acidity (0.7 ± 0.1 to 2.6 ± 0.3 cmol kg-1), acid saturation (8 ± 2 to 40 ± 5%), Mg (386 ± 25 to 143 ± 15 mg kg-1), Ca (1022 ± 180 to 322 ± 14 mg kg-1), Mn (314 ± 11 to 118 ± 9 mg kg-1), Cu (3.6 ± 0.3 to 2.3 ± 0.2 mg kg-1) and Zn (6.6 ± 0.4 to 3.7 ± 0.4 mg kg-1). Magnesium, B, Mn and Cu were identified using principal component analysis, boundary line analysis and Kruskal-Wallis rank sum tests as the nutrients most likely to be affecting tree abundance. The ratio Mn/Cu was most related to tree abundance across the experiment, supporting the hypothesis that competition between herbaceous and woody plants depends on the availability of anabolic relative to catabolic nutrients. These findings

  20. RELATIONSHIP OF MICROBIAL COMMUNITY STRUCTURE AND CARBON DYNAMICS IN SOILS FROM BRAZILIAN SAVANNAS

    EPA Science Inventory

    Fertilization is a widespread management practice in savanna areas of central Brazil (Cerrado) that are undergoing rapid agricultural land use changes. We conducted field and laboratory studies in soils with added fertilizers to determine the effect that fertilization of native a...