Science.gov

Sample records for after-heat removal system

  1. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    NASA Technical Reports Server (NTRS)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  2. Resistance and resilience of N and P cycling microbes in differently managed agricultural systems after heat perturbation

    NASA Astrophysics Data System (ADS)

    Singh, Priyashiela; Scow, Kate

    2013-04-01

    Agricultural management and resistance and resilience of microbial communities is key to long-term agricultural sustainability. Agricultural management practices impact soil through physical disturbance, inputs of fertilizers and pesticides, and cultivation of monoculture or low-diversity plant systems. Resistance and resilience of soil microbial communities to disturbance events is a topic of growing importance with predicted rising temperatures and large unpredictability in rainfall patterns associated with global climate change. Diverse microbial communities are essential for the sustainability of agriculture. Previous research has focused on the resistance of soil systems in relation to total microbial biomass but has ignored relationships with specific functional groups of microbes. Denitrifiers are key organisms in N cycling and these organisms control the pools of plant-available N in soil, while alkaline phosphatase is a key microbially produced enzyme involved in the regulation of pools of available phosphate. In this soil incubation experiment abundance of total bacteria and archaea were quantified along with denitrifying and alkaline phosphatase genes after subjecting differently managed agricultural soils to severe temperature perturbation (60 oC for 15 minutes). The organic treatment showed the lowest resistance and resilience in terms of total bacterial and archaeal abundance but was resilient in terms of respiration activity. The high input systems show lower resistance for key functional groups of N and P cycling organisms compared to low input systems. However, all of the differently managed soils have similar resilience and show higher levels of N cycling organisms and lower levels of P cycling organisms after 30 days compared to starting levels.

  3. Automatic alkaloid removal system.

    PubMed

    Yahaya, Muhammad Rizuwan; Hj Razali, Mohd Hudzari; Abu Bakar, Che Abdullah; Ismail, Wan Ishak Wan; Muda, Wan Musa Wan; Mat, Nashriyah; Zakaria, Abd

    2014-01-01

    This alkaloid automated removal machine was developed at Instrumentation Laboratory, Universiti Sultan Zainal Abidin Malaysia that purposely for removing the alkaloid toxicity from Dioscorea hispida (DH) tuber. It is a poisonous plant where scientific study has shown that its tubers contain toxic alkaloid constituents, dioscorine. The tubers can only be consumed after it poisonous is removed. In this experiment, the tubers are needed to blend as powder form before inserting into machine basket. The user is need to push the START button on machine controller for switching the water pump ON by then creating turbulence wave of water in machine tank. The water will stop automatically by triggering the outlet solenoid valve. The powders of tubers are washed for 10 minutes while 1 liter of contaminated water due toxin mixture is flowing out. At this time, the controller will automatically triggered inlet solenoid valve and the new water will flow in machine tank until achieve the desire level that which determined by ultra sonic sensor. This process will repeated for 7 h and the positive result is achieved and shows it significant according to the several parameters of biological character ofpH, temperature, dissolve oxygen, turbidity, conductivity and fish survival rate or time. From that parameter, it also shows the positive result which is near or same with control water and assuming was made that the toxin is fully removed when the pH of DH powder is near with control water. For control water, the pH is about 5.3 while water from this experiment process is 6.0 and before run the machine the pH of contaminated water is about 3.8 which are too acid. This automated machine can save time for removing toxicity from DH compared with a traditional method while less observation of the user. PMID:24783795

  4. Hot Spot Removal System: System description

    SciTech Connect

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  5. System for Removing Pollutants from Incinerator Exhaust

    NASA Technical Reports Server (NTRS)

    Wickham, David t.; Bahr, James; Dubovik, Rita; Gebhard, Steven C.; Lind, Jeffrey

    2008-01-01

    A system for removing pollutants -- primarily sulfur dioxide and mixed oxides of nitrogen (NOx) -- from incinerator exhaust has been demonstrated. The system is also designed secondarily to remove particles, hydrocarbons, and CO. The system is intended for use in an enclosed environment, for which a prior NOx-and-SO2-removal system designed for industrial settings would not be suitable.

  6. Space Station trash removal system

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1993-01-01

    A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.

  7. High removal rate laser-based coating removal system

    DOEpatents

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  8. Designing Bioretention Systems to Improve Nitrogen Removal

    EPA Science Inventory

    Bioretention systems effectively remove many stormwater stressors, including oil/grease, heavy metals, phosphorus, and ammonium. However, reported nitrate removal performance is highly variable. Bioretention media is typically coarse-grained with low organic matter content, which...

  9. High removal rate laser-based coating removal system

    SciTech Connect

    Matthews, D.L.; Celliers, P.M.; Hackel, L.; Da Silva, L.B.; Dane, C.B.; Mrowka, S.

    1999-11-16

    A compact laser system is disclosed that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1,000 ft{sup 2}/hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  10. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  11. OPERATION OF SMALL SCALE URANIUM REMOVAL SYSTEMS

    EPA Science Inventory

    The design and Operation of a small full-scale ion exchange system used to remove uranium from well water in the foothills west of Denver, Colo., are described. onsistent removal of uranium was accomplished by anion exchange treatment at a reasonable cost. ecause of a lack of cle...

  12. Removable Window System for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Grady, James P. (Inventor)

    2015-01-01

    A window system for a platform comprising a window pane, a retention frame, and a biasing system. The window pane may be configured to contact a sealing system. The retention frame may be configured to contact the sealing system and hold the window pane against the support frame. The biasing system may be configured to bias the retention frame toward the support frame while the support frame and the retention frame are in a configuration that holds the window pane. Removal of the biasing system may cause the retention frame and the window pane to be removable.

  13. System for removal of arsenic from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  14. Design of nutrient removal activated sludge systems.

    PubMed

    Manga, J; Ferrer, J; Seco, A; Garcia-Usach, F

    2003-01-01

    A mechanistic mathematical model for nutrient and organic matter removal was used to describe the behavior of a nitrification denitrification enhanced biological phosphorus removal (NDEBPR) system. This model was implemented in a user-friendly software DESASS (design and simulation of activated sludge systems). A 484-L pilot plant was operated to verify the model results. The pilot plant was operated for three years over three different sludge ages. The validity of the model was confirmed with data from the pilot plant. Also, the utility of DESASS as a valuable tool for designing NDEBPR systems was confirmed. PMID:12906279

  15. Advanced CO2 Removal and Reduction System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.

    2011-01-01

    An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.

  16. Radiological/biological/aerosol removal system

    DOEpatents

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  17. IRON REMOVAL PROCESSES: DESIGN OF NEW SYSTEMS

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water also have iron in their water. As a result, arsenic treatment at these sites will most likely b...

  18. Industrial laser-based coatings removal systems

    NASA Astrophysics Data System (ADS)

    Freiwald, David A.; Peebles, Henry C.; Case, Roger P.

    1998-09-01

    Industrial-cleaning-rate laser systems have been built and tested for removing various types of coatings, such as rad- contaminated coatings, non-rad but hazmat-contaminated coatings (e.g., Pb-based paint), and non-hazardous coatings from various types of substrates such as concrete, metals, and composite materials.

  19. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM

    SciTech Connect

    Unknown

    2000-09-15

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

  20. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    BREHM, W.F.

    2003-01-01

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  1. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  2. Pentek metal coating removal system: Baseline report

    SciTech Connect

    1997-07-31

    The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  3. Pegasus International, Inc. coating removal systems

    SciTech Connect

    1998-02-01

    The Pegasus Coating Removal System (PCRS) was demonstrated at Florida International University (FIU) where it was being evaluated for efficiency and cost. In conjunction with the FIU testing demonstration, a human factors assessment was conducted to assess the hazards and associated safety and health issues of concern for workers utilizing this technology. The PCRS is a chemical paste that is applied to the surface using a brush, roller, or airless sprayer. After the type of PCRS, thickness, and dwell time have been determined, a laminated backed material is placed on top of the chemical paste to slow down the drying process and to provide a mechanism to strip-off the chemical. After the dwell time is reached, the chemical substrate can be removed. Scrapers may be used to break-loose the layers as necessary or to break-loose the layers that are not removed when the laminated paper is picked up. Residue may also be cleaned off of the surface with a damp sponge with an agitating motion, absorbent sponges, or a vacuum, as needed. The paint and removal agent is then placed in drums for disposal at a later time. During the assessment sampling was conducted for organic vapors and general observational techniques were conducted for ergonomics. Recommendations for improved worker safety and health during application and removal of the PCRS include: (1) work practices that reflect avoidance of exposure or reducing the risk of exposure; (2) assuring all PPE and equipment are compatible with the chemicals being used; (3) work practices that reduce the worker`s need to walk on the slippery surface caused by the chemical or the use of special anti-slip soles; (4) careful control of overspray (if a spray application is used); and (5) the use of ergonomically designed long-handled tools to apply and remove the chemical (to alleviate some of the ergonomic concerns).

  4. West Valley waste removal system study

    SciTech Connect

    Janicek, G P

    1981-04-01

    This study addresses the specific task of removing high-level wastes from underground tanks at Western New York Nuclear Center and delivering them to an onsite waste solidification plant. It begins with a review of the design and construction features of the waste storage tanks pertinent to the waste removal task with particular emphasis on the unique and complex tank internals which severely complicate the task of removal. It follows with a review of tank cleaning techniques used and under study at both Hanford and Savannah River and previous studies proposing the use of these techniques at West Valley. It concludes from these reviews that existing techniques are not directly transferable to West Valley and that a new approach is required utilizing selected feature and attributes from existing methodology. The study also concludes, from an investigation of the constraints imposed by the processing facility, that waste removal will be intermittent, requiring batch transfer over the anticipated 3 years of processing operations. Based on these reviews and conclusions, the study proposes that the acid waste be processed first and that one of the 15,000-gallon acid tanks then be used for batch feeding the neutralized waste. The proposed system would employ commercially available pumping equipment to transfer the wastes from the batch tank to processing via existing process piping. A commercially available mixed-flow pump and eight turbine pumps would homogenize the neutralized waste in conjunction with eight custom-fabricated sluicers for periodic transfer to the batch tank.

  5. Nitrogen removal in recirculated duckweed ponds system.

    PubMed

    Benjawan, L; Koottatep, T

    2007-01-01

    Duckweed-based ponds (DWBPs) have the potential for nitrogen (N) removal from wastewater; however, operational problems such as duckweed die-off regularly occur. In this study, effluent recirculation was applied to the DWBPs to solve the above problem as well as to investigate N removal mechanisms. Two pilot scale recirculated DWBPs were employed to treat municipal wastewater. The average removal efficiencies for TN, TKN and NH4-N were 75%, 89% and 92%, respectively at TN loading of 1.3 g/m2.d and were 73%, 74% and 76%, respectively at TN loading of 3.3 g/m2.d. The effluent of the system under both operational conditions had stable quality and met the effluent standard. Duckweed die-off was not observed during the study, which proves the system stability and effluent recirculation which is thought to be a reason. N-mass balance revealed that nitrification-denitrification and duckweed uptake play major roles in these recirculated DWBPs. The rates of nitrification-denitrification were increased as TN loading was higher, which might be an influence from an abundance of N and a suitable condition. The rates of N uptake by duckweed were found similar and did not depend on the higher TN loading applied, as the duckweed has limited capacity to assimilate it. PMID:17591202

  6. TMI defueling project fuel debris removal system

    SciTech Connect

    Burdge, B.

    1992-08-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

  7. TMI defueling project fuel debris removal system

    SciTech Connect

    Burdge, B.

    1992-01-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

  8. K basins sludge removal sludge pretreatment system

    SciTech Connect

    Chang, H.L.

    1997-06-12

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08.

  9. BOA: Pipe asbestos insulation removal robot system

    SciTech Connect

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-12-31

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  10. Expert systems guide biological phosphorus removal

    SciTech Connect

    Krichten, D.J.; Wilson, K.D.; Tracy, K.D. )

    1991-10-01

    There is a large body of knowledge regarding optimum control strategies for new secondary wastewater treatment technology using an anaerobic selector to provide biological phosphorus removal. However, because the selector technology is new and the concepts differ somewhat from those used in conventional activated sludge wastewater treatment, a method of communicating this knowledge to plant operators is needed. Traditional methods such as classroom training and operating manuals are of limited effectiveness. The commonplace availability and low cost of the personal computer (PC) makes it practical to use a computer program to communicate the type of information required to control a wastewater treatment plant. Knowledge-based systems technology, commonly referred to as expert systems (ES) technology, is easy to use, provides useful information regarding a consistent control strategy, relieves the anxiety associated with learning a new process,' and provides instruction for inexperienced personnel. ES technology does not require special formatted input and is therefore easily accessible. All information required by the program is readily available through routine laboratory analysis, common plant instrumentation, or direct user observation. The program was designed for all levels of computer users and will run on all IBM-compatible or Apple MacIntosh systems.

  11. Passive shut-down heat removal system

    DOEpatents

    Hundal, Rolv; Sharbaugh, John E.

    1988-01-01

    An improved shut-down heat removal system for a liquid metal nuclear reactor of the type having a vessel for holding hot and cold pools of liquid sodium is disclosed herein. Generally, the improved system comprises a redan or barrier within the reactor vessel which allows an auxiliary heat exchanger to become immersed in liquid sodium from the hot pool whenever the reactor pump fails to generate a metal-circulating pressure differential between the hot and cold pools of sodium. This redan also defines an alternative circulation path between the hot and cold pools of sodium in order to equilibrate the distribution of the decay heat from the reactor core. The invention may take the form of a redan or barrier that circumscribes the inner wall of the reactor vessel, thereby defining an annular space therebetween. In this embodiment, the bottom of the annular space communicates with the cold pool of sodium, and the auxiliary heat exchanger is placed in this annular space just above the drawn-down level that the liquid sodium assumes during normal operating conditions. Alternatively, the redan of the invention may include a pair of vertically oriented, concentrically disposed standpipes having a piston member disposed between them that operates somewhat like a pressure-sensitive valve. In both embodiments, the cessation of the pressure differential that is normally created by the reactor pump causes the auxiliary heat exchanger to be immersed in liquid sodium from the hot pool. Additionally, the redan in both embodiments forms a circulation flow path between the hot and cold pools so that the decay heat from the nuclear core is uniformly distributed within the vessel.

  12. REMOVAL OF METALS IN COMBINED TREATMENT SYSTEMS

    EPA Science Inventory

    This project assessed the variables influencing the removal of eight metals through combined industrial-municipal treatment plants. The eight metals investigated were: aluminum, cadmium, chromium, copper, iron, lead, nickel, and zinc. The metals were studied at subtoxic influent ...

  13. Software Configuration Management Plan for the Sodium Removal System

    SciTech Connect

    HILL, L.F.

    2000-03-06

    This document establishers the Software Configuration Management Plan (SCMP) for the software associated with the control system of the Sodium Removal System (SRS) located in the Interim Examination and Maintenance (IEM Cell) Facility of the FFTF Flux Test.

  14. Fluidized bed gasification ash reduction and removal system

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  15. Wash water solids removal system study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    During wash water purification, surfactants tend to precipitate and foul the RO membranes, causing water flux decline and loss of salt rejection. The use of 165 to 190 ppm ferric chloride and optionally 0.25 to 1.0 ppm polymeric flocculate precipitates 92 to 96 percent of the surfactant from an Olive Leaf Soap based wash water. Crossflow filtration and pressure filtration yield good soap rejection at high water flux rates. Post-treatment of the chemically pretreated and filtered wash water with activated charcoal removes the residual soap down to an undetectable level.

  16. Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Trinh, Diep; Gostowski, Rudy; King, Eric; Mattox, Emily M.; Watson, David; Thomas, John

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the carbon dioxide (CO2) removal hardware design and sorbent screening and characterization effort in support of the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project within the AES program. A companion paper discusses development of atmosphere revitalization models and simulations for this project.

  17. [Removal of Phosphate by Calcite in Open-System].

    PubMed

    Li, Zhen-xuan; Diao, Jia-yong; Huang, Li-dong; Chen, Yan-fan; Liu, Da-gang; Xu, Zheng-wen

    2015-12-01

    Batch methods were deployed to study the removal of phosphate by calcite in an open-system. Results showed that: (1) The pre-equilibrium process of calcite in open system could be achieved within 24 hours (2) The kinetic results showed that, at initial concentration of 0.5 mg · L⁻¹, the phosphate removal was almost completed within 10 hours of the first phase. The observation may be attributed to surface adsorption. At initial concentration of 2.5 mg · L⁻¹, the phosphate removal was mainly carried out by the precipitation of phosphate at later stage of the process; (3) At initial concentration of ≤ 2.5 mg · L⁻¹ setting 10 h as reaction time, the phosphate removal process was described well by the Langmuir model. It is hypothesized that surface adsorption was the principal removal way of phosphate; (4) With the addition of phthalate, at initial concentration of < 2.5 mg · L⁻¹, the phosphate removal rate experienced a small decrease. That was because phosphate was mainly removed by surface adsorption, and thus, phthalate was a competitor to phosphate for the same adsorption site. The phosphate removal rate increased a little at initial concentration of > 2.5 mg · L⁻¹, this was because the phosphate precipitation was reinforced by the increase of calcium concentration, which was caused by phthalate addition. PMID:27011989

  18. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system.

    PubMed

    Wang, Yi; Zheng, Shu-Jian; Pei, Li-Ying; Ke, Li; Peng, Dang-Cong; Xia, Si-Qing

    2014-01-01

    The uncontrolled release of nutrients from waste sludge results in nitrogen and phosphorus overloading in wastewater treatment plants when supernatant is returned to the inlet. A controlled release, recovery and removal of nutrient from the waste sludge of a Biological Nutrient Removal system (BNR) are investigated. Results showed that the supernatant was of high mineral salt, high electrical conductivity and poor biodegradability, in addition to high nitrogen and phosphorus concentrations after the waste sludge was hydrolysed through sodium dodecyl sulphate addition. Subsequently, over 91.8% of phosphorus and 10.5% of nitrogen in the supernatants were extracted by the crystallization method under the conditions of 9.5 pH and 400 rpm. The precipitate was mainly struvite according to X-ray diffraction and morphological examination. A multistage anoxic-oxic Moving Bed Biofilm Reactor (MBBR) was then adopted to remove the residual carbon, nitrogen and phosphorus in the supernatant. The MBBR exhibited good performance in simultaneously removing carbon, nitrogen and phosphorus under a short aeration time, which accounted for 31.25% of a cycle. Fluorescence in situ hybridization analysis demonstrated that nitrifiers presented mainly in floc, although higher extracellular polymeric substance content, especially DNA, appeared in the biofilm. Thus, a combination of hydrolysis and precipitation, followed by the MBBR, can complete the nutrient release from the waste sludge of a BNR system, recovers nutrients from the hydrolysed liquor and removes nutrients from leftovers effectively. PMID:25176308

  19. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  20. Characterization of VPS-W coating layers on molybdenum after heat exposure

    SciTech Connect

    Cho, Gue Serb Choe, Kyeong Hwan; Choi, Soon Yeol

    2013-12-15

    Graphical abstract: - Highlights: • W powders were successfully coated on molybdenum using VPS coating technique. • W powders were completely changed into recrystallized grains after heat exposure. • VPS-W coating layer shows good adhesion to the Mo substrate after heat exposure due to the interdiffusion between W and Mo. • W-coated Mo material will extend the service life of hot-zone parts for high-temperature furnace applications. - Abstract: Tungsten (W) coating layers were successfully deposited using a vacuum plasma spraying (VPS) technique on a molybdenum (Mo) substrate. Tungsten powder with a median size of 10 μm was applied to prepare coatings via a plasma spray system. For the VPS process, argon and hydrogen were used as plasma-forming gases, and the coatings were deposited in 35 mbar vacuum pressure. A coating with a thickness of 300 μm was obtained, and some unmelted W powders were observed in the coating layer. This heat exposure experiment was performed in a sapphire crystal growing furnace at 2100 °C up to 110 h. After heat exposure, the VPS-W coating layers were soundly bonded with the Mo substrate due to the interdiffusion between W and Mo.

  1. Orbital debris removal and salvage system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Four Texas A&M University projects are discussed. The first project is a design to eliminate a majority of orbital debris. The Orbital Debris and Salvage System will push the smaller particles into lower orbits where their orbits will decay at a higher rate. This will be done by momentum transfer via laser. The salvageable satellites will be delivered to the Space Station by an Orbital Transfer Vehicle. The rest of the debris will be collected by Salvage I. The second project is the design of a space based satellite system to prevent the depletion of atmospheric ozone. The focus is on ozone depletion in the Antarctic. The plan is to use an orbiting solar array system designed to transmit microwaves at a frequency of 22 GHz over the region in order to dissipate polar stratospheric clouds that form during the months beginning in August and ending in October. The third project, Project Poseidon, involves a conceptual design of a space based hurricane control system consisting of a network of 21 low-orbiting laser platforms arranged in three rings designed to heat the upper atmosphere of a developing tropical depression. Fusion power plants are proposed to provide power for the lasers. The fourth project, Project Donatello, involves a proposed Mars exploration initiative for the year 2050. The project is a conceptual design for a futuristic superfreighter that will transport large numbers of people and supplies to Mars for the construction of a full scale scientific and manufacturing complex.

  2. Laser Systems for Orbital Debris Removal

    NASA Astrophysics Data System (ADS)

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-01

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called "LIFE" laser system. Because a single "LIFE" beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  3. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-08

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  4. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A

    2010-02-05

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  5. Development of a regenerable metal oxide CO removal system

    NASA Technical Reports Server (NTRS)

    Cusick, Robert J.

    1990-01-01

    A regenerable metal oxide carbon dioxide (CO2) removal system was developed to replace the current means of a nonreusable chemical, lithium hydroxide, for removing the metabolic CO2 of an astronaut in a space suit. Testing indicates that a viable low-volume metal oxide concept can be used in the portable life support system for CO2 removal during Space Station extravehicular activity (EVA). A canister of nearly the same volume as that used for the Space Shuttle, containing 0.10 cu ft of silver-oxide-based pellets, was tested; test data analysis indicates that 0.18 cu ft of the metal oxide will result in an 8-hour EVA capability. The testing suggests that the metal oxide technology offers a low-volume approach for a reusable CO2 removal concept applicable for at least 40 EVA missions. The development and testing of the breadboard regeneration package is also described.

  6. Operability test procedure [Tank] 241-SY-101 equipment removal system

    SciTech Connect

    Mast, J.C.

    1994-12-08

    The 241-SY-101 equipment removal system (ERS) consists of components, equipment, instrumentation and procedures that will provide the means to disconnect, retrieve, contain, load and transport the Mitigation Pump Assembly (MPA) from waste Tank 241-SY-101 to the Central Waste Complex (CWC). The Operability Test Procedure (OTP) will test the interfaces between ERS components and will rehearse the procedure for MPA removal and transportation to the extent they can be mocked-up at the CTF (Cold Test Facility). At the conclusion of the OTP, the ERS components and equipment will be removed from the CTF, entered into the Component Based Recall System (CBRS), and stored until needed for actual MPA removal and transportation.

  7. Phosphorus removal from secondary effluents through integrated constructed treatment system.

    PubMed

    Xiong, Jibing; Qin, Yong; Mahmood, Qaisar; Liu, Hanhu; Yang, Dejun

    2011-01-01

    The treatment capacity of an integrated constructed treatment system (CTS) was explored which was designed to reduce phosphorus (P) from secondary effluents. The integrated CTS was combined with vertical-flow constructed wetland, floating bed and sand filter. The vertical wetland was filled from the bottom to the top with gravels, steel slag and peat. Vetiverzizanioides (L.) Nash was selected to grow in the vertical constructed wetland while Coixlacrymajobi L. was grown in floating bed. The results suggested that integrated CTS displayed excellent removal efficiency for chemical oxygen demand (COD), dissolved phosphorus (DP), and total phosphorus (TP). The average COD removal efficiency of the integrated CTS was 90.45% after 40 days of operation, the average DP and TP removal efficiencies of the integrated CTS were 97.43% and 96.40%, respectively. The integrated CTS has good potential in removing COD as well as P from secondary effluents. PMID:21570097

  8. CPP-603 Chloride Removal System Decontamination and Decommissioning. Final report

    SciTech Connect

    Moser, C.L.

    1993-02-01

    The CPP-603 (annex) Chloride Removal System (CRS) Decontamination and Decommissioning (D&D) Project is described in this report. The CRS was used for removing Chloride ions and other contaminants that were suspended in the waters of the underwater fuel storage basins in the CPP-603 Fuel Receiving and Storage Facility (FRSF) from 1975 to 1981. The Environmental Checklist and related documents, facility characterization, decision analysis`, and D&D plans` were prepared in 1991. Physical D&D activities were begun in mid summer of 1992 and were completed by the end of November 1992. All process equipment and electrical equipment were removed from the annex following accepted asbestos and radiological contamination removal practices. The D&D activities were performed in a manner such that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) occurred.

  9. Debris Removal Project K West Canister Cleaning System Performance Specification

    SciTech Connect

    FARWICK, C.C.

    1999-12-09

    Approximately 2,300 metric tons Spent Nuclear Fuel (SNF) are currently stored within two water filled pools, the 105 K East (KE) fuel storage basin and the 105 K West (KW) fuel storage basin, at the U.S. Department of Energy, Richland Operations Office (RL). The SNF Project is responsible for operation of the K Basins and for the materials within them. A subproject to the SNF Project is the Debris Removal Subproject, which is responsible for removal of empty canisters and lids from the basins. Design criteria for a Canister Cleaning System to be installed in the KW Basin. This documents the requirements for design and installation of the system.

  10. A review of virus removal in wastewater treatment pond systems.

    PubMed

    Verbyla, Matthew E; Mihelcic, James R

    2015-03-15

    Wastewater treatment ponds (lagoons) are one of the most common types of technologies used for wastewater management worldwide, especially in small cities and towns. They are particularly well-suited for systems where the effluent is reused for irrigation. However, the efficiency of virus removal in wastewater treatment pond systems is not very well understood. The main objective of this paper is to critically review the major findings related to virus removal in wastewater treatment pond systems and to statistically analyze results reported in the literature from field studies on virus removal in these systems. A comprehensive analysis of virus removal reported in the literature from 71 different wastewater treatment pond systems reveals only a weak to moderate correlation of virus removal with theoretical hydraulic retention time. On average, one log10 reduction of viruses was achieved for every 14.5-20.9 days of retention, but the 95th percentile value of the data analyzed was 54 days. The mechanisms responsible for virus removal in wastewater treatment ponds were also reviewed. One recent finding is that sedimentation may not be a significant virus removal mechanism in some wastewater ponds. Recent research has also revealed that direct and indirect sunlight-mediated mechanisms are not only dependent on pond water chemistry and optics, but also on the characteristics of the virus and its genome. MS2 coliphage is considered to be the best surrogate for studying sunlight disinfection in ponds. The interaction of viruses with particles, with other microorganisms, and with macroinvertebrates in wastewater treatment ponds has not been extensively studied. It is also unclear whether virus internalization by higher trophic-level organisms has a protective or a detrimental effect on virus viability and transport in pond systems. Similarly, the impact of virus-particle associations on sunlight disinfection in ponds is not well understood. Future research should focus on

  11. Designing Bioretention Systems to Improve Nitrogen Removal - poster

    EPA Science Inventory

    Rain gardens, also referred to as bioretention systems, are designed primarily to infiltrate stormwater flow and reduce surface runoff and peak flows to receiving streams. Additionally, they are known to remove stressors from urban stormwater runoff, including oil and grease, pho...

  12. Experimental study for carbon dioxide removal system in space station

    SciTech Connect

    Etoh, T.; Nihei, T.; Otsuji, K.; Satoh, S.; Hatano, S.

    1987-01-01

    As the result of the human metabolism in the space station, the carbon dioxide is discharged into the cabin atmosphere. It is indispensable to remove the carbon dioxide and keep it below the allowable level for the life support in a closed environment. The regenerative carbon dioxide removal system is necessary for the space station to decrease the life-cycle cost. The Solid Amine Water Desorbed (SAWD) system is considered as a competitive option among several candidate systems. In the SAWD process, the carbon dioxide gas is adsorbed by the ion-exchange-type solid amine, which is bedded in the canisters, and desorbed by heating the solid amine with the direct steam flow. The adsorption and desorption stage of the canisters are proceeded alternatively by the automatic control. For the application in the space station, the SAWD system shall embody less resources as well as high performance and reliability. In the space station operated on the orbit for long periods of time, the replenishment cost of the resupplies using the Space Transportation System (STS) is very expensive. Therefore, the self-sufficient system should be developed by making the material cycle closed in the space station. Especially, the closed cycle of the materials such as H/sub 2/0, O/sub 2/, N/sub 2/ and Carbon (i.e., foods) should be studied. For the extended operational capability of the Japanese Experimental Module (JEM), the closed cycle of oxygen is investigated. The system combined with CO/sub 2/ removal, CO/sub 2/ reduction and O/sub 2/ generation is studied as the candidate technology for the oxygen closed cycle. The fundamental investigation and testing regarding CO/sub 2/ removal system were performed. As the result, it was confirmed that the solid amine water desorbed (SAWD) system is very excellent.

  13. BOA: Pipe-asbestos insulation removal robot system

    SciTech Connect

    Schempf, H.; Bares, J.; Mutschler, E.

    1995-12-31

    This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY `95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee.

  14. Can a safeguards accountancy system really detect an unauthorized removal

    SciTech Connect

    Ehinger, M.H.; Ellis, J.H.

    1981-11-01

    Theoretical investigations and system studies indicate safeguards material balance data from reprocessing plants can be used to detect unauthorized removals. Plant systems have been modeled and simulated data used to demonstrate the techniques. But how sensitive are the techniques when used with actual plant data. What is the effect of safeguards applications on plant operability. Can safeguards be acceptable to plant operators, and are there any benefits to be derived. The Barnwell Nuclear Fuel Plant (BNFP) has been devoted to answering these and other questions over the past several years. A computerized system of near-real-time accounting and in-process inventory has been implemented and demonstrated during actual plant test runs. Measured inventories and hourly material balance closures have been made to assess safeguards in an operating plant application. The tests have culminated in actual removals of material from the operating plant to investigate the response and measure the sensitivity of the safeguards and data evaluation system.

  15. CLASSIFICATION OF THE MGR SUBSURFACE WATER COLLECTION/REMOVAL SYSTEM

    SciTech Connect

    R.J. Garrett

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface water collection/removal system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  16. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  17. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James

    1997-01-01

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  18. Pentek metal coating removal system: Baseline report; Greenbook (chapter)

    SciTech Connect

    1997-07-31

    The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  19. Metals removal and recovery in bioelectrochemical systems: A review.

    PubMed

    Nancharaiah, Y V; Venkata Mohan, S; Lens, P N L

    2015-11-01

    Metal laden wastes and contamination pose a threat to ecosystem well being and human health. Metal containing waste streams are also a valuable resource for recovery of precious and scarce elements. Although biological methods are inexpensive and effective for treating metal wastewaters and in situ bioremediation of metal(loid) contamination, little progress has been made towards metal(loid) recovery. Bioelectrochemical systems are emerging as a new technology platform for removal and recovery of metal ions from metallurgical wastes, process streams and wastewaters. Biodegradation of organic matter by electroactive biofilms at the anode has been successfully coupled to cathodic reduction of metal ions. Until now, leaching of Co(II) from LiCoO2 particles, and removal of metal ions i.e. Co(III/II), Cr(VI), Cu(II), Hg(II), Ag(I), Se(IV), and Cd(II) from aqueous solutions has been demonstrated. This article reviews the state of art research of bioelectrochemical systems for removal and recovery of metal(loid) ions and pertaining removal mechanisms. PMID:26116446

  20. Removable, hermetically-sealing, filter attachment system for hostile environments

    DOEpatents

    Mayfield, Glenn L [Richland, WA

    1983-01-01

    A removable and reusable filter attachment system. A filter medium is fixed o, and surrounded by, a filter frame having a coaxial, longitudinally extending, annular rim. The rim engages an annular groove which surrounds the opening of a filter housing. The annular groove contains a fusible material and a heating mechanism for melting the fusible material. Upon resolidifying, the fusible material forms a hermetic bond with the rim and groove. Remelting allows detachment and replacement of the filter frame.

  1. BOA II: pipe-asbestos insulation removal system

    SciTech Connect

    Schempf, H.; Mutschler; Boehmke, S.; Chemel, B.; Piepgras, C.

    1996-12-31

    BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to high labor costs and high level of radioactive contamination, making manual removal costly and inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  2. Microbial Removals by a Novel Biofilter Water Treatment System

    PubMed Central

    Wendt, Christopher; Ives, Rebecca; Hoyt, Anne L.; Conrad, Ken E.; Longstaff, Stephanie; Kuennen, Roy W.; Rose, Joan B.

    2015-01-01

    Two point-of-use drinking water treatment systems designed using a carbon filter and foam material as a possible alternative to traditional biosand systems were evaluated for removal of bacteria, protozoa, and viruses. Two configurations were tested: the foam material was positioned vertically around the carbon filter in the sleeve unit or horizontally in the disk unit. The filtration systems were challenged with Cryptosporidium parvum, Raoultella terrigena, and bacteriophages P22 and MS2 before and after biofilm development to determine average log reduction (ALR) for each organism and the role of the biofilm. There was no significant difference in performance between the two designs, and both designs showed significant levels of removal (at least 4 log10 reduction in viruses, 6 log10 for protozoa, and 8 log10 for bacteria). Removal levels meet or exceeded Environmental Protection Agency (EPA) standards for microbial purifiers. Exploratory test results suggested that mature biofilm formation contributed 1–2 log10 reductions. Future work is recommended to determine field viability. PMID:25758649

  3. Pentek metal coating removal system: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The Pentek metal coating removal system consists of the ROTO-PEEN Scaler, CORNER-CUTTER(R), and VAC-PAC(R). The system is designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M ROTO-PEEN tungsten carbide cutters, while the CORNER-CUTTER(R) uses solid needles for descaling activities. These are used with the VAC-PAC(R) vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure was minimal, but noise exposure was significant. Further testing for each exposure is recommended, since the outdoor environment where the testing demonstration took place may skew the results. It is feasible that dust and noise levels will be higher in an enclosed operating environment. Other areas of concern found were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  4. Space debris removal system using a small satellite

    NASA Astrophysics Data System (ADS)

    Nishida, Shin-Ichiro; Kawamoto, Satomi; Okawa, Yasushi; Terui, Fuyuto; Kitamura, Shoji

    2009-07-01

    Since the number of satellites in Earth orbit is steadily increasing, space debris will eventually pose a serious problem to near-Earth space activities if left unchecked, and so effective measures to mitigate it are becoming urgent. Equipping new satellites with an end-of-life de-orbit or orbital lifetime reduction capability could be an effective means of reducing the amount of debris by reducing the probability of the collisions between objects. On the other hand, the active removal of space debris and the retrieval of failed satellites by spacecraft are other possible measures. The Institute of Aerospace Technology, Japan Aerospace Exploration Agency (JAXA), is studying a micro-satellite system for active space debris removal, and is examining the applicability of electro-dynamic tether (EDT) technology as its high efficiency orbital transfer system. A small EDT package provides a possible means for lowering the orbits of objects without the need for propellant. Capture is indispensable for the retrieval of large space debris objects, and we propose a flexible robot arm for this purpose. This paper discusses a space debris removal satellite system and describes the development status of prototypes of the EDT package and a new robot arm for capturing non-cooperative targets.

  5. Retrofitting activated sludge systems to intermittent aeration for nitrogen removal.

    PubMed

    Hanhan, O; Artan, N; Orhon, D

    2002-01-01

    The paper provides the basis and the conceptual approach of applying process kinetics and modelling to the design of alternating activated sludge systems for retrofitting existing activated sludge plants to intermittent aeration for nitrogen removal. It shows the significant role of the two specific parameters, namely, the aerated fraction and the cycle time ratio on process performance through model simulations and proposes a way to incorporate them into a design procedure using process stoichiometry and mass balance. It illustrates the effect of these parameters, together with the sludge age, in establishing the balance between the denitrification potential and the available nitrogen created in the anoxic/aerobic sequences of system operation. PMID:12420968

  6. System Study: Residual Heat Removal 1998–2013

    SciTech Connect

    Schroeder, John Alton

    2015-02-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RHR results.

  7. Retrofitting SBR systems to nutrient removal in sensitive tourist areas.

    PubMed

    Tasli, R; Artan, N; Orhon, D

    2001-01-01

    Retrofitting of existing SBR systems for nutrient removal is evaluated and defined for small communities in sensitive coastal areas, with seasonal fluctuations in wastewater quantity and quality. The proposed approach is developed by means of basic process stoichiometry and verified using ASM2d. The efficiency of retrofitting is found to rely on the delicate balance between the overall sludge age, the initial settled sludge volume in the reactor, and the ratio of the initial volume to the feed volume in each cycle, a parameter corresponding to the recycle ratio in continuous systems. PMID:11496662

  8. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  9. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, Richard L.; Roof, David R.; Kikta, Thomas J.; Wilczynski, Rosemarie; Nilsen, Roy J.; Bacvinskas, William S.; Fodor, George

    1990-01-01

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  10. Emergency heat removal system for a nuclear reactor

    DOEpatents

    Dunckel, Thomas L.

    1976-01-01

    A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.

  11. Containment hydrogen removal system for a nuclear power plant

    SciTech Connect

    Callaghan, V.M.; Flynn, E.P.; Pokora, B.M.

    1984-02-07

    A hydrogen removal system (10) separates hydrogen from the containment atmosphere of a nuclear power plant using a hydrogen permeable membrane separator (30). Water vapor is removed by condenser (14) from a gas stream withdrawn from the containment atmosphere. The gas stream is then compressed by compressor (24) and cooled (28,34) to the operating temperature of the hydrogen permeable membrane separator (30). The separator (30) separates the gas stream into a first stream, rich in hydrogen permeate, and a second stream that is hydrogen depleted. The separated hydrogen is passed through a charcoal adsorber (48) to adsorb radioactive particles that have passed through the hydrogen permeable membrane (44). The hydrogen is then flared in gas burner (52) with atmospheric air and the combustion products vented to the plant vent. The hydrogen depleted stream is returned to containment through a regenerative heat exchanger (28) and expander (60). Energy is extracted from the expander (60) to drive the compressor (24) thereby reducing the energy input necessary to drive the compressor (24) and thus reducing the hydrogen removal system (10) power requirements.

  12. Nutrient removal by root zone treatment systems: a review.

    PubMed

    Sonavane, P G; Munavalli, G R; Ranade, S V

    2008-07-01

    The Root Zone Treatment System (RZTS) has been used widely for nutrient removal in European countries. In spite of having its more adaptability in tropical region like India its use to address nutrient induced issues in the country is very less. The lack of widely accepted data, non consensus of scientists over nutrient removal mechanism and inability to apply performance standards observed in other countries directly might have hampered the acceptance of this technology in India. A few technology assessment programs are being conducted in collaboration with other countries to engineer this technology but nutrient removal aspects are not essentially focused. In this context, there is need to direct lab scale research to identify potential wetland plants, bed media and comparative study of their combination specific performance under similar conditions. The field application of the data will help to understand variability in performance and disparities in the mechanism. The systems would be amended based on these studies to establish combination specific performance standards for typical Indian conditions. Maintenance strategy and optimization of design will help to foster the technology. The development strategy should give due consideration to the contributions of other countries so as to avoid repetition of work which will save time, money and efforts, and help for the real acceptance of RZTS in Indian conditions. PMID:19552081

  13. BOA: Asbestos pipe insulation removal robot system. Phase 1

    SciTech Connect

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  14. Final design of a space debris removal system

    NASA Technical Reports Server (NTRS)

    Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley

    1990-01-01

    The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.

  15. Radon removal by poe gac systems: Design, performance, and cost

    SciTech Connect

    Lowry, J.D.; Lowry, S.B.; Cline, J.K.

    1990-11-01

    The report summarizes previous research conducted by Lowry Engineering, Inc. (LEI), the Maine Department of Human Services, Division of Health Engineering, and the University of Maine, Department of civil Engineering, on the removal of Rn from drinking water supplies using granular activated carbon (GAC) in 121 point-of-entry (POE) applications. The primary focus of the work was an analysis of the existing treatment data collected over the past seven years at POE locations in 12 states. All but three systems treated private househuLd well supplies. In addition, two schools and one public water supply were included. In summary, the POE GAC treatment was very effective, with the exception of approximately 6 percent of the units that exhibited diminishing effectiveness over time. Ninety-four and 84 percent of all units exceeded 90 and 95 percent removal, respectively. The need for gamma shielding was evaluated and related to the raw water Rn level treated by the POE devices. While POE GAC installations were found to be effective, the use of GAC for Rn removal may be limited in the future to wells containing less than 5,000 to 10,000 pCi/L. This would result if the private residence desired to achieve the new MCL for Rn, which is expected to be set between 200 and 2,000 pCi/L.

  16. Ornamental plants for micropollutant removal in wetland systems.

    PubMed

    Macci, Cristina; Peruzzi, Eleonora; Doni, Serena; Iannelli, Renato; Masciandaro, Grazia

    2015-02-01

    The objective of this paper was to evaluate the efficiency of micropollutant removal, such as Cu, Zn, carbamazepine, and linear alkylbenzene sulfonates (LAS), through the use of a subsurface vertical flow constructed wetland system with ornamental plants. Zantedeschia aethiopica, Canna indica, Carex hirta, Miscanthus sinensis, and Phragmites australis were selected and planted in lysimeters filled up with gravel. The lysimeters were completely saturated with synthetic wastewater (N 280 mg L(-1), P 30 mg L(-1), Cu 3.6 mg L(-1), Zn 9 mg L(-1), carbamazepine 5 μg L(-1), linear alkylbenzene sulfonates 14 mg L(-1)), and the leaching water was collected for analysis after 15, 30, and 60 days in winter-spring and spring-summer periods. Nutrients (N and P) and heavy metals decreased greatly due to both plant activity and adsorption. C. indica and P. australis showed the highest metal content in their tissues and also the greatest carbamazepine and LAS removal. In these plants, the adsorption/degradation processes led to particularly high oxidative stress, as evidenced by the significantly high levels of ascorbate peroxidase activity detected. Conversely, Z. aethiopica was the less efficient plant in metal and organic compound removal and was also less stressed in terms of ascorbate peroxidase activity. PMID:24798922

  17. VecLoader HEPA Vacuum Insulation Removal System

    SciTech Connect

    None, None

    1999-09-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the deactivation and decommissioning (D&D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE’s Office of Science and Technology sponsors Large-Scale Demonstration Projects (LSDPs) at which developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to DOE’s projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, decreased costs and shortened schedules. The U.S. Department of Energy (DOE) Fernald Environmental Management Project’s (FEMP’s) Decontamination and Decommissioning (D&D) Plan requires that interior and exterior walls of buildings that are being demolished be disassembled and all insulating materials removed prior to demolition. This report provides a comparative analysis of the baseline manual insulation removal technique currently employed at the FEMP, with an innovative vacuum insulation removal system.

  18. System and method for removal of buried objects

    SciTech Connect

    Alexander, Robert G.; Crass, Dennis; Grams, William; Phillips, Steven J.; Riess, Mark

    2008-06-03

    The present invention is a system and method for removal of buried objects. According to one embodiment of the invention, a crane with a vibrator casing driver is used to lift and suspend a large diameter steel casing over the buried object. Then the casing is driven into the ground by the vibratory driver until the casing surrounds the buried object. Then the open bottom of the casing is sealed shut by injecting grout into the ground within the casing near its bottom. When the seal has cured and hardened, the top of the casing is lifted to retrieve the casing, with the buried object inside, from the ground.

  19. BOA: Pipe-asbestos insulation removal robot system

    SciTech Connect

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-10-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  20. FULL SCALE RADIUM REMOVAL SYSTEM FOR A SMALL COMMUNITY

    EPA Science Inventory

    A radium removal treatment plant was constructed for the small community of Redhill Forest in the central mountains of Colorado. The plant consists of iron removal using oxidation, filtration, and settling; radium and hardness removal using ion exchange; and radium removal from t...

  1. Process and system for removing impurities from a gas

    SciTech Connect

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  2. System Study: Residual Heat Removal 1998-2014

    SciTech Connect

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in the RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.

  3. A removable hybrid robot system for long bone fracture reduction.

    PubMed

    Wang, Tianmiao; Li, Changsheng; Hu, Lei; Tang, Peifu; Zhang, Lihai; Du, Hailong; Luan, Sheng; Wang, Lifeng; Tan, Yiming; Peng, Cheng

    2014-01-01

    In traditional long bone fracture reduction surgery, there are some drawbacks such as low accuracy, high radiation for surgeons and a risk of infection. To overcome these disadvantages, a removable hybrid robot system is developed, which integrates a removable series-parallel mechanism with a motor-double cylinder (MDC) driven mode. This paper describes the mechanism in detail, analyses the principle and the method of the fracture reduction, presents the surgical procedure, and verifies the reduction accuracy by experiments with bone models. The results are shown as follows. The mean deviations of the axial displacement and lateral displacement are 1.60mm and 1.26 mm respectively. The standard deviations are 0.69 mm and 0.30 mm. The mean deviations of the side angle and turn inward are 2.06° and 2.22° respectively. The standard deviations are 0.50° and 0.99°. This minimally invasive robot features high accuracy and zero radiation for surgeons, and is able to conduct fracture reduction for long bones. PMID:24211933

  4. Tank waste removal using a high pressure waterjet system

    SciTech Connect

    Randolph, J.D.; Rinker, M.W.; Summers, D.

    1996-10-01

    The Oak Ridge National Laboratory has several tank wastes that are currently stored in inactive tanks constructed of gunite concrete. A remediation program at ORNL and a development program at PNL and UMR are collaborating to develop a system that will utilize high pressure waterjet technology for cutting and dislodging sludge beds, and for conveyance of those materials to a treatment tank. This technology for waste removal has two major advantages. First, sludge will be retrieved from one or more high risk tanks, that is tanks with a high degree of uncertainty for failure, to a single treatment tank with lower risk. Second, sludges of similar nature will be consolidated for volume reduction. ORNL and PNL are currently pursuing this technology for waste removal and transport to a single immobilization treatment facility. The ORNL remediation program is known as the Gunite And Associated Tanks Treatability Study. The PNL development program is known as Retrieval Process Development and Enhancement. UMR is developing the waste dislodging/cutting tool. This paper will describe the waterjet technology for waste dislodging and conveyance of ORNL sludges from underground storage tanks.

  5. Dynamic simulation of sulfur-removal systems. Final report

    SciTech Connect

    Alexander, J.H.; Blake, T.R.; Brownell, D.H. Jr.; Henline, W.D.; Wilkins, D.E.

    1982-01-01

    A generalized computer simulation has been developed to predict the dynamic response of alternate gas absorption systems for selective removal of sulfur compounds or ammonia from fuel gas or synthesis gas produced from coal or other fossil fuels. The models use numerical methods based upon finite difference techniques to determine the spatial distribution of process variables within both the absorption and regeneration columns of such gas cleanup processes. The simulator may be applied to systems for selective gas absorption based on either chemical or physical principles. Examples of such systems include the Benfield process based on absorption by chemical reaction with an activated alkali carbonate solvent, and the Allied SELEXOL Solvent Process based on physical absorption as a result of partial pressure differences of the gas components above an organic solvent system. Simulations of either individual process units or an entire integrated plant can be performed. This computer program has specifically been structured to permit convenient flow sheet modification, as well as addition of new units. This research has emphasized the development of a general theoretical structure which can be easily modified by substituting alternate sets of data on the physicochemical properties of the appropriate liquid solvent. This model has been applied to Selexol Solvent Processes using both published and proprietary data on solvent properties. Test calculations have been performed to simulate open loop response of individual scrubber towers, and the complete system, to input composition and flow rate transients.

  6. RADIUM REMOVAL FOR A SMALL COMMUNITY WATER SUPPLY SYSTEM

    EPA Science Inventory

    In 1984, a radium removal treatment plant was constructed for the small community of Redhill Forest located in the central mountains of Colorado. The treatment plant consists of a process for removing iron and manganese ahead of an ion exchange process for the removal of radium. ...

  7. Expression of aquaporins in intestine after heat stroke

    PubMed Central

    Wang, Yuan-Hung; Liu, Tsung-Ta; Kung, Woon-Man; Chen, Chun-Chi; Wen, Ya-Ting; Lin, I-Chan; Huang, Chi-Chang; Wei, Li

    2015-01-01

    Heat stroke (HS) has been shown to induce intestinal barrier dysfunction during whole body hyperthermia. HS-induced intestinal permeability change may result from modulation of aquaporin (AQP) expression, which subsequently regulates water homeostasis. This study aimed to evaluate AQP expression in the intestine of rats with HS at different recovery time points. Sprague-Dawley (SD) rats were exposed to an ambient temperature of 40 ± 0.5°C until a maximum core temperature of 40.5°C was attained. The small intestine was surgically removed and histologically examined, and AQP expression was determined by reverse transcription polymerase chain reaction and immunohistochemical staining. H&E staining revealed those intestinal villi were destroyed from HS0 to HS1 and rebuilt from HS3 to HS12. We further stain with activated caspase 3 found expressed at HS0 and back to normal at HS3. Investigation of AQP mRNA expression identified 10 genes. PCR results of AQP1, 3, 7, 8, and 11 transcripts were significantly higher in the HS group than in the sham group. Immunohistochemical staining showed a more than 11-fold increase in AQP3 and 11 expressions at HS0. AQP1 and 8 increased at HS1 and AQP7 increased at HS3 compared with those in the sham group. In this study, we found HS induced jejunum damage and cell apoptosis. AQPs were upregulation/downregulation after HS in different time point suggested that water/glycerol transport was important when hyperthermia occurred. Furthermore, the biological function of the AQP needs more exploration in response to HS. PMID:26464618

  8. Expression of aquaporins in intestine after heat stroke.

    PubMed

    Wang, Yuan-Hung; Liu, Tsung-Ta; Kung, Woon-Man; Chen, Chun-Chi; Wen, Ya-Ting; Lin, I-Chan; Huang, Chi-Chang; Wei, Li

    2015-01-01

    Heat stroke (HS) has been shown to induce intestinal barrier dysfunction during whole body hyperthermia. HS-induced intestinal permeability change may result from modulation of aquaporin (AQP) expression, which subsequently regulates water homeostasis. This study aimed to evaluate AQP expression in the intestine of rats with HS at different recovery time points. Sprague-Dawley (SD) rats were exposed to an ambient temperature of 40 ± 0.5°C until a maximum core temperature of 40.5°C was attained. The small intestine was surgically removed and histologically examined, and AQP expression was determined by reverse transcription polymerase chain reaction and immunohistochemical staining. H&E staining revealed those intestinal villi were destroyed from HS0 to HS1 and rebuilt from HS3 to HS12. We further stain with activated caspase 3 found expressed at HS0 and back to normal at HS3. Investigation of AQP mRNA expression identified 10 genes. PCR results of AQP1, 3, 7, 8, and 11 transcripts were significantly higher in the HS group than in the sham group. Immunohistochemical staining showed a more than 11-fold increase in AQP3 and 11 expressions at HS0. AQP1 and 8 increased at HS1 and AQP7 increased at HS3 compared with those in the sham group. In this study, we found HS induced jejunum damage and cell apoptosis. AQPs were upregulation/downregulation after HS in different time point suggested that water/glycerol transport was important when hyperthermia occurred. Furthermore, the biological function of the AQP needs more exploration in response to HS. PMID:26464618

  9. Conceptual design of an aircraft automated coating removal system

    SciTech Connect

    Baker, J.E.; Draper, J.V.; Pin, F.G.; Primm, A.H.; Shekhar, S.

    1996-05-01

    Paint stripping of the U.S. Air Force`s large transport aircrafts is currently a labor-intensive, manual process. Significant reductions in costs, personnel and turnaround time can be accomplished by the judicious use of automation in some process tasks. This paper presents the conceptual design of a coating removal systems for the tail surfaces of the C-5 plane. Emphasis is placed on the technology selection to optimize human-automation synergy with respect to overall costs, throughput, quality, safety, and reliability. Trade- offs between field-proven vs. research-requiring technologies, and between expected gain vs. cost and complexity, have led to a conceptual design which is semi-autonomous (relying on the human for task specification and disturbance handling) yet incorporates sensor- based automation (for sweep path generation and tracking, surface following, stripping quality control and tape/breach handling).

  10. Using Wet-FGD systems for mercury removal.

    PubMed

    Díaz-Somoano, Mercedes; Unterberger, Sven; Hein, Klaus R G

    2005-09-01

    A plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective. In the present work scrubber chemistry and the application of various solid additives to enhance mercury removal in wet scrubbers is evaluated. The results obtained show a significant correlation between mercury removal efficiency and the pH of the scrubber slurry and SO2 concentration. A weaker correlation was observed between oxygen or slurry concentration and removal efficiency. Finally several solid oxides were found to be effective additives for enhancing mercury capture in wet scrubbers. PMID:16121271

  11. The selective equipment removal system dual arm work module

    SciTech Connect

    Noakes, M.W.; Haley, D.C.; Willis, W.D.

    1997-12-31

    The Selective Equipment Removal System (SERS) was previously developed under the Department of Energy`s Robotics Technology Development Program to demonstrate and evaluate mobile telerobotic concepts for performing selective dismantlement using the reconfigurable dual-arm work module (DAWM). DAWM was designed for overhead transporter, crane hook, and mobile vehicle deployment. The DAWM configuration provided two 6-degree-of-freedom (D.O.F.) hydraulic manipulators with a maximum capacity of 240 lbs in the elbows-up configuration and five additional D.O.F. supplying torso rotate for the entire positioning package, linear extension of each arm base, and base rotate for each arm (which added a seventh D.O.F. to the manipulator for elbows-up, elbows-out, and elbows-down operation). Hydraulic manipulators were selected to provide the payload capacity required for anticipated tooling and material handling needs that would be typical of heavy dismantlement tasks. The original design of the dual arm manipulation system was driven by the desire to provide maximum system versatility in the study of deployment options and orientation relative to specific task performance. In FY 1996, the program was directed to provide remote systems support for the dismantlement of the CP5 reactor at Argonne National Lab (ANL) beginning in FY 1997. A study of the tasks involved and the available deployment options led to a rework of the DAWM designated the dual arm work platform (DAWP), which was specifically designed around crane hook deployment, reduced the base D.O.F.`s to four instead of five, and made use of the existing DAWM control system. This paper describes the evolution of the DAWM into the DAWP and the design philosophy involved.

  12. ROGER a potential orbital space debris removal system

    NASA Astrophysics Data System (ADS)

    Starke, Juergen; Bischof, Bernd; Foth, W.-O.; -J., J.; Günther

    The previous activities in the field of On Orbit Servicing studied in the 1990's included in partic-ular the capability of vehicles in GEO to capture and support satellites (mainly communication satellites) to enable repair and continuation of operations, and finally the controlled transfer the target into a permanent graveyard orbit. The specific capture tools for these applications were mostly based on robotic systems to capture and fix the target under specific dynamic constraints (e.g. slowly tumbling target) without damage, and to allow the stabilization, re-orientation and potential repair of the target and subsequent release or transport to the final disposal orbit. Due to the drastically increasing number of debris particularly in the Low Earth Orbits (SSO) the active debris removal is now necessary to counteract to the predicted debris production cascade (Kessler Syndrome), which means the pollution of the total sphere in low earth orbit and not only the SSO area. In most of the debris congresses it was recommended to start removal with the still integrated systems as soon as possible. In the case of large debris objects, the soft capture system can be replaced by a simpler and robust system able to operate from a safe distance to the target and flexible enough to capture and hold different types of targets such as deactivated and/or defective satellites, upper stages and big fragments. These nominally non -cooperative targets might be partially destroyed by the capture process, but the production of additional debris shall be avoided. A major argument for the commercial applications is a multi-target mission potential, which is possible at GEO because the transfer propellant requirement to the disposal orbit and the return to the orbit of the next potential target is relative low (orbits with similar inclination and altitude). The proposed ROGER system is designed as a spacecraft with rendezvous capabilities including inspection in the vicinity of the

  13. Removal of organic micropollutants in an artificial recharge system

    NASA Astrophysics Data System (ADS)

    Valhondo, C.; Nödler, K.; Köck-Schulmeyer, M.; Hernandez, M.; Licha, T.; Ayora, C.; Carrera, J.

    2012-04-01

    Emerging contaminants including pharmaceutically active compounds (PhACs), personal care products (PCPs) and pesticides are increasingly being identified in the environment. Emerging pollutants and their transformation products show low concentration in the environment (ng/L), but the effects of the mixtures and lifelong exposure to humans are currently unknown. Many of these contaminants are removed under aerobic conditions in water treatment plants. However, several pharmaceuticals and metabolites present in wastewater are not eliminated by conventional treatment processes. Several lab studies, however, show that the behaviour of many of these micropollutants is affected by the dominant redox conditions. However, data from field experiments are limited and sometimes contradictory. Artificial recharge is a widespread technology to increase the groundwater resources. In this study we propose a design to enhance the natural remediation potential of the aquifer with the installation of a reactive layer at the bottom of the infiltration pond. This layer is a mixture of compost, aquifer material, clay and iron oxide. This layer is intended to provide an extra amount of DOC to the recharge water and to promote biodegradation by means of the development of different redox zones along the travel path through the unsaturated zone and within the aquifer. Moreover, compost, clay and iron oxide of the layer are assumed to increase sorption surfaces for neutral, cationic and anionic compounds, respectively. The infiltration system is sited in Sant Vicenç dels Horts (Barcelona, Spain). It consists of a decantation pond, receiving raw water from the Llobregat River (highly affected from treatment plant effluents), and an infiltration pond (5600 m2). The infiltration rate is around 1 m3/m2/day. The system is equipped with a network of piezometers, suction cups and tensiometers. Infiltration periods have been performed before and after the installation of the reactive layer

  14. Assessment of sulfur removal processes for advanced fuel cell systems

    NASA Astrophysics Data System (ADS)

    Lorton, G. A.

    1980-01-01

    The performance characteristics of potential sulfur removal processes were evaluated and four of these processes, the Selexol process, the Benfield process, the Sulfinol process, and the Rectisol process, were selected for detailed technical and economic comparison. The process designs were based on a consistent set of technical criteria for a grass roots facility with a capacity of 10,000 tons per day of Illinois No. 6 coal. Two raw gas compositions, based on oxygen blown and air blown Texaco gasification, were used. The bulk of the sulfur was removed in the sulfur removal unit, leaving a small amount of sulfur compounds in the gas. The remaining sulfur compounds were removed by reaction with zinc oxide in the sulfur polishing unit. The impact of COS hydrolysis pretreatment on sulfur removal was evaluated. Comprehensive capital and O and M cost estimates for each of the process schemes were developed.

  15. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, J.T.

    1998-04-28

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  16. Method for removing tilt control in adaptive optics systems

    DOEpatents

    Salmon, Joseph Thaddeus

    1998-01-01

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  17. Exhaust particle removing system for an internal combustion engine

    SciTech Connect

    Shinzawa, M.

    1988-07-12

    An exhaust particle removing system is described for an engine, comprising: (a) a filter for trapping particles in exhaust from the engine; (b) means for determining whether or not the degree of clogging of the filter is unacceptable; (c) means for detecting an operating condition of the engine; (d) means for when the degree of clogging of the filter is unacceptable, throttling the flow of intake air into the engine and thus varying the pressure of the intake air in accordance with the detected engine operating condition in cases where the detected engine operating condition resides in a first predetermined range within which the temperature of the engine exhaust would be inadequate to burn off the trapped particles if the intake air flow were not throttled, the throttling means comprising a movable throttle valve disposed in an air intake passage, a bypass passage connected to the air intake passage and bypassing the throttle valve, and a movable bypass valve disposed in the bypass passage; and (e) means for, when the degree of clogging of the filter is unacceptable, allowing free flow of the intake air in cases where the detected engine operating condition resides in a second predetermined range within which the temperature of the engine exhaust would be adequate to burn off the trapped particles even if the intake air flow were not throttled.

  18. Exhaust particle removing system for an internal combustion engine

    SciTech Connect

    Shinzawa, M.

    1986-08-05

    An exhaust particle removing system is described for an internal combustion engine, comprising: (a) a filter disposed in an engine exhaust passage for trapping particles suspended in exhaust gas; (b) a burner for burning off the particles deposited on the filter; (c) means for sensing the pressure in the exhaust passage at a point upstream of the filter; (d) means for sensing the pressure in the exhaust passage at a point downstream of the filter; (e) means for determining whether or not the sensed upstream pressure is lower than a preset level; (f) means for, when the sensed upstream pressure is not lower than the preset level, deducing the degree of clogging of the filter on the basis of the sensed upstream and downstream pressures; (g) means for, when the sensed upstream pressure is lower than the preset level, measuring a time elapsed since the moment at which the sensed upstream pressure dropped below the preset level; (h) means for, when the sensed upstream pressure is lower than the preset level, deducing the degree of clogging of the filter on the basis of the time elapsed and the sensed upstream and downstream pressures obtained immediately prior to the moment at which the sensed upstream pressure dropped below the preset level; and (i) means for controlling the burner on the basis of the deduced degree of clogging of the filter.

  19. Functions & Requirements for Debris Removal System Project A-2

    SciTech Connect

    PRECECHTEL, D.R.

    1999-12-29

    This revision of the Functions and Requirements Document updates the approved Functions and Requirements for Debris Removal Subproject WHC-SD-SNF-FRD-009, Rev. 0. It has been revised in its entirety to reflect the current scope of work for Debris Removal as canisters and lids under the K Basin Projects work breakdown structure (WBS). In this revision the canisters and lids will be consider debris and a new set of Functions and Requirements have been developed to remove the canisters and lids from the basin.

  20. 324 Building liquid waste handling and removal system project plan

    SciTech Connect

    Ham, J.E.

    1998-07-29

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan.

  1. Laser balancing system for high material removal rates

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Georgalas, G.; Ortiz, A. L.

    1984-01-01

    A laser technique to remove material in excess of 10 mg/sec from a spinning rotor is described. This material removal rate is 20 times greater than previously reported for a surface speed of 30 m/sec. Material removal enhancement was achieved by steering a focused laser beam with moving optics to increase the time of laser energy interaction with a particular location on the circumferential surface of a spinning rotor. A neodymium:yttrium aluminum garnet (Nd:YAG) pulse laser was used in this work to evaluate material removal for carbon steel, 347 stainless steel, Inconal 718, and titanium 6-4. This technique is applicable to dynamic laser balancing.

  2. Development of Vapor-Phase Catalytic Ammonia Removal System

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Fisher, John; Kiss, Mark; Borchers, Bruce; Tleimat, Badawi; Tleimat, Maher; Quinn, Gregory; Fort, James; Nalette, Tim; Baker, Gale; Genovese, Joseph

    2007-01-01

    A report describes recent accomplishments of a continuing effort to develop the vapor-phase catalytic ammonia removal (VPCAR) process for recycling wastewater for consumption by humans aboard a spacecraft in transit to Mars.

  3. Video requirements plan for the HMT equipment removal system

    SciTech Connect

    Vargo, G.F. Jr.

    1995-02-01

    This document is the plan defining the video coverage requirements for the equipment removal event of the Hydrogen Mitigation Test (HMT) mixer pump currently installed in high level nuclear waste storage Tank 241-SY-101. When the mixer pump fails the removal and installation of a spare pump will be a time critical event. Since the success of the HMT mixer pump has resolved the DOE safety issue it is absolutely essential that mixing be restored to the tank in a short as time possible. Therefore, the removal of the failed pump and the installation of the spare pump must be anticipated and planned well in advance. The removal, containment, transporting, and storage of the failed pump is a very complex and hazardous task. The successful completion of this task will require careful planning and monitoring. Certain events, during the removal and subsequent installation of the new pump, will require video observation and storage for safety, documenting, training, and promotional use. Furthermore, certain events will require close monitoring and observation by the event directors and key supervisory personnel for the execution of specific tasks during the equipment removal event.

  4. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    PubMed

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment. PMID:24658107

  5. Biologically-based signal processing system applied to noise removal for signal extraction

    DOEpatents

    Fu, Chi Yung; Petrich, Loren I.

    2004-07-13

    The method and system described herein use a biologically-based signal processing system for noise removal for signal extraction. A wavelet transform may be used in conjunction with a neural network to imitate a biological system. The neural network may be trained using ideal data derived from physical principles or noiseless signals to determine to remove noise from the signal.

  6. A Comparison of Past Dam Removals in Highly Sediment Impacted Systems

    NASA Astrophysics Data System (ADS)

    Sawaske, S. R.; Freyberg, D. L.

    2010-12-01

    The ability to predict the effects of dam removal in highly sediment filled systems is increasingly important as the number of such dam removal cases continues to grow annually. The cost and potential impacts of dam removal are site specific and can vary substantially depending on local conditions. Of specific concern in sediment impacted removals is the volume and rate of reservoir deposit erosion. The complexity and potential accuracy of modeling methods used to forecast the effects of such dam removals varies substantially. Current methods range from predictions based on simple analysis of pre-dam channel geometry to sophisticated data intensive three dimensional numerical models. The goal of this research is to develop yet another means of predicting the rate and volume of sediment deposit erosion through the use of data collected from past dam removals. Through the analysis of sediment, discharge, deposit, removal method, channel and watershed data, in conjunction with post removal monitoring data from twelve dam removals, some significant trends in the evolution of reservoir deposits following dam removal can be seen. Results indicate that parameters such as median grain size, level of cohesion, spatial variability of the deposit, and removal method are among the most influential factors in determining the rate and volume of sediment erosion. By comparison of local conditions of dams/reservoirs slated for removal with that of past removals, it is hoped that some useful predictions of the rate and volume of sediment deposit erosion can be made.

  7. Assessment of sulfur removal processes for advanced fuel cell systems

    SciTech Connect

    Lorton, G.A.

    1980-01-01

    This study consisted of a technical evaluation and economic comparison of sulfur removal processes for integration into a coal gasification-molten carbonate (CGMC) fuel cell power plant. Initially, the performance characteristics of potential sulfur removal processes were evaluated and screened for conformance to the conditions and requirements expected in commercial CGMC power plants. Four of these processes, the Selexol process, the Benfield process, the Sulfinol process, and the Rectisol process, were selected for detailed technical and economic comparison. The process designs were based on a consistent set of technical criteria for a grass roots facility with a capacity of 10,000 tons per day of Illinois No. 6 coal. Two raw gas compositions, based on oxygen-blown and air-blown Texaco gasification, were used. The bulk of the sulfur was removed in the sulfur removal unit, leaving a small amount of sulfur compounds in the gas (1 ppMv or 25 ppMv). The remaining sulfur compounds were removed by reaction with zinc oxide in the sulfur polishing unit. The impact of COS hydrolysis pretreatment on sulfur removal was evaluated. Comprehensive capital and O and M cost estimates for each of the process schemes were developed for the essentially complete removal of sulfur compounds. The impact on the overall plant performance was also determined. The total capital requirement for sulfur removal schemes ranged from $59.4/kW to $84.8/kW for the oxygen-blown cases and from $89.5/kW to $133/kW for the air-blown cases. The O and M costs for sulfur removal for 70% plant capacity factor ranged from 0.82 mills/kWh to 2.76 mills/kWh for the oxygen-blown cases and from 1.77 mills/kWh to 4.88 mills/kWh for the air-blown cases. The Selexol process benefitted the most from the addition of COS hydrolysis pretreatment.

  8. Application of electrical propulsion for an active debris removal system: a system engineering approach

    NASA Astrophysics Data System (ADS)

    Covello, Fabio

    2012-10-01

    One of the main challenge in the design of an active removal system for space debris is the high ΔV required both to approach space debris lying in different orbits and to de-orbit/re-orbit them. Indeed if the system does not target a number of objects during its lifetime the cost of the removal will be far too high to be considered as the basis of an economically viable business case. Using a classical chemical propulsion (CP) system, the ΔV is limited by the mass of propellant that the system can carry. This limitation is greatly reduced if electrical propulsion is considered. Electrical propulsion (EP) systems are indeed characterized by low propellant mass requirements, however this comes at the cost of higher electrical power and, typically, higher complexity and mass of the power supply system. Because of this, the use of EP systems has been, therefore, primarily limited to station keeping maneuvers. However in the recent past, the success of missions using EP as primary propulsion (e.g. GOCE, SMART-1, Artemis, Deep Spcae1, Hayabusa) makes this technology a suitable candidate for providing propulsion for an active debris removal system. This study case will provide the analysis of the possible application of electrical propulsion systems in such a context, presenting a number of possible mission profiles. This paper will start with the description of possible mission concepts and the assessment of the EP technology, comparing near-term propulsion options, that best fits the mission. A more detailed analysis follows with the relevant trade-off to define the characteristics of the final system and its size in terms of mass and power required. A survey of available space qualified EP systems will be performed with the selection of the best candidates to be used and/or developed for an active debris removal system. The results of a similar analysis performed for a classical CP system are then presented and the two options are compared in terms of total cost of

  9. Objective shearing digital holography for removing aberration from optical system.

    PubMed

    Pan, Weiqing; Tian, Kehan; Zhang, Chuhang

    2015-09-01

    We propose a new digital holography based on the lateral shearing interference concept to remove the total aberrations from the reference wave, illumination wave, and the optical elements. It uses three mutually shifted image holograms of the object that are divided from each other to obtain phase differences. The phase aberration can be removed and the original sample phase can be reconstructed by the phase differences. Then, the influence of the stage moving imprecision on the reconstruction quality is analyzed. Optical experiments verified that the proposed method can totally remove the phase aberrations. As a result, the proposed method could be used for ultra-precise optical measurement through eliminating optical phase aberration to increase the measurement accuracy. PMID:26368865

  10. Mobile system for microwave removal of concrete surfaces

    DOEpatents

    White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.

    1997-06-03

    A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.

  11. Mobile system for microwave removal of concrete surfaces

    DOEpatents

    White, Terry L.; Bigelow, Timothy S.; Schaich, Charles R.; Foster, Jr., Don

    1997-01-01

    A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

  12. Human motion capturing system with MEMS accelerometers (notice of removal)

    NASA Astrophysics Data System (ADS)

    Xiao, Baoping; Xu, Chang; Xu, Lijun; Ouyang, Shuigeng

    2007-11-01

    This paper (672413) was removed from the SPIE Digital Library on 13 April 2010 to discovery of plagiarism. As stated in the SPIE Guidelines for Professional Conduct and Publishing Ethics, SPIE defines plagiarism as the reuse of someone else's prior ideas, processes, results, or words without explicit attribution of the original author and source, or falsely representing someone else's work as one's own. SPIE considers plagiarism in any form, at any level, to be unacceptable and a serious breach of professional conduct. It is SPIE policy to remove such papers and to take appropriate corrective or disciplinary action against the offending author(s).

  13. RADON REMOVAL BY POE GAC SYSTEMS: DESIGN PERFORMANCE AND COST

    EPA Science Inventory

    This report summarizes previous research conducted by Lowry Engineering, Inc. (LEI), the Maine Department of Human Services, Division of Health Engineering, and the University of Maine, Department of Civil Engineering, on the removal of Rn from drinking water supplies using granu...

  14. EVALUATION OF A LIQUID CHEMICAL SCRUBBER SYSTEM FOR STYRENE REMOVAL

    EPA Science Inventory

    The report gives results of a study of the styrene removal efficiency o a pilot-scale version of the QUAD Chemtact scrubber, quantified by continuously measuring the total hydrocarbon (THC) content of spray both exhaust air entering and exiting the device with THC analyzers and, ...

  15. FIELD EXPERIENCE WITH POINT-OF-USE TREATMENT SYSTEMS FOR ARSENIC REMOVAL

    EPA Science Inventory

    Point-of-use (POU) treatment devices can be effective for removing inorganic contaminants. This article describes the investigation of POU treatment systems used for arsenic removal in four homes in Alaska and Oregon. Small systems utilizing activated alumina, ion exchange, and...

  16. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    SciTech Connect

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  17. SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS

    EPA Science Inventory

    SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS. L.F. Strader*, S.D. Perreault, J.C. Luft*, and D.J. Dix*. US EPA/ORD, Reproductive Toxicology Div., Research Triangle Park, NC
    Heat shock proteins (HSPs) protect cells from environm...

  18. Comparison of Integrated AOP Systems for BTEX Removal From Solution

    SciTech Connect

    Peters, Robert W.; Mohammad, Jan

    2004-03-31

    This paper investigates the removal of BTEX compounds (benzene, toluene, ethylbenzene and xylene) from water using different advanced oxidation processes (AOPs) used singly or in combination with one another. This research is an extension of our work performed under the Environmental Management Science Program (EMSP) which addressed treating chlorinated organic contaminated water using sonication, vapor stripping and combined sonication + vapor stripping. In our current study, various AOP processes were investigated for their ability to remove BTEX compounds from solution, including the following. ? Ultraviolet (UV) light alone ? UV light + hydrogen peroxide (H2O2) ? Sonication alone ? Air sparging alone ? Air sparging + sonication ? Air sparging + UV light ? Sonication + UV light ? Sonication + H2O2 ? Sonication + air sparging + UV light ? Sonication + air sparging + H2O2 ? Sonication + air sparging + H2O2 + UV light ? Sonication + air sparging with O3 ? Sonication + O3 + H2O2 ? Sonication + O3 + H2O2 + UV light

  19. Evaluation of a liquid chemical scrubber system for styrene removal

    SciTech Connect

    Felix, L.; Merritt, R.; Williamson, A.

    1994-12-01

    The report gives results of a study of the styrene removal efficiency of a pilot-scale version of the QUAD Chemtact scrubber, quantified by continuously measuring the total hydrocarbon (THC) content of spray booth exhaust air entering and exiting the device with THC analyzers and, for some tests, by collecting EPA Method 18 samples (adsorption tube procedure) at the inlet and exit of the device. Average styrene removal efficiencies approached but were never >55%. The test was carried out at a facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester bathtubs and shower stalls by spraying styrene-based resins onto molds in vented, open spray booths. A side stream of air, exhausted from one of the spray booths in the gel coating part of the process, was used for the test.

  20. Nitrogen removal during secondary treatment by aquatic systems.

    PubMed

    Erol Nalbur, B; Akça, L; Bayhan, H

    2003-01-01

    Within the context of this study, two lab-scale aquatic plant reactors consisting of duckweed (Lemna minor) ponds, were investigated for the removal of nitrogen forms during the secondary treatment of domestic wastewater. TKN, NH3-N and NO3-N parameters have been measured in both reactors for hydraulic retention times ranging from 3.3 days to 23 days and at various distances from the inlet of reactors. The results were evaluated for hydraulic retention times, hydraulic loading rates and mass loading rates. I was concluded that hydraulic and mass loading parameters were more meaningful than hydraulic retention time. Optimum nitrogen removal values of hydraulic loading rate and mass loading rate were found to be 1.2 cm/day and 90-160 mg TKN/m2-day, respectively. At the higher and lower loading rates, nitrogen removal efficiency was lower than those at optimum conditions. Effluent TKN concentration was around 2.5 to 3.0 mg/l while NH3-N concentration was almost zero at these loading conditions. On the other hand, effluent NO3-N concentrations changed between 7 mg/l to 11 mg/l. When investigating the longitudinal profile, values were reduced rapidly along the reactors. It was concluded that most of the nitrogen conversion occurred at the beginning of the reactor. PMID:14753556

  1. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  2. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Underwood, Richard Paul; Makitka, III, Alexander; Carolan, Michael Francis

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  3. Enhanced fermentation systems with continuous removal of inhibitory products

    SciTech Connect

    Davison, B.H.; Kaufman, E.N.

    1994-06-01

    A variety of advanced bioreactors are being developed to improve production of fuels, solvents, organic acids, and other fermentation products. A major limitation of microbial fermentations is the dilute aqueous product streams that result, largely due to inhibition of the microbes by the desired products. If these inhibitory products can be removed during the ongoing fermentation, the overall rates, yields, and net product formation may be increased. Simultaneous fermentation and separation have been tested with different separation techniques, such as adsorption, liquid extraction, pervaporation, membrane separations, distillation, and others. These separations can occur directly in situ within the fermentor or indirectly using a sidestream separator with recycle of the unused substrate. These approaches are briefly reviewed. At Oak Ridge National Laboratory (ORNL), we have investigated two modified immobilized-cell fluidized-bed bioreactors (FBRs) to remove the inhibitory product directly from the continuous fermentation. One involves the separation by adsorption of tactic acid, and the other uses liquid solvent extraction for the production of butanol. Keywords: extractive fermentation, in situ separation, adsorption, tactic acid, butanol.

  4. Phosphate reduction in a hydroxyapatite fluoride removal system

    NASA Astrophysics Data System (ADS)

    Egner, A.

    2012-12-01

    Fluorosis is a widespread disease that occurs as a result of excess fluoride consumption and can cause severe tooth and bone deformations. To combat fluorosis, several previous studies have examined the potential to replace traditional bone char filters with synthetic hydroxyapatite. Calcite particles with a synthetic hydroxyapatite coating have been shown to effectively removed fluoride, yet the low-cost method for forming these particles leaves high amounts of phosphate both in synthesis waste-water and in filter effluent. High phosphate in filter effluent is problematic because consumption of extremely high phosphate can leach calcium from bones, further exacerbating the fluoride effect. This study examines ways of reducing and reusing waste. In particular, a method of fluoride removal is explored in which fluorapatite coatings may be formed directly. In preliminary studies, batches of 4.1g of Florida limestone (<710 μm) were equilibrated with 100 mL of 10ppm fluoride. In a control batch containing lime but no added phosphate, 14% treatment was achieved, but with added phosphate, 100% treatment was achieved in all batches. Batches with lower levels of phosphate took longer to reach 100% treatment, ranging from less than 24 hours in the highest phosphate batches to approximately 42 hours in the lowest batches. The lower levels tested were well within reasonable levels for drinking water and reached 0ppm fluoride in 42 hours or less.

  5. BOA II: Asbestos Pipe-Insulation Removal Robot System. Innovative Technology Summary Report.

    SciTech Connect

    2001-09-01

    The objective of this task is to develop and demonstrate a mechanical, asbestos-removal system that can be remotely operated without a containment area. The technology, known as BOA, consists of a pipe-crawler removal head and a boom vehicle system with dual robots. BOA's removal head can be remotely placed on the outside of the pipe and can crawl along the pipe, removing lagging and insulation. The lagging and insulation is cut using a hybrid endmill water-jet cutter and then diced into 2-inch cube sections of ACM. These ACM sections are then removed from the pipe using a set of blasting fan- spray nozzles, vacuumed off through a vacuum hose, and bagged. Careful attention to vacuum and entrapment air flow ensures that the system can operate without a containment area while meeting local and federal standards for fiber count.

  6. EVALUATION OF A COMMERCIAL VACUUM SYSTEM FOR THE REMOVAL OF ASBESTOS

    EPA Science Inventory

    The report gives results of a brief field study that included measurement of personal, area, and environmental asbestos exposures resulting from wet and dry asbestos removal using a commercial vacuum system. Personal and area (indoor) asbestos concentrations during dry removal we...

  7. Results from evaporation tests to support the MWTF heat removal system design

    SciTech Connect

    Crea, B.A.

    1994-12-22

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  8. PERFORMANCE AND MODELING OF A HOT POTASSIUM CARBONATE ACID GAS REMOVAL SYSTEM IN TREATING COAL GAS

    EPA Science Inventory

    The report discusses the performance and modeling of a hot potassium carbonate (K2CO3) acid gas removal system (AGRS) in treating coal gas. Aqueous solutions of K2CO3, with and without amine additive, were used as the acid gas removal solvent in the Coal Gasification/Gas Cleaning...

  9. Capital and Operating Cost of Small Arsenic Removal System and their Most Frequent Maintenance Problems

    EPA Science Inventory

    This presentation will first summarize the capital and operating cost of treatment systems by type and size of the systems. The treatment systems include adsorptive media (AM) systems, iron removal (IR), coagulation/filtration (CF), ion exchange (IX) systems, and point-of-use rev...

  10. 300 GPM Solids Removal System A True Replacement for Back Flushable Powdered Filter Systems - 13607

    SciTech Connect

    Ping, Mark R.; Lewis, Mark

    2013-07-01

    The EnergySolutions Solids Removal System (SRS) utilizes stainless steel cross-flow ultra-filtration (XUF) technology which allows it to reliably remove suspended solids greater than one (1) micron from liquid radwaste streams. The SRS is designed as a pre-treatment step for solids separation prior to processing through other technologies such as Ion Exchange Resin (IER) and/or Reverse Osmosis (RO), etc. Utilizing this pre-treatment approach ensures successful production of reactor grade water while 1) decreasing the amount of radioactive water being discharged to the environment; and 2) decreasing the amount of radioactive waste that must ultimately be disposed of due to the elimination of spent powdered filter media. (authors)

  11. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems.

    PubMed

    Nancharaiah, Y V; Venkata Mohan, S; Lens, P N L

    2016-09-01

    Nitrogen and phosphorous are key pollutants in wastewater to be removed and recovered for sustainable development. Traditionally, nitrogen removal is practiced through energy intensive biological nitrification and denitrification entailing a major cost in wastewater treatment. Recent innovations in nitrogen removal aim at reducing energy requirements and recovering ammonium nitrogen. Bioelectrochemical systems (BES) are promising for recovering ammonium nitrogen from nitrogen rich waste streams (urine, digester liquor, swine liquor, and landfill leachate) profitably. Phosphorus is removed from the wastewater in the form of polyphosphate granules by polyphosphate accumulating organisms. Alternatively, phosphorous is removed/recovered as Fe-P or struvite through chemical precipitation (iron or magnesium dosing). In this article, recent advances in nutrients removal from wastewater coupled to recovery are presented by applying a waste biorefinery concept. Potential capabilities of BES in recovering nitrogen and phosphorous are reviewed to spur future investigations towards development of nutrient recovery biotechnologies. PMID:27053446

  12. Active Debris Removal System Based on Polyurethane Foam

    NASA Astrophysics Data System (ADS)

    Rizzitelli, Federico; Valdatta, Marcelo; Bellini, Niccolo; Candini Gian, Paolo; Rastelli, Davide; Romei, Fedrico; Locarini, Alfredo; Spadanuda, Antonio; Bagassi, Sara

    2013-08-01

    Space debris is an increasing problem. The exponential increase of satellite launches in the last 50 years has determined the problem of space debris especially in LEO. The remains of past missions are dangerous for both operative satellites and human activity in space. But not only: it has been shown that uncontrolled impacts between space objects can lead to a potentially dangerous situation for civil people on Earth. It is possible to reach a situation of instability where the big amount of debris could cause a cascade of collisions, the so called Kessler syndrome, resulting in the infeasibility of new space missions for many generations. Currently new technologies for the mitigation of space debris are under study: for what concerning the removal of debris the use of laser to give a little impulse to the object and push it in a graveyard orbit or to be destroyed in the atmosphere. Another solution is the use of a satellite to rendezvous with the space junk and then use a net to capture it and destroy it in the reentry phase. In a parallel way the research is addressed to the study of deorbiting solutions to prevent the formation of new space junk. The project presented in this paper faces the problem of how to deorbit an existing debris, applying the studies about the use of polyurethane foam developed by Space Robotic Group of University of Bologna. The research is started with the Redemption experiment part of last ESA Rexus program. The foam is composed by two liquid components that, once properly mixed, trig an expansive reaction leading to an increase of volume whose entity depends on the chemical composition of the two starting components. It is possible to perform two kind of mission: 1) Not controlled removal: the two components are designed to react producing a low density, high expanded, spongy foam that incorporates the debris. The A/m ratio of the debris is increased and in this way also the ballistic parameter. As a consequence, the effect of

  13. Low-Quality Natural Gas Sulfur Removal/Recovery System

    SciTech Connect

    Lokhandwala, K.A.; Ringer, M.; Wijams, H.; Baker, R.W.

    1997-10-01

    Natural gas provides more than one-fifth of all the primary energy used in the United States. Much raw gas is `subquality`, that is, it exceeds the pipeline specifications for nitrogen, carbon dioxide, and/or hydrogen sulfide content, and much of this low-quality natural gas cannot be produced economically with present processing technology. Against this background, a number of industry-wide trends are affecting the natural gas industry. Despite the current low price of natural gas, long-term demand is expected to outstrip supply, requiring new gas fields to be developed. Several important consequences will result. First, gas fields not being used because of low-quality products will have to be tapped. In the future, the proportion of the gas supply that must be treated to remove impurities prior to delivery to the pipeline will increase substantially. The extent of treatment required to bring the gas up to specification will also increase. Gas Research Institute studies have shown that a substantial capital investment in facilities is likely to occur over the next decade. The estimated overall investment for all gas processing facilities up to the year 2000 alone is approximates $1.2 Billion, of which acid gas removal and sulfur recovery are a significant part in terms of invested capital. This large market size and the known shortcomings of conventional processing techniques will encourage development and commercialization of newer technologies such as membrane processes. Second, much of today`s gas production is from large, readily accessible fields. As new reserves are exploited, more gas will be produced from smaller fields in remote or offshore locations. The result is an increasing need for technology able to treat small-scale gas streams.

  14. Inflammatory cytokines and plasma redox status responses in hypertensive subjects after heat exposure

    PubMed Central

    Fonseca, S.F.; Mendonça, V.A.; Teles, M.C.; Ribeiro, V.G.C.; Tossige-Gomes, R.; Neves, C.D.C.; Rocha-Vieira, E.; Leite, L.H.R.; Soares, D.D.; Coimbra, C.C.; Lacerda, A.C.R.

    2016-01-01

    Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H) and 8 normotensive (N) subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively). They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C) followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity). Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS) levels and ferric reducing ability of plasma (FRAP). Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05), although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1) and lower TBARS (P<0.01) and FRAP (P<0.05) levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors), present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response. PMID:26840715

  15. [Technique for removal of anaesthetic vapours from the operation theater. CO2-concentrations in the Jackson Rees system using a removal unit (author's transl)].

    PubMed

    Kroesen, G; Sankofi, P; Geir, W; Menardi, G

    1978-04-01

    The Jackson Rees system was used for short operations in 50 infants combined with or without a system for removal of excess anaesthetic vapours developed by the authors. The CO2-concentration in the system was measured directly before the upper airway of the patients. No statistically significance difference between the CO2-concentration with or without the use of the removal system. A variable power of suction up to 61/min is thought to be sufficient and harmless. PMID:655369

  16. EMERGING TECHNOLOGY BULLETIN: A CROSS-FLOW PERVAPORATION SYSTEM FOR REMOVAL OF VOCS FROM CONTAMINATED WASTEWATER

    EPA Science Inventory

    Pervaporation is a process for removing volatile organic compounds (VOC) from contaminated water. The performance of the cross-flow pervaporation system increases with temperature, with an equipment limitation of 35 degrees Celsius. Permeable membranes that preferentially adsor...

  17. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER - PALL CORPORATION MICROZA. MICROFILTRATION SYSTEM

    EPA Science Inventory

    Verification testing of the Pall Corporation Microza. Microfiltration System for arsenic removal was conducted at the Oakland County Drain Commissioner (OCDC) Plum Creek Development well station located in Oakland County, Michigan from August 19 through October 8, 2004. The sourc...

  18. Passive decay heat removal system for water-cooled nuclear reactors

    DOEpatents

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  19. Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.

    PubMed

    Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability. PMID:25022888

  20. Effect of nickel on nutrient removal by selected indigenous protozoan species in wastewater systems.

    PubMed

    Kamika, Ilunga; Momba, Maggy N B

    2015-03-01

    Nutrient and heavy metal pollutions are major concern worldwide. This study aimed at comparing the effect of Ni(2+) on nutrient removal efficiency of four indigenous wastewater protozoan species (Aspidisca sp., Paramecium sp., Peranema sp., Trachelophyllum sp.). Specific physicochemical parameters and microbial growth/die-off were measured using standard methods. The results revealed that protozoan species were able to simultaneously remove phosphate, nitrate and Ni(2+) at concentrations ranging between 66.4-99.36%, 56.19-99.88% and 45.98-85.69%, respectively. Peranema sp. appeared to be the isolates with the highest removal of nutrients (Phosphate-99.36% and Nitrate-99.88%) while Paramecium sp. showed higher removal of Ni(2+) at 85.69% and low removal of nutrients. Aspidisca sp. was the most sensitive isolate to Ni(2+) but with significant nutrient removal (Phosphate-66.4% and Nitrate-56.19%) at 10 mg-N(2+)/L followed by an inhibition of nutrient removal at Ni(2+) concentration greater than 10 mg/L. Significant correlation between the growth rate and nutrient removal (r = 0.806/0.799, p < 0.05 for phosphate and nitrate, respectively) was noted. Except for Peranema sp. which revealed better nutrient removal ability at 10 mg-Ni(2+)/L, an increase in Ni(2+) concentration had a significant effect on nutrient removal efficiency of these indigenous protozoan species. This study suggests that although Ni(2+) appeared to be toxic to microbial isolates, its effect at a low concentration (10 mg-Ni(2+)/L) towards these isolates can be used to enhance the wastewater treatment process for the removal of nutrients. Peranema sp., which was able to remove both Ni(2+) and nutrients from wastewater mixed-liquor, can also be used for bioremediation of wastewater systems. PMID:25737645

  1. Effect of nickel on nutrient removal by selected indigenous protozoan species in wastewater systems

    PubMed Central

    Kamika, Ilunga; Momba, Maggy N.B.

    2014-01-01

    Nutrient and heavy metal pollutions are major concern worldwide. This study aimed at comparing the effect of Ni2+ on nutrient removal efficiency of four indigenous wastewater protozoan species (Aspidisca sp., Paramecium sp., Peranema sp., Trachelophyllum sp.). Specific physicochemical parameters and microbial growth/die-off were measured using standard methods. The results revealed that protozoan species were able to simultaneously remove phosphate, nitrate and Ni2+ at concentrations ranging between 66.4–99.36%, 56.19–99.88% and 45.98–85.69%, respectively. Peranema sp. appeared to be the isolates with the highest removal of nutrients (Phosphate-99.36% and Nitrate-99.88%) while Paramecium sp. showed higher removal of Ni2+ at 85.69% and low removal of nutrients. Aspidisca sp. was the most sensitive isolate to Ni2+ but with significant nutrient removal (Phosphate-66.4% and Nitrate-56.19%) at 10 mg-N2+/L followed by an inhibition of nutrient removal at Ni2+ concentration greater than 10 mg/L. Significant correlation between the growth rate and nutrient removal (r = 0.806/0.799, p < 0.05 for phosphate and nitrate, respectively) was noted. Except for Peranema sp. which revealed better nutrient removal ability at 10 mg-Ni2+/L, an increase in Ni2+ concentration had a significant effect on nutrient removal efficiency of these indigenous protozoan species. This study suggests that although Ni2+ appeared to be toxic to microbial isolates, its effect at a low concentration (10 mg-Ni2+/L) towards these isolates can be used to enhance the wastewater treatment process for the removal of nutrients. Peranema sp., which was able to remove both Ni2+ and nutrients from wastewater mixed-liquor, can also be used for bioremediation of wastewater systems. PMID:25737645

  2. Prioritizing removal of dams for passage of diadromous fishes on a major river system

    USGS Publications Warehouse

    Kocovsky, P.M.; Ross, R.M.; Dropkin, D.S.

    2009-01-01

    Native diadromous fishes have been extirpated from much of the Susquehanna River system for nearly a century. Recent restoration efforts have focused on removal of dams, but there are hundreds of dams and presently there is no biologically based system to assist in prioritizing their removal. We present a new method that uses existing habitat suitability index models (HSI) for American shad Alosa sapidissima, alewife A. pseudoharengus, blueback herring A. aestivalis, and American eel Anguilla rostrata to prioritize the removal of non-hydropower dams within the Susquehanna River system. We ranked HSI scores for each of the four species, association between a landscape-scale factor and HSIs, length of river opened by removing a dam, and distance from the mouth at Chesapeake Bay for each dam and then calculated a mean rank prioritization for dam removal by averaging the ranks for the seven criteria. This prioritization method is resistant to outliers, is not strongly affected by somewhat arbitrary decisions on metrics included in the analysis, and provides a biologically based prioritization for dam removal that can be easily amended to include other metrics or adapted to other river systems and that complements other social and economic considerations that must be included in decisions to remove dams.

  3. Preliminary evaluation of a membrane-based system for removing CO2 from air

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Wytcherley, Randi W.; Friesen, Dwayne T.; Ray, Rod J.

    1990-01-01

    Processes to remove and/or recover CO2 from air are essential to the long-term success of the U.S. space program. The results of a preliminary investigation of the use of a novel membrane-based system for removal of CO2 from air are presented. Features of this technology that make it attractive include the following: (1) it is lightweight; (2) it requires no consumables or expendables; (3) it is relatively simple; and (4) it does not rely directly on other subsystems. Preliminary designs of systems for removing CO2 from spacecraft cabin atmospheres and from the extravehicular mobility unit are presented.

  4. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOEpatents

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  5. Options for transpiration water removal in a crop growth system under zero gravity conditions

    NASA Technical Reports Server (NTRS)

    Blackwell, C. C.; Kliss, M.; Yendler, B.; Borchers, B.; Yendler, Boris S.; Nguyen, Thoi K.; Waleh, Ahmad

    1991-01-01

    The operation of a microgravity crop-growth system is a critical feature of NASA's Closed Ecological Life Support System (CELSS) development program. Transpiration-evolved water must be removed from the air that is recirculated in such a system, perhaps supplying potable water in the process. The present consideration of candidate systems for CELSS water removal gives attention to energy considerations and to a mechanical, inertial-operation water-separation system that was chosen due to the depth of current understanding of its operation.

  6. ENHANCED NUTRIENT REMOVAL FROM ON-SITE WASTEWATER TREATMENT SYSTEMS

    EPA Science Inventory

    Nutrient (nitrogen and phosphorus) runoffs impact streams and ecosystems. Furthermore, on-site wastewater treatment systems are important sources of nutrient discharges because effluents from septic tanks typically contain high concentrations of organic matter, nitrogen and ph...

  7. Robotized system for removal of slime from the bottom of steam generators

    NASA Astrophysics Data System (ADS)

    Kucherenko, O. V.; Shvarov, V. A.

    2014-02-01

    Reliability of steam generators depends not only on the main technical characteristics and correctness of the operational mode but also on the cleanliness of the heat-exchange surface and the presence of slime precipitated on the bottom. To provide the cleanliness, chemical methods of cleaning the heatexchange surfaces are used. In this article, we consider the process of removal of sediments that are formed precisely on the bottom of the steam generator from its volume. Possible mechanical methods for removal of sediments are presented. The consideration of variants of cleaning approved for acting steam generators showed the efficiency and applicability of the developed installation for the slime removal from steam generators. The main principles of construction of the system for slime removal from the steam generator bottom and constructive features of the installation, which make it possible to implement the stated tasks on the slime removal from the steam generator bottom, are given.

  8. Full System Modeling and Validation of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; Gauto, Hernando; Gomez, Carlos

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of various subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development. The development of the CO2 removal and associated air-drying subsystem hardware under the ARREM project is discussed in a companion paper.

  9. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  10. Removal of an acid fume system contaminated with perchlorates located within hot cell

    SciTech Connect

    Rosenberg, K.E.; Henslee, S.P.; Vroman, W.R.; Krsul, J.R.; Michelbacher, J.A.; Knighton, G.C.

    1992-09-01

    An add scrubbing system located within the confines of a highly radioactive hot cell at Argonne National Laboratory-West (ANL-W) was remotely removed. The acid scrubbing system was routinely used for the dissolution of irradiated reactor fuel samples and structural materials. Perchloric acid was one of the acids used in the dissolution process and remained in the system with its inherent risks. Personnel could not enter the hot cell to perform the dismantling of the acid scabbing system due to the high radiation field and the explosion potential associated with the perchlorates. A robot was designed and built at ANL-W and used to dismantle the system without the need for personnel entry into the hot cell. The robot was also used for size reduction of removed components and loading of the removed components into waste containers.

  11. Comparative efficiency of final endodontic cleansing procedures in removing a radioactive albumin from root canal systems

    SciTech Connect

    Cecic, P.A.; Peters, D.D.; Grower, M.F.

    1984-09-01

    Fifty-six teeth were initially instrumented, with the use of seven irrigants or irrigant combinations, and filled with radioactive albumin. The study then showed the relative ability of three final endodontic procedures (copious reirrigation with saline solution, drying with paper points, and reassuring patency of the canal with the final instrument) to remove the albumin. Even after copious irrigation, each additional procedure removed statistically significant amounts of albumin. Alternating an organic solvent and an inorganic solvent did appear to leave the canal system in the optimal condition for final cleansing procedures. The study then correlated the relative efficiency of irrigation alone versus instrumentation plus irrigation in removing the remaining albumin from the canal systems. Reinstrumentation plus copious irrigation removed significantly more albumin than copious irrigation alone.

  12. Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems.

    PubMed

    Visa, Maria; Duta, Anca

    2013-01-15

    Wastewaters resulting from the textile and dye finishing industries need complex treatment for efficient removal of colour and other compounds existent in the dyeing and rising baths (heavy metals, surfactants, equalizers, etc.). Modified fly ash (FA) mixed with TiO(2) photocatalyst represent a viable option for simultaneous removal of dyes and heavy metals, and the optimized conditions are discussed in this paper for synthetic wastewaters containing methyl-orange (MO) and cadmium. For a cost-effective dye removal process, further tests were done, replacing the photocatalyst with a (photo)Fenton system. The optimized technological parameters (contact time, amount of fly ash and amount of Fe(2+)/H(2)O(2)) allow to reach removal efficiencies up to 88% for the heavy metal and up to 70% for the dye. The adsorption mechanisms and the process kinetic are discussed, also considering the possibility of in situ generation of the Fenton system, due to the fly ash composition. PMID:23200622

  13. Hydrogen sulfide removal from livestock biogas by a farm-scale bio-filter desulfurization system.

    PubMed

    Su, J-J; Chang, Y-C; Chen, Y-J; Chang, K-C; Lee, S-Y

    2013-01-01

    A farm-scale biogas desulfurization system was designed and tested for H2S removal efficiency from livestock biogas. This work assesses the H2S removal efficiency of a novel farm-scale biogas bio-desulfurization system (BBS) operated for 350 days on a 1,000-head pig farm. Experimental data demonstrated that suitable humidity and temperature can help sulfur-oxidizing bacteria to form active bio-films on the bio-carriers. The daily average removal rate increased to 879.16 from 337.75 g-H2S/d with an average inlet H2S concentration of 4,691 ± 1,532 mg/m(3) in biogas. Thus, the overall (0-350 days) average H2S removal efficiency exceeded 93%. The proposed BBS overcomes limitations of H2S in biogas when utilizing pig farm biogas for power generation and other applications. PMID:23508153

  14. K Basins sludge removal temporary sludge storage tank system

    SciTech Connect

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  15. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, J. R. (Inventor)

    1985-01-01

    A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.

  16. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. PMID:26150068

  17. Elemental mercury removals observed in a laboratory-scale wet FGD scrubber system

    SciTech Connect

    Mendelsohn, M.H.; Wu, J.; Huang, H.; Livengood, C.D.

    1994-08-01

    Published data are limited regarding gaseous mercury removal in wet scrubber flue-gas desulfurization (FGD) systems. The data that do exist show a wide variation in reported mercury removals, from about 5 to 95%. We have performed tests for the removal of gaseous elemental mercury in a well-controlled laboratory environment by using both conventional and modified configurations of an aqueous scrubber system. Results from these tests strongly suggest that the removal of elemental mercury in a wet scrubber system is controlled by liquid-film resistance. Our results have also led us to hypothesize that the mercury-containing species in a flue-gas stream consist of only two types: elemental mercury and oxidized mercury compounds. We further assert that the differences observed in mercury removal reflect different proportions of each of these two types of mercury-containing species. We suggest that the total mercury removal will be high when the actual, but unmeasured, proportion of oxidized mercury compounds is high.

  18. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    SciTech Connect

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. )

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  19. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale

    NASA Astrophysics Data System (ADS)

    Hatt, Belinda E.; Fletcher, Tim D.; Deletic, Ana

    2009-02-01

    SummaryBiofiltration systems are a recommended and increasingly popular technology for stormwater management; however there is a general lack of performance data for these systems, particularly at the field scale. The objective of this study was to investigate the hydrologic and pollutant removal performance of three field-scale biofiltration systems in two different climates. Biofilters were shown to effectively attenuate peak runoff flow rates by at least 80%. Performance assessment of a lined biofilter demonstrated that retention of inflow volumes by the filter media, for subsequent loss via evapotranspiration, reduced runoff volumes by 33% on average. Retention of water was found to be most influenced by inflow volumes, although only small to medium storms could be assessed. Vegetation was shown to be important for maintaining hydraulic capacity, because root growth and senescence countered compaction and clogging. Suspended solids and heavy metals were effectively removed, irrespective of the design configuration, with load reductions generally in excess of 90%. In contrast, nutrient retention was variable, and ranged from consistent leaching to effective and reliable removal, depending on the design. To ensure effective removal of phosphorus, a filter medium with a low phosphorus content should be selected. Nitrogen is more difficult to remove because it is highly soluble and strongly influenced by the variable wetting and drying regime that is inherent in biofilter operation. The results of this research suggest that reconfiguration of biofilter design to manage the deleterious effects of drying on biological activity is necessary to ensure long term nitrogen removal.

  20. Removal of nitrogen from wastewater with perennial ryegrass/artificial aquatic mats biofilm combined system.

    PubMed

    Chen, Chongjun; Zhang, Rui; Wang, Liang; Wu, Weixiang; Chen, Yingxu

    2013-04-01

    To develop a cost-effective combined phytoremediation and biological process, a combined perennial ryegrass/artificial aquatic mat biofilm reactor was used to treat synthetic wastewater. Influent ammonium loading, reflux ratio, hydraulic retention time (HRT) and temperature all had significant effects on the treatment efficiency. The results indicated that the effluent concentration of ammonium increased with increasing influent ammonium loading. The reactor temperature played an important role in the nitrification process. The ammonium removal efficiency significantly decreased from 80% to 30%-50% when the reactor temperature dropped to below 10 degrees C. In addition, the optimal nitrogen removal condition was a reflux ratio of 2. The nitrate and ammonium concentration of the effluent were consistent with the HRT of the combined system. The chemical oxygen demand (COD) removal efficiency was at a high level during the whole experiment, being almost 80% after the start-up, and then mostly above 90%. The direct uptake of N by the perennial ryegrass accounted for 18.17% of the total N removal by the whole system. The perennial ryegrass absorption was a significant contributor to nitrogen removal in the combined system. The result illustrated that the combined perennial ryegrass/artificial aquatic mat biofilm reactor demonstrated good performance in ammonium, total N and COD removal. PMID:23923775

  1. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  2. Development of design information for molecular-sieve type regenerative CO2-removal systems

    NASA Technical Reports Server (NTRS)

    Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.

    1973-01-01

    Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.

  3. Cathode scraper system and method of using the same for removing uranium

    SciTech Connect

    Williamson, Mark A; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2015-02-03

    Embodiments include a cathode scraper system and/or method of using the same for removing uranium. The cathode scraper system includes a plurality of cathode assemblies. Each cathode assembly includes a plurality of cathode rods. The cathode scraper system also includes a cathode scraper assembly configured to remove purified uranium deposited on the plurality of cathode rods. The cathode scraper assembly includes a plurality of scrapers arranged in a lattice, and each scraper of the plurality of scrapers is arranged to correspond to a different cathode rod.

  4. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    PubMed

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed. PMID:24984512

  5. Continuous removal of endocrine disruptors by versatile peroxidase using a two-stage system.

    PubMed

    Taboada-Puig, Roberto; Lu-Chau, Thelmo A; Eibes, Gemma; Feijoo, Gumersindo; Moreira, Maria T; Lema, Juan M

    2015-01-01

    The oxidant Mn(3+) -malonate, generated by the ligninolytic enzyme versatile peroxidase in a two-stage system, was used for the continuous removal of endocrine disrupting compounds (EDCs) from synthetic and real wastewaters. One plasticizer (bisphenol-A), one bactericide (triclosan) and three estrogenic compounds (estrone, 17β-estradiol, and 17α-ethinylestradiol) were removed from wastewater at degradation rates in the range of 28-58 µg/L·min, with low enzyme inactivation. First, the optimization of three main parameters affecting the generation of Mn(3+) -malonate (hydraulic retention time as well as Na-malonate and H2 O2 feeding rates) was conducted following a response surface methodology (RSM). Under optimal conditions, the degradation of the EDCs was proven at high (1.3-8.8 mg/L) and environmental (1.2-6.1 µg/L) concentrations. Finally, when the two-stage system was compared with a conventional enzymatic membrane reactor (EMR) using the same enzyme, a 14-fold increase of the removal efficiency was observed. At the same time, operational problems found during EDCs removal in the EMR system (e.g., clogging of the membrane and enzyme inactivation) were avoided by physically separating the stages of complex formation and pollutant oxidation, allowing the system to be operated for a longer period (∼8 h). This study demonstrates the feasibility of the two-stage enzymatic system for removing EDCs both at high and environmental concentrations. PMID:26033915

  6. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  7. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  8. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

    PubMed

    Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level <2mgL(-1). The ratio between the anolyte and the catholyte flow rates should be kept >22.2 in order to avoid boron accumulation in the anolyte effluent. PMID:27387806

  9. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity

    PubMed Central

    Günther, Claudia; Kind, Barbara; Reijns, Martin A.M.; Berndt, Nicole; Martinez-Bueno, Manuel; Wolf, Christine; Tüngler, Victoria; Chara, Osvaldo; Lee, Young Ae; Hübner, Norbert; Bicknell, Louise; Blum, Sophia; Krug, Claudia; Schmidt, Franziska; Kretschmer, Stefanie; Koss, Sarah; Astell, Katy R.; Ramantani, Georgia; Bauerfeind, Anja; Morris, David L.; Cunninghame Graham, Deborah S.; Bubeck, Doryen; Leitch, Andrea; Ralston, Stuart H.; Blackburn, Elizabeth A.; Gahr, Manfred; Witte, Torsten; Vyse, Timothy J.; Melchers, Inga; Mangold, Elisabeth; Nöthen, Markus M.; Aringer, Martin; Kuhn, Annegret; Lüthke, Kirsten; Unger, Leonore; Bley, Annette; Lorenzi, Alice; Isaacs, John D.; Alexopoulou, Dimitra; Conrad, Karsten; Dahl, Andreas; Roers, Axel; Alarcon-Riquelme, Marta E.; Jackson, Andrew P.; Lee-Kirsch, Min Ae

    2014-01-01

    Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2–associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage–associated pathways in the initiation of autoimmunity. PMID:25500883

  10. Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Coker, Robert; Howard, David; Peters, Warren; Watson, David; Cmarik, Gregory; Miller, Lee A.

    2016-01-01

    A long-term goal for NASA is to enable crewed missions to Mars: first to the vicinity of Mars, and then to the Mars surface. These missions present new challenges for all aspects of spacecraft design in comparison with the International Space Station, as resupply is unavailable in the transit phase, and early return is not possible. Additionally, mass, power, and volume must be minimized for all phases to reduce propulsion needs. Mass reduction is particularly crucial for Mars surface landing and liftoff due to the challenges inherent in these operations for even much smaller payloads. In this paper we describe current and planned developments in the area of carbon dioxide removal to support future crewed Mars missions. Activities are also described that apply to both the resolution of anomalies observed in the ISS CDRA and the design of life support systems for future missions.

  11. Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems 2014-2015

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Coker, Robert; Huff, Timothy L.; Gatens, Robyn; Miller, Lee A.; Stanley, Christine

    2015-01-01

    A long-term goal for NASA is to enable crewed missions to Mars: first to the vicinity of Mars, and then to the Mars surface. These missions present new challenges for all aspects of spacecraft design in comparison with the International Space Station, as resupply is unavailable in the transit phase, and early return is not possible. Additionally, mass, power, and volume must be minimized for all phases to reduce propulsion needs. Mass reduction is particularly crucial for Mars surface landing and liftoff due to the challenges inherent in these operations for even much smaller payloads. In this paper we describe current and planned developments in the area of carbon dioxide removal to support future crewed Mars missions. Activities are also described that apply to both the resolution of anomalies observed in the ISS CDRA and the design of life support systems for future missions.

  12. Acid Gas Removal by Customized Sorbents for Integrated Gasification Fuel Cell Systems

    SciTech Connect

    Kapfenberger, J.; Sohnemann, J.; Schleitzer, D.; Loewen, A.

    2002-09-20

    In order to reduce exergy losses, gas cleaning at high temperatures is favored in IGFC systems. As shown by thermodynamic data, separation efficiencies of common sorbents decrease with increasing temperature. Therefore, acid gas removal systems have to be developed for IGFC applications considering sorbent capacity, operation temperature, gasification feedstock composition and fuel cell threshold values.

  13. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  14. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Treger, J M; McEntee, K

    1999-02-01

    Transcription of the polyubiquitin gene UBI4 of Saccharomyces cerevisiae is strongly induced by a variety of environmental stresses, such as heat shock, nutrient depletion and exposure to DNA-damaging agents. This transcriptional response of UBI4 is likely to be the primary mechanism for increasing the pool of ubiquitin for degradation of stress-damaged proteins. Deletion and promoter fusion studies of the 5' regulatory sequences indicated that two different elements, heat shock elements (HSEs) and stress response element (STREs), contributed independently to heat shock regulation of the UBI4 gene. In the absence of HSEs, STRE sequences localized to the intervals -264 to -238 and -215 to -183 were needed for stress control of transcription after heat shock. Site-directed mutagenesis of the STRE (AG4) at -252 to -248 abolished heat shock induction of UBI4 transcription. Northern analysis demonstrated that cells containing either a temperature-sensitive HSF or non-functional Msn2p/Msn4p transcription factors induced high levels of UBI4 transcripts after heat shock. In cells deficient in both heat stress pathways, heat-induced UBI4 transcript levels were considerably lower but not abolished, suggesting a role for another factor(s) in stress control of its expression. PMID:10048026

  15. Micropollutant removal in an algal treatment system fed with source separated wastewater streams.

    PubMed

    de Wilt, Arnoud; Butkovskyi, Andrii; Tuantet, Kanjana; Leal, Lucia Hernandez; Fernandes, Tânia V; Langenhoff, Alette; Zeeman, Grietje

    2016-03-01

    Micropollutant removal in an algal treatment system fed with source separated wastewater streams was studied. Batch experiments with the microalgae Chlorella sorokiniana grown on urine, anaerobically treated black water and synthetic urine were performed to assess the removal of six spiked pharmaceuticals (diclofenac, ibuprofen, paracetamol, metoprolol, carbamazepine and trimethoprim). Additionally, incorporation of these pharmaceuticals and three estrogens (estrone, 17β-estradiol and ethinylestradiol) into algal biomass was studied. Biodegradation and photolysis led to 60-100% removal of diclofenac, ibuprofen, paracetamol and metoprolol. Removal of carbamazepine and trimethoprim was incomplete and did not exceed 30% and 60%, respectively. Sorption to algal biomass accounted for less than 20% of the micropollutant removal. Furthermore, the presence of micropollutants did not inhibit C. sorokiniana growth at applied concentrations. Algal treatment systems allow simultaneous removal of micropollutants and recovery of nutrients from source separated wastewater. Nutrient rich algal biomass can be harvested and applied as fertilizer in agriculture, as lower input of micropollutants to soil is achieved when algal biomass is applied as fertilizer instead of urine. PMID:26546707

  16. Effects of intermittent aeration on pollutants removal in subsurface wastewater infiltration system.

    PubMed

    Pan, Jing; Fei, Hexin; Song, Siyu; Yuan, Fang; Yu, Long

    2015-09-01

    In this study, the pollutant removal performances in two pilot-scale subsurface wastewater infiltration systems (SWISs) with and without intermittent aeration were investigated. Matrix oxidation reduction potential (ORP) results showed that intermittent aeration well developed aerobic conditions in upper matrix and anoxic or anaerobic conditions in the subsequent sections, which resulted in high NH4(+)-N and TN removal. Moreover, intermittent aeration increased removal rates of COD and TP. Microbial populations and enzyme activities analysis proved that intermittent aeration not only obviously boosted the growth and reproduction of bacteria, fungus, actinomyces, nitrifying bacteria and denitrifying bacteria, but also successfully increased nitrate reductase (NR) and nitrite reductase (NIR) in the depth of 80 and 110 cm. The results suggest that the intermittent aeration could be a widespread research and application strategy for achieving the high removal performance in SWISs. PMID:26004389

  17. System and method for removing contaminants from solid surfaces and decontaminating waste

    SciTech Connect

    Brown, T.L.; Geiss, A.J.; Grieco, S.; Neubauer, E.D.; Rhea, J.R.

    1995-10-10

    A method and system are disclosed for removing a surface layer contaminated with radioactive and/or hazardous material and subsequently treating the waste to remove contaminants and provide an essentially contaminant-free final effluent. The contaminated material is removed by blasting the surface with a pressurized stream of air and sodium bicarbonate abrasive media, and the media is dissolved in water subsequent to the blasting operation. The resulting waste is treated in a sequence of steps including adjustment of pH, aeration and separation into primarily solid and liquid phases by precipitation of solids, which are removed for appropriate disposal. The primarily liquid phase is successively passed through a particle filter, a granulated activated carbon filter and a polishing unit to produce the clean final effluent. 1 fig.

  18. Manned Mission Planning Considerations when Using a Non-Regenerable CO2 Removal System

    NASA Technical Reports Server (NTRS)

    DeSimpelaere, Edward

    2011-01-01

    As the commercial spacecraft industry increases in size, there will be a corresponding increase in the number of manned spacecraft built and operationally flown each year. Industry teams for these new spacecraft will have multiple design and operational choices to make for each of these spacecraft s subsystems. The carbon dioxide (CO2) removal subsystem of the environmental control and life support system is one that presents such challenges. This paper seeks to aid industry in making design and operations choices by providing a document containing lessons learned by the Space Shuttle Program s Operations team, with specific focus given to the non-regenerable CO2 removal system currently used by the Space Shuttle. Carbon dioxide, one of the key byproducts of respiration, can lead to injury and death if allowed to build up in a spacecraft s habitable environment. Therefore, any spacecraft s environmental control and life support system must contain a method for removing this hazard. These removal systems can either be non-regenerable or regenerable. While this paper defines the difference between these types and presents a generic comparison of their capabilities, the focus is specifically on the Space Shuttle s CO2 removal systems. This will include a short discussion of the Space Shuttle s regenerable amine solid absorption system that was part of the Extended Duration Orbiter (EDO) modification, however, emphasis is given to the non-regenerable Lithium Hydroxide canister system used as the prime removal method employed by the Space Shuttle, including a discussion on why this method was chosen over a regenerable system. A full exposition is given on all of the considerations required for mission planning when using a non-regenerable CO2 removal system. Key discussion items include: airflow lessons learned, recent physiological issues related to short term and long term exposure and how lower levels may be more harmful than previously thought, lithium hydroxide

  19. CO2 Removal and Atmosphere Revitalization Systems for Next Generation Space Flight

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Mulloth, Lila M.; Varghese, Mini M.; Hogan, John Andrew

    2010-01-01

    Removal of metabolic CO2 from breathing air is a vital process for life support in all crewed space missions. A CO2 removal processor called the Low Power CO2 Removal (LPCOR) system is being developed in the Bioengineering Branch at NASA Ames Research Center. LPCOR utilizes advanced adsorption and membrane gas separation processes to achieve substantial power and mass reduction when compared to the state-of-the-art carbon dioxide removal assembly (CORA) of the US segment of the International Space Station (ISS). LPCOR is an attractive alternative for use in commercial spacecraft for short-duration missions and can easily be adapted for closed-loop life support applications. NASA envisions a next-generation closed-loop atmosphere revitalization system that integrates advanced CO2 removal, O2 recovery, and trace contaminant control processes to improve overall system efficiency. LPCOR will serve as the front end to such a system. LPCOR is a reliable air revitalization technology that can serve both the near-term and long-term human space flight needs of NASA and its commercial partners.

  20. A regenerable carbon dioxide removal and oxygen recovery system for the Japanese experiment module

    NASA Astrophysics Data System (ADS)

    Otsuji, K.; Hirao, M.; Satoh, S.

    The Japanese Space Station Program is now under Phase B study by the National Space Development Agency of Japan in participation with the U.S. Space Station Program. A Japanese Space Station participation will be a dedicated pressurized module to be attached to the U.S. Space Station, and is called Japanese Experiment Module (JEM). Astronaut scientists will conduct various experimental operations there. Thus an environment control and life support system is required. Regenerable carbon dioxide removal and collection technique as well as oxygen recovery technique has been studied and investigated for several years. A regenerable carbon dioxide removal subsystem using steam desorbed solid amine and an oxygen recovery subsystem using Sabatier methane cracking have a good possibility for the application to the Japanese Experiment Module. Basic performance characteristics of the carbon dioxide removal and oxygen recovery subsystem are presented according to the results of a fundamental performance test program. The trace contaminant removal process is also investigated and discussed. The solvent recovery plant for the regeneration of various industrial solvents, such as hydrocarbons, alcohols and so on, utilizes the multi-bed solvent adsorption and steam desorption process, which is very similar to the carbon dioxide removal subsystem. Therefore, to develop essential components including adsorption tank (bed), condensor, process controller and energy saving system, the technology obtained from the experience to construct solvent recovery plant can be easily and effectively applicable to the carbon dioxide removal subsystem. The energy saving efficiency is evaluated for blower power reduction, steam reduction and waste heat utilization technique. According to the above background, the entire environment control and life support system for the Japanese Experiment Module including the carbon dioxide removal and oxygen recovery subsystem is evaluated and proposed.

  1. Demonstration [sic] of a System for Removing Malachite Green : Final Report.

    SciTech Connect

    Marking, Leif L.

    1989-04-01

    Activated carbon has been used effectively to remove tastes, odors, and contaminants from public water supplies. The adsorption efficiency is influenced by the size of carbon granules, flow rate, column depth, and retention time. A study was designed to (1) determine the type of filter and kind of carbon that was most efficient and (2) demonstrate that carbon filters can be used to remove malachite green from water used for egg incubation or to hold adult salmon before spawning. Minicolumn simulation studies showed that 8 /times/ 30 mesh granular carbon manufactured from bituminous coal was effective for continuously removing malachite green from water for 230 days at a flow rate of 500 gpm and for 62 days at a flow rate of 1000 gpm. The removal capacity at the slower flow rate was 69 mg of malachite green per gram of carbon. A filter system that contained 20,000 pounds of activated carbon in each of two chambers was effective for removal of malachite green from treated water in adult salmon holding ponds at flows of 500 gpm and greater. The removal efficiency was 99.8% after 105 hours of operation, and the adsorption capacity of the system was projected to be 20 or more years of routine hatchery operation. A filter system that contained 2000 pounds of activated carbon in each of two chambers was effective for removal of malachite green from treated water in salmon egg incubation units at the designated flow rate of 50 gpm and also at faster flow rates. 14 refs., 5 figs., 6 tabs.

  2. Natural organic matter removal and fouling in a low pressure hybrid membrane systems.

    PubMed

    Uyak, Vedat; Akdagli, Muge; Cakmakci, Mehmet; Koyuncu, Ismail

    2014-01-01

    The objective of this study was to investigate powdered activated carbon (PAC) contribution to natural organic matter (NOM) removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP) increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters. PMID:24523651

  3. Removal of ammonia from contaminated air in a biotrickling filter - denitrifying bioreactor combination system.

    PubMed

    Sakuma, Takeyuki; Jinsiriwanit, Siriwat; Hattori, Toshihiro; Deshusses, Marc A

    2008-11-01

    The removal of gaseous ammonia in a system consisting of a biotrickling filter, a denitrification reactor and a polishing bioreactor for the trickling liquid was investigated. The system allowed sustained treatment of ammonia while preventing biological inhibition by accumulating nitrate and nitrite and avoiding generation of contaminated water. All bioreactors were packed with cattle bone composite ceramics, a porous support with a large interfacial area. Excellent removal of ammonia gas was obtained. The critical loading ranged from 60 to 120 gm(-3)h(-1) depending on the conditions, and loadings below 56 gm(-3)h(-1) resulted in essentially complete removal of ammonia. In addition, concentrations of ammonia, nitrite, nitrate and COD in the recycle liquid of the inlet and outlet of each reactor were measured to determine the fate of nitrogen in the reactor, close nitrogen balances and calculate nitrogen to COD ratios. Ammonia absorption and nitrification occurred in the biotrickling filter; nitrate and nitrite were biologically removed in the denitrification reactor and excess dissolved COD and ammonia were treated in the polishing bioreactor. Overall, ammonia gas was very successfully removed in the bioreactor system and steady state operation with respect to nitrogen species was achieved. PMID:18823641

  4. Removal of copper in an integrated sulfate reducing bioreactor-crystallization reactor system.

    PubMed

    Sierra-Alvarez, Reyes; Hollingsworth, Jeremy; Zhou, Michael S

    2007-02-15

    Removal of copper was investigated using an innovative water treatment system integrating a sulfidogenic bioreactor with a fluidized-bed crystallization reactor containing fine sand to facilitate the recovery of copper as a purified copper-sulfide mineral. The performance of the system was tested using a simulated semiconductor manufacturing wastewater containing high levels of Cu2+ (4-66 mg/L), sulfate, and a mixture of citrate, isopropanol, and polyethylene glycol (Mn 300). Soluble copper removal efficiencies exceeding 99% and effluent copper concentrations averaging 89 micog/L were demonstrated in the two-stage system, with near complete metal removal occurring in the crystallizer. Copper crystals deposited on sand grains were identified as covellite (CuS). The removal of organic constituents did not exceed 70% of the initial chemical oxygen demand due to incomplete degradation of isopropanol and its breakdown product (acetone). Taken as a whole, these results indicate the potential of this novel reactor configuration for the simultaneous removal of heavy metals and organic constituents. The ability of this process to recover heavy metals in a purified form makes it particularly attractive for the treatment of contaminated aqueous streams, including industrial wastewaters and acid mine drainage. PMID:17593752

  5. Iron oxide-loaded slag for arsenic removal from aqueous system.

    PubMed

    Zhang, Fu-Shen; Itoh, Hideaki

    2005-07-01

    An effective adsorbent for arsenic removal from aqueous system was synthesized by loading iron(III) oxide on municipal solid waste incinerator melted slag. The loading was accomplished via chemical processes and thermal coating technique. The key point of the technique was the simultaneous generation of amorphous FeOOH sol and silica sol in-situ and eventually led to the formation of Fe-Si surface complexes which combined the iron oxide with the melted slag tightly. The surface morphology of the iron oxide-loaded slag was examined and the loading mechanisms were discussed in detail. The adsorbent was effective for both arsenate and arsenite removal and its removal capabilities for As(V) and As(III) were 2.5 and 3 times of those of FeOOH, respectively. Both affinity adsorption and chemical reactions contributed to arsenic removal. The effects of solution pH, contact time, arsenic concentration and adsorbent dosage on arsenic removal were examined and the optimum removal conditions were established. Furthermore, leaching of hazardous elements such as Cr(VI), As, Se, Cd and Pb from the adsorbent at a pH range of 2.5-12.5 was below the regulation values. Accordingly, it is believed that the iron oxide-loaded slag developed in this study is environmentally acceptable and industrially applicable for wastewater treatment. PMID:15924950

  6. A new method for nutrients removal and recovery from wastewater using a bioelectrochemical system.

    PubMed

    Zhang, Fei; Li, Jian; He, Zhen

    2014-08-01

    Nutrients management is a key task of wastewater treatment and removal of nutrients is usually associated with significant energy/economic cost. A new bioelectrochemical system, named "R(2)-BES", was developed for removing and possibly recovering nutrients from wastewater. This R(2)-BES takes advantage of bioelectricity generation from oxidation of organic compounds to drive ammonium migration out of wastewater, and uses hydroxide ions produced from the cathode reaction as a medium to exchange phosphate ions from wastewater at the same time. Under an applied voltage of 0.8 V, the R(2)-BES removed 83.4 ± 1.3% of ammonium nitrogen and 52.4 ± 9.8% of phosphate, significantly higher than those (3.6 ± 3.7% and 21.1 ± 2.6%) under an open circuit condition. Applying an external voltage can increase current generation, COD removal, and nutrient removal. Those results demonstrate a proof of concept that the R(2)-BES may be potentially applied to remove and recover nutrients through appropriate integration into the existing treatment facilities. PMID:24948532

  7. Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system.

    PubMed

    Choi, Hee-Jeong; Lee, Seung-Mok

    2015-09-01

    This study investigates the use of calcined eggshells and microalgae for the removal of heavy metals from acid mine drainage (AMD) and the simultaneous enhancement of biomass productivity. The experiment was conducted over a period of 6 days in a hybrid system containing calcined eggshells and the microalgae Chlorella vulgaris. The results show that the biomass productivity increased to ~8.04 times its initial concentration of 0.367 g/L as measured by an optical panel photobioreactor (OPPBR) and had a light transmittance of 95 % at a depth of 305 mm. On the other hand, the simultaneous percent removal of Fe, Cu, Zn, Mn, As, and Cd from the AMD effluent was found to be 99.47 to 100 %. These results indicate that the hybrid system with calcined eggshells and microalgae was highly effective for heavy metal removal in the AMD. PMID:25940497

  8. Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions

    PubMed Central

    Grimshaw, Pengpeng; Calo, Joseph M.; Hradil, George

    2011-01-01

    The description and operation of a novel cyclic electrowinning/precipitation (CEP) system for the simultaneous removal of mixtures of heavy metals from aqueous solutions are presented. CEP combines the advantages of electrowinning in a spouted particulate electrode (SPE) with that of chemical precipitation and redissolution, to remove heavy metals at low concentrations as solid metal deposits on particulate cathode particles without exporting toxic metal precipitate sludges from the process. The overall result is very large volume reduction of the heavy metal contaminants as a solid metal deposit on particles that can either be safely discarded as such, or further processed to recover particular metals. The performance of this system is demonstrated with data on the removal of mixtures of copper, nickel, and cadmium from aqueous solutions. PMID:22102792

  9. Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions.

    PubMed

    Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George

    2011-11-15

    The description and operation of a novel cyclic electrowinning/precipitation (CEP) system for the simultaneous removal of mixtures of heavy metals from aqueous solutions are presented. CEP combines the advantages of electrowinning in a spouted particulate electrode (SPE) with that of chemical precipitation and redissolution, to remove heavy metals at low concentrations as solid metal deposits on particulate cathode particles without exporting toxic metal precipitate sludges from the process. The overall result is very large volume reduction of the heavy metal contaminants as a solid metal deposit on particles that can either be safely discarded as such, or further processed to recover particular metals. The performance of this system is demonstrated with data on the removal of mixtures of copper, nickel, and cadmium from aqueous solutions. PMID:22102792

  10. Development of a carbon filter system for removing malachite green from hatchery effluents

    SciTech Connect

    Marking, L.L. ); Leith, D. ); Davis, J. )

    1990-04-01

    The US Fish and Wildlife Service was granted an investigational New Animal Drug permit by the US Food and Drug Administration for the use of malachite green as a fungicide at selected state and federal fish hatcheries. However, the permit required that the fungicide be removed from all treated water after March 1989. A study was designed to (1) determine the type of filter and kind of carbon that was most efficient for removal of malachite green and (2) demonstrate that carbon filters can be used to remove malachite green from water used for egg incubation or to hold adult salmon before spawning. Minicolumn simulation studies showed that 8 {times} 30-mesh granular carbon was effective for continuously removing malachite green from water for 230 d at a flow rate of 500 gal/min and for only 62 d at a flow rate of 1,000 gal/min. The removal capacity at the slower flow rate was 1.1 oz of malachite green per pound of carbon. A filter system that contained 20,000 lb of activated carbon in each of two chambers was effective for removal of malachite green from treated water in adult salmon holding ponds at flows of 500 gal/min (6.4 gal/min per ft{sup 2}) and greater. The removal efficiency was 99.8% after 105 h of operation, and the adsorption capacity of the system was projected to be sufficient for 20 or more years of routine hatchery operation. A filter system that contained 2,000 lb of activated carbon in each of two chambers was effective for removal of malachite green from treated water in salmon egg incubation units at the designated flow rate of 50 gal/min (4.0 gal/min per ft{sup 2}) and also at faster flow rates. Removal efficiency decreased only slightly for faster flows in both filter systems, and the efficiency improved when treated water was passed through two filter chambers in series.

  11. Fabrication of a multi-applicable removable intraoral denture system for rodent research

    PubMed Central

    Lee, Heeje; Yu, Alika; Johnson, Clorinda C.; Noverr, Mairi C.; Fidel, Paul L.

    2011-01-01

    SUMMARY The objective was to engineer an inexpensive intraoral removable denture system for rodents that can be utilized in numerous oral health research applications. At the forefront is biofilm research related to Candida-associated denture stomatitis. Previously described intraoral devices are primitive and inadequate. The denture system was engineered consisting of a fixed part that is anchored to the posterior palate by orthodontic wires and acrylic resin, and a removable part fitted to the anterior palate that is retained by magnets embedded in the fixed part. Both parts are custom-fitted to the rodent palate by impression making and cast fabrication. Rats fitted with the intraoral denture system maintained body weight and normal activity with the device maintaining integrity and durability for upwards of 8 weeks. The denture system was used successfully to establish a working model of denture stomatitis. This newly engineered inexpensive intraoral removable denture system for rodents can be utilized in numerous oral health research applications, including denture-associated infections, biofilms, and a variety of biomaterial applications. The removable portion is advantageous for longitudinal analyses and charging/discharging of biomaterials. PMID:21323935

  12. Suspended Sediment and Phosphorus Removal in a Woodchip Filter System Treating Agricultural Wash Water.

    PubMed

    Choudhury, Tahina; Robertson, Will Dean; Finnigan, Darryl S

    2016-05-01

    Woodchip filters have received attention in recent years for their ability to sustain denitrification activity across multiyear time frames. However, in some freshwater aquatic ecosystems, P rather than N is the nutrient considered most responsible for eutrophication. Previous studies have indicated that woodchip filters have limited ability to remove dissolved P, but in agricultural terrain, P export in watercourses is often dominated by particulate P (PP). Woodchip media, because of their high porosity and permeability and the surface roughness of the particles, could be effective for PP removal. In this study, we tested a woodchip filter for its ability to remove suspended sediment and associated PP at a farm in southern Ontario, Canada, where vegetable wash water with extremely high total suspended solids (TSS) was generated. The treatment system consisted of a 12.3-m concrete sedimentation tank and a slightly larger woodchip filter (16.1 m) installed in a subsurface trench. During 7 mo of full-scale operation, treating 10.8 m d, the filter system removed 71% of influent total P (TP) averaging 8.8 mg L and 99% of TSS averaging 5800 mg L, with most of the removal occurring in the tank and a lesser amount (6-16%) occurring in the woodchip filter. Almost all of the TP removal was associated with PP (91% removal) because dissolved P, averaging 1.5 mg L in the wash water, was little changed. Woodchip filters, when coupled with a solids settling tank, have the potential to provide high-capacity, low-maintenance treatment of suspended solids and associated particulate P in turbid waters. PMID:27136144

  13. Automated system for removal and pneumatic transport of fly ash from electric precipitator hoppers

    SciTech Connect

    V.K. Konovalov; O.V. Yashkin; V.V. Ermakov

    2008-03-15

    A system for removal and pneumatic transport of fly ash is examined, in which air pulses act on batches (pistons) of ash formed in a duct. Studies are made of the effect of several physical parameters on the force required to displace a piston of ash and these serve as a basis for choosing a system for removal and pneumatic transport of ash simultaneously from several hoppers of an electric precipitator. This makes it possible to separate the ash particles according to size without introducing additional components. Formulas are given for calculating the structural and dynamic parameters of this system and measurements of indirect dynamic parameters are used to calculate the input-output characteristics of the system. In order to optimize the system, configurations for summing several ducts into a single transport duct for pneumatic ash transport are proposed. Some variants of dry ash utilization and the advantages of producing of size-separated particles are considered.

  14. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    SciTech Connect

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  15. Catalase and superoxide dismutase activities after heat injury of listeria monocytogenes

    SciTech Connect

    Dallmier, A.W.; Martin, S.E.

    1988-02-01

    Four strains of Listeria monocytogenes were examined for catalase (CA) and superoxide dismutase (SOD) activities. The two strains having the highest CA activities (LCDC and Scott A) also possessed the highest SOD activities. The CA activity of heated cell extracts of all four strains examined decreased sharply between 55 and 60/sup 0/C. SOD was more heat labile than CA. Two L. monocytogenes strains demonstrated a decline in SOD activity after heat treatment at 45/sup 0/C, whereas the other two strains demonstrated a decline at 50/sup 0/C. Sublethal heating of the cells at 55/sup 0/C resulted in increased sensitivity to 5.5% NaCl. Exogenous hydrogen peroxide was added to suspensions of L. monocytogenes; strains producing the highest CA levels showed the greatest H/sub 2/O/sub 2/ resistance.

  16. Rehydration and microstructure of cement paste after heating at temperatures up to 300 deg. C

    SciTech Connect

    Farage, M.C.R.; Sercombe, J.; Galle, C

    2003-07-01

    This paper is concerned with the evolution of the microstructure of cementitious materials subjected to high temperatures and subsequent resaturation in the particular context of long-term storage of radioactive wastes, where diffusive and convective properties are of primary importance. Experimental results obtained by mercury intrusion porosimetry (MIP) are presented concerning the evolution of the pore network of ordinary portland cement (OPC) paste heated at temperatures varying between 80 and 300 deg. C. The consequences of heating on the macroscopic properties of cement paste are evaluated by measures of the residual gas permeabilities, elastic moduli and Poisson's ratio, obtained by nondestructive methods. Resaturation by direct water absorption and water vapour sorption are used to estimate the reversibility of dehydration. The results provide some evidence of the self-healing capacity of resaturated cement paste after heating at temperatures up to 300 deg. C.

  17. RESIDUAL OXIDANTS REMOVAL FROM COASTAL POWER PLANT COOLING SYSTEM DISCHARGES: FIELD EVALUATION OF SO2 ADDITION SYSTEM

    EPA Science Inventory

    The report gives results of an evaluation of the performance of a dechlorination system that uses SO2 to remove residual oxidants from chlorinated sea water in a power plant cooling system. Samples of unchlorinated, chlorinated, and dechlorinated cooling water were obtained at Pa...

  18. Solids removal from a coldwater recirculating system - comparison of swirl separator and radial-flow settlers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solids removal across two settling devices, i.e., a swirl separator and a radial-flow settler, and across a microscreen drum filter was evaluated in a fully recirculating system containing a single 150 m3 'Cornell-type' dual-drain tank during the production of food-size Arctic char and rainbow trout...

  19. URANIUM REMOVAL FROM DRINKING WATER USING A SMALL FULL-SCALE SYSTEM

    EPA Science Inventory

    This report presents background and history of water quality, the basis for design and nine months of actual operating data for a small, full-scale strong-base ion exchange system that is used to remove uranium from a water supply serving a school in Jefferson County, CO. Informa...

  20. PROCESS GAS CHROMATOGRAPHY STUDY OF A SELEXOL ACID GAS REMOVAL SYSTEM

    EPA Science Inventory

    The report gives results of continuous compositional monitoring by process gas chromatography (GC) for three gas streams associated with the Selexol acid gas removal system at the Bi-Gas pilot plant in Homer City, PA. Data were obtained from the inlet and outlet streams of the Se...

  1. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    EPA Science Inventory

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  2. Microbial Community Profile of a Lead Service Line Removed from a Drinking Water Distribution System

    EPA Science Inventory

    A corroded lead water pipe was removed from a drinking water distribution system and the microbial community was profiled using 16S rDNA techniques. This is the first report of the characterization of biofilm on a surface of a corroded lead drinking water pipe. The majority of ...

  3. MODELING OF SO2 REMOVAL IN SPRAY-DRYER FLUE-GAS DESULFURIZATION SYSTEM

    EPA Science Inventory

    The report presents a comprehensive mathematical model of the SO2 removal process in a spray-dryer flue-gas desulfurization system. Simultaneous evaporation of a sorbent droplet and absorption/reaction of SO2 in the droplet are described by the corresponding heat- and mass-transf...

  4. Capital and Operating Costs of Small Arsenic Removal Adsorptive Media Systems

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) conducted 50 full-scale demonstration projects on treatment systems removing arsenic from drinking water in 26 states throughout the U.S. The projects were conducted to evaluate the performance, reliability, and cost of arsenic remo...

  5. IRON PROCESSES: SYSTEM MODIFICATION OF EXISTING PLANTS FOR ENHANCED ARSENIC REMOVAL

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water also have iron in their water. As a result, arsenic treatment at these sites will most likely b...

  6. Simultaneous removing SO2 and NO by a new system containing cobalt complex.

    PubMed

    Zhou, Chun-Qiong; Deng, Xian-He; Pan, Zhao-Qun

    2006-01-01

    Absorption and catalytic oxidation of nitric oxide can be achieved by using cobalt(III) ethylenediamine (Co(en)2(3+)). When simultaneous absorbing SO2 and NO, the precipitation of Co2(SO3)3 will be yielded and the NO removal will be decreased. A new catalyst system using Co(en)3(3+) coupled with urea has been developed to simultaneous remove NO and SO2 in the flue gas. NO is absorbed and catalytically oxidized to nitrite and nitrate by Co(en)3(3+). The dissolved oxygen in scrubbing solution from the feed stream acts as oxidant. Urea restrains the precipitation of Co2(SO3)3 by oxidizing SO3(2-) to SO4(-) as CoSO4 is more soluble in water. The experimental results proved that nearly all SO3(2-) can be oxidized to SO4(-2) and the high NO and SO2 removal could be obtained with the new system. The NO removal is influenced by gas flow rate, the concentration of Co(en)3(3+) and urea in the absorption solution, the temperature of the scrubbing solution and the content of oxygen in the flue gas. The low gas flow rate is favorable to increase the NO removal. The experiments proved that the NO removal could be maintained at more than 95% by the system of 0.02 mol/L Co(en)3(3+) and 1% urea at 50 degrees C with 10% O2 in the flue gas. PMID:17294658

  7. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    SciTech Connect

    Sullivan, Enid J; Kwon, Soondong; Katz, Lynn; Kinney, Kerry

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ

  8. Removal of ammonia from urine vapor by a dual-catalyst system

    NASA Technical Reports Server (NTRS)

    Budininkas, P.

    1977-01-01

    The feasibility of removing ammonia from urine vapor by a low-temperature dual-catalyst system has been demonstrated. The process is based on the catalytic oxidation of ammonia to a mixture of nitrogen, nitrous oxide, and water, followed by a catalytic decomposition of the nitrous oxide into its elements. Potential ammonia oxidation and nitrous oxide decomposition catalysts were first screened with artificial gas mixtures, then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual-catalyst bed arrangement was found that achieved the removal of ammonia and also organic carbon, and recovered water of good quality from urine vapor.

  9. Computer Simulation and Modeling of CO2 Removal Systems for Exploration 2013-2014

    NASA Technical Reports Server (NTRS)

    Coker, R.; Knox, J.; Gomez, C.

    2015-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project and the follow-on Life Support Systems (LSS) project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper will describes the testing and 1-D modeling of the combined water desiccant and carbon dioxide sorbent subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  10. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  11. Application of biofiltration system on AOC removal: column and field studies.

    PubMed

    Chien, C C; Kao, C M; Chen, C W; Dong, C D; Wu, C Y

    2008-04-01

    The Cheng-Ching Lake Water Treatment Plant (CCLWTP) is the main supplier of domestic water for the Greater Kaohsiung area, the second largest metropolis in Taiwan. Biological activated carbon (BAC) filtration is one of the major treatment processes in CCLWTP. The objectives of this study were to evaluate the effectiveness of BAC filtration on water treatment in the studied advanced water treatment plant and its capability on pollutants [e.g., AOC (assimilable organic carbon), bromide, bromate, iron] removal. In this study, water samples from each treatment process of CCLWTP were collected and analyzed periodically to assess the variations in concentrations of AOC and other water quality indicators after each treatment unit. Moreover, the efficiency of biofiltration process using granular activated carbon (GAC) and anthracite as the fillers was also evaluated through a column experiment. Results show that the removal efficiencies for AOC, bromide, bromate, and iron are 86% 100%, 17%, and 30% after the BAC filter bed, respectively. This indicates that BAC filtration plays an important role in pollutant removal. Results also show that AOC concentrations in raw water and effluent of the CCLWTP are approximately 143 and 16 microg acetate-Cl(-1), respectively. This reveals that the treatment processes applied in CCLWTP is able to remove AOC effectively. Results of column study show that the AOC removal efficiencies in the GAC and anthracite columns are 60% and 17%, respectively. Microbial colonization on GAC and anthracite were detected via the observation of scanning electron microscopic images. The observed microorganisms included bacteria (rods, cocci, and filamentous bacteria), fungi, and protozoa. Results from this study provide us insight into the mechanisms of AOC removal by advanced water treatment processes. These findings would be helpful in designing a modified water treatment system for AOC removal and water quality improvement. PMID:18294674

  12. Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh

    SciTech Connect

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

    2009-09-14

    Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  13. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  14. Reclaim System Design of Indium Tin Oxide Thin-Film Removal from Color Filters of Displays

    NASA Astrophysics Data System (ADS)

    Pa, Pai-Shan

    2008-09-01

    A newly design precision reclaim system using electrochemical machining as an etching process for indium tin oxide (ITO) thin-film removal from the color filter surface of a displays is presented. Through the ultra precise etching of the nanostructure, the semiconductor industry can effectively recycle defective products, thereby reducing production costs. A large gyration diameter of a cathode combined with a small gap width between the cathode and a workpiece takes less time for the same amount of ITO removed. An adequate feed rate of color filters combined with a sufficient electric power produces fast machining. Pulsed direct current and higher rotational speed of the cathode can improve the effects of dregs discharge and are advantageous to be combined with a high feed rate of workpieces. Electrochemical machining only requires a short time to easily and cleanly remove ITO films.

  15. Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture

    NASA Astrophysics Data System (ADS)

    Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.

    2005-12-01

    Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6

  16. Oxidative removal of bisphenol A using zero valent aluminum-acid system.

    PubMed

    Liu, Wanpeng; Zhang, Honghua; Cao, Beipei; Lin, Kunde; Gan, Jay

    2011-02-01

    Bisphenol A (BPA), a controversial endocrine disruptor, is ubiquitous in the aquatic environment. In this study, the oxidative degradation of BPA and its mechanism using zero valent aluminum (ZVAl)-acid system under air-equilibrated conditions was investigated. Under pH <3.5 acidic conditions, ZVAl demonstrated an excellent capacity to remove BPA. More than 75% of BPA was eliminated within 12 h in pH 1.5 reaction solutions initially containing 4.0 g/L aluminum and 2.0 mg/L BPA at 25 ± 1 °C. The removal of BPA was further accelerated with increasing aluminum loadings. Higher temperature and lower initial pH also facilitated BPA removal. The addition of Fe(2+) into the ZVAl-acid system significantly accelerated the reaction likely due to the enhancing transformation of H(2)O(2) to HO via Fenton reaction. Furthermore, the primary products or intermediates including monohydroxylated BPA, hydroquinone, 2-(4-hydroxyphenyl)propane and 4-isopropenylphenol, were identified and a possible reaction scheme was proposed. The remarkable capacity of the ZVAl-acid system in removing BPA displays its potential application in the treatment of organic compound-contaminated water. PMID:21185583

  17. Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Bush, Richard

    2016-01-01

    Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.

  18. A Laser Optical System to Remove Low Earth Orbit Space Debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Nikolaev, Sergey; Trebes, James E.; George, Victor E.; Marrcovici, Bogdan; Valley, Michael T.

    2013-08-01

    Collisions between existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. As solutions, flying up and interacting with each object is inefficient due to the energy cost of orbit plane changes, while debris removal systems using blocks of aerogel or gas-filled balloons are prohibitively expensive. Furthermore, these solutions to the debris problem address only large debris, but it is also imperative to remove 10-cm-class debris. In Laser-Orbital-Debris-Removal (LODR), a ground-based pulsed laser makes plasma jets on LEO debris objects, slowing them slightly, and causing them to re-enter the atmosphere and burn up. LODR takes advantage of recent advances in pulsed lasers, large mirrors, nonlinear optics and acquisition systems. LODR is the only solution that can address both large and small debris. International cooperation is essential for building and operating such a system. We also briefly discuss the orbiting laser debris removal alternative.

  19. Nitrate removal in a closed marine system through the ion exchange membrane bioreactor.

    PubMed

    Matos, Cristina T; Sequeira, Ana M; Velizarov, Svetlozar; Crespo, João G; Reis, Maria A M

    2009-07-15

    The accumulation of nitrate in closed marine systems presents a problem for both the marine life and the environment. The present study, proposes the application of the ion exchange membrane bioreactor (IEMB) concept for removing nitrate from marine systems, such as aquaculture tanks or marine aquariums. The results obtained demonstrate that the IEMB was able to remove naturally accumulated nitrate from water taken from a public marine aquarium (Oceanário de Lisboa) and bioconvert it, in an isolated compartment (biocompartment), to molecular nitrogen, thus preventing secondary contamination of the treated water by microbial cells, metabolic by-products and excess of carbon source (ethanol). This system allowed for the removal of nitrate at concentrations of 251 and 380 mg/l down to below 27 mg/l exchanging it for chloride. Under the studied operating conditions, the IEMB proves to be a selective nitrate removing technology preserving the initial water composition with respect to cations, due to the Donnan exclusion effect from the membrane, and minimizing the counter diffusion of anions other than nitrate and chloride, due to the use of water with the same ionic composition in the biocompartment. This is an advantage of the IEMB concept, since the quality of the water produced would allow for the reutilisation of the treated water in the aquarium, thereby reducing both the wastewater volume and the use of fresh water. PMID:19111983

  20. Computerized design of removable partial dentures: a knowledge-based system for the future.

    PubMed

    Davenport, J C; Hammond, P; Fitzpatrick, F J

    1993-06-01

    Dentists frequently fail to provide dental technicians with the design information necessary for the construction of removable partial dentures. The computerization of dental practices and the development of appropriate knowledge-based systems could provide a powerful tool for improving this aspect of dental care. This article describes one such system currently under development which is an example of the kind of additional facility that will become available for those practices with the necessary hardware. PMID:8299844

  1. Removal of a combination of endocrine disruptors from aqueous systems by seedlings of radish and ryegrass.

    PubMed

    Gattullo, C Eliana; Cunha, Bruno Barboza; Rosa, André H; Loffredo, Elisabetta

    2013-01-01

    Endocrine disruptors (EDs) are widespread in the environment, especially aquatic systems, and cause dangerous effects on wildlife and humans. This work was aimed to assess the capacity of radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) seedlings to tolerate and remove two combinations of EDs containing bisphenol A (BPA), 17alpha-ethynilestradiol (EE2), and linuron from four aqueous media: distilled water, a solution of natural organic matter (NOM), a lake water and a river water. Seeds of the two species were germinated in each contaminated medium and, at the end of germination, the seedling growth was evaluated by biometric measurements and residual EDs were quantified by chromatographic analysis. Biometric measurements revealed that the phytotoxicity of the two combinations of EDs depended on the medium used. Radish showed a discrete tolerance in distilled water and lake water but was inhibited in the solution of NOM and river water. Ryegrass was negatively affected mainly in river water. The concentration of each ED appeared significantly reduced in all media in the presence of seedlings of both species, but not in the blanks without plants. In 5 days, radish removed up to 88% of BPA, 100% of EE2 and 42% of linuron, and in 6 days ryegrass removed up to 92% of BPA, 74% of EE2 and 16% of linuron. The considerable removal capacity of radish and ryegrass in all media tested encourages the use of phytoremediation to remove EDs from waters. PMID:24617071

  2. Organoheterotrophic Bacterial Abundance Associates with Zinc Removal in Lignocellulose-Based Sulfate-Reducing Systems.

    PubMed

    Drennan, Dina M; Almstrand, Robert; Lee, Ilsu; Landkamer, Lee; Figueroa, Linda; Sharp, Jonathan O

    2016-01-01

    Syntrophic relationships between fermentative and sulfate-reducing bacteria are essential to lignocellulose-based systems applied to the passive remediation of mining-influenced waters. In this study, seven pilot-scale sulfate-reducing bioreactor columns containing varying ratios of alfalfa hay, pine woodchips, and sawdust were analyzed over ∼500 days to investigate the influence of substrate composition on zinc removal and microbial community structure. Columns amended with >10% alfalfa removed significantly more sulfate and zinc than did wood-based columns. Enumeration of sulfate reducers by functional signatures (dsrA) and their putative identification from 16S rRNA genes did not reveal significant correlations with zinc removal, suggesting limitations in this directed approach. In contrast, a strong indicator of zinc removal was discerned in comparing the relative abundance of core microorganisms shared by all reactors (>80% of total community), many of which had little direct involvement in metal or sulfate respiration. The relative abundance of Desulfosporosinus, the dominant putative sulfate reducer within these reactors, correlated to representatives of this core microbiome. A subset of these clades, including Treponema, Weissella, and Anaerolinea, was associated with alfalfa and zinc removal, and the inverse was found for a second subset whose abundance was associated with wood-based columns, including Ruminococcus, Dysgonomonas, and Azospira. The construction of a putative metabolic flowchart delineated syntrophic interactions supporting sulfate reduction and suggests that the production of and competition for secondary fermentation byproducts, such as lactate scavenging, influence bacterial community composition and reactor efficacy. PMID:26605699

  3. Evaluation of the role of inherent Ca(2+) in phosphorus removal from wastewater system.

    PubMed

    Han, Chong; Wang, Zhen; Wu, Qianqian; Yang, Wangjin; Yang, He; Xue, Xiangxin

    2016-01-01

    The role of inherent Ca(2+) in phosphorus removal from wastewater was evaluated by batch tests. Precipitates were characterized by an X-ray diffractometer (XRD), Fourier transform infrared spectrophotometer (FT-IR) and scanning electron microscope with an energy dispersive spectrometer (EDS) system. Effects of inherent Ca(2+) on phosphorus removal through basic oxygen furnace slag (BOFS) were also analyzed. The results show that upon adjusting the pH to higher than 7.0, inherent Ca(2+) can remove phosphorus from wastewater and form Ca-P precipitates. Residual phosphorus exhibited a linear decreasing trend with increasing the pH from 7.0 to 10.0 and then remained unchanged at higher pH than 10.0. EDS determined that the precipitates contained the elements Ca, P and O. FT-IR spectra demonstrated that the functional groups of precipitates involved PO4(3-), OH(-) and CO3(2-). XRD indicated that the precipitates may consist of CaCO3 and some Ca-P phosphates such as CaHPO4, Ca4H(PO4)3, Ca3(PO4)2, and Ca5(PO4)3(OH). During the removal process of phosphorus by BOFS, due to the presence of inherent Ca(2+) in wastewater, the removal efficiency and rate of phosphorus increased by 15.5% and by a factor of about 3.0, respectively. PMID:27054736

  4. An Improved Design for Air Removal from Aerospace Fluid Loop Coolant Systems

    NASA Technical Reports Server (NTRS)

    Ritchie, Stephen M. C.; Holladay, Jon B.; Holt, J. Mike; Clark, Dallas W.

    2003-01-01

    Aerospace applications with requirements for large capacity heat removal (launch vehicles, platforms, payloads, etc.) typically utilize a liquid coolant fluid as a transport media to increase efficiency and flexibility in the vehicle design. An issue with these systems however, is susceptibility to the presence of noncondensable gas (NCG) or air. The presence of air in a coolant loop can have numerous negative consequences, including loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and coolant blockage to remote systems. Hardware ground processing to remove this air is also cumbersome and time consuming which continuously drives recurring costs. Current systems for maintaining the system free of air are tailored and have demonstrated only moderate success. An obvious solution to these problems is the development and advancement of a passive gas removal device, or gas trap, that would be installed in the flight cooling system simplifying the initial coolant fill procedure and also maintaining the system during operations. The proposed device would utilize commercially available membranes thus increasing reliability and reducing cost while also addressing both current and anticipated applications. In addition, it maintains current pressure drop, water loss, and size restrictions while increasing tolerance for pressure increases due to gas build-up in the trap.

  5. Laboratory and field evaluation of a pretreatment system for removing organics from produced water.

    PubMed

    Kwon, Soondong; Sullivan, Enid J; Katz, Lynn E; Bowman, Robert S; Kinney, Kerry A

    2011-09-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. This "produced water" is characterized by saline water containing a variety of pollutants, including water soluble and immiscible organics and many inorganic species. To reuse produced water, removal of both the inorganic dissolved solids and organic compounds is necessary. In this research, the effectiveness of a pretreatment system consisting of surfactant modified zeolite (SMZ) adsorption followed by a membrane bioreactor (MBR) was evaluated for simultaneous removal of carboxylates and hazardous substances, such as benzene, toluene, ethylbenzene, and xylenes (BTEX) from saline-produced water. A laboratory-scale MBR, operated at a 9.6-hour hydraulic residence time, degraded 92% of the carboxylates present in synthetic produced water. When BTEX was introduced simultaneously to the MBR system with the carboxylates, the system achieved 80 to 95% removal of BTEX via biodegradation. These results suggest that simultaneous biodegradation of both BTEX and carboxylate constituents found in produced water is possible. A field test conducted at a produced water disposal facility in Farmington, New Mexico confirmed the laboratory-scale results for the MBR and demonstrated enhanced removal of BTEX using a treatment train consisting of SMZ columns followed by the MBR. While most of the BTEX constituents of the produced water adsorbed onto the SMZ adsorption system, approximately 95% of the BTEX that penetrated the SMZ and entered the MBR was biodegraded in the MBR. Removal rates of acetate (influent concentrations of 120 to 170 mg/L) ranged from 91 to 100%, and total organic carbon (influent concentrations as high as 580 mg/L) ranged from 74 to 92%, respectively. Organic removal in the MBR was accomplished at a low biomass concentration of 1 g/L throughout the field trial. While the transmembrane pressure during the laboratory-scale tests was well-controlled, it rose

  6. A comparison of past small dam removals in highly sediment-impacted systems in the U.S.

    NASA Astrophysics Data System (ADS)

    Sawaske, Spencer R.; Freyberg, David L.

    2012-05-01

    The ability to predict the effects of dam removal in highly sediment-filled systems is increasingly important as the number of such dam removal cases continues to grow. The cost and potential impacts of dam removal are site-specific and can vary substantially depending on local conditions. Of specific concern in sediment-impacted removals is the volume and rate of reservoir deposit erosion. The complexity and potential accuracy of modeling methods used to forecast the effects of such dam removals vary substantially. Current methods range from predictions based on simple analysis of pre-dam channel geometry to sophisticated data-intensive, three-dimensional numerical models. In the work presented here, we utilize data collected from past dam removals to develop an additional tool for predicting the rate and volume of sediment deposit erosion. Through the analysis of sediment, discharge, deposit, removal timeline, channel, and watershed data, in conjunction with post-removal monitoring data from a wide range of dam removal projects, some significant trends in the evolution of reservoir deposits following dam removal can be seen. Results indicate that parameters such as median grain size, level of cohesion, spatial variability of the deposit, and removal timeline are among the most influential factors in determining the rate and volume of sediment erosion. By comparing local conditions of dams and reservoirs slated for removal with those of past removals, we hope that predictions of the rate and volume of sediment deposit erosion can be usefully constrained.

  7. Tritium emission reduction at Darlington tritium removal facility using a Bubbler System

    SciTech Connect

    Kalyanam, K.; Leilabadi, A.; El-Behairy, O.; Williams, G. I. D.; Vogt, H. K.

    2008-07-15

    Ontario Power Generation Nuclear (OPGN) has a 4 x 880 MWe CANDU nuclear station at its Darlington Nuclear Div. located in Bowmanville. The station operates a Tritium Removal Facility (TRF) to reduce and maintain low tritium levels in the Moderator and Heat Transport heavy water systems of Ontario's CANDU fleet by extracting, concentrating, immobilizing and storing as a metal tritide. Minimizing tritium releases to the environment is of paramount importance to ensure that dose to the public is as low as reasonably achievable (ALARA) and to maintain credibility with the Public. Tritium is removed from the Cryogenic Distillation System to the Tritium Immobilization System (TIS) glove box via a transfer line that is protected by a rupture disc and relief valve. An overpressure event in 2003 had caused the rupture disc to blow, resulting in the release of a significant quantity of elemental tritium into the relief valve discharge line, which ties into the contaminated exhaust system. As a result of a few similar events occurring over a number of years of TRF operation, the released elemental tritium would have been converted to tritium oxide in the presence of a stagnant moist air environment in the stainless steel discharge line. A significant amount of tritium oxide hold-up in the discharge line was anticipated. To minimize any further releases to the environment, a Bubbler System was designed to remove and recover the tritium from the discharge line. This paper summarizes the results of several Bubbler recovery runs that were made over a period of a month. Approximately 3500 Ci of tritium oxide and 230 Ci of elemental tritium were removed and collected. The tritium contained in the water produced from the Bubbler system was later safely recovered in the station's downgraded D{sub 2}O clean-up and recovery system. (authors)

  8. Arsenic removal from water employing a combined system: photooxidation and adsorption.

    PubMed

    Lescano, Maia; Zalazar, Cristina; Brandi, Rodolfo

    2015-03-01

    A combined system employing photochemical oxidation (UV/H2O2) and adsorption for arsenic removal from water was designed and evaluated. In this work, a bench-scale photochemical annular reactor was developed being connected alternately to a pair of adsorption columns filled with titanium dioxide (TiO2) and granular ferric hydroxide (GFH). The experiences were performed by varying the relation of As concentration (As (III)/As (V) weight ratio) at constant hydrogen peroxide concentration and incident radiation. Experimental oxidation results were compared with theoretical predictions using an intrinsic kinetic model previously obtained. In addition, the effectiveness of the process was evaluated using a groundwater sample. The mathematical model of the entire system was developed. It could be used as an effective tool for the design and prediction of the behaviour of these types of systems. The combined technology is efficient and promising for arsenic removal to small and medium scale. PMID:25273516

  9. Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system.

    PubMed

    Baiget, Mar; Constantí, Magda; López, M Teresa; Medina, Francesc

    2013-09-25

    Reduction of soluble uranium(VI) to insoluble uranium(IV) for remediating a uranium-contaminated effluent (EF-03) was examined using a biotic and abiotic integrated system. Shewanella putrefaciens was first used and reduced U(VI) in a synthetic medium but not in the EF-03 effluent sample. Subsequently the growth of autochthonous microorganisms was stimulated with lactate. When lactate was supported on active carbon 77% U(VI) was removed in 4 days. Separately, iron nanoparticles that were 50 nm in diameter reduced U(VI) by 60% in 4 hours. The efficiency of uranium(VI) removal was improved to 96% in 30 min by using a system consisting of lactate and iron nanoparticles immobilized on active carbon. Lactate also stimulated the growth of potential uranium-reducing microorganisms in the EF-03 sample. This system can be efficiently used for the bioremediation of uranium-contaminated effluents. PMID:23689043

  10. Particle removal in a novel sequential mechanical filter system loaded with blackwater.

    PubMed

    Todt, Daniel; Jenssen, Petter D

    2015-01-01

    A novel sequential mechanical filter system was developed as an alternative primary treatment method for onsite wastewater treatment. The filter combines traditional screening with a novel type of counter-flow filter using wood-shavings as a biodegradable filter matrix. This study tested the system in a batch loading regime simulating high frequency toilet flushing using blackwater from a student dormitory. The filter removed 78-85% of suspended solids, 60-80% of chemical oxygen demand, and 42-57% of total-P in blackwater, giving a retentate with a dry matter content of 13-20%. Data analysis clearly indicated a tendency towards higher removal performance with high inlet concentrations, hence, the system seems to be most applicable to blackwater or other types of wastewater with a high content of suspended solids. PMID:25945859

  11. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water.

    PubMed

    Li, Jihua; Yang, Xiaoying; Wang, Zhengfang; Shan, Ying; Zheng, Zheng

    2015-03-01

    Nutrient removal behaviors of four aquatic plant treatment systems (Oenanthe javanica, Iris pseudacorus L., Canna lily, and Potamogeton crispus) were systematically examined and compared. The kinetics of nutrient uptake were conducted with the standard depletion method. All four aquatic species exhibited a strong preference of ammonium nitrogen (NH4(+)-N) over nitrate nitrogen (NO3(-)-N) and nitrite nitrogen (NO2(-)-N). Main pathways of nutrient removal in the aquatic plant treatment system were examined in details. It was estimated that direct assimilation by plants accounted for 28.2-34.5% of N reduction and 25.2-33.4% of P reduction while substrate absorption accounted for 7.2-25.5% of N reduction and 7.3-25.0% of P reduction. The activity of urease and phosphatase in the substrates could indicate the aquatic plant treatment system's capability for reducing TN and soluble P load. PMID:25514395

  12. Method and device for removing a non-aqueous phase liquid from a groundwater system

    DOEpatents

    Looney, Brian B.; Rossabi, Joseph; Riha, Brian D.

    2002-01-01

    A device for removing a non-aqueous phase liquid from a groundwater system includes a generally cylindrical push-rod defining an internal recess therein. The push-rod includes first and second end portions and an external liquid collection surface. A liquid collection member is detachably connected to the push-rod at one of the first and second end portions thereof. The method of the present invention for removing a non-aqueous phase liquid from a contaminated groundwater system includes providing a lance including an external hydrophobic liquid collection surface, an internal recess, and a collection chamber at the bottom end thereof. The lance is extended into the groundwater system such that the top end thereof remains above the ground surface. The liquid is then allowed to collect on the liquid collection surface, and flow downwardly by gravity into the collection chamber to be pumped upwardly through the internal recess in the lance.

  13. Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J; McLaughlin, Russell L.

    2008-01-01

    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment, small parts and flight components result in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL) for hexavalent chromium (CrVI) from 52 to 5 micrograms per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in numerous pretreatment and primer coatings used within the Space Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient, and environmentally preferable manner. The use of laser energy to prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation, and non destructive evaluation (NDE) is a relatively new application of the technology that has been proven to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The novel process eliminates VOCs and blast media and captures the removed coatings with an integrated vacuum system. This means that the only waste generated are the coatings that are removed, resulting in an overall cleaner process. The development of a

  14. Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-Bed System (CAMRAS)

    NASA Technical Reports Server (NTRS)

    Papale, William; Nalette Tim; Sweterlitsch, Jeffrey

    2009-01-01

    Under a cooperative agreement with NASA, Hamilton Sundstrand has successfully designed, fabricated, tested and delivered three, state-of-the-art, solid amine prototype systems capable of continuous CO2 and humidity removal from a closed, habitable atmosphere. Two prototype systems (CAMRAS #1 and #2) incorporated a linear spool valve design for process flow control through the sorbent beds, with the third system (CAMRAS #3) employing a rotary valve assembly that improves system fluid interfaces and regeneration capabilities. The operational performance of CAMRAS #1 and #2 has been validated in a relevant environment, through both simulated human metabolic loads in a closed chamber and through human subject testing in a closed environment. Performance testing at Hamilton Sundstrand on CAMRAS #3, which incorporates a new valve and modified canister design, showed similar CO2 and humidity removal performance as CAMRAS #1 and #2, demonstrating that the system form can be modified within certain bounds with little to no effect in system function or performance. Demonstration of solid amine based CO2 and humidity control is an important milestone in developing this technology for human spaceflight. The systems have low power requirements; with power for air flow and periodic valve actuation and indication the sole requirements. Each system occupies the same space as roughly four shuttle non-regenerative LiOH canisters, but have essentially indefinite CO2 removal endurance provided a regeneration pathway is available. Using the solid amine based systems to control cabin humidity also eliminates the latent heat burden on cabin thermal control systems and the need for gas/liquid phase separation in a low gravity environment, resulting in additional simplification of vehicle environmental control and life support system process requirements.

  15. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system.

    PubMed

    Ju, Xinxin; Wu, Shubiao; Zhang, Yansheng; Dong, Renjie

    2014-08-01

    A novel electrolysis-integrated tidal flow constructed wetland (CW) system was developed in this study. The dynamics of intensified nitrogen and phosphorus removal and that of hydrogen sulphide control were evaluated. Ammonium removal of up to 80% was achieved with an inflow concentration of 60 mg/L in wetland systems with and without electrolysis integration. Effluent nitrate concentration decreased from 2 mg/L to less than 0.5 mg/L with the decrease in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2) in the electrolysis-integrated wetland system, thus indicating that the current intensity of electrolysis plays an important role in nitrogen transformations. Phosphorus removal was significantly enhanced, exceeding 95% in the electrolysis-integrated CW system because of the in-situ formation of a ferric iron coagulant through the electro-dissolution of a sacrificial iron anode. Moreover, the electrolyzed wetland system effectively inhibits sulphide accumulation as a result of a sulphide precipitation coupled with ferrous-iron electro-dissolution and/or an inhibition of bacterial sulphate reduction under increased aerobic conditions. PMID:24784452

  16. Removal of bacterial indicators and pathogens from dairy wastewater by a multi-component treatment system.

    PubMed

    Karpiscak, M M; Sanchez, L R; Freitas, R J; Gerba, C P

    2001-01-01

    Microbial removal by a multi-component treatment system for dairy and municipal wastewater is being studied in Arizona, USA. The system consists of paired solids separators, anaerobic lagoons, aerobic ponds and constructed wetlands cells. The organisms under study include: total coliform, fecal coliform, enterovirus, Listeria monocytogenes, Clostridium perfringens, coliphage, Giardia lamblia and Cryptosporidium parvum. Organism removal rates from dairy wastewater varied from 13.2 per cent for fecal coliform to 94.9 per cent for coliphage. It appears that the much higher turbidity of the dairy wastewater, nearly 1,300 NTU, decreased the treatment systems' ability to remove some microbial indicators and pathogens. Information from this study can be used to determine the adequacy of multi-component treatment systems for the control of wastewater-borne pathogens, both in municipal treatment systems as well as in confined animal feeding operations (CAFO). This information also can assist municipalities and the CAFO industry in the implementation of rational and efficient treatment strategies for appropriate reuse of wastewaters. PMID:11804092

  17. Ammonium Removal by the Oxygen-Limited Autotrophic Nitrification-Denitrification System

    PubMed Central

    Kuai, Linping; Verstraete, Willy

    1998-01-01

    The present lab-scale research reveals the potential of implementation of an oxygen-limited autotrophic nitrification-denitrification (OLAND) system with normal nitrifying sludge as the biocatalyst for the removal of nitrogen from nitrogen-rich wastewater in one step. In a sequential batch reactor, synthetic wastewater containing 1 g of NH4+-N liter−1 and minerals was treated. Oxygen supply to the reactor was double-controlled with a pH controller and a timer. At a volumetric loading rate (Bv) of 0.13 g of NH4+-N liter−1 day−1, about 22% of the fed NH4+-N was converted to NO2−-N or NO3−-N, 38% remained as NH4+-N, and the other 40% was removed mainly as N2. The specific removal rate of nitrogen was on the order of 50 mg of N liter−1 day−1, corresponding to 16 mg of N g of volatile suspended solids−1 day−1. The microorganisms which catalyzed the OLAND process are assumed to be normal nitrifiers dominated by ammonium oxidizers. The loss of nitrogen in the OLAND system is presumed to occur via the oxidation of NH4+ to N2 with NO2− as the electron acceptor. Hydroxylamine stimulated the removal of NH4+ and NO2−. Hydroxylamine oxidoreductase (HAO) or an HAO-related enzyme might be responsible for the loss of nitrogen. PMID:9797314

  18. BOA: Asbestos pipe-insulation removal robot system. Phase I. Topical report, November 1993--December 1994

    SciTech Connect

    Schempf, H.; Bares, J.E.

    1995-01-01

    Based on several key design criteria and site visits, we developed a Robot design and built a system which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure. Experimental results indicated that the current robotic abatement process is sound yet needs to be further expanded and modified. One of the main discoveries was that a longitudinal cut to fully allow the paddles to dig in and compress the insulation off the pipe is essential. Furthermore, a different cutting method might be explored to alleviate the need for a deeper cut and to enable a combination of certain functions such as compression and cutting. Unfortunately due to a damaged mechanism caused by extensive testing, we were unable to perform vertical piping abatement experiments, but foresee no trouble in implementing them in the next proposed Phase. Other encouraging results have BOA removing asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. However, we feel confident that we can double the asbestos removal rate by improving cutting speed, and increasing the length of the BOA robot. The containment and vacuum system on BOA is able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/8-hr. shift. Currently, BOA weighs about 117 pounds which is more than a human is permitted to lift overhead under OSHA requirements (i.e., 25 pounds). We are considering designing the robot into two components (i.e., locomotor section and cutter/removal section) to aid human installation as well as incorporating composite materials. A more detailed list of all the technical modifications is given in this topical report.

  19. Final Report on Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.; McLaughlin, Russell L.

    2008-01-01

    Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment and small components results in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the EPA reduced the permissible exposure limit (PEL) for hexavalent chromium. The new standard lowers OSHA's PEL for hexavalent chromium from 52 to 5 micrograms of Cr(V1) per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in the pretreatment and primer coatings used within the Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient and environmentally preferable manner. The use of laser energy to remove prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation and non destructive evaluation is a relatively new technology that has shown itself to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided

  20. A RELAP5/MOD3 simulation of loss of residual heat removal system after reactor

    SciTech Connect

    Tanrikut, A.; Heper, H.H.

    1995-12-31

    A computational investigation of the experiment concerning the loss of the residual heat removal system (RHRS) during reduced inventory operation was simulated using the RELAP5/ MOD3 thermal-hydraulic code. The experiment was conducted at the UMCP 2 x 4 integral test loop (University of Maryland) and consisted of two parts: loss of RHRS and loss of feedwater system. The objective of the work presented in this paper is to assess the capability of the RELAP5 code to capture the phenomena observed in the experiment during the boiler-condenser mode (BCM) and the loss of feedwater (LOFW) system transient.

  1. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  2. Cooling system for removing metabolic heat from an hermetically sealed spacesuit

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Vykukal, H. C.; Williams, B. A. (Inventor)

    1978-01-01

    An improved cooling and ventilating system is described for removing metabolic heat, waste gases and water vapor generated by a wearer of an hermetically sealed spacesuit. The cooling system was characterized by a body suit, having a first circuit for simultaneously establishing a cooling flow of water through the thorax and head sections of the body suit. Circulation patches were included mounted in the thorax section and head section of the body suit. A second circuit for discharing a flow of gas throughout the spacesuit and a disconnect unit for coupling the circuits with a life support system externally related to the spacesuit were provided.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, REMOVAL OF ARSENIC IN DRINKING WATER: DELTA INDUSTRIAL SERVICES, INC., CAMPWATER PORTA-5 SYSTEM

    EPA Science Inventory

    The CampWater system uses ozonation followed by cartridge filtration to remove arsenic via co-precipitation. The system utilizes ozone to oxidize iron and arsenic (III) to arsenic (V). The arsenic bound to the iron precipitates is then removed by cartridge filtration. No additi...

  4. MBBR system performance improvement for petroleum hydrocarbon removal using modified media with activated carbon.

    PubMed

    Sayyahzadeh, Amir Hossein; Ganjidoust, Hossein; Ayati, Bita

    2016-01-01

    Moving bed biofilm reactor (MBBR) system has a successful operation in the treatment of different types of wastewater. Since the media, i.e. the place of growth and formation of biofilm, play the main role in the treatment in this system, MBBR systems were operated in the present research with modified Bee-cell media. Activated carbon granules of almond or walnut shells were placed in media pores to improve the treatment of refinery oil wastewater and their operation with MBBR system was compared with the conventional Bee-cell media. In these experiments, the effects of organic loading rate, hydraulic retention time (HRT), media filling ratio (MFR), and activated carbon concentration (ACC) used in the media were investigated on the operation of MBBR systems. The analysis of results estimated the optimal values of HRT, MFR, and ACC used in the media between the studied levels, being equal to 22 h, 50%, and 7.5 g/L, respectively. Under these conditions, total petroleum hydrocarbons removal efficiencies for MBBR systems using Bee-cell media with carbon of almond, carbon of walnut shells, and a carbon-free system were 95 ± 1.17%, 91 ± 1.11%, and 57 ± 1.7%, respectively, which confirms the adsorption ability of systems with the media containing activated carbon in the removal of petroleum compounds from wastewater. PMID:27148731

  5. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    SciTech Connect

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  6. Thermal-hydraulic investigations of the European Fast Reactor DHR (decay heat removal) system

    SciTech Connect

    Dueweke, M.; Friedel, G.; Friedrich, H.J. ); Azarian, G. ); Thomasson, R.K. )

    1989-11-01

    With the framework of the European Fast Reactor (EFR) program, a 2-yr conceptual design study was launched in spring 1988. One major area of investigation is the decay heat removal (DHR) following a reactor trip, when the steam plant heat sink is unavailable. Decay heat will be removed from the primary sodium by a safety-grade direct rector cooling system (DRCS), which should be as independent from the emergency power supply as possible. At present, the DRCS for EFR features three identical sodium loops, each with a 30-MW rating, operating in natural circulation under all circumstances. Each loop consists of a sodium/sodium heat-exchanging U-tube dip cooler and a sodium/air heat exchanger (AHX). The thermohydraulic behavior was studied with the one-dimensional system code DYANA and with the two-dimensional thermohydraulic code ATTICA.

  7. Intra-canal calcium hydroxide removal by two rotary systems: A comparative study

    PubMed Central

    Dadresanfar, Bahare; Abbas, Fateme Mashhadi; Bashbaghi, Hamide; Miri, Shima Sadat; Ghorbani, Farshid

    2015-01-01

    Aim: The presence of calcium hydroxide (Ca(OH)2) in the root canal interferes with the apical root canal sealing and may result in periapical lesions in the long run. The present study was aimed to compare the efficacy of two rotary systems of Race and Mtwo in the removal of Ca (OH)2 aqueous-based from distobuccal canals of human maxillary molars. Materials and Methods: A total of 44 distobuccal root canals of human maxillary molars were randomly distributed into two groups of 20 canals each and two control groups. Specimens in each group were instrumented with similar master apical rotary (MAR) and flexible files according to the manufacture's guidelines. The Ca (OH)2 paste was placed in canals using # 20 lentulo and radiographs were taken from the two dimensions. The roots were incubated for 1 week at 37°C and 100% humidity and Ca (OH)2 was removed from canals by MAR, afterward. Then, the roots were longitudinally split in halves by diamond disk and chisel without entering the root canals. Photos were taken from the canals’ walls by a stereomicroscope with × 10 magnification. Next, according to a defined scoring system, photos were scored by four endodontists, so that scores 1 and 2 (nonvisible remnants or scattered remnants of Ca(OH)2) were considered as acceptable and scores 3 and 4 (distinct mass or densely-packed mass of Ca(OH)2) were regarded as nonacceptable. Results: The obtained findings indicated that in coronal, middle, and apical portions of the root canal, 45, 60, and 65% of Mtwo specimens and 40, 50, and 55% of specimens prepared by the Race system acquired an acceptable score (1 and 2), respectively. Moreover, the results showed no significant difference between the two groups (P > 0.05). Conclusions: Both Mtwo and Race rotary systems with acceptable removal efficiency (score 1 and 2) were similarly able to remove Ca(OH)2 PMID:26069416

  8. Nitrogen removal from the surface runoff of a field scale greenhouse vegetable production system.

    PubMed

    Min, Ju; Lu, Kouping; Zhao, Xu; Sun, Haijun; Zhang, Hailin; Shi, Weiming

    2015-01-01

    Nutrient losses from greenhouse vegetable production systems may impair water quality in the Taihu Lake Region of China. We studied the characteristics of nitrogen (N) lost via runoff from greenhouse vegetable systems and strategies for minimizing N entering water bodies. A two-year experiment at a field scale was conducted to monitor N surface runoff. An eco-ditch (148 m(2)) and a low N input paddy field (135 kg N ha⁻¹, 550 m²) were designed to remove N from the surface runoff of a 25 × 50 m greenhouse vegetable field. The greenhouse was not covered from late June to mid-October each year, and runoff occurred multiple times during this period. Annual total N loss in runoff from the greenhouse vegetable site was 25.3 and 33.5 kg ha⁻¹ in 2010 and 2011, respectively. Nitrate-N was the major form of N lost in the runoff. The average runoff volume was 289 mm (varied from 221 to 357 mm), which contained 15.7 (varied from 3.3 to 39.2 mg L⁻¹) mg L⁻¹ total N. The eco-ditch system and the wetland paddy field (WPF) effectively reduced total N discharge; the removal rates reached 49.9% and 58.7% and the average removal capacities were 12.4 g N m⁻² and 4.1 g N m⁻² in 2010 and 2011, respectively. The combined system of the ecological ditch-WPF removed almost 79% total N in the runoff. Ecological ditch or paddy wetland can be a water management option available to growers in this region to economically reduce pollutants in agricultural runoff. PMID:26077503

  9. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs. PMID:25189844

  10. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a rangeremovals, compared to those of WWTP 1, due to a greater activity of the simultaneous nitrification-denitrification processes, hydraulic retention time, and solids retention time. The compounds that were more persistent with removals below 50% in both effluents were: carbamazepine, dehydronifedipine, meprobamate, sertraline, propranolol, propoxyphene, norverapamil, diazepam, alprazolam, sulfamethoxazole, metoprolol, ofloxacin, norfloxacin, fluoxetine, erythromycin-H2O, diphenhydramine, dehydronifedipine, clarithromycin, hydrochlorothiazide, and albuterol. The application of neutral Fenton reaction as post-treatment for the two effluents from the WWTPs is promising for the removal of emerging pollutants (up to 100