Sample records for african science classrooms

  1. Pre-Service Teachers' Reflections of South African Science Classrooms

    ERIC Educational Resources Information Center

    Singh, S. K.; Singh, R. J.

    2012-01-01

    The introduction of outcomes-based education in South Africa placed many challenges on the transformation of science classrooms. The 2009 National Education Evaluation and Development Unit (NEEDU) Report concluded that South African rural and township schools are largely dysfunctional. This article examined some of the reasons for the…

  2. Young African American Children Constructing Academic and Disciplinary Identities in an Urban Science Classroom

    ERIC Educational Resources Information Center

    Kane, Justine M.

    2012-01-01

    In this paper, I offer a framework for exploring the academic and disciplinary identities young African American children construct in urban science classrooms. Using interviews, fieldnotes, and videotapes of classroom lessons, I juxtapose the ways in which two children tell about their experiences in school and science with their performances of…

  3. Rethinking Argumentation-Teaching Strategies and Indigenous Knowledge in South African Science Classrooms

    ERIC Educational Resources Information Center

    Otulaja, Femi S.; Cameron, Ann; Msimanga, Audrey

    2011-01-01

    Our response to Hewson and Ogunniyi's paper focuses, on the one hand, on some of the underlying tensions associated with aligning indigenous knowledge systems with westernized science in South African science classrooms, as suggested by the new, post-apartheid, curriculum. On the other hand, the use of argumentation as a vehicle to accomplish the…

  4. Young African American children constructing identities in an urban integrated science-literacy classroom

    NASA Astrophysics Data System (ADS)

    Kane, Justine M.

    This is a qualitative study of identities constructed and enacted by four 3rd-grade African American children (two girls and two boys) in an urban classroom that engaged in a year-long, integrated science-literacy project. Juxtaposing narrative and discursive identity lenses, coupled with race and gender perspectives, I examined the ways in which the four children saw and performed themselves as students and as science students in their classroom. Interview data were used for the narrative analysis and classroom Discourse and artifacts were used for the discursive analysis. A constructivist grounded theory framework was adopted for both analyses. The findings highlight the diversity and richness of perspectives and forms of engagement these young children shared and enacted, and help us see African American children as knowers, doers, and talkers of science individually and collectively. In their stories about themselves, all the children identified themselves as smart but they associated with smartness different characteristics and practices depending on their strengths and preferences. Drawing on the children's social, cultural, and ethnolinguistic resources, the dialogic and multimodal learning spaces facilitated by their teacher allowed the children to explore, negotiate, question, and learn science ideas. The children in this study brought their understandings and ways of being into the "lived-in" spaces co-created with classmates and teacher and influenced how these spaces were created. At the same time, each child's ways of being and understandings were shaped by the words, actions, behaviors, and feelings of peers and teacher. Moreover, as these four children engaged with science-literacy activities, they came to see themselves as competent, creative, active participants in science learning. Although their stories of "studenting" seemed dominated by following rules and being well-behaved, their stories of "sciencing" were filled with exploration, ingenuity

  5. Young African American Children Constructing Identities in an Urban Integrated Science-Literacy Classroom

    ERIC Educational Resources Information Center

    Kane, Justine M.

    2009-01-01

    This is a qualitative study of identities constructed and enacted by four 3rd-grade African American children (two girls and two boys) in an urban classroom that engaged in a year-long, integrated science-literacy project. Juxtaposing narrative and discursive identity lenses, coupled with race and gender perspectives, I examined the ways in which…

  6. Rethinking argumentation-teaching strategies and indigenous knowledge in South African science classrooms

    NASA Astrophysics Data System (ADS)

    Òtúlàjà, Fẹ´Mi S.; Cameron, Ann; Msimanga, Audrey

    2011-09-01

    Our response to Hewson and Ogunniyi's paper focuses, on the one hand, on some of the underlying tensions associated with alinging indigenous knowledge systems with westernized science in South African science classrooms, as suggested by the new, post-apartheid, curriculum. On the other hand, the use of argumentation as a vehicle to accomplish the alignment when the jury is still out on the appropriateness of argumentation as a pedagogical and research tool heightens the tension. We argue that the need for education stakeholders from indigenous heritages to value, know and document their own indigenous knowledge becomes paramount. The textualizing of indigenous knowledge, as has been done in western science, will create repositories for teachers to access and may help with the argumentation strategies such as advocated by the authors.

  7. What is taking place in science classrooms?: A case study analysis of teaching and learning in seventh-grade science of one Alabama school and its impact on African American student learning

    NASA Astrophysics Data System (ADS)

    Norman, Lashaunda Renea

    This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School

  8. The nature of culturally responsive pedagogy in two urban African American middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Bondima, Michelle Harris

    This ethnographic in nature study explores how two middle school science teachers who have classes populated by urban African Americans teach their students and how their students perceive their teaching. Since urban African American students continue to perform lower than desired on measures of science achievement, there is an urgent need to understand what pedagogical methodologies assist and hinder urban African American students in achieving higher levels of success in science. A pedagogical methodology that theorists posit assists subordinated school populations is culturally responsive pedagogy. Culturally responsive pedagogy is defined as a teaching methodology concerned with preparing students to question inequality, racism, and injustice. Teachers who use culturally responsive pedagogy respect the culture students bring to the class, and require that the teachers willingly do whatever is necessary to educate students (Nieto, 2000). The teacher participants were two female African Americans who were identified by their school supervisors as being highly effective with urban African American students. The researcher presented the teachers in separate case studies conducted over a data collection period of nine months. Data were collected by participant observation, interviews, and artifact collection. Data were analyzed by application of grounded theory techniques. Findings of the teachers' (and the students') beliefs about pedagogy that both assisted and hindered the students' performance in science were reported in a rich and nuanced storytelling manner based on multiple perspectives (teachers', students', and the researcher's). Pedagogical methodologies that the teachers used that assisted their students were the use of cultural metaphors and images in science and applications of motivational techniques that encouraged a nurturing relationship between the teacher and her students. Pedagogical methodologies that hindered students varied by teacher

  9. Differential effects of the classroom on African American and non-African American's mathematics achievement.

    PubMed

    Schenke, Katerina; Nguyen, Tutrang; Watts, Tyler W; Sarama, Julie H; Clements, Douglas H

    2017-08-01

    We examined whether African American students differentially responded to dimensions of the observed classroom-learning environment compared with non-African American students. Further, we examined whether these dimensions of the classroom mediated treatment effects of a preschool mathematics intervention targeted at students from low-income families. Three observed dimensions of the classroom (teacher expectations and developmental appropriateness; teacher confidence and enthusiasm; and support for mathematical discourse) were evaluated in a sample of 1,238 preschool students in 101 classrooms. Using multigroup multilevel mediation where African American students were compared to non-African American students, we found that teachers in the intervention condition had higher ratings on the observed dimensions of the classroom compared with teachers in the control condition. Further, ratings on teacher expectations and developmental appropriateness had larger associations with the achievement of African American students than for non-African Americans. Findings suggest that students within the same classroom may react differently to that learning environment and that classroom learning environments could be structured in ways that are beneficial for students who need the most support.

  10. The perspectives and experiences of African American students in an informal science program

    NASA Astrophysics Data System (ADS)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  11. The Black Cultural Ethos and science teachers' practices: A case study exploring how four high school science teachers meet their African American students' needs in science

    NASA Astrophysics Data System (ADS)

    Strachan, Samantha L.

    The underachievement of African American students in science has been a persistent problem in science education. The achievement patterns of African American students indicate that researchers must take a closer look at the types of practices that are being used to meet these students' needs in science classrooms. Determining why science teachers decide to employ certain practices in their classrooms begins with a careful examination of teachers' beliefs as well as their instructional approaches. The purpose of this study was to explore four urban high school science teachers' beliefs about their African American students' learning needs and to investigate how these teachers go about addressing students' needs in science classrooms. This research study also explored the extent to which teachers' practices aligned with the nine dimensions of an established cultural instructional theory, namely the Black Cultural Ethos. Qualitative research methods were employed to gather data from the four teachers. Artifact data were collected from the teachers and they were interviewed and observed. Believing that their students had academic-related needs as well as needs tied to their learning preferences, the four science teachers employed a variety of instructional strategies to meet their students where they were in learning. Overall, the instructional strategies that the teachers employed to meet their students' needs aligned with five of the nine tenets of the Black Cultural Ethos theory.

  12. The Perceived Undergraduate Classroom Experiences of African American Women in Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Holmes, Kimberly Monique

    2013-01-01

    The purpose of this dissertation study was to explore African-American women's perceptions of undergraduate STEM classroom experiences, and the ways in which those experiences have supported or hindered their persistence in physics majors. The major research question guiding this study was: How do African-American women perceive the climate and…

  13. Exploring How African American Faculty Cope with Classroom Racial Stressors

    ERIC Educational Resources Information Center

    Pittman, Chavella T.

    2010-01-01

    This study was an examination of how African American faculty discussed their coping with racially stressful classrooms. Despite aims for racial equality in higher education, the classroom has been a significant site of racial stressors for African American facility. Analysis of interviews with 16 (8 women, 8 men) African American faculty at a…

  14. Pedagogical Translanguaging: Bridging Discourses in South African Science Classrooms

    ERIC Educational Resources Information Center

    Probyn, Margie

    2015-01-01

    This paper reports on the classroom languaging practices of a group of science teachers in rural and township schools in South Africa where the majority of learners learn through the medium of English, despite the fact that it is the home language of only a small minority; and learners' poor English proficiency frequently restricts their access to…

  15. The perspectives of Caribbean high school students' experiences in American science classrooms

    NASA Astrophysics Data System (ADS)

    Ferguson, Renae Luenell

    The purpose of this study was to describe the perspectives of Caribbean high school students' experiences in American science classrooms. Research suggests that psychological, cultural, and socioeconomic perspectives influence the science experiences of African Americans or Blacks; the result of which is under-representation (Lewis et al., 2000). Nonetheless, what is uncertain is if these and other perspectives are similar to the science experiences of Caribbeans who also are majority black by race and rank as the 3 rd largest immigrant population in America's schools (Suarez-Orozco, 2000). Questions guiding this study were: (1) What are the perspectives of Caribbean high school students' experiences in American science classrooms? (2) What can we learn from the perspectives of Caribbean high school students' science experiences that may address issues of participation and interest; consequently, influencing the overall performance of ethnic minorities in school science? Sociocultural theory provides the framework for the analysis of the study. Four Caribbean born students in an American high school participated in this naturalistic qualitative research. A constant comparative method was used to categorize and analyze the data and uncover meaningful patterns that emerged from the four interviews and written documents. Although there were similarities between African Americans' science experiences as documented in the literature and that of Caribbeans in this study, the Caribbean participants relied on prior native experiences to dictate their perspectives of their science experiences in America. According to Caribbean students, American science high schools classrooms utilize an objective style of assessments; are characterized by a lack of teacher support; allow behavioral problems in the classroom; and function through different communication styles than the native Caribbean science classroom environment. This study implies science educators should be sensitive

  16. Balancing acts: A mixed methods study of the figured world of African American 7th graders in urban science classrooms

    NASA Astrophysics Data System (ADS)

    Cleveland-Solomon, Tanya E.

    What beliefs and cultural models do youth who are underrepresented in science have about the domain of science and about themselves as science learners? What do they imagine is possible for them in relation to science both now and in the future? In other words, what constitutes their figured world of science? This dissertation study, using a mixed methods design, offers new perspectives on the ways that underrepresented youth's unexamined assumptions or cultural models and resources may shape their identities and motivation to learn science. Through analyses of survey and interview data, I found that urban African American youths' social context, gender, racial identity, and perceptions of the science they had in school influenced their motivation to learn science. Analyses of short-term classroom observations and interviews suggested that students had competing cultural models that they used in their constructions of identities as science learners, which they espoused and adopted in relation to how well they leveraged the science-related cultural resources available to them. Results from this study suggested that these 7th graders would benefit from access to more expansive cultural models through access to individuals with scientific capital as a way to allow them to create fruitful identities as science learners. If we want to ensure that students from groups that are underrepresented in science not only have better outcomes, but aspire to and enter the science career pipeline, we must also begin to support them in their negotiations of competing cultural models that limit their ability to adopt science-learner identities in their classrooms. This study endeavored to understand the particular cultural models and motivational beliefs that drive students to act, and what types of individuals they imagine scientists and science workers to be. This study also examined how cultural models and resources influence identity negotiation, specifically the roles youths

  17. Rotating Science Classrooms.

    ERIC Educational Resources Information Center

    Hogg, Loretta A.

    1980-01-01

    Described is a science classroom program with centralized materials, and assistance and workshops for teachers. Classroom materials on one of five topics rotate every six weeks among five schools. Teachers plan specific units to match the arrival of the materials in their schools. (Author/DS)

  18. Describing students of the African Diaspora: Understanding micro and meso level science learning as gateways to standards based discourse

    NASA Astrophysics Data System (ADS)

    Lehner, Ed

    2007-04-01

    In much of the educational literature, researchers make little distinction between African-American students and students of the African Diaspora who immigrated to the United States. Failing to describe these salient student differences serves to perpetuate an inaccurate view of African-American school life. In today's large cities, students of the African Diaspora are frequently learning science in settings that are devoid of the resources and tools to fully support their success. While much of the scholarship unites these disparate groups, this article details the distinctive learning culture created when students from several groups of the African Diaspora learn biology together in a Brooklyn Suspension Center. Specifically this work explains how one student, Gabriel, functions in a biology class. A self-described black-Panamanian, Gabriel had tacitly resigned to not learning science, which then, in effect, precluded him from any further associated courses of study in science, and may have excluded him from the possibility of a science related career. This ethnography follows Gabriel's science learning as he engaged in cogenerative dialogue with teachers to create aligned learning and teaching practices. During the 5 months of this research, Gabriel drew upon his unique lifeworld and the depth of his hybridized cultural identity to produce limited, but nonetheless important demonstrations of science. Coexistent with his involvement in cogenerative dialogue, Gabriel helped to construct many classroom practices that supported a dynamic learning environment which produced small yet concrete examples of standards based biology. This study supports further investigation by the science education community to consider ways that students' lifeworld experiences can serve to structure and transform the urban science classroom.

  19. Analysis of South African graduate degrees in science education: 1930-2000

    NASA Astrophysics Data System (ADS)

    Laugksch, Rüdiger C.

    2005-05-01

    This analysis of research conducted by graduate students at South African universities over the last 70 years is an attempt to identify the foci of South African science education research. Appropriate graduate degrees were systematically identified by interrogating electronic databases and verifying details. Title and abstract were then used to assign keywords. Overall 23% and 77% of the 469 graduate degrees identified are doctoral and master's degrees, respectively. The activity of graduate work suggests that science education as a discipline was comparatively well established in South Africa by the 1980s, although 59% of all degrees were conferred between 1991 and 2000. Following the methodology of White [2001, in V. Richardson (Ed.), Handbook of research on teaching (4th ed., pp. 457-471)]. Washington, DC: American Educational Research Association), trends in the relative frequency of keywords indicate that South African science education is broadly in line with worldwide trends in the discipline but that some differences exist. However, South African science education research appears to focus relatively more on attitudes, classrooms, curriculum issues, STS-related issues, and laboratories, and relatively less on assessment, reflection, teachers' or students' conceptions, and informal learning. Research on identified national priorities is being conducted, albeit with variable prevalence. Future opportunities in science education research lie in following a research agenda more closely matched to local contexts, and in the diversification of research focused largely on the secondary-tertiary interface.

  20. A phenomenological case study concerning science teacher educators' beliefs and teaching practices about culturally relevant pedagogy and preparing K-12 science teachers to engage African American students in K-12 science

    NASA Astrophysics Data System (ADS)

    Underwood, Janice Bell

    Due to the rising diversity in today's schools, science teacher educators (STEs) suggest that K-12 teachers must be uniquely prepared to engage these students in science classrooms. Yet, in light of the increasing white-black science achievement gap, it is unclear how STEs prepare preservice teachers to engage diverse students, and African Americans in particular. Therefore, the purpose of this study was to find out how STEs prepare preservice teachers to engage African American students in K-12 science. Thus, using the culturally relevant pedagogy (CRP) framework, this phenomenological case study explored beliefs about culturally relevant science teaching and the influence of reported beliefs and experiences related to race on STEs' teaching practices. In the first phase, STE's in a mid-Atlantic state were invited to participate in an electronic survey. In the second phase, four participants, who were identified as exemplars, were selected from the survey to participate in three semi-structured interviews. The data revealed that STEs were more familiar with culturally responsive pedagogy (CResP) in the context of their post-secondary classrooms as opposed to CRP. Further, most of the participants in part one and two described modeling conventional ways they prepare their preservice teachers to engage K-12 students, who represent all types of diversity, without singling out any specific race. Lastly, many of the STEs' in this study reported formative experiences related to race and beliefs in various manifestations of racism have impacted their teaching beliefs and practices. The findings of this study suggest STEs do not have a genuine understanding of the differences between CRP and CResP and by in large embrace CResP principles. Secondly, in regards to preparing preservice teachers to engage African American students in science, the participants in this study seemed to articulate the need for ideological change, but were unable to demonstrate pedagogical changes

  1. Science Students' Classroom Discourse: Tasha's Umwelt

    NASA Astrophysics Data System (ADS)

    Arnold, Jenny

    2012-04-01

    Over the past twenty-five years researchers have been concerned with understanding the science student. The need for such research is still grounded in contemporary issues including providing opportunities for all students to develop scientific literacy and the failure of school science to connect with student's lives, interests and personal identities. The research reported here is unusual in its use of discourse analysis in social psychology to contribute to an understanding of the way students make meaning in secondary school science. Data constructed for the study was drawn from videotapes of nine consecutive lessons in a year-seven science classroom in Melbourne, post-lesson video-stimulated interviews with students and the teacher, classroom observation and the students' written work. The classroom videotapes were recorded using four cameras and seven audio tracks by the International Centre for Classroom Research at the University of Melbourne. Student talk within and about their science lessons was analysed from a discursive perspective. Classroom episodes in which students expressed their sense of personal identity and agency, knowledge, attitude or emotion in relation to science were identified for detailed analysis of the function of the discourse used by students, and in particular the way students were positioned by others or positioned themselves. This article presents the discursive Umwelt or life-space of one middle years science student, Tasha. Her case is used here to highlight the complex social process of meaning making in science classrooms and the need to attend to local moral orders of rights and duties in research on student language use, identity and learning in science.

  2. Understanding children's science identity through classroom interactions

    NASA Astrophysics Data System (ADS)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity. It asks how children conceive of doing science like scientists and how they develop views of science beyond the stereotypes. This study employs positioning theory to examine how children and their teacher position themselves in science learning contexts and develop science identity through classroom interactions. Fifteen students in grades 4-6 science classrooms in Western Canada participated in this study. Classroom activities and interactions were videotaped, transcribed, and analysed to examine how the teacher and students position each other as scientists in the classroom. A descriptive explanatory case analysis showed how the teacher's positioning acted to develop students' science identity with responsibilities of knowledge seeking, perseverance, and excitement about science.

  3. Science beyond the Classroom Boundaries

    ERIC Educational Resources Information Center

    Feasey, Rosemary; Bianchi, Lynne

    2011-01-01

    There have been many years of innovation in primary science education. Surprisingly, however, most of this has taken place within the confines of the classroom. What primary science has not yet done with universal success is step outside the classroom boundaries to use the school grounds for teaching and learning across all aspects of the science…

  4. Knowledge systems and the colonial legacies in African science education

    NASA Astrophysics Data System (ADS)

    Ziegler, John R.; Lehner, Edward

    2017-10-01

    This review surveys Femi Otulaja and Meshach Ogunniyi's, Handbook of research in science education in sub-Saharan Africa, Sense, Rotterdam, 2017, noting the significance of the theoretically rich content and how this book contributes to the field of education as well as to the humanities more broadly. The volume usefully outlines the ways in which science education and scholarship in sub-Saharan Africa continue to be impacted by the region's colonial history. Several of the chapters also enumerate proposals for teaching and learning science and strengthening academic exchange. Concerns that recur across many of the chapters include inadequate implementation of reforms; a lack of resources, such as for classroom materials and teacher training; and the continued and detrimental linguistic, financial, and ideological domination of African science education by the West. After a brief overview of the work and its central issues, this review closely examines two salient chapters that focus on scholarly communications and culturally responsive pedagogy. The scholarly communication section addresses the ways in which African science education research may in fact be too closely mirroring Western knowledge constructions without fully integrating indigenous knowledge systems in the research process. The chapter on pedagogy makes a similar argument for integrating Western and indigenous knowledge systems into teaching approaches.

  5. Mapping Science in Discourse-based Inquiry Classrooms

    NASA Astrophysics Data System (ADS)

    Yeneayhu, Demeke Gesesse

    Abstract The purpose of this study was to investigate how discourse-based inquiry science lessons provided opportunities for students to develop a network of semantic relations among core ideas and concepts in science. It was a naturalistic inquiry classroom lessons observation study on three science teachers--- a middle school science teacher and two high school physics teachers in an urban school district located in the Western New York region. Discourse and thematic analysis drawn from the theory of Systemic Functional Linguistics were utilized as guiding framework and analysis tools. Analysis of the pre-observation and post-observation interviews of the participant teachers revealed that all of the three teachers participated in at least one inquiry-based science teaching teacher professional development program and they all thought their classroom teaching practice was inquiry-based. Analysis of their classroom lesson videos that each participant teacher taught on a specific science topic revealed that the middle school teacher was found to be a traditional teacher-dominated classroom whereas the two high school physics teachers' classroom teaching approach was found to be discourse-based inquiry. One of the physics teachers who taught on a topic of Magnetic Interaction used relatively structured and guided-inquiry classroom investigations. The other physics teacher who taught on a topic of Color Mixing utilized open-ended classroom investigations where the students planned and executed the series of classroom science investigations with minimal guidance from the teacher. The traditional teacher-based classroom communicative pattern was found to be dominated by Triadic Dialogue and most of the science thematics were jointly developed by the teacher and the students, but the students' role was limited to providing responses to the teacher's series questions. In the guided-inquiry classroom, the common communicative pattern was found to be True Dialogue and most

  6. Physical Science Connected Classrooms: Case Studies

    ERIC Educational Resources Information Center

    Irving, Karen; Sanalan, Vehbi; Shirley, Melissa

    2009-01-01

    Case-study descriptions of secondary and middle school classrooms in diverse contexts provide examples of how teachers implement connected classroom technology to facilitate formative assessment in science instruction. Connected classroom technology refers to a networked system of handheld devices designed for classroom use. Teachers were…

  7. Investigating Science Discourse in a High School Science Classroom

    ERIC Educational Resources Information Center

    Swanson, Lauren Honeycutt

    2011-01-01

    Science classrooms in the United States have become more diverse with respect to the variety of languages spoken by students. This qualitative study used ethnographic methods to investigate the discourse and practices of two ninth grade science classrooms. Approximately 44% of students included in the study were designated as English learners. The…

  8. Inclusion of African American Students in Mathematics Classrooms: Issues of Style, Curriculum, and Expectations.

    ERIC Educational Resources Information Center

    Rowser, Jacqueline Frazier; Koontz, Trish Yourst

    1995-01-01

    Attempts to help teachers reflect on classroom practices to encourage more participation in mathematics by all students, especially African Americans. Discusses learning styles of African Americans, culture-fair curriculum, and teacher expectations of African Americans. (14 references) (MKR)

  9. Biology, literacy, and the African American voice: A case study of meaningful learning in the biology classroom

    NASA Astrophysics Data System (ADS)

    Reese, Keturah

    Under the direction of Sharon Murphy Augustine, Ph.D./Ph.D Curriculum and Instruction There was a substantial performance gap among African Americans and other ethnic groups. Additionally, African American students in a Title I school were at a significantly high risk of not meeting or exceeding on performance tests in science. Past reports have shown average gains in some subject areas, and declines in others (NCES, 2011; GADOE, 2012). Current instructional strategies and the lack of literacy within the biology classroom created a problem for African American high school students on national and state assessments. The purpose of this study was to examine the perceptions of African American students and teachers in the context of literacy and biology through the incorporation of an interactive notebook and other literacy strategies. The data was collected three ways: field notes for a two week observation period within the biology classroom, student and teacher interviews, and student work samples. During the observations, student work collection, and interviews, I looked for the following codes: active learning, constructive learning, collaborative learning, authentic learning, and intentional learning. In the process of coding for the pre-determined codes, three more codes emerged. The three codes that emerged were organization, studying/student ownership, and student teacher relationships. Students and teachers both solidified the notion that literacy and biology worked well together. The implemented literacy strategies were something that both teachers and students appreciated in their learning of biology. Overall students and teachers perceived that the interactive notebook along Cornell notes, Thinking maps, close reads, writing, lab experiments, and group work created meaningful learning experiences within the biology classroom.

  10. Transformative practices in secondary school science classrooms: Life histories of Black South African teachers

    NASA Astrophysics Data System (ADS)

    Jita, Loyiso Currell

    1999-11-01

    This study investigated the construction of teaching practices that are aimed at including all students in learning the key ideas of science and helping them to develop a voice for participating in the discourses in and outside of the science classroom. Such practices define what in this study is referred to as transformative practice. The study tells the stories of three Black secondary school teachers in South Africa who have worked to construct a transformative practice in their biology and physical science classrooms. Using a life history perspective, the study explored the relationships between teachers' identities and the changes in their classroom practices. Data were collected mainly through periodic interviews with the teachers and observations of their teaching practices over a period of 18 months. An important finding of the study was that the classroom practices of all three teachers were defined by three similar themes of: (1) "covering the content" and preparing their students to succeed in the national examinations, (2) developing deep conceptual understandings of the subject matter, and (3) including all students in their teaching by constructing what other researchers have called a "culturally-relevant" pedagogy. This finding was consistent despite the observed variations of context and personal histories. A major finding of this study on the question of the relationship between identity and teaching practice was that despite the importance of context, subject matter, material and social resources, another category of resources---the "resources of biography"---proved to be crucial for each of the teachers in crafting a transformative pedagogy. These "resources of biography" included such things as the teachers' own experiences of marginalization, the experiences of growing up or living in a particular culture, and the experiences of participating in certain kinds of social, political, religious or professional activities. The study suggests that it

  11. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    NASA Astrophysics Data System (ADS)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  12. Everyday Assessment in the Science Classroom.

    ERIC Educational Resources Information Center

    Atkin, J. Myron, Ed.; Coffey, Janet E., Ed.

    The assessment that occurs each day in the science classroom is often overlooked amidst calls for accountability in education and renewed debates about external testing. Research points to the positive influence that improved, ongoing classroom assessment can have on learning. Documents that offer visions for science education such as the National…

  13. Cogenerating fluency in urban science classrooms

    NASA Astrophysics Data System (ADS)

    Lavan, Sarah-Kate

    This critical ethnographic study employed the use of cogenerative dialogue (Roth & Tobin, 2002) as a means to allow participants of a science classroom to reflect on and transform classroom structures while at the same time create opportunities for all stakeholders to develop collective responsibility for teaching and learning. The research was situated in a science classroom in an inner city charter high school that was both a challenging place for the teacher (Jen Beers) and an oppressive place for the students as all struggled to reconcile issues related to power hierarchies and significant differences in social and cultural histories. As a result, cultural misinterpretations and the undervaluing of students' cultural capital served as a foundation for learning. This study examined the various fields and forms of practice that created opportunities for refining teaching practices and at the same time afforded the development of collective responsibility by addressing the roles, identities and agency of all classroom participants. Specifically, I asked the following questions: (1) How can co-generative dialogue can be used to involve all classroom participants in creating a learning community? (2) How does this shape the identities and roles of the participants who were involved? and (3) How do the changed roles and practices lead toward science fluency? The framework of cultural sociology, specifically the dialectical relationship of structure and agency, interaction ritual theory (Collins, 2003) and research on dispositions (Boykin, 1986), provided analytic tools to investigate the practices of the various stakeholders and the classroom structures as well as the historical and cultural contexts surrounding them. Multiple data resources such as field notes, videotape, interviews and artifacts were drawn on from two fields (the science classroom and cogenerative dialogues) to elicit and support findings at micro, meso and macroscopic levels. The major findings of

  14. Achieving equity through critical science agency: An ethnographic study of African American students in a health science career academy

    NASA Astrophysics Data System (ADS)

    Haun-Frank, Julie

    The purpose of this study was to examine the potential of a High School Health Science Career Academy to support African American students' science career trajectories. I used three key theoretical tools---critical science agency (Basu, 2007; Calabrese Barton & Tan, 2008), power (Nespor, 1994), and cultural production (Carlone, 2004; Eisenhart & Finkel, 1998) to highlight the intersections between the career trajectory implied by the Academy (its curriculum, classroom activities, and clinical experiences) and the students' pursued career trajectories. Data was collected over five months and included individual student interviews, group interviews, parent and administrator interviews, field notes from a culminating medical course and clinical internship, and Academy recruitment documents. The results of this study suggest that participants pursued a health science career for altruistic purposes and the Academy was a resource they drew upon to do so. However, the meanings of science and science person implied by the Academy hindered the possibility for many participants' to advance their science career trajectories. While the Academy promised to expose students to a variety of high-status health care roles, they were funneled into feminine, entry-level positions. This study adds to previous underrepresentation literature by contextualizing how identity-related factors influence African American students' career attainment.

  15. Learning Science beyond the Classroom.

    ERIC Educational Resources Information Center

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  16. A study of mathematics and science achievement scores among African American students and the impact of teacher-oriented variables on them through the Educational Longitudinal Study, 2002 (ELS: 2002) data

    NASA Astrophysics Data System (ADS)

    Walker, Valentine

    The purpose of this dissertation was to utilize the ELS: 2002 longitudinal data to highlight the achievement of African American students relative to other racial sub-groups in mathematics and science and to highlight teacher oriented variables that might influence their achievement. Various statistical tools, including descriptive statistics, ANOVA, Multiple Regression were used to analyze data that was derived from the students', teachers' and administrations' questionnaires compiled in the base year of the study (2002) as well as the first follow-up transcript study (2006). The major findings are as follows: African American students performed lower than all other major racial subgroups in mathematics and science; Parental variables including SES and parental education were strong correlates of achievement in mathematics and science: The amount and type of mathematics and science courses students took were strong predictors of achievement in mathematics and science; Teachers' race, experience, certification status, graduate courses completed and professional development influenced African American students' achievement in mathematics and science; Aspects of classroom climate including teacher-pupil relationship, classroom management, students' perception of quality instructions, praise and rewards system might influence African American students' achievement in mathematics and science; Teachers' beliefs pertaining to students' background and intellectual ability might influence their educational expectation of African American students and subsequently student achievement in mathematics and science; Teaching strategies such as reviewing, lecturing and using graphing calculators had a positive influence on mathematics achievement while using computers, discussion and using other books than mathematics textbooks had negative influences on mathematics achievement; Computer use in science had positive influence on science achievement while homework had a positive

  17. Investigating Science Discourse in a High School Science Classroom

    NASA Astrophysics Data System (ADS)

    Swanson, Lauren Honeycutt

    Science classrooms in the United States have become more diverse with respect to the variety of languages spoken by students. This qualitative study used ethnographic methods to investigate the discourse and practices of two ninth grade science classrooms. Approximately 44% of students included in the study were designated as English learners. The present work focused on addressing the following questions: 1) In what ways is science discourse taken up and used by students and their teacher? 2) Are there differences in how science discourse is used by students depending on their English language proficiency? Data collection consisted of interviewing the science teacher and the students, filming whole class and small group discussions during two lesson sequences, and collecting lesson plans, curricular materials, and student work. These data were analyzed qualitatively. Findings indicated that the teacher characterized science discourse along three dimensions: 1) the use of evidence-based explanations; 2) the practice of sharing one's science understandings publically; and 3) the importance of using precise language, including both specialized (i.e., science specific) and non-specialized academic words. Analysis of student participation during in-class activities highlighted how students progressed in each of these science discourse skills. However, this analysis also revealed that English learners were less likely to participate in whole class discussions: Though these students participated in small group discussions, they rarely volunteered to share individual or collective ideas with the class. Overall, students were more adept at utilizing science discourse during class discussions than in written assignments. Analysis of students' written work highlighted difficulties that were not visible during classroom interactions. One potential explanation is the increased amount of scaffolding the teacher provided during class discussions as compared to written

  18. Mathematics and Science Learning Opportunities in Preschool Classrooms

    PubMed Central

    Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine

    2014-01-01

    Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205

  19. Examining science achievement of African American females in suburban middle schools: A mixed methods study

    NASA Astrophysics Data System (ADS)

    Topping, Kecia C.

    , exposure to science, parent influence, peer influence, teacher expectations, strategies for academic success in science, and perception of self in a predominantly Caucasian population. This information should be used to create interactive suburban middle school science classrooms that encourage the participation of African American females. These females should experience increased involvement with activities that expose them to science that is relevant to their lives. As a result, these females will be inspired to excel in science and one day enter into science careers.

  20. African American eighth-grade female students' perceptions and experiences as learners of science literacy

    NASA Astrophysics Data System (ADS)

    Crim, Sharan R.

    The National Assessment of Educational Progress (2000) reports an achievement gap between male and female students and majority and minority students in science literacy. Rutherford and Algren (2000) describe a scientifically literate person as one who is aware that science, mathematics, and technology are interdependent human enterprises with strengths and limitations; understands key concepts and principles of science; is familiar with the natural world and recognizes both its diversity and unity; and uses scientific knowledge and scientific ways of thinking for individual and social purposes. The purpose of this qualitative case study research was to investigate African American eighth grade female students' perceptions and experiences as learners of science literacy. A social learning theory (Bandura, 1986) and constructivist theory (Vygotsky, 1977) served as a guide for the researcher. Two questions were explored: (1) What are African American eighth grade female students' perceptions and experiences as learners of science literacy? (2) In what ways do the perceptions and experiences of African American eighth grade female students influence their learning of science literacy? Purposeful sampling (Merriam, 1998) was used with four African American eighth grade female students selected as participants for the study. Data collection and analysis occurred between February and August in a single year. Data sources included an open-ended questionnaire, two in-depth interviews with each participant (Seidman, 1991); classroom observations, participant reflective journals, student artifacts, and a researcher's log. Data were analyzed through the constant comparative method (Glaser & Strauss, 1967), and richly descriptive participant portraits and qualitative case studies (Merriam, 1998) were used to report the findings. Three themes emerged from the study that positively affected the perceptions and experiences of African American eighth grade female students as

  1. Science Careers in the Classroom.

    ERIC Educational Resources Information Center

    Smith, Walter S.

    1983-01-01

    Suggests systematically exposing early adolescents/middle school students to community people who use science in their work to demonstrate the value of science/mathematics study. Discusses activities related to classroom visits of resource personnel, sources of resource people, and Career Oriented Modules to Explore Topics in Science for grades…

  2. Perceptions of teaching African American students who succeed during science testing: A hermeneutic phenomenological study

    NASA Astrophysics Data System (ADS)

    Harris, Tevis Tramaine

    The purpose of this hermeneutic phenomenological research was to explore the perceptions of teachers as they instruct African American students who are successful on the North Carolina End-of-Grade Science test. The study identified thoughts, feelings, emotions, and challenges that teachers faced when instructing successful African American students from Title I schools in rural community classrooms. The research study analysis utilized NVivo10RTM software and identified common themes in the data. Five themes emerged from interviews with five fifth- and eighth-grade science teachers. Based on the teachers' perceptions, the findings revealed: (a) teachers experience an emotional journey in high poverty schools; (b) investments encompass sacrificing whatever is needed to help students become successful; (c) relationships should be developed between the teacher and student; (d) intentionality is a part of teachers' daily interaction with students; and (e) teachers encounter a challenging opportunity instructing African American students in science. This study provides valuable data in understanding the experiences of teachers as they instruct successful African American students and the challenges, obstacles, and triumphs teachers face when working with this population of students. The implications of the study suggest that educational leaders provide emotional support to help teachers manage the plethora of emotions experienced on a daily basis. Future study of successful teachers of African American students may further inform the dearth of literature surrounding the experience of successful teachers of minority students.

  3. Explanation, argumentation and dialogic interactions in science classrooms

    NASA Astrophysics Data System (ADS)

    Aguiar, Orlando G.

    2016-12-01

    As a responsive article to Miranda Rocksén's paper "The many roles of `explanation' in science education: a case study", this paper aims to emphasize the importance of the two central themes of her paper: dialogic approaches in science education and the role of explanations in science classrooms. I start discussing the concepts of dialogue and dialogism in science classrooms contexts. Dialogism is discussed as the basic tenet from which Rocksén developed her research design and methods. In turn, dialogues in science classrooms may be considered as a particular type of discourse that allows the students' culture, mostly based on everyday knowledge, and the science school culture, related to scientific knowledge and language to be interwoven. I argue that in school, science teachers are always committed to the resolution of differences according to a scientific position for the knowledge to be constructed. Thus, the institution of schooling constrains the ways in which dialogue can be conducted in the classrooms, as the scientific perspective will be always, beforehand, the reference for the conclusions to be reached. The second theme developed here, in dialogue with Rocksén, is about explanations in science classrooms. Based on Jean Paul Bronckart (Atividade de linguagem, textos e discursos: por um interacionismo sócio-discursivo, Educ, São Paulo, 1999), the differences and relationship between explanation and argumentation as communicative acts are re-discussed as well its practical consequences to science teaching. Finally, some epistemological questions are raised about the status of scientific explanations in relation to non-scientific ones.

  4. Active Classroom Participation in a Group Scribbles Primary Science Classroom

    ERIC Educational Resources Information Center

    Chen, Wenli; Looi, Chee-Kit

    2011-01-01

    A key stimulus of learning efficacy for students in the classroom is active participation and engagement in the learning process. This study examines the nature of teacher-student and student-student discourse when leveraged by an interactive technology--Group Scribbles (GS) in a Primary 5 Science classroom in Singapore which supports rapid…

  5. Development and Application of the Elementary School Science Classroom Environment Scale (ESSCES): Measuring Student Perceptions of Constructivism within the Science Classroom

    ERIC Educational Resources Information Center

    Peoples, Shelagh M.; O'Dwyer, Laura M.; Wang, Yang; Brown, Jessica J.; Rosca, Camelia V.

    2014-01-01

    This article describes the development, validation and application of a Rasch-based instrument, the Elementary School Science Classroom Environment Scale (ESSCES), for measuring students' perceptions of constructivist practices within the elementary science classroom. The instrument, designed to complement the Reformed Teaching Observation…

  6. Teaching and Learning Science in Authoritative Classrooms: Teachers' Power and Students' Approval in Korean Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-A.; Kim, Chan-Jong

    2017-09-01

    This study aims to understand interactions in Korean elementary science classrooms, which are heavily influenced by Confucianism. Ethnographic observations of two elementary science teachers' classrooms in Korea are provided. Their classes are fairly traditional teaching, which mean teacher-centered interactions are dominant. To understand the power and approval in science classroom discourse, we have adopted Critical Discourse Analysis (CDA). Based on CDA, form and function analysis was adopted. After the form and function analysis, all episodes were analyzed in terms of social distance. The results showed that both teachers exercised their power while teaching. However, their classes were quite different in terms of getting approval by students. When a teacher got students' approval, he could conduct the science lesson more effectively. This study highlights the importance of getting approval by students in Korean science classrooms.

  7. Pre-Service Science Teachers' Understandings of Classroom Research and the Problems in Conducting Classroom Research Projects

    ERIC Educational Resources Information Center

    Jantarakantee, Ekgapoom; Roadrangka, Vantipa; Clarke, Anthony

    2012-01-01

    This research paper explores pre-service science teachers' understandings of classroom research, problems in conducting classroom research and the supports that pre-service science teachers need from their cooperating teachers to help them conduct a classroom research project during the internship period. The participants in this study are 19…

  8. Robotics Competitions and Science Classrooms

    ERIC Educational Resources Information Center

    Benke, Gertraud

    2012-01-01

    This paper looks at the distinctions between science classrooms and the robotics competition described in the article "Examining the mediation of power in a collaborative community: engaging in informal science as authentic practice" written by Anton Puvirajah, Geeta Verma and Horace Webb. Using the framework of "productive disciplinary…

  9. Achievement for African-American Students: Strategies for the Diverse Classroom.

    ERIC Educational Resources Information Center

    Reglin, Gary L.

    This book has been designed to provide teachers of kindergarten through grade 12 with techniques and approaches for helping their African American students achieve in school. It presents a planned approach to four major initiatives: (1) to restructure the instruction and behaviors practiced in most classrooms today; (2) to provide teachers with…

  10. The flipped classroom: practices and opportunities for health sciences librarians.

    PubMed

    Youngkin, C Andrew

    2014-01-01

    The "flipped classroom" instructional model is being introduced into medical and health sciences curricula to provide greater efficiency in curriculum delivery and produce greater opportunity for in-depth class discussion and problem solving among participants. As educators employ the flipped classroom to invert curriculum delivery and enhance learning, health sciences librarians are also starting to explore the flipped classroom model for library instruction. This article discusses how academic and health sciences librarians are using the flipped classroom and suggests opportunities for this model to be further explored for library services.

  11. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    ERIC Educational Resources Information Center

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  12. Turkish Preservice Science Teachers' Efficacy Beliefs Regarding Science Teaching and Their Beliefs about Classroom Management

    ERIC Educational Resources Information Center

    Gencer, Ayse Savran; Cakiroglu, Jale

    2007-01-01

    The purpose of this study was to explore Turkish preservice science teachers' science teaching efficacy and classroom management beliefs. Data in this study were collected from a total number of 584 preservice science teachers utilizing the Science Teaching Efficacy Belief Instrument and the attitudes and beliefs on classroom control (ABCC)…

  13. African American perspectives: A qualitative study of an informal science enrichment program

    NASA Astrophysics Data System (ADS)

    Simpson, Jamila Rashida

    The purposes of this study were to determine what program characteristics African American parents consider when they enroll their children into an informal science education enrichment program, the parents' evaluation of a program called Jordan Academy in which they enrolled their children, and the alignment of the parents' perspectives with Black Cultural Ethos (BCE). BCE refers to nine dimensions posited by Wade Boykin, a psychologist, as comprising African American culture. Participants were parents of students that attended Jordan Academy, an informal science enrichment program designed for third through sixth grade students from underserved populations. Qualitative methodologies were utilized to perform a thorough assessment of parents' perspectives. Data sources included classroom observations, student surveys, academy curriculum, photos and video-taped class sessions. Data included teachers and parents' responses to semi-structured, audio recorded interviews and students' written responses to open-ended items on the program's evaluation instrument. The data were analyzed for themes and the findings compared to Black Cultural Ethos. Findings revealed that the participants believed that informal science education offered their children opportunities not realized in the formal school setting - a means of impacting their children holistically. The parents expressed the academic, cultural, and personal development of their children in their characterizations of the ideal informal science education experience and in their evaluations of Jordan Academy. Overall, the parents' views emphasized the BCE values of harmony, affect, verve, movement, orality and communalism. The study has important implications for practices within and research on informal science education.

  14. Field-Study Science Classrooms as Positive and Enjoyable Learning Environments

    ERIC Educational Resources Information Center

    Zaragoza, Julien M.; Fraser, Barry J.

    2017-01-01

    We investigated differences between field-study classrooms and traditional science classrooms in terms of the learning environment and students' attitudes to science, as well as the differential effectiveness of field-study classrooms for students differing in sex and English proficiency. A modified version of selected scales from the What Is…

  15. Safety in the Elementary Science Classroom.

    ERIC Educational Resources Information Center

    National Science Teachers Association, Arlington, VA.

    This guide gives elementary school teachers suggestions for providing a safe environment for their students and covers general safety concerns in the science classroom. Information is printed in a flip chart format for easy reference. Safety areas covered include: (1) In Case of Accident; (2) Eye Protection; (3) Plants in the Classroom; (4) First…

  16. Teaching and learning science in linguistically diverse classrooms

    NASA Astrophysics Data System (ADS)

    Moore, Emilee; Evnitskaya, Natalia; Ramos-de Robles, S. Lizette

    2017-01-01

    In this paper we reflect on the article, Science education in a bilingual class: problematising a translational practice, by Zeynep Ünsal, Britt Jakobson, Bengt-Olav Molander and Per-Olaf Wickman (Cult Stud Sci Educ, 10.1007/s11422-016-9747-3). In their article, the authors present the results of a classroom research project by responding to one main question: How is continuity between everyday language and the language of science construed in a bilingual science classroom where the teacher and the students do not speak the same minority language? Specifically, Ünsal et al. examine how bilingual students construe relations between everyday language and the language of science in a class taught in Swedish, in which all students also spoke Turkish, whereas the teacher also spoke Bosnian, both being minority languages in the context of Swedish schools. In this forum, we briefly discuss why close attention to bilingual dynamics emerging in classrooms such as those highlighted by Ünsal et al. matters for science education. We continue by discussing changing ontologies in relation to linguistic diversity and education more generally. Recent research in bilingual immersion classroom settings in so-called "content" subjects such as Content and Language Integrated Learning, is then introduced, as we believe this research offers some significant insights in terms of how bilingualism contributes to knowledge building in subjects such as science. Finally, we offer some reflections in relation to the classroom interactional competence needed by teachers in linguistically diverse classrooms. In this way, we aim to further the discussion initiated by Ünsal et al. and to offer possible frameworks for future research on bilingualism in science education. In their article, Ünsal et al. conclude the analysis of the classroom data by arguing in favor of a translanguaging pedagogy, an approach to teaching and learning in which students' whole language repertoires are used as

  17. Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning

    PubMed Central

    Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245

  18. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    PubMed

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  19. Girls Doing Science: A Case Study of Science Literacy in All-Female Middle Grade Classrooms

    NASA Astrophysics Data System (ADS)

    Faller, Susan Elisabeth

    In the face of low adolescent literacy rates (NCES, 2012), concerns about the nation's prospects of remaining competitive in science and technology (Hill, Corbett, & St. Rose, 2010), a persistent gender gap in science (NCES, 2012; Reilly, 2012), and the continued rollout of college- and career-ready standards, there is a need to focus on adolescent girls' science literacy. Such science literacy involves not only general knowledge about science, but also the ability to engage in the advanced reading and writing practices fundamental to doing science (Norris & Phillips, 2003). In this thesis, I present three articles with findings that respond to this need. They are the results of a multiple-case embedded (Yin, 2009) study that I conducted over the course of 7 months in four science classrooms (grades 5 through 8; 50 students) taught by a single teacher in a small all-female middle school. I collected in-depth data focused on science literacy from multiple sources, including (a) fieldnotes (Emerson, Fretz & Shaw, 2011), (b) videorecorded classroom observations (102 classes, 113 hours, recorded on 29 days), (c) a survey of all students, (d) semi-structured interviews with the subsample of 12 focal students (ranging from 18 to 37 minutes) and (e) photographs of classroom artifacts and student work. In the first article, I provide a window into standard literacy practices in science classrooms by examining the reading and writing genres to which students are exposed. In the second article, I examine how a teacher's language and instructional practices within her classrooms, and popular images of science from the world beyond their classrooms might shape adolescent girls' science identities. Finally, in the third article, I explore different aspects of science identity using the words of three case study students. Taken together, these studies fill gaps in the literature by investigating science literacy in an understudied context, all-female classrooms. In addition

  20. South African Teachers' Attitudes toward the Inclusion of Learners with Different Abilities in Mainstream Classrooms

    ERIC Educational Resources Information Center

    Donohue, Dana K.; Bornman, Juan

    2015-01-01

    This research sought to examine South African teachers' attitudes toward the inclusion of learners with different abilities in their hypothetical mainstream classrooms. Participants were 93 South African teachers who responded to the Teachers' Attitudes and Expectations Scale, a measure developed for this study, regarding four vignettes depicting…

  1. Signs of taste for science: a methodology for studying the constitution of interest in the science classroom

    NASA Astrophysics Data System (ADS)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-06-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of taste for science as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for science as part of school science activities means developing habits of performing and valuing certain distinctions about ways to talk, act and be that are jointly construed as belonging in the school science classroom. In this view, to learn science is not only about learning the curriculum content, but also about learning a normative and aesthetic content in terms of habits of distinguishing and valuing. The approach thus complements previous studies on students' interest in science, by making it possible to analyze how taste for science is constituted, moment-by-moment, through talk and action in the science classroom. In developing the method, we supplement theoretical constructs coming from pragmatism and Pierre Bourdieu with empirical data from a lower secondary science classroom. The application of the method to this classroom demonstrates the potential that the approach has for analyzing how conceptual, normative, and aesthetic distinctions within the science classroom interact in the constitution of taste for, and thereby potentially also in the development of interest in science among students.

  2. Your Science Classroom: Becoming an Elementary/Middle School Science Teacher

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Downey, Laura

    2012-01-01

    Designed around a practical "practice-what-you-teach" approach to methods instruction, "Your Science Classroom: Becoming an Elementary/Middle School Science Teacher" is based on current constructivist philosophy, organized around 5E inquiry, and guided by the National Science Education Teaching Standards. Written in a reader-friendly style, the…

  3. Culture Clash: Interactions between Afrocultural and Mainstream Cultural Styles in Classrooms Serving African American Students

    ERIC Educational Resources Information Center

    Rouland, Karmen; Matthews, Jamaal S.; Byrd, Christy M.; Meyer, Rika M. L.; Rowley, Stephanie J.

    2014-01-01

    This study examined the relation between classroom cultural and achievement-related characteristics and their influence on social outcomes in a sample of 74 fifth grade African American youth (41 girls; 33 boys) ages 10-13 years. Trained observers rated classrooms according to Boykin's (Boykin, Tyler, & Miller, 2005) definition of mainstream…

  4. Development of Classroom Management Scale for Science Teachers

    ERIC Educational Resources Information Center

    Temli-Durmus, Yeliz

    2016-01-01

    Students cannot learn in chaotic, badly managed classrooms. In the first years of teaching experiences, teachers revealed that novice teachers came to recognize the importance of discipline skills and classroom management for effective instruction. The purpose of the study was (i) to develop Science teachers' views towards classroom management…

  5. A critical hermeneutic study: Third grade elementary African American students' views of the nature of science

    NASA Astrophysics Data System (ADS)

    Walls, Leon

    Nature of Science is one of the most fundamental aspects of understanding science. How different cultures, races and ethnicities see and interpret science differently is critical. However, the NOS views specific to African American teachers and learners have gone largely unresearched. The views of a purposeful sample of African American third grade children reported in this study contribute to efforts to make science equitable for all students. Conducted in two Midwest urban settings, within the students' regular classrooms, three instruments were employed: Views of Nature of Science Elementary (an interview protocol), Elementary Draw a Scientist Test (a drawing activity supplemented by an explicating narrative), and Identify a Scientist (a simple select-a-photo technique supported by Likert-measured sureness). The responses provided by twenty-three students were coded using qualitative content analysis. The findings are represented in three main categories: Science - is governed by experimentation, invention and discovery teach us about the natural world, school is not the only setting for learning science; Scientists - intelligent, happy, studious men and women playing multiple roles, with distinct physical traits working in laboratories; Students - capable users and producers of science and who view science as fun. This study advocates for: use of such instruments for constant monitoring of student views, using the knowledge of these views to construct inquiry based science lessons, and increased research about students of color.

  6. Ecojustice in science education: leaving the classroom

    NASA Astrophysics Data System (ADS)

    Mueller, Michael P.

    2011-06-01

    Eduardo Dopico and Eva Garcia-Vázquez's article enriched the ecojustice literature with an interesting metaphor of leaving the classroom, which I argue for here. Glasson and Boggs help to highlight the challenges and fortitude of working ecojustice perspectives in science education and the ways that a dialogical conversation addresses the world at large rather than focusing narrowly and exclusively on science education. Considering the metaphor of `leaving the classroom' I want to explore the tensions that can be experienced by science educators who do research focused on ecosocial justice. While it is not a new idea to suggest that there are gatekeepers in science education who try to maintain what counts in terms of impact in the classroom and what counts or not for the purposes of doing good work in science education, I anticipate highlighting the tensions that ecojustice educators may experience and why they can and should persevere with the incisive work that they are doing to conserve the prospects of future generations. Ecojustice no longer belongs constrained under the confines of environmental sciences or environmental education in science education. It is a separate and distinct field of study that should be generally accepted for the ways it brings clarity and conversation to ideas, curriculum studies, and thick descriptions of how people engage in eco-justice and ethics.

  7. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    NASA Astrophysics Data System (ADS)

    Zhai, Junqing; Tan, Aik-Ling

    2015-12-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers can play the role of (1) dispenser of knowledge (giver), (2) mentor of learning (advisor), (3) monitor of students' activities (police), and (4) partner in inquiry (colearner). These roles are dynamic, and while teachers show a preference for one of the four roles, factors such as the nature of the task, the types of students, as well as the availability of time and resources affect the role that teachers adopt. The roles that teachers play in the classroom have implications for the practice of science as inquiry in the classroom as well as the identities that teachers and students form in the science learning process.

  8. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    ERIC Educational Resources Information Center

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  9. Teaching Planetary Sciences in Bilingual Classrooms

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  10. Pedagogy for the Connected Science Classroom: Computer Supported Collaborative Science and the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Foley, Brian J.; Reveles, John M.

    2014-01-01

    The prevalence of computers in the classroom is compelling teachers to develop new instructional skills. This paper provides a theoretical perspective on an innovative pedagogical approach to science teaching that takes advantage of technology to create a connected classroom. In the connected classroom, students collaborate and share ideas in…

  11. Associations between school-level environment and science classroom environment in secondary schools

    NASA Astrophysics Data System (ADS)

    Dorman, Jeffrey P.; Fraser, Barry J.; McRobbie, Campbell J.

    1995-09-01

    This article describes a study of links between school environment and science classroom environment. Instruments to assess seven dimensions of school environment (viz., Empowerment, Student Support, Affiliation, Professional Interest, Mission Consensus, Resource Adequacy and Work Pressure) and seven dimensions of classroom environment (viz., Student Affiliation, Interactions, Cooperation, Task Orientation, Order & Organisation, Individualisati n and Teacher Control) in secondary school science classrooms were developed and validated. The study involved a sample of 1,318 students in 64 year 9 and year 12 science classes and 128 teachers of science in Australian secondary schools. Using the class mean as the unit of analysis for student data, associations between school and classroom environment were investigated using simple, multiple and canonical correlational analyses. In general, results indicated weak relationships between school and classroom environments and they reinforced the view that characteristics of the school environment are not transmitted automatically into science classrooms.

  12. Everyday classroom assessment practices in science classrooms in Sweden

    NASA Astrophysics Data System (ADS)

    Gómez, María del Carmen; Jakobsson, Anders

    2014-12-01

    The focus of this study is to examine to what extent and in what ways science teachers practice assessment during classroom interactions in everyday activities in an upper-secondary school in Sweden. We are science teachers working now with a larger research project on assessment in science education that seeks to examine teachers' assessment practices in the upper-secondary school. Framing questions include: are teachers performing an integrated assessment of students' skills as the national curriculum mandates? If so, what do the instructional discourses look like in those situations and what are students' experiences regarding their agency on learning and assessment? We emphasize the social, cultural and historic character of assessment and sustain a situated character of learning instead of the notion that learning is "stored inside the head". Teacher led lessons in three science classrooms were video-recorded and analyzed by combining ethnographic and discourse methods of analysis. Both methods are appropriate to the theoretical foundation of our approach on learning and can give some answers to questions about how individuals interact socially, how their experience is passed on to next generations through language and how language use may reveal cultural changes in the studied context. Making the study of action in a classroom the focal point of sociocultural analysis supports the examination of assessment processes and identification of the social roles in which teachers and students are immersed. Such an approach requires observations of how teachers act in authentic teaching situations when they interact with their students in classroom making possible to observe negotiation processes, agencies when both teachers and students are involved in every-day activities. Our study showed that teachers mostly ignored students' questions and that students solved their own problems by helping each other. Teachers did not provide opportunities for students to discuss

  13. Approaches to Classroom-Based Computational Science.

    ERIC Educational Resources Information Center

    Guzdial, Mark

    Computational science includes the use of computer-based modeling and simulation to define and test theories about scientific phenomena. The challenge for educators is to develop techniques for implementing computational science in the classroom. This paper reviews some previous work on the use of simulation alone (without modeling), modeling…

  14. Discovery stories in the science classroom

    NASA Astrophysics Data System (ADS)

    Arya, Diana Jaleh

    School science has been criticized for its lack of emphasis on the tentative, dynamic nature of science as a process of learning more about our world. This criticism is the guiding force for this present body of work, which focuses on the question: what are the educational benefits for middle school students of reading texts that highlight the process of science in the form of a discovery narrative? This dissertation traces my journey through a review of theoretical perspectives of narrative, an analysis of first-hand accounts of scientific discovery, the complex process of developing age-appropriate, cohesive and engaging science texts for middle school students, and a comparison study (N=209) that seeks to determine the unique benefits of the scientific discovery narrative for the interest in and retained understanding of conceptual information presented in middle school science texts. A total of 209 middle school participants in nine different classrooms from two different schools participated in the experimental study. Each subject read two science texts that differed in topic (the qualities of and uses for radioactive elements and the use of telescopic technology to see planets in space) and genre (the discovery narrative and the "conceptually known exposition" comparison text). The differences between the SDN and CKE versions for each topic were equivalent in all possible ways (initial introduction, overall conceptual accuracy, elements of human interest, coherence and readability level), save for the unique components of the discovery narrative (i.e., love for their work, acknowledgement of the known, identification of the unknown and the explorative or experimental process to discovery). Participants generally chose the discovery narrative version as the more interesting of the two texts. Additional findings from the experimental study suggest that science texts in the form of SDNs elicit greater long-term retention of key conceptual information, especially

  15. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    ERIC Educational Resources Information Center

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  16. Exploring the contexts of urban science classrooms. Part 1: Investigating corporate and communal practices

    NASA Astrophysics Data System (ADS)

    Emdin, Christopher

    2007-04-01

    In this paper, I discuss the existence of varying ideologies and perspectives within urban science classrooms and uncover the importance of focusing on student and teacher practices as a means to bridge these disconnections. Specifically, I describe the existence of corporate and communal ideologies and the dynamics that create the misalignment between groups that hold allegiances to these varying belief systems. Utilizing three allied theoretical frames, this paper provides a multi layered and timely analysis of the teaching of science in an urban high school in New York City. I conjoin Bourdieu's sociocultural theory, an analysis of social life through the use of the structure|agency dialectic, and a theorizing of corporate and communal practice to embark on a journey into how African American and Latino/a students' ways of knowing and being can be utilized to meet the goal of improving their success in science.

  17. The effect of classroom instruction, attitudes towards science and motivation on students' views of uncertainty in science

    NASA Astrophysics Data System (ADS)

    Schroeder, Meadow

    This study examined developmental and gender differences in Grade 5 and 9 students' views of uncertainty in science and the effect of classroom instruction on attitudes towards science, and motivation. Study 1 examined views of uncertainty in science when students were taught science using constructivist pedagogy. A total of 33 Grade 5 (n = 17, 12 boys, 5 girls) and Grade 9 (n = 16, 8 boys, 8 girls) students were interviewed about the ideas they had about uncertainty in their own experiments (i.e., practical science) and in professional science activities (i.e., formal science). Analysis found an interaction between grade and gender in the number of categories of uncertainty identified for both practical and formal science. Additionally, in formal science, there was a developmental shift from dualism (i.e., science is a collection of basic facts that are the result of straightforward procedures) to multiplism (i.e., there is more than one answer or perspective on scientific knowledge) from Grade 5 to Grade 9. Finally, there was a positive correlation between the understanding uncertainty in practical and formal science. Study 2 compared the attitudes and motivation towards science and motivation of students in constructivist and traditional classrooms. Scores on the measures were also compared to students' views of uncertainty for constructivist-taught students. A total of 28 students in Grade 5 (n = 13, 11 boys, 2 girls) and Grade 9 (n = 15, 6 boys, 9 girls), from traditional science classrooms and the 33 constructivist students from Study 1 participated. Regardless of classroom instruction, fifth graders reported more positive attitudes towards science than ninth graders. Students from the constructivist classrooms reported more intrinsic motivation than students from the traditional classrooms. Constructivist students' views of uncertainty in formal and practical science did not correlate with their attitudes towards science and motivation.

  18. A theoretical understanding of the literature on student voice in the science classroom

    NASA Astrophysics Data System (ADS)

    Laux, Katie

    2018-01-01

    Background: Incorporating student voice into the science classroom has the potential to positively impact science teaching and learning. However, students are rarely consulted on school and classroom matters. This literature review examines the effects of including student voice in the science classroom.

  19. Science for Girls: Successful Classroom Strategies

    ERIC Educational Resources Information Center

    Goetz, Susan Gibbs

    2007-01-01

    "Science for Girls: Successful Classroom Strategies" looks at how girls learn, beginning with the time they are born through both the informal and formal education process. In the author's current role as professor of science education, Dr. Goetz has surveyed hundreds of female elementary education majors in their junior and senior year of…

  20. Scientists in the Classroom Mentor Model Program - Bringing real time science into the K - 12 classroom

    NASA Astrophysics Data System (ADS)

    Worssam, J. B.

    2017-12-01

    Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.

  1. Differences in sociocultural environment perceptions associated with gender in science classrooms

    NASA Astrophysics Data System (ADS)

    Jegede, Olugbemiro J.; Akinsola Okebukola, Peter

    An amount-of-learning outcome variable has been attributed to the environment in which teaching and learning are conducted. Studies carried out so far have, however, not focused on the sociocultural aspect of the classroom environment, which has been theorized to have potential influence on students' learning. The intent of this study was to examine the influence of five aspects of the sociocultural environment in science classes with particular reference to how these are perceived by boys and girls. The 30-item Socio-Cultural Environment Scale (SCES) developed by Jegede and Okebukola (1988) was used to collect data from 707 Nigerian secondary school students in Classes Four and Five (Grades 10 and 11, respectively). Authoritarianism, goal structure, African worldview, societal expectation, and sacredness of science were the five subscales studied. Sex differences were recorded in the societal expectation subscale. Most of the female subjects are of the opinion that society has a negative or low regard for their ability to do science and this has an effect on their motivation to undertake science-based careers. The reverse is true for boys. This perception is in agreement with the literature on sex differences in science education and highlights the social pressure that brings about subject preferences. The implications of these findings for science teaching and further research are highlighted.

  2. Reversing the Downward Spiral of Science Instruction in K-2 Classrooms

    NASA Astrophysics Data System (ADS)

    Sandholtz, Judith Haymore; Ringstaff, Cathy

    2011-10-01

    This study investigated the extent to which teacher professional development led to changes in science instruction in K-2 classrooms in rural school districts. The research specifically examined changes in (a) teachers' content knowledge in science; (b) teachers' self-efficacy related to teaching science; (c) classroom instructional time allotted to science; and (d) instructional strategies used in science. The study also investigated contextual factors contributing to or hindering changes in science instruction. Data sources included a teacher survey, a self-efficacy assessment, content knowledge tests, interviews, and classroom observations. After one year in the program, teachers showed increased content knowledge and self-efficacy in teaching science; they spent more instructional time on science and began using different instructional strategies. Key contextual factors included curricular demands, resources, administrative support, and support from other teachers.

  3. Characterizing the learning styles and testing the science-related attitudes of African American middle school students: Implications for the underrepresentation of African Americans in the sciences

    NASA Astrophysics Data System (ADS)

    Perine, Donald Ray

    African Americans, Hispanics, Native Americans and women are underrepresented among the population of scientists and science teachers in the United States. Specifically, the shortage of African Americans teaching math and science at all levels of the educational process and going into the many science-related fields is manifested throughout the entire educational and career structure of our society. This shortage exists when compared to the total population of African Americans in this country, the population of African American students, and to society's demand for more math and science teachers and professionals of all races. One suggestion to address this problem is to update curricular and instructional programs to accommodate the learning styles of African Americans from elementary to graduate school. There is little in the published literature to help us understand the learning styles of African American middle school students and how they compare to African American adults who pursue science careers. There is also little published data to help inform us about the relationship between learning styles of African American middle school students and their attitudes toward science. The author used a learning styles inventory instrument to identify the learning style preferences of the African American students and adults. The preferences identified describe how African American students and African American adult science professionals prefer to function, learn, concentrate, and perform in their educational and work activities in the areas of: (a) immediate environment, (b) emotionality, (c) sociological needs, and (d) physical needs. The learning style preferences for the students and adults were not significantly different in key areas of preference. A Test of Science-Related Attitudes (TOSRA) was used to measure seven distinct science-related attitudes of the middle school students. A comparison of the profile of the mean scores for the students in this study

  4. Religious beliefs in science classrooms

    NASA Astrophysics Data System (ADS)

    Fysh, Robert; Lucas, Keith B.

    1998-12-01

    The question of the relationship between science and religion assumes importance for many secondary school students of science, especially but not exclusively for those in Christian schools. Science as presented in many school classrooms is not as objective and value free as it might seem on first examination, nor does it represent adequately the range of beliefs about science held by students and teachers. This paper reports part of a larger research study into beliefs about science and religion held by students, teachers and clergy in a Lutheran secondary school. Results indicate that participants in the study was the relationship between science and religious belief in ways unforeseen and unappreciated by traditional school science programs. The stories of selected participants are told and they frame a discussion of implications of the study for science teaching.

  5. Integrating Engineering into an Urban Science Classroom

    ERIC Educational Resources Information Center

    Meyer, Helen

    2017-01-01

    This article presents a single case study of an experienced physical science teacher (Janet) integrating engineering practices into her urban science classroom over a two-year time frame. The article traces how Janet's understanding of the role engineering in her teaching expanded beyond engineering as an application of science and mathematics to…

  6. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    ERIC Educational Resources Information Center

    Savasci, Funda; Berlin, Donna F.

    2012-01-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and…

  7. Safety in the Elementary Science Classroom.

    ERIC Educational Resources Information Center

    Dean, Robert A.; And Others

    This safety guide for elementary school science teachers who plan science activities or laboratories for their students, presents information in the form of a flip chart that can be posted in the classroom and referred to in an emergency. Space is provided for emergency telephone numbers. A safety checklist is given for the teacher. Topics…

  8. Reversing the Downward Spiral of Science Instruction in K-2 Classrooms

    ERIC Educational Resources Information Center

    Sandholtz, Judith Haymore; Ringstaff, Cathy

    2011-01-01

    This study investigated the extent to which teacher professional development led to changes in science instruction in K-2 classrooms in rural school districts. The research specifically examined changes in (a) teachers' content knowledge in science; (b) teachers' self-efficacy related to teaching science; (c) classroom instructional time allotted…

  9. Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-12-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students' science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers' value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers' instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.

  10. A Theoretical Understanding of the Literature on Student Voice in the Science Classroom

    ERIC Educational Resources Information Center

    Laux, Katie

    2018-01-01

    Background: Incorporating student voice into the science classroom has the potential to positively impact science teaching and learning. However, students are rarely consulted on school and classroom matters. This literature review examines the effects of including student voice in the science classroom. Purpose: The purpose of this literature…

  11. African Americans Who Made a Difference. 15 Plays for the Classroom.

    ERIC Educational Resources Information Center

    1996

    These easy-to-read classroom plays are about 15 African American men and women in a variety of vocations. The plays are designed to enhance the curriculum and to make social studies come alive for the student as they bolster language-arts teaching. Each play includes a Teacher's Guide that contains some quotes from the featured person and a brief…

  12. Metacognitive Strategies on Classroom Participation and Student Achievement in Senior Secondary School Science Classrooms

    ERIC Educational Resources Information Center

    ibe, Helen Ngozi

    2009-01-01

    Teachers constantly face the challenges of the most effective methods of instruction that could enhance academic achievement and match the diversity among students. This study therefore aimed at examining the effects of metacognitive strategies on classroom participation and student achievement in Senior Secondary School Science classrooms. One…

  13. "I am Not a Statistic": Identities of African American Males in Advanced Science Courses

    NASA Astrophysics Data System (ADS)

    Johnson, Diane Wynn

    The United States Bureau of Labor Statistics (2010) expects new industries to generate approximately 2.7 million jobs in science and technology by the year 2018, and there is concern as to whether there will be enough trained individuals to fill these positions. A tremendous resource remains untapped, African American students, especially African American males (National Science Foundation, 2009). Historically, African American males have been omitted from the so called science pipeline. Fewer African American males pursue a science discipline due, in part; to limiting factors they experience in school and at home (Ogbu, 2004). This is a case study of African American males who are enrolled in advanced science courses at a predominantly African American (84%) urban high school. Guided by expectancy-value theory (EVT) of achievement related results (Eccles, 2009; Eccles et al., 1983), twelve African American male students in two advanced science courses were observed in their science classrooms weekly, participated in an in-depth interview, developed a presentation to share with students enrolled in a tenth grade science course, responded to an open-ended identity questionnaire, and were surveyed about their perceptions of school. Additionally, the students' teachers were interviewed, and seven of the students' parents. The interview data analyses highlighted the important role of supportive parents (key socializers) who had high expectations for their sons and who pushed them academically. The students clearly attributed their enrollment in advanced science courses to their high regard for their science teachers, which included positive relationships, hands-on learning in class, and an inviting and encouraging learning environment. Additionally, other family members and coaches played important roles in these young men's lives. Students' PowerPoint(c) presentations to younger high school students on why they should take advanced science courses highlighted these

  14. Life Skills from the Perspectives of Classroom and Science Teachers

    ERIC Educational Resources Information Center

    Kurtdede-Fidan, Nuray; Aydogdu, Bülent

    2018-01-01

    The aim of this study is to determine classroom and science teachers' views about life skills. The study employed phenomenological method. The participants of the study were 24 teachers; twelve of them were classroom teachers and the remaining were science teachers. They were working at public schools in Turkey. The participants were selected…

  15. Classroom Animals Provide More Than Just Science Education

    NASA Astrophysics Data System (ADS)

    Herbert, Sandra; Lynch, Julianne

    2017-03-01

    Keeping classroom animals is a common practice in many classrooms. Their value for learning is often seen narrowly as the potential to involve children in learning biological science. They also provide opportunities for increased empathy, as well as socio-emotional development. Realization of their potential for enhancing primary children's learning can be affected by many factors. This paper focuses on teachers' perceptions of classroom animals, drawing on accounts and reflections provided by 19 participants located in an Australian primary school where each classroom kept an animal. This study aims to progress the conversation about classroom animals, the learning opportunities that they afford, and the issues they present. Phenomenographic analysis of data resulted in five categories of teachers' perceptions of the affordances and constraints of keeping classroom animals.

  16. Effectiveness of 1:1 technology in the science classroom

    NASA Astrophysics Data System (ADS)

    Weiss, Courtney Tara

    The purposes of this study were: (a) to determine if using e-text technology in a middle school resource science classroom increases student academic performance, (b) to determine if using e-text technology in a middle school science resource classroom increases student engagement/on-task behavior, and (c) to evaluate student comfort and satisfaction in using an electronic textbook or print textbook in a middle school resource science classroom. Ten middle school students, four in grade 7 and six in grade 8 participated in the study using the Discovery Education Science Techbook and the AGS General Science series. A single subject design with ABABA phases was used with the printed textbook from AGS as the baseline and the e-text as the intervention. During the baseline and intervention, students completed vocabulary and guided notes on science content. Their performance was evaluated through homework completion, quiz and test scores. Their on task behaviors were observed and recorded in five-minute time intervals daily. Results showed that even though the students preferred the e-text over the printed textbook, their academic scores and engagement were lower when using the e-text.

  17. Inquiry-based instruction in secondary science classrooms: A survey of teacher practice

    NASA Astrophysics Data System (ADS)

    Gejda, Linda Muggeo

    The purpose of this quantitative investigation was to describe the extent to which secondary science teachers, who were certified through Connecticut's BEST portfolio assessment process between 1997 and 2004 and had taught secondary science during the past academic year, reported practicing the indicators of inquiry-based instruction in the classroom and the factors that they perceived facilitated, obstructed, or informed that practice. Indicators of inquiry-based instruction were derived from the Biological Sciences Curriculum Study (BSCS) 5E model (Bybee, 1997). The method for data collection was a researcher-developed, self-report, questionnaire entitled "Inquiry-based Instruction in Secondary Science Classrooms: A Survey", which was developed and disseminated using a slightly modified Dillman (2000) approach. Almost all of the study participants reported practicing the 5Es (engage, explore, explain, elaborate, and evaluate) of inquiry-based instruction in their secondary science classrooms. Time, resources, the need to cover material for mandatory assessments, the science topics or concepts being taught, and professional development on inquiry-based instruction were reported to be important considerations in participants' decisions to practice inquiry-based instruction in their science classrooms. A majority of the secondary science teachers participating in this study indicated they had the time, access to resources and the professional development opportunities they needed to practice inquiry-based instruction in their secondary classrooms. Study participants ranked having the time to teach in an inquiry-based fashion and the need to cover material for mandated testing as the biggest obstacles to their practice of inquiry-based instruction in the secondary classroom. Classroom experience and collegial exchange informed the inquiry-based instruction practice of the secondary science teachers who participated in this study. Recommendations for further research

  18. The discourse of design-based science classroom activities

    NASA Astrophysics Data System (ADS)

    Azevedo, Flávio S.; Martalock, Peggy L.; Keser, Tugba

    2015-06-01

    This paper is an initial contribution to a general theory in which science classroom activity types and epistemological discourse practices are systematically linked. The idea is that activities and discourse are reflexively related, so that different types of science classroom activities (e.g., scientific argumentation, modeling, and design) recruit characteristically distinct forms of participants' (students and teacher) discourse. Such a general theory would eventually map out the full spectrum of discourse practices (and their patterns of manifestation) across various kinds of science classroom activities, and reveal new relationships between forms of both discourse and activities. Because this defines a complex and long-term project, here our aim is simply to delineate this larger theoretical program and to illustrate it with a detailed case study—namely, that of mapping out and characterizing the discourse practices of design- based science classroom activities. To do so, we draw on data from an activity that is prototypically design-based—i.e., one in which students iteratively design and refine an artifact (in this case, pictorial representations of moving objects)—and examine the structure and dynamics of the whole-class discourse practices that emerge around these representational forms. We then compare and contrast these discourse practices to those of an activity that is prototypical of scientific argumentation (taken from the literature)—i.e., one in which students argue between competing theories and explanations of a phenomenon—and begin to illustrate the kinds of insights our theoretical program might afford.

  19. Interactions between Classroom Discourse, Teacher Questioning, and Student Cognitive Engagement in Middle School Science

    ERIC Educational Resources Information Center

    Smart, Julie B.; Marshall, Jeff C.

    2013-01-01

    Classroom discourse can affect various aspects of student learning in science. The present study examines interactions between classroom discourse, specifically teacher questioning, and related student cognitive engagement in middle school science. Observations were conducted throughout the school year in 10 middle school science classrooms using…

  20. Integrating Ubunifu, informal science, and community innovations in science classrooms in East Africa

    NASA Astrophysics Data System (ADS)

    Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.

    2015-12-01

    This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ( Ubunifu) and what students learn in secondary schools in Kenya, Tanzania, and Uganda. In an effort to reconcile the difference between students' lived experiences and Science, Technology, Engineering, and Mathematics (STEM) taught in classrooms, this study presents an experiential iSPACES instructional model as an example of curriculum integration in science classrooms. The culmination is presentation of lessons learned from history, including Africa's unique contributions to science, theory, and indigenous innovations, in the hope that these lessons can spur the development of new instructional practices, standards, curriculum materials, professional and community development, and dialogue among nations.

  1. Classroom Animals Provide More than Just Science Education

    ERIC Educational Resources Information Center

    Herbert, Sandra; Lynch, Julianne

    2017-01-01

    Keeping classroom animals is a common practice in many classrooms. Their value for learning is often seen narrowly as the potential to involve children in learning biological science. They also provide opportunities for increased empathy, as well as socio-emotional development. Realization of their potential for enhancing primary children's…

  2. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    NASA Astrophysics Data System (ADS)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  3. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    NASA Astrophysics Data System (ADS)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  4. Talking about science: An interpretation of the effects of teacher talk in a high school science classroom

    NASA Astrophysics Data System (ADS)

    Moje, Elizabeth B.

    This paper builds on research in science education, secondary education, and sociolinguistics by arguing that high school classrooms can be considered speech communities in which language may be selectively used and imposed on students as a means of fostering academic speech community identification. To demonstrate the ways in which a high school teacher's language use may encourage subject area identification, the results of an interactionist analysis of data from a 2-year ethnographic study of one high school chemistry classroom are presented. Findings indicate that this teacher's uses of language fell into three related categories. These uses of language served to foster identification with the academic speech community of science. As a result of the teacher's talk about science according to these three patterns, students developed or reinforced particular views of science. In addition, talking about science in ways that fostered identity with the discipline promoted the teacher as expert and built classroom solidarity or community. These results are discussed in light of sociolinguistic research on classroom competence and of the assertions of science educators regarding social and ideologic implications of language use in science instruction.Received: 23 September 1993; Revised: 15 September 1994;

  5. Examining classroom interactions related to difference in students' science achievement

    NASA Astrophysics Data System (ADS)

    Zady, Madelon F.; Portes, Pedro R.; Ochs, V. Dan

    2003-01-01

    The current study examines the cognitive supports that underlie achievement in science by using a cultural historical framework (L. S. Vygotsky (1934/1986), Thought and Language, MIT Press, Cambridge, MA.) and the activity setting (AS) construct (R. G. Tharp & R. Gallimore (1988), Rousing minds to life: Teaching, learning and schooling in social context, Cambridge University Press, Cambridge, MA.) with its five features: personnel, motivations, scripts, task demands, and beliefs. Observations were made of the classrooms of seventh-grade science students, 32 of whom had participated in a prior achievement-related parent-child interaction or home study (P. R. Portes, M. F. Zady, & R. M. Dunham (1998), Journal of Genetic Psychology, 159, 163-178). The results of a quantitative analysis of classroom interaction showed two features of the AS: personnel and scripts. The qualitative field analysis generated four emergent phenomena related to the features of the AS that appeared to influence student opportunity for conceptual development. The emergent phenomenon were science activities, the building of learning, meaning in lessons, and the conflict over control. Lastly, the results of the two-part classroom study were compared to those of the home science AS of high and low achievers. Mismatches in the AS features in the science classroom may constrain the opportunity to learn. Educational implications are discussed.

  6. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  7. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    NASA Astrophysics Data System (ADS)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  8. Becoming urban science teachers by transforming middle-school classrooms: A study of the Urban Science Education Fellows Program

    NASA Astrophysics Data System (ADS)

    Furman, Melina Gabriela

    The current scenario in American education shows a large achievement and opportunity gap in science between urban children in poverty and more privileged youth. Research has shown that one essential factor that accounts for this gap is the shortage of qualified science teachers in urban schools. Teaching science in a high poverty school presents unique challenges to beginner teachers. Limited resources and support and a significant cultural divide with their students are some of the common problems that cause many novice teachers to quit their jobs or to start enacting what has been described as "the pedagogy of poverty." In this study I looked at the case of the Urban Science Education Fellows Program. This program aimed to prepare preservice teachers (i.e. "fellows") to enact socially just science pedagogies in urban classrooms. I conducted qualitative case studies of three fellows. Fellows worked over one year with science teachers in middle-school classrooms in order to develop transformative action research studies. My analysis focused on how fellows coauthored hybrid spaces within these studies that challenged the typical ways science was taught and learned in their classrooms towards a vision of socially just teaching. By coauthoring these hybrid spaces, fellows developed grounded generativity, i.e. a capacity to create new teaching scenarios rooted in the pragmatic realities of an authentic classroom setting. Grounded generativity included building upon their pedagogical beliefs in order to improvise pedagogies with others, repositioning themselves and their students differently in the classroom and constructing symbols of possibility to guide their practice. I proposed authentic play as the mechanism that enabled fellows to coauthor hybrid spaces. Authentic play involved contexts of moderate risk and of distributed expertise and required fellows to be positioned at the intersection of the margins and the center of the classroom community of practice. In

  9. Exploring the Classroom: Teaching Science in Early Childhood

    ERIC Educational Resources Information Center

    Dejonckheere, Peter J. N.; de Wit, Nele; van de Keere, Kristof; Vervaet, Stephanie

    2016-01-01

    This study tested and integrated the effects of an inquiry-based didactic method for preschool science in a real practical classroom setting. Four preschool classrooms participated in the experiment (N = 57) and the children were 4-6 years old. In order to assess children's attention for causal events and their understanding at the level of…

  10. Exploring the Classroom: Teaching Science in Early Childhood

    ERIC Educational Resources Information Center

    Dejonckheere, Peter J. N.; De Wit, Nele; Van de Keere, Kristof; Vervaet, Stephanie

    2016-01-01

    This study tested and integrated the effects of an inquiry-based didactic method for preschool science in a real practical classroom setting. Four preschool classrooms participated in the experiment (N= 57) and the children were 4-6 years old. In order to assess children's attention for causal events and their understanding at the level of…

  11. Argumentation and indigenous knowledge: socio-historical influences in contextualizing an argumentation model in South African schools

    NASA Astrophysics Data System (ADS)

    Gallard Martínez, Alejandro J.

    2011-09-01

    This forum considers argumentation as a means of science teaching in South African schools, through the integration of indigenous knowledge (IK). It addresses issues raised in Mariana G. Hewson and Meshach B. Ogunniyi's paper entitled: Argumentation-teaching as a method to introduce indigenous knowledge into science classrooms: opportunities and challenges. As well as Peter Easton's: Hawks and baby chickens: cultivating the sources of indigenous science education; and, Femi S. Otulaja, Ann Cameron and Audrey Msimanga's: Rethinking argumentation-teaching strategies and indigenous knowledge in South African science classrooms. The first topic addressed is that implementation of argumentation in the science classroom becomes a complex endeavor when the tensions between students' IK, the educational infrastructure (allowance for teacher professional development, etc.) and local belief systems are made explicit. Secondly, western styles of debate become mitigating factors because they do not always adequately translate to South African culture. For example, in many instances it is more culturally acceptable in South Africa to build consensus than to be confrontational. Thirdly, the tension between what is "authentic science" and what is not becomes an influencing factor when a tension is created between IK and western science. Finally, I argue that the thrust of argumentation is to set students up as "scientist-students" who will be considered through a deficit model by judging their habitus and cultural capital. Explicitly, a "scientist-student" is a student who has "learned," modeled and thoroughly assimilated the habits of western scientists, evidently—and who will be judged by and held accountable for their demonstration of explicit related behaviors in the science classroom. I propose that science teaching, to include argumentation, should consist of "listening carefully" (radical listening) to students and valuing their language, culture, and learning as a model

  12. Silencing of Voices in a Swedish Science Classroom

    ERIC Educational Resources Information Center

    Ramos de Robles, S. Lizette

    2018-01-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and…

  13. Making Science Trade Book Choices for Elementary Classrooms

    ERIC Educational Resources Information Center

    Atkinson, Terry S.; Matusevich, Melissa N.; Huber, Lisa

    2009-01-01

    Teachers often use science trade books in the classroom for a number of reasons: to enhance science instruction, to augment an adopted science textbook, or to integrate literacy with subject-area content. Using Patricia Hunsader's mathematics trade book evaluation rubric published in the April 2004 issue of "Reading Teacher" as a model, the…

  14. Toward a critical approach to the study of learning environments in science classrooms

    NASA Astrophysics Data System (ADS)

    Lorsbach, Anthony; Tobin, Kenneth

    1995-03-01

    Traditional learning environment research in science classrooms has been built on survey methods meant to measure students' and teachers' perceptions of variables used to define the learning environment. This research has led mainly to descriptions of learning environments. We argue that learning environment research should play a transformative role in science classrooms; that learning environment research should take into account contemporary post-positivist ways of thinking about learning and teaching to assist students and teachers to construct a more emancipatory learning environment. In particular, we argue that a critical perspective could lead to research playing a larger role in the transformation of science classroom learning environments. This argument is supplemented with an example from a middle school science classroom.

  15. How Homes Influence Schools: Early Parenting Predicts African American Children's Classroom Social-Emotional Functioning

    ERIC Educational Resources Information Center

    Baker, Claire E.; Rimm-Kaufman, Sara E.

    2014-01-01

    Data from the Early Childhood Longitudinal Study, Kindergarten Cohort were used to examine the extent to which early parenting predicted African American children's kindergarten social-emotional functioning. Teachers rated children's classroom social-emotional functioning in four areas (i.e., approaches to learning, self-control, interpersonal…

  16. Explanation, Argumentation and Dialogic Interactions in Science Classrooms

    ERIC Educational Resources Information Center

    Aguiar, Orlando G., Jr.

    2016-01-01

    As a responsive article to Miranda Rocksén's paper "The many roles of "explanation" in science education: a case study," this paper aims to emphasize the importance of the two central themes of her paper: dialogic approaches in science education and the role of explanations in science classrooms. I start discussing the concepts…

  17. African Science Leaders Focus on Key Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-08-01

    While dozens of African presidents were in Washington, D. C., in early August to meet with U.S. president Barack Obama during the first U.S.-Africa Leaders Summit, African science ministers and science academy officials held their own gathering at the U.S. National Academy of Sciences (NAS) to focus on challenges and opportunities related to environmental protection, climate change, development, health, poverty, technology, and other issues.

  18. Learning technologies and the cyber-science classroom

    NASA Astrophysics Data System (ADS)

    Houlihan, Gerard

    Access to computer and communication technology has long been regarded `part-and-parcel' of a good education. No educator can afford to ignore the profound impact of learning technologies on the way we teach science, nor fail to acknowledge that information literacy and computing skills will be fundamental to the practice of science in the next millennium. Nevertheless, there is still confusion concerning what technologies educators should employ in teaching science. Furthermore, a lack of knowledge combined with the pressures to be `seen' utilizing technology has lead some schools to waste scarce resources in a `grab-bag' attitude towards computers and technology. Such popularized `wish lists' can only drive schools to accumulate expensive equipment for no real learning purpose. In the future educators will have to reconsider their curriculum and pedagogy with a focus on the learning environment before determining what appropriate computing resources to acquire. This will be fundamental to the capabilities of science classrooms to engage with cutting-edge issues in science. This session will demonstrate the power of a broad range of learning technologies to enhance science education. The aim is to explore classroom possibilities as well as to provide a basic introduction to technical aspects of various software and hardware applications, including robotics and dataloggers and simulation software.

  19. Socioscience and ethics in science classrooms: Teacher perspectives and strategies

    NASA Astrophysics Data System (ADS)

    Sadler, Troy D.; Amirshokoohi, Aidin; Kazempour, Mahsa; Allspaw, Kathleen M.

    2006-04-01

    This study explored teacher perspectives on the use of socioscientific issues (SSI) and on dealing with ethics in the context of science instruction. Twenty-two middle and high school science teachers from three US states participated in semi-structured interviews, and researchers employed inductive analyses to explore emergent patterns relative to the following two questions. (1) How do science teachers conceptualize the place of ethics in science and science education? (2) How do science teachers handle topics with ethical implications and expression of their own values in their classrooms? Profiles were developed to capture the views and reported practices, relative to the place of ethics in science and science classrooms, of participants. Profile A comprising teachers who embraced the notion of infusing science curricula with SSI and cited examples of using controversial topics in their classes. Profile B participants supported SSI curricula in theory but reported significant constraints which prohibited them from actualizing these goals. Profile C described teachers who were non-committal with respect to focusing instruction on SSI and ethics. Profile D was based on the position that science and science education should be value-free. Profile E transcended the question of ethics in science education; these teachers felt very strongly that all education should contribute to their students' ethical development. Participants also expressed a wide range of perspectives regarding the expression of their own values in the classroom. Implications of this research for science education are discussed.

  20. Group Work in Science Classrooms

    ERIC Educational Resources Information Center

    McGregor, Debbie; Tolmie, Andrew

    2009-01-01

    This article considers how students might work together in small groups, from two to eight, in either a primary or secondary science classroom. The nature of group work can vary widely and could include, for example, a pair carrying out an illustrative experiment, a trio or quad debating climate change, or six or seven rehearsing how they will…

  1. Teaching Science in a Technology-Rich Environment: The Impact of Three Innovative Tools on Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Felt, Wallace A.

    2011-01-01

    This qualitative case study of a rural high school examines the impact of technology tools on secondary science classrooms. Specifically, document cameras, student response systems, and probeware are examined for their affect in instructional practices in science classrooms where they are used. Observational data, student surveys, and teacher…

  2. Teacher and Parent Perceptions of Classroom Experiences of African American Male Students in a High School Alternative Program

    ERIC Educational Resources Information Center

    Johnson, Kimberly C.

    2013-01-01

    A major concern in the public schools is the low academic achievement of African American males. This mixed methods study examined the classroom experiences of African American male students in an alternative program. The dual purpose was to investigate the teachers' perceptions and their ability to provide best learning environments for…

  3. Exploring the variability in how educators attend to science classroom interactions

    NASA Astrophysics Data System (ADS)

    Gillespie, Colleen Elizabeth

    Many researchers assert educators must develop a shared instructional vision in order for schools to be effective. While this research tends to focus on educators' alignment around goals of science classrooms, I argue that we can't assume that educators agree on what they see when they look at science classrooms. In this dissertation, I explore the variability in what teachers and leaders notice in science classroom episodes and how they reason about what they notice. I ground my studies in real classroom practice: a videotaped lesson in the first study and a live classroom observation in the second. In Chapter 2, I discuss the importance of grounding discussions about teaching and learning in classroom artifacts, a commitment that motivates my dissertation: educators may have a shared vision when discussing teaching and learning in the abstract but disagree about whether that vision is being realized in a classroom. I then describe and analyze the video clip I used in my interviews, highlighting moments that I consider to be good teaching and learning. In Chapter 3, I present my first study, in which I showed this episode to 15 different science teachers, science instructional leaders, and principals. I found that participants attended to many different features in the episode, which led to significant disagreement about what is happening in the episode. Additionally, I found that these differences in attention corresponded to differences in how participants were framing the activity of watching the clip. In Chapter 4, I explore the attentional variability of one science instructional leader, Valerie, in multiple contexts. In addition to interviewing Valerie about the videotaped lesson, I also observed Valerie engage in an "observation cycle" with a teacher. Even though Valerie is quite skilled at attending to student thinking in some contexts, I found that Valerie's attention is strongly context-dependent and gets pulled away from students' scientific thinking

  4. Classrooms Matter: The Design of Virtual Classrooms Influences Gender Disparities in Computer Science Classes

    ERIC Educational Resources Information Center

    Cheryan, Sapna; Meltzoff, Andrew N.; Kim, Saenam

    2011-01-01

    Three experiments examined whether the design of virtual learning environments influences undergraduates' enrollment intentions and anticipated success in introductory computer science courses. Changing the design of a virtual classroom--from one that conveys current computer science stereotypes to one that does not--significantly increased…

  5. Research on same-gender grouping in eighth-grade science classrooms

    NASA Astrophysics Data System (ADS)

    Friend, Jennifer Ingrid

    This study examined two hypotheses related to same-gender grouping of eighth-grade science classes in a public middle-school setting in suburban Kansas City. The first hypothesis, male and female students enrolled in same-gender eighth-grade science classes demonstrate more positive science academic achievement than their male and female peers enrolled in mixed-gender science classes. The second hypothesis, same-gender grouping of students in eighth-grade science has a positive effect on classroom climate. The participants in this study were randomly assigned to class sections of eighth-grade science. The first experimental group was an eighth-grade science class of all-male students (n = 20) taught by a male science teacher. The control group used for comparison to the male same-gender class consisted of the male students (n = 42) in the coeducational eighth-grade science classes taught by the same male teacher. The second experimental group was an eighth-grade science class of all-female students (n = 23) taught by a female science teacher. The control group for the female same-gender class consisted of female students (n = 61) in the coeducational eighth-grade science classes taught by the same female teacher. The male teacher and the female teacher did not vary instruction for the same-gender and mixed-gender classes. Science academic achievement was measured for both groups through a quantitative analysis using grades on science classroom assessment and overall science course grades. Classroom climate was measured through qualitative observations and through qualitative and quantitative analysis of a twenty-question student survey administered at the end of each trimester grading period. The results of this study did not indicate support for either hypothesis. Data led to the conclusions that same-gender grouping did not produce significant differences in student science academic achievement, and that same-gender classes did not create a more positive

  6. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  7. "But at school … I became a bit shy": Korean immigrant adolescents' discursive participation in science classrooms

    NASA Astrophysics Data System (ADS)

    Ryu, Minjung

    2013-09-01

    In reform-based science curricula, students' discursive participation is highly encouraged as a means of science learning as well as a goal of science education. However, Asian immigrant students are perceived to be quiet and passive in classroom discursive situations, and this reticence implies that they may face challenges in discourse-rich science classroom learning environments. Given this potentially conflicting situation, the present study aims to understand how and why Asian immigrant students participate in science classroom discourse. Findings from interviews with seven Korean immigrant adolescents illustrate that they are indeed hesitant to speak up in classrooms. Drawing upon cultural historical perspectives on identity and agency, this study shows how immigrant experiences shaped the participants' othered identity and influenced their science classroom participation, as well as how they negotiated their identities and situations to participate in science classroom and peer communities. I will discuss implications of this study for science education research and science teacher education to support classroom participation of immigrant students.

  8. Instructional strategies in science classrooms of specialized secondary schools for the gifted

    NASA Astrophysics Data System (ADS)

    Poland, Donna Lorraine

    This study examined the extent to which science teachers in Academic Year Governor's Schools were adhering to the national standards for suggested science instruction and providing an appropriate learning environment for gifted learners. The study asked 13 directors, 54 instructors of advanced science courses, and 1190 students of advanced science courses in 13 Academic Year Governor's Schools in Virginia to respond to researcher-developed surveys and to participate in classroom observations. The surveys and classroom observations collected demographic data as well as instructors' and students' perceptions of the use of various instructional strategies related to national science reform and gifted education recommendations. Chi-square analyses were used to ascertain significant differences between instructors' and students' perceptions. Findings indicated that instructors of advanced science classes in secondary schools for the gifted are implementing nationally recognized gifted education and science education instructional strategies with less frequency than desired. Both students and instructors concur that these strategies are being implemented in the classroom setting, and both concur as to the frequency with which the implementation occurs. There was no significant difference between instructors' and students' perceptions of the frequency of implementation of instructional strategies. Unfortunately, there was not a single strategy that students and teachers felt was being implemented on a weekly or daily basis across 90% of the sampled classrooms. Staff development in gifted education was found to be minimal as an ongoing practice. While this study offers some insights into the frequency of strategy usage, the study needs more classroom observations to support findings; an area of needed future research. While this study was conducted at the secondary level, research into instructional practices at the middle school and elementary school gifted science

  9. Elementary Teachers' Perception of Language Issues in Science Classrooms

    ERIC Educational Resources Information Center

    Seah, Lay Hoon

    2016-01-01

    Although the importance of language in science learning has been widely recognized by researchers, there is limited research on how science teachers perceive the roles that language plays in science classrooms. As part of an intervention design project that aimed to enhance teachers' capacity to address the language demands of science, interview…

  10. Spontaneous Play and Imagination in Everyday Science Classroom Practice

    ERIC Educational Resources Information Center

    Andrée, Maria; Lager-Nyqvist, Lotta

    2013-01-01

    In science education, students sometimes create and engage in spontaneous science-oriented play where ideas about science and scientists are put to use. However, in previous research, little attention has been given to the role of informal spontaneous play in school science classrooms. We argue that, in order to enhance our understanding of…

  11. Highlighting hybridity: A critical discourse analysis of teacher talk in science classrooms

    NASA Astrophysics Data System (ADS)

    Hanrahan, Mary U.

    2006-01-01

    There is evidence that alienation from science is linked to the dominant discourse practices of science classrooms (cf. Lemke, J. L. (1990). Talking Science: Language, Learning, and Values. Norwood, NJ: Ablex). Yet, in secondary science education it is particularly hard to find evidence of curriculum reform that includes explicit changes in pedagogic discourses to accommodate the needs of students from a wide range of backgrounds. However, such evidence does exist and needs to be highlighted wherever it is found to help address social justice concerns in science education. In this article, I show how critical discourse analysis can be used to explore a way of challenging the dominant discourse in teacher - student interactions in science classrooms. My findings suggest a new way of moving toward more socially just science curricula in middle years and secondary classrooms by using hybrid discourses that can serve emancipatory purposes.

  12. A case study on the formation and sharing process of science classroom norms

    NASA Astrophysics Data System (ADS)

    Chang, Jina; Song, Jinwoong

    2016-03-01

    The teaching and learning of science in school are influenced by various factors, including both individual factors, such as member beliefs, and social factors, such as the power structure of the class. To understand this complex context affected by various factors in schools, we investigated the formation and sharing process of science classroom norms in connection with these factors. By examining the developmental process of science classroom norms, we identified how the norms were realized, shared, and internalized among the members. We collected data through classroom observations and interviews focusing on two elementary science classrooms in Korea. From these data, factors influencing norm formation were extracted and developed as stories about norm establishment. The results indicate that every science classroom norm was established, shared, and internalized differently according to the values ingrained in the norms, the agent of norm formation, and the members' understanding about the norm itself. The desirable norms originating from values in science education, such as having an inquiring mind, were not established spontaneously by students, but were instead established through well-organized norm networks to encourage concrete practice. Educational implications were discussed in terms of the practice of school science inquiry, cultural studies, and value-oriented education.

  13. A Cultural Historical Theoretical Perspective of Discourse and Design in the Science Classroom

    ERIC Educational Resources Information Center

    Adams, Megan

    2015-01-01

    Flavio Azevedo, Peggy Martalock and Tugba Keser have initiated an important conversation in science education as they use sociocultural theory to introduce design based scenarios into the science classroom. This response seeks to expand Azevedo, Martalock and Keser's article "The discourse of design-based science classroom activities" by…

  14. Using Web Logs in the Science Classroom

    ERIC Educational Resources Information Center

    Duplichan, Staycle C.

    2009-01-01

    As educators we must ask ourselves if we are meeting the needs of today's students. The science world is adapting to our ever-changing society; are the methodology and philosophy of our educational system keeping up? In this article, you'll learn why web logs (also called blogs) are an important Web 2.0 tool in your science classroom and how they…

  15. Identity and science learning in African American students in informal science education contexts

    NASA Astrophysics Data System (ADS)

    James, Sylvia M.

    2007-12-01

    Science education researchers are recognizing the need to consider identity and other sociocultural factors when examining causes of the science achievement gap for African American students. Non-school settings may hold greater promise than formal schooling to promote identities that are conductive to science learning in African Americans. This mixed-methods study explored the relationship between participation in out-of-school-time (OST) science enrichment programs and African American middle and high school students' racial and ethnic identity (RED, social identity as science learners, and achievement. Pre-post questionnaires used a previously validated model of REI combined with an original subscale that was developed to measure social identity as science learners. Case studies of two programs allowed for an analysis of the informal learning setting. The treatment group (N = 36) consisted of African American middle and high school students in five OST science programs, while the control group (N = 54) students were enrolled in science classes in public schools in the mid-Atlantic region. Results of a t-test of independent means indicated that there was no significant difference between the treatment and control group on measures of REI or science identity. However, the treatment group earned significantly higher science grades compared to the control group, and an ANOVA revealed a significant relationship between science identity and the intention to pursue post-secondary science studies. Although not significant, MANOVA results indicated that students who participated in OST programs exhibited gradual increases in RD and science identity over time according to grade level and gender. Follow-up analysis revealed significant relationships between awareness of racism, gender, and length of time in OST programs. The case studies illustrated that a unique community of practice exists within the OST programs. Access to authentic science learning experiences, youth

  16. Renegotiating the pedagogic contract: Teaching in digitally enhanced secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Ajayi, Ajibola Oluneye

    This qualitative case study explores the effects of emerging digital technology as a teaching and learning tool in secondary school science classrooms. The study examines three teachers' perspectives on how the use of technology affects the teacher-student pedagogic relationship. The "pedagogic contract" is used as a construct to analyze the changes that took place in these teachers' classrooms amid the use of this new technology. The overarching question for this research is: How was the pedagogic contract renegotiated in three secondary science teachers' classrooms through the use of digitally enhanced science instruction. To answer this question, data was collected via semi-structured teacher interviews, classroom observations, and analysis of classroom documents such as student assignments, tests and Study Guides. This study reveals that the everyday use of digital technologies in these classrooms resulted in a re-negotiated pedagogic contract across three major dimensions: content of learning, method and management of learning activities, and assessment of learning. The extent to which the pedagogic contract was renegotiated varied with each of the teachers studied. Yet in each case, the content of learning was extended to include new topics, and greater depth of learning within the mandated curriculum. The management of learning was reshaped around metacognitive strategies, personal goal-setting, individual pacing, and small-group learning activities. With the assessment of learning, there was increased emphasis on self-directed interactive testing as a formative assessment tool. This study highlights the aspects of science classrooms that are most directly affected by the introduction of digital technologies and demonstrates how those changes are best understood as a renegotiation of the teacher-student pedagogic contract.

  17. Citizen Science in the Classroom: Perils and Promise of the New Web

    NASA Astrophysics Data System (ADS)

    Loughran, T.; Dirksen, R.

    2010-12-01

    Classroom citizen science projects invite students to generate, curate, post, query, and analyze data, publishing and discussing results in potentially large collaborative contexts. The new web offers a rich palette of such projects for any STEM educator to select from or create. This easy access to citizen science in the classroom is full of both promise and peril for science education. By offering examples of classroom citizen science projects in particle physics, earth and environmental sciences, each supported by a common mashup of technologies available to ordinary users, we will illustrate something of the promise of these projects for science education, and point to some of the challenges and failure modes--the peril--raised by easy access and particularly easy publication of data. How one sensibly responds to this promise and peril depends on how one views the goals of science (or more broadly, STEM) education: either as the equipping of individual students with STEM knowledge and skills so as to empower them for future options, or as the issuing of effective invitations into STEM communities. Building on the claim that these are complementary perspectives, both of value, we will provide an example of a classroom citizen science project analyzed from both perspectives. The BOSCO classroom-to-classroom water source mapping project provides students both in Northern Uganda and in South Dakota a collaborative platform for analyzing and responding to local water quality concerns. Students gather water quality data, use Google Forms embedded in a project wiki to enter data in a spreadsheet, which then automatically (through Mapalist, a free web service) gets posted to a Google Map, itself embedded in the project wiki. Using these technologies, data is thus collected and posted for analysis in a collaborative environment: the stage is set for classroom citizen science. In the context of this project we will address the question of how teachers can take advantage

  18. Socio-Scientific Decision Making in the Science Classroom

    ERIC Educational Resources Information Center

    Siribunnam, Siripun; Nuangchalerm, Prasart; Jansawang, Natchanok

    2014-01-01

    The learning ability of students in science is improved by socio-scientific decision-making, an important activity that improves a student's scientific literacy, conceptual understanding, scientific inquiry, attitudes, and social values. The socio-scientific issues must be discussed during science classroom activities in the current state of 21st…

  19. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    NASA Astrophysics Data System (ADS)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  20. A Case Study of the Academic Achievement of African American Males in Single-Sex Classrooms in Rural South Carolina

    ERIC Educational Resources Information Center

    Pannell, Lynette Martin

    2013-01-01

    The purpose of this study was to investigate the differences of Measures of Academic Progress (MAP) scores between fourth-grade African American male students who were enrolled in single-sex classrooms and their counterparts who were enrolled in coeducational classrooms. The research provided descriptive data concerning one Title I school in rural…

  1. Professional Vision of Classroom Management and Learning Support in Science Classrooms--Does Professional Vision Differ across General and Content-Specific Classroom Interactions?

    ERIC Educational Resources Information Center

    Steffensky, Mirjam; Gold, Bernadette; Holdynski, Manfred; Möller, Kornelia

    2015-01-01

    The present study investigates the internal structure of professional vision of in-service teachers and student teachers with respect to classroom management and learning support in primary science lessons. Classroom management (including monitoring, managing momentum, and rules and routines) and learning support (including cognitive activation…

  2. Flipping the Science Classroom: Exploring Merits, Issues and Pedagogy

    ERIC Educational Resources Information Center

    Ng, Wan

    2014-01-01

    Educators are continually being challenged to think about how best to integrate digital technologies meaningfully and effectively in their classrooms. A current trend in educational technology which has the potential to enable this in a pragmatic manner is the flipped classroom concept. This paper aims to explore the idea in Science teaching and…

  3. Constructing Authority across Racial Difference: A White Teacher Signifyin(g) with African American Students in a High School English Classroom

    ERIC Educational Resources Information Center

    Ford, Amy Carpenter

    2010-01-01

    This in-depth case study of classroom interaction illuminated how a white female teacher and African American students used talk to build positive authority relationships across their racial difference. Racial difference in classrooms can engender cultural misunderstandings between teachers and students around behavior, communication, and learning…

  4. Using Infographics in the Science Classroom

    ERIC Educational Resources Information Center

    Davidson, Rosemary

    2014-01-01

    As a chemistry teacher, Rosemary Davidson has found "infographics" (information graphics) successfully engage her students in science--not only in carrying out the research for classroom projects but also in presenting the results of their research to their peers. This article will help teachers integrate student-created infographics…

  5. African-American males in computer science---Examining the pipeline for clogs

    NASA Astrophysics Data System (ADS)

    Stone, Daryl Bryant

    The literature on African-American males (AAM) begins with a statement to the effect that "Today young Black men are more likely to be killed or sent to prison than to graduate from college." Why are the numbers of African-American male college graduates decreasing? Why are those enrolled in college not majoring in the science, technology, engineering, and mathematics (STEM) disciplines? This research explored why African-American males are not filling the well-recognized industry need for Computer Scientist/Technologists by choosing college tracks to these careers. The literature on STEM disciplines focuses largely on women in STEM, as opposed to minorities, and within minorities, there is a noticeable research gap in addressing the needs and opportunities available to African-American males. The primary goal of this study was therefore to examine the computer science "pipeline" from the African-American male perspective. The method included a "Computer Science Degree Self-Efficacy Scale" be distributed to five groups of African-American male students, to include: (1) fourth graders, (2) eighth graders, (3) eleventh graders, (4) underclass undergraduate computer science majors, and (5) upperclass undergraduate computer science majors. In addition to a 30-question self-efficacy test, subjects from each group were asked to participate in a group discussion about "African-American males in computer science." The audio record of each group meeting provides qualitative data for the study. The hypotheses include the following: (1) There is no significant difference in "Computer Science Degree" self-efficacy between fourth and eighth graders. (2) There is no significant difference in "Computer Science Degree" self-efficacy between eighth and eleventh graders. (3) There is no significant difference in "Computer Science Degree" self-efficacy between eleventh graders and lower-level computer science majors. (4) There is no significant difference in "Computer Science Degree

  6. A study of the historical role of African Americans in science, engineering and technology

    NASA Astrophysics Data System (ADS)

    Jones, Keith Wayne

    2000-11-01

    The purpose of this study was to determine if there is adequate documentation of an historical role of African and African American involvement in science, engineering, and technology. Through the use of history of science and technology research methodology, along with an examination of the sociological and economic impacts of adequately accredited innovations and inventions contributed by Africans and African Americans, the researcher investigated their contributions to the following areas of science and technology: life science, physical sciences and chemistry, engineering, and science education. In regard to the timeframe for this study, the researcher specifically investigated African and African American involvement in science and technology that includes periods prior to black enslavement, scientific racism and colonialism, as well as during and after those periods. This research study reveals that there are adequate historical data regarding African and African American contributions to science, engineering, and technology. The data reveals that for many millennia African peoples have been continually involved in science and world science histories. The data further show that the numbers of African Americans acquiring BS, MS, Ph.D., Doctor of Science and Doctor of Engineering degrees in science and engineering disciplines are increasing. That these increases are not happening at a rate representative of the present or future African American percentages of the population. Consequently, because of future changes in our nation's demographics, increasing the numbers of people from under-represented groups who pursue scientific and engineering professions has become a matter of national security at the highest levels of government. Moreover, African Americans, Hispanics, and Native Americans are not pursuing careers or taking courses in science and engineering at a rate high enough to fulfill the prospective needs for the United States' industries, government

  7. Technology Integration in Science Classrooms: Framework, Principles, and Examples

    ERIC Educational Resources Information Center

    Kim, Minchi C.; Freemyer, Sarah

    2011-01-01

    A great number of technologies and tools have been developed to support science learning and teaching. However, science teachers and researchers point out numerous challenges to implementing such tools in science classrooms. For instance, guidelines, lesson plans, Web links, and tools teachers can easily find through Web-based search engines often…

  8. Reading the Environment: Children's Literature in the Science Classroom.

    ERIC Educational Resources Information Center

    Cerullo, Mary M.

    Science trade books, both fiction and nonfiction, nurture a child's personal journey of discovery through the anecdotes, adventures, and experiences of others and through vivid word and picture images. This book focuses on the use of children's literature in the science classroom. Chapters include: (1) "Why Science and Literature Belong…

  9. The impact of single-gender classrooms on science achievement of middle school gifted girls

    NASA Astrophysics Data System (ADS)

    Ulkins, David S.

    Studies indicate a gap in science achievement and positive attitudes towards science between gifted male and female students with females performing less than the males. This study investigated the impact of a single-gender classroom environment as opposed to a mixed-gender classroom, on motivation, locus of control, self-concept, and science achievement of middle school gifted girls. The Motivated Strategies for Learning Questionnaire (MSLQ), Review of Personal Effectiveness with Locus of Control (ROPELOC), Test of Science Related Attitudes (TOSRA), and Stanford Achievement Test 10th Edition, were used to measure the dependent variables respectively. The independent-measure t test was used to compare the differences between girls in a single-gender classroom with the ones in a mixed-gender classroom. A significant difference in the external locus of control resulted for girls in the single gender classroom. However, there were no significant differences found in science achievement, motivation, and the attitudes toward science between the two groups. The implication is that a single-gender learning environment and the use of differentiated teaching strategies can help lessen the negative effects of societal stereotypes in today's classrooms. These, along with being cognizant of the differences in learning styles of girls and their male counterparts, will result in a greater level of success for gifted females in the area of science education.

  10. Creating a Science Area in a Preschool Classroom.

    ERIC Educational Resources Information Center

    Rivera, Martha

    Preschool children need direct involvement with science content hands-on experiences that involve them in gathering, organizing, analyzing, and evaluating. This paper describes how to create a science area in a preschool classroom. The paper delineates the equipment needed to maintain a mentally stimulating environment for young children. It also…

  11. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    ERIC Educational Resources Information Center

    Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-01-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…

  12. The function of questions in Omani fourth grade inquiry-based science classrooms: A sociocultural perspective

    NASA Astrophysics Data System (ADS)

    Al-Shaibani, Madiha Ahmed

    2005-11-01

    Studies indicate that science education reforms are globally converging. Many countries are adopting the globally advocated science education reforms for the purpose of obtaining the competitive edge in science education and technology that are viewed as the driving forces of modern economies. Globally, science education reforms are emphasizing paradigm shifts in which constructivist instructional are foregrounded. Many science education curricular documents advocate teaching science through engaging students in scientific inquiry. As a result, science classrooms are becoming more student-centered where students are typically actively engaged in inquiry learning. Even though inquiry instruction has become the common approach in teaching science, the actual implementation of inquiry in classrooms indicates that there is a big gap between the intended inquiry advocated in curricula documents and the actual practices in classroom settings. One of the main features of inquiry instruction is student questions. Authentic student questions are essential for the initiating and main scientific inquiry. However, studies have also illustrated the rarity of student questions in classrooms. This dearth in student questions has been attributed to the discursive practices in classrooms. Classrooms that implement the traditional IRE discourse structure tend to have less student questions. On the other hand, reflective questioning is considered a more appropriate classroom discourse structure because it intentionally invites student questions and engages students in classroom discussions. This qualitative study addresses the issue of questioning in fourth grade inquiry-based science classrooms of the Omani Basic Education system. Methods employed in this study included: participant observation, individual interviews, focus group interviews and the collection of artifacts. Findings of this study illustrated the rarity of student questions in the classrooms. However this

  13. Energy matters: An investigation of drama pedagogy in the science classroom

    NASA Astrophysics Data System (ADS)

    Alrutz, Megan

    The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of

  14. Engineers in the Classroom: Their Influence on African-American Students' Perceptions of Engineering

    ERIC Educational Resources Information Center

    Thompson, Stephen; Lyons, Jed

    2008-01-01

    A Draw an Engineer Test was used to capture the perceptions of engineering held by two similar groups of 6th grade African-American students. Forty-four students who had graduate level engineers in their classrooms during a prior school year as part of a GK-12 project were matched to 44 students who had not. Matching criteria included race,…

  15. Preservice Secondary Science Teachers' Experiences and Ideas about Bullying in Science Classrooms

    ERIC Educational Resources Information Center

    Raven, Sara; Jurkiewicz, Melissa A.

    2014-01-01

    Given the prevalence of bullying in schools, it is imperative that preservice secondary science teachers (PSSTs) know how to deal with this issue in the classroom. This is especially important in science, as the content covered in classes can sometimes lead to discussions of race, religion, and sexual orientation, which can be sensitive topics. In…

  16. Successful African American women in science: A narrative inquiry

    NASA Astrophysics Data System (ADS)

    Petty, Cailisha L.

    This study used narrative inquiry as a methodology to explore the lived experiences of five African American women in science across the academic spectrum, from doctoral candidate to full professor. The research questions guiding the inquiry included one overarching question and three sub-questions: What are the lifestories of successful African American women in science?; a) How do successful African American women in science define themselves?; b) What have been the facilitators and barriers encountered by successful African American women in science?; and c) What have been the systems of support for African American women in science? The study was theoretically positioned within the frameworks of Critical Race Theory and Black Feminist Thought. The two theories were used to guide all aspects of the study including methodology, data collection, and analysis. Data included eleven 40-60 minute semi-structured interview transcripts as well as the participants' Curriculum Vitae. The study design and data analysis were built upon Clandinin and Connelly's (2000) and Clandinin's (2006) model of narrative inquiry which explores narratives as a means to understand experience. Analysis and interpretation created three dominant narratives: Scientific Beginnings, An Unexpected Journey, and Lift as You Climb. Each narrative set explores multiple stories that describe storylines which aligned with the participants' goals of who they were and who they were becoming as scientists; and, storylines of tension which ran counter to the women's goals and aspirations. Barriers and support systems are revealed, as well as the meanings the participants made of their experiences and how it affected their lives.

  17. Networking Antarctic Research Discoveries to a Science Classroom

    ERIC Educational Resources Information Center

    Podoll, Andrew; Olson, Barry; Montplaisir, Lisa; Schwert, Donald; McVicar, Kim; Comez, Dogan; Martin, William

    2008-01-01

    In 2006, a unique scenario transported eighth-grade Earth science students from the classroom into the cold, dry, pristine surroundings of Antarctica. The mission was to expose the students to hands-on science using satellite telephones, Contact 3.0 software, and some very creative improvisation. In addition, a detailed, well-illustrated blog…

  18. Pre-Service Secondary Science and Mathematics Teachers' Classroom Management Styles in Turkey

    ERIC Educational Resources Information Center

    Yilmaz, Kursad

    2009-01-01

    The aim of this study is to determine Pre-service secondary science and mathematics teachers' classroom management styles in Turkey. In addition, differences in pre-service secondary science and mathematics teachers' classroom management styles by gender, and field of study were examined. In the study, the survey model was employed. The research…

  19. Supporting Academic Language Development in Elementary Science: A Classroom Teaching Experiment

    NASA Astrophysics Data System (ADS)

    Jung, Karl Gerhard

    Academic language is the language that students must engage in while participating in the teaching and learning that takes place in school (Schleppegrell, 2012) and science as a content area presents specific challenges and opportunities for students to engage with language (Buxton & Lee, 2014; Gee, 2005). In order for students to engage authentically and fully in the science learning that will take place in their classrooms, it is important that they develop their abilities to use science academic language (National Research Council, 2012). For this to occur, teachers must provide support to their students in developing the science academic language they will encounter in their classrooms. Unfortunately, this type of support remains a challenge for many teachers (Baecher, Farnsworth, & Ediger, 2014; Bigelow, 2010; Fisher & Frey, 2010) and teachers must receive professional development that supports their abilities to provide instruction that supports and scaffolds students' science academic language use and development. This study investigates an elementary science teacher's engagement in an instructional coaching partnership to explore how that teacher planned and implemented scaffolds for science academic language. Using a theoretical framework that combines the literature on scaffolding (Bunch, Walqui, & Kibler, 2015; Gibbons, 2015; Sharpe, 2001/2006) and instructional coaching (Knight, 2007/2009), this study sought to understand how an elementary science teacher plans and implements scaffolds for science academic language, and the resources that assisted the teacher in planning those scaffolds. The overarching goal of this work is to understand how elementary science teachers can scaffold language in their classroom, and how they can be supported in that work. Using a classroom teaching experiment methodology (Cobb, 2000) and constructivist grounded theory methods (Charmaz, 2014) for analysis, this study examined coaching conversations and classroom

  20. Perceptions of selected science careers by African American high school males

    NASA Astrophysics Data System (ADS)

    Ijames, Erika Denise

    Research indicates that internal and external factors such as role models, stereotypes, and pressures placed on African American males by their family and friends influence their perceptions of science careers (Assibey-Mensah, 1997; Hess & Leal, 1997; Jacobowitz, 1983; Maple & Stage, 1991; Thomas, 1989; Ware & Lee, 1988). The purpose of this research was to investigate the perceptions of African American high school males about selected science careers based on apparent internal and external factors. Two questions guided this research: (1) What are high school African American males' perceptions of science careers? (2) What influences high school African American males' perceptions of science careers? This research was based on a pilot study in which African American college males perceived a selection of science careers along racial and gender lines. The follow-up investigation was conducted at Rockriver High School in Acorn County, and the participants were three college-bound African American males. The decision to choose males was based on the concept of occupational niching along gender lines. In biology, niching is defined as the role of a particular species regarding space and reproduction, and its interactions with other factors. During the seven-week period of the students' senior year, they met with the researcher to discuss their perceptions of science careers. An ethnographic approach was used to allow a richer and thicker narrative to occur. Critical theory was used to describe and interpret the voices of the participants from a social perspective. The data collected were analyzed using a constant comparative analysis technique. The participants revealed role models, negative stereotypes, peer pressure, social pressures, and misconceptions as some of the factors that influenced their perceptions of science careers. Results of this research suggest that by dispelling the misconceptions, educators can positively influence the attitudes and perceptions of

  1. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    NASA Astrophysics Data System (ADS)

    Savasci, Funda; Berlin, Donna F.

    2012-02-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and documents. Using an inductive analytic approach, results suggested that the teachers embraced constructivism, but classroom observations did not confirm implementation of these beliefs for three of the four teachers. The most preferred constructivist components were personal relevance and student negotiation; the most perceived component was critical voice. Shared control was the least preferred, least perceived, and least observed constructivist component. School type, grade, student behavior/ability, curriculum/standardized testing, and parental involvement may influence classroom practice.

  2. Teacher and student perspectives on motivation within the high school science classroom

    NASA Astrophysics Data System (ADS)

    Pickens, Melanie Turnure

    The purpose of this study was to investigate teacher and student perspectives on the motivation of high school science students and to explore specific motivational strategies used by teachers as they attempt to enhance student motivation. Four science teachers took part in an initial audio-taped interview, classroom observations with debriefing conversations, and a final audio-taped interview to discuss findings and allow member checking for data triangulation and interpretation. Participating teachers also took part in a final focus group interview. Student participants from each teacher's class were given a Likert style anonymous survey on their views about motivation and learning, motivation in science class, and specific motivational strategies that emerged in their current science class. This study focused on effective teaching strategies for motivation commonly used by the four teachers and on specific teaching strategies used by two of these four teachers in different tracks of science classes. The intent was to determine not only what strategies worked well for all types of science classes, but also what specific motivational approaches were being used in high and low tracked science classes and the similarities and differences between them. This approach provided insight into the differences in motivating tracked students, with the hope that other educators in specific tracks might use such pedagogies to improve motivation in their own science classrooms. Results from this study showed that science teachers effectively motivate their students in the following ways: Questioning students to engage them in the lesson, exhibiting enthusiasm in lesson presentations, promoting a non-threatening environment, incorporating hands-on activities to help learn the lesson concepts, using a variety of activities, believing that students can achieve, and building caring relationships in the classroom. Specific to the higher tracked classroom, effective motivational

  3. An analysis of women's ways of knowing in a 10th grade integrated science classroom

    NASA Astrophysics Data System (ADS)

    Kochheiser, Karen Lynn

    All students can learn science, but how they learn science may differ. This study is about learning science and its relationship to gender. Women need to develop and establish connections with the objects that they are learning and be able to establish a voice in a science classroom. Unfortunately, traditional science classrooms still view science as a male domain and tend to discourage women from pursuing higher levels of science or science related careers. The ways that women learn science are a very complex set of interactions. In order to describe these interactions, this study explored how women's ways of knowing are represented in a high school science classroom. Nine women from an enriched integrated biology and earth science class contributed to this study. The women contributed to this study by participating in individual and group interviews, questionnaires, journals, observations and participant review of the interviews. The ways that these women learn science were described in terms of Belenky, Clinchy, Goldberger, and Tarule's Women's Ways of Knowing: The Development of Self, Voice, and Mind (1997). The women's ways of learning in this classroom tended to be situational with the women fitting different categories of knowing depending on the situation. Most of the women demonstrated periods of time where they wanted to be heard or tried to establish a voice in the classroom. The study helps to provide a theory for how women make choices in their learning of science and the struggle to be successful in a male dominated discipline. The women participating in this study gained an awareness of how they learn science and how that can be used to make them even more successful in the classroom. The awareness of how women learn science will also be of great benefit to other teachers and educators as the work for science reform continues to make science a 'science for all'.

  4. Flipped Classrooms for Advanced Science Courses

    NASA Astrophysics Data System (ADS)

    Tomory, Annette; Watson, Sunnie Lee

    2015-12-01

    This article explains how issues regarding dual credit and Advanced Placement high school science courses could be mitigated via a flipped classroom instructional model. The need for advanced high school courses will be examined initially, followed by an analysis of advanced science courses and the reform they are experiencing. Finally, it will conclude with an explanation of flipped classes as well as how they may be a solution to the reform challenges teachers are experiencing as they seek to incorporate more inquiry-based activities.

  5. Questioning Profiles in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Almeida, Patricia; de Souza, Francisle Neri

    2010-01-01

    In this paper, we are concerned with the role of both teachers and students' questioning in classroom interaction. Bearing in mind that the current guidelines point out to student centred teaching, our aim is to analyse and characterise the questioning patterns of contemporary secondary science classes and compare them to the questioning profiles…

  6. Assessing Bilingual Knowledge Organization in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Wu, Jason S.

    2017-01-01

    Improving outcomes for English language learners (ELLs) in secondary science remains an area of high need. The purpose of this study is to investigate bilingual knowledge organization in secondary science classrooms. This study involved thirty-nine bilingual students in three biology classes at a public high school in The Bronx, New York City.…

  7. Senior science teachers' experience of teaching in a changing multicultural classroom: A case study

    NASA Astrophysics Data System (ADS)

    Ryan, Mark

    Demographic changes within the US are bringing significant changes in the cultural make-up of the classrooms in our schools. Results from national and state assessments indicate a growing achievement gap between the science scores of white students and students from minority communities. This gap indicates a disconnect somewhere in the science classrooms. This study examines the teacher's perspective of the changing learning environment. The study focuses on senior teachers with traditional Midwestern backgrounds and little multicultural experience assuming these teachers had little or no education in multicultural education. Senior teachers are also more likely to have completed their science education within a traditional Universalist perspective of science and likewise have little or no education in multicultural science. The research method was comparative case studies of a purposeful sample of nine science teachers within a community experiencing significant demographic change, seven core senior teachers and two frame of reference teachers. The interviews examined the teachers' awareness of their own cultural beliefs and the impact of those beliefs on classroom practices, the teachers' understanding of cultural influences on the students' academic performance, and the relationships between the teachers' understanding of the cultural aspects of the nature of science and their classroom practices. Analysis of the interview data revealed that the teachers maintain a strong, traditional Midwestern worldview for classroom expectations and they are generally unaware of the impact of those standards on the classroom environment. The teachers were supportive of minority students within their classroom, changing several practices to accommodate student needs, but they were unaware of the broader cultural influences on student learning. The teachers had a poor understanding of the nature of science and none of them recognized a cultural element of NOS. They maintained a

  8. The perception of science teachers on the role of student relationships in the classroom

    NASA Astrophysics Data System (ADS)

    Mattison, Cheryl Ann

    With the increased accountability of educators comes the responsibility of the entire educational community to find ways in which we can help our students succeed in the classroom. In addition, it is important to discover what it takes to keep those students in school Many science teachers enter the profession unprepared to handle the regular classroom routine. Classroom management, grading, lesson planning, setting up labs, and the myriad of other obligations, can leave teachers overwhelmed and sometimes can get in the way of actually helping students be successful. This study investigated how science teachers viewed the importance of developing strong teacher/student relationships to the increase of student success in a science classroom. I attempted to answer 4 major questions: · How do science teachers in a select high school community view the role of interactive relationships in their classrooms and how that might impact their students? · How do science teachers in a select high school community believe they establish successful interactive relationships with their students? · What do science teachers in a select high school community believe are some of the outcomes of those relationships? · What do science teachers suggest to increase the teacher's ability to form good relationships with their students? A qualitative research method was used including observations, interviews and group discussions of 5 high school science teachers in a small urban school.

  9. From interaction to interaction: Exploring shared resources constructed through and mediating classroom science learning

    NASA Astrophysics Data System (ADS)

    Tang, Xiaowei

    Recent reform documents and science education literature emphasize the importance of scientific argumentation as a discourse and practice of science that should be supported in school science learning. Much of this literature focuses on the structure of argument, whether for assessing the quality of argument or designing instructional scaffolds. This study challenges the narrowness of this research paradigm and argues for the necessity of examining students' argumentative practices as rooted in the complex, evolving system of the classroom. Employing a sociocultural-historical lens of activity theory (Engestrom, 1987, 1999), discourse analysis is employed to explore how a high school biology class continuously builds affordances and constraints for argumentation practices through interactions. The ways in which argumentation occurs, including the nature of teacher and student participation, are influenced by learning goals, classroom norms, teacher-student relationships and epistemological stances constructed through a class' interactive history. Based on such findings, science education should consider promoting classroom scientific argumentation as a long-term process, requiring supportive resources that develop through continuous classroom interactions. Moreover, in order to understand affordances that support disciplinary learning in classroom, we need to look beyond just disciplinary interactions. This work has implications for classroom research on argumentation and teacher education, specifically, the preparation of teachers for secondary science teaching.

  10. Changes in science classrooms resulting from collaborative action research initiatives

    NASA Astrophysics Data System (ADS)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a

  11. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    ERIC Educational Resources Information Center

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  12. Making Science Homework Work: The Perspectives of Exemplary African American Science Teachers

    ERIC Educational Resources Information Center

    Xu, Jianzhong; Coats, Linda T.; Davidson, Mary L.

    2012-01-01

    Background/Context: Despite the best intentions to close the achievement gap, the underachievement of African American students in science is a persistent problem. It is surprising to note, however, that research on science education has often failed to consider students' cultural diversity as it relates to science education. On the few occasions…

  13. Metacognitive Strategies in the Introduction to Political Science Classroom

    ERIC Educational Resources Information Center

    Lusk, Adam

    2016-01-01

    This article examines metacognitive-based teaching strategies and provides preliminary evidence about their effectiveness in the political science classroom. In a 2013 Fall semester Introduction to Political Science course, three metacognitive-based teaching strategies were designed and implemented for improving student learning through greater…

  14. Hearing Female Voices in Life Science Classrooms.

    ERIC Educational Resources Information Center

    Dunlap, Julie

    1990-01-01

    The author makes a case for keeping sensitivity and intuitive approaches in the science classroom. The importance of emotional connections with other organisms, considered a critical part of enriched, effective scientific thinking, is emphasized. Female and male learning styles are described. (KR)

  15. Learning to write in science: A study of English language learners' writing experience in sixth-grade science classrooms

    NASA Astrophysics Data System (ADS)

    Qi, Yang

    Writing is a predictor of academic achievement and is essential for student success in content area learning. Despite its importance, many students, including English language learners (ELLs), struggle with writing. There is thus a need to study students' writing experience in content area classrooms. Informed by systemic functional linguistics, this study examined 11 ELL students' writing experience in two sixth grade science classrooms in a southeastern state of the United States, including what they wrote, how they wrote, and why they wrote in the way they did. The written products produced by these students over one semester were collected. Also collected were teacher interviews, field notes from classroom observations, and classroom artifacts. Student writing samples were first categorized into extended and nonextended writing categories, and each extended essay was then analyzed with respect to its schematic structure and grammatical features. Teacher interviews and classroom observation notes were analyzed thematically to identify teacher expectations, beliefs, and practices regarding writing instruction for ELLs. It was found that the sixth-grade ELLs engaged in mostly non-extended writing in the science classroom, with extended writing (defined as writing a paragraph or longer) constituting roughly 11% of all writing assignments. Linguistic analysis of extended writing shows that the students (a) conveyed information through nouns, verbs, adjectives, adverbial groups and prepositional phrases; (b) constructed interpersonal context through choices of mood, modality, and verb tense; and (c) structured text through thematic choices and conjunctions. The appropriateness of these lexicogrammatical choices for particular writing tasks was related to the students' English language proficiency levels. The linguistic analysis also uncovered several grammatical problems in the students' writing, including a limited range of word choices, inappropriate use of mood

  16. Cradle to third life: An autobiography of an African-American science educator

    NASA Astrophysics Data System (ADS)

    Caruthers-Jackson, Sarah

    This inquiry used reflective autobiographical research to reveal my beliefs, values, and practices of science teaching by using participatory action research with two students of my science tutoring organization. Also, I conducted an ethnographic inquiry using African-American teachers to understand how my early schooling experiences influenced my beliefs, values, and science practices. I collected data for this inquiry from three African-American teachers through interview-conversation that were videotaped and audiotaped. In addition, I audiotaped two African-American students' tutoring practices along with students' and researcher's journals. The findings indicate that African-American teachers during the school years 1942-1954 used families, churches, and communities to secure teaching resources to provide equal education for their African-American students who received limited resources from the board of education. Also indicated was how African-American teachers instilled in their African-American students a level of motivation that remained with some African-American students for their future endeavors. This researcher's beliefs/values similar to those of her segregated teachers emerged from this action research. Researcher's additional beliefs/values arose out of emerging technologies in teaching science. However, I, as the researcher, believe that the origin of my beliefs/values occurred during those segregated, public school experiences at Monitor Schools during the school years 1942-1954.

  17. Exploring the contexts of urban science classrooms: Cogenerative dialogues, coteaching, and cosmopolitanism

    NASA Astrophysics Data System (ADS)

    Emdin, Christopher

    The body of work presented in this dissertation is a response to the reported association between poor outcomes in science achievement and students of color in urban schools. By presenting counterexamples to the cultural motif that urban students of color perform poorly in science, I argue that poor achievement cannot be traced to a group of people but can be linked to institutions promoting subject delivery methods that instill distaste for science and compel students to display an illusion of disinterest in school. There are two major goals of this study. First, I plan to demonstrate how plans of action generated by coteachers and cogenerative dialogue groups can coalesce under the ethos of making science and schooling accessible to populations that are traditionally marginalized from science achievement. My second aim is to develop mechanisms for transforming science learning contexts into cosmopolitan learning communities that develop student success in science. Through a three-year ethnographic study of physics and chemistry classrooms in a high school in New York City, I present explorations of the culture and context of the urban classroom as a chief means to meet my goals. In my research, I find that obstacles to identity development around science can be tied to corporate understandings of teaching and learning that are amenable to local efforts toward change. This change is facilitated through the use of transformative tools like cogenerative dialogues, coteaching, and cosmopolitanism. Through the application of these research tools, I uncover and investigate how various misalignments that present themselves in physics and chemistry classrooms serve as signifiers of macro issues that permeate science classrooms from larger fields. By utilizing cogenerative dialogues as a tool for investigating both micro enactments within classrooms and the macro structures that generate these enactments, I show how students and teachers can work together as co

  18. A cultural historical theoretical perspective of discourse and design in the science classroom

    NASA Astrophysics Data System (ADS)

    Adams, Megan

    2015-06-01

    Flavio Azevedo, Peggy Martalock and Tugba Keser have initiated an important conversation in science education as they use sociocultural theory to introduce design based scenarios into the science classroom. This response seeks to expand Azevedo, Martalock and Keser's article The discourse of design- based science classroom activities by using a specific perspective within a sociocultural framework. Through using a cultural historical (Vygotsky in The history and development of higher mental functions, Plenum Press, New York, 1987) reading of design based activity and discourse in the science classroom, it is proposed that learning should be an integral part of these processes. Therefore, everyday and scientific concepts are explained and expanded in relation to Inventing Graphing and discourse presented in Azevedo, Martalock and Keser's article. This response reports on the importance of teacher's being explicit in relation to connecting everyday and scientific concepts alongside design based activity and related science concepts when teaching students. It is argued that explicit teaching of concepts should be instigated prior to analysis of discourse in the science classroom as it is only with experience and understanding these processes that students have the resources to call upon to argue like practicing scientists.

  19. Exploration of instruction, assessment, and equity in the middle school science classroom

    NASA Astrophysics Data System (ADS)

    Szpyrka, Donna A.

    2001-07-01

    In order to determine equitable practices of middle school science teachers questionnaire responses, classroom observations, teacher interviews, and assessment artifacts were examined to discover relationships between classroom instruction, assessment practices, and equity. Teachers in middle school science classrooms in six different schools completed a National Center for Education Statistics questionnaire, offered assessment artifacts, and participated in interviews. Observers using a classroom observation protocol and an equity profile rated 22 lessons. The study found that a distinction could be made between teachers who were more equitable and those who were less equitable. Careful planning and organization; the incorporation of tasks, roles, and interactions consistent with investigative science; a collaborative approach to learning; and instruction that takes into account what transpired in previous lessons---appear to be characteristics of lesson design of the more equitable teachers. In addition, instructional strategies and activities that addressed access, equity, and diversity as well as, a classroom climate that was respectful of students' contributions were found to a greater extent in the more equitable teachers' classrooms. While all teachers used multiple methods of assessment, the more equitable teachers used assessment differently. They also provided written feedback to students, relied on more than one aspect of student performance for determining grades, and explicated clear and specific assessment practices.

  20. Block scheduling: Instructional practices in high school science classrooms

    NASA Astrophysics Data System (ADS)

    Richelsoph, Barry

    Proponents of block scheduling perceive this approach to be a 'structural lever' to invite and impel teachers to change their teaching (Marshak, 1997). This desired shift is supposed to be manifest in movement from the traditional classroom structure, focusing on the teacher as lecturer or transmitter of subject matter, to that of teacher as coach with students as active learners, engaged in a variety of activities involving them individually and collaboratively in their education (Canady & Rettig, 1995). Block scheduling changes the formal structure of the school day, but does it really change pedagogical practices in high school science classrooms? Fraser's Individualized Classroom Environment Questionnaire (ICEQ) the instrument used in this study of science classes in five block-scheduled high schools in Connecticut, incorporates the tenets for an enriched classroom environment in its five scales or constructs: Participation---Extent to which students are encouraged to participate rather than be passive learners; Personalization---Emphasis on opportunities for individual students to interact with the teacher and on concern for the personal welfare and social growth of the individual; Investigation---Emphasis on the skills and processes of inquiry and their use in problem solving and investigation. Independence---Extent to which students are allowed to make decisions and have control over their own learning environment and behavior; Differentiation---Emphasis on the selective treatment of students on the basis of ability, learning style, interests, and rate of working (Fraser, 1990). The results and conclusions from this research study suggested that the block-scheduled high school science classes that participated in this research do promote, to varying degrees, those tenets that define an enriched classroom environment. Both the teachers and their classes of students perceived opportunities for Participation, Personalization, and Investigation constructs as

  1. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    NASA Astrophysics Data System (ADS)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-02-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the phenomena at hand, the present study closely examines both cognitive and affective domains of: (a) teachers' views (via interviews) concerning: (1) importance and roles of teacher and student questions, (2) teacher responses, and (3) planning and teacher training; and (b) teachers' actual practices (via classroom observations) concerning: (1) number and (2) level of teacher and student questions, as well as (3) teachers' responses to questions. The data were collected from 3 elementary, 3 middle, and 3 high school science teachers and their respective classroom students. The findings lay out a wide view of classroom questioning and teachers' responses, and relate what actually occurs in classes to teachers' stated views. Some of the study's main conclusions are that a gap exists between how science researchers and teachers view the role of teacher questions: the former highlight the cognitive domain, while the latter emphasize the affective domain.

  2. Engaging Students with Subject Matter Experts and Science Content Through Classroom Connection Webinars

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Rampe, E.; Stefanov, W. L.; Vanderbloemen, L.; Higgins, M.

    2015-01-01

    Connecting students and teachers in classrooms with science, technology, engineering, and mathematics (STEM) experts provides an invaluable opportunity. Subject matter experts can share exciting science and science-related events as well as help to "translate" science being conducted by professionals. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Division at the NASA Johnson Space Center, has been providing virtual access to subject matter experts through classroom connection webinars for the last five years. Each year, the reach of these events has grown considerably, especially over the last nine months. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. These events also enable scientists and subject matter experts to help "translate" current science in an engaging and understandable manner while actively involving classrooms in the journey of science and exploration.

  3. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    NASA Astrophysics Data System (ADS)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  4. Meaningful Engagement in Scientific Practices: How Classroom Communities Develop Authentic Epistemologies for Science

    NASA Astrophysics Data System (ADS)

    Krist, Christina Rae

    Recent reforms in science education, based on decades of learning research, emphasize engaging students in science and engineering practices as the means to develop and refine disciplinary ideas. These reforms advocate an epistemic shift in how school science is done: from students learning about science ideas to students figuring out core science ideas. This shift is challenging to implement: how do we bring the goals and practices of a discipline into classroom communities in meaningful ways that go beyond simply following rote scientific procedures? In this dissertation, I investigate how classroom communities learn to engage meaningfully in scientific practices, characterizing their engagement as a process of epistemic learning. I take a situated perspective that defines learning as shifts in how members engage in communities of practice. I examine students' epistemic learning as a function of their participation in a classroom community of scientific practice along two dimensions: what they do, or the practical epistemic heuristics they use to guide how they build knowledge; and who they are, or how ownership and authorship of ideas is negotiated and affectively marked through interaction. I focus on a cohort of students as they move from 6th to 8 th grade. I analyze three science units, one from each grade level, to look at the epistemic heuristics implicit in student and teacher talk and how the use of those heuristics shifts over time. In addition, I examine one anomalous 8th grade class to look at how students and the teacher position themselves and each other with respect to the ideas in their classroom and how that positioning supports epistemic learning. Taken together, these analyses demonstrate how students' engagement in scientific practices evolves in terms of what they do and who they are in relation to the knowledge and ideas in their classroom over time. I propose a model for epistemic learning that articulates how classroom communities develop

  5. Introducing Future Teachers to Science Beyond the Classroom

    NASA Astrophysics Data System (ADS)

    Kisiel, James

    2013-02-01

    Informal science education institutions (ISEIs), such as museums, aquariums, and nature centers, offer more to teachers than just field trip destinations—they have the potential to provide ideas for pedagogy, as well as support deeper development of teachers' science knowledge. Although there is extensive literature related to teacher/museum interactions within the context of the school field trip, there is limited research that examines other ways that such institutions might support classroom teachers. A growing number of studies, however, examine how incorporating such ideas of connections of ISEIs to pre-service teacher education might improve teacher perceptions and awareness. Pre-service elementary teachers enrolled in a science methods class participated in a semester-long assignment which required participation in their choice of activities and events (workshops, field trips, family day activities) conducted at local ISEIs. Students generally saw this embedded assignment as beneficial, despite the additional out-of-class time required for completion. Comparison of pre-/post-class responses suggested that teachers shifted their perceptions of ISEIs as first and foremost as places for field trips or hands-on experiences, to institutions that can help teachers with classroom science instruction. Although basic awareness of the existence of such opportunities was frequently cited, teachers also recognized these sites as places that could enhance their teaching, either by providing materials/resources for the classroom or by helping them learn (content and pedagogy) as teachers. Implications for practice, including the role of ISEIs in teacher preparation and indication, are also discussed.

  6. The role of assessment infrastructures in crafting project-based science classrooms

    NASA Astrophysics Data System (ADS)

    D'Amico, Laura Marie

    In project-based science teaching, teachers engage students in the practice of conducting meaningful investigations and explanations of natural phenomena, often in collaboration with fellow students or adults. Reformers suggest that this approach can provide students with more profitable learning experiences; but for many teachers, a shift to such instruction can be difficult to manage. As some reform-minded teachers have discovered, classroom assessment can serve as a vital tool for meeting the challenges associated with project science activity. In this research, classroom assessment was viewed as an infrastructure that both students and teachers rely upon as a mediational tool for classroom activity and communications. The study explored the classroom assessment infrastructures created by three teachers involved in the Learning through Collaborative Visualization (CoVis) Project from 1993--94 to 1995--96. Each of the three teachers under study either created a new course or radically reformulated an old one in an effort to incorporate project-based science pedagogy and supporting technologies. Data in the form of interviews, classroom observations, surveys, student work, and teacher records was collected. From these data, an interpretive case study was developed for each course and its accompanying assessment infrastructure. A set of cross-case analyses was also constructed, based upon common themes that emerged from all three cases. These themes included: the assessment challenges based on the nature of project activity, the role of technology in the teachers' assessment infrastructure designs, and the influence of the wider assessment infrastructure on their course and assessment designs. In combination, the case studies and cross-case analyses describe the synergistic relationship between the design of pedagogical reforms and classroom assessment infrastructures, as well as the effectiveness of all three assessment designs. This work contributes to research

  7. Pedagogical Relationship in Secondary Social Science Classrooms

    ERIC Educational Resources Information Center

    Girard, Brian James

    2010-01-01

    This study investigates two high school social science classrooms in order to better understand the pedagogical relationships among teachers, students, and disciplinary content, and how teachers can influence students' opportunities to learn disciplinary literacy. Drawing on conceptual resources from sociocultural theories of learning and…

  8. The current practice of using multiple representations in year 4 science classrooms

    NASA Astrophysics Data System (ADS)

    Chuenmanee, Chanoknat; Thathong, Kongsak

    2018-01-01

    Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.

  9. Ethnographic case study of a high school science classroom: Strategies in stem education

    NASA Astrophysics Data System (ADS)

    Sohn, Lucinda N.

    Historically, science education research has promoted that learning science occurs through direct physical experiences. In recent years, the need for best practices and student motivation have been highlighted in STEM research findings. In response to the instructional challenges in STEM education, the National Research Council has provided guidelines for improving STEM literacy through best practices in science and mathematics instruction. A baseline qualitative ethnographic case study of the effect of instructional practices on a science classroom was an opportunity to understand how a teacher and students work together to learn in an International Baccalaureate life science course. This study was approached through an interpretivist lens with the assumption that learning science is socially constructed. The following were the research questions: 1.) How does the teacher implement science instruction strategies in the classroom? 2.) In what ways are students engaged in the classroom? 3.) How are science concepts communicated in the classroom? The total 35 participants included a high school science teacher and two classes of 11th grade students in the International Baccalaureate program. Using exploratory qualitative methods of research, data was collected from field notes and transcripts from a series of classroom observations, a single one-on-one interview with the teacher and two focus groups with students from each of the two classes. Three themes emerged from text coded using initial and process coding with the computer assisted qualitative data analysis software, MAXQDA. The themes were: 1.) Physical Forms of Communication Play Key Role in Instructional Strategy, 2.) Science Learning Occurs in Casual Environment Full of Distractions, and 3.) Teacher Persona Plays Vital Role in Classroom Culture. The findings provided insight into the teacher's role on students' motivation to learn science. The recommendation for STEM programs and new curriculum is a

  10. The influence of a Classroom Model of Scientific Scholarship on Four Girls' Trajectories of Identification with Science

    NASA Astrophysics Data System (ADS)

    Cook, Melissa Sunshine

    This study examines the teacher's role in shaping the identity construction resources available in a classroom and the ways in which individual students take up, modify, and appropriate those resources to construct themselves as scientists through interaction with their teacher and peers. Drawing on frameworks of identity construction and social positioning, I propose that the locally-negotiated classroom-level cultural model of what it means to be a "good" science student forms the arena in which students construct a sense of their own competence at, affiliation with, and interest in science. The setting for this study was a 6th grade science class at a progressive urban elementary school whose population roughly represents the ethnic and socioeconomic diversity of the state of California. The teacher was an experienced science and math teacher interested in social justice and inquiry teaching. Drawing from naturalistic observations, video and artifact analysis, survey data, and repeated interviews with students and the teacher, I demonstrated what it meant to be a "good" science student in this particular cultural community by analyzing what was required, reinforced, and rewarded in this classroom. Next, I traced the influence of this particular classroom's conception of what it meant to be good at science on the trajectories of identification with science of four 6th grade girls selected to represent a variety of stances towards science, levels of classroom participation, and personal backgrounds. Scientific scholarship in this class had two parts: values related to science as a discipline, and a more generic set of school-related values one might see in any classroom. Different meanings of and values for science were indexed in the everyday activities of the classroom: science as a language for describing the natural world, science as a set of rhetorical values, science as an adult social community, and science as a place for mess and explosions. Among school

  11. Inventing Creativity: An Exploration of the Pedagogy of Ingenuity in Science Classrooms

    ERIC Educational Resources Information Center

    Meyer, Allison Antink; Lederman, Norman G.

    2013-01-01

    Concerns with the ability of U.S. classrooms to develop learners who will become the next generation of innovators, particularly given the present climate of standardized testing, warrants a closer look at creativity in science classrooms. The present study explored these concerns associated with teachers' classroom practice by addressing the…

  12. The Meaning of Adversity within Traditional K-12 Math Classrooms in the United States from the Perspective of African-American Individuals

    ERIC Educational Resources Information Center

    Muldrew, Lola Melissa

    2012-01-01

    An important consequence of a deeply rooted, mono-cultural rubric for acceptable school participation in the United States has been that African-American students in traditional K-12 math classrooms tend to be labeled as academically "at risk." This qualitative investigation responds to said categorization by examining African-American…

  13. Relation between Classroom Climate and Achievement in Physical Science of Secondary School Pupils

    ERIC Educational Resources Information Center

    R., Smitha; Sajan, K. S.

    2010-01-01

    This study estimates the extent of relationship between "Achievement in Physical Science" and "Classroom Climate" for the total sample and Sub sample based on gender. The tools used for collecting the data are scale of classroom climate and achievement test in physical science. The study reveals that boys show indifferent or…

  14. How to Talk About Science: Lessons from a Middle School Science Classroom

    NASA Astrophysics Data System (ADS)

    Cushman-Patz, B. J.

    2010-12-01

    Middle school students are curious, energetic, and impatient. A middle school science teacher is always challenged to find ways to relate the content she’d like to convey to the students’ everyday lives, working to both satiate and foster their natural curiosity. She must communicate science in language appropriate for her audience, teaching new vocabulary words the first time she uses them, and reviewing them often. A thriving middle school science classroom is noisy, messy, and fun. Understanding what makes this classroom dynamic work can lead to better communication about science to any audience. 1) Know your bottom-line message, and keep it simple. Research science is complicated and nuanced. Your audience may be interested in some of these details, but start with the big picture first, and fill in the details as appropriate. 2) Avoid jargon. Use language that you would use to explain science to your 13-year-old neighbor or your 85-year old grandmother. They know what a volcano is, but they may not know the difference between a crater and a caldera. They definitely don’t know what a phreatomagmatic eruption is. As you introduce necessary jargon into your discussion, define it clearly in terms of something you are sure they do know and understand. 3) Engage the audience. Use pictures; use your hands; use common-reference points. Whenever possible, get the audience members to use their hands to mimic your motion. Encourage them to try to reframe what you say in terms that they’re comfortable with. Make it a two-way conversation 4) Pause. New concepts take time to absorb. Take a breath; give your audience a moment to absorb what you just explained and to formulate questions they may have. 5) Pay attention to cues. Middle school students make it obvious when they’re bored; adults tend to be more subtle. When eyes wander or eyelids droop, ask a question that engages your audience, even if it’s just, “do you follow?” or, “where did I lose you

  15. Perezhivanie and Classroom Discourse: A Cultural-Historical Perspective on "Discourse of Design Based Science Classroom Activities"

    ERIC Educational Resources Information Center

    Adams, Megan; March, Sue

    2015-01-01

    Flavio Azevedo, Peggy Martalock and Tugba Keser challenge the "argumentation focus of science lessons" and propose that through a 'design-based approach' emergent conversations with the teacher offer possibilities for different types of discussions to enhance pedagogical discourse in science classrooms. This important paper offers a…

  16. Language of poverty strategies: Implemented in the urban elementary science classroom

    NASA Astrophysics Data System (ADS)

    Jeanpierre, Bobby Jo

    2000-08-01

    This research study reports the results of school-based staff development models used at three urban elementary schools that had liaison teachers assisting classroom teachers in implementing instructional strategies in science teaching from "Language of Poverty," a curriculum framework designed to address the academic needs of disadvantaged students. The case study of two urban elementary schools and six classroom teachers, and survey and interview data results of a third school, uncovered insights into several areas of science teaching in urban settings. One conclusion is that in spite of substantial allocation of resources and assistance, teachers did not translate instructional strategies from "Language of Poverty" curriculum into their classroom practices in a way that would foster urban disadvantaged students' understanding of "big science concepts." A second conclusion is that the school-based staff development models were limited in their ability to address the diverse professional needs of all of its staff. Third, as it relates to students, discipline issues occurred in these urban classrooms across ethnicity and gender. And in addition to teachers being knowledgeable of relevant social and cultural group norms' application of this knowledge in an appropriate and consistent manner is needed to effectively address discipline concerns.

  17. Student Science Teachers' Accounts of a Well-Remembered Event about Classroom Management.

    ERIC Educational Resources Information Center

    Zuckerman, June Trop

    2000-01-01

    Discusses how 36 student science teachers described and responded to one of their own classroom management problems. Based on student teachers' written accounts of a well-remembered event about classroom management. (SAH)

  18. Young African American Boys Narrating Identities in Science

    ERIC Educational Resources Information Center

    Kane, Justine M.

    2016-01-01

    The goal of this study is to bring the voices of African American boys front and center in science education research in an effort to strengthen our understandings of their experiences of school and science. Using an interpretivist perspective within a narrative inquiry approach, I focus on the student and science-student identities two African…

  19. Use of the Outdoor Classroom and Nature-Study to Support Science and Literacy Learning: A Narrative Case Study of a Third-Grade Classroom

    NASA Astrophysics Data System (ADS)

    Eick, Charles J.

    2012-11-01

    A case study of an exemplary third grade teacher's use of the outdoor classroom for meeting both state science and language arts standards is described. Data from the researcher's field journal, teacher lesson plans, and teacher interviews document how this teacher used nature-study to bridge outdoor classroom experiences with the state science and language arts curriculum. This teacher's early life experiences supported her strong interest in science and nature in the outdoors and experiencing it with her children. Children interacted with the outdoor classroom throughout the day as a context for science and literacy learning. All but one child successfully met Annual Yearly Progress (AYP) goals in reading at the end of the school year.

  20. Teacher perceptions of usefulness of mobile learning devices in rural secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Tighe, Lisa

    The internet and easy accessibility to a wide range of digital content has created the necessity for teachers to embrace and integrate digitial media in their curriculums. Although there is a call for digital media integration in curriculum by current learning standards, rural schools continue to have access to fewer resources due to limited budgets, potentially preventing teachers from having access to the most current technology and science instructional materials. This dissertation identifies the perceptions rural secondary science teachers have on the usefulness of mobile learning devices in the science classroom. The successes and challenges in using mobile learning devices in the secondary classroom were also explored. Throughout this research, teachers generally supported the integration of mobile devices in the classroom, while harboring some concerns relating to student distractability and the time required for integrating mobile devices in exisiting curriculum. Quantitative and qualitative data collected through surveys, interviews, and classroom observations revealed that teachers perceive that mobile devices bring benefits such as ease of communication and easy access to digitial information. However, there are perceived challenges with the ability to effectively communicate complex scientific information via mobile devices, distractibility of students, and the time required to develop effective curriculum to integrate digital media into the secondary science classroom.

  1. Formative assessment and equity: An exploration of opportunities for eliciting, recognizing, and responding within science classroom conversations

    NASA Astrophysics Data System (ADS)

    Morrison, Deb

    Educational inequity can be seen in both student participation and achievement outcomes. In science education, as in many other areas of education, disparities in equity of achievement (NCES, 2011) and equity of participation in science learning environments (Brown & Ryoo, 2008; Calabrese Barton, 2003) have been well documented. Some of these studies highlight the need to understand the components of effective science classroom talk as a way to bridge everyday and scientific discourse practices, to engage students in the intellectual work of sense-making in science. The National Research Council ([NRC]; 2012) specifically named the everyday to scientific connections of science classroom discourse as a focus for work on science learning equity. Formative assessment practices in science classrooms may provide an entree for teachers to improve their connections between everyday and science classroom discourses (Black & Wiliam, 1998b). In this study I examined science classroom conversations during formative assessment discussions in 10th grade biology contexts to determine where opportunities might exist to improve science learning. I engaged a theoretical framework focused on discourse (Gee, 2012) and classroom talk (Michaels, O'Connor, & Resnick, 2008) to socially situate student-teacher interactions in a community of learners (Rogoff, 1994). I used qualitative analysis (Gee, 2011; Carspecken, 1996) to locate patterns of talk during whole class and small group discussions of two science teachers, Robyn and Lisa, as they engaged in a two-year professional development focused on formative assessment. Both teachers' classroom conversation practices showed a number of opportunities to promote equity. Robyn and Lisa used common formative assessment tools to reorganize the way that students participated in their classroom conversations, allowing students individual thinking time prior to classroom talk. While Robyn often expanded reasoning herself, Lisa tended to press

  2. A study of culturally syntonic variables in the bilingual/bicultural science classroom

    NASA Astrophysics Data System (ADS)

    Barba, Robertta H.

    The purpose of this study was to conduct a needs assessment of bilingual/bicultural elementary science classrooms in order to determine if the current instructional environment addresses the educational needs of Hispanic/Latino children. This study examined 57 randomly selected elementary bilingual/bicultural science classrooms in a large metropolitan area of the southwestern United States in terms of culturally syntonic variables (i.e., culture-of-origin beliefs and/or practices that impact the teaching/learning process). Findings from this study indicate that Hispanic/Latino children are receiving science instruction: (a) with culturally asyntonic printed materials, teaching strategies, and supplementary materials, (b) in classrooms that do not use the child's native language, familia learning groups, peer tutoring, or manipulative materials, and (c) with oral and verbal instruction that lack culturally syntonic role models, examples, analogies, and elaborations. Findings from this study imply that changes are needed in pre-service and in-service teacher training, in science textbook formats, and in the scope and focus of elementary school bilingual/bicultural science curriculum and instructional strategies.

  3. Multilevel Effects of Student and Classroom Factors on Elementary Science Achievement in Five Countries

    ERIC Educational Resources Information Center

    Kaya, Sibel; Rice, Diana C.

    2010-01-01

    This study examined the effects of individual student factors and classroom factors on elementary science achievement within and across five countries. The student-level factors included gender, self-confidence in science and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom…

  4. Enquiry-Based Science in the Infant Classroom: "Letting Go"

    ERIC Educational Resources Information Center

    Byrne, Jenny; Rietdijk, Willeke; Cheek, Sue

    2016-01-01

    Enquiry-based science in primary classrooms is key to encouraging children's interest and curiosity about the world around them and as a result helps to stimulate their understanding and enjoyment of science. Yet many primary teachers lack the confidence to implement enquiry-based approaches effectively. The reasons are myriad and often result in…

  5. Argumentation and Indigenous Knowledge: Socio-Historical Influences in Contextualizing an Argumentation Model in South African Schools

    ERIC Educational Resources Information Center

    Gallard Martinez, Alejandro J.

    2011-01-01

    This forum considers argumentation as a means of science teaching in South African schools, through the integration of indigenous knowledge (IK). It addresses issues raised in Mariana G. Hewson and Meshach B. Ogunniyi's paper entitled: Argumentation-teaching as a method to introduce indigenous knowledge into science classrooms: opportunities and…

  6. Cosmic Times: Astronomy History and Science for the Classroom

    NASA Astrophysics Data System (ADS)

    Lochner, James C.; Mattson, B.

    2008-05-01

    Cosmic Times is a series of curriculum support materials and classroom activities for upper middle school and high school students which teach the nature of science by exploring the history of our understanding of the universe during the past 100 years. Starting with the confirmation of Einstein's theory of gravity in 1919 to the current conundrum posed by the discovery of dark energy, Cosmic Times examines the discoveries, the theories, and the people involved in this changing [understanding] of the universe. Cosmic Times takes the form of 6 posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by 4-5 classroom lessons which enable students to examine the science concepts behind the discoveries, develop techniques to improve science literacy, and investigate the nature of science using historical examples. Cosmic Times directly connects with the IYA theme of Astronomy in the Classroom, as well as the general theme of the impact of astronomy history. Cosmic Times has been developed with a freelance writer to write the articles for the posters, a group of teachers to develop the lessons, and evaluator to provide testing of the materials with a group of rural teachers in underserved communities. This poster presentation previews the Cosmic Times materials, which are posted on http://cosmictimes.gsfc.nasa.gov/ as they become available. Cosmic Times is funded in part via a NASA IDEAS grant.

  7. Exploring the contexts of urban science classrooms. Part 2: The emergence of rituals in the learning of science

    NASA Astrophysics Data System (ADS)

    Emdin, Christopher

    2007-04-01

    In Part 1 of this paper, I described the corporate and communal nature of research, teaching, and learning in urban science classrooms as both a theoretical approach to understanding, and way of viewing practices within these fields. By providing a new approach to theorizing the cultural misalignments that are prevalent in urban schools, I look to provide an informative tool for investigating under-discussed dynamics that impact science teaching and learning. In this body of work, I further expose the nature of the corporate|communal by describing practices that define communal practice. I do so conversant of the fact that synthesizing my previous work on corporate and communal practices necessarily pushes science education researchers and teachers to look for somewhat tactile explications of communal practices. That is to say, if communal practices do exist within the corporate structures of science classrooms, how do they present themselves and how can they be targeted? This paper begins a journey into such a study and focuses on student transactions, fundamental interactions and rituals as a key to redefining and attaining success in urban science classrooms.

  8. Dialogic Teaching in the Primary Science Classroom

    ERIC Educational Resources Information Center

    Mercer, Neil; Dawes, Lyn; Staarman, Judith Kleine

    2009-01-01

    This paper describes research on dialogue between teachers and pupils during primary school science lessons, using talk from two classrooms to provide our examples. We consider whether teachers use dialogue to make education a cumulative, continuing process for guiding the development of children's understanding. Case studies of two teachers,…

  9. In Defence of the Classroom Science Demonstration

    ERIC Educational Resources Information Center

    McCrory, Paul

    2013-01-01

    Science demonstrations are often criticised for their passive nature, their gratuitous exploitation and their limited ability to develop scientific knowledge and understanding. This article is intended to present a robust defence of the use of demonstrations in the classroom by identifying some of their unique and powerful benefits--practical,…

  10. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  11. Single-sex middle school science classrooms: Separate and equal?

    NASA Astrophysics Data System (ADS)

    Glasser, Howard M.

    The U.S. Department of Education's amended regulations to Title IX have attempted to expand the circumstances in which single-sex classes are permissible in public schools. This ethnographic study uses grounded theory to investigate aspects of one single-sex offering at a public, coeducational middle school. Applying elements of postmodern, queer, and sociocultural lenses, it examines the perspectives for this offering, shedding insight into the cultures of two single-sex classrooms and what it meant to be a boy or girl in this setting. Additionally, it focuses attention on the all-boy and all-girl science classes that were taught by the same teacher and examines what it meant to learn science as boys and girls in this program. Although participants supplied financial, socio-emotional, and academic reasons for these classes, the initial motivation for these classes stemmed from the teachers' desire to curb the amount of sex talk and related behaviors that were exhibited in their classrooms. Through these conversations and classroom events, the girls were constructed as idealized students, academically and behaviorally, who needed to be protected from boys' behaviors---both boys' dominating classroom behaviors and aggressive (hetero)sexual behaviors. Conversely, boys were constructed as needing help both academically and behaviorally, but in the specific discipline of science boys were identified as the sex that was more interested in the content and gained greater exposure to skills that could assist them in future science courses and careers. Overall, boys and girls, and the culture of their two classrooms, were regularly defined relative to each other and efforts were made to maintain these constructed differences. As a result, the classes and students were hierarchically ranked in ways that often pitted one sex of students, or the entire class, as better or worse than the other. The theory emerging from this study is that single-sex policies arise and survive

  12. Connecting Science and Literacy in the Classroom: Using Space and Earth Science to Support Language Arts

    NASA Astrophysics Data System (ADS)

    Wessen, A. S.; Cobabe-Ammann, E. A.

    2009-12-01

    The connections between science and literacy in the classroom have received increasing attention over the last two decades, as more and more evidence demonstrates that science provides an exciting vehicle in which to engage students on the path to literacy improvement. Combining literacy with science allows students to creatively explore the world or universe, and it. Combining science and literacy improves both reading and science scores, and increases students’ interest in science. At a time when over 40% of students beyond the 5th grade are reading two or more levels below grade level and are struggling with their current materials, finding ways to excite and engage them in the reading process is key. Literacy programs incorporating unique space science content can help prepare children for standardized language arts tests. It also engages our nation’s youngest learners and their teachers with the science, math, and technology of exploration in a language arts format. This session focuses on programs and products that bring the excitement of earth and space science into the literacy classroom, with a focus on research-based approached to combining science and language arts. Reading, Writing and Rings! Grades 1-2

  13. The effects of student-level and classroom-level factors on elementary students' science achievement in five countries

    NASA Astrophysics Data System (ADS)

    Kaya, Sibel

    The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects (Lamb & Fullarton, 2002) as well as understanding how these factors operate across countries (Baker, Fabrega, Galindo, & Mishook, 2004). The current study examined the individual student factors and classroom factors on fourth grade science achievement within and across five countries. Guided by the previous school learning models, the elements of students' science learning were categorized as student-level and classroom-level factors. The student-level factors included gender, self-confidence in science, and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom composition. Results for the United States and four other countries, Singapore, Japan, Australia, and Scotland were reported. Multilevel effects of student and classroom variables were examined through Hierarchical Linear Modeling (HLM) using the Trends in International Mathematics and Science Study (TIMSS) 2003 fourth grade dataset. The outcome variable was the TIMSS 2003 science score. Overall, the results of this study showed that selected student background characteristics were consistently related to elementary science achievement in countries investigated. At the student-level, higher levels of home resources and self-confidence and at the classroom-level, higher levels of class mean home resources yielded higher science scores on the TIMSS 2003. In general, teacher and instructional variables were minimally related to science achievement. There was evidence of positive effects of teacher support in the U.S. and Singapore. The emphasis on science inquiry was positively related to science achievement in Singapore and negatively related in the U.S. and Australia. Experimental studies that investigate the impacts of teacher and instructional factors on elementary science achievement are

  14. Ecojustice in Science Education: Leaving the Classroom

    ERIC Educational Resources Information Center

    Mueller, Michael P.

    2011-01-01

    Eduardo Dopico and Eva Garcia-Vazquez's article enriched the ecojustice literature with an interesting metaphor of leaving the classroom, which I argue for here. Glasson and Boggs help to highlight the challenges and fortitude of working ecojustice perspectives in science education and the ways that a dialogical conversation addresses the world at…

  15. An Evolutionary Approach to Harnessing Complex Systems Thinking in the Science and Technology Classroom

    ERIC Educational Resources Information Center

    Yoon, Susan A.

    2008-01-01

    Educational efforts to incorporate ethical decision-making in science classrooms about current science and technology issues have met with great challenges. Some research suggests that the inherent complexity in both the subject matter content and the structure and dynamics of classrooms contribute to this challenge. This study seeks to…

  16. Student Engagement in a Computer Rich Science Classroom

    NASA Astrophysics Data System (ADS)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance

  17. A Proposal for Ozone Science Podcasting in a Middle Science Classroom

    ERIC Educational Resources Information Center

    Piecka, Debra; Studnicki, Elaine; Zuckerman-Parker, Michelle

    2008-01-01

    The use of podcasting has grown exponentially. Research projects are racing to keep up with this growth to understand implications for learning and instruction. This project specifically attempts to understand if the use and development of podcasts by students for students influence learning in a 7th grade science classroom. Using a technology…

  18. Composing Science: A Facilitator's Guide to Writing in the Science Classroom

    ERIC Educational Resources Information Center

    Elliott, Leslie Atkins; Jaxon, Kim; Salter, Irene

    2016-01-01

    Offering expertise in the teaching of writing (Kim Jaxon) and the teaching of science (Leslie Atkins Elliott and Irene Salter), this book will help instructors create classrooms in which students use writing to learn and think scientifically. The authors provide concrete approaches for engaging students in practices that mirror the work that…

  19. Students' Regulation of Their Emotions in a Science Classroom

    ERIC Educational Resources Information Center

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  20. Use of Instructional Technologies in Science Classrooms: Teachers' Perspectives

    ERIC Educational Resources Information Center

    Savasci Açikalin, Funda

    2014-01-01

    The purpose of this study was to investigate how science teachers use instructional technologies in science classrooms. Participants were 63 teachers who have just completed an alternative teaching certificate program in one of the largest universities in Turkey. They were asked to make a lesson plan based on any topic by assuming that they had an…

  1. Creating a virtual community of practice to investigate legitimate peripheral participation by African American middle school girls in science activities

    NASA Astrophysics Data System (ADS)

    Edwards, Leslie D.

    How do teenage girls develop an interest in science? What kinds of opportunities can science teachers present to female students that support their engagement with learning science? I studied one aspect of this issue by focusing on ways students could use science to enhance or gain identities that they (probably) already valued. To do that I created technology-rich activities and experiences for an after school class in science and technology for middle school girls who lived in a low socio-economic urban neighborhood. These activities and experiences were designed to create a virtual community of practice whose members used science in diverse ways. Student interest was made evident in their responses to the activities. Four conclusions emerged. (1) Opportunities to learn about the lives and work of admired African American business women interested students in learning by linking it to their middle-class aspirations and their interest in things that money and status can buy. (2) Opportunities to learn about the lives and work of African American women experts in science in a classroom context where students then practiced similar kinds of actual scientific tasks engaged students in relations of legitimate peripheral participation in a virtual and diverse community of practice focused on science which was created in the after-school classes. (3) Opportunities where students used science to show off for family, friends, and supporters of the after-school program, identities they valued, interested them enough that they engaged in long-term science and technology projects that required lots of revisions. (4) In response to the opportunities presented, new and enhanced identities developed around becoming a better student or becoming some kind of scientist.

  2. A MOSAIC for the Science Classroom

    NASA Astrophysics Data System (ADS)

    Fish, Vincent L.; Needles, M. M.; Rogers, A. E. E.; Costa, D.; Cadigan, J.; Clements, C.; May, S. K.

    2011-01-01

    MOSAIC (Mesospheric Ozone System for Atmospheric Investigations in the Classroom) is a project to engage secondary and undergraduate students in authentic inquiry-based science learning using a network of inexpensive spectrometers monitoring the mesospheric ozone concentration. The MOSAIC system observes the 11 GHz emission line of ozone using electronics built around satellite television equipment. The possibilities for student investigation are broad and scientifically significant. MOSAIC observations have confirmed diurnal variations in mesospheric ozone concentration and detected semiannual variations that may be due to inter-hemispheric meridional circulation of water vapor. Possible future projects include monitoring the temperature of the mesosphere and correlations with the solar cycle. Students are also encouraged to design their own investigations with MOSAIC data. Early results have been reported in a major scientific journal, and further scientific progress is likely as future MOSAIC systems are deployed -- increasing the sensitivity and geographic coverage of the network. Complete teaching units, including slides, laboratory activities, background information, student worksheets, and conformance with national and Massachusetts educational standards, have been developed to integrate MOSAIC into a classroom environment. One unit introduces the layers of the atmosphere, Earth's energy balance, the greenhouse effect, processes of ozone creation and destruction, noctilucent clouds, heat transfer, the laws of thermodynamics, radio waves (including radio astronomy), and fluid behavior. A second unit, currently being tested in classrooms, uses the MOSAIC system to motivate and deepen understanding of a large portion of electromagnetism in a conceptual physics class. MOSAIC has also been used in a local high school chemistry class. MOSAIC is still in development and is funded by the National Science Foundation.

  3. Teachers' Perception of African American Middle School Girls' Interest in Mathematics and Science

    NASA Astrophysics Data System (ADS)

    Best, Bonnie M.

    Research into African American female underrepresentation in science, technology, engineering, and mathematics (STEM) fields has become an area of interest due to the fact that a majority of African American middle school females do not possess the high levels of mathematics and science knowledge because of social and cultural barriers both inside and outside school that challenge their academic success. The purpose of this qualitative interpretative phenomenological study was to explore teachers' shared, lived experiences of teaching mathematics and science to African American middle school girls. Delgado and Stefancic's critical race theory, Pratt-Clarke's critical race feminism, and Baker-Miller's relational-cultural theory were used to guide this study. Research questions focused on the perceptions and experiences of teachers' lived experiences teaching mathematics and science to African American middle school females. Criterion, purposive, and maximum variation sampling techniques were used to recruit 10 teachers who have 3 or more years' experience teaching African American middle school girls. Semistructured face-to-face interviews were the primary data collection source. First cycle and second cycle coding methods were used to support the analysis of this study. Findings suggest that there is a connection between a positive student-teacher relationship and academic success. The results of this study contribute to positive social change by providing empirical evidence policymakers and teachers can use to improve the mathematics and science instruction and practices that are needed to meet the needs of African American middle school females and reduce the underrepresentation and underachievement of African American females in mathematics and science.

  4. Dialogic Talk in Diverse Physical Science Classrooms

    ERIC Educational Resources Information Center

    Taylor, Dale L.; Lelliott, Anthony D.

    2015-01-01

    Dialogic talk, in which different ideas are considered, promotes conceptual understanding in science, and is in line with South Africa's school curriculum. The problem is that dialogic talk is difficult to facilitate and may run counter to cultural norms. As a result, classroom talk is often not dialogic. This paper reports on the nature of…

  5. Performance-based classrooms: A case study of two elementary teachers of mathematics and science

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth W.

    This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.

  6. An Evaluation of Research Ethics in Undergraduate Health Science Research Methodology Programs at a South African University.

    PubMed

    Coetzee, Tanya; Hoffmann, Willem A; de Roubaix, Malcolm

    2015-10-01

    The amended research ethics policy at a South African University required the ethics review of undergraduate research projects, prompting the need to explore the content and teaching approach of research ethics education in health science undergraduate programs. Two qualitative data collection strategies were used: document analysis (syllabi and study guides) and semi-structured interviews with research methodology coordinators. Five main themes emerged: (a) timing of research ethics courses, (b) research ethics course content, (c) sub-optimal use of creative classroom activities to facilitate research ethics lectures, (d) understanding the need for undergraduate project research ethics review, and (e) research ethics capacity training for research methodology lecturers and undergraduate project supervisors. © The Author(s) 2015.

  7. Inquiry-Based Instruction in Secondary Science Classrooms: A Survey of Teacher Practice

    ERIC Educational Resources Information Center

    Gejda, Linda M.; LaRocco, Diana J.

    2006-01-01

    Background: For ten years, the National Science Education Standards (National Research Council, 1996) have served as the foundation for Connecticut's teacher certification in science and the expectations of teacher practice secondary science classrooms. Furthermore, beginning science teachers must demonstrate the ability to teach in an…

  8. Cultivating characters (moral value) through internalization strategy in science classroom

    NASA Astrophysics Data System (ADS)

    Ibrahim, M.; Abadi

    2018-01-01

    It is still in a crucial debate that characters play an important learning outcome to be realized by design. So far, most people think that characters were reached as nurturance effect with the assumption that students who are knowledgeable and skillful will have good characters automatically. Lately, obtained evidence that this assumption is not true. Characters should be taught deliberately or by design. This study was designed to culture elementary school students’ characters through science classroom. The teaching-learning process was conducted to facilitate and bridge the students from the known (concrete images: Science phenomena) to the unknown (abstract ideas: characters: care, and tolerance. Characters were observed five weeks before and after the intervention. Data were analyzed from observation of 24 students in internalization strategy-based courses. Qualitative and quantitative data suggested that the internalization strategy that use of science phenomena to represent abstract ideas (characters) in science classroom positively cultivating characters.

  9. Streaming Seismograms into Earth-Science Classrooms

    NASA Astrophysics Data System (ADS)

    Ammon, C. J.

    2011-12-01

    Seismograms are the fundamental observations upon which seismology is based; they are central to any course in seismology and important for any discussion of earthquake-related phenomena based on seismic observations. Advances in the collection and distribution of seismic data have made the use of research-quality seismograms in any network capable classroom feasible. The development of large, deep seismogram archives place an unprecedented quantity of high-quality data within reach of the modern classroom environment. I describe and discuss several computer tools and classroom activities that I use in introductory (general education) and advanced undergraduate courses that present near real-time research-quality seismic observations in the classroom. The Earth Motion Monitor Application (EMMA), is a MacOS application that presents a visually clear seismogram display that can be projected in classrooms with internet access. Seismic signals from thousands of station are available from the IRIS data center and the bandwidth can be tailored to the particular type of signal of interest (large event, low frequencies; small event, high frequencies). In introductory classes for non-science students, the near realtime display routinely shows magnitude 4.0-5.0 earthquake-generated signals, demonstrating to students the frequency of earthquake occurrence. Over the next few minutes as the waves travel through and across the planet, their arrival on the seismogram display provides some basic data for a qualitative estimate of the event's general location. When a major or great earthquake occurs, a broad-band display of signals from nearby stations can dramatically and dynamically illuminate the frequent activity associated with the aftershock sequence. Routine use of the display (while continuing the traditional classroom activities) provides students with a significant dose of seismogram study. Students generally find all the signals, including variations in seismic

  10. Academic achievement and career choice in science: Perceptions of African American urban high school students

    NASA Astrophysics Data System (ADS)

    Jones, Sheila Kay

    2007-12-01

    Low test scores in science and fewer career choices in science among African American high school students than their White counterparts has resulted in lower interest during high school and an underrepresentation of African Americans in science and engineering fields. Reasons for this underachievement are not known. This qualitative study used a grounded theory methodology to examine what influence parental involvement, ethnic identity, and early mentoring had on the academic achievement in science and career choice in science of African American urban high school 10th grade students. Using semi-structured open-ended questions in individual interviews and focus groups, twenty participants responded to questions about African American urban high school student achievement in science and their career choice in science. The median age of participants was 15 years; 85% had passed either high school biology or physical science. The findings of the study revealed influences and interactions of selected factors on African American urban high school achievement in science. Sensing potential emerged as the overarching theme with six subthemes; A Taste of Knowledge, Sounds I Hear, Aromatic Barriers, What Others See, The Touch of Others, and The Sixth Sense. These themes correlate to the natural senses of the human body. A disconnect between what science is, their own individual learning and success, and what their participation in science could mean for them and the future of the larger society. Insight into appropriate intervention strategies to improve African American urban high school achievement in science was gained.

  11. Student cognition and motivation during the Classroom BirdWatch citizen science project

    NASA Astrophysics Data System (ADS)

    Tomasek, Terry Morton

    The purpose of this study was to examine and describe the ways various stakeholders (CBW project developer/coordinator, elementary and middle school teachers, and 5th through 8th grade students) envisioned, implemented and engaged in the citizen science project, eBird/Classroom BirdWatch. A multiple case study mixed-methods research design was used to examine student engagement in the cognitive processes associated with scientific inquiry as part of citizen science participation. Student engagement was described based on a sense of autonomy, competence, relatedness and intrinsic motivation. A goal of this study was to expand the taxonomy of differences between authentic scientific inquiry and simple inquiry to include those inquiry tasks associated with participation in citizen science by describing how students engaged in this type of science. This research study built upon the existing framework of cognitive processes associated with scientific inquiry described by Chinn and Malhotra (2002). This research provides a systematic analysis of the scientific processes and related reasoning tasks associated with the citizen science project eBird and the corresponding curriculum Classroom BirdWatch . Data consisted of responses to surveys, focus group interviews, document analysis and individual interviews. I suggest that citizen science could be an additional form of classroom-based science inquiry that can promote more authentic features of scientific inquiry and engage students in meaningful ways.

  12. Facilitating cultural border crossing in urban secondary science classrooms: A study of inservice teachers

    NASA Astrophysics Data System (ADS)

    Monteiro, Anna Karina

    Research acknowledges that if students are to be successful science, they must learn to navigate and cross cultural borders that exist between their own cultures and the subculture of science. This dissertation utilized a mixed methods approach to explore how inservice science teachers working in urban schools construct their ideas of and apply the concepts about the culture of science and cultural border crossing as relevant to the teaching and learning of science. The study used the lenses of cultural capital, social constructivism, and cultural congruency in the design and analysis of each of the three phases of data collection. Phase I identified the perspectives of six inservice science teachers on science culture, cultural border crossing, and which border crossing methods, if any, they used during science teaching. Phase II took a dialectical approach as the teachers read about science culture and cultural border crossing during three informal professional learning community meetings. This phase explored how teachers constructed their understanding of cultural border crossing and how the concept applied to the teaching and learning of science. Phase III evaluated how teachers' perspectives changed from Phase I. In addition, classroom observations were used to determine whether teachers' practices in their science classrooms changed from Phase I to Phase III. All three phases collected data through qualitative (i.e., interviews, classroom observations, and surveys) and quantitative (Likert items) means. The findings indicated that teachers found great value in learning about the culture of science and cultural border crossing as it pertained to their teaching methods. This was not only evidenced by their interviews and surveys, but also in the methods they used in their classrooms. Final conclusions included how the use of student capital resources (prior experiences, understandings and knowledge, ideas an interests, and personal beliefs), if supported by

  13. Student control ideology and the science classroom environment in urban secondary schools of sudan

    NASA Astrophysics Data System (ADS)

    Harty, Harold; Hassan, Hassan A.

    An examination was made concerning the relationships between Sudanese secondary science teachers' pupil control ideology and their students' perceptions/observations of the psychosocial environment of their science classrooms. One hundred secondary science teachers were classified as possessing humanistic (N = 20) or custodial (N = 20) control ideologies. A class (N = 40) of students was randomly selected for every teacher in both groups. The findings revealed that no significant relationships existed between the control ideologies of the teachers and their students' perceptions/observations of the classroom environment. Custodialism in control ideology was significantly related to the classroom environment psychosocial aspect of low support. Discussion and implications of the findings have been approached from both Sudanese and American perspectives.

  14. Valuing IKS in Successive South African Physical Sciences Curricula

    ERIC Educational Resources Information Center

    Taylor, Dale L.; Cameron, Ann

    2016-01-01

    The valuing of Indigenous Knowledge Systems (IKS) is one of the principles on which the South African school curriculum is supposed to be based. The purpose of this paper is to critique the treatment of indigenous knowledge in the South African secondary Physical Sciences curriculum against a backdrop of international debates on the relationship…

  15. An Analysis of Argumentation Discourse Patterns in Elementary Teachers' Science Classroom Discussions

    ERIC Educational Resources Information Center

    Kim, Sungho; Hand, Brian

    2015-01-01

    This multiple case study investigated how six elementary teachers' argumentation discourse patterns related to students' discussions in the science classroom. Four categories of classroom characteristics emerged through the analysis of the teachers' transcripts and recorded class periods: "Structure of teacher and student argumentation,"…

  16. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    NASA Astrophysics Data System (ADS)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  17. Toward Epistemologically Authentic Engineering Design Activities in the Science Classroom

    ERIC Educational Resources Information Center

    Leonard, Mary J.

    2004-01-01

    In recent years educators and educational researchers in the U.S. have begun to introduce engineering design activities in secondary science classrooms for the purpose of scaffolding science learning as well as supporting such general problem-solving skills as decision making and working in teams. However, such curricula risk perpetuating a…

  18. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    ERIC Educational Resources Information Center

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  19. Navigating Climate Science in the Classroom: Teacher Preparation, Perceptions and Practices

    ERIC Educational Resources Information Center

    Sullivan, Susan M. Buhr; Ledley, Tamara Shapiro; Lynds, Susan E.; Gold, Anne U.

    2014-01-01

    Results from a series of surveys describe dimensions of middle and high school science teachers' preparation for and practices around climate science instruction in the classroom. Descriptions are drawn from 877 respondents to four surveys of US middle and high school science teachers from 2009-2011. Most respondents had engaged in self-directed…

  20. Academic attainment and the high school science experiences among high-achieving African American males

    NASA Astrophysics Data System (ADS)

    Trice, Rodney Nathaniel

    This study examines the educational experiences of high achieving African American males. More specifically, it analyzes the influences on their successful navigation through high school science. Through a series of interviews, observations, questionnaires, science portfolios, and review of existing data the researcher attempted to obtain a deeper understanding of high achieving African American males and their limitations to academic attainment and high school science experiences. The investigation is limited to ten high achieving African American male science students at Woodcrest High School. Woodcrest is situated at the cross section of a suburban and rural community located in the southeastern section of the United States. Although this investigation involves African American males, all of whom are successful in school, its findings should not be generalized to this nor any other group of students. The research question that guided this study is: What are the limitations to academic attainment and the high school science experiences of high achieving African American males? The student participants expose how suspension and expulsion, special education placement, academic tracking, science instruction, and teacher expectation influence academic achievement. The role parents play, student self-concept, peer relationships, and student learning styles are also analyzed. The anthology of data rendered three overarching themes: (1) unequal access to education, (2) maintenance of unfair educational structures, and (3) authentic characterizations of African American males. Often the policies and practices set in place by school officials aid in creating hurdles to academic achievement. These policies and practices are often formed without meaningful consideration of the unintended consequences that may affect different student populations, particularly the most vulnerable. The findings from this study expose that high achieving African American males face major

  1. Experiences of undergraduate African health sciences students: A hermeneutic inquiry.

    PubMed

    Inyama, Davis; Williams, Allison; McCauley, Kay

    2015-06-01

    While efforts have been made to understand the experiences of African students in predominantly white environments, the experiences of African students in clinical placement areas have rarely been explored. This paper is a report on a study designed to address the gap in educational research on the experiences of African health sciences students in clinical placements in predominantly white environments. Interviews adopting an open approach to conversations were conducted with nine African students from three health disciplines at one metropolitan university in Australia between 2012 and 2013. Interview transcripts were analyzed using philosophical hermeneutics, where shared meanings were arrived at by employing key Gadamerian hermeneutic components. Findings revealed a number of factors that had a direct effect on the meaning students derived from their clinical placement experiences. These, as revealed in the interlinked domains of body, space, relationships, and time included difference, acceptance, resilience, and cultural sensitivity. Insights from this study may lead to the adoption of strategies designed to improve the experiences of African students studying health sciences in predominantly white environments. © 2014 Wiley Publishing Asia Pty Ltd.

  2. The Relationship between Teachers' Knowledge and Beliefs about Science and Inquiry and Their Classroom Practices

    ERIC Educational Resources Information Center

    Saad, Rayana; BouJaoude, Saouma

    2012-01-01

    The purpose of this study was to investigate relationships between teachers' attitudes toward science, knowledge and beliefs about inquiry, and science classroom teaching practices. Specifically, the study addressed three questions: What are teachers' beliefs and knowledge about inquiry? What are teachers' teaching related classroom practices? Do…

  3. Silencing of voices in a Swedish science classroom

    NASA Astrophysics Data System (ADS)

    Ramos de Robles, S. Lizette

    2018-03-01

    From a sociocultural perspective, I discuss data from a Swedish science classroom presented in María Gómez's article "Student Explanations of their Science Teachers' Assessments, Grading Practices, and How they learn Science". In this discussion, I focus on the need to change existing conceptions of assessment in the teaching and learning of science. Next, I talk about the importance of taking into consideration the dialectic between agency and passivity as filters in order to understand what student silence may signify in science classes as well as in relation to their perceptions of assessment. I conclude with the importance of the teacher's role in developing formative assessment, along with the challenges in developing assessments which transform science education into a relevant field of knowledge for both students and society at large.

  4. Examining student-generated questions in an elementary science classroom

    NASA Astrophysics Data System (ADS)

    Diaz, Juan Francisco, Jr.

    This study was conducted to better understand how teachers use an argument-based inquiry technique known as the Science Writing Heuristic (SWH) approach to address issues on teaching, learning, negotiation, argumentation, and elaboration in an elementary science classroom. Within the SWH framework, this study traced the progress of promoting argumentation and negotiation (which led to student-generated questions) during a discussion in an elementary science classroom. Speech patterns during various classroom scenarios were analyzed to understand how teacher--student interactions influence learning. This study uses a mixture of qualitative and quantitative methods. The qualitative aspect of the study is an analysis of teacher--student interactions in the classroom using video recordings. The quantitative aspect uses descriptive statistics, tables, and plots to analyze the data. The subjects in this study were fifth grade students and teachers from an elementary school in the Midwest, during the academic years 2007/2008 and 2008/2009. The three teachers selected for this study teach at the same Midwestern elementary school. These teachers were purposely selected because they were using the SWH approach during the two years of the study. The results of this study suggest that all three teachers moved from using teacher-generated questions to student-generated questions as they became more familiar with the SWH approach. In addition, all three promoted the use of the components of arguments in their dialogs and discussions and encouraged students to elaborate, challenge, and rebut each other's ideas in a non-threatening environment. This research suggests that even young students, when actively participating in class discussions, are capable of connecting their claims and evidence and generating questions of a higher-order cognitive level. These findings demand the implementation of more professional development programs and the improvement in teacher education to help

  5. What are the Effects of Implementing Learning-Focused Strategies in Biology and Physical Science Classrooms?

    NASA Astrophysics Data System (ADS)

    Simmons, Robin

    The objective of this study was to determine if Learning-Focused Strategies (LFS) implemented in high school science courses would affect student achievement and the pass rate of biology and physical science Common District Assessments (CDAs). The LFS, specific teaching strategies contained in the Learning-Focused Strategies Model (LFSM) Program were researched in this study. The LFSM Program provided a framework for comprehensive school improvement to those schools that implemented the program. The LFSM Program provided schools with consistent training in the utilization of exemplary practices and instruction. A high school located in the suburbs of Atlanta, Georgia was the focus of this investigation. Twelve high school science classrooms participated in the study: six biology and six physical science classes. Up-to-date research discovered that the strategies contained in the LFSM Program were research-based and highly effective for elementary and middle school instruction. Research on its effectiveness in high school instruction was the main focus of this study. This investigation utilized a mixed methods approach, in which data were examined qualitatively and quantitatively. Common District Assessment (CDA) quantitative data were collected and compared between those science classrooms that utilized LFS and those using traditional instructional strategies. Qualitative data were generated through classroom observations, student surveys, and teacher interviews. Individual data points were triangulated to determine trends of information reflecting the effects of implementing LFS. Based on the data collected in the research study, classrooms utilizing LFS were more successful academically than the classrooms using traditional instructional methods. Derived from the quantitative data, students in LFS classrooms were more proficient on both the biology and physical science Unit 1 CDAs, illustrating the effectiveness of LFS in the science classroom. Key terms

  6. The Multicultural Science Framework: Research on Innovative Two-Way Immersion Science Classrooms.

    ERIC Educational Resources Information Center

    Hadi-Tabassum, Samina

    2000-01-01

    Reviews the different approaches to multicultural science teaching that have emerged in the past decade, focusing on the Spanish-English two-way immersion classroom, which meets the needs of Spanish speakers learning English and introduces students to the idea of collaboration across languages and cultures. Two urban two-way immersion classrooms…

  7. Teaching About the Epistemology of Science in Upper Secondary Schools: An Analysis of Teachers' Classroom Talk

    NASA Astrophysics Data System (ADS)

    Ryder, Jim; Leach, John

    2008-02-01

    We begin by drawing upon the available literature to identify four characteristics of teacher talk likely to support student learning about the epistemology of science: making appropriate statements about the epistemology of science in the classroom, linking the epistemology of science with specific science concepts, stating and justifying learning aims, and working with students’ ideas. These characteristics are then used in an analysis of the classroom talk of seven teachers as they use published resources for teaching about the epistemology of science for the first time. By focusing on teachers’ initial classroom experiences of using these published resources we identify feasible starting points for professional development activities likely to support these teachers in developing their expertise in this challenging area of teaching. Lessons focused on a specific aspect of the epistemology of science (the development of theoretical models) contextualised within two content areas: electromagnetism and cell membrane structure. Our analysis shows that none of these teachers made clearly inappropriate statements about the epistemology of science in the classroom. However, expertise related to the remaining three characteristics of teacher talk varied between teachers. For example, some teachers used a range of approaches to working with students’ ideas during whole class talk (e.g. asking students to justify their ideas and challenging students’ views) whereas for other teachers students’ ideas were not a strong feature of classroom discourse.

  8. A 2200-Year Old Inquiry-Based, Hands-On Experiment in Today's Science Classrooms

    ERIC Educational Resources Information Center

    Sotiriou, S.; Bogner, F. X.

    2015-01-01

    The ancient Eratosthenes experiment concerning the earth's circumference offers the opportunity of an inquiry-based revival in today's science classrooms: A multinational European science education initiative (acronym: OSR) introduced this experiment as a hands-on basis to extract the required variables and to exchange results with classroom peers…

  9. The Underrepresentation of African American Female Students in STEM Fields: Implications for Classroom Teachers

    ERIC Educational Resources Information Center

    Farinde, Abiola A.; Lewis, Chance W.

    2012-01-01

    African American women are underrepresented in STEM (science, technology, engineering and math) fields (Catsambis, 1994). The socialization and "under-education" of African American female students engenders ideas of inferiority, while the presence of an inferior race, sex and class, in one body, may produce an ideology of mediocrity.…

  10. African Indigenous science in higher education in Uganda

    NASA Astrophysics Data System (ADS)

    Akena Adyanga, Francis

    This study examines African Indigenous Science (AIS) in higher education in Uganda. To achieve this, I use anticolonial theory and Indigenous knowledge discursive frameworks to situate the subjugation of Indigenous science from the education system within a colonial historical context. These theories allow for a critical examination of the intersection of power relations rooted in the politics of knowledge production, validation, and dissemination, and how this process has become a systemic and complex method of subjugating one knowledge system over the other. I also employ qualitative and autoethnographic research methodologies. Using a qualitative research method, I interviewed 10 students and 10 professors from two universities in Uganda. My research was guided by the following key questions: What is African Indigenous Science? What methodology would help us to indigenize science education in Uganda? How can we work with Indigenous knowledge and anticolonial theoretical discursive frameworks to understand and challenge the dominance of Eurocentric knowledge in mainstream education? My research findings revealed that AIS can be defined in multiple ways, in other words, there is no universal definition of AIS. However, there were some common elements that my participants talked about such as: (a) knowledge by Indigenous communities developed over a long period of time through a trial and error approach to respond to the social, economic and political challenges of their society. The science practices are generational and synergistic with other disciplines such as history, spirituality, sociology, anthropology, geography, and trade among others, (b) a cumulative practice of the use, interactions with and of biotic and abiotic organism in everyday life for the continued existence of a community in its' totality. The research findings also indicate that Indigenous science is largely lacking from Uganda's education curriculum because of the influence of colonial and

  11. Science and Technology in Africa: The African Union New Initiative and Financial Support Perspectives

    NASA Astrophysics Data System (ADS)

    Ezin, Jean-Pierre

    2010-02-01

    Physics, which is widely touted as the most fundamental of the sciences, underpins the progress in all other branches of science and has a wide range of applications in economic development, including in health, energy research, food security, communication technology and climate change. The African Union (AU) Commission articulates the continental vision of its Member States and its programs are designed to directly contribute to its social and economic development and integration efforts. In the area of science and technology the Department has developed Africa's Science and Technology Consolidated Plan of Action as a strategic policy document through the AU system of conference of ministers responsible for science to guide the continent on common priority programs. The programs in this plan of action that have been transformed into bankable projects under the Book of ``lighthouse projects Phase 1'', adequately respond to Africa's challenges and development needs using science. They can be summarized into three main themes: a pan-African university (PAU) initiative (to combine higher education and scientific research as a network of differentiated PAU in each of the five African regions), African research grants (to strengthen the research capacity of the African institutions and upgrading infrastructures, consolidating their accumulated asset of scientific knowledge), popularization of science and technology and promotion of public participation (to build public understanding and raising awareness on science and technology as a driving agent for social and economic progress for Africa and its integration process) and a science and technology institutional capacity building program). This talk will review these programs as well as the vision of the African Development Bank role in it. )

  12. Classroom Management Training for Teachers in Urban Environments Serving Predominately African American Students: A Review of the Literature

    ERIC Educational Resources Information Center

    Larson, Kristine E.

    2016-01-01

    The purpose of this paper was to review the literature in terms of professional development activities that researchers have enlisted to reduce student problem behaviors and improve classroom management competencies among teachers who work in urban environments serving predominately African American students. First, the author conducted a…

  13. Primary Science Curriculum Development in Africa--Strategies, Problems and Prospects with Particular Reference to the African Primary Science Programme.

    ERIC Educational Resources Information Center

    Bajah, Sam Tunde

    1981-01-01

    The African Primary Science Programme (APSP) was one of the three major projects in Africa sponsored by Educational Services Incorporated (ESI), later the Educational Development Center (EDC), Newton, Massachusetts. The problems of introducing this programme in the anglophone African States and its implications for science education are discussed.…

  14. Issues in Science Assessment in a Bilingual/Biliterate Elementary Classroom.

    ERIC Educational Resources Information Center

    Karpel, Jennifer A.; Abell, Sandra K.

    This study examines the types, uses, and roles of science assessment in a bilingual/biliterate (Spanish/English) elementary classroom in the Honduras during one unit of science instruction. Focus is placed on how one teacher used assessment to a) inform practice; b) evaluate student learning; and c) modify curricula and teaching strategies to meet…

  15. BioBridge Professional Development: Bringing Innovative Science into the Classroom

    ERIC Educational Resources Information Center

    Babendure, Jeremy; Thompson, Loren; Peterman, Karen; Teiper, Leanne; Gastil, Heather; Liwanag, Heather; Glenn-Lee, Shelley

    2011-01-01

    The BioBridge Professional Development model was created to bring current and relevant science into the high school classroom. The purpose of this intervention was to connect teachers with relevant science and to create innovative, hands-on activities that engage students, with the goal of increasing student interest in STEM careers. To this end,…

  16. Animals in the Classroom: A Guide for Teachers. Elementary Science Study.

    ERIC Educational Resources Information Center

    Gillmor, Mary S.; And Others

    This guide is designed to encourage people to keep animals of all kinds in the classroom and to use them in teaching language arts, mathematics, and social studies, as well as science and nature study. The booklet is divided into four sections. The first section contains an account of a year with desert animals in an ungraded classroom of six- to…

  17. A cultural study of a science classroom and graphing calculator-based technology

    NASA Astrophysics Data System (ADS)

    Casey, Dennis Alan

    Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology, has found its way from commercial and domestic applications into the pedagogy of science and math education. The purpose of this study was to investigate the culture of an "alternative" science classroom and how it functions with graphing calculator-based technology. Using ethnographic methods, a case study of one secondary, team-taught, Environmental/Physical Science (EPS) classroom was conducted. Nearly half of the 23 students were identified as students with special education needs. Over a four-month period, field data was gathered from written observations, videotaped interactions, audio taped interviews, and document analyses to determine how technology was used and what meaning it had for the participants. Analysis indicated that the technology helped to keep students from getting frustrated with handling data and graphs. In a relatively short period of time, students were able to gather data, produce graphs, and to use inscriptions in meaningful classroom discussions. In addition, teachers used the technology as a means to involve and motivate students to want to learn science. By employing pedagogical skills and by utilizing a technology that might not otherwise be readily available to these students, an environment of appreciation, trust, and respect was fostered. Further, the use of technology by these teachers served to expand students' social capital---the benefits that come from an individual's social contacts, social skills, and social resources.

  18. Interchangeable Positions in Interaction Sequences in Science Classrooms

    ERIC Educational Resources Information Center

    Rees, Carol; Roth, Wolff-Michael

    2017-01-01

    Triadic dialogue, the Initiation, Response, Evaluation sequence typical of teacher /student interactions in classrooms, has long been identified as a barrier to students' access to learning, including science learning. A large body of research on the subject has over the years led to projects and policies aimed at increasing opportunities for…

  19. Indigenous Knowledge in the Life Sciences Classroom: Put on Your de Bono Hats!

    ERIC Educational Resources Information Center

    de Beer, Josef; Whitlock, Elrina

    2009-01-01

    The whole world was united in its condemnation of the pre-1994 apartheid regime in South Africa. Apartheid meant that many South Africans were robbed of their democratic voices and cultural identities. In this article, the authors pose the question: Are you guilty of "knowledge apartheid" in your biology classroom? Does every student have a voice…

  20. Girls in Primary School Science Classrooms: Theorising beyond Dominant Discourses of Gender

    ERIC Educational Resources Information Center

    Cervoni, Cleti; Ivinson, Gabrielle

    2011-01-01

    The paper explores the ways girls appropriate gender through actions, gesture and talk to achieve things in primary school science classrooms. It draws on socio-cultural approaches to show that when everyday classroom practices are viewed from multiple planes of analysis, historical, institutional and in the micro dynamics of classroom…

  1. Bringing Inquiry Science to K-5 Classrooms

    NASA Astrophysics Data System (ADS)

    Schachtel, Paula L.; Messina, D. L.; McDermott, L. C.

    2006-12-01

    As a science coach in the Seattle School District, I am responsible for helping other elementary teachers teach science. For several years, I have been participating in a program that consists of intensive NSF Summer Institutes and an ongoing academic-year Continuation Course. Teachers in this program work through modules in Physics by Inquiry, a research-based curriculum developed by the Physics Education Group at the University of Washington.1 I will discuss how this type of professional development has deepened my understanding of topics in physical science, helped me to teach science by inquiry to my own students, and enabled me to assist my colleagues in implementing inquiry science in their K-5 classrooms. Sponsored by Lillian C. McDermott. 1. A research-based curriculum developed by L.C. McDermott and the Physics Education Group at the University of Washington, Physics by Inquiry, New York, NY, John Wiley & Sons, Inc. (1996.)

  2. Problem-Based Learning in the Life Science Classroom, K-12

    ERIC Educational Resources Information Center

    McConnell, Tom; Parker, Joyce; Eberhardt, Janet

    2016-01-01

    "Problem-Based Learning in the Life Science Classroom, K-12" offers a great new way to ignite your creativity. Authors Tom McConnell, Joyce Parker, and Janet Eberhardt show you how to engage students with scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios prompt K-12 learners to immerse…

  3. Exploring the meaning of practicing classroom inquiry from the perspectives of National Board Certified Science Teachers

    NASA Astrophysics Data System (ADS)

    Karaman, Ayhan

    Inquiry has been one of the most prominent terms of the contemporary science education reform movement (Buck, Latta, & Leslie-Pelecky, 2007; Colburn, 2006; Settlage, 2007). Practicing classroom inquiry has maintained its central position in science education for several decades because science education reform documents promote classroom inquiry as the potential savior of science education from its current problems. Likewise, having the capabilities of teaching science through inquiry has been considered by National Board for Professional Teaching Standards [NBPTS] as one of the essential elements of being an accomplished science teacher. Successful completion of National Board Certification [NBC] assessment process involves presenting a clear evidence of enacting inquiry with students. Despite the high-profile of the word inquiry in the reform documents, the same is not true in schools (Crawford, 2007). Most of the science teachers do not embrace this type of approach in their everyday teaching practices of science (Johnson, 2006; Luera, Moyer, & Everett, 2005; Smolleck, Zembal-Saul, & Yoder, 2006; Trumbull, Scarano, & Bonney, 2006). And the specific meanings attributed to inquiry by science teachers do not necessarily match with the original intentions of science education reform documents (Matson & Parsons, 2006; Wheeler, 2000; Windschitl, 2003). Unveiling the various meanings held by science teachers is important in developing better strategies for the future success of science education reform efforts (Jones & Eick, 2007; Keys & Bryan, 2001). Due to the potential influences of National Board Certified Science Teachers [NBCSTs] on inexperienced science teachers as their mentors, examining inquiry conceptions of NBCSTs is called for. How do these accomplished practitioners understand and enact inquiry? The purpose of this dissertation research study was twofold. First, it investigated the role of NBC performance assessment process on the professional development

  4. Makiguchian pedagogy in the middle school science classroom

    NASA Astrophysics Data System (ADS)

    Pagan, Iris Teresa

    In an atmosphere of multi-culturism and the increasing need for innovative methods for science teaching, investigating educators from different parts of the world is well regarded. Tsunesaburo Makiguchi (1871--1944) was a prescient thinker who foreshadowed many of the modern social constructivist ideals of teaching before they became formalized in Western thought. He believed in the harmonious balance between an individual and society as the only viable goal of education. With this in mind, he introduced the concepts of "evaluation," "cognition" and "value creation" that embody this balance. "Cognition" is associated with "truth" and "evaluation" is involved with the subject-object relationship. Moreover, Makiguchian pedagogy's concept of "value creation" offers a sociological and philosophical basis for "classroom inclusion." Additionally, Makiguchian pedagogy is compared to John Dewey's philosophy as well as the educational philosophy expressed in The National Science Standards. In this teacher participant study, classroom observational data showed that several dimensions of Makiguchian pedagogical practice occurred conjointly with relatively high frequencies. These included frequent occurrences of interactional conversation between students and teacher merged within a context of expressions of personal and collective values, social contextual references, valuing and personal evaluative statements, and episodic information that the students contributed from personal experiences relevant to the science topics. Additionally, Likert-type questionnaire data collected from the students who experienced the Makiguchian lessons, and observational data from professional colleagues who viewed video taped records of the lessons, provided additional corroborative evidence supporting the researcher's findings. A content analysis of lesson plans containing Makiguchian principles of teaching and learning in relation to the ensuing classroom performance of the teacher showed a

  5. Multimodal Teacher Input and Science Learning in a Middle School Sheltered Classroom

    ERIC Educational Resources Information Center

    Zhang, Ying

    2016-01-01

    This article reports the results of an ethnographic research about the multimodal science discourse in a sixth-grade sheltered classroom involving English Language Learners (ELLs) only. Drawing from the perspective of multimodality, this study examines how science learning is constructed in science lectures through multiple semiotic resources,…

  6. Cultural politics: Linguistic identity and its role as gatekeeper in the science classroom

    NASA Astrophysics Data System (ADS)

    Hilton-Brown, Bryan Anthony

    This dissertation investigated how participation in the cultural practices of science classrooms creates intrapersonal conflict for ethnic minority students. Grounded in research perspectives of cultural anthropology, sociocultural studies of science education, and critical pedagogy, this study examined the cultural tensions encountered by minority students as they assimilate into the culture of the science classroom. Classroom interaction was viewed from the perspective of instructional congruence---the active incorporation of students' culture into science pedagogy. Ogbu's notion of "oppositional identity", Fordham's "fictive kinship", Bahktin's "antidialogics", and Freire's "critical consciousness" were brought together to examine how members of marginalized cultures develop non-normative behaviors as a means of cultural resistance. Choice of genre for public discourse was seen as a political act, representing students' own cultural affiliations. Conducted in a diverse Southern Californian high school with an annual population of over 3,900 students, this study merged ethnographic research, action research, and sociolinguistic discourse analysis. Post hoc analysis of videotaped classroom activities, focus group interviews, and samples of student work revealed students' discursive behavior to shift as a product of the context of their discursive exchanges. In whole class discussions students explained their understanding of complex phenomena to classmates, while in small group discussions they favored brief exchanges of group data. Four domains of discursive identities were identified: Opposition Status, Maintenance Status, Incorporation Status, and Proficiency Status. Students demonstrating Opposition Status avoided use of science discourse. Those students who demonstrated Maintenance Status were committed to maintaining their own discursive behavior. Incorporation Status students were characterized by an active attempt to incorporate science discourse into

  7. Video-Based Analyses of Motivation and Interaction in Science Classrooms

    NASA Astrophysics Data System (ADS)

    Moeller Andersen, Hanne; Nielsen, Birgitte Lund

    2013-04-01

    An analytical framework for examining students' motivation was developed and used for analyses of video excerpts from science classrooms. The framework was developed in an iterative process involving theories on motivation and video excerpts from a 'motivational event' where students worked in groups. Subsequently, the framework was used for an analysis of students' motivation in the whole class situation. A cross-case analysis was carried out illustrating characteristics of students' motivation dependent on the context. This research showed that students' motivation to learn science is stimulated by a range of different factors, with autonomy, relatedness and belonging apparently being the main sources of motivation. The teacher's combined use of questions, uptake and high level evaluation was very important for students' learning processes and motivation, especially students' self-efficacy. By coding and analysing video excerpts from science classrooms, we were able to demonstrate that the analytical framework helped us gain new insights into the effect of teachers' communication and other elements on students' motivation.

  8. Literacy learning in secondary school science classrooms: A cross-case analysis of three qualitative studies

    NASA Astrophysics Data System (ADS)

    Dillon, Deborah R.; O'Brien, David G.; Moje, Elizabeth B.; Stewart, Roger A.

    The purpose of this cross-case analysis is to illustrate how and why literacy was incorporated into science teaching and learning in three secondary classrooms. Research questions guiding the analysis include: (a) How were literacy events shaped by the teachers' philosophies about teaching science content and teaching students? and (b) How was literacy (reading, writing, and oral language) structured by the teachers and manifested in science lessons? The methodology of ethnography and the theoretical framework of symbolic interactionism were employed in the three studies on which the cross-case analysis was based. The researchers assumed the role of participant observers, collecting data over the period of 1 year in each of the three classrooms. Data, in the form of fieldnotes, interviews, and artifacts, were collected. In each study, data were analyzed using the constant comparative method (Glaser & Strauss, 1967) to determine patterns in the teachers' beliefs about learning and how these influenced their choice of literacy activities. The cross-case analysis was conducted to determine patterns across the three teachers and their classrooms. The findings from this analysis are used to compare how the teachers' philosophies of teaching science and their beliefs about how students learn influenced their use of literacy practices during lessons. Specifically, each teacher's use of literacy activities varied based on his or her beliefs about teaching science concepts. Furthermore, reading, writing, and oral language were important vehicles to learning science concepts within daily classroom activities in the three classrooms.Received: 1 April 1993; Revised: 30 August 1993;

  9. The Pedagogical Orientations of South African Physical Sciences Teachers Towards Inquiry or Direct Instructional Approaches

    NASA Astrophysics Data System (ADS)

    Ramnarain, Umesh; Schuster, David

    2014-08-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school demographic situations, which can also affect teaching practices. This study investigated the pedagogical orientations of in-service physical sciences teachers at a diversity of schools in South Africa. Assessment items in a Pedagogy of Science Teaching Test (POSTT) were used to identify teachers' science teaching orientations, and reasons for pedagogical choices were probed in interviews. The findings reveal remarkable differences between the orientations of teachers at disadvantaged township schools and teachers at more privileged suburban schools. We found that teachers at township schools have a strong `active direct' teaching orientation overall, involving direct exposition of the science followed by confirmatory practical work, while teachers at suburban schools exhibit a guided inquiry orientation, with concepts being developed via a guided exploration phase. The study identified contextual factors such as class size, availability of resources, teacher competence and confidence, time constraints, student ability, school culture and parents' expectations as influencing the methods adopted by teachers. In view of the recent imperative for inquiry-based learning in the new South African curriculum, this study affirms the context specificity of curriculum implementation (Bybee 1993) and suggests situational factors beyond the curriculum mandate that need to be addressed to achieve successful inquiry-based classroom instruction in science.

  10. Leveraging Current Initiatives to Bring Earth and Space Science into Elementary and Early Childhood Classrooms: NGSS in the Context of the Classroom Technology Push

    NASA Astrophysics Data System (ADS)

    Pacheco-Guffrey, H. A.

    2016-12-01

    Classroom teachers face many challenges today such as new standards, the moving targets of high stakes tests and teacher evaluations, inconsistent/insufficient access to resources and evolving education policies. Science education in the K-5 context is even more complex. NGSS can be intimidating, especially to K-5 educators with little science background. High stakes science tests are slow to catch up with newly drafted state level science standards, leaving teachers unsure about what to change and when to implement updated standards. Amid all this change, many schools are also piloting new technology programs. Though exciting, tech initiatives can also be overwhelming to teachers who are already overburdened. A practical way to support teachers in science while remaining mindful of these stressors is to design and share resources that leverage other K-5 school initiatives. This is often done by integrating writing or math into science learning to meet Common Core requirements. This presentation will suggest a method for bringing Earth and space science learning into elementary / early childhood classrooms by utilizing the current push for tablet technology. The goal is to make science integration reasonable by linking it to technology programs that are in their early stages. The roles and uses of K-5 Earth and space science apps will be examined in this presentation. These apps will be linked to NGSS standards as well as to the science and engineering practices. To complement the app resources, two support frameworks will also be shared. They are designed to help educators consider new technologies in the context of their own classrooms and lessons. The SAMR Model (Puentadura, 2012) is a conceptual framework that helps teachers think critically about the means and purposes of integrating technology into existing lessons. A practical framework created by the author will also be shared. It is designed to help teachers identify and address the important logistical

  11. What Should My Science Classroom Rules Be and How Can I Get My Students to Follow Them?

    ERIC Educational Resources Information Center

    Frazier, Wendy M.; Sterling, Donna R.

    2005-01-01

    This article discusses the rules science teachers need and how to implement these rules in the class. What should my science classroom rules be? Ideally, this question is asked prior to the teacher's entry to the classroom during their teacher training and revisited throughout their coursework preparation and student teaching. A science teacher…

  12. African American and European American Children in Diverse Elementary Classrooms: Social Integration, Social Status, and Social Behavior

    ERIC Educational Resources Information Center

    Wilson, Travis; Rodkin, Philip C.

    2011-01-01

    With a sample of African American and European American 3rd- and 4th-grade children (N = 486, ages 8-11 years), this study examined classroom ethnic composition, peer social status (i.e., social preference and perceived popularity as nominated by same- and cross-ethnicity peers), and patterns of ethnic segregation (i.e., friendship, peer group,…

  13. Translanguaging in a middle school science classroom: Constructing scientific arguments in English and Spanish

    NASA Astrophysics Data System (ADS)

    Licona, Peter R.

    This dissertation investigates translanguaging in an English/Spanish dual language middle school science classroom as the teacher and students worked through a curriculum unit focusing on socioscientific issues and implementing a scientific argumentation framework. Translanguaging is the process in which bilingual speakers fluidly and dynamically draw from their full linguistic repertoire to perform a communicative act. Using ethnographically informed data collection in conjunction with discourse analysis, teacher translanguaging was examined for its related functions in the science classroom and how teacher translanguaging afforded opportunities for framing and supporting scientific argumentation. Results suggest that the functions of teacher translanguaging fell into three main themes: maintaining classroom culture, facilitating the academic task, and framing epistemic practices. Of the three categories of translanguaging, framing epistemic practices proved to be of paramount importance in the teacher presenting and supporting the practice of scientific argumentation. Implications from this study are relevant for pre-service science teacher preparation and in-service science teacher professional development for teachers working with emergent bilingual students.

  14. Intelligent Design in the Public School Science Classroom

    ERIC Educational Resources Information Center

    Hickey, Wesley D.

    2013-01-01

    The ongoing battle to insert intelligent causes into the science classrooms has been met with political approval and scientific rejection. Administrators in the United States need to be aware of the law related to creationism and intelligent design in order to lead in local curricular battles. Although unlikely to appease the ID proponents, there…

  15. Exploring Science Educators' Cosmological Worldviews through the Binoculars of an Argumentation Framework

    ERIC Educational Resources Information Center

    Ogunniyi, M. B.

    2011-01-01

    The mandate of the new South African curriculum for educators to enact a science-indigenous knowledge curriculum in their classrooms is not only challenging to their cosmological beliefs, it is equally challenging to their instructional practices. This is because science educators (teachers) in South Africa have been schooled largely in western…

  16. `Models of' versus `Models for'. Toward an Agent-Based Conception of Modeling in the Science Classroom

    NASA Astrophysics Data System (ADS)

    Gouvea, Julia; Passmore, Cynthia

    2017-03-01

    The inclusion of the practice of "developing and using models" in the Framework for K-12 Science Education and in the Next Generation Science Standards provides an opportunity for educators to examine the role this practice plays in science and how it can be leveraged in a science classroom. Drawing on conceptions of models in the philosophy of science, we bring forward an agent-based account of models and discuss the implications of this view for enacting modeling in science classrooms. Models, according to this account, can only be understood with respect to the aims and intentions of a cognitive agent (models for), not solely in terms of how they represent phenomena in the world (models of). We present this contrast as a heuristic— models of versus models for—that can be used to help educators notice and interpret how models are positioned in standards, curriculum, and classrooms.

  17. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    NASA Astrophysics Data System (ADS)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  18. Assessing Classroom Learning: How Students Use Their Knowledge and Experience to Answer Classroom Achievement Test Questions in Science and Social Studies.

    ERIC Educational Resources Information Center

    Nuthall, Graham; Alton-Lee, Adrienne

    1995-01-01

    Observational studies of student learning from classroom experience in science and social studies in elementary and middle school classrooms were carried out with 14 students. A model is described that explains how students use multilayered episodic and semantic memory for learning experience and related knowledge to answer achievement test items.…

  19. Collaborative Science Work in the Elementary Classroom

    NASA Astrophysics Data System (ADS)

    Kersey, Denise A.

    Not all students with disabilities receive special education accommodations in science class. Without special education support, students with disabilities are unable to comprehend and apply science concepts. Implementing a co-teaching model could be a remedy for this lack of supports. Framed by constructivist theory, this study sought to determine if there was a difference in science assessment scores between students in a co-taught science class and those in a regular education science class. Following a pretest-posttest control group design, this study examined the relation between two teaching models and achievement in science. Using a convenience sample of 84 students drawn from a population of 144 fourth grade special education students in a public school district located in the Southeastern United States, analysis of variance was used to compare the mean growth of the two groups. The data revealed no statistically significant difference in mean gain scores between the two groups. Additional studies using a larger sample and longer trial are needed. Implications for social change include understanding instructional strategies that allow educators to differentiate for diverse learners in mainstreamed classrooms as well as removing barriers for underrepresented groups, thereby allowing equal access to science related professions.

  20. Elementary Teachers' Beliefs about Teaching Science and Classroom Practice: An Examination of Pre/Post NCLB Testing in Science

    ERIC Educational Resources Information Center

    Milner, Andrea R.; Sondergeld, Toni A.; Demir, Abdulkadir; Johnson, Carla C.; Czerniak, Charlene M.

    2012-01-01

    The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers' beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the…

  1. Hierarchical Effects of School-, Classroom-, and Student-Level Factors on the Science Performance of Eighth-Grade Taiwanese Students

    NASA Astrophysics Data System (ADS)

    Tsai, Liang-Ting; Yang, Chih-Chien

    2015-05-01

    This study was conducted to understand the effect of student-, classroom-, and school-level factors on the science performance of 8th-grade Taiwanese students in the Trends in International Mathematics and Science Study (TIMSS) 2011 by using multilevel analysis. A total of 5,042 students from 153 classrooms of 150 schools participated in the TIMSS 2011 study, in which they were required to complete questionnaires. A 3-level multilevel analysis was used to assess the influence of factors at 3 levels on the science performance of 8th-grade Taiwanese students. The results showed that the provision of education resources at home, teachers' level of education, and school climate were the strongest predictor of science performance at the student, classroom, and school level, respectively. It was concluded that the science performance of 8th-grade Taiwanese students is driven largely by individual factors. Classroom-level factors accounted for a smaller proportion of the total variance in science performance than did school-level factors.

  2. Preparing Elementary Preservice Teachers for Urban Elementary Science Classrooms: Challenging Cultural Biases Toward Diverse Students

    NASA Astrophysics Data System (ADS)

    Moore, Felicia M.

    2008-02-01

    This study reports the learning of elementary preservice teachers regarding diversity and teaching science in diverse urban elementary classrooms. From participating in a semester-long book club, the preservice teachers reveal their cultural biases, connect and apply their knowledge of diversity, and understand that getting to know their students are important elements for teaching science in diverse classrooms. These 3 things connect in ways that allow the preservice teachers to understand how their cultural biases impede student learning and gain new knowledge of diversity as they change their cultural biases. Implications of this study reveal that preservice teachers need opportunities to reveal, confront, challenge, and change their cultural models and to develop new models for teaching science in urban elementary classrooms.

  3. Space Science in the Kindergarten Classroom and Beyond

    NASA Astrophysics Data System (ADS)

    Bonett, D.

    2000-12-01

    With the advent of probes to our closest planet Mars and the multi-national construction of Earth's first International Space Station, it is not presumptive to introduce 5 year old school children to the space sciences. K. E. Little Elementary School is located in the community of Bacliff, Texas. It is the largest elementary school (950 students) in the Dickinson Independent School District. K. E. Little is a Title 1 school with a multi-ethnic student population. It's close proximity to the Johnson Space Center and the Lunar and Planetary Institute provide ample instructional support and material. Last fall, two kindergarten classes received space science instruction. Both were class sizes of 19 with one class predominantly children of Vietnamese immigrants. Our goal was to create curiosity and awareness through a year-long integrated space science program of instruction. Accurate information of the space sciences was conveyed through sources i.e. books and videos, as well as conventional song, movement, and artistic expression. Videotaping and photographs replaced traditional anecdotal records. Samples of student work were compiled for classroom and school display. This year, two fifth grade classes will receive space science instruction using the Jason Project XII curriculum. Students will engage in a year-long exploration of the Hawaiian Islands. Information will be conveyed via internet and live video presentations as well as traditional sources i.e. books and videos, as well as song, movement, and artistic expression. Comparison of volcanic activity in Hawaii to volcanoes on other planets will be one of several interplanetary correlations. Samples of student work will be compiled for classroom, school, and community display.

  4. Understanding and Practice of Argumentation: A Pilot Study with Mainland Chinese Pre-Service Teachers in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Xie, Qun; So, Winnie Wing Mui

    2012-01-01

    Argumentation is recognized as a significant aspect of science education for the development of students' scientific literacy, and the science teacher is the key factor in organizing argumentative discourse in the science classroom. Composing argumentation in the classroom requires teachers to not only acquire the basic understandings and skills…

  5. Continuing Professional Development and Learning in Primary Science Classrooms

    ERIC Educational Resources Information Center

    Fraser, Christine A.

    2010-01-01

    This article explores the effects of continuing professional development (CPD) on teachers' and pupils' experiences of learning and teaching science in primary classrooms. During 2006-2007, quantitative and qualitative data were elicited from two primary teachers in Scotland using questionnaires, semi-structured interviews and video-stimulated…

  6. Backyard Botany: Using GPS Technology in the Science Classroom

    ERIC Educational Resources Information Center

    March, Kathryn A.

    2012-01-01

    Global Positioning System (GPS) technology can be used to connect students to the natural world and improve their skills in observation, identification, and classification. Using GPS devices in the classroom increases student interest in science, encourages team-building skills, and improves biology content knowledge. Additionally, it helps…

  7. Three Francophone Teachers' Use of Language-Based Activities in Science Classrooms

    ERIC Educational Resources Information Center

    Rivard, Leonard P.; Levesque, Annabel

    2011-01-01

    Research suggests that language-based activities should be an integral part of science teaching and learning and that these are even more important in minority-language contexts. The present cross-case study investigates how literacy is enacted in francophone science classrooms. Three francophone teachers were observed while they taught Grade 9…

  8. Ways to Prepare Future Teachers to Teach Science in Multicultural Classrooms

    ERIC Educational Resources Information Center

    Billingsley, Berry

    2016-01-01

    Roussel De Carvalho uses the notion of superdiversity to draw attention to some of the pedagogical implications of teaching science in multicultural schools in cosmopolitan cities such as London. De Carvalho makes the case that if superdiverse classrooms exist then Science Initial Teacher Education has a role to play in helping future science…

  9. Facilitating Conceptual Change through Modeling in the Middle School Science Classroom

    ERIC Educational Resources Information Center

    Carrejo, David J.; Reinhartz, Judy

    2014-01-01

    Engaging students in both hands-on and minds-on experiences is needed for education that is relevant and complete. Many middle school students enter science classrooms with pre-conceived ideas about their world. Some of these ideas are misconceptions that hinder students from developing accepted concepts in science, such as those related to…

  10. Conflicts in Science the Classroom: Documentation and Management through Phenomenological Methodology

    ERIC Educational Resources Information Center

    Oloruntegbe, K. O.; Omoniyi, A. O.; Omoniyi, M. B. I.; Ojelade, I. A.

    2011-01-01

    The study investigated the nature of conflicts that are generated in the science classroom. Twenty video-recorded lessons taught by 10 randomly selected pre-service science teachers in teaching practice in a few Nigerian secondary schools were analyzed. Beside the expected goal attainment of the lessons a number of negative conflicts were…

  11. How WebQuests Can Enhance Science Learning Principles in the Classroom

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2012-01-01

    This article examines the merits of WebQuests in facilitating students' in-depth understanding of science concepts using the four principles of learning gathered from the National Research Council reports "How People Learn: Brain, Mind, Experience, and School" (1999) and the "How Students Learn: Science in the Classroom" (2005) as an analytic…

  12. Evaluation of GALAXY Classroom Science for Grades 3-5. Final Report. Executive Summary.

    ERIC Educational Resources Information Center

    Guth, Gloria J. A.; Austin, Susan; DeLong, Bo; Pasta, David J.; Block, Clifford

    The GALAXY Classroom is a package of integrated curricular and instructional approaches, supported by the first U.S. interactive satellite communications network designed to facilitate the introduction of innovative curricula to improve student learning in elementary schools. GALAXY Classroom Science for grades 3-5 features the organization of…

  13. A phenomenological study on middle-school science teachers' perspectives on utilization of technology in the science classroom and its effect on their pedagogy

    NASA Astrophysics Data System (ADS)

    Rajbanshi, Roshani

    With access to technology and expectation by the mainstream, the use of technology in the classroom has become essential these days. However, the problem in science education is that with classrooms filled with technological equipment, the teaching style is didactic, and teachers employ traditional teacher-centered methods in the classroom. In addition, results of international assessments indicate that students' science learning needs to be improved. The purpose of this study is to analyze and document the lived experience of middle-school science teachers and their use of technology in personal, professional lives as well as in their classroom and to describe the phenomenon of middle-school science teachers' technological beliefs for integration of digital devices or technology as an instructional delivery tool, knowledge construction tool and learning tool. For this study, technology is defined as digital devices such as computer, laptops, digital camera, iPad that are used in the science classroom as an instructional delivery tool, as a learning tool, and as a knowledge construction tool. Constructivism is the lens, the theoretical framework that guides this qualitative phenomenological research. Observation, interview, personal journal, photo elicitation, and journal reflection are used as methods of data collection. Data was analyzed based on a constructivist theoretical framework to construct knowledge and draw conclusion. MAXQDA, a qualitative analysis software, was also used to analyze the data. The findings indicate that middle-school science teachers use technology in various ways to engage and motivate students in science learning; however, there are multiple factors that influence teachers' technology use in the class. In conclusion, teacher, students, and technology are the three sides of the triangle where technology acts as the third side or the bridge to connect teachers' content knowledge to students through the tool with which students are

  14. Scientific Participation at the Poles: K-12 Teachers in Polar Science for Careers and Classrooms

    NASA Astrophysics Data System (ADS)

    Crowley, S.; Warburton, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the polar regions. PolarTREC highlights the importance of involving teachers in scientific research in regards to their careers as educators and their ability to engage students in the direct experience of science. To date, PolarTREC has placed over 90 teachers with research teams in the Arctic and Antarctic. Published results of our program evaluation quantify the effect of the field experience on the teachers' use of the real scientific process in the classroom, the improvement in science content taught in classrooms, and the use of non-fiction texts (real data and science papers) as primary learning tools for students. Teachers and students both report an increase of STEM literacy in the classroom content, confidence in science education, as well as a markedly broadened outlook of science as essential to their future. Research conducted with science teams affirms that they are achieving broader impacts when PolarTREC teachers are involved in their expeditions. Additionally, they reported that these teachers making vital contributions to the success of the scientific project.

  15. Discovery Bottles: A Unique Inexpensive Tool for the K-2 Science Classroom

    ERIC Educational Resources Information Center

    Watson, Sandy

    2008-01-01

    Discover discovery bottles! These wide-mouth plastic containers of any size filled with objects of different kinds can be terrific tools for science explorations and a great way to cultivate science minds in a K-2 science classroom. In addition, the author has found them to be a useful, inexpensive, and engaging way to help students develop skills…

  16. Examination of factors which may contribute to the underrepresentation of African American teachers certified in science

    NASA Astrophysics Data System (ADS)

    Davis, Rita C. F.

    Throughout this country the student population is becoming increasingly diverse, yet the teacher population does not reflect this diversity. This lack of diversity in the teacher population deprives students of color from having role models of the same race/ethnicity who look like them and who might have experiences which are similar to theirs (Epstein, 2005; Nettles & Perna, 1997). Having role models from their own race in the classroom could have a positive impact on students' attitudes about science (Perine, 2003), and facilitate their learning of the subject matter, and give students an incentive to do well in school (Vegas, Murnane, & Willett, 2001). In 2000, a national survey study of math and science teachers was conducted (Horizon Research, 2001). The majority of biology (90%), chemistry (93%), and physics (94%) teachers who participated in the study were White. Findings of the study revealed that only 55% to 60% of these teachers considered themselves well prepared to effectively teach a culturally diverse student population (Banilower, 2002; Smith, 2002; Wood, 2002). The majority of the teacher pool, which is White, prefer not to teach in urban communities as they have a preference for teaching jobs in the nonurban communities that are similar to those in which they were raised (Boyd, Lankford, Loeb, & Wyckoff, 2005; Epstein, 2005). The purpose of this quantitative study was to examine factors that may contribute to the underrepresentation of African American teachers certified in science. More specifically, it was decided to examine the high school experiences of in-service teachers. Study participants were teachers and other certificated faculty in two school districts located in the southern portion of the United States. Findings of the study revealed a statistically significant relationship between a teacher's decision to become certified in science and the following high school experiences: teachers and guidance counselors encouraging students to

  17. The value of storytelling in the science classroom

    NASA Astrophysics Data System (ADS)

    Isabelle, Aaron David

    The "traditional science classroom" asks students, "What do we know in science?," and ignores the question, "How do we know what we know?" The purpose of this research is to combine the powerful structure of narrative with the history of science in junior high school science classrooms. This study investigates whether history-of-science-based stories have advantages over traditional, lecture-style presentations. The storytelling approach aims to present science concepts in a meaningful and memorable context and in a coherent and connected manner. The research program employed parallel curricula: science concepts were taught through novel stories and through lectures, at different times, to eight different groups of seventh and eighth grade students at Holy Name Junior High School in Worcester, Massachusetts. Students were assessed with pre- and post-tests and through individual interviews: Before, immediately after, and two weeks after the lessons, students were given short-answer questionnaires. Two weeks after each lesson, individual interviews were also conducted with a sampling of the students. The questionnaires were coded according to a clear set of written standards and the interviews were transformed into concept maps. Student learning and retention levels, gender differences, and alternate conceptions were quantitatively analyzed. The results reveal that the students who were taught through stories learned the science concepts, on the average, 21% better and retained close to 48% more than the students who were taught through traditional lessons. Fewer alternate conceptions were expressed after story lessons than after lectures. Investigation of gender differences in learning science through the two methods revealed that boys profited more than girls did from the story lessons. The union of narrative with the history of science in the form of story lessons seems natural since the spatiotemporal structure of a narrative mirrors the unfolding of actions in

  18. Middle School Girls: Experiences in a Place-Based Education Science Classroom

    ERIC Educational Resources Information Center

    Shea, Charlene K.

    2016-01-01

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase…

  19. Secondary science teachers' view toward and classroom translation of sustained professional development

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth Blake

    This study concerns the phenomenon of secondary science teacher learning and enacting instructional strategies learned at the Communication in Science Inquiry Project (CISIP) teacher professional development events, as well as teacher perception of, and relationship to, this year-long professional development program. The CISIP program teaches science teachers how to build scientific classroom discourse communities with their students. Some of the science teachers were previous participants in the professional development, and acted as mentor teachers. The research design employed an integrated conceptual framework of situated learning theory with an analytical lens of teachers' professional, institutional and affinity, identities. A multi-method approach was used to generate data. Throughout the 2007-2008 academic year, the teachers' fidelity to the professional development model was measured using a classroom observation instrument aligned with the professional development model. From these observation data a longitudinal model, using hierarchical linear modeling, was constructed. In addition, surveys and interview data were used to construct both whole group and case studies of two high school science teachers who taught biology at the same school. The results indicated that there was a significant difference between previous and new participants; specifically, the longer teachers had participated in the professional development, and adopted a mentorship role, the greater their fidelity of classroom instruction to the CISIP model. Additionally, the case study teacher who developed a CISIP model-aligned affinity identity implemented more of the instructional strategies than the teacher who maintained his school-based institutional identity.

  20. Enhancing literacy practices in science classrooms through a professional development program for Canadian minority-language teachers

    NASA Astrophysics Data System (ADS)

    Rivard, Léonard P.; Gueye, Ndeye R.

    2016-05-01

    Literacy in the Science Classroom Project was a three-year professional development (PD) program supporting minority-language secondary teachers' use of effective language-based instructional strategies for teaching science. Our primary objective was to determine how teacher beliefs and practices changed over time and how these were enacted in different classrooms. We also wanted to identify the challenges and enablers to implementing these literacy strategies and practices at the classroom, school, and district levels. Data collection involved both qualitative and quantitative methodologies: student questionnaires; interviews with teachers, principals, and mentor; and focus groups with students. The findings suggest that the program had an impact on beliefs and practices commensurate with the workshop participation of individual teachers. These language-enhanced teacher practices also had a positive impact on the use of talking, reading and writing by students in the science classroom. Finally, continuing PD support may be needed in certain jurisdictions for strengthening minority-language programs given the high teacher mobility in content-area classrooms evident in this study.

  1. Teaching controversial issues in the secondary school science classroom

    NASA Astrophysics Data System (ADS)

    van Rooy, Wilhelmina

    1993-12-01

    A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.

  2. Japanese Family and Consumer Sciences Teachers' Lived Experiences: Self-Disclosure in the Classroom

    ERIC Educational Resources Information Center

    Katadae, Ayako

    2008-01-01

    The purpose of this phenomenological study was to understand the lived experiences of Japanese family and consumer sciences teachers' self-disclosure in the classroom. Twelve secondary school teachers were interviewed, beginning with this primary question, "Think about a specific time and space when you self-disclosed in the classroom. Would you…

  3. Examining the Effects of Integrated Science, Engineering, and Nonfiction Literature on Student Learning in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Tank, Kristina Maruyama

    In recent years there has been an increasing emphasis on the integration of multiple disciplines in order to help prepare more students to better address the complex challenges they will face in the 21st century. Exposing students to an integrated and multidisciplinary approach will help them to better understand the connections between subjects instead of as individual and separate subjects. Science, Technology, Engineering and Mathematics (STEM) Integration has been suggested as an approach that would model a multidisciplinary approach while also offering authentic and meaningful learning experiences to students. However, there is limited research on STEM integration in the elementary classroom and additional research is needed to better define and explore the effects of this integration for both students and science educators. With the recent recommendations for teaching both science and engineering in elementary classrooms (NRC, 2012), two common models include teaching science through inquiry and teaching science through engineering-design pedagogies. This study will explore both of these models as it seeks to better understand one piece of the larger issue of STEM and STEM integration by examining how the integration of science, engineering, and nonfiction literature affects students learning in elementary classrooms. This study employed an embedded mixed methods design to measure the effects of this integration on student learning in four fifth grade classrooms from the same elementary school. The findings revealed that the students who participated in the nonfiction reading instruction that was integrated with their science instruction showed a greater increase in all measures of student learning in both science and reading when compared to the control students. The findings from the integrated science, engineering and nonfiction literature revealed similar findings with the treatment students showing a greater increase in the measures of student learning

  4. Debating science policy in the physics classroom.

    NASA Astrophysics Data System (ADS)

    Mayer, Shannon

    2010-03-01

    It is critically important that national and international science policy be scientifically grounded. To this end, the next generation of scientists and engineers will need to be technically competent, effective communicators of science, and engaged advisors in the debate and formulation of science policy. We describe three science policy debates developed for the physics classroom aimed at encouraging students to draw connections between their developing technical expertise and important science policy issues. The first debate considers the proposal for a 450-megawatt wind farm on public lands in Nantucket Sound and fits naturally into the curriculum related to alternative forms of energy production. The second debate considers national fuel-economy standards for sport-utility vehicles and can be incorporated into the curriculum related to heat engines. The third debate, suitable for the curriculum in optics, considers solid state lighting and implications of recent United States legislation that places stringent new energy-efficiency and reliability requirements on conventional lighting. The technical foundation for each of these debates fits naturally into the undergraduate physics curriculum and the material is suitable for a wide range of physics courses, including general science courses for non-majors.

  5. The Structure-Agency Dialectic in Contested Science Spaces: "Do Earthworms Eat Apples?"

    ERIC Educational Resources Information Center

    Kane, Justine M.

    2015-01-01

    Focusing on a group of African American third graders who attend a high-poverty urban school, I explore the structure-agency dialectic within contested spaces situated in a dialogically oriented science classroom. Contested spaces entail the moments in which the students challenge each other's and their teacher's science ideas and, in the process,…

  6. Orchestrating student discourse opportunities and listening for conceptual understandings in high school science classrooms

    NASA Astrophysics Data System (ADS)

    Kinard, Melissa Grass

    Scientific communities have established social mechanisms for proposing explanations, questioning evidence, and validating claims. Opportunities like these are often not a given in science classrooms (Vellom, Anderson, & Palincsar, 1993) even though the National Science Education Standards (NSES, 1996) state that a scientifically literate person should be able to "engage intelligently in public discourse and debate about important issues in science and technology" (National Research Council [NRC], 1996). Research further documents that students' science conceptions undergo little modification with the traditional teaching experienced in many high school science classrooms (Duit, 2003, Dykstra, 2005). This case study is an examination of the discourse that occurred as four high school physics students collaborated on solutions to three physics lab problems during which the students made predictions and experimentally generated data to support their predictions. The discourse patterns were initially examined for instances of concept negotiations. Selected instances were further examined using Toulmin's (2003) pattern for characterizing argumentation in order to understand the students' scientific reasoning strategies and to document the role of collaboration in facilitating conceptual modifications and changes. Audio recordings of the students' conversations during the labs, written problems turned in to the teacher, interviews of the students, and observations and field notes taken during student collaboration were used to document and describe the students' challenges and successes encountered during their collaborative work. The findings of the study indicate that collaboration engaged the students and generated two types of productive science discourse: concept negotiations and procedure negotiations. Further analysis of the conceptual and procedure negotiations revealed that the students viewed science as sensible and plausible but not as a tool they could

  7. Similarity and difference: Student cooperation in Taiwanese and Australian science classrooms

    NASA Astrophysics Data System (ADS)

    Wallace, John; Chou, Ching-Yang

    2001-11-01

    In this study, we examine the way in which students cooperate in Taiwanese and Australian science classrooms. We adopt the position that student cooperation is best understood by examining the patterns of variation within and between countries rather than trying to describe similarities and differences in essential terms. A critical analysis of large-scale learning environment questionnaire data combined with in-depth interview and observational data leads to several findings about the nature of student cooperation in the two countries. We conclude that students from Taiwan and Australia have a range of understandings and interpretations about what it means to cooperate in science classrooms. There are complex connections between cooperative behavior, student academic ability, sex, and nationality, which are best understood in socio-cultural terms.

  8. The effect of a science work experience program for teachers on the classroom environment: A qualitative program evaluation

    NASA Astrophysics Data System (ADS)

    Frazier, Wendy Michelle

    Science Work Experience Programs for Teachers (SWEPTs) provide an opportunity for science and math teachers to work in research laboratories during the summer to experience science as it is practiced in the laboratory-setting. Through the use of interviews with teachers and students, classroom observations, and an analysis of printed student sheets and student work, the lived experience of a cohort of program participants in Columbia University's Summer Research Program for Secondary School Science Teachers was recorded in an effort to describe the effect of experience in a SWEPT on the classroom environment of teacher participants and student outcomes. Relying on Social Learning Theory and science education reform documentation as a theoretical framework the following dimensions of the classroom were examined: (1) emergent themes that include the participants' perceptions of the importance of technology in the classroom, (2) interpersonal relationships with the teachers at the participants' schools, fellow program participants, research scientists, and students, and (3) changes in epistemological structure, curriculum, instructional strategies, and classroom practices. Methodological and theoretical implications are addressed with respect to future studies, and suggestions for refinement of SWEPTs are provided.

  9. Signs of Taste for Science: A Methodology for Studying the Constitution of Interest in the Science Classroom

    ERIC Educational Resources Information Center

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-01-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of "taste for science" as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for…

  10. Science Technology and Engineering Teachers' Emotional Intelligence vis-à-vis Classroom Management

    ERIC Educational Resources Information Center

    Llego, Jordan Hiso

    2017-01-01

    This study aimed to determine the relationship of emotional intelligence of science STE teachers' with their classroom management. This study used descriptive-correlational using survey questionnaire with total population sampling who are offering Science, Technology and Engineering curriculum in Region 1, Philippines with 113 respondents.…

  11. Science and engineering students' classroom experiences: An analysis by gender and discipline

    NASA Astrophysics Data System (ADS)

    Barrett, Martha Cohen

    Based on a concern about the persistence of women in science-related disciplines, this study sought to determine whether science and engineering students' classroom experiences and the importance students attributed to their experiences differed by gender and discipline. Using Chickering & Gamson's (1987) "Seven Principles for Good Practice in Undergraduate Education" as a framework, students' classroom experiences were separated into eight broad categories: Student Preparation, Feedback to Students, Instructor's Expectations of Students, Active Learning, Student Interaction, Instructor's Response to Differences Among Students, Student-Faculty Contact, and Learning Experiences. A survey instrument that included questions related to the eight broad classroom experience dimensions was used to collect data on students' classroom experiences and values in 22 undergraduate biology, chemistry, and mechanical engineering classrooms in a total of three institutions. Most of the classes were sophomore/junior level, and the number of students in each of the classes varied. 896 surveys met the study criteria and were included in the analyses. A total of 23 indices were created using the data collected in the study. Although there were no significant differences in how men and women perceived instructors' classroom behaviors, there were differences in the extent to which men and women reported that they valued particular classroom experiences. For each of these differences (importance of preparation, importance of requirements, importance of cooperative environment, importance of diversity flexibility, and importance of familiarity and respect), women valued the experience more highly than did men. There were also differences in classroom experiences and in the extent to which students valued their experiences across the three disciplines, with more disciplinary differences in students' classroom experiences than in the value they attached to their experiences. While some of

  12. One-to-one iPad technology in the middle school mathematics and science classrooms

    NASA Astrophysics Data System (ADS)

    Bixler, Sharon G.

    Science, technology, engineering, and mathematics (STEM) education has become an emphasized component of PreK-12 education in the United States. The US is struggling to produce enough science, mathematics, and technology experts to meet its national and global needs, and the mean scores of science and mathematics students are not meeting the expected levels desired by our leaders (Hossain & Robinson, 2011). In an effort to improve achievement scores in mathematics and science, school districts must consider many components that can contribute to the development of a classroom where students are engaged and growing academically. Computer technology (CT) for student use is a popular avenue for school districts to pursue in their goal to attain higher achievement. The purpose of this study is to examine the use of iPads in a one-to-one setting, where every student has his own device 24/7, to determine the effects, if any, on academic achievement in the areas of mathematics and science. This comparison study used hierarchical linear modeling (HLM) to examine three middle schools in a private school district. Two of the schools have implemented a one-to-one iPad program with their sixth through eighth grades and the third school uses computers on limited occasions in the classroom and in a computer lab setting. The questions addressed were what effect, if any, do the implementation of a one-to-one iPad program and a teacher's perception of his use of constructivist teaching strategies have on student academic achievement in the mathematics and science middle school classrooms. The research showed that although the program helped promote the use of constructivist activities through the use of technology, the one-to-one iPad initiative had no effect on academic achievement in the middle school mathematics and science classrooms.

  13. H3Africa and the African Life Sciences Ecosystem: Building Sustainable Innovation

    PubMed Central

    Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen

    2014-01-01

    Abstract Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political

  14. H3Africa and the African life sciences ecosystem: building sustainable innovation.

    PubMed

    Dandara, Collet; Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen

    2014-12-01

    Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political science

  15. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    ERIC Educational Resources Information Center

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-01-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…

  16. Terrific Trichomes (and Other Specialised Cells) in African Violets: How to Get a Lot from One Plant in the Classroom

    ERIC Educational Resources Information Center

    Cottrell, Vicki M.

    2013-01-01

    African violet (genus "Saintpaulia") was identified as a particularly suitable genus for the study of specialised plant cells in the classroom using microscopes. The techniques described here involve simple preparation without staining. The cells and structures that can be investigated include: trichomes (hairs); stomata; guard cells and…

  17. Expanding the Reach of the Coastal Ocean Science Classroom to Teachers through Teleducation

    NASA Astrophysics Data System (ADS)

    Macko, S.; Szuba, T.

    2007-12-01

    In a first of its kind connectivity, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) to Arcadia High School on the Eastern Shore of Virginia, allowing teachers in the Accomack County School District to receive university credit without leaving their home classrooms 250 miles from UVA. This project was an outreach and education program with a partner in the K-12 schools on the Eastern Shore of Virginia. It endeavored to build a community knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. By establishing teleducation linkages with the Eastern Shore High Schools we were rigorously testing the live-Internet-based classroom with earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography. The classes were designed on a faculty development basis or to allow the teachers to acquire NSTA certification in Earth Science Education. While not without small problems of interruptions in connectivity or the occasional transmission of hardcopies of materials, the approach was seen to be extremely successful. The ability to reach school districts and teachers that are in more remote locations and with fewer resources is clearly supported by this venture. Currently we are planning to link multiple classrooms in the next iteration of this work, intending to offer the expanded classroom in more distant college-based classrooms where Ocean Sciences is a desired portion of the curriculum, but is presently only occasionally offered owing to limited resources.

  18. An examination of the association between demographic and educational factors and African American achievement in science

    NASA Astrophysics Data System (ADS)

    Cottledge, Michael Christopher

    Objective of the Study: The objective of this research study was to investigate whether an association exists between teacher demographic factors (years of teaching experience and gender), 2 educational factors (certification type and certification pathway) and the percent passing rate of tenth grade African American male students on the 2010 science TAKS. Answers to the following questions were sought: 1. Is there an association between teacher demographic factors and the percent passing rate of their tenth grade African American male students on the 2010 science TAKS? 2. Is there an association between teacher educational factors and the percent passing rate of their tenth grade African American male students on the 2010 science TAKS? 3. Is there an association between teacher demographic factors, educational factors and the percent passing rate of their tenth grade African American male students on the 2010 science TAKS? Status of the Question: According to the Bureau of Labor Statistics (BLS), science and engineering jobs in the U.S. have increased steadily over recent years and by the year 2016 the number of STEM (Science, Technology, Engineering and Math) jobs will have grown by more than 21 percent. This increase in science and engineering jobs will double the growth rate of all other workforce sectors combined. The BLS also reports that qualified minority applicants needed to fill these positions will be few and far between. African Americans, Latinos, and other minorities constitute 24 percent of the U.S. population but only 13 percent of college graduates and just 10 percent of people with college degrees who work in science and engineering (Education Trust, 2009). Drawing on the above information, I proposed the following hypotheses to the research questions: H01: There will be no significant statistical association between the demographic factors teacher gender and years of teaching experience and the percent passing rate of their tenth grade African

  19. From Access to Success: Identity Contingencies & African-American Pathways to Science

    ERIC Educational Resources Information Center

    Brown, Bryan A.; Henderson, J. Bryan; Gray, Salina; Donovan, Brian; Sullivan, Shayna

    2013-01-01

    We conducted a mixed-methodological study of matriculation issues for African-American students in science. The project compares the experiences of students currently majoring in science (N = 304) with the experiences of those who have succeeded in earning science degrees (N = 307). Using a 57-item Likert scale questionnaire, participants were…

  20. The impact of the inclusion of students with handicaps and disabilities in the regular education science classroom

    NASA Astrophysics Data System (ADS)

    Donald, Cathey Nolan

    This study was conducted to determine the impact of the inclusion of students with handicaps and disabilities in the regular education science classroom. Surveys were mailed to the members of the Alabama Science Teachers Association to obtain information from teachers in inclusive classrooms. Survey responses from teachers provide insight into these classrooms. This study reports the results of the teachers surveyed. Results indicate multiple changes occur in the educational opportunities presented to regular education students when students with handicaps and disabilities are included in the regular science classroom. Responding teachers (60%) report omitting activities that formerly provided experiences for students, such as laboratory activities using dangerous materials, field activities, and some group activities. Also omitted, in many instances (64.1%), are skill building opportunities of word problems and higher order thinking skills. Regular education students participate in classes where discipline problems related to included students are reported as the teachers most time consuming task. In these classrooms, directions are repeated frequently, reteaching of material already taught occurs, and the pace of instruction has been slowed. These changes to the regular classroom occur across school levels. Many teachers (44.9%) report they do not see benefits associated with the inclusion of students with special needs in the regular classroom.

  1. Ambitious Teachers' Design and Use of Classrooms as a Place of Science

    ERIC Educational Resources Information Center

    Stroupe, David

    2017-01-01

    This multicase study examines how three teachers enacting ambitious instruction purposefully designed and used their classroom as a "place of science" in which students participated in disciplinary practices. A place of science is a location that shapes the norms, values, and history of disciplinary practices. Each participant's…

  2. Teacher and Student Perceptions on High School Science Flipped Classrooms: Educational Breakthrough or Media Hype?

    NASA Astrophysics Data System (ADS)

    Hunley, Rebecca C.

    For years educators have struggled to ensure students meet the rigors of state mandated tests. Challenges that often impede student success are student absences, school closings due to weather, and remediation for students who need additional help while advanced students can move ahead. Many educators, especially secondary math and science teachers, have responded to these issues by implementing a teaching strategy called the flipped classroom where students view lectures, power points, or podcasts outside of school and class time shifts to allow opportunities for collaborative learning. The purpose of this research was to evaluate teacher and student perceptions of high school flipped science classrooms. A qualitative phenomenological study was conducted to observe 3 high school science teachers from Georgia, North Carolina, and Tennessee selected through purposeful sampling who have used the flipped classroom method for a minimum of 2 years. Analysis of data from an online survey, direct observation, teacher interviews, and student focus groups helped to identify challenges and benefits of this teaching and learning strategy. Findings indicated that teachers find the flipped classroom beneficial to build student relationships but requires a significant amount of time to develop. Mixed student reactions revealed benefits of a flipped classroom as a successful learning tool for current and future endeavors for college or career preparation.

  3. Factors impacting teachers' argumentation instruction in their science classrooms

    NASA Astrophysics Data System (ADS)

    McNeill, Katherine L.; Katsh-Singer, Rebecca; González-Howard, María; Loper, Suzanna

    2016-08-01

    Science education research, reform documents and standards include scientific argumentation as a key learning goal for students. The role of the teacher is essential for implementing argumentation in part because their beliefs about argumentation can impact whether and how this science practice is integrated into their classroom. In this study, we surveyed 42 middle school science teachers and conducted follow-up interviews with 25 to investigate the factors that teachers believe impact their argumentation instruction. Teachers responded that their own learning goals had the greatest impact on their argumentation instruction while influences related to context, policy and assessment had the least impact. The minor influence of policy and assessment was in part because teachers saw a lack of alignment between these areas and the goals of argumentation. In addition, although teachers indicated that argumentation was an important learning goal, regardless of students' backgrounds and abilities, the teachers discussed argumentation in different ways. Consequently, it may be more important to help teachers understand what counts as argumentation, rather than provide a rationale for including argumentation in instruction. Finally, the act of trying out argumentation in their own classrooms, supported through resources such as curriculum, can increase teachers' confidence in teaching argumentation.

  4. SciNews: Incorporating Science Current Events in 21st Century Classrooms

    NASA Astrophysics Data System (ADS)

    DiMaggio, E.

    2011-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance is important for student learning and retention, especially in science where abstract concepts can often be incorrectly perceived as irrelevant. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the 2011 earthquake and tsunami in Japan), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief 'teachable moments'--when student interest is high--provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, I create pre-packaged current event materials for middle to high school teachers that align to state standards, and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15-30 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. I assemble materials within approximately one week of the regional or global science event, consisting of short slide shows, maps, videos, pictures, and real-time data. I use a listserv to send biweekly emails to subscribed instructors containing the current event topic and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach SciNews website (http://sese.asu.edu/teacher-resources) and are archived. Currently, 285 educators subscribe to the SciNews listserv, representing 36 states and 19 countries. In order to assess the effectiveness and usefulness of Sci

  5. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    ERIC Educational Resources Information Center

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-01-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by…

  6. A Longitudinal Examination of African American Adolescents’ Attributions about Achievement Outcomes

    PubMed Central

    Swinton, Akilah D.; Kurtz-Costes, Beth; Rowley, Stephanie J.; Okeke-Adeyanju, Ndidi

    2011-01-01

    Developmental, gender, and academic domain differences in causal attributions and the influence of attributions on classroom engagement were explored longitudinally in 115 African American adolescents. In Grades 8 and 11, adolescents reported attributions for success and failure in math, English and writing, and science. In Grade 11, English and mathematics teachers rated students’ classroom engagement. Boys were more likely than girls to attribute math successes to high ability and to attribute English failures to low ability. Both genders’ ability attributions for math became more negative from eighth to eleventh grade. Grade 8 attributions of math failure to lack of ability were negatively related to Grade 11 math classroom engagement. Results illustrate the gendered nature of motivational beliefs among Black youth. PMID:21793818

  7. A Comparison of the Quality and Sequence of Television and Classroom Science Questions With a Proposed Strategy of Science Instruction

    ERIC Educational Resources Information Center

    Beisenherz, Paul C.

    1973-01-01

    Studied the utilization and effectiveness of a televised science series in 54 first through fourth-grade classrooms, using multiple category systems to analyze the questioning behavior of studio and classroom teachers. Concluded that questioning behaviors of teachers with or without the teachers' manual was influenced by the TV broadcast. (CC)

  8. Current Approaches in Implementing Citizen Science in the Classroom

    PubMed Central

    Shah, Harsh R.; Martinez, Luis R.

    2016-01-01

    Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K–12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community. PMID:27047583

  9. Current Approaches in Implementing Citizen Science in the Classroom.

    PubMed

    Shah, Harsh R; Martinez, Luis R

    2016-03-01

    Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K-12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community.

  10. Responsible Use of Live Animals and Dissection in the Science Classroom. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2005

    2005-01-01

    National Science Teachers Association (NSTA), led by a panel of K-12 science teachers, has developed a new position statement, "Responsible Use of Live Animals and Dissection in the Science Classroom." This statement examines the issues surrounding the integration of animals into the K-12 science curriculum and highlights key…

  11. Teaching the content in context: Preparing "highly qualified" and "high quality" teachers for instruction in underserved secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Tolbert, Sara E.

    2011-12-01

    This dissertation research project presents the results of a longitudinal study that investigates the knowledge, beliefs, and practices of 13 preservice secondary science teachers participating in a science teacher credentialing/Masters program designed to integrate issues of equity and diversity throughout coursework and seminars. Results are presented in the form of three papers: The first paper describes changes in preservice teacher knowledge about contextualization in science instruction, where contextualization is defined as facilitating authentic connections between science learning and relevant personal, social, cultural, ecological, and political contexts of students in diverse secondary classrooms; the second paper relates changes in the self-efficacy and content-specific beliefs about science, science teaching, diversity, and diversity in science instruction; and the final paper communicates the experiences and abilities of four "social justice advocates" learning to contextualize science instruction in underserved secondary placement classrooms. Results indicate that secondary student teachers developed more sophisticated understandings of how to contextualize science instruction with a focus on promoting community engagement and social/environmental activism in underserved classrooms and how to integrate science content and diversity instruction through student-centered inquiry activities. Although most of the science teacher candidates developed more positive beliefs about teaching science in underrepresented classrooms, many teacher candidates still attributed their minority students' underperformance and a (perceived) lack of interest in school to family and cultural values. The "social justice advocates" in this study were able to successfully contextualize science instruction to varying degrees in underserved placement classrooms, though the most significant limitations on their practice were the contextual factors of their student teaching

  12. ISS: A Science Classroom for America

    NASA Astrophysics Data System (ADS)

    McPherson, Alexander; Jenkins, Greg; Kenny, Nate

    2002-01-01

    project competitions were from AL, CA, GA, TN, FL, MI, TX, IN, IL, OH, and WV. We have had over 800 teachers from 35 different states participate in our kit training workshops. Our classroom experiment has been a huge success. Approximately 50,000 kids have done the classroom experiment with participants from AL, AZ, AR, CA, CO, GA, LA, FL, PA, MO, NM, MN, MS, TN, KY, NC, NY, NJ, OH, WV, PR,TX, WI, SC, MI, MA, IL, IN, VA, and MT. ISS will, therefore, serve, not only as a science laboratory for researchers, but as a science classroom for America.

  13. The Interplay of Representations and Patterns of Classroom Discourse in Science Teaching Sequences

    ERIC Educational Resources Information Center

    Tang, Kok-Sing

    2016-01-01

    The purpose of this study is to examines the relationship between the communicative approach of classroom talk and the modes of representations used by science teachers. Based on video data from two physics classrooms in Singapore, a recurring pattern in the relationship was observed as the teaching sequence of a lesson unfolded. It was found that…

  14. Analyzing Stories Told by an Elementary Science Teacher in a Fifth-Grade Classroom

    ERIC Educational Resources Information Center

    Trotman, Alicia M.

    2012-01-01

    The purpose of this qualitative study was to analyze and interpret the stories told by one teacher, Ms. M, in a fifth grade science classroom. In this study, stories are defined as teacher utterances that are used in first person or third person narrative view, and are related to an experience that occurred outside the classroom. This research…

  15. Planetary Science and Spacecraft Analogs in the Classroom

    NASA Astrophysics Data System (ADS)

    Edberg, S. J.; McConnell, S. L.

    2000-12-01

    The Cassini Program Outreach Team has developed a number of classroom demonstrations and activities that present science investigation techniques and spacecraft flight operations. These activities and demonstrations include analogs to planetary magnetic field orientations, ring particle and atmospheric scattering, thermal inertia studies, body-mounted vs. scan platform-mounted instrument operations on spacecraft, gravity assist, and many others. These curriculum supplements utilize inexpensive, commonly available materials that can be found in household kitchens, backyards, and hardware and variety stores. While designed for middle school classrooms, these activities are easily modified for use in both elementary and high school classes. We will demonstrate several of our activities and present information on others. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  16. Planetary Science and Spacecraft Analogs in the Classroom

    NASA Astrophysics Data System (ADS)

    Edberg, S. J.; McConnell, S. L.

    2000-10-01

    The Cassini Program Outreach Team has developed a number of classroom demonstrations and activities that present science investigation techniques and spacecraft flight operations. These activities and demonstrations include analogs to planetary magnetic field orientations, ring particle and atmospheric scattering, thermal inertia studies, body-mounted vs. scan platform-mounted instrument operations on spacecraft, gravity assist, and many others. These curriculum supplements utilize inexpensive, commonly available materials that can be found in household kitchens, backyards, and hardware and variety stores. While designed for middle school classrooms, these activities are easily modified for use in both elementary and high school classes. We will demonstrate several of our activities and present information on others. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. Playing Modeling Games in the Science Classroom: The Case for Disciplinary Integration

    ERIC Educational Resources Information Center

    Sengupta, Pratim; Clark, Doug

    2016-01-01

    The authors extend the theory of "disciplinary integration" of games for science education beyond the virtual world of games, and identify two key themes of a practice-based theoretical commitment to science learning: (1) materiality in the classroom, and (2) iterative design of multiple, complementary, symbolic inscriptions (e.g.,…

  18. An Experimental Examination of Quick Writing in the Middle School Science Classroom

    ERIC Educational Resources Information Center

    Benedek-Wood, Elizabeth; Mason, Linda H.; Wood, Philip H.; Hoffman, Katie E.; McGuire, Ashley

    2014-01-01

    A staggered A-B design study was used to evaluate the effects of Self- Regulated Strategy Development (SRSD) instruction for quick writing in middle school science across four classrooms. A sixth-grade science teacher delivered all students' writing assessment and SRSD instruction for informative quick writing. Results indicated that performance…

  19. Representin' and Disrespectin': African-American Wind Band Students' Meanings of a Composition-Based Secondary Music Curriculum and Classroom Power Structures

    ERIC Educational Resources Information Center

    Hoffman, Adria Rachel; Carter, Bruce Allen

    2013-01-01

    Although cultural diversity is important to the social context of classrooms, few researchers have explored school music experiences from the perspective of students of colour. Possibly of greater concern is the absence of research examining African-American students' educational experiences in early secondary education, during which time the…

  20. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    NASA Technical Reports Server (NTRS)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  1. Initiating New Science Partnerships in Rural Education (INSPIRE) Brining STEM Research to 7th-12th Grade Science and Math Classrooms

    NASA Astrophysics Data System (ADS)

    Radencic, S.; McNeal, K. S.; Pierce, D.

    2012-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in

  2. The Effectiveness of a Technology-Enhanced Flipped Science Classroom

    ERIC Educational Resources Information Center

    Sezer, Baris

    2017-01-01

    This study examined the effect on the learning and motivation of students of a flipped classroom environment enriched with technology. A mixed research design using a pretest or posttest experimental model, combined with qualitative data, was conducted in a public middle school in Turkey for 2 weeks (three class hours) within a science course.…

  3. Examining Arguments Generated by Year 5, 7, and 10 Students in Science Classrooms

    ERIC Educational Resources Information Center

    Choi, Aeran; Notebaert, Andrew; Diaz, Juan; Hand, Brian

    2010-01-01

    A critical component of science is the role of inquiry and argument in moving scientific knowledge forward. However, while students are expected to engage in inquiry activities in science classrooms, there is not always a similar emphasis on the role of argument within the inquiry activities. Building from previous studies on the Science Writing…

  4. Using Science and the Internet as Everyday Classroom Tools

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    1999-01-01

    The Everyday Classroom Tools project developed a K-6 inquiry-based curriculum to bring the tools of scientific inquiry, together with the Internet, into the elementary school classroom. Our curriculum encourages students and teachers to experience the adventure of science through investigation of the world around us. In this project, experts in computer science and astronomy at SAO worked closely with teachers and students in Massachusetts elementary schools to design and model activities which are developmentally appropriate, fulfill the needs of the curriculum standards of the school district, and provide students with a chance to experience for themselves the joy and excitement of scientific inquiry. The results of our efforts are embodied in the Threads of Inquiry, a series of free-flowing dialogues about inquiry-inspiring investigations that maintain a solid connection with our experience and with one another. These investigations are concerned with topics such as the motion of the Earth, shadows, light, and time. Our work emphasizes a direct hands-on approach through concrete experience, rather than memorization of facts.

  5. Making connections: Exploring student agency in a science classroom in India

    NASA Astrophysics Data System (ADS)

    Sharma, Ajay

    India has been a free country for more than half a century now. In this time, the state has succeeded to a large extent in providing universal access to at least elementary education to all the citizens. However, the quality of education provided in state-run schools remains far removed from the ideals endorsed in policy documents. The vast majority of Indian poor, especially in rural areas, depend upon state-run schools for access to education. However, the low quality of education provided in these schools militates against their hopes and efforts for securing a better future through education. Undergirded by concerns over the raw deal students of government run schools get in rural India, this study is an ethnographic exploration of science learning in a rural middle school classroom in India. The study was conducted in the government middle school at the village Rajkheda, in the Hoshangabad district of the state of Madhya Pradesh, India. The study focused on the nature and scope of student participation in a middle school science classroom of rural school in India. Taking a socio-cultural perspective, it explored student participation in science classroom as engagement in a socioculturally mediated dialogue with the natural and the social world. Thus, two parallel yet intersecting themes run through the narrative this study presents. On one hand, it focuses on students' efforts to both learn and survive science as taught in that school. While on the other, it details the nature of their engagement with and knowledge of their immediate material world. The study shows that through active engagement with their local material and social world, students of the 8th grade had acquired an extensive, useful and situated funds of experiential knowledge that enabled them to enact their agency in the material world around them. This knowledge revealed itself differently in different contexts. Their knowledge representations about school science and the material world were

  6. Expecting the Unexpected: a Comparative Study of African-American Women's Experiences in Science during the High School Years

    NASA Astrophysics Data System (ADS)

    Hanson, Sandra L.; Johnson, Elizabeth Palmer

    Data from the National Educational Longitudinal Study (NELS) for the years 1988 to 1992 are used to explore the science experiences of young African-American women during the high school years. The comparison groups we use in trying to understand these experiences involve White women (for a race contrast) and African-American men (for a gender contrast). Within the context of a critical feminist perspective, it is argued that gender is constructed in a different way in White and African-American communities. Instead of expecting a disadvantage for young African-American women because of their gender and minority statuses, it is suggested that unique gender ideologies and work-family arrangements in the African-American community give these young women the resources and agency that allow them to compete with their White female counterparts and their African-American male counterparts in the science domain. Results from our analyses of the NELS data confirm these expectations. We find that on a majority of science measures, African-American women do as well as - and sometimes better than - White women and African-American men. For example, there are no differences between African-American women and men on attitudes toward science. And when compared with White women, African-American women tend to have more positive attitudes. When disadvantages appear for these young African-American women, they are more likely to be race effects then gender effects. The minimal gender effects in the science experiences of young African-Americans is in contrast to the more frequent male advantage in the White sample. A careful examination of family and individual resources shows that African-American families compensate for disadvantages on some resources (e.g., family socioeconomic status) by providing young women with an excess of other resources (e.g., unique gender ideologies, work expectations, and maternal expectations and involvement). And, unlike White parents, they sometimes

  7. Perezhivanie and classroom discourse: a cultural-historical perspective on "Discourse of design based science classroom activities"

    NASA Astrophysics Data System (ADS)

    Adams, Megan; March, Sue

    2015-06-01

    Flavio Azevedo, Peggy Martalock and Tugba Keser challenge the `argumentation focus of science lessons' and propose that through a `design-based approach' emergent conversations with the teacher offer possibilities for different types of discussions to enhance pedagogical discourse in science classrooms. This important paper offers a "preliminary contribution to a general theory" regarding the link between activity types and discourse practices. Azevedo, Martalock and Keser offer a general perspective with a sociocultural framing for analysis of classroom discourse. Interestingly the specific concepts drawn upon are from conversation analysis; there are few sociocultural concepts explored in detail. Therefore, in this article we focus on a cultural historical (Vygotsky in The collected works of L. S. Vygotsky. The history and development of higher mental functions, vol 4. Plenum Press, New York, 1987; The Vygotsky reader. Black, Cambridge, 1994) methodology to explore, analyse and explain how we would use a different theoretical lens. We argue that a cultural historical reading of argumentation in science lessons and design based activity will expand Azevedo, Martalock and Keser's proposed general theory of activity types and discourse practices. Specifically, we use Lev Vygotksy's idea of perezhivanie as the unit of analysis to reconceptualise this important paper. We focus on the holistic category of students' emotional experience through discourse while developing scientific awareness.

  8. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    NASA Astrophysics Data System (ADS)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  9. Revisiting the Silence of Asian Immigrant Students: The Negotiation of Korean Immigrant Students' Identities in Science Classrooms

    ERIC Educational Resources Information Center

    Ryu, Minjung

    2012-01-01

    This dissertation is a study about Korean immigrant students' identities, including academic identities related to science learning and identities along various social dimensions. I explore how Korean immigrant students participate in science classrooms and how they enact and negotiate their identities in their classroom discursive…

  10. Visual, Critical, and Scientific Thinking Dispositions in a 3rd Grade Science Classroom

    NASA Astrophysics Data System (ADS)

    Foss, Stacy

    Many American students leave school without the required 21st century critical thinking skills. This qualitative case study, based on the theoretical concepts of Facione, Arheim, and Vygotsky, explored the development of thinking dispositions through the arts in science on the development of scientific thinking skills when used as a conceptual thinking routine in a rural 3rd grade classroom. Research questions examined the disposition to think critically through the arts in science and focused on the perceptions and experiences of 25 students with the Visual Thinking Strategy (VTS) process. Data were collected from classroom observations (n = 10), student interviews (n = 25), teacher interviews ( n = 1), a focus group discussion (n = 3), and artifacts of student work (n = 25); these data included perceptions of VTS, school culture, and classroom characteristics. An inductive analysis of qualitative data resulted in several emergent themes regarding disposition development and students generating questions while increasing affective motivation. The most prevalent dispositions were open-mindedness, the truth-seeking disposition, the analytical disposition, and the systematicity disposition. The findings about the teachers indicated that VTS questions in science supported "gradual release of responsibility", the internalization of process skills and vocabulary, and argumentation. This case study offers descriptive research that links visual arts inquiry and the development of critical thinking dispositions in science at the elementary level. A science curriculum could be developed, that emphasizes the development of thinking dispositions through the arts in science, which in turn, could impact the professional development of teachers and learning outcomes for students.

  11. The Effects of Incorporating Classroom Pets into the Fourth Grade Science Curriculum

    NASA Astrophysics Data System (ADS)

    Admire, Maegan

    The purpose of this study was to identify and promote successful teaching strategies that incorporate classroom pets in order to influence student engagement, achievement, and perceptions of animals. This was a small action research study conducted in a fourth grade science classroom. Both quantitative and qualitative data were obtained including, pre- and post-assessments, student interviews, researcher field notes, researcher journal, and student work. The results of this study revealed an increased academic achievement from the pre- to post-assessment, increased student observations and descriptions when discussing the animals, and increased student empathy toward the animals. The results also revealed that the teacher's incorporation of the animals within the science curriculum grew in ease over time, and that the animals provided the educator with opportunities to teach non-content related lessons and also a concrete experience for the teacher to apply and extend the science content.

  12. It's in the Bag!: Going beyond the Science Classroom with Take-Home Literacy Bags

    ERIC Educational Resources Information Center

    Martin, Susan Ferguson; Daughenbaugh, Lynda; Shaw, Edward L., Jr.; Burch, Katrina

    2013-01-01

    Although literacy plays a large role in elementary science classrooms, one thing that offers a challenge for educators is meeting the linguistic needs of English language learners (ELLs) while also meeting their content needs. An additional challenge is ensuring that academic literacy extends beyond the classroom. This article presents ways of…

  13. Use of Digital Videos in New Zealand Science Classrooms: Opportunities for Teachers and Students

    ERIC Educational Resources Information Center

    Chen, Junjun; Cowie, Bronwen

    2016-01-01

    This paper reports how New Zealand teachers used digital videos from an educational website in science classrooms and how teachers and students viewed the use of videos. The study involved lesson observations in nine different classrooms, student and teacher interviews, and teacher focus group discussions. Multiple qualitative data were analysed…

  14. Students as 'catalysts' in the classroom: the impact of co-teaching between science student teachers and primary classroom teachers on children's enjoyment and learning of science

    NASA Astrophysics Data System (ADS)

    Murphy, Colette; Beggs, Jim; Carlisle, Karen; Greenwood, Julian

    2004-08-01

    This study is an investigation of the impact of collaborative teaching by student-teachers and classroom teachers on children's enjoyment and learning of science. The paper describes findings from a project in which undergraduate science specialist student-teachers were placed in primary schools where they 'co-taught' investigative science and technology with primary teachers. Almost six months after the student placement, a survey of children's attitudes to school science revealed that these children enjoyed science lessons more and showed fewer gender or age differences in their attitudes to science than children who had not been involved in the project. The authors discuss how this model of collaborative planning, teaching and evaluation can both enhance teacher education and improve children's experience of science.

  15. Reflections of Educators in Pursuit of Inclusive Science Classrooms

    NASA Astrophysics Data System (ADS)

    Kirch, Susan A.; Bargerhuff, Mary Ellen; Cowan, Heidi; Wheatly, Michele

    2007-08-01

    General education science teachers are meeting increasingly diverse classrooms of students that include students with disabilities. A one-week, summer, residential workshop was offered to interested science and special educators who worked through lab experiments one-on-one with students with physical or sensory disabilities (grades 7-12). To determine how effective this professional development workshop was at raising disability awareness and providing teacher training in inclusive science teaching practices, a combination of survey and reflective journal entries was used to monitor participants’ experience. Here we discuss the findings from this benchmark study and discuss how others might adapt this professional development model for use by schools interested in moving toward inclusive practices.

  16. Use of the Outdoor Classroom and Nature-Study to Support Science and Literacy Learning: A Narrative Case Study of a Third-Grade Classroom

    ERIC Educational Resources Information Center

    Eick, Charles J.

    2012-01-01

    A case study of an exemplary third grade teacher's use of the outdoor classroom for meeting both state science and language arts standards is described. Data from the researcher's field journal, teacher lesson plans, and teacher interviews document how this teacher used nature-study to bridge outdoor classroom experiences with the state science…

  17. Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms

    NASA Astrophysics Data System (ADS)

    Hitt, S. J.; Bright, K.

    2013-12-01

    Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also

  18. Teacher-student interaction in contemporary science classrooms: is participation still a question of gender?†

    NASA Astrophysics Data System (ADS)

    Eliasson, Nina; Sørensen, Helene; Göran Karlsson, Karl

    2016-07-01

    We show that boys still have a greater access to the space for interaction in science classrooms, which is unexpected since in Sweden today girls perform better in these subjects than boys. Results from video-recorded verbal communication, referred to here as interaction, show that the distribution of teacher-student interaction in the final year of lower secondary school follows the same patterns as in the 1980s. The interaction space for all kinds of talk continues to be distributed according to the two-thirds rule for communication in science classrooms as described by previous research. We also show that the overall interaction space in science classrooms has increased for both boys and girls when talk about science alone is considered. Another finding which follows old patterns is that male teachers still address boys more often than girls. This holds true both for general talk and for talk about science. If a more even distribution of teacher-student interaction is desirable, these results once again need to be considered. More research needs to be undertaken before the association between girls' attitudes and interest in science in terms of future career choice and the opportunity to participate in teacher-student interaction is more clearly understood. Research conducted at Mid Sweden University, Department of Science Education and Mathematics.

  19. Multidimensionality of Cultural Practices: Implications for Culturally Relevant Science Education

    ERIC Educational Resources Information Center

    Ares, Nancy

    2011-01-01

    Alfred Schademan's close and systematic analysis of the sociohistorical and science-related practices developed by African American men goes a long way in disrupting deficit-based notions of such students' capabilities. The rich resources he identifies open many possibilities for connecting peer and classroom knowledges. This response offers some…

  20. Positionality of African Americans and a Theoretical Accommodation of It: Rethinking Science Education Research

    ERIC Educational Resources Information Center

    Parsons, Eileen R. Carlton

    2008-01-01

    This essay addresses a call for research involving African Americans to interpret data from the historical, contemporary, and cultural experiences of African Americans. The essay argues for a science education research approach that explicitly considers the positionality of African Americans in the United States. This positionality involves the…

  1. A Focus Group Study of African American Students' Experiences with Classroom Discussions about Race at a Predominantly White University

    ERIC Educational Resources Information Center

    Walls, Jill K.; Hall, Scott S.

    2018-01-01

    Past research has drawn attention to the unique challenges for students of color attending predominantly white colleges and universities, yet few have focused on the classroom as a micro-context in which race-related discussions often occur. Using a focus group methodology, 22 African American undergraduate students from a variety of academic…

  2. Classroom Activities and Demonstrations for Use in Behavioral Science Courses.

    ERIC Educational Resources Information Center

    Cology, Lorry J.

    This compilation provides descriptions of and resource materials for 25 classroom activities or demonstrations for behavioral science courses. For each activity, the following information is provided: subject area, source, time required and materials needed. In addition, discussion questions and comments on the value and use of the activities are…

  3. Fostering Critical Thinking Practices at Primary Science Classrooms in Nepal

    ERIC Educational Resources Information Center

    Acharya, Kamal Prasad

    2016-01-01

    This article examines the socio-cultural activities that have direct and indirect impacts on critical thinking practices in primary science classrooms and what kinds of teachers' activities help to foster the development of critical thinking practices in children. Meanwhile, the constructivist and the socio-cultural theoretical dimensions have…

  4. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  5. Strategies for Effective Implementation of Science Models into 6-9 Grade Classrooms on Climate, Weather, and Energy Topics

    NASA Astrophysics Data System (ADS)

    Yarker, M. B.; Stanier, C. O.; Forbes, C.; Park, S.

    2011-12-01

    As atmospheric scientists, we depend on Numerical Weather Prediction (NWP) models. We use them to predict weather patterns, to understand external forcing on the atmosphere, and as evidence to make claims about atmospheric phenomenon. Therefore, it is important that we adequately prepare atmospheric science students to use computer models. However, the public should also be aware of what models are in order to understand scientific claims about atmospheric issues, such as climate change. Although familiar with weather forecasts on television and the Internet, the general public does not understand the process of using computer models to generate a weather and climate forecasts. As a result, the public often misunderstands claims scientists make about their daily weather as well as the state of climate change. Since computer models are the best method we have to forecast the future of our climate, scientific models and modeling should be a topic covered in K-12 classrooms as part of a comprehensive science curriculum. According to the National Science Education Standards, teachers are encouraged to science models into the classroom as a way to aid in the understanding of the nature of science. However, there is very little description of what constitutes a science model, so the term is often associated with scale models. Therefore, teachers often use drawings or scale representations of physical entities, such as DNA, the solar system, or bacteria. In other words, models used in classrooms are often used as visual representations, but the purpose of science models is often overlooked. The implementation of a model-based curriculum in the science classroom can be an effective way to prepare students to think critically, problem solve, and make informed decisions as a contributing member of society. However, there are few resources available to help teachers implement science models into the science curriculum effectively. Therefore, this research project looks at

  6. "Space Science News: Special Edition," a Resource for Extending Reading and Promoting Engagement with Newspapers in the Science Classroom

    ERIC Educational Resources Information Center

    Jarman, Ruth; McClune, Billy

    2005-01-01

    This paper describes the development of an innovative resource, comprising authentic newspaper articles and associated activities, designed to broaden the range of reading material available for use in the science classroom. Science teachers' response to the publication is discussed. The resource was very well received, indicating that, given…

  7. Unique and protective contributions of parenting and classroom processes to the adjustment of African American children living in single-parent families.

    PubMed

    Brody, Gene H; Dorsey, Shannon; Forehand, Rex; Armistead, Lisa

    2002-01-01

    The unique contributions that parenting processes (high levels of monitoring with a supportive, involved mother-child relationship) and classroom processes (high levels of organization, rule clarity, and student involvement) make to children's self-regulation and adjustment were examined with a sample of 277 single-parent African American families. A multi-informant design involving mothers, teachers, and 7- to 15-year-old children was used. Structural equation modeling indicated that parenting and classroom processes contributed uniquely to children's adjustment through the children's development of self-regulation. Additional analyses suggested that classroom processes can serve a protective-stabilizing function when parenting processes are compromised, and vice versa. Further research is needed to examine processes in both family and school contexts that promote child competence and resilience.

  8. Family matters: Familial support and science identity formation for African American female STEM majors

    NASA Astrophysics Data System (ADS)

    Parker, Ashley Dawn

    This research seeks to understand the experiences of African American female undergraduates in STEM. It investigates how familial factors and science identity formation characteristics influence persistence in STEM while considering the duality of African American women's status in society. This phenomenological study was designed using critical race feminism as the theoretical framework to answer the following questions: 1) What role does family play in the experiences of African American women undergraduate STEM majors who attended two universities in the UNC system? 2) What factors impact the formation of science identity for African American women undergraduate STEM majors who attended two universities in the UNC system? Purposive sampling was used to select the participants for this study. The researcher conducted in-depth interviews with 10 African American female undergraduate STEM major from a predominantly White and a historically Black institution with the state of North Carolina public university system. Findings suggest that African American families and science identity formation influence the STEM experiences of the African American females interviewed in this study. The following five themes emerged from the findings: (1) independence, (2) support, (3) pressure to succeed, (4) adaptations, and (5) race and gender. This study contributes to the literature on African American female students in STEM higher education. The findings of this study produced knowledge regarding policies and practices that can lead to greater academic success and persistence of African American females in higher education in general, and STEM majors in particular. Colleges and universities may benefit from the findings of this study in a way that allows them to develop and sustain programs and policies that attend to the particular concerns and needs of African American women on their campuses. Finally, this research informs both current and future African American female

  9. Teachers' perceptions of effective science, technology, and mathematics professional development and changes in classroom practices

    NASA Astrophysics Data System (ADS)

    Boriack, Anna Christine

    The purpose of this study is to examine teachers' perceptions of professional development and changes in classroom practice. A proposed conceptual framework for effective professional development that results in changes in classroom practices was developed. Data from two programs that provided professional development to teachers in the areas of technology, mathematics, and science was used to inform the conceptual framework. These two programs were Target Technology in Texas (T3) and Mathematics, Science, and Technology Teacher Preparation Academies (MSTTPA). This dissertation used a multiple article format to explore each program separately, yet the proposed conceptual framework allowed for comparisons to be made between the two programs. The first study investigated teachers' perceptions of technology-related professional development after their districts had received a T3 grant. An online survey was administrated to all teachers to determine their perceptions of technology-related professional development along with technology self-efficacy. Classroom observations were conducted to determine if teachers were implementing technology. The results indicated that teachers did not perceive professional development as being effective and were not implementing technology in their classrooms. Teachers did have high technology self-efficacy and perceived adequate school support, which implies that effective professional development may be a large factor in whether or not teachers implement technology in their classrooms. The second study evaluated participants' perceptions of the effectiveness of mathematics and science professional development offered through a MSTTP academy. Current and former participants completed an online survey which measured their perceptions of academy activities and school environment. Participants also self-reported classroom implementation of technology. Interviews and open-ended survey questions were used to provide further insight into

  10. A longitudinal examination of African American adolescents' attributions about achievement outcomes.

    PubMed

    Swinton, Akilah D; Kurtz-Costes, Beth; Rowley, Stephanie J; Okeke-Adeyanju, Ndidi

    2011-01-01

    Developmental, gender, and academic domain differences in causal attributions and the influence of attributions on classroom engagement were explored longitudinally in 115 African American adolescents. In Grades 8 and 11, adolescents reported attributions for success and failure in math, English and writing, and science. In Grade 11, English and mathematics teachers rated students' classroom engagement. Boys were more likely than girls to attribute math successes to high ability and to attribute English failures to low ability. Both genders' ability attributions for math became more negative from eighth to eleventh grades. Grade 8 attributions of math failure to lack of ability were negatively related to Grade 11 math classroom engagement. Results illustrate the gendered nature of motivational beliefs among Black youth. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  11. Investigating Secondary Science Teachers' Beliefs about Multiculturalism and Its Implementation in the Classroom

    ERIC Educational Resources Information Center

    Petty, Lori L.; Narayan, Ratna

    2012-01-01

    The purpose of this qualitative study was to explore secondary science teachers' beliefs about multiculturalism and its implementation in their classrooms. Participants included nine secondary science teachers, with experience ranging from 1 to 15 years of teaching. Data were collected through interviews, using a semi-structured interview protocol…

  12. The Development of Qualitative Classroom Action Research Workshop for In-Service Science Teachers

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2016-01-01

    In-service science teachers in Thailand are mandated to conduct classroom research, which can be quantitative and qualitative research, to improve teaching and learning. Comparing to quantitative research, qualitative research is a research approach that most of the Thai science teachers are not familiar with. This situation impedes science…

  13. Winners and Losers in Single-Sex Science and Mathematics Classrooms.

    ERIC Educational Resources Information Center

    Baker, Dale; Jacobs, Kathy

    This paper discusses the success of single sex science and mathematics education classrooms. Most studies on single sex learning environments come from countries such as Australia, Jamaica, Nigeria, Great Britain, New Zealand, and Thailand, and there is little research on American public schools. This study investigates single sex mathematics and…

  14. Science Achievement of Students in Co-Taught, Inquiry-Based Classrooms

    ERIC Educational Resources Information Center

    Brusca-Vega, Rita; Brown, Kathleen; Yasutake, David

    2011-01-01

    This case investigation followed the progress of middle students with disabilities, their peers, and teachers in co-taught science classrooms where a hands-on, inquiry-based curriculum was used. Students with disabilities (n=21), including learning disabilities, mild intellectual impairment, and mild autism were placed in co-taught classes with…

  15. Problem-Based Learning in the Physical Science Classroom, K-12

    ERIC Educational Resources Information Center

    McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet

    2018-01-01

    "Problem-Based Learning in the Physical Science Classroom, K-12" will help your students truly understand concepts such as motion, energy, and magnetism in true-to-life contexts. The book offers a comprehensive description of why, how, and when to implement problem-based learning (PBL) in your curriculum. Its 14 developmentally…

  16. Science Theatre: Changing South African Students' Intended Behaviour towards HIV AIDS

    ERIC Educational Resources Information Center

    Walker, Graham J.; Stocklmayer, Susan M.; Grant, Will J.

    2013-01-01

    Science centres and other informal learning environments are increasingly becoming venues in which socioscientific issues are presented, sometimes with the aim of influencing attitudes and behaviour. This study investigated the effects of an HIV AIDS science theatre presentation on the behavioural intentions of 697 South African students, a…

  17. The Effects of Student Multiple Intelligence Preference on Integration of Earth Science Concepts and Knowledge within a Middle Grades Science Classroom.

    ERIC Educational Resources Information Center

    Cutshall, Lisa Christine

    This research was conducted in an eastern Tennessee 8th grade science classroom with 99 students participating. The action research project attempted to examine an adolescent science student's integration of science concepts within a project-based setting using the multiple intelligence theory. In an effort to address the national science…

  18. An analysis of science instruction in the fifth-grade science classroom: Investigating activity-based instruction with student-generated discussion

    NASA Astrophysics Data System (ADS)

    Vowell, Julie E.

    The purpose of this study was to determine the extent to which debriefing impacts the level of cognitive understanding among students in the fifth-grade science classroom. This mixed methods study involved two fifth-grade science classrooms (N = 39) in a one month exploration of rocks and minerals. Two fifth-grade science classrooms participated in a unit using identical content, but had different pedagogical orientations. The experimental class was taught using the "Do-Talk-Do-Debrief" instructional method and the control class was taught using the "Do-Talk-Do" instructional method without the "Debrief" (metacognitive component). Research for the quantitative portion of this study was conducted using a pretest-posttest control-group design. The design was used to test the hypothesized relationship between an activity-based instructional method with debriefing and students' achievement. Two intact, equivalent fifth-grade classes were randomly assigned to treatment and control conditions. Prior to the beginning of the study, a researcher-developed pretest was administered to all participants to assess the students' prior knowledge of rocks and minerals. A posttest measure was given to the participants upon conclusion of the unit to measure knowledge and understanding. Following the posttest, the participants did not receive additional instruction over rocks and minerals. A similar posttest was administered to both groups two weeks later as an added measure for retention. A t-test for independent samples was used to examine differences on the pretest between the experimental and control groups. Likewise, a t-test was used to compare the mean scores on the first posttest (achievement). A separate t-test was conducted on the second posttest (retention) and was followed by a Pearson Product Moment Correlation, conducted by group. Research for the qualitative portion of this study involved classroom observations throughout the rock and mineral unit followed by a teacher

  19. A Comparative Analysis of South African Life Sciences and Biology Textbooks for Inclusion of the Nature of Science

    ERIC Educational Resources Information Center

    Ramnarain, Umesh; Padayachee, Keshni

    2015-01-01

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology textbooks that were written…

  20. Students' Perceptions of the Learning Environment in Tertiary Science Classrooms in Myanmar

    ERIC Educational Resources Information Center

    Khine, Myint Swe; Fraser, Barry J.; Afari, Ernest; Oo, Zeya; Kyaw, Thein Thein

    2018-01-01

    We investigated students' perceptions of their science classroom environments with the use of the What Is Happening In this Class? (WIHIC) questionnaire at the university level in Myanmar. The translated questionnaire was administered to 251 students in first-year science classes at a university. Both exploratory factor analysis and confirmatory…

  1. Using Mobile Phones in Support of Student Learning in Secondary Science Inquiry Classrooms

    ERIC Educational Resources Information Center

    Khoo, Elaine; Otrel-Cass, Kathrin

    2017-01-01

    This paper reports on findings from a research project concerned with how electronic networking tools (e-networked tools), such as the Internet, online forums, and mobile technologies, can support authentic science inquiry in junior secondary classrooms. It focuses on three qualitative case studies involving science teachers from two high schools…

  2. Mapping Our City: Learning To Use Spatial Data in the Middle School Science Classroom.

    ERIC Educational Resources Information Center

    McWilliams, Harold; Rooney, Paul

    Mapping Our City is a two-year project in which middle school teachers and students in Boston explore the uses of Geographic Information Systems (GIS) in project-based science, environmental education, and geography. The project is funded by the National Science Foundation and is being field tested in three Boston middle school science classrooms.…

  3. Listening to their voices: Exploring mathematics-science identity development of African American males in an urban school community

    NASA Astrophysics Data System (ADS)

    Wilson, Kimi Leemar

    National data continues to show an underrepresentation of African American males pursuing science, technology, engineering and mathematics (STEM) majors, careers and professions in the United States. Whites and Asian Americans are continuously positioned as the face of STEM education and participation. And while research has provided ways to support mathematics and science learning for African American males, there still remains a gap in understanding how their formed mathematics-science identities in K-12 public schooling influences STEM participation. The research undertaken in this study explores this gap, and uses an integrative identity framework to understand mathematics-science identity development which goes beyond personal identity, and explores the relational, collective and material components of identity. Specifically, this research seeks to answer the following research questions: What are the shared lived experiences that exist between a group of African American male students developing a mathematics-science identity, and how these shared lived experiences shape their mathematics-science identity development? Therefore, by analyzing African American males lived experiences employing an integrative identity framework fosters a greater understanding of how mathematics-science identity is formed in K-12 public schools, which impacts STEM education and participation. The high school aged youth featured in this study consist of four African American males, who live in a moderate size city in California. Data for this study consists of observations, phenomenological interviews, and policy document analysis that took place over six months. Data has been analyzed to describe and interpret the young men's mathematics and science experiences, as revealed in their K-12 public school education. This inquiry sought to make meaning of how African American males experience mathematics and science teaching and learning within K-12 public schooling and how these

  4. Code-Switching in English and Science Classrooms: More than Translation

    ERIC Educational Resources Information Center

    Then, David Chen-On; Ting, Su-Hie

    2011-01-01

    The study examined the use of code-switching by English and science teachers in secondary schools in Malaysia. It focuses on the functions of code-switching in multilingual classrooms where English is the language of instruction, examining in particular the reiterative function of code-switching and its association with translation. Thirty six…

  5. Socializing Respect and Knowledge in a Racially Integrated Science Classroom

    ERIC Educational Resources Information Center

    Solis, Jorge; Kattan, Shlomy; Baquedano-Lopez, Patricia

    2009-01-01

    In this article we examine the socialization of respect in a racially integrated science classroom in Northern California that employed a character education program called Tribes. We focus on the ways scripts derived from this program are enacted during Community Circle activities and how breaches to these scripts and the norms of respectful…

  6. Defining Computational Thinking for Mathematics and Science Classrooms

    NASA Astrophysics Data System (ADS)

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-02-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.

  7. Using critical race theory to analyze science teachers culturally responsive practices

    NASA Astrophysics Data System (ADS)

    Wallace, Tamara; Brand, Brenda R.

    2012-06-01

    Culturally responsive science teaching is using knowledge about the culture and life experiences of students to structure learning that is conducive to their needs. Understanding what teachers need to prepare them to be culturally responsive is a matter of continuous debate. As the focus of multicultural education ventures farther away from its roots, advocating the civil rights of historically oppressed groups, concerns about the gravity of racial inequity on schooling continues. How will this shift in focus influence teachers' capacity to accommodate students' needs resulting from racial inequities in this society, particularly African American students? What knowledge is essential to their effectiveness? This qualitative study examined the instructional practices of two effective middle school science teachers deemed culturally responsive by their administrator on the basis of classroom observations, students' responses and standardized assessment results. Both teachers' classrooms consisted primarily of African American students. Grounded theory was used to analyze the teachers' beliefs and practices in order to identify existing commonalties. Critical race theory was used to identify whether there was any influence of the students' racial identities on the teachers' beliefs and practices. The analysis reveals that the teachers' beliefs and practices were informed by their critical awareness of social constraints imposed upon their African American students' identities. These findings communicate the significance of sociocultural awareness to informing the teachers' instruction, as well as their strategies for managing the varying dynamics occurring in their classrooms. It can be deduced from the findings that an understanding of racial inequities is crucial to the development of sociocultural awareness, and is the foundation for the culturally responsive dispositions and practices of these middle school science teachers.

  8. Sustaining inquiry-based teaching methods in the middle school science classroom

    NASA Astrophysics Data System (ADS)

    Murphy, Amy Fowler

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.

  9. Teacher beliefs in contemporary science education goals and classroom practice: The case of Souhegan High School

    NASA Astrophysics Data System (ADS)

    Mueller, Jennifer Creed

    The central research question for this study was: To what extent is a teacher's purported beliefs in contemporary science education goals embedded in his/her routine classroom practice? Two sub-research questions were necessary to investigate this central research question: (1) To what degree do Souhegan High School science teachers believe in the contemporary goals of science education? (2) What is a Souhegan High School science teacher's degree of conviction to his/her beliefs of particular goals? The goal of this study was to develop grounded hypotheses/research questions. Given the stated research questions, a case study design most appropriately met the intended purpose of this study. The study was initiated with the science teachers at Souhegan High School taking the survey of Contemporary Goals of Science Education (Zeidler & Duffy, 1994). Following analysis of the group's responses, two equal ranges of scores were established. In addition, a weighted mean provided data on a teacher's degree of conviction to his/her beliefs of particular goals. Three teachers were invited to continue with the study, each range represented. Classroom observations provided data in the next phase of inquiry. Samples of assessment tasks were also collected as data. Following classroom observations, interviews were conducted. These interviews were semi-structured, with the use of Newmann, Secada, and Wehlage (1995), Standards and Scoring Criteria for Classroom Instruction and Assessment Tasks as a vehicle for teacher reflection. Data collection and analyses occurred simultaneously as characterized by the constant comparative method in accordance with grounded theory (Glaser & Strauss, 1967). Spradley's Developmental Research Sequence (1980) provided a framework and process for implementing grounded theory which was modified to meet the goals of this study. Analysis of the data from the Survey of Contemporary Goals of Science Education showed strong preference for the contemporary

  10. The Earth Science for Tomorrows Classroom

    NASA Astrophysics Data System (ADS)

    Shanskiy, Merrit

    2015-04-01

    The Earth sciences comprises many fascinating topics that is teached to different age level pupils/students in order to bring hard core science closer to their daily life. With developing possibilities in IT, multimedia overall electronic sector the teachers/lecturers have continuous possibilities to accomplish novel approaches and utilize new ideas to make science more interesting for students in all ages. Emerging, from personal experiences, the teaching of our surrounding Environment can be very enjoyable. In our everyday life the SOIL remains invisible. The soil is covered by plant cover which makes the topic somewhat in distant that is not "visible" to an eye and its importance is underestimated. In other hand, the SOIL is valuable primary resource for food production and basis of life for healthy environment. From several studies have found that because its complications, SOIL related topics are not very often chosen topic for course or diploma works by students. The lower-school students are very open to environmental topics accordingly to the grades. Here, the good results can be obtained through complimentary materials creation, like story telling and drawing books and puzzles. The middle/ and upper/school students will experience "real science" being able to learn what the science is about which often can play a important role on making choices for future curriculum completion at university level. Current presentation shares the ideas of selected methods that had showed successful results on different Earth Science topics teaching (biodiversity, growing substrates, green house gas emissions). For some ideas the presentation introduces also the further developmental possibilities to be used in teaching at Tomorrows Classroom.

  11. Heating up the science classroom through global warming: An investigation of argument in earth system science education

    NASA Astrophysics Data System (ADS)

    Schweizer, Diane Mary

    This research investigated how the use of argument within an earth system science perspective offers potential opportunities for students to develop skills of scientific reasoning. Earth system science views Earth as a synergistic system governed by complex interdependencies between physical and biological spheres. Earth system science presents familiar and compelling societal problems about Earth's environment thereby providing a highly motivational vehicle for engaging students in science. Using global warming as an application of earth system science, my research investigated how middle school and undergraduate students use scientific evidence when constructing and assessing arguments. This dissertation includes three related research studies. The first study took in place in three seventh grade science classrooms and investigated student engagement in a global warming debate. This study illustrated students used evidence to support their central argument; to negate the central argument of the opposing side; to present challenges to the opposing side; and to raise new questions. The second research study is a comparative study and investigated how other students under different instructional settings constructed their arguments on the cause of global warming from the same evidence. This study took place in two seventh grade science classrooms. This study demonstrated that when constructing personal arguments on global warming, students developed an earth system perspective as they considered and integrated different pieces of evidence. Students participating in debate where given a particular view to defend and focused on evidence matching this view, thereby displaying singular views of the cause of global warming. The third research study investigated students abilities to scientifically assess arguments. By analyzing students' written evaluations of arguments on the global climate presented during oral debates, this study demonstrated that undergraduates focus

  12. The third space: The use of self-study to examine the culture of a science classroom

    NASA Astrophysics Data System (ADS)

    Magee, Dashia M.

    Science educators are in the position to create bridges between their students and the world of science (Aikenhead, 1996, 1999). This connection has often been described as the third space (Bhabha, 1994; Moje, Collazo, Carrillo, & Marx, 2001; Wallace, 2004), which is represented as a combination or a meeting of the students' world and the world of science. In this study, I examined my role in creating the third space through the use of self-study. Self-study is a form of research, educators use to understand their practice (Austin & Senese, 2004; Loughran, 2004; Northfield & Loughran, 1996). It is a means of describing, analyzing, and interpreting a teacher's actions within his or her classroom (Tidwell, 2002). The focal point of this self-study is to understand my actions found within my past and present teaching experiences and the underlying beliefs that are expressed through those actions. In this self-study, I collected data from my life history, classroom observations, and member check interview. My life history described my influences that shaped my philosophy of teaching and learning, while the classroom observations provided a means of understanding my interactions with the science curriculum and my English Language Learner (ELL) students. And finally, a member check focus group interview occurred to confirm the results occurring in the classroom observations. Once the data were collected, I used grounded theory methods to analyze my results and answer the research questions. This self-study became the means of exploring my philosophy of teaching and learning and my teaching practices as they occurred in an ELL science classroom. I examined my own practice through a comparison between my past experiences and my current teaching situation and through this exploration, I identified my actions and the beliefs associated with those actions as they informed my teaching practices.

  13. The relationship between science classroom facility conditions and ninth grade students' attitudes toward science

    NASA Astrophysics Data System (ADS)

    Ford, Angela Y.

    Over half of the school facilities in America are in poor condition. Unsatisfactory school facilities have a negative impact on teaching and learning. The purpose of this correlational study was to identify the relationship between high school science teachers' perceptions of the school science environment (instructional equipment, demonstration equipment, and physical facilities) and ninth grade students' attitudes about science through their expressed enjoyment of science, importance of time spent on science, and boredom with science. A sample of 11,523 cases was extracted, after a process of data mining, from a databank of over 24,000 nationally representative ninth graders located throughout the United States. The instrument used to survey these students was part of the High School Longitudinal Study of 2009 (HSLS:2009). The research design was multiple linear regression. The results showed a significant relationship between the science classroom conditions and students' attitudes. Demonstration equipment and physical facilities were the best predictors of effects on students' attitudes. Conclusions based on this study and recommendations for future research are made.

  14. NITARP: Bridging the Gap Between the Traditional Science Classroom and Authentic Research

    NASA Astrophysics Data System (ADS)

    Stalnaker, Olivia K.; Evans, Sam; Rutherford, Thomas; Taylor, John; Rebull, Luisa

    2018-01-01

    In this poster, the differences between what occurs in the traditional secondary science classroom and what happens in the actual research world is examined. Secondary classroom teachers generally have limited, if any, research experience beyond what is presented through their undergraduate college lab coursework. A disparity exists between classroom laboratory work and professional research. Opportunities like NITARP provide research elements that bridge this gap. NITARP teams are in a unique situation, joining a small team working alongside Caltech researchers on cutting edge investigations in astrophysics. In this poster it is shown how the NITARP program provides key components and experiences to expand the skill sets that teachers bring to their classrooms, bridging the gap between the typical secondary classroom and the world of the professional researcher. The NASA/IPAC program immerses participating teachers into a year-long training experience via online and face-to-face learning that translates into enhanced instruction at the secondary level. This work was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  15. Understanding Teaching or Teaching for Understanding: Alternative Frameworks for Science Classrooms.

    ERIC Educational Resources Information Center

    Wildy, Helen; Wallace, John

    1995-01-01

    Describes the findings of a study that involved exploring the classroom practices of an experienced physics teacher to enable researchers to reexamine assumptions about good teaching. Asserts that a broader view of good science teaching is needed than that proposed by the constructivist literature. (ZWH)

  16. Designing for students' science learning using argumentation and classroom debate

    NASA Astrophysics Data System (ADS)

    Bell, Philip Laverne

    1998-12-01

    This research investigates how to design and introduce an educational innovation into a classroom setting to support learning. The research yields cognitive design principles for instruction involving scientific argumentation and debate. Specifically, eighth-grade students used a computer learning environment to construct scientific arguments and to participate in a classroom debate. The instruction was designed to help students integrate their science understanding by debating: How far does light go, does light die out over distance or go forever until absorbed? This research explores the tension between focusing students' conceptual change on specific scientific phenomena and their development of integrated understanding. I focus on the importance of connecting students' everyday experiences and intuitions to their science learning. The work reported here characterizes how students see the world through a filter of their own understanding. It explores how individual and social mechanisms in instruction support students as they expand the range of ideas under consideration and distinguish between these ideas using scientific criteria. Instruction supported students as they engaged in argumentation and debate on a set of multimedia evidence items from the World-Wide-Web. An argument editor called SenseMaker was designed and studied with the intent of making individual and group thinking visible during instruction. Over multiple classroom trials, different student cohorts were increasingly supported in scientific argumentation involving systematic coordination of evidence with theoretical ideas about light. Students' knowledge representations were used as mediating "learning artifacts" during classroom debate. Two argumentation conditions were investigated. The Full Scope group prepared to defend either theoretical position in the debate. These students created arguments that included more theoretical conjectures and made more conceptual progress in understanding

  17. Creating a Pipeline for African American Computing Science Faculty: An Innovative Faculty/Research Mentoring Program Model

    ERIC Educational Resources Information Center

    Charleston, LaVar J.; Gilbert, Juan E.; Escobar, Barbara; Jackson, Jerlando F. L.

    2014-01-01

    African Americans represent 1.3% of all computing sciences faculty in PhD-granting departments, underscoring the severe underrepresentation of Black/African American tenure-track faculty in computing (CRA, 2012). The Future Faculty/Research Scientist Mentoring (FFRM) program, funded by the National Science Foundation, was found to be an effective…

  18. Elementary Students Using a Tablet-Based Note-Taking Application in the Science Classroom

    ERIC Educational Resources Information Center

    Paek, Seungoh; Fulton, Lori A.

    2016-01-01

    This exploratory study investigates the potential of a tablet-based note-taking application (TbNA) to serve as a digital notebook in support of students' classroom science practices. An elementary teacher (Grades 4-5) from a public charter school integrated a TbNA into her science class for one semester while participating in professional…

  19. The nanny in the schoolhouse: the role of femme-Caribbean identity in attaining success in urban science classrooms

    NASA Astrophysics Data System (ADS)

    Grimes, Nicole K.

    2013-06-01

    A growing body of teacher identity-based research has begun to embrace that the development of self-understanding about being a teacher is critical to learning how to teach. Construction of a professional teacher identity requires much more beyond mere content, skills and a foundational pedagogy. It also includes an intersection of the personal and professional self, which gives way to the emergence of multiple identities in the classroom. An educator's gender, nationality, language and interests among other tenets all permeate the classroom field and coexist alongside the professional role identity. This paper aims to use narrative as a way to discuss how science educators can mediate holding several identities in the classroom in order to create an environment characterized by successful teaching and learning. Drawing from an array of sociocultural theoretical perspectives, complementary constructs of identity by Jonathan Turner (Face to face: toward a sociological theory of interpersonal behavior. Stanford University Press, Stanford, CA, 2002) and Amartya Sen (Identity and violence: the illusion of destiny. W. W. Norton, New York, 2006), George Lakoff's (Metaphors we live by. University of Chicago Press, Chicago, 1980) work on metonymy, and David Bloome's (2005) theorization of the power of caring relationships, I explore the ways in which my Black female Caribbean identity has transformed the science classroom field and created positive resonance for some of my privileged White students who have Caribbean caretakers at home. To begin, I unpack how Afro-Caribbean immigration to urban centers in the United States continues to produce childcare occupational opportunities in places like New York City. Being a first generation Trinidadian immigrant, my many identities have structured my science teaching praxis and consequently transformed the way my students learn science. A significant part of this paper is a reflexive account of experiences (primarily dialogue

  20. Initiating New Science Partnerships in Rural Education: STEM Graduate Students Bring Current Research into 7th-12th Grade Science Classrooms

    NASA Astrophysics Data System (ADS)

    Radencic, S.; Dawkins, K. S.; Jackson, B. S.; Walker, R. M.; Schmitz, D.; Pierce, D.; Funderburk, W. K.; McNeal, K.

    2014-12-01

    Initiating New Science Partnerships in Rural Education (INSPIRE), a NSF Graduate K-12 (GK-12) program at Mississippi State University, pairs STEM graduate students with local K-12 teachers to bring new inquiry and technology experiences to the classroom (www.gk12.msstate.edu). The graduate fellows prepare lessons for the students incorporating different facets of their research. The lessons vary in degree of difficulty according to the content covered in the classroom and the grade level of the students. The focus of each lesson is directed toward the individual research of the STEM graduate student using inquiry based designed activities. Scientific instruments that are used in STEM research (e.g. SkyMaster weather stations, GPS, portable SEM, Inclinometer, Soil Moisture Probe, Google Earth, ArcGIS Explorer) are also utilized by K-12 students in the activities developed by the graduate students. Creativity and problem solving skills are sparked by curiosity which leads to the discovery of new information. The graduate students work to enhance their ability to effectively communicate their research to members of society through the creation of research linked classroom activities, enabling the 7-12th grade students to connect basic processes used in STEM research with the required state and national science standards. The graduate students become respected role models for the high school students because of their STEM knowledge base and their passion for their research. Sharing enthusiasm for their chosen STEM field, as well as the application techniques to discover new ideas, the graduate students stimulate the interests of the classroom students and model authentic science process skills while highlighting the relevance of STEM research to K-12 student lives. The measurement of the student attitudes about science is gathered from pre and post interest surveys for the past four years. This partnership allows students, teachers, graduate students, and the public to

  1. Teaching about the Epistemology of Science in Upper Secondary Schools: An Analysis of Teachers' Classroom Talk

    ERIC Educational Resources Information Center

    Ryder, Jim; Leach, John

    2008-01-01

    We begin by drawing upon the available literature to identify four characteristics of teacher talk likely to support student learning about the epistemology of science: making appropriate statements about the epistemology of science in the classroom, linking the epistemology of science with specific science concepts, stating and justifying…

  2. Reversing the standard direction: Science emerging from the lives of African American students

    NASA Astrophysics Data System (ADS)

    Seiler, Gale

    2001-11-01

    Recognizing the persistent science achievement gap between inner-city African American students and students from mainstream, White society, this article suggests that the imposition of external standards on inner-city schools will do little to ameliorate this gap because such an approach fails to address the significance of the social and cultural lives of the students. Instead, it is suggested that the use of critical ethnographic research would enable educators to learn from the students how science education can change to meet their aims and interests. The article includes a report on how a science lunch group in an inner-city high school forged a community based on respect and caring and how this community afforded African American male teens the opportunity to participate in science in new ways.

  3. Science, School Science, and School: Looking at Science Learning in Classrooms from the Perspective of Basil Bernstein's Theory of the Structure of Pedagogic Discourse

    NASA Astrophysics Data System (ADS)

    Campbell, Ralph Ian

    This analytic paper asks one question: How does Basil Bernstein's concept of the structure of pedagogic discourse (SPD) contribute to our understanding of the role of teacher-student interactions in science learning in the classroom? Applying Bernstein's theory of the SPD to an analysis of current research in science education explores the structure of Bernstein's theory as a tool for understanding the challenges and questions related to current concerns about classroom science learning. This analysis applies Bernstein's theory of the SPD as a heuristic through a secondary reading of selected research from the past fifteen years and prompts further consideration of Bernstein's ideas. This leads to a reevaluation of the categories of regulative discourse (RD) and instructional discourse (ID) as structures that frame learning environments and the dynamics of student-teacher interactions, which determine learning outcomes. The SPD becomes a simple but flexible heuristic, offering a useful deconstruction of teaching and learning dynamics in three different classroom environments. Understanding the framing interactions of RD and ID provides perspectives on the balance of agency and expectation, suggesting some causal explanations for the student learning outcomes described by the authors. On one hand, forms of open inquiry and student-driven instruction may lack the structure to ensure the appropriation of desired forms of scientific thinking. On the other hand, well-designed pathways towards the understanding of fundamental concepts in science may lack the forms of more open-ended inquiry that develop transferable understanding. Important ideas emerge about the complex dynamics of learning communities, the materials of learning, and the dynamic role of the teacher as facilitator and expert. Simultaneously, the SPD as a flexible heuristic proves ambiguous, prompting a reevaluation of Bernstein's organization of RD and ID. The hierarchical structure of pedagogic

  4. Reform in Undergraduate Science, Technology, Engineering, and Mathematics: The Classroom Context

    ERIC Educational Resources Information Center

    Stage, Frances K.; Kinzie, Jillian

    2009-01-01

    This article reports the results of a series of site visits examining modifications to science, technology, engineering, and mathematics (STEM) teaching and learning based on reform on three differing campuses. Innovations in stem classrooms included collaborative approaches to learning; incorporation of active learning, authentic contexts, peer…

  5. 4th Annual Conference for African-American Researchers in the Mathematical Sciences (CAARMS4). Preliminary Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tapia, Richard

    1998-06-01

    In June, The Center for Research on Parallel Computation (CRPC), an NSF-funded Science and Technology Center, hosted the 4th Annual Conference for African-American Reserachers in the Mathematical Sciences (CAARMS4) at Rice University. The main goal of this conference was to highlight current work by African-American researchers and graduate students in mathematics. This conference strengthened the mathematical sciences by encouraging the increased participation of African-American and underrepresented groups into the field, facilitating working relationships between them and helping to cultivate their careers. In addition to the talks there was a graduate student poster session and tutorials on topics in mathematics andmore » computer science. These talks, presentations, and discussions brought a broader perspective to the critical issues involving minority participation in mathematics.« less

  6. A Longitudinal Study of Implementing Reality Pedagogy in an Urban Science Classroom: Effects, Challenges, and Recommendations for Science Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Borges, Sheila Ivelisse

    Statistics indicate that students who reside in forgotten places do not engage in science-related careers. This is problematic because we are not tapping into diverse talent that could very well make scientific strides and because there is a moral obligation for equity as discussed in Science for all (AAAS, 1989). Research suggests that one of the reasons for this disparity is that students feel alienated from science early on in their K--12 education due to their inability to connect culturally with their teachers (Tobin, 2001). Urban students share an urban culture, a way of knowing and being that is separate from that of the majority of the teacher workforce whom have not experienced the nuances of urban culture. These teachers have challenges when teaching in urban classrooms and have a myriad of difficulties such as classroom management, limited access to experienced science colleagues and limited resources to teach effectively. This leads them to leaving the teaching profession affecting already high teacher attrition rates in urban areas (Ingersol, 2001). In order to address these issues a culturally relevant pedagogy, called reality pedagogy (Emdin, 2011), was implemented in an urban science classroom using a bricolage (Denzin & Lincoln, 2005) of different theories such as social capital (Bourdieu, 1986) and critical race theory (Ladson-Billings & Tate, 1995), along with reality pedagogy to construct a qualitative sociocultural lens. Reality pedagogy has five tools, which are cogenerative dialogues, coteaching, cosmopolitanism, context, and content. In this longitudinal critical ethnography a science teacher in an alternative teaching certification program was supported for two years as she implemented the tools of reality pedagogy with her urban students. Findings revealed that the science teacher enacted four racial microaggressions against her students, which negatively affected the teacher-student relationship and science teaching and learning. As the

  7. Student perception of writing in the science classroom

    NASA Astrophysics Data System (ADS)

    Deakin, Kathleen J.

    This study examines factors that shape four student's perceptions of writing tasks in their science classroom. This qualitative retrospective interview study focuses on four students concurrently enrolled in honors English and honors biology. This research employs a phenomenological perspective on writing, examining whether the writing strategies students acquire in the Language Arts classroom manifest in the content areas. I also adopt Bandura's theoretical perspective on self-efficacy as well as Hillock's notion of writing as inquiry and meaning making. This study concludes that students need ample opportunity to generate content and language that will help reveal a purpose and genre for writing tasks in the content areas. Although all four students approached the writing tasks differently in this study, the tasks set before them were opportunities for replication rather than inquiry Through the case studies of four students as well as current research on content writing, this project works to inform all content area teachers about student perceptions of writing in the content areas.

  8. Racial identification, knowledge, and the politics of everyday life in an Arizona science classroom: A linguistic ethnography

    NASA Astrophysics Data System (ADS)

    O'Connor, Brendan Harold

    This dissertation is a linguistic ethnography of a high school Astronomy/Oceanography classroom in southern Arizona, where an exceptionally promising, novice, white science teacher and mostly Mexican-American students confronted issues of identity and difference through interactions both related and unrelated to science learning. Through close analysis of video-recorded, naturally-occurring interaction and rich ethnographic description, the study documents how a teacher and students accomplished everyday classroom life, built caring relationships, and pursued scientific inquiry at a time and in a place where nationally- and locally-circulating discourses about immigration and race infused even routine interactions with tension and uncertainty. In their talk, students appropriated elements of racializing discourses, but also used language creatively to "speak back" to commonsense notions about Mexicanness. Careful examination of science-related interactions reveals the participants' negotiation of multiple, intersecting forms of citizenship (i.e., cultural and scientific citizenship) in the classroom, through multidirectional processes of language socialization in which students and the teacher regularly exchanged expert and novice roles. This study offers insight into the continuing relevance of racial, cultural, and linguistic identity to students' experiences of schooling, and sheds new light on classroom discourse, teacher-student relationships, and dimensions of citizenship in science learning, with important implications for teacher preparation and practice.

  9. The Southern African Regional Science Initiative (SAFARI 2000). Dry-Season Campaign: An Overview

    NASA Technical Reports Server (NTRS)

    Swap, R. J.; Annegarn, H. J.; Suttles, J. T.; Haywood, J.; Hely, C.; Hobbs, P. V.; Holben, B. N.; Ji, J.; King, M. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The Southern African Regional Science Initiative (SAFARI 2000) is an international science project investigating the southern African earth-atmosphere-human system. The experiment was conducted over a two-year period March 1999 - March 2001. The dry season field campaign (August-Steptember 2000) was the most intensive activity and involving over 200 scientists from 18 different nations. The main objectives of this campaign were to characterize and quantify the biogenic, pyrogenic and anthropogenic aerosol and trace gas emissions and their transport and transformations in the atmosphere and to validate the NASA Earth Observing System (EOS) satellite Terra within a scientific context. Five aircraft, namely two South African Weather Service aircraft, University of Washington CV-580, the UK Meteorological Office C-130 and the NASA ER-2, with different altitude capabilities, participated in the campaign. Additional airborne sampling of southern African air masses that had moved downwind of the subcontinent was conducted by the CSIRO over Australia. Multiple observations were taken in various sectors for a variety of synoptic conditions. Flight missions were designed to maximize synchronous over-flights of the NASA TERRA satellite platform, above regional ground validation and science targets. Numerous smaller-scale ground validation activities took place throughout the region during the campaign period.

  10. The Distinction between Experimental and Historical Sciences as a Framework for Improving Classroom Inquiry

    ERIC Educational Resources Information Center

    Gray, Ron

    2014-01-01

    Inquiry experiences in secondary science classrooms are heavily weighted toward experimentation. We know, however, that many fields of science (e.g., evolutionary biology, cosmology, and paleontology), while they may utilize experiments, are not justified by experimental methodologies. With the focus on experimentation in schools, these fields of…

  11. The effects of professional development related to classroom assessment on student achievement in science

    NASA Astrophysics Data System (ADS)

    Mazzie, Dawn Danielle

    This study investigated the relationship between students' standardized test scores in science and (a) increases in teacher assessment literacy and (b) teacher participation in a Teacher Quality Research (TQR) project on classroom assessment. The samples for these studies were teachers from underperforming schools who volunteered to take part in a professional development program in classroom assessment. School groups were randomly assigned to the treatment group. For Study 1, teachers in the treatment received professional development in classroom assessment from a trained assessment coach. Teachers in the control received no professional development. For Study 2, teachers in Treatment 1 received professional development in classroom assessment from a trained assessment coach and teachers in Treatment 2 received professional development in classroom assessment from a facilitator with one day of training. Teachers in both groups completed a measure of assessment literacy, the Teacher Quality Research Test of Assessment Literacy Skills (TQR_TALS), prior to the beginning and then again at the conclusion of the four month professional development program. A hierarchical linear model (HLM) analysis was conducted to determine the relationship between students' standardized test scores in science and (a) increases in teacher assessment literacy and (b) teacher TQR status. Based upon these analyses, the professional development program increased teachers' assessment literacy skills; however, the professional development had no significant impact on students' achievement.

  12. Classroom-Based Science Research at the Introductory Level: Changes in Career Choices and Attitude

    PubMed Central

    Harrison, Melinda; Dunbar, David; Ratmansky, Lisa; Lopatto, David

    2011-01-01

    Our study, focused on classroom-based research at the introductory level and using the Phage Genomics course as the model, shows evidence that first-year students doing research learn the process of science as well as how scientists practice science. A preliminary but notable outcome of our work, which is based on a small sample, is the change in student interest in considering different career choices such as graduate education and science in general. This is particularly notable, as previous research has described research internships as clarifying or confirming rather than changing undergraduates’ decisions to pursue graduate education. We hypothesize that our results differ from previous studies of the impact of engaging in research because the students in our study are still in the early stages of their undergraduate careers. Our work builds upon the classroom-based research movement and should be viewed as encouraging to the Vision and Change in Undergraduate Biology Education movement advocated by the American Association for the Advancement of Science, the National Science Foundation, and other undergraduate education stakeholders. PMID:21885824

  13. Classroom-based science research at the introductory level: changes in career choices and attitude.

    PubMed

    Harrison, Melinda; Dunbar, David; Ratmansky, Lisa; Boyd, Kimberly; Lopatto, David

    2011-01-01

    Our study, focused on classroom-based research at the introductory level and using the Phage Genomics course as the model, shows evidence that first-year students doing research learn the process of science as well as how scientists practice science. A preliminary but notable outcome of our work, which is based on a small sample, is the change in student interest in considering different career choices such as graduate education and science in general. This is particularly notable, as previous research has described research internships as clarifying or confirming rather than changing undergraduates' decisions to pursue graduate education. We hypothesize that our results differ from previous studies of the impact of engaging in research because the students in our study are still in the early stages of their undergraduate careers. Our work builds upon the classroom-based research movement and should be viewed as encouraging to the Vision and Change in Undergraduate Biology Education movement advocated by the American Association for the Advancement of Science, the National Science Foundation, and other undergraduate education stakeholders.

  14. Classroom climate and science-related attitudes of junior high school students in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Bao-Shan; Crawley, Frank E., III

    Differences in classroom climate and science related attitudes were investigated among junior high school science classes and students in Taiwan. The sample consisted of 1,269 students enrolled in 40 science classes distributed equally among ten junior high schools, five metropolitan and five rural. Classes were further classified according to sex (21 boys and 19 girls classes) and ability (19 high and 21 low ability classes). Using the Learning Environment Inventory (Anderson, Walberg, & Fraser, 1982) to measure climate, science classes in metropolitan schools, more than rural, were found to be characterized by Speed, Friction, Favoritism, Difficulty, Cliqueness, and Competitiveness. No differences were found in the classroom climates of classes in which students were grouped according to sex or ability. Using the Test of Science-Related Attitudes (Fraser, 1981), students in science classes in metropolitan schools, in contrast to rural, expressed more positive attitudes toward the Social Implications of Science, Adoption of Scientific Attitudes, and Attitude to Scientific Inquiry. Boys more than girls recorded high scores on Leisure Interest in Science and Career Interest in Science. High ability students were found to have higher scores on Attitude to Scientific Inquiry than did low ability students. When examining the relationship between the 15 subscale scores of the LEI and the seven subscale scores of the TOSRA for the 40 classes, only 9 out of 105 correlations proved to be significant. Most differences in climate, attitude, and their interactions were attributed to school location rather than to student characteristics.

  15. A cognitive framework to inform the design of professional development supporting teachers' classroom assessment of inquiry-based science

    NASA Astrophysics Data System (ADS)

    Matese, Gabrielle

    Inquiry-based science places new demands on teachers for assessing students' growth, both of deep conceptual understanding as well as developing inquiry skills. In addition, new ideas about classroom assessment, such as the importance of formative assessment, are gaining currency. While we have ideas about what classroom assessment consistent with inquiry-based pedagogy might look like, and why it is necessary, we have little understanding of what it takes to implement it. That teachers face a challenge in doing so is well-documented. Researchers have noted that teachers attempting changes in classroom assessment often bring with them incompatible beliefs, knowledge, and practices. However, noting general incompatibility is insufficient to support addressing these issues through professional development. In response to this need, I initiated a research project to identify and describe in more detail the categories of beliefs, knowledge and skills that play an important role in inquiry-based science assessment practices. I created an assessment framework outlining specific categories of beliefs, knowledge, and skills affecting particular classroom assessment practices. I then used the framework to examine teachers' classroom assessment practices and to create comparative cases between three middle-school science teachers, highlighting how the different cognitive factors affect four particular assessment practices. The comparative cases demonstrate the framework's utility for analyzing and explicating teacher assessment practices. As a tool for analyzing and understanding teacher practice, the framework supports the design of professional development. To demonstrate the value of the framework, I draw on the comparative cases to identify implications for the design of professional development to support teachers' classroom assessment of inquiry-based science. In this dissertation I provide a brief overview of the framework and its rationale, present an example of the

  16. The application of language-game theory to the analysis of science learning: Developing an interpretive classroom-level learning framework

    NASA Astrophysics Data System (ADS)

    Ahmadibasir, Mohammad

    In this study an interpretive learning framework that aims to measure learning on the classroom level is introduced. In order to develop and evaluate the value of the framework, a theoretical/empirical study is designed. The researcher attempted to illustrate how the proposed framework provides insights on the problem of classroom-level learning. The framework is developed by construction of connections between the current literature on science learning and Wittgenstein's language-game theory. In this framework learning is defined as change of classroom language-game or discourse. In the proposed framework, learning is measured by analysis of classroom discourse. The empirical explanation power of the framework is evaluated by applying the framework in the analysis of learning in a fifth-grade science classroom. The researcher attempted to analyze how students' colloquial discourse changed to a discourse that bears more resemblance to science discourse. The results of the empirical part of the investigation are presented in three parts: first, the gap between what students did and what they were supposed to do was reported. The gap showed that students during the classroom inquiry wanted to do simple comparisons by direct observation, while they were supposed to do tool-assisted observation and procedural manipulation for a complete comparison. Second, it was illustrated that the first attempt to connect the colloquial to science discourse was done by what was immediately intelligible for students and then the teacher negotiated with students in order to help them to connect the old to the new language-game more purposefully. The researcher suggested that these two events in the science classroom are critical in discourse change. Third, it was illustrated that through the academic year, the way that students did the act of comparison was improved and by the end of the year more accurate causal inferences were observable in classroom communication. At the end of the

  17. Promoting Student Interest in Science: The Perspectives of Exemplary African American Teachers

    ERIC Educational Resources Information Center

    Xu, Jianzhong; Coats, Linda T.; Davidson, Mary L.

    2012-01-01

    The authors of this article argue both the urgency and the promise of establishing a constructive conversation among different bodies of research, including science interest, sociocultural studies in science education, and culturally relevant teaching. With the instructional practices of eight exemplary African American elementary teachers serving…

  18. Achievement Emotions as Predictors of High School Science Success Among African-American and European American Students

    NASA Astrophysics Data System (ADS)

    Bowe, Marilyn Louise Simmons

    The literature includes few studies of the interrelations of achievement goals and achievement emotions with respect to minority students and science achievement. The objective of this study was to test the control-value theory (CVT) of achievement emotions to determine if the eight discrete achievement emotions would be predictive of test scores on the High School Graduation Test (GHSGT)-Science for African-American compared to European-American science students. Convenience cluster sampling was employed to select 160 students who were all juniors in the same public high school at the time that they took the GHSGT-Science. The central research question for this study aimed to uncover whether any of the eight achievement emotions identified in CVT would contribute significantly to the predictability of science achievement as measured by GHSGT-Science scores. Data were collected using a nonexperimental, cross sectional design survey. Data were analyzed using a hierarchal, forced entry, multiple regression analysis. Key results indicated that the eight achievement emotions were predictive of GHSGT-Science score outcomes. Positive social change at the individual level could reflect a boost in confidence for African American science students and help decrease the achievement gap in science, technology, engineering, and mathematics (STEM) endeavors between European Americans and African-American students. Educators may consider the importance of achievement emotions in science outcomes by including social emotional learning (SEL) as a part of the regular science curriculum. Future researchers should repeat the study in a school district where the population is available to support the desired cluster sample of equal parts European Americans to African Americans and male to female students.

  19. The impact of professional development on classroom teaching for science educators participating in a long term community of practice

    NASA Astrophysics Data System (ADS)

    Jensen, Aaron C.

    Efforts to modify and improve science education in the United States have seen minimal success (Crawford, 2000; Borko & Putman, 1996; Puntambekar, Stylianou & Goldstein, 2007; Lustick, 2011). One important reason for this is the professional development that teachers go through in order to learn about and apply these new ideas is generally of poor quality and structured incorrectly for long-term changes in the classroom (Little, 1993; Fullen, 1996; Porter, 2000; Jeanpierre, Oberhauser, & Freeman, 2005). This grounded theory study explores a science community of practice and how the professional development achieved through participation in that community has effected the instruction of the teachers involved, specifically the incorporation of researched based effective science teaching instructional strategies. This study uses personal reflection papers written by the participants, interviews, and classroom observations to understand the influence that the science community of practice has had on the participants. Results indicate that participation in this science community of practice has significant impact on the teachers involved. Participants gained greater understanding of science content knowledge, incorporated effective science instructional strategies into their classroom, and were able to practice both content knowledge and strategies in a non-threatening environment thus gaining a greater understanding of how to apply them in the classrooms. These findings motivate continued research in the role that communities of practice may play in teacher professional develop and the effectiveness of quality professional development in attaining long-term, sustained improvement in science education.

  20. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    ERIC Educational Resources Information Center

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  1. Capturing Urban Middle School Students' Voices on the Use of Science Inquiry in Their Classrooms

    ERIC Educational Resources Information Center

    Osisioma, Irene U.; Onyia, Chidiebere R.

    2009-01-01

    The present study seeks to explore middle school students' perception of the kind of science instruction going on in their classrooms and its relevance to their daily lives outside the classroom. Data were collected using a five point Likert type survey instrument that was administered to 262 middle school (Grades 6, 7 & 8) students in six…

  2. Teacher argumentation in the secondary science classroom: Images of two modes of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Gray, Ron E.

    The purpose of this exploratory study was to examine scientific arguments constructed by secondary science teachers during instruction. The analysis focused on how arguments constructed by teachers differed based on the mode of inquiry underlying the topic. Specifically, how did the structure and content of arguments differ between experimentally and historically based topics? In addition, what factors mediate these differences? Four highly experienced high school science teachers were observed daily during instructional units for both experimental and historical science topics. Data sources include classroom observations, field notes, reflective memos, classroom artifacts, a nature of science survey, and teacher interviews. The arguments were analyzed for structure and content using Toulmin's argumentation pattern and Walton's schemes for presumptive reasoning revealing specific patterns of use between the two modes of inquiry. Interview data was analyzed to determine possible factors mediating these patterns. The results of this study reveal that highly experienced teachers present arguments to their students that, while simple in structure, reveal authentic images of science based on experimental and historical modes of inquiry. Structural analysis of the data revealed a common trend toward a greater amount of scientific data used to evidence knowledge claims in the historical science units. The presumptive reasoning analysis revealed that, while some presumptive reasoning schemes remained stable across the two units (e.g. 'causal inferences' and 'sign' schemes), others revealed different patterns of use including the 'analogy', 'evidence to hypothesis', 'example', and 'expert opinion' schemes. Finally, examination of the interview and survey data revealed five specific factors mediating the arguments constructed by the teachers: view of the nature of science, nature of the topic, teacher personal factors, view of students, and pedagogical decisions. These

  3. Classroom Environment in the Implementation of an Innovative Curriculum Project in Science Education.

    ERIC Educational Resources Information Center

    Suarez, Mercedes; Pias, Rosa; Membiela, Pedro; Dapia, Dolores

    1998-01-01

    Analyzes the perceptions of students, teachers, and external observers in order to study the influence of classroom environment on the implementation of an innovative project in science education. Contains 33 references. (DDR)

  4. "Models Of" versus "Models For": Toward an Agent-Based Conception of Modeling in the Science Classroom

    ERIC Educational Resources Information Center

    Gouvea, Julia; Passmore, Cynthia

    2017-01-01

    The inclusion of the practice of "developing and using models" in the "Framework for K-12 Science Education" and in the "Next Generation Science Standards" provides an opportunity for educators to examine the role this practice plays in science and how it can be leveraged in a science classroom. Drawing on conceptions…

  5. Writing-to-Learn in the Inquiry-Science Classroom: Effective Strategies from Middle School Science and Writing Teachers

    ERIC Educational Resources Information Center

    Baker, William P.; Barstack, Renee; Clark, Diane; Hull, Elizabeth; Goodman, Ben; Kook, Judy; Kraft, Kaatje; Ramakrishna, Pushpa; Roberts, Elisabeth; Shaw, Jerome; Weaver, David; Lang, Michael

    2008-01-01

    Student writing skills are an important concern for every teacher. This is especially true when using inquiry-based approaches in the science classroom. Writing promotes critical-thinking skills and construction of vital scientific concepts and challenges ingrained misconceptions. Yet, many teachers encounter practical problems when incorporating…

  6. NASA CONNECT(TradeMark): Space Suit Science in the Classroom

    NASA Technical Reports Server (NTRS)

    Williams, William B.; Giersch, Chris; Bensen, William E.; Holland, Susan M.

    2003-01-01

    NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.

  7. Polar Science: From the Field to the Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    O'Neill, M.; O'Brien, K.

    2010-12-01

    The ARMADA Project was a National Science Foundation Project organized by the Office of Marine Programs of the University of Rhode Island. ARMADA connected scientists and teachers to conduct field research together and share directly with the classroom. In addition to the field research, ARMADA teachers mentored new science teachers to assist in teacher retention and presented at National Science Teachers’ Association National Conventions. As an ARMADA teacher, I participated in two polar research experiences. In 2007, I worked with scientists from the University of Barcelona, Spain in the Arctic off the coast of Svalbard conducting seafloor mapping and sediment core sampling. My second research experience was to Antarctica in 2009 with Dr. Kristin O’Brien and her team studying Antarctic Ice Fish and their tolerance to temperature change. Sharing ship time with Dr. O’Brien was a team of scientists from Duke University studying humpback whales and their feeding behaviors. I was able to join both research teams and share the information with students, colleagues and the community. Connecting directly with scientists in the field has not only increased my personal knowledge of polar science, but has been invaluable to my teaching efforts. While in the Arctic, I was able to conduct a telephone conference with my students and the lead scientist via the satellite phone. From Antarctica I connected with several classes from Fairhope High School in a “Live from Antarctica” video conference. I was able to take them on a “virtual tour” of Palmer Station and Dr. O’Brien and Dr. Crockett answered student questions about Antarctic Fish. During both expeditions, I maintained a daily blog that enable my students to follow along with my research experience. Being able to bring the most current scientific research into the classroom with these expeditions has been inspiring for the students, colleagues and community.

  8. Leaving the Classroom: A Didactic Framework for Education in Environmental Sciences

    ERIC Educational Resources Information Center

    Dopico, Eduardo; Garcia-Vazquez, Eva

    2011-01-01

    In Continuous Education curricula in Spain, the programs on sciences of the environment are aimed toward understandings of sustainability. Teaching practice rarely leaves the classroom for outdoor field studies. At the same time, teaching practice is generally focused on examples of how human activities are harmful for ecosystems. From a pedagogic…

  9. Fostering Scholarly Discussion and Critical Thinking in the Political Science Classroom

    ERIC Educational Resources Information Center

    Marks, Michael P.

    2008-01-01

    This article suggests strategies for promoting scholarly discussion and critical thinking in political science classes. When scholars study politics they are engaged in an investigation into the dynamics of governance, not a debate over personal political beliefs. The problem with a politicized classroom is that it gives students a false…

  10. Interpretive investigation of the science-related career decisions of three African-American college students

    NASA Astrophysics Data System (ADS)

    Lewis, Bradford F.; Collins, Angelo

    2001-05-01

    Reports published since 1977 indicate that African Americans are underrepresented among Ph.D.-holding scientists. Although researchers have identified numerous factors that correlate with career choice, they have failed to address students' reasons for choosing or not choosing science and science-related careers. This study examines the career decisions of three African-American college students. All three students began college aspiring toward science-related careers. However, by the end of data collection only one student was working toward a science-related career. Data were collected by means of eight, open-ended, 1-hour interviews conducted over a period of 6 months. Findings indicate that students' interest in a science-related career is directly related to the degree to which they perceive that career as being supportive of deep-seated life goals; and that a deeper view of the nature of science better enables students to perceive a science-related career as supportive of life goals.

  11. Effects of MyTeachingPartner-Math/Science on Teacher-Child Interactions in Prekindergarten Classrooms

    ERIC Educational Resources Information Center

    Whittaker, Jessica Vick; Kinzie, Mable B.; Williford, Amanda; DeCoster, Jamie

    2016-01-01

    Research Findings: This study examined the impact of MyTeachingPartner-Math/Science, a system of math and science curricula and professional development, on the quality of teachers' interactions with children in their classrooms. Schools were randomly assigned to 1 of 2 intervention conditions (Basic: curricula providing within-activity, embedded…

  12. "It's Her Body". When Students' Argumentation Shows Displacement of Content in a Science Classroom

    ERIC Educational Resources Information Center

    Orlander Arvola, Auli; Lundegard, Iann

    2012-01-01

    This paper approaches learning as a response instead of the acquisition of something previously expected. More specifically, it describes a process of argumentation on socioscientific issues in a classroom situation in school science amongst 15-year-old students in Sweden. The analysis of an argumentation on abortion in a science classroom…

  13. Responsible Use of Live Animals and Dissection in the Science Classroom. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has revised a position statement published in June 2005. This revised statement examines the issues surrounding the integration of animals into the K-12 science curriculum and highlights key considerations that should be addressed when deciding to introduce live animals in the classroom and involve…

  14. The role of perceived classroom goal structures, self-efficacy, and engagement in student science achievement

    NASA Astrophysics Data System (ADS)

    Uçar, F. Melike; Sungur, Semra

    2017-04-01

    Background: Numerous studies have been conducted to investigate the factors related to science achievement. In these studies, the classroom goal structure perceptions, engagement, and self-efficacy of the students have emerged as important factors to be examined in relation to students' science achievement.

  15. Technology Integration in a Science Classroom: Preservice Teachers' Perceptions

    NASA Astrophysics Data System (ADS)

    Rehmat, Abeera P.; Bailey, Janelle M.

    2014-12-01

    The challenge of preparing students for the information age has prompted administrators to increase technology in the public schools. Yet despite the increased availability of technology in schools, few teachers are integrating technology for instructional purposes. Preservice teachers must be equipped with adequate content knowledge of technology to create an advantageous learning experience in science classrooms. To understand preservice teachers' conceptions of technology integration, this research study explored 15 elementary science methods students' definitions of technology and their attitudes toward incorporating technology into their teaching. The phenomenological study took place in a science methods course that was based on a constructivist approach to teaching and learning science through science activities and class discussions, with an emphasis on a teacher beliefs framework. Data were collected throughout the semester, including an open-ended pre/post-technology integration survey, lesson plans, and reflections on activities conducted throughout the course. Through a qualitative analysis, we identified improvements in students' technology definitions, increased technology incorporation into science lesson plans, and favorable attitudes toward technology integration in science teaching after instruction. This research project demonstrates that positive changes in beliefs and behaviors relating to technology integration in science instruction among preservice teachers are possible through explicit instruction.

  16. Literacy Strategies in the Science Classroom The Influence of Teacher Cognitive Resources on Implementation

    NASA Astrophysics Data System (ADS)

    Mawyer, Kirsten Kamaile Noelani

    Scientific literacy is at the heart of science reform (AAAS, 1989; 1993: NRC, 1996). These initiatives advocate inquiry-based science education reform that promotes scientific literacy as the prerequisite ability to both understand and apply fundamental scientific ideas to real-world problems and issues involving science, technology, society and the environment. It has been argued that literacy, the very ability to read and write, is foundational to western science and is essential for the attainment of scientific literacy and the reform of science education in this country (Norris & Phillips, 2004). With this wave of reform comes the need to study initiatives that seek to support science teachers, as they take on the task of becoming teachers of literacy in the secondary science classroom. This qualitative research examines one such initiative that supports and guides teachers implementing literacy strategies designed to help students develop reading skills that will allow them to read closely, effectively, and with greater comprehension of texts in the context of science. The goal of this study is to gather data as teachers learn about literacy strategies through supports built into curricular materials, professional development, and implementation in the classroom. In particular, this research follows four secondary science teachers implementing literacy strategies as they enact a yearlong earth and environmental science course comprised of two different reform science curricula. The findings of this research suggest teacher's development of teacher cognitive resources bearing on Teaching & Design can be dynamic or static. They also suggest that the development of pedagogical design capacity (PDC) can be either underdeveloped or emergent. This study contributes to current understandings of the participatory relationship between curricular resources and teacher cognitive resources that reflects the design decision of teachers. In particular, it introduces a

  17. Sample classroom activities based on climate science

    NASA Astrophysics Data System (ADS)

    Miler, T.

    2009-09-01

    We present several activities developed for the middle school education based on a climate science. The first activity was designed to teach about the ocean acidification. A simple experiment can prove that absorption of CO2 in water increases its acidity. A liquid pH indicator is suitable for the demonstration in a classroom. The second activity uses data containing coordinates of a hurricane position. Pupils draw a path of a hurricane eye in a tracking chart (map of the Atlantic ocean). They calculate an average speed of the hurricane, investigate its direction and intensity development. The third activity uses pictures of the Arctic ocean on September when ice extend is usually the lowest. Students measure the ice extend for several years using a square grid printed on a plastic foil. Then they plot a graph and discuss the results. All these activities can be used to improve the natural science education and increase the climate change literacy.

  18. Social Media in the Science Classroom: Using Instagram With Young Women to Incorporate Visual Literacy and Youth Culture

    NASA Astrophysics Data System (ADS)

    Serpagli, Lauren Paola

    The purpose of this study is to explore the impact that a digital, picture sharing platform, specifically Instagram, can have on the learning experience in the biology classroom. Students are surrounded by a societal culture inundated with technology, including smart phones and social media, and science educators need to find ways to harness the popularity of these tools in the classroom. The theoretical frameworks guiding this study are Culturally Relevant Pedagogy (CRP), Digital Visual Literacy, and a Critical Feminism. To understand the many ways of social media, specifically Instagram, could influence science content understanding in the classroom, the research methodology used was a connective ethnography. This approach allowed for analysis for the creation of the dual-setting of the classroom and the digital platform and the emerging culture that resulted. As Instagram was used as the virtual component of the classroom, this gave rise to a new identity for the classroom, one in which a digital culture was established. Instagram served as an extension of the classroom space that was not limited by time, location, or teacher availability. The participants in this study were female high school biology students in New York City. An Instagram profile was created for the course and used in different ways: To post homework reminders, lab pictures, biology memes, current events, and discoveries, thereby exposing students to science in "nontraditional" ways. Students discussed their reactions and feelings of the uses and effectiveness of Instagram in the class and made suggestions for future applications through questionnaires, focus groups, and individual interviews. Findings reveal Instagram to ease access for review and reminders, integrate teenage culture into learning, and serve as an effective supplement tool to traditional classroom instruction. One chief goal of this research project was to help educators increase their understanding of the role that social

  19. A Pedagogy of Civic Engagement for the Undergraduate Political Science Classroom

    ERIC Educational Resources Information Center

    DeLaet, Debra L.

    2016-01-01

    This article provides an overview of a classroom project, titled the Priorities Project, which is designed to promote responsible and informed civic engagement on the part of students in upper level political science courses at Drake University. It provides an overview of the Priorities Project, a brief summary highlighting the process and results…

  20. Evidence of Middle School Science Assessment Practice from Classroom-Based Portfolios

    ERIC Educational Resources Information Center

    Kloser, Matthew; Borko, Hilda; Martinez, Jose Felipe; Stecher, Brian; Luskin, Rebecca

    2017-01-01

    Assessments are powerful tools for informing teachers and students about where student thinking stands with relation to a learning goal. Yet, few studies provide qualitative analyses of assessment practice across a unit. This study uses a framework of nine dimensions of effective assessment practice in science classrooms to compare more and less…

  1. Prisoners or Volunteers: Developing Mutual Respect in the Elementary Science Classroom.

    ERIC Educational Resources Information Center

    Huber, Richard A.; And Others

    This study was conducted to investigate how teacher educators might help preservice teachers enrolled in a science methods course understand the need for mutual respect rather than coercion between pupil and teacher in an elementary classroom. An evaluation instrument was developed that consisted of a pre and post open-ended response to a…

  2. Preservice Chemistry Teachers' Images about Science Teaching in Their Future Classrooms

    ERIC Educational Resources Information Center

    Elmas, Ridvan; Demirdogen, Betul; Geban, Omer

    2011-01-01

    The purpose of this study is to explore pre-service chemistry teachers' images of science teaching in their future classrooms. Also, association between instructional style, gender, and desire to be a teacher was explored. Sixty six pre-service chemistry teachers from three public universities participated in the data collection for this study. A…

  3. Everyday Matters in Science and Mathematics: Studies of Complex Classroom Events

    ERIC Educational Resources Information Center

    Nemirovsky, Ricardo, Ed.; Rosebery, Ann S., Ed.; Solomon, Jesse, Ed.; Warren, Beth, Ed.

    2005-01-01

    This book re-examines the dichotomy between the everyday and the disciplinary in mathematics and science education, and explores alternatives to this opposition from points of view grounded in the close examination of complex classroom events. It makes the case that students' everyday experience and knowledge in their entire manifold forms matter…

  4. Revisiting the silence of Asian immigrant students: The negotiation of Korean immigrant students' identities in science classrooms

    NASA Astrophysics Data System (ADS)

    Ryu, Minjung

    This dissertation is a study about Korean immigrant students' identities, including academic identities related to science learning and identities along various social dimensions. I explore how Korean immigrant students participate in science classrooms and how they enact and negotiate their identities in their classroom discursive participation. My dissertation is motivated by the increasing attention in educational research to the intersectionality between science learning and various dimensions of identities (e.g., gender, race, ethnicity, social networks) and a dearth of such research addressing Asian immigrant students. Asian immigrant students are stereotyped as quiet and successful learners, particularly in science and mathematics classes, and their success is often explained by cultural differences. I confront this static and oversimplified notion of cultural differences and Asians' academic success and examine the intersectionality between science learning and identities of Asian immigrant students, with the specific case of Korean immigrants. Drawing upon cultural historical and sociolinguistic perspectives of identity, I propose a theoretical framework that underscores multiple levels of contexts (macro level, meso level, personal, and micro level contexts) in understanding and analyzing students' identities. Based on a year-long ethnographic study in two high school Advanced Placement Biology classes in a public high school, I present the meso level contexts of the focal school and biology classes, and in-depth analyses of three focal students. The findings illustrate: (1) how meso level contexts play a critical role in these students' identities and science classroom participation, (2) how the meso level contexts are reinterpreted and have different meanings to different students depending on their personal contexts, and (3) how students negotiated their positions to achieve certain identity goals. I discuss the implications of the findings for the

  5. Family Matters: Familial Support and Science Identity Formation for African American Female STEM Majors

    ERIC Educational Resources Information Center

    Parker, Ashley Dawn

    2013-01-01

    This research seeks to understand the experiences of African American female undergraduates in STEM. It investigates how familial factors and science identity formation characteristics influence persistence in STEM while considering the duality of African American women's status in society. This phenomenological study was designed using critical…

  6. Career Commitment and African American Women in Undergraduate STEM Majors: The Role of Science

    ERIC Educational Resources Information Center

    Jenkins, Felysha L.

    2012-01-01

    Despite the odds, African American women are achieving some success in science, technology, engineering, and mathematics (STEM). However, a dearth of empirical evidence exists on the mechanisms that contribute to their persistence. This study contributes to understanding how African American women are successful in obtaining baccalaureate degrees…

  7. Classroom Preschool Science Learning: The Learner, Instructional Tools, and Peer-Learning Assignments

    NASA Astrophysics Data System (ADS)

    Reuter, Jamie M.

    The recent decades have seen an increased focus on improving early science education. Goals include helping young children learn about pertinent concepts in science, and fostering early scientific reasoning and inquiry skills (e.g., NRC 2007, 2012, 2015). However, there is still much to learn about what constitutes appropriate frameworks that blend science education with developmentally appropriate learning environments. An important goal for the construction of early science is a better understanding of appropriate learning experiences and expectations for preschool children. This dissertation examines some of these concerns by focusing on three dimensions of science learning in the preschool classroom: (1) the learner; (2) instructional tools and pedagogy; and (3) the social context of learning with peers. In terms of the learner, the dissertation examines some dimensions of preschool children's scientific reasoning skills in the context of potentially relevant, developing general reasoning abilities. As young children undergo rapid cognitive changes during the preschool years, it is important to explore how these may influence scientific thinking. Two features of cognitive functioning have been carefully studied: (1) the demonstration of an epistemic awareness through an emerging theory of mind, and (2) the rapid improvement in executive functioning capacity. Both continue to develop through childhood and adolescence, but changes in early childhood are especially striking and have been neglected as regards their potential role in scientific thinking. The question is whether such skills relate to young children's capacity for scientific thinking. Another goal was to determine whether simple physics diagrams serve as effective instructional tools in supporting preschool children's scientific thinking. Specifically, in activities involving predicting and checking in scientific contexts, the question is whether such diagrams facilitate children's ability to

  8. Comparison of Selected Instructional and Classroom Management Practices of Graduates from Two Science Teacher Education Programs.

    ERIC Educational Resources Information Center

    Conrath, Melissa Moorhead

    The purpose of this study was to compare graduates of the Undergraduate and Post-Degree Programs in secondary school science at the Ohio State University, with respect to their attitudes toward the use of inquiry activities, use of inquiry activities in the classroom and the use of effective classroom management practices. Teacher characteristics…

  9. Reflections on Success and Retention in Urban Science Education: Voices of Five African-American Science Teachers Who Stayed

    ERIC Educational Resources Information Center

    Fraser-Abder, Pamela

    2010-01-01

    This study highlights the factors that contribute to excellence in urban science teaching as pinpointed by five urban African-American science teachers who have taught successfully in the urban system for over 10 years. These teachers shared their experiences and reflections on the qualities that contributed to their success and persistence as…

  10. How science teachers balance religion and evolution in the science classroom: A case study of science classes in a Florida Public School District

    NASA Astrophysics Data System (ADS)

    Willems, Pierre Dominique

    The purpose of this case study was to research how science teachers balance both religion and evolution in the science classroom with as little controversy as possible. In this study I attempted to provide some insight on how teachers are currently teaching evolution in their science classes in light of the religious beliefs of the students as well as their own. The case study was conducted in a school district in Florida where I attempted to answer the following questions: (a) How do science teachers in the Florida School District (FSD) approach the religion--evolution issue in preparing students for a career in a field of science? (b) How do science teachers in the FSD reconcile the subject of evolution with the religious views of their students? (c) How do science teachers in the FSD reconcile their own religious views with the teaching of evolution? (d) How do science teachers in the FSD perceive the relationship between religion and science? The data was collected through interviews with two high school teachers, and one middle school teacher, by observing each participant teach, by collecting site documents and by administering an exploratory survey to student volunteers. Analysis was conducted by open coding which produced four themes from which the research questions were answered and the survey answers were counted to produce the percentages displayed in the tables in chapter four. The teachers avoided discussion on religiously oriented questions or statements by the students and did not reveal their own religious orientation. The topic of microevolution appeared to reduce stress in the classroom environment, as opposed to addressing macroevolution.

  11. An Analysis of South African Grade 9 Natural Sciences Textbooks for Their Representation of Nature of Science

    ERIC Educational Resources Information Center

    Ramnarain, Umesh Dewnarain; Chanetsa, Tarisai

    2016-01-01

    This article reports on an analysis and comparison of three South African Grade 9 (13-14 years) Natural Sciences textbooks for the representation of nature of science (NOS). The analysis was framed by an analytical tool developed and validated by Abd-El-Khalick and a team of researchers in a large-scale study on the high school textbooks in the…

  12. Explicit Instruction and Next Generation Science Standards Aligned Classrooms: A Fit or a Split?

    ERIC Educational Resources Information Center

    Therrien, William J.; Benson, Sarah K.; Hughes, Charles A.; Morris, Jared R.

    2017-01-01

    The purpose of this article is to discuss the use of explicit instruction in the curriculum area of science where non-explicit approaches (e.g., discovery learning) are often used. While there has been a relative paucity of research on explicit instruction in science classrooms, we argue that explicit instruction, particularly when it is embedded…

  13. A moving imagination in spaces of distress: Teacher and student agency in a science classroom

    NASA Astrophysics Data System (ADS)

    Adamian, Annie S.

    This qualitative study explored the ways in which our classroom community (students and teacher) engaged with humanizing pedagogy in a seventh grade science classroom, toward the full development (e.g. personal, social, emotional, academic) of our classroom community, and the dismantling of inequitable practices and unjust policies that we recognized in our science classroom, school and/or community while utilizing the process of teacher and student participatory action research (tsPAR) (Adamian, 2015) and Critical Race Praxis for Educational Research (CRP-Ed) (Jayakumar & Adamian, 2015). This study examined the complexities of mutually engaging across differing positionalities while intentionally working in spaces of distress (e.g. push and pull between oppression and liberation). The findings demonstrated the ways in which building a beloved community while situated within an oppressive U.S. schooling system, supported students and teacher toward cultivating pedagogy rooted in love and agency, with a collective commitment toward social justice. As a result, this study contributed toward expanding the possibilities for teaching and learning toward social justice in constricting institutional contexts that honor students and teachers relationships while simultaneously defining for ourselves the purpose of schooling and who we are.

  14. "It Felt like Real Science!" How Operation Magpie Enriched My Classroom

    ERIC Educational Resources Information Center

    Paige, Kathryn; Lawes, Heather; Matejcic, Peter; Taylor, Cathy; Stewart, Vicki; Lloyd, David; Zeegers, Yvonne; Roetman, Philip; Daniels, Christopher

    2010-01-01

    This paper describes what happened in four teachers' classrooms as a result of participating in Operation Magpie, a Citizen Science project. The range of strategies used to engage their students in observing magpies in the schoolyard and in nearby parks is the focus of the teachers' stories. "Magic spots", data collection, class blogs,…

  15. Science Classroom Discussion as Scientific Argumentation: A Study of Conceptually Rich (and Poor) Student Talk

    ERIC Educational Resources Information Center

    Shemwell, Jonathan T.; Furtak, Erin Marie

    2010-01-01

    One way to frame science classroom discussion is to engage students in scientific argumentation, an important discourse format within science aimed at coordinating empirical evidence and scientific theory. Framing discussion as scientific argumentation gives clear priority to contributions that are sustained by evidence. We question whether this…

  16. A Systemic Functional Linguistic Analysis of the Utterances of Three South African Physical Sciences Teachers

    NASA Astrophysics Data System (ADS)

    Jawahar, Kavish; Dempster, Edith R.

    2013-06-01

    In this study, the sociocultural view of science as a language and some quantitative language features of the complementary theoretical framework of systemic functional linguistics are employed to analyse the utterances of three South African Physical Sciences teachers. Using a multi-case study methodology, this study provides a sophisticated description of the utterances of Pietermaritzburg Physical Sciences teachers in language contexts characterised by varying proportions of English Second Language (ESL) students in each class. The results reveal that, as expected, lexical cohesion as measured by the cohesive harmony index and proportion of repeated content words relative to total words, increased with an increasing proportion of ESL students. However, the use of nominalisation by the teachers and the lexical density of their utterances did not decrease with an increasing proportion of ESL students. Furthermore, the results reveal that each individual Physical Sciences teacher had a 'signature' talk, unrelated to the language context in which they taught. This study signals the urgent and critical need for South African science teacher training programmes to place a greater emphasis on the functional use of language for different language contexts in order to empower South African Physical Sciences teachers to adequately apprentice their students into the use of the register of scientific English.

  17. Classroom Discourse in Problem-Based Learning Classrooms in the Health Sciences

    ERIC Educational Resources Information Center

    Woodward-Kron, Robyn; Remedios, Louisa

    2007-01-01

    Classroom discourse analysis has contributed to understandings of the nature of student-teacher interactions, and how learning takes place in the classroom; however, much of this work has been undertaken in teacher-directed learning contexts. Student-centred classrooms such as problem-based learning (PBL) approaches are increasingly common in…

  18. A model of formative assessment practice in secondary science classrooms using an audience response system

    NASA Astrophysics Data System (ADS)

    Shirley, Melissa L.

    Formative assessment involves the probing of students' ideas to determine their level of understanding during the instructional sequence. Often conceptualized as a cycle, formative assessment consists of the teacher posing an instructional task to students, collecting data about student understanding, and engaging in follow-up strategies such as clarifying student understanding and adjusting instruction to meet learning needs. Despite having been shown to increase student achievement in a variety of classroom settings, formative assessment remains a relative weak area of teacher practice. Methods that enhance formative assessment strategies may therefore have a positive effect on student achievement. Audience response systems comprise a broad category of technologies that support richer classroom interaction and have the potential to facilitate formative assessment. Results from a large national research study, Classroom Connectivity in Promoting Mathematics and Science Achievement (CCMS), show that students in algebra classrooms where the teacher has implemented a type of audience response system experience significantly higher achievement gains compared to a control group. This suggests a role for audience response systems in promoting rich formative assessment. The importance of incorporating formative assessment strategies into regular classroom practice is widely recognized. However, it remains challenging to identify whether rich formative assessment is occurring during a particular class session. This dissertation uses teacher interviews and classroom observations to develop a fine-grained model of formative assessment in secondary science classrooms employing a type of audience response system. This model can be used by researchers and practitioners to characterize components of formative assessment practice in classrooms. A major component of formative assessment practice is the collection and aggregation of evidence of student learning. This dissertation

  19. A Sky-High Classroom Provides a New Perspective for Earth Science Students

    ERIC Educational Resources Information Center

    Kolb, Albert C.

    1969-01-01

    Describes an earth science program conducted from an airplane for 8th grade students of Carmel Middle School, Carmel, California. The steps involved in getting the program started, the classroom work and the preparatory field trips, as well as the airborne lesson itself, are described. (LC)

  20. Exploring the Use of Audience Response Systems in Secondary School Science Classrooms

    ERIC Educational Resources Information Center

    Kay, Robin; Knaack, Liesel

    2009-01-01

    An audience response systems (ARS) allows students to respond to multiple choice questions using remote control devices. Once the feedback is collected and displayed, the teacher and students discuss misconceptions and difficulties experienced. ARSs have been extremely popular and effective in higher education science classrooms, although almost…

  1. Graduate students teaching elementary earth science through interactive classroom lessons

    NASA Astrophysics Data System (ADS)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  2. Confronting Dilemmas Posed by Three-Dimensional Classroom Assessment: Introduction to a Virtual Issue of "Science Education"

    ERIC Educational Resources Information Center

    Furtak, Erin Marie

    2017-01-01

    Wide-scale adoption of the "Next Generation Science Standards" has raised new challenges for classroom teachers as they learn not only how to engage students in this new vision of science learning, but also how to assess students' engagement in that learning. This paper introduces a virtual special issue of "Science Education"…

  3. Persistence of African American Men in Science: Exploring the Influence of Scientist Identity, Mentoring, and Campus Climate

    NASA Astrophysics Data System (ADS)

    Guy, Breonte Stephan

    The scant literature on persistence of African American males in science typically takes a deficits-based approach to encapsulate the myriad reasons this population is so often underrepresented. Scientist Identity, Mentoring, and Campus Climate have, individually, been found to be related to the persistence of African American students. However, the unified impact of these three variables on the persistence of African American students with science interests has not been evaluated, and the relationship between the variables, the students' gender, and markers of academic achievement have not been previously investigated. The current study takes a strengths-based approach to evaluating the relationship between Scientist Identity, Mentoring, and Campus climate with a population of African American students with science interests who were studying at six Minority Serving Institutions and Predominantly White Institutions in the Southern United States. Multiple regression analyses were conducted to determine the impact of Scientist Identity, Mentoring, and Campus Climate on Intention to Persist of African American males. The results indicate that Scientist Identity predicts Intention to Persist, and that gender, academic performance, and institution type moderate the relationship between Scientist Identity and Intention to Persist. These results lend credence to the emerging notion that, for African American men studying science, generating a greater depth and breadth of understanding of the factors that lead to persistence will aid in the development of best practices for supporting persistence among this perpetually underrepresented population.

  4. Developing Elementary Teachers' Understandings of Hedges and Personal Pronouns in Inquiry-Based Science Classroom Discourse

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.

    2010-02-01

    This study examined the effectiveness of introducing elementary teachers to the scholarly literature on personal pronouns and hedges in classroom discourse, a professional development strategy adopted during a summer institute to enhance teachers’ social understanding (i.e., their understanding of the social functions of language in science discussions). Teachers became aware of how hedges can be employed to remain neutral toward students’ oral contributions to classroom discussions, invite students to share their opinions and articulate their own ideas, and motivate students to inquire. Teachers recognized that the combined use of I and you can render their feedback authoritative, you can shift the focus from the investigation to students’ competence, and we can lead to authority loss. It is argued that explicitness, reflectivity, and contextualization are essential features of professional development programs aimed at improving teachers’ understandings of the social dimension of inquiry-based science classrooms and preparing teachers to engage in inquiry-based teacher-student interactions.

  5. How Latino/a bilingual students use their language in a fifth grade classroom and in the science laboratory during science instruction

    NASA Astrophysics Data System (ADS)

    Stevenson, Alma R.

    This qualitative research study examines how Latino/a bilingual students use their linguistic resources in their homeroom classroom and in the science laboratory during science instruction. This study was conducted in a school district located in the southwestern part of the United States. The school was chosen based on the criterion that the school is located in an area considered economically depressed, with a predominantly Latino student, school, and neighborhood population. The object of study was a fifth grade bilingual (Spanish/English) classroom where English was the means of instruction. Classroom interaction was examined from a sociolinguistics perspective. The study was descriptive in nature with the objective of analyzing the students' use of their linguistic resources while participating in science learning. The results of this study suggest that the students used their linguistic resources purposefully in order to facilitate their participation in science leaning. In the same manner, it was observed the students' reliance on Spanish as a foundation to enhance their comprehension of the scientific concepts and the dynamics involved in the science lessons, with the purpose of making sense, and thus, to express their understanding (orally and in writing) using their linguistic resources, especially their English language, as it was expected from them. Further, the findings disclose the students' awareness of their own bilingualism, preference for speaking Spanish, and their conceptualization of English as the language to achieve academic success. It has also been observed how the pressure put upon the teacher and the students by the accountability system brings about an implicit bias against Spanish, causing the teacher to assume a paradoxical stance regarding the students' use of Spanish, and thereby, placing the students in an ambivalent position, that might affect, to a certain extent, how students use their Spanish language as a resource to

  6. Exploring teachers' learning: A teacher's experiences integrating scientific modeling in the science classroom

    NASA Astrophysics Data System (ADS)

    Gonzalez Maza, Mirta Elizabeth

    This study, a narrative inquiry into the teaching of models and modeling in an elementary science classroom, explores a teacher's growth in pedagogical content knowledge (PCK) as she implemented a novel curriculum adapted from the MoDeLS (Modeling Designs for the Learning of Science) project. The purpose of the study was to explore, from the teacher's point of view, the pedagogical and conceptual changes she underwent while implementing a model-based approach in her classroom. The study summarizes the teacher's experiences, her decisions about teaching, her understanding of how her choices and practices influenced her content knowledge (CK), her PCK, and her motivations for changing her teaching. During the three years of the project I collected data from four science units (Astronomy, Animal Science, Electricity, and Light). Each of the units were observed and videotaped and Ms. Delaney (pseudonym), the classroom teacher, audio-recorded her practices every day. I observed and analyzed classroom videotapes in order to explore how Ms. Delaney's modeling practices unfolded and changed in her classroom and how her PCK on modeling developed. I analyzed professional development activities and informal interviews conducted during and after the units. Subsequently I interviewed Ms. Delaney about these issues using open-ended questions and video clips of her classroom practices. Three aspects of models and modeling expressed in the MoDeLS project were taken into account as I developed categories of analysis: a) models have purpose; b) models have limitations; and c) models change. These categories and the codes proposed were revised and refined while analyzing the data. The findings from the interview analyses and the classroom practices showed that Ms. Delaney developed new CK around models and modeling throughout the three years she was involved in the project. She adapted some of the proposed strategies from the MoDeLS project and adopted them in her curriculum in ways

  7. Pre-Service Science Teachers' Views on Their Online Argumentation about What Is Happening in Middle School Science Classrooms during Their Practicum Period

    ERIC Educational Resources Information Center

    Kaya, Osman Nafiz; Dogan, Alev; Kilic, Ziya; Ebenezer, Jazlin

    2004-01-01

    In this study, Pre-service Science Teachers' (PSTs) views about the potential benefits and existing barriers of their argumentation on the World Wide Web about what is happening in middle school science classrooms during two semesters of their practicum experiences were investigated. "Special Web Group" called the "Collaborative…

  8. Writing for Learning in Science: A Model for Use within Classrooms.

    ERIC Educational Resources Information Center

    Hand, Brian; Prain, Vaughan

    1996-01-01

    Discusses writing for learning within science classrooms. Presents a model that can be used by teachers to promote a greater variety of writing types. Includes examples of its use and an explanation of learning strategies students use in these activities. Discusses the value of the model in framing the planning of writing-for-learning tasks.…

  9. Learning to Teach Argumentation: Research and Development in the Science Classroom

    ERIC Educational Resources Information Center

    Simon, Shirley; Erduran, Sibel; Osborne, Jonathan

    2006-01-01

    The research reported in this study focuses on an investigation into the teaching of argumentation in secondary science classrooms. Over a 1-year period, a group of 12 teachers from schools in the greater London area attended a series of workshops to develop materials and strategies to support the teaching of argumentation in scientific contexts.…

  10. The Role of Perceived Classroom Goal Structures, Self-Efficacy, and Engagement in Student Science Achievement

    ERIC Educational Resources Information Center

    Uçar, F. Melike; Sungur, Semra

    2017-01-01

    Background: Numerous studies have been conducted to investigate the factors related to science achievement. In these studies, the classroom goal structure perceptions, engagement, and self-efficacy of the students have emerged as important factors to be examined in relation to students' science achievement. Purpose: This study examines the…

  11. The interplay of representations and patterns of classroom discourse in science teaching sequences

    NASA Astrophysics Data System (ADS)

    Tang, Kok-Sing

    2016-09-01

    The purpose of this study is to examines the relationship between the communicative approach of classroom talk and the modes of representations used by science teachers. Based on video data from two physics classrooms in Singapore, a recurring pattern in the relationship was observed as the teaching sequence of a lesson unfolded. It was found that as the mode of representation shifted from enactive (action based) to iconic (image based) to symbolic (language based), there was a concurrent and coordinated shift in the classroom communicative approach from interactive-dialogic to interactive-authoritative to non-interactive-authoritative. Specifically, the shift from enactive to iconic to symbolic representations occurred mainly within the interactive-dialogic approach while the shift towards the interactive-authoritative and non-interactive-authoritative approaches occurred when symbolic modes of representation were used. This concurrent and coordinated shift has implications on how we conceive the use of representations in conjunction with the co-occurring classroom discourse, both theoretically and pedagogically.

  12. The evolution of science literacy: Examining intertextual connections and inquiry behaviors in the classroom

    NASA Astrophysics Data System (ADS)

    Manocchi-Verrino, Carol J.

    A call for a new perspective of science literacy has been marked as the impetus of change in science education, suggesting that a meaning-making approach to literacy and inquiry are central to learning science. This research study explored how science literacy evolved in a classroom where this reconceptualized view of science literacy guided curriculum design and instruction. The teacher/researcher incorporated Interactive Science Notebooks (ISNs) and Interactive Reading Organizers and Comprehension Strategies (IROCS) into instructional materials. In a class consisting of 20 mainstream and special education students, this 7-week study collected data using Likert scales, stimulated recall interviews, a teacher/researcher journal, and students¡¦ position papers. A systematic design framework was used for the three-phase analysis. Hyperresearch RTM software facilitated the identification of open codes, an axial code, and frequency graphs. In order to develop insight into the relationship between questions, methods, and curriculum design recent recommendations for quality research in science education were considered in the methodology. The hypothesis formulated from the data suggests that science literacy evolves on a continuum, and the degree to which science literacy evolves on the continuum seems to be contingent upon their uses of intertextual connections and inquiry behaviors. Several notable insights emerged from the data which were used to guide curriculum, instruction, and assessment that promotes the development of science literacy in the middle school classroom. The study suggests a possible correlation between the use of intertextual connections and inquiry behaviors, and the use of a continuum in measuring the emergence of science literacy.

  13. Assessment Strategies for Implementing Ngss in K12 Earth System Science Classrooms

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.

    2016-12-01

    Several science education researchers have led assessment efforts that provide strategies particularly useful for evaluating the threedimensional learning that is central to NGSS (DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K., 2016; Knight, A. M. & McNeill, K. L., 2015; McNeill, K. L., KatshSinger, R. & Pelletier, P., 2015; McNeill K.L., et.al., 2015; McNeill, K.L., & Krajcik, J.S., 2011; Penuel, W., 2016). One of the basic premises of these researchers is that, "Assessment is a practice of argument from evidence based on what students say, do, and write" and that "the classroom is the richest place to gather evidence of what students know (Penuel, W., 2016). The implementation of the NGSS in Earth System Science provides a unique opportunity for geoscience education researchers to study student learning and contribute to the development of this research as well as for geoscience educators to apply these approaches and strategies in their own work with K12 inservice and preservice educators. DeBarger, A. H., Penuel, W. R., Harris, C. J., Kennedy, C. K. (2016). Building an Assessment Argument to Design and Use Next Generation Science Assessments in Efficacy Studies of Curriculum Interventions. American†Journal†of†Evaluation†37(2) 174192Æ Knight, A. M. & McNeill, K. L. (2015). Comparing students' individual written and collaborative oral socioscientific arguments. International Journal of Environmental and Science Education.10(5), 23647. McNeill, K. L., KatshSinger, R. & Pelletier, P. (2015). Assessing science practices-Moving your class along a continuum. Science Scope. McNeill, K.L., & Krajcik, J.S. (2011). Supporting Grade 5-8 Students in Constructing Explanations in Science: The Claim, Evidence, and Reasoning Framework for Talk and Writing. Upper Saddle River, New Jersey: Pearson. Penuel, W. (2016). Classroom Assessment Strategies for NGSS Earth and Space Sciences. Implementing†the†NGSS†Webinar†Series, February 11, 2016.

  14. The influence of relational formative discourse on students' positional identities in a middle school science classroom

    NASA Astrophysics Data System (ADS)

    Trauth-Nare, Amy

    Formative assessment is the process of eliciting students' understanding during instruction in order to make sensitive instructional decisions and provide feedback to enhance students' learning. Research indicates that when used properly, formative assessment can lead to significant learning gains and enhance students' self-efficacy. Drawing on previous research and a framework of relational pedagogy, I studied the positional identities claimed, assigned and negotiated by a middle school science teacher and her students during formative assessment interactions. Critical discourse analysis was used to analyze classroom interactions, teacher debriefings and student interviews. Findings from this study indicated that the teacher normatively positioned herself as authority during formative assessment interactions, yet students were not completely powerless. Through assertions of content knowledge and re-directions of topical focus, students positioned themselves actively and had the capacity to influence the direction and focus of formative assessment. Outside of classroom instruction, the teacher simultaneously positioned herself as both hindered by institutional structures yet actively subverted those structures in both covert and overt ways in the service of meaningful science learning. As indicated from interviews and SPAQ questionnaire responses, many students in this classroom positioned themselves positively in relation to science, the teacher and her methods of assessment, while some felt marginalized. This research has implications for the ways in which formative assessment is used to support teaching and learning in science classrooms. Findings from this study indicate that formative assessment is not simply an instrumental act carried out by teachers, but rather is a relational process that necessarily involves students. As a result, formative assessment should balance authoritative and dialogic discourse as a means for supporting and engaging students as

  15. Informal Learning in Science, Math, and Engineering Majors for African American Female Undergraduates

    ERIC Educational Resources Information Center

    McPherson, Ezella

    2014-01-01

    This research investigates how eight undergraduate African American women in science, math, and engineering (SME) majors accessed cultural capital and informal science learning opportunities from preschool to college. It uses the multiple case study methodological approach and cultural capital as frameworks to better understand the participants'…

  16. The Science of Serious Gaming: Exploring the Benefits of Science-Based Games in the Classroom

    NASA Astrophysics Data System (ADS)

    Kurtz, N.

    2016-02-01

    Finding ways to connect scientists with the classroom is an important part of sharing enthusiasm for science with the public. Utilizing the visual arts and serious gaming techniques has benefits for all participants including the engagement of multiple learning sectors and the involvement of whole-brain teaching methods. The activities in this presentation draw from real-world events that require higher level thinking strategies to discover and differential naturally occurring patterns.

  17. Toward Understanding the Nature of a Partnership Between an Elementary Classroom Teacher and an Informal Science Educator

    NASA Astrophysics Data System (ADS)

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-12-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was assessed. Prior research has predominately examined relationships and roles of groups of teachers and informal educators in the museum setting (Tal et al. in Sci Educ 89:920-935, 2005; Tal and Steiner in Can J Sci Math Technol Educ 6:25-46, 2006; Tran 2007). The current study utilized case study methodology to examine one relationship (between two educators) in more depth and in a different setting—an elementary classroom. The relationship was defined through a framework of cooperation, coordination, and collaboration (Buck 1998; Intriligator 1986, 1992) containing eight dimensions. Findings suggest a relationship of coordination, which requires moderate commitment, risk, negotiation, and involvement, and examined the roles that each educator played and how they negotiated these roles. Consistent with previous examinations in science education of educator roles, the informal educator's role was to provide the students with expertise and resources not readily available to them. The roles played by the classroom teacher included classroom management, making connections to classroom activities and curricula, and clarifying concepts. Both educators' perceptions suggested they were at ease with their roles and that they felt these roles were critical to the optimization of the short time frames (1 h) the informal educator was in the classroom. Pre and posttest tests demonstrated students learned as a result of the programs.

  18. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    NASA Astrophysics Data System (ADS)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  19. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    NASA Astrophysics Data System (ADS)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  20. Dynamic Variables of Science Classroom Discourse in Relation to Teachers' Instructional Beliefs

    ERIC Educational Resources Information Center

    Kaya, Sibel

    2014-01-01

    The current study examines if the occurrence of dynamic variables namely, authentic questions, uptake, high-level evaluation and student questions in primary science classrooms vary by teachers' instructional beliefs. Twelve 4th grade teachers from two different schools volunteered to participate in the study. Data was collected through…

  1. Engaging Students Through Classroom Connection Webinars to Improve Their Understanding of the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Graff, Paige V.; Achilles, Cherie

    2013-01-01

    Planetary exploration missions to other worlds, like Mars, can generate a lot of excitement and wonder for the public. The Mars Science Laboratory Mission is one of the latest planetary missions that has intrigued the public perhaps more than most. How can scientists and educational specialists capitalize on the allure of this mission and involve students and teachers in a way that not only shares the story of the mission, but actively engages classrooms with scientists and improves their understanding of the science? The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center achieves this by facilitating MSL mission focused classroom connection webinars. Five MSL-focused webinars facilitated through EEAB during the 2012 fall semester engaged almost 3000 students and teachers. Involved STEM experts/role models helped translate the science behind the Mars Science Laboratory mission in a comprehensive, exciting, and engaging manner. These virtual events captured participants attention while increasing their science awareness and understanding of the MSL mission.

  2. How Can Blogging Help Teachers Realize the Goals of Reform-based Science Instruction? A Study of Nine Classroom Blogs

    NASA Astrophysics Data System (ADS)

    Luehmann, April Lynn; Frink, Jeremiah

    2009-06-01

    Science teachers struggle with meeting curricular goals outlined by professional organizations within the constraints of traditional school. Engaging science learners as a community who collaboratively and creatively co-construct scientific understanding through inquiry requires teachers to adopt new tools as well as a different mindset about the kind of classroom culture they need to nurture. Classroom blogs (i.e., blogs that are managed by a teacher for his/her students to post their work and exchange ideas) have been purported in the literature as offering unique opportunities to achieve this goal, although with little empirical support thus far. To fill this gap, nine classroom blogs were selected through an extensive search, and systematically analyzed to determine how the teachers' instructional designs and classrooms' enactment were able to capitalize on the specific affordances blogging may offer to support reform-based learning goals. The shift in teacher mindset needed to realize blogging affordances occurred as teachers engaged with students in the process of `living' the classroom blog.

  3. What Do Children Write in Science? A Study of the Genre Set in a Primary Science Classroom

    ERIC Educational Resources Information Center

    Honig, Sheryl

    2010-01-01

    This article reports on the types of scientific writing found in two primary grade classrooms. These results are part of a larger two-year study whose purpose was to examine the development of informational writing of second- and third-grade students as they participated in integrated science-literacy instruction. The primary purpose of the…

  4. The Responsive Classroom approach and fifth grade students' math and science anxiety and self-efficacy.

    PubMed

    Griggs, Marissa Swaim; Rimm-Kaufman, Sara E; Merritt, Eileen G; Patton, Christine L

    2013-12-01

    Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as schools' use of Social and Emotional Learning (SEL) practices to students' math and science self-efficacy. Fifth graders (n = 1,561) completed questionnaires regarding their feelings about math and science. Approximately half of the students attended schools implementing the Responsive Classroom® (RC) approach, an SEL intervention, as part of a randomized controlled trial. Results suggested no difference in math and science self-efficacy between boys and girls. Students who self-reported higher math and science anxiety also reported less self-efficacy toward these subjects. However, the negative association between students' anxiety and self-efficacy was attenuated in schools using more RC practices compared with those using fewer RC practices. RC practices were associated with higher science self-efficacy. Results highlight anxiety as contributing to poor self-efficacy in math and science and suggest that RC practices create classroom conditions in which students' anxiety is less strongly associated with negative beliefs about their ability to be successful in math and science. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  5. The influences and experiences of African American undergraduate science majors at predominately White universities

    NASA Astrophysics Data System (ADS)

    Blockus, Linda Helen

    The purpose of this study is to describe and explore some of the social and academic experiences of successful African American undergraduate science majors at predominately White universities with the expectation of conceptualizing emerging patterns for future study. The study surveyed 80 upperclass African Americans at 11 public research universities about their perceptions of the influences that affect their educational experiences and career interests in science. The mailed survey included the Persistence/ voluntary Dropout Decision Scale, the Cultural Congruity Scale and the University Environment Scale. A variety of potential influences were considered including family background, career goals, psychosocial development, academic and social connections with the university, faculty relationships, environmental fit, retention factors, validation, participation in mentored research projects and other experiences. The students' sources of influences, opportunities for connection, and cultural values were considered in the context of a research university environment and investigated for emerging themes and direction for future research. Results indicate that performance in coursework appears to be the most salient factor in African American students' experience as science majors. The mean college gpa was 3.01 for students in this study. Challenging content, time demands, study habits and concern with poor grades all serve to discourage students; however, for most of the students in this study, it has not dissuaded them from their educational and career plans. Positive course performance provided encouragement. Science faculty provide less influence than family members, and more students find faculty members discouraging than supportive. Measures of faculty relations were not associated with academic success. No evidence was provided to confirm the disadvantages of being female in a scientific discipline. Students were concerned with lack of minority role models

  6. Gender, mathematics, reading comprehension and science reasoning as predictors of science achievement among African-American students at a historical black college or university

    NASA Astrophysics Data System (ADS)

    Davis, Consuella Artiemese

    This study investigated predictors that influence the science achievement of African-American non-science majors in a Physical Science class. The population consisted of male and female college students enrolled in Physical Science courses at a historical black college or university (HBCU) located in the southeastern portion of the United States. A personal data information sheet was administered to 120 participants during the Fall of 2008. The personal data information sheet consisted of questions pertaining to the high school courses, students took in math, language arts and science. It also consisted of basic background information. Students also gave written consent for their midterm and final grades earned in Physical Science to be used in the study as part of the analyses. A t-Test including chi-square tests revealed that there was not a significant difference in the raw scores of African-American females and African American males on the American College Test. A significant difference was not observed between the females and males on the ACT math subtest, t (118) = -.78, p = .43; reading comprehension subtest, t (118) = -1.44, .15 or on the science reasoning subtest, t (118) = -1.46, p = .15. A significant difference was not found between the final grades of African American females and the final grades of African American males. Chi-square tests were conducted to determine goodness of fit, X2 = 6.11, df = 1, p = .191. Although the grades of females were higher than males, results were not significant. The correlation between math ACT and final grades were not significant, r = .131, N = 120, p = .155, reading comprehension ACT and final grades were not significant, r = .072, N = 120, p = .434 and science reasoning ACT and final grades were found not to be significant, r = .109, N = 120, p = .237. Being that the majority of students who participated in the study were from one state, had similar high school backgrounds, had similar majors and were similar in

  7. The Science Management Observation Protocol: Using Structured Observations to Improve Teachers' Management of Inquiry-Based Classrooms

    ERIC Educational Resources Information Center

    Sampson, Victor

    2004-01-01

    With the publication of the National Science Education Standards and the Benchmarks for Science Literacy, people now have a thorough idea of what an inquiry-based teacher is, and what he or she needs to do within a classroom in order to be successful. However, one major barrier in learning how to become an effective inquiry-based science teacher…

  8. The Most Common Patterns of Classroom Dialogue Used by Science Teachers in Omani Cycle Two Schools

    ERIC Educational Resources Information Center

    Alshaqsi, Hanan; Ambusaidi, Abdullah

    2018-01-01

    This study aimed to identify the patterns of classroom dialogue used by science teachers in science classes at Omani schools with respect to their gender. The study sample consisted of science teachers: three males and three females. To achieve the aims of the study, mixed methods with three instruments were used. These are an observation card or…

  9. Teachers' Perceptions on the Use of ICT in a CAL Environment to Enhance the Conception of Science Concepts

    ERIC Educational Resources Information Center

    George, Frikkie; Ogunniyi, M.

    2016-01-01

    Instructional methodologies increasingly require teachers' efficacy and implementation of computer-assisted learning (CAL) practices in general and particularly in the science classroom. The South African National Education Department's e-Education[1] policy also encourages the use of computers and computer software in implementing outcome-based…

  10. Science in the Classroom: Finding a Balance between Autonomous Exploration and Teacher-Led Instruction in Preschool Settings

    ERIC Educational Resources Information Center

    Nayfeld, Irena; Brenneman, Kimberly; Gelman, Rochel

    2011-01-01

    Research Findings: This paper reports on children's use of science materials in preschool classrooms during their free choice time. Baseline observations showed that children and teachers rarely spend time in the designated science area. An intervention was designed to "market" the science center by introducing children to 1 science…

  11. Assessing Bilingual Knowledge Organization in Secondary Science Classrooms =

    NASA Astrophysics Data System (ADS)

    Wu, Jason S.

    Improving outcomes for English language learners (ELLs) in secondary science remains an area of high need. The purpose of this study is to investigate bilingual knowledge organization in secondary science classrooms. This study involved thirty-nine bilingual students in three biology classes at a public high school in The Bronx, New York City. Methods included an in-class survey on language use, a science content and English proficiency exam, and bilingual free-recalls. Fourteen students participated in bilingual free-recalls which involved a semi-structured process of oral recall of information learned in science class. Free-recall was conducted in both English and Spanish and analyzed using flow-map methods. Novel methods were developed to quantify and visualize the elaboration and mobilization of ideas shared across languages. It was found that bilingual narratives displayed similar levels of organizational complexity across languages, though English recalls tended to be longer. English proficiency was correlated with narrative complexity in English. There was a high degree of elaboration on concepts shared across languages. Finally, higher Spanish proficiency correlated well with greater overlapping elaboration across languages. These findings are discussed in light of current cognitive theory before presenting the study's limitations and future directions of research.

  12. Conditioned Pupil Disposition, Autonomy, and Effective Use of ICT in Science Classrooms.

    ERIC Educational Resources Information Center

    Rodrigues, Susan

    2003-01-01

    Data from three projects (a CD-ROM of the periodic table, video animation on CD ROM, and data loggers) show how conditioned dispositions affect information/communications technology use. The projects demonstrate how students have been conditioned to work mindlessly in science classrooms, following the path of least cognitive demand and avoiding…

  13. Inquiry and Learning: Realizing Science Standards in the Classroom. The Thinking Series.

    ERIC Educational Resources Information Center

    Layman, John W.; And Others

    This book provides a focused, extended response to the question How does standards-based science instruction look and feel in the classroom? This question is addressed by considering two related issues: (1) "How can teachers cultivate the quality of scientific thinking and understanding defined by standards?" and (2) "How can…

  14. Exploring Middle School Students' Use of Inscriptions in Project-Based Science Classrooms

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Krajcik, Joseph S.

    2006-01-01

    This study explores seventh graders' use of inscriptions in a teacher-designed project-based science unit. To investigate students' learning practices during the 8-month water quality unit, we collected multiple sources of data (e.g., classroom video recordings, student artifacts, and teacher interviews) and employed analytical methods that drew…

  15. Assessing Students' Attitudes and Achievements in a Multicultural and Multilingual Science Classroom.

    ERIC Educational Resources Information Center

    Hadi-Tabassum, Samina

    1999-01-01

    Takes a qualitative and quantitative look at the curriculum and teaching of a two-way immersion eighth-grade solar energy science classroom and examines its implications for education policy and reform. Results for a class of 25 students indicate that the approach increases the retention rate of Hispanic students. (SLD)

  16. What Can a Teacher Do to Support Students' Interest in Science? A Study of the Constitution of Taste in a Science Classroom

    ERIC Educational Resources Information Center

    Anderhag, Per; Hamza, Karim Mikael; Wickman, Per-Olof

    2015-01-01

    In this study, we examined how a teacher may make a difference to the way interest develops in a science classroom, especially for students from disadvantaged socioeconomic backgrounds. We adopted a methodology based on the concept of "taste for science" drawing on the work of John Dewey and Pierre Bourdieu. We investigated through…

  17. What good is a scientist in the classroom? Participant outcomes and program design features for a short-duration science outreach intervention in K-12 classrooms.

    PubMed

    Laursen, Sandra; Liston, Carrie; Thiry, Heather; Graf, Julie

    2007-01-01

    Many short-duration science outreach interventions have important societal goals of raising science literacy and increasing the size and diversity of the science workforce. Yet, these long-term outcomes are inherently challenging to evaluate. We present findings from a qualitative research study of an inquiry-based, life science outreach program to K-12 classrooms that is typical in design and excellent in execution. By considering this program as a best case of a common outreach model, the "scientist in the classroom," the study examines what benefits may be realized for each participant group and how they are achieved. We find that K-12 students are engaged in authentic, hands-on activities that generate interest in science and new views of science and scientists. Teachers learn new science content and new ways to teach it, and value collegial support of their professional work. Graduate student scientists, who are the program presenters, gain teaching and other skills, greater understanding of education and diversity issues, confidence and intrinsic satisfaction, and career benefits. A few negative outcomes also are described. Program elements that lead to these benefits are identified both from the research findings and from insights of the program developer on program design and implementation choices.

  18. What Good Is a Scientist in the Classroom? Participant Outcomes and Program Design Features for a Short-Duration Science Outreach Intervention in K–12 Classrooms

    PubMed Central

    Liston, Carrie; Thiry, Heather; Graf, Julie

    2007-01-01

    Many short-duration science outreach interventions have important societal goals of raising science literacy and increasing the size and diversity of the science workforce. Yet, these long-term outcomes are inherently challenging to evaluate. We present findings from a qualitative research study of an inquiry-based, life science outreach program to K–12 classrooms that is typical in design and excellent in execution. By considering this program as a best case of a common outreach model, the “scientist in the classroom,” the study examines what benefits may be realized for each participant group and how they are achieved. We find that K–12 students are engaged in authentic, hands-on activities that generate interest in science and new views of science and scientists. Teachers learn new science content and new ways to teach it, and value collegial support of their professional work. Graduate student scientists, who are the program presenters, gain teaching and other skills, greater understanding of education and diversity issues, confidence and intrinsic satisfaction, and career benefits. A few negative outcomes also are described. Program elements that lead to these benefits are identified both from the research findings and from insights of the program developer on program design and implementation choices. PMID:17339394

  19. Incorporating Science News Into Middle School Curricula: Current Events in the 21st Century Classroom

    NASA Astrophysics Data System (ADS)

    Dimaggio, E.

    2010-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance, especially in science when abstract concepts can often be incorrectly perceived as irrelevant, is important for student learning and retention. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the Haiti or Chile earthquakes in 2010), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief ‘teachable moments’-when student interest is high- provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, we are creating pre-packaged current event materials for middle school teachers in Arizona that align to state standards and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. Materials are assembled within approximately one week of the regional or global science event (e.g., volcanic eruptions, earthquakes) and may include a short slide show, maps, videos, pictures, and real-time data. A listserv is used to send biweekly emails to subscribed instructors. The email contains the current event topic, specific Arizona science standards addressed, and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach website and are archived. Early implementation efforts have been received positively by participating teachers. In one case

  20. A Breath of Fresh Air: Students' Perceptions of Interactions with African American Faculty

    ERIC Educational Resources Information Center

    Neville, Kathleen M.; Parker, Tara L.

    2017-01-01

    In this phenomenological study we relied on classroom observations and 22 in-depth interviews with students as they interacted with African American faculty. Findings reveal the meaning students made from these classroom interactions and the ways African American faculty, significantly and positively, influenced the student experience. More…