Science.gov

Sample records for ag fe ni

  1. Strong magnetization damping induced by Ag nanostructures in Ag/NiFe/Ag trilayers

    NASA Astrophysics Data System (ADS)

    Ley Domínguez, D.; da Silva, G. L.; Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.

    2013-07-01

    Ferromagnetic resonance has been used to investigate the magnetization relaxation in trilayers of Ag(t)/NiFe(10 nm)/Ag(t), sputter deposited on Si(001) where the thickness of the Ag layer varied from 0 nm to 24 nm. In the first stages of formation, the Ag layers form islands that work as mold to imprint defects or inhomogeneities on the NiFe film surface. The magnetic inhomogeneities and defects imprinted on the surface of the NiFe film act as extrinsic sources of magnetization relaxation in addition to the intrinsic Gilbert damping mechanism. Weak inhomogeneities are associated to the two-magnon scattering source and the strong inhomogeneities are associated to the fluctuations of the local magnetization. By adding the three different sources of magnetization damping, we were able to explain the azimuthal dependence of the ferromagnetic resonance linewidth.

  2. Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb

    SciTech Connect

    Zhang, Wei Jungfleisch, Matthias B.; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    2015-05-07

    The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling in surface or interface states. We measured the inverse Rashba-Edelstein effect via spin pumping in Ag/Bi and Ag/Sb interfaces. The spin current is injected from the ferromagnetic resonance of a NiFe layer towards the Rashba interfaces, where it is further converted into a charge current. Using spin pumping theory, we quantify the conversion parameter of spin to charge current to be 0.11 ± 0.02 nm for Ag/Bi and a factor of ten smaller for Ag/Sb. The relative strength of the effect is in agreement with spectroscopic measurements and first principles calculations. We also vary the interlayer materials to study the voltage output in relation to the change of the effective spin mixing conductance. The spin pumping experiment offers a straight-forward approach of using spin current as an efficient probe for detecting interface Rashba splitting.

  3. Effect of NiO spin orientation on the magnetic anisotropy of the Fe film in epitaxially grown Fe/NiO/Ag(001) and Fe/NiO/MgO(001)

    SciTech Connect

    Kim, W.; Jin, E.; Wu, J.; Park, J.; Arenholz, E.; Scholl, A.; Hwang, C.; Qiu, Z.

    2010-02-10

    Single crystalline Fe/NiO bilayers were epitaxially grown on Ag(001) and on MgO(001), and investigated by Low Energy Electron Diffraction (LEED), Magneto-Optic Kerr Effect (MOKE), and X-ray Magnetic Linear Dichroism (XMLD). We find that while the Fe film has an in-plane magnetization in both Fe/NiO/Ag(001) and Fe/NiO/MgO(001) systems, the NiO spin orientation changes from in-plane direction in Fe/NiO/Ag(001) to out-of-plane direction in Fe/NiO/MgO(001). These two different NiO spin orientations generate remarkable different effects that the NiO induced magnetic anisotropy in the Fe film is much greater in Fe/NiO/Ag(001) than in Fe/NiO/MgO(001). XMLD measurement shows that the much greater magnetic anisotropy in Fe/NiO/Ag(001) is due to a 90{sup o}-coupling between the in-plane NiO spins and the in-plane Fe spins.

  4. Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Allafchian, Alireza; Jalali, Seyed Amir Hossein; Bahramian, Hamid; Ahmadvand, Hossein

    2016-04-01

    We have described a facile fabrication of silver deposited on the TiO2, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe2O4/PAMA/Ag-TiO2) through a three-step procedure. A pre-synthesized NiFe2O4 was first coated with PAMA polymer and then Ag-TiO2 was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe2O4, NiFe2O4/Ag, AgNPs and NiFe2O4/PAMA. The results demonstrated that the AgNPs, when embedded in TiO2 and combined with NiFe2O4/PAMA, became an excellent antibacterial agent. The NiFe2O4/PAMA/Ag-TiO2 nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field.

  5. Spreading of Sn-Ag solders on FeNi alloys

    SciTech Connect

    Saiz, Eduardo; Hwang, C-W.; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-02-28

    The spreading of Sn-3Ag-xBi solders on Fe-42Ni has been studied using a drop transfer setup. Initial spreading velocities as fast as {approx}0.5 m/s have been recorded. The results are consistent with a liquid front moving on a metastable, flat, unreacted substrate and can be described by using a modified molecular-kinetic model for which the rate controlling step is the movement of one atom from the liquid to the surface of the solid substrate. Although the phase diagram predicts the formation of two Fe-Sn intermetallics at the solder/substrate interface in samples heated at temperatures lower than 513 C, after spreading at 250 C only a thin FeSn reaction layer could be observed. Two interfacial layers (FeSn and FeSn2) were found after spreading at 450 C.

  6. Containerless electromagnetic levitation melting of Cu-Fe and Ag-Ni alloys

    NASA Technical Reports Server (NTRS)

    Abbaschian, G. J.; Ethridge, E. C.

    1983-01-01

    The feasibility of producing silver or copper alloys containing finely dispersed nickel or iron particles, respectively, by utilizing containerless electromagnetic levitation casting techniques was investigated. A levitation coil was designed to successfully levitate and melt a variety of alloys including Nb-Ge, Cu-Fe, Fe-C, and Ag-Ni. Samples of 70 Cu-30 Fe and 80 Ag-20 Ni (atomic %), prepared by mechanical pressing of the constituent powders, were levitated and heated either to the solid plus liquid range of the alloys or to the fully liquid region. The samples were then solidified by passing helium gas into the bell jar or they were dropped into a quenching oil. The structure of the samples which were heated to the solid plus liquid range consists of uniform distribution of Fe or Ni particle in their respective matrices. A considerable amount of entrapped gas bubbles were contained. Upon heating for longer periods or to higher temperatures, the bubbles coalesced and burst, causing the samples to become fragmented and usually fall out of the coil.

  7. Magnetic field enhancement of non-local spin signal in Ni{<_80}Fe{<_20}/Ag lateral spin valves.

    SciTech Connect

    Mihajlovic, G.; Erlingsson, S. I.; Vyborny, K.; Pearson, J. E.; Bader, S. D.; Hoffmann, A.

    2011-01-01

    We observe a magnetic-field-induced enhancement of the nonlocal spin signal in Ni{sub 80}Fe{sub 20}/Ag lateral spin valves. The enhancement depends on the bias current polarity but not on the field direction. We present a theoretical model that explains our experimental results, taking into account the electron-spin relaxation of magnetic impurities. We find that the relaxation is about an order of magnitude weaker than Elliott-Yafet relaxation.

  8. Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Liu, Enzhou; Liang, Xuhua; Hu, Xiaoyun; Fan, Jun

    2015-08-01

    In this paper, the Fe-Ni co-doped and Ag deposited anatase TiO2 (Fe-Ni/Ag/TiO2) nanocomposites were successfully prepared by a simple one-pot solvothermal approach. The investigations indicated that all as-prepared TiO2 samples were single anatase phase, and the impurity level was generated due to the Fe3+ or Ni2+ being located in the intrinsic band gap of TiO2, while the Ag+ ions could be transformed into metallic silver due to the reduction reaction and then loaded onto the surface of TiO2. Compared with pure TiO2, Fe-Ni/Ag/TiO2 composites with the sizes of Ag nanoparticles from 1.0 to 3.0 nm displayed the well optical property including higher visible light absorption activity and lower electron-hole pair recombination rate, and its absorption wavelength edge moved remarkably with a red shift to 700 nm. The photocatalytic water splitting was performed to produce H2 over the samples, and the experimental results indicate that Fe-Ni/Ag/TiO2 composites presented the highest H2 evolution rate, it can reach up to 793.86 μmol h-1 gcat-1 (λ > 400 nm for 6 h, energy efficiency is 0.25%), which was much higher than that of pure TiO2 for 9.57 μmol h-1 gcat-1. In addition, a tentative photocatalytic mechanism is proposed to understand the enhancement mechanism over Fe-Ni codoped and Ag deposited anatase TiO2.

  9. Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation

    NASA Astrophysics Data System (ADS)

    Li, Chao; Sun, Jun-Jie; Chen, Duo; Han, Guang-Bing; Yu, Shu-Yun; Kang, Shi-Shou; Mei, Liang-Mo

    2016-08-01

    A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites. This method involves coating Fe2O3 nanorods with a uniform silica layer, reduction in 10% H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4, and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods. The fabricated nanocomposites are further characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectroscopy, and inductively coupled plasma mass spectroscopy. The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B (RhB) at room temperature, and maintain superior catalytic activity even after six cycles. In addition, these samples could be easily separated from the catalytic system by an external magnet and reused, which shows great potential applications in treating waste water. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11174183), the 111 Project (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  10. Magnetization, magnetoresistance, and x-ray diffraction measurements of discontinuous [Ni80Fe20/Ag] multilayers (abstract)

    NASA Astrophysics Data System (ADS)

    Lorenz, T.; Moske, M.; Käufler, A.; Geisler, H.; Samwer, K.

    1996-04-01

    Thin films for magnetic sensor application require a high sensitivity at low magnetic fields, for example, realized by Permalloy films. Promising candidates for a further improvement are discontinuous multilayers, first reported by Hylton et al. In our study, we report on [2.5 nm Ni80Fe20/y nm Ag] multilayers with the spacer layer thickness y ranging from 1.2 nm to 6.0 nm. The multilayers were electron beam deposited in UHV at different temperatures. The substrates used are thermally oxidized silicon wafers. The magnetization is obtained using a vibrating sample magnetometer (VSM), the magnetoresistance is measured at room temperature with the Montgomery method. Low and high angle x-ray diffraction measurements are performed in a Siemens D-5000 diffractometer. The samples are annealed ex situ between room temperature and 340 °C. The magnetoresistance is maximal after annealing the samples at a specific temperature, which decreases with increasing Ag-spacer thickness y. Moreover, the GMR decreases if the multilayers are deposited at elevated temperatures (100-200 °C). We also report on the dependence of the GMR on the interface roughness (σ≊0.5 nm rms) which we deduce from the small angle x-ray diffraction measurements. For a characterization of the reliability, we also investigated the dependence of the GMR on aging at 100 °C for several hours.

  11. Giant magnetoresistance in evaporated NiFe/Cu and NiFeCo/Cu multilayers (abstract)

    NASA Astrophysics Data System (ADS)

    Zeltser, A. M.; Smith, Neil

    1996-04-01

    The magnetic and transport properties of electron beam evaporated (Ni83Fe17/Cu)10 and (Ni66Fe16Co18/Cu)10 multilayers (ML) were studied as a function of the Cu spacer and magnetic layer thicknesses (tCu and tNiFe), annealing conditions and Ta buffer layer thickness. The ML were evaporated in a magnetic field at deposition rates ˜ 2 Å/s and background pressure <5×10-8 mbar on Si/SiO2 substrates at Ts=200 °C. These ML exhibited two unique features: (1) ΔR/R and the interlayer coupling did not show oscillatory behavior as a function of tCu; and (2) after magnetic post annealing, ΔR/R increased from <0.3% in the as-deposited state, to up to ˜6% and 7% in Ta/(NiFe/Cu) and (NiFeCo/Cu), respectively. The coupling between the NiFe layers changed from ferromagnetic in the as-deposited state Mr/Ms˜0.9k;20 to essentially antiferromagnetic Mr/Ms<0.2) after appropriate annealing, and the ML became virtually isotropic in-plane. This is quite different from strong oscillatory behavior of giant magnetoresistance (GMR) previously reported in (NiFe/Cu) as-deposited ML made by ion-beam sputtering. After annealing at 300° and 325 °C for 2 h, the ΔR/R became ˜4.5% and ˜6.5% in (NiFe/Cu) and (NiFeCo/Cu) ML, respectively, and remained approximately constant for tCu=20 to 40 Å. The coupling field generally decreased with an increase in Cu and NiFe and after annealing at 300 °C dropped to as low as ˜25 and 45 Oe in (NiFe/Cu) and (NiFeCo/Cu) ML, respectively. The of ΔR/R Ta/(NiFe/Cu) ML increased with the thickness of Ta buffer layer from 30 to 70 Å. The high-angle θ-2θ x-ray scans of (NiFe/Cu) ML showed (111) texture, essentially independent of annealing temperature. The low-angle x-ray diffraction did not reveal roughening of the Cu-NiFe interfaces as a result of annealing. In many respects the GMR behavior of these ML is similar to that reported in sputtered ``discontinuous'' NiFe/Ag. However, in contrast to the latter, the resistivity of NiFe/Cu monotonically

  12. Giant magnetoresistance in evaporated Ni-Fe/Cu and Ni-Fe-Co/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Zeltser, Alexander M.; Smith, Neil

    1996-06-01

    The magnetic and transport properties of electron-beam evaporated (Ni83Fe17/Cu)10 and (Ni66Fe16Co18/Cu)10 multilayers were studied as a function of the Cu spacer, magnetic layer and Ta buffer layer thicknesses, as well as annealing conditions. All multilayers exhibited very small giant magnetoresistance (GMR) effect (<0.3%) in the as-deposited state, however, after magnetic post-annealing at 300-325 °C, GMR increased up to 4.5%-7%, depending on the multilayer type. In contrast to sputtered Ni-Fe-(Co)/Cu multilayers, GMR showed no oscillatory behavior as a function of Cu thickness. Similar to that reported in sputtered ``discontinuous'' Ni-Fe/Ag multilayers, it is believed that Cu diffusion along the Ni-Fe-(Co) grain boundaries creates intra-layer magnetic discontinuities in Ni-Fe-(Co) layers which promote inter-layer antiferromagnetic coupling. The evaporated Ni-Fe/Cu multilayers exhibited very low remanence, exceptionally low hysteresis, and quite uniform GMR properties through the thickness of the multilayer. All of these makes them potentially attractive for application to future magnetoresistive reproduce heads for very high areal density magnetic storage systems.

  13. Enhancement of magnetoresistance by inserting thin NiAl layers at the interfaces in Co2FeGa0.5Ge0.5/Ag/Co2FeGa0.5Ge0.5 current-perpendicular-to-plane pseudo spin valves

    NASA Astrophysics Data System (ADS)

    Jung, J. W.; Sakuraba, Y.; Sasaki, T. T.; Miura, Y.; Hono, K.

    2016-03-01

    We have investigated the effects of insertion of a thin NiAl layer (≤0.63 nm) into a Co2FeGa0.5Ge0.5 (CFGG)/Ag interface on the magnetoresistive properties in CFGG/Ag/CFGG current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin valves (PSVs). First-principles calculations of ballistic transmittance clarified that the interfacial band matching at the (001)-oriented NiAl/CFGG interface is better than that at the (001)-Ag/CFGG interface. The insertion of 0.21-nm-thick NiAl layers at the Co2FeGa0.5Ge0.5/Ag interfaces effectively improved the magnetoresistance (MR) output; the observed average and the highest MR ratio (ΔRA) are 62% (25 mΩ μm2) and 77% (31 mΩ μm2) at room temperature, respectively, which are much higher than those without NiAl insertion. Microstructural analysis using scanning transmission electron microscopy confirmed the existence of thin NiAl layers at the Ag interfaces with only modest interdiffusion even after annealing at 550 °C. The improvement of the interfacial spin-dependent scattering by very thin NiAl insertion can be a predominant reason for the enhancement of the MR output.

  14. Domain Structures and Anisotropy in Exchange-coupled [Co/Pd]-NiFe and [Co/Ni]-NiFe Multilayers

    NASA Astrophysics Data System (ADS)

    Tryputen, Larysa; Chung, Sunjae; Mohseni, Majid; Nguyen, T. N. Anh; Åkerman, Johan; Guo, Feng; McMichael, Robert D.; Ross, Caroline A.

    2014-03-01

    Exchange-coupled multilayers [Co/Pd]5-/NiFe and [Co/Ni]4-NiFe with strong perpendicular magnetic anisotropy have been proposed to use in spin-torque switching and oscillators devices with tilted fixed and free layer to improve their functional performance. We present an experimental study of the magnetization behavior of [Co/Pd]5-/NiFe and [Co/Ni]4-NiFe multilayers measured using magnetometry, magnetic force microscopy (MFM) and ferromagnetic resonance (FMR) as a function of the thickness of the top NiFe layer. We varied the thickness of the NiFe layer in [Co/Pd]5-NiFe (t), t = 0 - 80 nm and [Co/Ni]4-NiFe (t), t = 0.5 - 2.5 nm in order to study the interplay between perpendicular magnetization of the Co/Pd or Co/Ni multilayers and in-plane magnetization of the NiFe. Our magnetometry and FMR data suggest that the [Co/Ni]4/NiFe multilayer behaves like a homogeneous ferromagnetic film with anisotropy that reorients towards in-plane as the NiFe thickness increases, whereas the [Co/Pd]5/NiFe multilayer reveals more complex behavior in which the [Co/Pd] layer retains out-of-plane anisotropy while the magnetization of NiFe layer tilts in-plane with increasing thickness. MFM showed that domains with ~0.1 +/-m size were visible in [Co/Pd]-/NiFe with NiFe thickness of 20-80 nm. Multilayers were patterned into sub-100 nm dots using ion beam etching and their magnetization behavior are compared with unpatterned films.

  15. Double dumbbell shaped AgNi alloy by pulsed electrodeposition

    SciTech Connect

    Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy; Narayanan, V. Stephen, A.

    2014-01-28

    Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

  16. Annealing effect of ultrathin Ag films on Ni /Pt(111)

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Yo, H. Y.; Chen, Y. J.; Shern, C. S.

    2005-06-01

    The epitaxial growth and alloy formation of Ag-capped layer on Ni /Pt(111) surface were investigated using Auger electron spectroscopy, ultraviolet photoelectron spectroscopy, and low-energy electron diffraction. The growth of Ag on one ML Ni /Pt(111) transforms from layer-by-layer mode into three-dimensional island mode after the growth of one atomic monolayer of Ag. The starting temperature for the alloy formation of Ni-Pt is dependent of the thickness of Ni films. The interface compositions after the high-temperature annealing were studied with the depth-profile analysis of Ar ion sputtering.

  17. Enhanced Noble Gas Adsorption in Ag@MOF-74Ni

    SciTech Connect

    Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.

    2014-01-14

    Various amounts of Ag nanoparticles were successfully deposited in porous MOF-74Ni (or Ni/DOBDC) with an auto-reduction method. An optimized silver-loaded MOF-74Ni was shown to have an improved Xe adsorption capacity (15% more) at STP compared to the MOF without silver nanoparticles. The silver-loaded sample also has a higher Xe/Kr selectivity. These results are explained by the stronger interactions between polarizable Xe molecules and the well-dispersed Ag nanoparticles.

  18. K-italic-shell ionization cross sections for Al, Ti, V, Cr, Fe, Ni, Cu, and Ag by protons and oxygen ions in the energy range 0. 3--6. 4 MeV

    SciTech Connect

    Geretschlaeger, M.; Benka, O.

    1986-08-01

    Absolute K-italic-shell ionization cross sections have been measured for thin targets of Al, Ti, and Cu for protons in the energy range 0.3--2.0 MeV and for thin targets of Ti, V, Cr, Fe, Ni, Cu, and Ag for oxygen ions in the energy range 1.36--6.4 Mev. The experimental results are compared to the perturbed-stationary-state (PSS) approximation with energy-loss (E), Coulomb (C), and relativistic (R) corrections, i.e., the ECPSSR approximation (Brandt and Lapicki), to the semiclassical approximation (Laegsgaard, Andersen, and Lund), and to a theory for direct Coulomb ionization of the 1s-italicsigma molecular orbital (Montenegro and Sigaud (MS)). The proton results agree within 3% with empirical reference cross sections. Also, the ECPSSR provides best overall agreement for protons. For oxygen ions, ECPSSR and MS predict experimental results satisfactorily for scaled velocities xi> or =0.4. For lower scaled velocities, the experimental cross sections become considerably higher than theoretical predictions for Coulomb ionization. This deviation increases with increasing Z-italic/sub 1//Z/sub 2/; it cannot be explained by electron transfer to the projectile or by ionization due to target recoil atoms.

  19. Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix.

    PubMed

    Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E; Bobo, Jean-François; Sowwan, Mukhles

    2016-01-01

    Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively. PMID:26750659

  20. Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix

    NASA Astrophysics Data System (ADS)

    Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2016-01-01

    Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively.

  1. Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix

    PubMed Central

    Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2016-01-01

    Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively. PMID:26750659

  2. Novel investigation on nanostructure Ni-P-Ag composite coatings

    NASA Astrophysics Data System (ADS)

    Alirezaei, S.; Vaghefi, S. M. Monir; Ürgen, M.; Saatchi, A.; Kazmanli, K.

    2012-11-01

    In this research, silver particles with different contents were co-deposited within Ni-P coating on AISI 1045 steel samples by electroless plating process and then Ni-P-Ag composite coatings were heat treated at 400 °C for 1 h. The concentration of silver particles in Ni-P metallic matrix was determined by using scanning electron microscopy (SEM) and image analysis software. The phase transformation of deposits was analyzed by X-ray diffraction (XRD) and differential thermal analysis (DTA). Also, the mechanical properties of coatings were evaluated by microhardness and indentation tests. The results showed that the content of silver particles and heat treatment have the great effects on hardness and mechanical properties of Ni-P-Ag electroless composite coatings. Also, heat treatment can lead only to phase transformation in metallic matrix of nanostucture Ni-P-Ag composite coatings.

  3. Tribological properties of self-lubricating NiAl/Mo-based composites containing AgVO{sub 3} nanowires

    SciTech Connect

    Liu, Eryong; Gao, Yimin; Bai, Yaping; Yi, Gewen; Wang, Wenzhen; Zeng, Zhixiang; Jia, Junhong

    2014-11-15

    Silver vanadate (AgVO{sub 3}) nanowires were synthesized by hydrothermal method and self-lubricating NiAl/Mo-AgVO{sub 3} composites were fabricated by powder metallurgy technique. The composition and microstructure of NiAl/Mo-based composites were characterized and the tribological properties were investigated from room temperature to 900 °C. The results showed that NiAl/Mo-based composites were consisted of nanocrystalline B2 ordered NiAl matrix, Al{sub 2}O{sub 3}, Mo{sub 2}C, metallic Ag and vanadium oxide phase. The appearance of metallic Ag and vanadium oxide phase can be attributed to the decomposition of AgVO{sub 3} during sintering. Wear testing results confirmed that NiAl/Mo-based composites have excellent tribological properties over a wide temperature range. For example, the friction coefficient and wear rate of NiAl/Mo-based composites containing AgVO{sub 3} were significantly lower than the composites containing only metallic Mo or AgVO{sub 3} lubricant when the temperature is above 300 °C, which can be attributed to the synergistic lubricating action of metallic Mo and AgVO{sub 3} lubricants. Furthermore, Raman results indicated that the composition on the worn surface of NiAl-based composites was self-adjusted after wear testing at different temperatures. For example, Ag{sub 3}VO{sub 4} and Fe{sub 3}O{sub 4} lubricants were responsible for the improvement of tribological properties at 500 °C, AgVO{sub 3}, Ag{sub 3}VO{sub 4} and molybdate for 700 °C, and AgVO{sub 3} and molybdate for 900 °C of NiAl-based composites with the addition of metallic Mo and AgVO{sub 3}. - Highlights: • NiAl/Mo-AgVO{sub 3} nanocomposites were prepared by mechanical alloying and sintering. • AgVO{sub 3} decomposed to metallic Ag and vanadium oxide during the sintering process. • NiAl/Mo-AgVO{sub 3} exhibited superior tribological properties at a board temperature range. • Phase composition on the worn surface was varied with temperatures. • Self-adjusted action

  4. Effects of Ag addition on FePt L10 ordering transition: A direct observation of ordering transition and Ag segregation in FePtAg alloy films

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Gao, Tenghua; Yu, Youxing

    2015-12-01

    FePt and (FePt)91.2Ag8.8 alloy films were deposited by magnetron sputtering. The average coercivity of (FePt)91.2Ag8.8 films reaches 8.51 × 105 A/m, which is 0.63 × 105 A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L10 ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution reveals more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L10 ordering transition.

  5. [NiFeSe]-hydrogenase chemistry.

    PubMed

    Wombwell, Claire; Caputo, Christine A; Reisner, Erwin

    2015-11-17

    The development of technology for the inexpensive generation of the renewable energy vector H2 through water splitting is of immediate economic, ecological, and humanitarian interest. Recent interest in hydrogenases has been fueled by their exceptionally high catalytic rates for H2 production at a marginal overpotential, which is presently only matched by the nonscalable noble metal platinum. The mechanistic understanding of hydrogenase function guides the design of synthetic catalysts, and selection of a suitable hydrogenase enables direct applications in electro- and photocatalysis. [FeFe]-hydrogenases display excellent H2 evolution activity, but they are irreversibly damaged upon exposure to O2, which currently prevents their use in full water splitting systems. O2-tolerant [NiFe]-hydrogenases are known, but they are typically strongly biased toward H2 oxidation, while H2 production by [NiFe]-hydrogenases is often product (H2) inhibited. [NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases with a selenocysteine residue coordinated to the active site nickel center in place of a cysteine. They exhibit a combination of unique properties that are highly advantageous for applications in water splitting compared with other hydrogenases. They display a high H2 evolution rate with marginal inhibition by H2 and tolerance to O2. [NiFeSe]-hydrogenases are therefore one of the most active molecular H2 evolution catalysts applicable in water splitting. Herein, we summarize our recent progress in exploring the unique chemistry of [NiFeSe]-hydrogenases through biomimetic model chemistry and the chemistry with [NiFeSe]-hydrogenases in semiartificial photosynthetic systems. We gain perspective from the structural, spectroscopic, and electrochemical properties of the [NiFeSe]-hydrogenases and compare them with the chemistry of synthetic models of this hydrogenase active site. Our synthetic models give insight into the effects on the electronic properties and reactivity of

  6. Sonochemical preparation of nanosized amorphous Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Shafi, K. V. P. M.; Gedanken, A.; Goldfarb, R. B.; Felner, I.

    1997-05-01

    Nanosized amorphous alloy powders of Fe20Ni80, Fe40Ni60, and Fe60Ni40 were prepared by sonochemical decomposition of solutions of volatile organic precursors, Fe(CO)5 and Ni(CO)4 in decalin, under an argon pressure of 100 to 150 kPa at 273 K. Magnetic susceptibility of Fe40Ni60 and Fe60Ni40 indicates blocking temperatures of 35 K and a magnetic particle size of about 6 nm. Thermogravimetric measurements of Fe20Ni80 give Curie temperatures of 322 °C for amorphous and 550 °C for crystallized forms. Differential scanning calorimetry exhibits an endothermic transition at 335 °C from a combination of the magnetic phase transition and alloy crystallization. The Mössbauer spectrum of crystallized Fe20Ni80 shows a sextet pattern with a hyperfine field of 25.04 T.

  7. Antibacterial activity of graphene supported FeAg bimetallic nanocomposites.

    PubMed

    Ahmad, Ayyaz; Qureshi, Abdul Sattar; Li, Li; Bao, Jie; Jia, Xin; Xu, Yisheng; Guo, Xuhong

    2016-07-01

    We report the simple one pot synthesis of iron-silver (FeAg) bimetallic nanoparticles with different compositions on graphene support. The nanoparticles are well dispersed on the graphene sheet as revealed by the TEM, XRD, and Raman spectra. The antibacterial activity of graphene-FeAg nanocomposite (NC) towards Bacillus subtilis, Escherichia coli, and Staphylococcus aureus was investigated by colony counting method. Graphene-FeAg NC demonstrates excellent antibacterial activity as compared to FeAg bimetallic without graphene. To understand the antibacterial mechanism of the NC, oxidative stress caused by reactive oxygen species (ROS) and the glutathione (GSH) oxidation were investigated in the system. It has been observed that ROS production and GSH oxidation are concentration dependent while the increase in silver content up to 50% generally enhances the ROS production while ROS decreases on further increase in silver content. Graphene loaded FeAg NC demonstrates higher GSH oxidation capacity than bare FeAg bimetallic nanocomposite. The mechanism study suggests that the antibacterial activity is probably due to membrane and oxidative stress produced by the nanocomposites. The possible antibacterial pathway mainly includes the non-ROS oxidative stress (GSH oxidation) while ROS play minor role. PMID:27038914

  8. Communication: Kinetics of chemical ordering in Ag-Au and Ag-Ni nanoalloys

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Fortunelli, A.; Negreiros, F.; Wales, D. J.

    2013-09-01

    The energy landscape and kinetics of medium-sized Ag-Au and Ag-Ni nanoalloy particles are explored via a discrete path sampling approach, focusing on rearrangements connecting regions differing in chemical order. The highly miscible Ag27Au28 supports a large number of nearly degenerate icosahedral homotops. The transformation from reverse core-shell to core-shell involves large displacements away from the icosahedron through elementary steps corresponding to surface diffusion and vacancy formation. The immiscible Ag42Ni13 naturally forms an asymmetric core-shell structure, and about 10 eV is required to extrude the nickel core to the surface. The corresponding transformation occurs via a long and smooth sequence of surface displacements. For both systems the rearrangement kinetics exhibit Arrhenius behavior. These results are discussed in the light of experimental observations.

  9. Formation of AgFeO2, α-FeOOH, and Ag2O from mixed Fe(NO3)3-AgNO3 solutions at high pH

    NASA Astrophysics Data System (ADS)

    Krehula, Stjepko; Musić, Svetozar

    2013-07-01

    Precipitation of ternary oxide silver ferrite (AgFeO2), iron oxyhydroxide goethite (α-FeOOH) and silver(I) oxide (Ag2O) from mixed Fe(NO3)3-AgNO3 solutions in a whole [Ag+]:[Fe3+] concentration ratio range at high pH was investigated using X-ray powder diffraction (XRD), 57Fe Mössbauer, FT-IR and UV-Vis-NIR spectroscopies and field emission scanning electron microscopy (FE-SEM). Strong alkalis organic tetramethylammonium hydroxide (TMAH) or inorganic NaOH were used as precipitating agents. Monodispersed lath-like α-FeOOH particles were formed from a pure Fe(NO3)3 solution. The presence of Ag+ ions influenced the formation of the delafossite-type ternary oxide AgFeO2 beside α-FeOOH. The positions of XRD and Mössbauer lines did not suggest any significant incorporation of Ag+ ions into the α-FeOOH structure. AgFeO2 was formed in the precipitation system with the equimolar initial [Ag+]:[Fe3+] concentration ratio. The size and shape of AgFeO2 particles, as well as their structural polytype (2H or 3R), were dependent on reaction temperature, aging time and alkali used. In systems with an excess of Ag+ ions mixtures of AgFeO2 and Ag2O were formed. Single phase Ag2O precipitated from a pure AgNO3 solution.

  10. Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability.

    PubMed

    Takahashi, Mari; Mohan, Priyank; Nakade, Akiko; Higashimine, Koichi; Mott, Derrick; Hamada, Tsutomu; Matsumura, Kazuaki; Taguchi, Tomohiko; Maenosono, Shinya

    2015-02-24

    Magnetic nanoparticles (NPs) have been used to separate various species such as bacteria, cells, and proteins. In this study, we synthesized Ag/FeCo/Ag core/shell/shell NPs designed for magnetic separation of subcellular components like intracellular vesicles. A benefit of these NPs is that their silver metal content allows plasmon scattering to be used as a tool to observe detection by the NPs easily and semipermanently. Therefore, these NPs are considered a potential alternative to existing fluorescent probes like dye molecules and colloidal quantum dots. In addition, the Ag core inside the NPs suppresses the oxidation of FeCo because of electron transfer from the Ag core to the FeCo shell, even though FeCo is typically susceptible to oxidation. The surfaces of the Ag/FeCo/Ag NPs were functionalized with ε-poly-L-lysine-based hydrophilic polymers to make them water-soluble and biocompatible. The imaging capability of the polymer-functionalized NPs induced by plasmon scattering from the Ag core was investigated. The response of the NPs to a magnetic field using liposomes as platforms and applying a magnetic field during observation by confocal laser scanning microscopy was assessed. The results of the magnetophoresis experiments of liposomes allowed us to calculate the magnetic force to which each liposome was subjected. PMID:25614919

  11. Mechanisms of Formation and Transformation of Ni-Fe Hydroxycarbonates

    SciTech Connect

    Refait, Ph.; Jeannin, M.; Reffass, M.; Drissi, S.H.; Abdelmoula, M.; Genin, J.-M.R.

    2005-04-26

    The mechanisms of the transformation of (Ni,Fe)(OH)2 precipitates in carbonated aqueous solutions were studied. The reactions were monitored by measuring the redox potential of the aqueous suspension, and end products were studied by Moessbauer spectroscopy, X-ray diffraction and Raman spectroscopy. The oxidation processes were compared to those occurring without Ni, that is when the initial hydroxide is Fe(OH)2. Schematically, the oxidation of Fe(OH)2 involves two intermediate compounds, the carbonated GR of formula Fe{sup II}{sub 4}Fe{sup III}{sub 2}(OH){sub 12}CO{sub 3} {center_dot} 2H{sub 2}O, and ferrihydrite, before to lead finally to goethite {alpha}-FeOOH. It proved possible to prepare Ni(II)-Fe(III) hydroxycarbonates with ratios Fe/Ni from 1/6 to 1/3. When the Fe/Ni ratio is larger than 1/3, a two stage oxidation process takes place. The first stage leads to a Ni(II)-Fe(II)-Fe(III) hydroxycarbonate. The second stage corresponds to the oxidation of the Fe(II) remaining inside the hydroxycarbonate and leads to a mixture of Ni(II)-Fe(III) hydroxycarbonate with ferrihydrite. The main effect of Ni is then to stop the reaction at an intermediate stage, as Ni(II) is not oxidised by O2, leaving unchanged the main features of the mechanisms of transformation.

  12. Fe-Ni composition dependence of magnetic anisotropy in artificially fabricated L1 0-ordered FeNi films.

    PubMed

    Kojima, Takayuki; Ogiwara, Misako; Mizuguchi, Masaki; Kotsugi, Masato; Koganezawa, Tomoyuki; Ohtsuki, Takumi; Tashiro, Taka-Yuki; Takanashi, Koki

    2014-02-12

    We prepared L10-ordered FeNi alloy films by alternate deposition of Fe and Ni monatomic layers, and investigated their magnetic anisotropy. We employed a non-ferromagnetic Au-Cu-Ni buffer layer with a flat surface and good lattice matching to L10-FeNi. An L10-FeNi film grown on Au6Cu51Ni43 showed a large uniaxial magnetic anisotropy energy (Ku = 7.0 × 10(6) erg cm(-)3). Ku monotonically increased with the long-range order parameter (S) of the L10 phase. We investigated the Fe-Ni composition dependence by alternating the deposition of Fe 1 − x and Ni 1 + x monatomic layers (− 0.4 < x < 0.4). Saturation magnetization (Ms) and Ku showed maxima (Ms = 1470 emu cm(-3), Ku = 9.3 × 10(6) erg cm(-3)) for Fe60Ni40 (x = -0.2) while S showed a maximum at the stoichiometric composition (x = 0). The change in the ratio of lattice parameters (c/a) was small for all compositions. We found that enrichment of Fe is very effective to enhance Ku. The large Ms and Ku of Fe60Ni40 indicate that Fe-rich L10-FeNi is promising as a rare-earth-free permanent magnet. PMID:24469082

  13. High-frequency permeability of electroplated CoNiFe and CoNiFe-C alloys

    NASA Astrophysics Data System (ADS)

    Rhen, Fernando M. F.; McCloskey, Paul; O'Donnell, Terence; Roy, Saibal

    We have investigated CoNiFe and CoNiFe-C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co 59.4Fe 27.7Ni 12.8 show coercivity of 95 A m -1 (1.2 Oe) and magnetization saturation flux ( μ0Ms) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μr' ˜475 up to 30 MHz with a quality factor ( Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe-C, which have resistivity and permeability of 85, 38 μΩ cm, μr'=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe-C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency.

  14. Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization.

    PubMed

    Eom, Hyeonjin; Lee, Jaemin; Pichitpajongkit, Aekachan; Amjadi, Morteza; Jeong, Jun-Ho; Lee, Eungsug; Lee, Jung-Yong; Park, Inkyu

    2014-10-29

    Silver nanowire (Ag NW) based transparent electrodes are inherently unstable to moist and chemically reactive environment. A remarkable stability improvement of the Ag NW network film against oxidizing and sulfurizing environment by local electrodeposition of Ni along Ag NWs is reported. The optical transmittance and electrical resistance of the Ni deposited Ag NW network film can be easily controlled by adjusting the morphology and thickness of the Ni shell layer. The electrical conductivity of the Ag NW network film is increased by the Ni coating via welding between Ag NWs as well as additional conductive area for the electron transport by electrodeposited Ni layer. Moreover, the chemical resistance of Ag NWs against oxidation and sulfurization can be dramatically enhanced by the Ni shell layer electrodeposited along the Ag NWs, which provides the physical barrier against chemical reaction and diffusion as well as the cathodic protection from galvanic corrosion. PMID:24961495

  15. Magnetic properties and microstructure of FePtB, FePt(B-Ag) granular films

    NASA Astrophysics Data System (ADS)

    Tsai, Jai-Lin; Huang, Jian-Chiang; Tai, Hsueh-Wei; Tsai, Wen-Chieh; Lin, Yi-Cheng

    2013-03-01

    Multilayers [FePt(1 nm)/B(t nm)]10 (t=0.05-0.6) were alternately deposited on a glass substrate and subsequently annealed by the rapid thermal process (RTP) at 800 °C for 3 min. After RTP, FePt and B layers intermix to form the FePtB film with (0 0 1) texture. The ordering degree of FePt was slightly increased with doped B. The (Fe-Pt)100-xBx (x=0, 5, 10) films show perpendicular magnetization and the minor FeB phase was indexed in isotropic (Fe-Pt)100-xBx (x=30, 40, 60) films. By adding Ag into (Fe-Pt)95B5 film, the ordering degree was slightly increased in (Fe-Pt)95(B0.9Ag0.1)5 film. In (Fe-Pt)100-xBx (x=5, 10) and (Fe-Pt)95(B0.9Ag0.1)5 granular films, the intermixed B or Ag atoms were diffused among FePt grain boundaries to isolate and refine FePt grains uniformly with average grain sizes of 20, 15, and 6.7 nm, respectively.

  16. Facile Preparation of Ag/NiO Composite Nanosheets and Their Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Shi, Cui-E.; Pan, Lu; Wang, Cheng-Run; He, Yi; Wu, Yong-Feng; Xue, Sai-Sai

    2016-01-01

    Sheet-like precursors of NiO and Ag/NiO with different Ag contents were synthesized by a facile and easily controlled hydrothermal method. The NiO and Ag/NiO composite nanosheets were prepared by calcination of the corresponding precursors at 400°C for 3 h. The as-synthesized samples were characterized by thermogravimetric analysis, x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The antibacterial activity of NiO and Ag/NiO composites to several gram-positive and gram-negative bacteria was examined. Results showed that NiO nanosheets hardly exhibited antibacterial activity; however, Ag/NiO composites displayed higher activity even with low Ag content.

  17. Euhedral metallic-Fe-Ni grains in extraterrestrial samples

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1993-01-01

    Metallic Fe-Ni is rare in terrestrial rocks, being largely restricted to serpentinized peridotites and volcanic rocks that assimilated carbonaceous material. In contrast, metallic Fe-Ni is nearly ubiquitous among extraterrestrial samples (i.e., meteorites, lunar rocks, and interplanetary dust particles). Anhedral grains are common. For example, in eucrites and lunar basalts, most of the metallic Fe-Ni occurs interstitially between silicate grains and thus tends to have irregular morphologies. In many porphyritic chondrules, metallic Fe-Ni and troilite form rounded blebs in the mesostasis because their precursors were immiscible droplets. In metamorphosed ordinary chondrites, metallic Fe-Ni and troilite form coarse anhedral grains. Some of the metallic Fe-Ni and troilite grains has also been mobilized and injected into fractures in adjacent silicate grains where local shock-reheating temperatures reached the Fe-FeS eutectic (988 C). In interplanetary dust particles metallic Fe-Ni most commonly occurs along with sulfide as spheroids and fragments. Euhedral metallic Fe-Ni grains are extremely rare. Several conditions must be met before such grains can form: (1) grain growth must occur at free surfaces, restricting euhedral metallic Fe-Ni grains to systems that are igneous or undergoing vapor-deposition; (2) the metal (+/-) sulfide assemblage must have an appropriate bulk composition so that taenite is the liquidus phase in igneous systems or the stable condensate phase in vapor-deposition systems; and (3) metallic Fe-Ni grains must remain underformed during subsequent compaction, thermal metamorphism, and shock. Because of these restrictions, the occurrence of euhedral metallic Fe-Ni grains in an object can potentially provide important petrogenetic information. Despite its rarity, euhedral metallic Fe-Ni occurs in a wide variety of extraterrestrial materials. Some of these materials formed in the solar nebula; others formed on parent body surfaces by meteoroid

  18. Synthesis and characterization of Ni/Ag nanocomposite for surface enhanced Raman scattering measurement

    NASA Astrophysics Data System (ADS)

    Manoj, K.; Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-06-01

    Ni nanoflowers were successfully synthesized by wet chemical method using hydrazine hydrate as reducing agent. Ni/Ag nanocomposite was prepared by simple redox-transmetalation reaction by using the synthesized Ni nanoflowers and silver nitrate as precursors. The x-ray diffraction pattern revealed the formation of face centered cubic crystal structured Ni nanostructure and Ni/Ag nanocomposite. Scanning electron micrograph was used to study the surface morphology of Ni nanoflowers and Ni/Ag nanocomposite. The energy dispersive x-ray spectrometry analysis showed the purity of the prepared samples. The synthesized Ni/Ag nanocomposite was made into film and used as surface enhanced Raman scattering (SERS) substrate for probing the SERS signal of methylene blue molecule. The Ni/Ag nanocomposite showed significantly stronger Raman signal than the bare glass substrate.

  19. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    PubMed Central

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized. PMID:25232296

  20. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.

    PubMed

    Peters, John W; Schut, Gerrit J; Boyd, Eric S; Mulder, David W; Shepard, Eric M; Broderick, Joan B; King, Paul W; Adams, Michael W W

    2015-06-01

    The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. PMID:25461840

  1. The Effect of Metal Composition on Fe-Ni Partition Behavior between Olivine and FeNi-Metal, FeNi-Carbide, FeNi-Sulfide at Elevated Pressure

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2005-01-01

    Metal-olivine Fe-Ni exchange distribution coefficients were determined at 1500 C over the pressure range of 1 to 9 GPa for solid and liquid alloy compositions. The metal alloy composition was varied with respect to the Fe/Ni ratio and the amount of dissolved carbon and sulfur. The Fe/Ni ratio of the metal phase exercises an important control on the abundance of Ni in the olivine. The Ni abundance in the olivine decreases as the Fe/Ni ratio of the coexisting metal increases. The presence of carbon (up to approx. 3.5 wt.%) and sulfur (up to approx. 7.5 wt.%) in solution in the liquid Fe-Ni-metal phase has a minor effect on the partitioning of Fe and Ni between metal and olivine phases. No pressure dependence of the Fe-Ni-metal-olivine exchange behavior in carbon- and sulfur-free and carbon- and sulfur-containing systems was found within the investigated pressure range. To match the Ni abundance in terrestrial mantle olivine, assuming an equilibrium metal-olivine distribution, a sub-chondritic Fe/Ni-metal ratio that is a factor of 17 to 27 lower than the Fe/Ni ratios in estimated Earth core compositions would be required, implying higher Fe concentrations in the core forming metal phase. A simple metal-olivine equilibrium distribution does not seem to be feasible to explain the Ni abundances in the Earth's mantle. An equilibrium between metal and olivine does not exercise a control on the problem of Ni overabundance in the Earth's mantle. The experimental results do not contradict the presence of a magma ocean at the time of terrestrial core formation, if olivine was present in only minor amounts at the time of metal segregation.

  2. Solubility and Dissolution Rate of Ni Base Alloy to Molten Ag-Cu-Pd Brazing Filler

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Watanabe, Yuki; Suzumura, Akio; Yamazaki, Takahisa

    During the brazing process of the rocket engine’s nozzle skirt assembly made from Fe-Ni based super alloy pipes with Pd based brazing filler, the erosion corrosion pits were sometimes engraved on those pipes’ surface. The corrosion is considered to be assisted by the dynamic flow of the molten brazing filler. In order to estimate the amount of erosion corrosion and to prevent it, the solubility and the dissolution rate of Ni to the molten Ag-Cu-Pd brazing filler are measured experimentally. The Ni crucible poured with the Ag-Cu-Pd brazing filler was heated up to 1320K and quenched after the various keeping time. The microstructure of the solidified brazing filler part’s cross sections was observed, and the amount of the dissolved Ni was estimated using the image processing technique. The solubility was about 5.53mass%and the initial dissolution rate was 6.28 × 10-3mass%/s. Using these data, more elaborate dynamic flow simulation will be able to conduct.

  3. Research on pulse electrodeposition of Fe-Ni alloy

    SciTech Connect

    Peng, Yongsen; Zhu, Zengwei Ren, Jianhua; Chen, Jiangbo; Han, Taojie

    2014-03-15

    Fe-Ni alloys were fabricated on steel substrates by means of pulse electrodeposition in sulfate solutions. The layers were electrodeposited using different peak current densities, duty cycles and frequencies. Fe contents, microhardnesses and crystalline phases were examined systematically. The Fe content in the deposit decreased and the microhardness increased with increasing duty cycle and peak current density. The pulse frequency had little effect on Fe content but led to a slight decrease in microhardness. X-ray diffraction patterns show that the crystalline phases vary with changes in peak current density and duty cycle but are barely influenced by frequency. When the peak current density or duty cycle is relatively low, crystalline Fe-Ni alloy and pure Fe phases coexist; the pure Fe phases disappear as the peak current density or duty cycle increases. At still larger peak current densities or duty cycles, crystalline Fe-Ni alloy and pure Ni phases coexist.

  4. Exchange bias magnetism in films of NiFe/(Ni,Fe)O nanocrystallite dispersions

    SciTech Connect

    Hsiao, C.-H.; Chi, C.-C.; Wang, S.; Ouyang, H.; Desautels, R. D.; Lierop, J. van; Lin, K.-W.; Lin, T.-L.

    2014-05-07

    Ni{sub 3}Fe/(Ni,Fe)O thin films having a nanocrystallite dispersion morphology were prepared by a reactive ion beam-assisted deposition technique. The crystallite sizes of these dispersion-based films were observed to decrease from 8.4 ± 0.3 nm to 3.4 ± 0.3 nm as the deposition flow-rate increased from 2.78% to 7.89% O{sub 2}/Ar. Thin film composition was determined using selective area electron diffraction images and Multislice simulations. Through a detailed analysis of high resolution transmission electron microscopy images, the nanocrystallites were determined to be Ni{sub 3}Fe (a ferromagnet), NiO, and FeO (both antiferromagnets). It was determined that the interfacial molar Ni{sub 3}Fe ratio in the nanocrystallite dispersions increased slightly at first, then decreased as the oxygen content was increased; at 7.89% O{sub 2}/Ar, the interfacial molar ratio was essentially zero (only NiO and FeO remained). For nanocrystallite dispersion films grown with O{sub 2}/Ar flow-rate greater than 7.89%, no interfacial (intermixed) Ni{sub 3}Fe phase was detected, which resulted in no measurable exchange bias. Comparing the exchange bias field between the nanocrystallite dispersion films at 5 K, we observed a decrease in the magnitude of the exchange bias field as the nanocrystallite size decreased. The exchange bias coupling for all samples measured set in at essentially the same temperature (i.e., the exchange bias blocking temperature). Since the ferromagnetic/anti-ferromagnetic (FM/AFM) contact area in the nanocrystallite dispersion films increased as the nanocrystallite size decreased, the increase in the magnitude of the exchange bias could be attributed to larger regions of defects (vacancies and bond distortions) which occupied a significant portion of the FM/AFM interfaces in the nanocrystallite dispersion films.

  5. MD simulation of nanoindentation on (001) and (111) surfaces of Ag-Ni multilayers

    NASA Astrophysics Data System (ADS)

    Zhao, Yinbo; Peng, Xianghe; Fu, Tao; Sun, Rong; Feng, Chao; Wang, Zhongchang

    2015-11-01

    We perform MD simulations of the nanoindentation on (001) and (111) surfaces of Ag-Ni multilayers with different modulation periods, and find that both the hardness and maximum force increase with the increase of modulation period, in agreement with the inverse Hall-Petch relation. A prismatic partial dislocation loop is observed in the Ni(111)/Ag(111) sample when the modulation period is relatively large. We also find that misfit dislocation network shows a square shape for the Ni(111)/Ag(111) interface, while a triangle shape for the Ni(001)/Ag(001) interface. The pyramidal defect zones are also observed in Ni(001)/Ag(001) sample, while the intersecting stacking faults are observed in Ni(111)/Ag(111) sample after dislocation traversing interface. The results offer insights into the nanoindentation behaviors in metallic multilayers, which should be important for clarifying strengthening mechanism in many other multilayers.

  6. Rapidly solidified NiAl and FeAl

    NASA Technical Reports Server (NTRS)

    Gaydosh, D. J.; Crimp, M. A.

    1984-01-01

    Melt spinning was used to produce rapidly solidified ribbons of the B2 intermetallics NiAl and FeAl. Both Fe-40Al and Fe-45Al possessed some bend ductility in the as spun condition. The bend ductility of Fe-40Al, Fe-45Al, and equiatomic NiAl increased with subsequent heat treatment. Heat treatment at approximately 0.85 T (sub m) resulted in significant grain growth in equiatomic FeAl and in all the NiAl compositions. Low bend ductility in both FeAl and NiAl generally coincided with intergranular failure, while increased bend ductility was characterized by increasing amounts of transgranular cleavage fracture.

  7. Low temperature diffusion coefficients in the Fe-Ni and FeNiP systems: Application to meteorite cooling rates

    NASA Technical Reports Server (NTRS)

    Dean, D. C.; Goldstein, J. I.

    1984-01-01

    The interdiffusion coefficient of FeNi in fcc taenite (gamma) of Fe-Ni and Fe-Ni-0.2 P alloys was measured as a function of temperature between 600 and 900 C. This temperature range is directly applicable to the nucleation and growth of the Widmanstatten pattern in iron meteorites and metal regions of stony and stony-iron meteorites. Diffusion couples were made from FeNi or FeNiP alloys which ensured that the couples were in the taenite phase at the diffusion temperature. The presence or absence of grain boundary diffusion was determined by measuring the Ni profile normal to the existing grain boundaries with the AEM. Ignoring any variation of interdiffusion coefficient with composition, the measured data was plotted versus the reciprocal of the diffusion temperature. The FeNi data generally follow the extrapolated Goldstein, et al. (1965) data from high temperatures. The FeNiP data indicates that small additions of P (0.2 wt%) cause a 3 to 10 fold increase in the FeNi interdifussion coefficient increasing with decreasing temperature. This increase is about the same as that predicted by Narayan and Goldstein (1983) at the Widmanstatten growth temperature.

  8. Alloy formation of Ni ultrathin films on Pt(1 1 1) with Ag buffer layers

    NASA Astrophysics Data System (ADS)

    Ho, H. Y.; Su, C. W.; Chu, Y. W.; Shern, C. S.

    2004-10-01

    Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and depth profiling were used to study growth mode and structure in the interfaces of Ni/Ag/Pt(1 1 1). An atomic exchange occurs between Ni and Ag when the annealing temperature is high enough and the starting exchange temperature does not depend on the thickness of Ni. Nevertheless, the complete exchange temperature is higher when the coverage of Ni increases. Experimental evidence shows that the Ni-Pt alloy develops after the atomic exchange between Ag and Ni is complete. The atomic exchange between Ag and Ni, and the formation of Ni-Pt alloy were confirmed by the depth profile. The mechanisms of the atomic exchange are discussed.

  9. Substrate dependent ultrafast dynamics in thin NiFe films

    NASA Astrophysics Data System (ADS)

    Bosco, C. A. C.; Azevedo, A.; Acioli, L. H.

    2003-09-01

    We have studied the ultrafast electronic response of thin NiFe films by femtosecond transient reflectivity measurements. The experiments were performed on films with varying thicknesses, substrates, and pump fluences. It has been observed that for high excitation densities the electron cooling time depends strongly on the nature of the underlying substrate and we attribute our results to transport of hot carriers out of the excited region. In particular, we have observed that for NiFe over NiO, carrier transport should be less important than for NiFe over Si.

  10. Model study of CO inhibition of [NiFe]hydrogenase.

    PubMed

    Matsumoto, Takahiro; Kabe, Ryota; Nonaka, Kyoshiro; Ando, Tatsuya; Yoon, Ki-Seok; Nakai, Hidetaka; Ogo, Seiji

    2011-09-19

    We propose a modified mechanism for the inhibition of [NiFe]hydrogenase ([NiFe]H(2)ase) by CO. We present a model study, using a NiRu H(2)ase mimic, that demonstrates that (i) CO completely inhibits the catalytic cycle of the model compound, (ii) CO prefers to coordinate to the Ru(II) center rather than taking an axial position on the Ni(II) center, and (iii) CO is unable to displace a hydrido ligand from the NiRu center. We combine these studies with a reevaluation of previous studies to propose that, under normal circumstances, CO inhibits [NiFe]H(2)ase by complexing to the Fe(II) center. PMID:21853978

  11. Sound velocity and elastic properties of Fe-Ni and Fe-Ni-C liquids at high pressure

    NASA Astrophysics Data System (ADS)

    Kuwabara, Soma; Terasaki, Hidenori; Nishida, Keisuke; Shimoyama, Yuta; Takubo, Yusaku; Higo, Yuji; Shibazaki, Yuki; Urakawa, Satoru; Uesugi, Kentaro; Takeuchi, Akihisa; Kondo, Tadashi

    2016-03-01

    The sound velocity ( V P) of liquid Fe-10 wt% Ni and Fe-10 wt% Ni-4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe-Ni is insensitive to temperature, whereas that of liquid Fe-Ni-C tends to decrease with increasing temperature. The V P values of both liquid Fe-Ni and Fe-Ni-C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe-Ni and Fe-Ni-C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus ( K S0) and its pressure derivative ( K S ' ) were obtained to be K S0 = 103 GPa and K S ' = 5.7 for liquid Fe-Ni and K S0 = 110 GPa and K S ' = 7.6 for liquid Fe-Ni-C. The calculated density of liquid Fe-Ni-C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density ( ρ) and sound velocity ( V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.

  12. 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry

    SciTech Connect

    Callori, S. J. Bertinshaw, J.; Cortie, D. L.; Cai, J. W. Zhu, T.; Le Brun, A. P.; Klose, F.

    2014-07-21

    We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At low magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.

  13. Characterization of NiPt, FePt, and NiFePt nanoparticles

    NASA Astrophysics Data System (ADS)

    Sutherland, Greg; Wood, Darren; Jackson, Amy; Warren, Andrew; Coffey, Kevin; Vanfleet, Richard

    2012-10-01

    Many metal alloys can form in chemically ordered structures, often resulting in significant changes in properties. The ordered structures are preferred at low temperatures and will go through an order-disorder phase transition at a critical temperature. The formation and stability of these ordered structures in alloy nanoparticles is not well understood but may give insight into the role size plays in phase transitions. To this end we are studying FePt, NiPt, and FeNiPt alloy nanoparticles. We will focus this presentation on the characterization of these nanoparticles in a Transmission Electron Microscope (TEM) for composition, size, and structure. These nanoparticles are made by co-sputtering the constituents and annealing at different temperatures in various gas mixtures. The nanoparticle samples are prepared for TEM viewing by wedge polishing. We find FePt to be ``well behaved'' meaning this alloy forms particles, retains the as deposited composition, and chemically orders as expected. However, the order-disorder temperature is too high for the desired further studies. NiPt, which has a lower order-disorder temperature, is not ``well behaved'' in that the nanoparticle compositions are not good matches to the as deposited conditions and no chemical ordering has been achieved even under conditions that should be sufficient based on bulk processing. We will discuss these results and possible implications.

  14. High-frequency permeability and permittivity of Ni xZn (1-x)Fe 2O 4 thick film

    NASA Astrophysics Data System (ADS)

    Kulkarni, D. C.; Lonkar, U. B.; Puri, Vijaya

    Magnetic materials such as Ni xZn (1-x)Fe 2O 4 have resonant frequency in high frequency; therefore, they are more useful especially in microwaves. The Ni xZn (1-x)Fe 2O 4 was prepared by the chemical coprecipitation method using citrate precursors, and the fritless thick film was screen printed on alumina substrates. The composition-dependent permeability and permittivity in the high frequency 8-12 GHz are investigated. Using the overlay technique on Ag-thick-film patch antenna, the change in reflectance and transmittance has been measured. The Ni xZn (1-x)Fe 2O 4 thick film, when used as overlay on Ag-thick-film patch antenna, changes the resonance characteristics. The changes in resonance frequency, reflectance and transmittance have been used to calculate the permeability and permittivity of the thick film. Zinc-concentration-dependent changes are obtained.

  15. A novel multifunctional NiTi/Ag hierarchical composite

    PubMed Central

    Hao, Shijie; Cui, Lishan; Jiang, Jiang; Guo, Fangmin; Xiao, Xianghui; Jiang, Daqiang; Yu, Cun; Chen, Zonghai; Zhou, Hua; Wang, Yandong; Liu, YuZi; Brown, Dennis E.; Ren, Yang

    2014-01-01

    Creating multifunctional materials is an eternal goal of mankind. As the properties of monolithic materials are necessary limited, one route to extending them is to create a composite by combining contrasting materials. The potential of this approach is neatly illustrated by the formation of nature materials where contrasting components are combined in sophisticated hierarchical designs. In this study, inspired by the hierarchical structure of the tendon, we fabricated a novel composite by subtly combining two contrasting components: NiTi shape-memory alloy and Ag. The composite exhibits simultaneously exceptional mechanical properties of high strength, good superelasticity and high mechanical damping, and remarkable functional properties of high electric conductivity, high visibility under fluoroscopy and excellent thermal-driven ability. All of these result from the effective-synergy between the NiTi and Ag components, and place the composite in a unique position in the properties chart of all known structural-functional materials providing new opportunities for innovative electrical, mechanical and biomedical applications. Furthermore, this work may open new avenues for designing and fabricating advanced multifunctional materials by subtly combining contrasting multi-components. PMID:24919945

  16. A novel multifunctional NiTi/Ag hierarchical composite

    NASA Astrophysics Data System (ADS)

    Hao, Shijie; Cui, Lishan; Jiang, Jiang; Guo, Fangmin; Xiao, Xianghui; Jiang, Daqiang; Yu, Cun; Chen, Zonghai; Zhou, Hua; Wang, Yandong; Liu, Yuzi; Brown, Dennis E.; Ren, Yang

    2014-06-01

    Creating multifunctional materials is an eternal goal of mankind. As the properties of monolithic materials are necessary limited, one route to extending them is to create a composite by combining contrasting materials. The potential of this approach is neatly illustrated by the formation of nature materials where contrasting components are combined in sophisticated hierarchical designs. In this study, inspired by the hierarchical structure of the tendon, we fabricated a novel composite by subtly combining two contrasting components: NiTi shape-memory alloy and Ag. The composite exhibits simultaneously exceptional mechanical properties of high strength, good superelasticity and high mechanical damping, and remarkable functional properties of high electric conductivity, high visibility under fluoroscopy and excellent thermal-driven ability. All of these result from the effective-synergy between the NiTi and Ag components, and place the composite in a unique position in the properties chart of all known structural-functional materials providing new opportunities for innovative electrical, mechanical and biomedical applications. Furthermore, this work may open new avenues for designing and fabricating advanced multifunctional materials by subtly combining contrasting multi-components.

  17. Depletion and phase transformation of a submicron Ni(P) film in the early stage of soldering reaction between Sn-Ag-Cu and Au/Pd(P)/Ni(P)/Cu

    NASA Astrophysics Data System (ADS)

    Ho, Cheng-En; Hsieh, Wan-Zhen; Yang, Tsung-Hsun

    2015-01-01

    The early stage of soldering reaction between Sn-3Ag-0.5Cu solder and ultrathin-Ni(P)-type Au/Pd(P)/Ni(P)/Cu pad was investigated by field-emission scanning electron microscopy (FE-SEM) in conjunction with field-emission electron probe microanalysis (FEEPMA) and high-resolution transmission electron microscopy (HRTEM). FE-SEM, FE-EPMA, and HRTEM investigations showed that Ni2SnP and Ni3P were the predominant P-containing intermetallic compounds (IMCs) in the soldering reaction and that their growth behaviors strongly depended on the depletion of Ni(P). The growth of Ni3P dominated over that of Ni2SnP in the early stage of soldering, whereas the Ni3P gradually transformed into Ni2SnP after Ni(P) depletion. This Ni(P)-depletion-induced Ni2SnP growth behavior is different from the reaction mechanisms reported in the literature. Detailed analyses of the microstructural evolution of the IMC during Ni(P) depletion were conducted, and a two-stage reaction mechanism was proposed to rationalize the unique IMC growth behavior.

  18. Microstructure of the Al-La-Ni-Fe system

    SciTech Connect

    Vasil’ev, A. L.; Ivanova, A. G.; Bakhteeva, N. D.; Kolobylina, N. N.; Orekhov, A. S.; Presnyakov, M. Yu.; Todorova, E. V.

    2015-01-15

    The microstructure of alloys based on the Al-La-Ni-Fe system, which are characterized by a unique ability to form metal glasses and nanoscale composites in a wide range of compositions, has been investigated. Al{sub 85}Ni{sub 7}Fe{sub 4}La{sub 4} and Al{sub 85}Ni{sub 9}Fe{sub 2}La{sub 4} alloys have been analyzed by electron microscopy (including high-resolution scanning transmission electron microscopy), energy-dispersive X-ray microanalysis, electron diffraction (ED), and X-ray diffraction (XRD). It is found that, along with fcc Al and Al{sub 4}La (Al{sub 11}La{sub 3}) particles, these alloys contain a ternary phase Al{sub 3}Ni{sub 1−x}Fe{sub x} (sp. gr. Pnma) isostructural to the Al{sub 3}Ni phase and a quaternary phase Al{sub 8}Fe{sub 2−x}Ni{sub x}La isostructural to the Al{sub 8}Fe{sub 2}Eu phase (sp. gr. Pbam). The unit-cell parameters of the Al{sub 3}Ni{sub 1−x}Fe{sub x} and Al{sub 8}Fe{sub 2−x}Ni{sub x}La compounds, determined by ED and refined by XRD, are a = 0.664(1) nm, b = 0.734(1) nm, and c = 0.490(1) nm for Al{sub 3}Ni{sub 1−x}Fe{sub x} and a = 1.258(3) nm, b = 1.448(3) nm, and c = 0.405(8) nm for Al{sub 8}Fe{sub 2−x}Ni{sub x}La. In both cases Ni and Fe atoms are statistically arranged, and no ordering is found. Al{sub 8}Fe{sub 2−x}Ni{sub x}La particles contain inclusions in the form of Al{sub 3}Fe δ layers.

  19. Ni doped Fe3O4 magnetic nanoparticles.

    PubMed

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J

    2012-03-01

    In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure. PMID:22755104

  20. Fe-Au and Fe-Ag composites as candidates for biodegradable stent materials.

    PubMed

    Huang, Tao; Cheng, Jian; Bian, Dong; Zheng, Yufeng

    2016-02-01

    In this study, Fe-Ag and Fe-Au composites were fabricated by powder metallurgy using spark plasma sintering. Their microstructures, mechanical properties, and biocorrosion behavior were investigated by using optical microscopy, X-ray diffraction, environment scanning electronic microscopy, compressive test, electrochemical measurements, and immersion tests. Microstructure characterization indicated that the as-sintered iron-based materials obtained much finer grains than that of as-cast pure iron. Phase analysis showed that the Fe-Ag composites were composed of α-Fe and pure Ag phases, and Fe-Au composites consisted of α-Fe and Au phases. Compressive test showed that the improved mechanical strengths were obtained in as-sintered iron-based materials, among which the Fe-5 wt %Ag exhibited the best mechanical properties. The electrochemical and immersion tests revealed that the addition of Ag and Au could increase the corrosion rate of the iron matrix and change the corrosion mode into more uniform one. Based on the results of cytotoxicity evaluation, it was found that all the experimental material extracts performed no significant toxicity on the L-929 cells and EA. hy-926 cells, whereas a considerable inhibition on the proliferation of vascular smooth muscle cells was observed. The hemocompatibility tests showed that the hemolysis of all the experimental materials was within the range of 5%, which is the criteria value of biomaterials with good hemocomaptibility. The amount of platelet adhered on the surface of as-sintered iron-based materials was lower than that of as-cast pure iron, and the morphology of platelets kept smoothly spherical on the surface of all the experimental materials. PMID:25727071

  1. Magnetic dead layers in NiFe/Ta and NiFe/Si/diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Leng, Qunwen; Han, Hua; Mao, Ming; Hiner, Craig; Ryan, Francis

    2000-05-01

    NiFe, Ta films were fabricated by ion beam deposition (IBD) and diamond-like carbon (DLC) films by ion beam chemical vapor deposition (IB-CVD) and filtered cathodic arc (FCA) process. Magnetic dead layers at interfaces of Ta/NiFe/Tn and NiFe/Si/DLC trilayer films were determined by characterizing magnetic flux loss using a B-H loop tracer. Dependence of magnetic dead layer on ion beam voltage and thicknesses of Ta, DLC, and Si layers was investigated. It is found that the thickness of magnetic dead layer increases monotonously with increasing ion beam voltage for Ta and DLC film depositions. The magnetic dead layer of 4-6 Å thick forms at Ta/NiFe and NiFe/Ta interfaces at an ion beam voltage of 1000 V, which can be attributed to the atomic intermixing of incoming energetic adatoms with atoms of grown films at interfaces. Direct ion beam deposition of the DLC film in NiFe/Si/DLC layered structure gives rise to a magnetic thickness loss of 12-18 Å. Transmission electron microscopy cross-sectional observations have confirmed the formation of an amorphous-like interfacial layer, as a result of carbonization or silicidation of NiFe at interfaces of the trilayer film.

  2. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    SciTech Connect

    Tokuoka, Y.; Seto, Y.; Kato, T.; Iwata, S.

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5 nm) and FePd-Ag (5 nm) films were grown on MgO (001) substrate at temperatures of 250–400 °C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 10–20 at. % was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with the reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.

  3. Pressure dependence on the remanent magnetization of Fe-Ni alloys and Ni metal

    NASA Astrophysics Data System (ADS)

    Wei, Qingguo; Gilder, Stuart Alan; Maier, Bernd

    2014-10-01

    We measured the acquisition of magnetic remanence of iron-nickel alloys (Fe64Ni36, Fe58Ni42, and Fe50Ni50) and pure Ni under pressures up to 23 GPa at room temperature. Magnetization decreases markedly for Fe64Ni36 between 5 and 7 GPa yet remains ferromagnetic until at least 16 GPa. Magnetization rises by a factor of 2-3 for the other compositions during compression to the highest applied pressures. Immediately upon decompression, magnetic remanence increases for all Fe-Ni alloys while magnetic coercivity remains fairly constant at relatively low values (5-20 mT). The amount of magnetization gained upon complete decompression correlates with the maximum pressure experienced by the sample. Martensitic effects best explain the increase in remanence rather than grain-size reduction, as the creation of single domain sized grains would raise the coercivity. The magnetic remanence of low Ni Invar alloys increases faster with pressure than for other body-centered-cubic compositions due to the higher magnetostriction of the low Ni Invar metals. Thermal demagnetization spectra of Fe64Ni36 measured after pressure release broaden as a function of peak pressure, with a systematic decrease in Curie temperature. Irreversible strain accumulation from the martensitic transition likely explains the broadening of the Curie temperature spectra, consistent with our x-ray diffraction analyses.

  4. Cation distribution and mixing thermodynamics in Fe/Ni thiospinels

    NASA Astrophysics Data System (ADS)

    Haider, Saima; Grau-Crespo, Ricardo; Devey, Antony J.; de Leeuw, Nora H.

    2012-07-01

    The structural analogy between Ni-doped greigite minerals (Fe3S4) and the (Fe, Ni)S clusters present in biological enzymes has led to suggestions that these minerals could have acted as catalysts for the origin of life. However, little is known about the distribution and stability of Ni dopants in the greigite structure. We present here a theoretical investigation of mixed thiospinels (Fe1-xNix)3S4, using a combination of density functional theory (DFT) calculations and Monte Carlo simulations. We find that the equilibrium distribution of the cations deviates significantly from a random distribution: at low Ni concentrations, Ni dopants are preferably located in octahedral sites, while at higher Ni concentrations the tetrahedral sites become much more favourable. The thermodynamic mixing behaviour between greigite and polydymite (Ni3S4) is dominated by the stability field of violarite (FeNi2S4), for which the mixing enthalpy exhibits a deep negative minimum. The analysis of the free energy of mixing shows that Ni doping of greigite is very unstable with respect to the formation of a separate violarite phase. The calculated variation of the cubic cell parameter with composition is found to be non-linear, exhibiting significant deviation from Vegard’s law, but in agreement with experiment.

  5. Novel reactions of homodinuclear Ni2 complexes [Ni(RNPyS4)]2 with Fe3(CO)12 to give heterotrinuclear NiFe2 and mononuclear Fe complexes relevant to [NiFe]- and [Fe]-hydrogenases.

    PubMed

    Song, Li-Cheng; Cao, Meng; Wang, Yong-Xiang

    2015-04-21

    The homodinuclear complexes [Ni(RNPyS4)]2 (; RNPyS4 = 2,6-bis(2-mercaptophenylthiomethyl)-4-R-pyridine; R = H, MeO, Cl, Br, i-Pr) were found to be prepared by reactions of the in situ generated Li2[Ni(1,2-S2C6H4)2] with 2,6-bis[(tosyloxy)methyl]pyridine and its substituted derivatives 2,6-bis[(tosyloxy)methyl]-4-R-pyridine. Further reactions of with Fe3(CO)12 gave both heterotrinuclear complexes NiFe2(RNPyS4)(CO)5 () and mononuclear complexes Fe(RNPyS4)(CO) (), unexpectedly. Interestingly, complexes and could be regarded as models for the active sites of [NiFe]- and [Fe]-hydrogenases, respectively. All the prepared complexes were characterized by elemental analysis, spectroscopy, and particularly for some of them, by X-ray crystallography. In addition, the electrochemical properties of and as well as the electrocatalytic H2 production catalyzed by and were investigated by CV techniques. PMID:25747808

  6. Crystallinity of Fe-Ni Sulfides in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Zolensky, M. E.; Ohsumi, K.; Mikouchi, T.; Hagiya, K.; Le, L.

    2008-03-01

    We examine the crystallinity and crystal structures of Fe-Ni sulfides in five carbonaceous chondrites - Acfer 094 (CM2), Tagish Lake (C2 ungrouped), Kaidun C1, Bali (CV2/3 oxidized), and Efremovka (CV3 reduced).

  7. Interdiffusion in nanometric Fe/Ni multilayer films

    SciTech Connect

    Liu, JX; Barmak, K

    2015-03-01

    Fe (3.1 nm)/Ni (3.3 nm)](20) multilayer films were prepared by DC magnetron sputtering onto oxidized Si(100) substrates. The Fe and Ni layers were shown to both be face-centered cubic by x-ray diffraction. Interdiffusion of the Fe and Ni layers in the temperature range of 300-430 degrees C was studied by x-ray reflectivity. From the decay of the integral intensity of the superlattice peak, the activation energy and the pre-exponential term for the effective interdiffusion coefficient were determined as to 1.06 +/- 0.07 eV and 5 x 10(-10) cm(2)/s, respectively. The relevance of the measured interdiffusion coefficient to the laboratory timescale synthesis of L1(0) ordered FeNi as a rare-earth free permanent magnet is discussed. (C) 2015 American Vacuum Society.

  8. Hydrogen activation by [NiFe]-hydrogenases.

    PubMed

    Carr, Stephen B; Evans, Rhiannon M; Brooke, Emily J; Wehlin, Sara A M; Nomerotskaia, Elena; Sargent, Frank; Armstrong, Fraser A; Phillips, Simon E V

    2016-06-15

    Hydrogenase-1 (Hyd-1) from Escherichia coli is a membrane-bound enzyme that catalyses the reversible oxidation of molecular H2 The active site contains one Fe and one Ni atom and several conserved amino acids including an arginine (Arg(509)), which interacts with two conserved aspartate residues (Asp(118) and Asp(574)) forming an outer shell canopy over the metals. There is also a highly conserved glutamate (Glu(28)) positioned on the opposite side of the active site to the canopy. The mechanism of hydrogen activation has been dissected by site-directed mutagenesis to identify the catalytic base responsible for splitting molecular hydrogen and possible proton transfer pathways to/from the active site. Previous reported attempts to mutate residues in the canopy were unsuccessful, leading to an assumption of a purely structural role. Recent discoveries, however, suggest a catalytic requirement, for example replacing the arginine with lysine (R509K) leaves the structure virtually unchanged, but catalytic activity falls by more than 100-fold. Variants containing amino acid substitutions at either or both, aspartates retain significant activity. We now propose a new mechanism: heterolytic H2 cleavage is via a mechanism akin to that of a frustrated Lewis pair (FLP), where H2 is polarized by simultaneous binding to the metal(s) (the acid) and a nitrogen from Arg(509) (the base). PMID:27284053

  9. Anodic vacuum arc developed nanocrystalline Cu-Ni and Fe-Ni thin film thermocouples

    SciTech Connect

    Mukherjee, S. K.; Sinha, M. K.; Pathak, B.; Rout, S. K.; Barhai, P. K.

    2009-12-01

    This paper deals with the development of nanocrystalline Cu-Ni and Fe-Ni thin film thermocouples (TFTCs) by using ion-assisted anodic vacuum arc deposition technique. The crystallographic structure and surface morphology of individual layer films have been studied by x-ray diffraction and scanning electron microscopy, respectively. The resistivity, temperature coefficient of resistance, and thermoelectric power of as deposited and annealed films have been measured. The observed departure of these transport parameters from their respective bulk values can be understood in terms of intrinsic scattering due to enhanced crystallite boundaries. From the measured values of thermoelectric power and the corresponding temperature coefficient of resistance of annealed Cu, Ni, and Fe films, the calculated values of log derivative of the mean free path of conduction electrons at the Fermi surface with respect to energy (U) are found to be -0.51, 3.22, and -8.39, respectively. The thermoelectric response of annealed Cu-Ni and Fe-Ni TFTCs has been studied up to a maximum temperature difference of 300 deg. C. Reproducibility of TFTCs has been examined in terms of the standard deviation in thermoelectric response of 16 test samples for each pair. Cu-Ni and Fe-Ni TFTCs agree well with their wire thermocouple equivalents. The thermoelectric power values of Cu-Ni and Fe-Ni TFTCs at 300 deg. C are found to be 0.0178 and 0.0279 mV/ deg. C, respectively.

  10. Effects of Ag addition on FePt L1{sub 0} ordering transition: A direct observation of ordering transition and Ag segregation in FePtAg alloy films

    SciTech Connect

    Wang, Lei; Yu, Youxing; Gao, Tenghua

    2015-12-21

    FePt and (FePt){sub 91.2}Ag{sub 8.8} alloy films were deposited by magnetron sputtering. The average coercivity of (FePt){sub 91.2}Ag{sub 8.8} films reaches 8.51 × 10{sup 5} A/m, which is 0.63 × 10{sup 5} A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L1{sub 0} ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution reveals more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L1{sub 0} ordering transition.

  11. Comparative Study of Thermal Stability of NiFe and NiFeTa Thin Films Grown by Cosputtering Technique

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2016-08-01

    A comparative study of the thermal behavior of dynamic permeability spectra for compositionally graded NiFeTa and uniform-composition NiFe thin films has been carried out. We found that the resonance frequency of the compositionally graded NiFeTa film increased with increasing temperature, while it decreased for the case of the uniform-composition NiFe thin film. This finding unambiguously suggests that the compositional gradient of the film is the only reason for the increase of the magnetic anisotropy with temperature due to its stress-induced origin, while the cosputtering technique does not play any role in this peculiar behavior. The temperature dependence of the frequency linewidth is also presented and discussed.

  12. Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001)

    SciTech Connect

    Wu, J.; Choi, J.; Scholl, A.; Doran, A.; Arenholz, E.; Hwang, Chanyong; Qiu, Z. Q.

    2009-03-08

    Epitaxially grown FeMn/Ni/Cu(001) films are investigated by Photoemission Electron Microscopy and Magneto-Optic Kerr Effect. We find that as the FeMn overlayer changes from paramagnetic to antiferromagnetic state, it could switch the ferromagnetic Ni spin direction from out-of-plane to in-plane direction of the film. This phenomenon reveals a new mechanism of creating magnetic anisotropy and is attributed to the out-of-plane spin frustration at the FeMn-Ni interface.

  13. Exchange bias in Ag/FeCo/Ag core/shell/shell nanoparticles due to partial oxidation of FeCo intermediate shell

    NASA Astrophysics Data System (ADS)

    Takahashi, Mari; Mohan, Priyank; Mott, Derrick M.; Maenosono, Shinya

    2016-03-01

    Recently we developed magnetic-plasmonic Ag/FeCo/Ag core/shell/shell nanoparticles for the purpose of biological applications. In these heterostructured nanoparticles, exchange bias is observed as a result of the formation of an interface between ferromagnetic FeCo and antiferromagnetic CoxFe1-xO due to the partial oxidation of the FeCo intermediate shell. In this study we thoroughly characterized the surface oxide layer of the FeCo shell by XPS, XRD and SQUID magnetometer.

  14. Synthesis of nanoscale Fe-Ag alloy within thermally evaporated fatty acid films

    NASA Astrophysics Data System (ADS)

    Damle, Chinmay; Biswas, Kushan; Sastry, Murali

    2002-02-01

    The low-temperature alloying of Fe-Ag nanoparticles entrapped within thermally evaporated fatty acid films by a novel ion exchange technique is described. Nanoparticles of iron and silver were grown in thermally evaporated stearic acid (StA) films by sequential immersion of the film in solutions containing Fe2+ ions and Ag+ ions followed by their in situ reduction at each stage. Entrapment of Fe2+ and Ag+ ions in the StA film occurs by selective electrostatic binding with the carboxylate ions in the fatty acid matrix. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Fe and Ag of ca. 35 nm diameter within the fatty acid matrix. Thermal treatment of the StA-(Fe + Ag) nanocomposite film at 200 °C resulted in the formation of an Fe-Ag alloy. Prolonged heat treatment at 250 °C resulted in the phase separation of the alloy and the re-formation of individual Fe and Ag nanoparticles. The process of Fe2+ and Ag+ ion incorporation in the StA matrix and synthesis of the Fe-Ag alloy were followed by quartz crystal microgravimetry, Fourier transform infrared spectroscopy, transmission electron microscopy and x-ray diffraction measurements.

  15. Ag{sub 3}Ni{sub 2}O{sub 4}-A new stage-2 intercalation compound of 2H-AgNiO{sub 2} and physical properties of 2H-AgNiO{sub 2} above ambient temperature

    SciTech Connect

    Soergel, Timo; Jansen, Martin

    2007-01-15

    Ag{sub 3}Ni{sub 2}O{sub 4} was obtained as single crystals from a mixture of 2H-AgNiO{sub 2} and Ag{sub 2}O in oxygen high-pressure autoclaves (P6{sub 3}/mmc (no. 194), a=2.9331(6), c=28.313(9)A, Z=2). It may be regarded as a stage-2 intercalation compound of the host 2H-AgNiO{sub 2} and is the first staging compound constituted of alternating subvalent {approx}2Ag{sub 2}{sup +} and Ag{sup +} sheets, inserted between NiO{sub 2}{sup -} slabs. From a structural point of view, Ag{sub 3}Ni{sub 2}O{sub 4} represents an intermediate between AgNiO{sub 2} and the recently reported Ag{sub 2}NiO{sub 2}. The electronic structures of 2H-AgNiO{sub 2} and Ag{sub 3}Ni{sub 2}O{sub 4} have been investigated based on DFT band structure calculations. The high-temperature characteristics of the starting material 2H-AgNiO{sub 2} were investigated. The inverse magnetic susceptibility, electrical resistivity and differential scanning calorimetry (DSC) show a phase transition in the temperature range of T=320-365K.

  16. Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids

    NASA Astrophysics Data System (ADS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.

    2011-05-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.

  17. Maturation of [NiFe]-hydrogenases in Escherichia coli.

    PubMed

    Forzi, Lucia; Sawers, R Gary

    2007-06-01

    Hydrogenases catalyze the reversible oxidation of dihydrogen. Catalysis occurs at bimetallic active sites that contain either nickel and iron or only iron and the nature of these active sites forms the basis of categorizing the enzymes into three classes, the [NiFe]-hydrogenases, the [FeFe]-hydrogenases and the iron sulfur cluster-free [Fe]-hydrogenases. The [NiFe]-hydrogenases and the [FeFe]-hydrogenases are unrelated at the amino acid sequence level but the active sites share the unusual feature of having diatomic ligands associated with the Fe atoms in the these enzymes. Combined structural and spectroscopic studies of [NiFe]-hydrogenases identified these diatomic ligands as CN- and CO groups. Major advances in our understanding of the biosynthesis of these ligands have been achieved primarily through the study of the membrane-associated [NiFe]-hydrogenases of Escherichia coli. A complex biosynthetic machinery is involved in synthesis and attachment of these ligands to the iron atom, insertion of the Fe(CN)2CO group into the apo-hydrogenase, introduction of the nickel atom into the pre-formed active site and ensuring that the holoenzyme is correctly folded prior to delivery to the membrane. Although much remains to be uncovered regarding each of the individual biochemical steps on the pathway to synthesis of a fully functional enzyme, our understanding of the initial steps in CN- synthesis have revealed that it is generated from carbamoyl phosphate. What is becoming increasingly clear is that the metabolic origins of the carbonyl group may be different. PMID:17216401

  18. Magnetization reversal of uncompensated Fe moments in exchangebiased Ni/FeF2 bilayers

    SciTech Connect

    Arenholz, Elke; Liu, Kai; Li, Zhipan; Schuller, Ivan K.

    2006-01-01

    The magnetization reversal of uncompensated Fe moments in exchange biased Ni/FeF{sub 2} bilayers was determined using soft x-ray magnetic circular and linear dichroism. The hysteresis loops resulting from the Fe moments are almost identical to those of the ferromagnetic Ni layer. However, a vertical loop shift indicates that some Fe moments are pinned in the antiferromagnetically ordered FeF{sub 2}. The pinned moments are oriented antiparallel to small cooling fields leading to negative exchange bias, but parallel to large cooling fields resulting in positive exchange bias. No indication for the formation of a parallel antiferromagnetic domain wall in the FeF{sub 2} layer upon magnetization reversal in the Ni layer was found.

  19. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

    PubMed Central

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-01-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as −0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at −0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under −0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination. PMID:27487918

  20. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst.

    PubMed

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-01-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as -0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at -0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under -0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination. PMID:27487918

  1. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

    NASA Astrophysics Data System (ADS)

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-08-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as ‑0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at ‑0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under ‑0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination.

  2. Evaporative segregation in 80% Ni-20% Cr and 60% Fe-40% Ni alloys

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Mukherjee, J. L.; Li, C. H.

    1974-01-01

    An analytical approach is outlined to calculate the evaporative segregation behavior in metallic alloys. The theoretical predictions are based on a 'normal' evaporation model and have been examined for Fe-Ni and Ni-Cr alloys. A fairly good agreement has been found between the predicted values and the experimental results found in the literature.

  3. Direct observation of imprinted antiferromagnetic vortex state in CoO/Fe/Ag(001) disks

    SciTech Connect

    Wu, J.; Carlton, D.; Park, J. S.; Meng, Y.; Arenholz, E.; Doran, A.; Young, A.T.; Scholl, A.; Hwang, C.; Zhao, H. W.; Bokor, J.; Qiu, Z. Q.

    2010-12-21

    In magnetic thin films, a magnetic vortex is a state in which the magnetization vector curls around the center of a confined structure. A vortex state in a thin film disk, for example, is a topological object characterized by the vortex polarity and the winding number. In ferromagnetic (FM) disks, these parameters govern many fundamental properties of the vortex such as its gyroscopic rotation, polarity reversal, core motion, and vortex pair excitation. However, in antiferromagnetic (AFM) disks, though there has been indirect evidence of the vortex state through observations of the induced FM-ordered spins in the AFM disk, they have never been observed directly in experiment. By fabricating single crystalline NiO/Fe/Ag(001) and CoO/Fe/Ag(001) disks and using X-ray Magnetic Linear Dichroism (XMLD), we show direct observation of the vortex state in an AFM disk of AFM/FM bilayer system. We observe that there are two types of AFM vortices, one of which has no analog in FM structures. Finally, we show that a frozen AFM vortex can bias a FM vortex at low temperature.

  4. Sol-gel auto-combustion synthesis of totally immiscible NiAg alloy

    SciTech Connect

    Jiang, Yuwen; Yang, Shaoguang; Hua, Zhenghe; Gong, Jiangfeng; Zhao, Xiaoning

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Chemically synthesized immiscible NiAg alloy nanoparticles without protecting matrix. Black-Right-Pointing-Pointer A chemical method providing both a nonequilibrium thermal process and a good mixing of precursors. Black-Right-Pointing-Pointer Observation of extinction planes in NiAg alloy. -- Abstract: Immiscible crystalline NiAg alloy was successfully synthesized by the newly developed sol-gel auto-combustion method. The structure and composition were examined by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). All evidence supports that homogeneous NiAg alloy with FCC structure was synthesized. The differential thermal analysis and thermogravimetry (DTA-TG) measurement shows that the alloy has a good thermal stability until 315 Degree-Sign C. Unusually some extinction planes are observed in the XRD pattern and HRTEM images. The random distribution of atoms and the large difference between Ni and Ag atom form factors should be regarded as the main reasons for the observation of the extinction planes. The quenching like nonequilibrium thermal process in the combustion is taken as the key factor in the synthesis of immiscible alloy. And the addition of ethylene glycol in the precursors is found to benefit the formation of NiAg alloy.

  5. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells.

    PubMed

    Xue, Zhichao; Liu, Xingyuan; Zhang, Nan; Chen, Hong; Zheng, Xuanming; Wang, Haiyu; Guo, Xiaoyang

    2014-09-24

    Transparent electrodes with a dielectric-metal-dielectric (DMD) structure can be implemented in a simple manufacturing process and have good optical and electrical properties. In this study, nickel oxide (NiO) is introduced into the DMD structure as a more appropriate dielectric material that has a high conduction band for electron blocking and a low valence band for efficient hole transport. The indium-free NiO/Ag/NiO (NAN) transparent electrode exhibits an adjustable high transmittance of ∼82% combined with a low sheet resistance of ∼7.6 Ω·s·q(-1) and a work function of 5.3 eV after UVO treatment. The NAN electrode shows excellent surface morphology and good thermal, humidity, and environmental stabilities. Only a small change in sheet resistance can be found after NAN electrode is preserved in air for 1 year. The power conversion efficiencies of organic photovoltaic cells with NAN electrodes deposited on glass and polyethylene terephthalate (PET) substrates are 6.07 and 5.55%, respectively, which are competitive with those of indium tin oxide (ITO)-based devices. Good photoelectric properties, the low-cost material, and the room-temperature deposition process imply that NAN electrode is a striking candidate for low-cost and flexible transparent electrode for efficient flexible optoelectronic devices. PMID:25148532

  6. Metastable γ-FeNi nanostructures with tunable Curie temperature

    NASA Astrophysics Data System (ADS)

    Miller, K. J.; Sofman, M.; McNerny, K.; McHenry, M. E.

    2010-05-01

    We report on new metastable γ-FeNi nanoparticles produced by mechanical alloying of melt-spun ribbon using a high energy ball mill followed by a solution annealing treatment in the γ-phase region and water quenching in of the face-centered cubic γ-phase. In the Fe-Ni phase diagram there is a strong compositional dependence of the Curie temperature, Tc, on composition in the γ-phase. This work studies the stabilization of γ-phase nanostructures and the compositional tuning of Tc in Fe-Ni alloys which can have important ramifications on the self-regulated heating of magnetic nanoparticles in temperature ranges of interest for applications in polymer curing and cancer thermotherapies. To date we have achieved Curie temperatures as low as 120 °C by this method.

  7. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  8. Quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts: Synthesis, characterization and activity towards ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Easton, E. Bradley

    2012-10-01

    In this account, two series of quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts have been synthesized and characterized by ICP, XRD, XPS, TEM and cyclic voltammetry. XRD spectra of each series illustrated that PtMnCuX/C (X = Fe, Co and Ni) and PtMnMoX/C (X = Fe, Co, Ni and Cu) alloys have been formed without significant free Mn, Cu, Mo or X co-catalysts. For PtMnCuSn/C and PtMnMoSn/C, in addition to alloy formation, significant free Sn-oxides are present in each catalyst. Cyclic voltammetry and chronoamperometry revealed that all quaternary showed superior electrocatalytic activity towards ethanol oxidation compared to the ternary precursor. Also, shift of the onset potential of ethanol oxidation towards less positive values were also recorded with the quaternary alloys, demonstrating a facilitated oxidation with the quaternary alloys compared to ternary alloy precursor. The magnitude of the gain in potential depend on the alloy composition and PtMnMoSn/C was found to be the best of all synthetized quaternary alloys with an onset potential of ethanol oxidation of only 0.059 V vs. Ag/AgCl.

  9. Spin polarization and additional magneto-optical activity of nonmagnetic layers in Fe/Ag CMF

    NASA Astrophysics Data System (ADS)

    Xu, Y. B.; Zhai, H. R.; Lu, M.; Jin, Q. Y.; Miao, Y. Z.

    1992-08-01

    The experimental magneto-optical Kerr rotation spectra of Fe/Ag compositionally modulated films reported by Katayama et al. are studied theoretically. It is found that the free electrons of Ag are spin polarized. The magnitude of the polarization is about 1% with a direction opposite to that of Fe. The polarized Ag also gives rise to an additional magneto-optical activity as in Pt and Pd.

  10. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media

    SciTech Connect

    Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K. Wang, J.; Hono, K.; Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T.

    2014-06-02

    We investigated the Ag distribution in a FePtAg-C granular film that is under consideration for a heat assisted magnetic recording medium by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy and X-ray absorption fine structure. Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L1{sub 0}-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the L1{sub 0}-order in the FePt grains.

  11. Hydrogen-Resistant Fe/Ni/Cr-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Chen, Po-Shou; Panda, Binayak

    1994-01-01

    Strong Fe/Ni/Cr-base hydrogen- and corrosion-resistant alloy developed. Superalloy exhibits high strength and exceptional resistance to embrittlement by hydrogen. Contains two-phase microstructure consisting of conductivity precipitated phase in conductivity matrix phase. Produced in wrought, weldable form and as castings, alloy maintains high ductility and strength in air and hydrogen. Strength exceeds previously known Fe/Cr/Ni hydrogen-, oxidation-, and corrosion-resistant alloys. Provides higher strength-to-weight ratios for lower weight in applications as storage vessels and pipes that must contain hydrogen.

  12. Bimetallic FeNi concave nanocubes and nanocages.

    PubMed

    Moghimi, Nafiseh; Abdellah, Marwa; Thomas, Joseph Palathinkal; Mohapatra, Mamata; Leung, K T

    2013-07-31

    Concave nanostructures are rare because of their thermodynamically unfavorable shapes. We prepared bimetallic FeNi concave nanocubes with high Miller index planes through controlled triggering of the different growth kinetics of Fe and Ni. Taking advantage of the higher activity of the high-index planes, we then fabricated monodispersed concave nanocages via a material-independent electroleaching process. With the high-index facets exposed, these concave nanocubes and nanocages are 10- and 100-fold more active, respectively, toward electrodetection of 4-aminophenol than cuboctahedrons, providing a label-free sensing approach for monitoring toxins in water and pharmaceutical wastes. PMID:23837524

  13. Effects of two-temperature model on cascade evolution in Ni and NiFe

    DOE PAGESBeta

    Samolyuk, German D.; Xue, Haizhou; Bei, Hongbin; Weber, William J.

    2016-07-05

    We perform molecular dynamics simulations of Ni ion cascades in Ni and equiatomic NiFe under the following conditions: (a) classical molecular dynamics (MD) simulations without consideration of electronic energy loss, (b) classical MD simulations with the electronic stopping included, and (c) using the coupled two-temperature MD (2T-MD) model that incorporates both the electronic stopping and the electron-phonon interactions. Our results indicate that the electronic e ects are more profound in the higher energy cascades and that the 2T-MD model results in a smaller amount of surviving damage and smaller defect clusters, while less damage is produced in NiFe than inmore » Ni.« less

  14. Ultrasound assisted ambient temperature synthesis of ternary oxide Ag MO 2 ( M=Fe, Ga)

    NASA Astrophysics Data System (ADS)

    Nagarajan, R.; Tomar, Nobel

    2009-06-01

    The application of ultrasound for the synthesis of ternary oxide Ag MO 2 ( M=Fe, Ga) was investigated. Crystalline α-AgFeO 2 was obtained from the alkaline solutions of silver and iron hydroxides by sonication for 40 minutes. α-AgFeO 2 was found to absorb optical radiation in the 300-600 nm range as shown by diffuse reflectance spectroscopy. The Raman spectrum of α-AgFeO 2 exhibited two bands at 345 and 638 cm -1. When β-NaFeO 2 was sonicated with aqueous silver nitrate solution for 60 minutes, β-AgFeO 2 possessing orthorhombic structure was obtained as the ion-exchanged product. The Raman spectrum of β-AgFeO 2 showed four strong bands at 295, 432, 630 and 690 cm -1. Sonication of β-NaGaO 2 with aqueous silver nitrate solution for 60 minutes resulted in olive green colored, α-AgGaO 2. The diffuse reflectance spectrum and the EDX analysis confirmed that the ion-exchange through sonication was complete. The Raman spectrum of α-AgGaO 2 had weak bands at 471 and 650 cm -1.

  15. Tuning of interlayer exchange coupling in Ni80Fe20/Ru/Ni80Fe20 nanowires

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Lupo, P.; Cottam, M. G.; Adeyeye, A. O.

    2015-09-01

    In this work, we demonstrate how the static and dynamic properties of Ni80Fe20/Ru/Ni80Fe20 nanowires can be tuned by varying the Ru spacer layer thickness. Specifically, changing the Ru thickness we have tuned the Ruderman-Kittel-Kasuya-Yosida exchange interaction, and thus the antiferromagnetic (AFM) strength between the Ni80Fe20 layers. We show that there is a strong correlation between the interlayer coupling and features in ferromagnetic resonance (FMR) modes. We found different mode-softening degree of the FMR curves as function of the strength of AFM coupling, together with a clear frequency gap at around zero field. These experimental results are in qualitative agreement with presented micromagnetic simulations that also include biquadratic interface exchange. Understanding these characteristics may offer insights for reconfigurable vertical magnetic logic devices and microwave filters.

  16. Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001)

    SciTech Connect

    Wu, J.; Choi, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A.; Hwang, Chanyong; Qiu, Z.

    2010-06-09

    Magnetic domain evolution at the spin reorientation transition (SRT) of (Fe/Ni)/Cu/Ni/Cu(001) is investigated using photoemission electron microscopy. While the (Fe/Ni) layer exhibits the SRT, the interlayer coupling of the perpendicularly magnetized Ni layer to the (Fe/Ni) layer serves as a virtual perpendicular magnetic field exerted on the (Fe/Ni) layer. We find that the perpendicular virtual magnetic field breaks the up-down symmetry of the (Fe/Ni) stripe domains to induce a net magnetization in the normal direction of the film. Moreover, as the virtual magnetic field increases to exceed a critical field, the stripe domain phase evolves into a bubble domain phase. Although the critical field depends on the Fe film thickness, we show that the area fraction of the minority domain exhibits a universal value that determines the stripe-to-bubble phase transition.

  17. Snoek peaks of carbon in Fe-Ni meteorites.

    NASA Astrophysics Data System (ADS)

    Weller, M.; Wert, C.

    1996-12-01

    Most Fe-Ni meteorites are a two phase mixture of fcc and bcc phases. The authors secured six samples of Fe contents from 95% to 85% all of which were thought to contain small amounts of carbon. They found no Snoek peaks in the as-received condition for any of the six. After being heated and cooled, three showed pronounced Snoek peaks, three showed no Snoek peaks.

  18. Effect of phosphate and sulfate on Ni repartitioning during Fe(II)-catalyzed Fe(III) oxide mineral recrystallization

    NASA Astrophysics Data System (ADS)

    Hinkle, Margaret A. G.; Catalano, Jeffrey G.

    2015-09-01

    Dissolved Fe(II) activates coupled oxidative growth and reductive dissolution of Fe(III) oxide minerals, causing recrystallization and the repartitioning of structurally-compatible trace metals. Phosphate and sulfate, two ligands common to natural aquatic systems, alter Fe(II) adsorption onto Fe(III) oxides and affect Fe(III) oxide dissolution and precipitation. However, the effect of these oxoanions on trace metal repartitioning during Fe(II)-catalyzed Fe(III) oxide recrystallization is unclear. The effects of phosphate and sulfate on Ni adsorption and Ni repartitioning during Fe(II)-catalyzed Fe(III) oxide recrystallization were investigated as such repartitioning may be affected by both Fe(II)-oxoanion and metal-oxoanion interactions. In most systems examined, phosphate alters Ni repartitioning during Fe(II)-catalyzed recrystallization to a larger extent than sulfate. Phosphate substantially enhances Ni adsorption onto hematite but decreases (nearly inhibiting) Fe(II)-catalyzed Ni incorporation into and release from this mineral. In the goethite system, however, phosphate suppresses Ni release but enhances Ni incorporation in the presence of aqueous Fe(II). In contrast, sulfate has little effect on macroscopic Ni adsorption and release of Ni from Fe(III) oxides, but substantially enhances Ni incorporation into goethite. This demonstrates that phosphate and sulfate have unique, mineral-specific interactions with Ni during Fe(II)-catalyzed Fe(III) oxide recrystallization. This research suggests that micronutrient bioavailability at redox interfaces in hematite-dominated systems may be especially suppressed by phosphate, while both oxoanions likely have limited effects in goethite-rich soils or sediments. Phosphate may also exert a large control on contaminant fate at redox interfaces, increasing Ni retention on iron oxide surfaces. These results further indicate that trace metal retention by iron oxides during lithification and later repartitioning during

  19. Growth in solution of hooked Ni-Fe fibers by oriented rotation and attachment approaches

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Fang; Zhang, Wei-ze

    2016-04-01

    Inspired by the curved branches of fractal trees, hooked Ni-Fe fibers were grown in situ in Ni-Fe composite coatings on a spheroidal graphite cast iron substrate. These hooked Ni-Fe fibers exhibited inclination angles of about 39°, which was in accordance with the theoretical prediction of 37°. Ni-Fe nanostructures self-assembled to form dendrites and evolved into hooked fibers by an oriented attachment reaction. The orientation rotation of Ni-Fe nanostructures played an important role in the growth of curved hooked Ni-Fe fibers. During sliding wear tests, the volume loss of the spheroidal graphite cast iron substrate was 2.2 times as large as that of the Ni-Fe coating reinforced by hooked fibers. The good load-transferring ability of hooked Ni-Fe fibers led to an improvement in their wear properties during wear tests.

  20. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites

    SciTech Connect

    Li, Xiaojuan Tang, Duanlian; Tang, Fan; Zhu, Yunyan; He, Changfa; Liu, Minghua Lin, Chunxiang; Liu, Yifan

    2014-08-15

    Highlights: • A plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradation of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe{sub 2}O{sub 4}. In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field.

  1. Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction.

    PubMed

    Zhu, Huiyuan; Zhang, Sen; Guo, Shaojun; Su, Dong; Sun, Shouheng

    2013-05-15

    To further enhance the catalytic activity and durability of nanocatalysts for the oxygen reduction reaction (ORR), we synthesized a new class of 20 nm × 2 nm ternary alloy FePtM (M = Cu, Ni) nanorods (NRs) with controlled compositions. Supported on carbon support and treated with acetic acid as well as electrochemical etching, these FePtM NRs were converted into core/shell FePtM/Pt NRs. These core/shell NRs, especially FePtCu/Pt NRs, exhibited much improved ORR activity and durability. The Fe10Pt75Cu15 NRs showed a mass current densities of 1.034 A/mgPt at 512 mV vs Ag/AgCl and 0.222 A/mgPt at 557 mV vs Ag/AgCl, which are much higher than those for a commercial Pt catalyst (0.138 and 0.035 A/mgPt, respectively). Our controlled synthesis provides a general approach to core/shell NRs with enhanced catalysis for the ORR or other chemical reactions. PMID:23634823

  2. Effect of boron on the fracture behavior and grain boundary chemistry of Ni3Fe

    SciTech Connect

    Liu, Y.; Liu, Chain T; Heatherly Jr, Lee; George, Easo P

    2011-01-01

    The effect of B on the fracture behavior of Ni{sub 3}Fe alloys (24 and 26 at.% Fe) was studied after cathodic charging with hydrogen. In contrast to its disordered state, ordered Ni{sub 3}Fe underwent brittle intergranular fracture at room temperature. Boron addition changed its fracture mode to predominantly ductile transgranular. The grain boundary chemistry of ordered Ni{sub 3}Fe was analyzed by Auger electron spectroscopy. Boron was found to segregate to the grain boundaries of both Ni-24Fe and Ni-26Fe and reduce the hydrogen-induced embrittlement of these alloys in the ordered state.

  3. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives.

    PubMed

    Liang, Cai; Gooneratne, Chinthaka P; Wang, Qing Xiao; Liu, Yang; Gianchandani, Yogesh; Kosel, Jurgen

    2014-09-01

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. PMID:25587418

  4. Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates.

    PubMed

    Zhou, Qitao; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Tang, Haibin; Qian, Yiwu; Chen, Bin; Chen, Bensong

    2014-02-28

    NiO-nanoflakes (NiO-NFs) grafted Ni-nanorod (Ni-NR) arrays stuck out of the porous anodic aluminum oxide (AAO) template are achieved by a combinatorial process of AAO-confined electrodeposition of Ni-NRs, selectively etching part of the AAO template to expose the Ni-NRs, wet-etching the exposed Ni-NRs in ammonia to obtain Ni(OH)2-NFs grafted onto the cone-shaped Ni-NRs, and annealing to transform Ni(OH)2-NFs in situ into NiO-NFs. By top-view sputtering, Ag-nanoparticles (Ag-NPs) are decorated on each NiO-NFs grafted Ni-NR (denoted as NiO-NFs@Ni-NR). The resultant Ag-NPs-decorated NiO-NFs@Ni-NR (denoted as Ag-NPs@NiO-NFs@Ni-NR) arrays exhibit not only strong surface-enhanced Raman scattering (SERS) activity but also reproducible SERS-signals over the whole array. It is demonstrated that the strong SERS-activity is mainly ascribed to the high density of sub-10 nm gaps (hot spots) between the neighboring Ag-NPs, the semiconducting NiO-NFs induced chemical enhancement effect, and the lightning rod effect of the cone-shaped Ni-NRs. The three-level hierarchical nanostructure arrays stuck out of the AAO template can be utilized to probe polychlorinated biphenyls (PCBs, a kind of global environmental hazard) with a concentration as low as 5 × 10(-6) M, showing promising potential in SERS-based rapid detection of organic environmental pollutants. PMID:24419246

  5. Interdiffusion in nanometric Fe/Ni multilayer films

    SciTech Connect

    Liu, Jiaxing Barmak, Katayun

    2015-03-15

    [Fe (3.1 nm)/Ni (3.3 nm)]{sub 20} multilayer films were prepared by DC magnetron sputtering onto oxidized Si(100) substrates. The Fe and Ni layers were shown to both be face-centered cubic by x-ray diffraction. Interdiffusion of the Fe and Ni layers in the temperature range of 300–430 °C was studied by x-ray reflectivity. From the decay of the integral intensity of the superlattice peak, the activation energy and the pre-exponential term for the effective interdiffusion coefficient were determined as to 1.06 ± 0.07 eV and 5 × 10{sup −10} cm{sup 2}/s, respectively. The relevance of the measured interdiffusion coefficient to the laboratory timescale synthesis of L1{sub 0} ordered FeNi as a rare-earth free permanent magnet is discussed.

  6. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys

    DOE PAGESBeta

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.; Lei, Hechang; Li, Lijun; Cekic, B.; Koteski, V.; Petrovic, C.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor Vzz=1.6 1021Vm-2 matches well with the results of Mössbauer spectroscopymore » and indicates that the Fe atoms occupy Ni sites.« less

  7. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    SciTech Connect

    Osuka, Hisao; Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki; Nagao, Satoshi; Higuchi, Yoshiki; Hirota, Shun

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.

  8. [Detection of Ethoprophos Using SERS Coupled with Magnetic Fe3O4/Ag Composite Materials].

    PubMed

    Yuan, Rong-hui; Liu, Wen-han; Teng, Yuan-jie; Nie, Jing; Ma, Su-zhen

    2015-05-01

    The magnetic Fe3O4/Ag composite materials were synthesized by reducing AgNO3 with sodium citrate in the presence of Fe3O4 which were prepared by co-precipitation firstly. The enrichment and extraction of ethoprophos assembled on Fe3O4/Ag were achieved with the applied magnetic field. The different concentrations of ethoprophos adsorbed on Fe3O4/Ag were analyzed by SERS and it was showed that the trace analysis of ethoprophos had been established, while the enhancement factor of probe molecules on Fe3O4/Ag was 1. 48 X 10(5). The structure and morphology of Fe3O4/Ag were characterized by UV-Vis, EDX and TEM. Compared with Ag, the UV-Vis absorption peak of Fe3O4/Ag shifted from 417 to 369 nm, and the UV-Vis of Fe3O4 almost had no characteristic absorption peak in this region. At the same time, it was showed that the surface properties of Fe3O4/Ag changed with Raman enhancement effect during the aggregation process of Ag around the surface of Fe3O4. Further EDX images of micro area element analysis suggested that the chemical composition of products were Ag, Fe and O while the Cu peak was from the copper mesh. In addition, TEM images indicated that the average particle size of Fe3O4 was between 30 and 60 nm with shape tended to be spherical. And the silver nanoparticles were attached to the Fe3O4 particles and agglomeration occured. Density functional theory calculations which can be applied to qualitative judgment of molecule was carried out to obtain the molecular optimization structure and theoretical Raman spectra. It was found that the stabilized SERS signals were detected under the saturated adsorption equilibrium after 15 min. Finally, Raman response of ethoprophos was achieved with lower than 2 X 10(-8) mol . L-1 , indicatint that the established method had reached the requirements of ethoprophos residues detection and could be used for analysis of sulfur-containing organophosphorus pesticide. PMID:26415443

  9. Melting of Fe and Fe0.9Ni0.1 alloy at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Jackson, J. M.; Zhao, J.; Sturhahn, W.; Alp, E. E.; Hu, M. Y.; Toellner, T.

    2014-12-01

    Cosmochemical studies suggest that the cores of terrestrial planets are primarily composed of Fe alloyed with about 5 to 10 wt% Ni, plus some light elements (e.g., McDonough and Sun 1995). Thus, the high pressure melting curve of Fe0.9Ni0.1 is considered to be an important reference for characterizing the cores of terrestrial planets. We have determined the melting points of fcc-structured Fe and Fe0.9Ni0.1 up to 86 GPa using an in-situ method that monitors the atomic dynamics of the Fe atoms in the sample, synchrotron Mössbauer spectroscopy (Jackson et al. 2013). A laser heated diamond anvil cell is used to provide the high pressure-high temperature environmental conditions, and in-situ X-ray diffraction is used to constrain the pressure of the sample. To eliminate the influence of temperature fluctuations experienced by the sample on the determination of melting, we develop a Fast Temperature Readout (FasTeR) spectrometer. The FasTeR spectrometer features a fast reading rate (>100 Hz), a high sensitivity, a large dynamic range and a well-constrained focus. By combining the melting curve of fcc-structured Fe0.9Ni0.1 alloy determined in our study and the fcc-hcp phase boundary from Komabayashi et al. (2012), we calculate the fcc-hcp-liquid triple point of Fe0.9Ni0.1. Using this triple point and the thermophysical parameters from a nuclear resonant inelastic X-ray scattering study on hcp-Fe (Murphy et al. 2011), we compute the melting curve of hcp-structured Fe0.9Ni0.1. We will discuss our new experimental results with implications for the cores of Venus, Earth and Mars. Select references: McDonough & Sun (1995): The composition of the Earth. Chem. Geol. 120, 223-253. Jackson et al. (2013): Melting of compressed iron by monitoring atomic dynamics, EPSL, 362, 143-150. Komabayashi et al. (2012): In situ X-ray diffraction measurements of the fcc-hcp phase transition boundary of an Fe-Ni alloy in an internally heated diamond anvil cell, PCM, 39, 329-338. Murphy et al

  10. Synthesis and characterization of Fe 3 O 4 @C@Ag nanocomposites and their antibacterial performance

    NASA Astrophysics Data System (ADS)

    Xia, Haiqing; Cui, Bin; Zhou, Junhong; Zhang, Lulu; Zhang, Ji; Guo, Xiaohui; Guo, Huilin

    2011-09-01

    We synthesized Fe 3O 4@C@Ag nanocomposites through a combination of solvothermal, hydrothermal, and chemical redox reactions. Characterization of the resulting samples by X-ray diffraction, Fourier-transform infrared spectroscopy, field-emission scanning and transmission electron microscopy, and magnetic measurement is reported. Compared to Fe 3O 4@Ag nanocomposites, the Fe 3O 4@C@Ag nanocomposites showed enhanced antibacterial activity. The Fe 3O 4@C@Ag nanocomposites were able to almost entirely prevent growth of Escherichia coli when the concentration of Ag nanoparticles was 10 μg/mL. Antibacterial activity of the Fe 3O 4@C@Ag nanocomposites was maintained for more than 40 h at 37 °C. The intermediate carbon layer not only protects magnetic core, but also improves the dispersion and antibacterial activity of the silver nanoparticles. The magnetic core can be used to control the specific location of the antibacterial agent (via external magnetic field) and to recycle the residual silver nanoparticles. The Fe 3O 4@C@Ag nanocomposites will have potential uses in many fields as catalysts, absorbents, and bifunctional magnetic-optical materials.

  11. Improvement of in-plane anisotropy field in FeCoB/NiFe/Si thin films by Kr sputtering

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Ito, S.; Nakagawa, S.

    2007-03-01

    Deterioration of magnetic anisotropy field in the FeCoB/NiFe/Si trilayers deposited on glass substrates was investigated. It was found that the choice of Kr as sputtering gas instead of Ar was quite effective to improve the soft magnetic characteristics of FeCoB/NiFe/Si thin films deposited on glass substrates. Kr sputtering is effective to reduce compressive residual stress in the film. The rotatable magnetic anisotropy observed in the FeCoB/NiFe/Si films deposited by Ar sputtering disappeared in the film deposited by Kr sputtering, even though they are prepared on glass disk substrates.

  12. Magnetic anisotropy and magnetization dynamics of Fe nanoparticles embedded in Cr and Ag matrices

    NASA Astrophysics Data System (ADS)

    Peddis, D.; Qureshi, M. T.; Baker, S. H.; Binns, C.; Roy, M.; Laureti, S.; Fiorani, D.; Nordblad, P.; Mathieu, R.

    2015-11-01

    Static and dynamical magnetic properties of Fe nanoparticles (NPs) embedded in non-magnetic (Ag) and antiferromagnetic (Cr) matrices with a volume filling fraction (VFF) of 10% have been investigated. In both Fe@Ag and Fe@Cr nanocomposites, the Fe NPs have a narrow size distribution, with a mean particle diameter around 2 nm. In both samples, the saturation magnetization reaches that of Fe bulk bcc, suggesting the absence of alloying with the matrices. The coercivity at 5 K is much larger in Fe@Cr than in Fe@Ag as a result of the strong interaction between the Fe NPs and the Cr matrix. Temperature-dependent magnetization and ac-susceptibility measurements point out further evidence of the enhanced interparticle interaction in the Fe@Cr system. While the behaviour of Fe@Ag indicates the presence of weakly interacting magnetic monodomain particles with a wide distribution of blocking temperatures, Fe@Cr behaves like a superspin glass produced by the magnetic interactions between NPs.

  13. Hierachical Ni@Fe2O3 superparticles through epitaxial growth of γ-Fe2O3 nanorods on in situ formed Ni nanoplates

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad Nawaz; Herzberger, Jana; Natalio, Filipe; Köhler, Oskar; Branscheid, Robert; Mugnaioli, Enrico; Ksenofontov, Vadim; Panthöfer, Martin; Kolb, Ute; Frey, Holger; Tremel, Wolfgang

    2016-05-01

    One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water.One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water. Electronic supplementary

  14. Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe2O3-NiO core/shell hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh K.; Mandal, Kalyan

    2015-03-01

    The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe2O3-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe2O3-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe2O3) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector, which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe2O3-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415 F g-1 at a current density of 2.5 A g-1, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.

  15. Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe{sub 2}O{sub 3}-NiO core/shell hybrid nanostructures

    SciTech Connect

    Singh, Ashutosh K. E-mail: aksingh@bose.res.in; Mandal, Kalyan

    2015-03-14

    The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe{sub 2}O{sub 3}) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector, which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415 F g{sup −1} at a current density of 2.5 A g{sup −1}, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.

  16. Crystallinity of Fe-Ni Sulfides in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Ohsumi, Kazumasa; Mikouchi, Takashi; Hagiya, Kenji; Le, Loan

    2008-01-01

    The main long-term goal of this research is to understand the physical conditions in the early solar nebula through the detailed characterization of a key class of mineral present in all primitive materials: Fe-Ni sulfides [1&2]. Fe-Ni sulfides can take dozens of structures, depending on the temperature of formation, as well as other physico-chemical factors which are imperfectly understood. Add to this the additional varying factor of Ni content, and we have a potentially sensitive cosmothermometer [3]. Unfortunately, this tool requires exact knowledge of the crystal structure of each grain being considered, and there have been few (none?) studies of the detailed structures of sulfides in chondritic materials. We report here on coordinated compositional and crystallographic investigation of Fe-Ni sulfides in diverse carbonaceous chondrites, initially Acfer 094 (the most primitive CM2 [4]) Tagish Lake (a unique type C2 [5]), a C1 lithology in Kaidun [6], Bali (oxidized CV3 [7]), and Efremovka (reduced CV3 [7]).

  17. Electrochemical sensing behaviour of Ni doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Suresh, R.; Giribabu, K.; Manigandan, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Ni doped Fe3O4 nanoparticles were synthesized by simple hydrothermal method. The prepared nanomaterials were characterized by X-ray diffraction analysis, DRS-UV-Visible spectroscopy and field emission scanning electron microscopy. The XRD confirms the phase purity of the synthesized Ni doped Fe3O4 nanoparticles. The optical property of Ni doped Fe3O4 nanoparticles were studied by DRS UV-Visible analysis. The electrochemical sensing property of pure and Ni doped Fe3O4 nanoparticles were examined using uric acid as an analyte. The obtained results indicated that the Ni doped Fe3O4 nanoparticles exhibited higher electrocatalytic activity towards uric acid.

  18. Free energies of (Co, Fe, Ni, Zn)Fe2O4 spinels and oxides in water at high temperatures and pressure from density functional theory: results for stoichiometric NiO and NiFe2O4 surfaces

    NASA Astrophysics Data System (ADS)

    O'Brien, C. J.; Rák, Z.; Brenner, D. W.

    2013-11-01

    A set of effective chemical potentials (ECPs) are derived that connect energies of (Co, Fe, Ni, Zn)Fe2O4 spinels and oxides calculated at 0 K from density functional theory (DFT) to free energies in high temperature and pressure water. The ECPs are derived and validated by solving a system of linear equations that combine DFT and experimental free energies for NiO, ZnO, Fe2O3, Fe3O4, FeO(OH), CoFe2O4, ZnFe2O4, NiFe2O4 and H2O. To connect to solution phase chemistry, a set of ECPs are also derived for solvated Ni2+, Zn2+, Fe2+ and Fe3+ ions using an analogous set of linear equations and the solid ECPs. The ECPs are used to calculate free energies of low index stoichiometric surfaces of nickel oxide (NiO) and nickel ferrite (NiFe2O4) in water as a function of temperature from 300 to 600 K at a pressure of 155 bar. Surface denuding at high temperatures is predicted, the implications of which for the formation of oxide corrosion products on heat transfer surfaces in light-water nuclear reactors are discussed.

  19. Hydriding of TiZrNiFe nanocompounds

    NASA Astrophysics Data System (ADS)

    Żywczak, A.; Shinya, Daigo; Gondek, Ł.; Takasaki, Akito; Figiel, H.

    2010-01-01

    Ti-based quasicrystals belong to the second largest group of the stable quasicrystals, showing attractive properties as hydrogen storage materials. The Ti 45Zr 38Ni 17 intermetallic compound forms an icosahedral ( i-phase) structure, in which Ti and Zr atoms possess very good chemical affinity for hydrogen absorption. We modified the Ti 45Zr 38Ni 17 compounds by substituting 3d metals (iron) for Ni to obtain amorphous phase. The samples were produced by mechanical alloying. The 3d metal atoms are located in the same positions as nickel. The structural characterization was made by means of XRD measurements. Thermodynamic properties were studied by differential scanning calorimetry (DSC) and thermal desorption spectroscopy (TDS). The obtained amorphous phases Ti 45Zr 38Ni (9,13)Fe (8,4) transform to the i-phase at the similar temperature range as Ti 45Zr 38Ni 17. The final concentration of absorbed hydrogen depends on the amount of Fe. When increasing the amount of iron, the hydrogen release temperature becomes lower. After hydriding, the samples decompose into simple metal hydrides.

  20. Studies on the electronic structure of Ag 2NiO 2, an intercalated delafossite containing subvalent silver

    NASA Astrophysics Data System (ADS)

    Wedig, Ulrich; Adler, Peter; Nuss, Jürgen; Modrow, Hartwig; Jansen, Martin

    2006-07-01

    Structural and electronic properties of Ag 2NiO 2 and AgNiO 2 were investigated and compared. Single crystal X-ray diffraction experiments on Ag 2NiO 2 at 100 K provide evidence for a ferrodistortive phase below 260 K. Ni K-edge and Ag L III-edge XANES spectra, both measured and simulated, as well as core level and valence band photoelectron spectra are analysed. They agree well with the results of bandstructure calculations, where pure DFT and mixed Hartree-Fock/DFT (hybrid) functionals were applied and spin-polarisation was considered. The electronic structure of the [NiO 2] - layers with Ni 3+ in a low spin state, forming a spin-1/2 triangular lattice, is very similar in both compounds. A ferrimagnetic alignment of the spins within the [NiO 2] - layers and their antiferromagnetic coupling via the intermediate silver layers is suggested.

  1. Physical properties of FePt nanocomposite doped with Ag atoms: First-principles study

    NASA Astrophysics Data System (ADS)

    Jia, Yong-Fei; Shu, Xiao-Lin; Xie, Yong; Chen, Zi-Yu

    2014-07-01

    L10 FePt nanocomposite with high magnetocrystalline anisotropy energy has been extensively investigated in the fields of ultra-high density magnetic recording media. However, the order—disorder transition temperature of the nanocomposite is higher than 600 °C, which is a disadvantage for the use of the material due to the sustained growth of FePt grain under the temperature. To address the problem, addition of Ag atoms has been proposed, but the magnetic properties of the doped system are still unclear so far. Here in this paper, we use first-principles method to study the lattice parameters, formation energy, electronic structure, atomic magnetic moment and order—disorder transition temperature of L10 FePt with Ag atom doping. The results show that the formation energy of a Ag atom substituting for a Pt site is 1.309 eV, which is lower than that of substituting for an Fe site 1.346 eV. The formation energy of substituting for the two nearest Pt sites is 2.560 eV lower than that of substituting for the further sites 2.621 eV, which indicates that Ag dopants tend to segregate L10 FePt. The special quasirandom structures (SQSs) for the pure FePt and the FePt doped with two Ag atoms at the stable Pt sites show that the order—disorder transition temperatures are 1377 °C and 600 °C, respectively, suggesting that the transition temperature can be reduced with Ag atom, and therefore the FePt grain growth is suppressed. The saturation magnetizations of the pure FePt and the two Ag atoms doped FePt are 1083 emu/cc and 1062 emu/cc, respectively, indicating that the magnetic property of the doped system is almost unchanged.

  2. Synthesis and characterization of the NiFe2O4/Ni3Fe nanocomposite powder and compacts obtained by mechanical milling and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Marinca, T. F.; Neamţu, B. V.; Popa, F.; Tarţa, V. F.; Pascuta, P.; Takacs, A. F.; Chicinaş, I.

    2013-11-01

    Nanocomposite powder and compacts of NiFe2O4/Ni3Fe type were synthesized using mechanical milling and spark plasma sintering (SPS) techniques. The samples have been investigated by X-ray diffraction (XRD), laser particles size analysis, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX). The nanocomposite powder was obtained by mechanical milling in a high planetary ball mill of nanocrystalline NiFe2O4 and nanocrystalline Ni3Fe powders. The nanocomposite powder consists from Ni3Fe particles covered at the surface with a layer of NiFe2O4 fine particles and NiFe2O4 particles. The nanocomposite particles have the median diameter d50 of 1.6 μm. The sintering in 400-600 °C temperature range preserve the nanocomposite phases but lead to a high porosity. The nanocomposite compacts consist in Ni3Fe clusters surrounded by NiFe2O4. A sintering temperature of 800 °C leads to a good density for the nanocomposite compacts and to the new phase formation. The new phase is a wustite type (Fe1-xNixO) and is formed at the metal/ceramic interface. A change in the Ni/Fe ratio, in the spinel structure, was evidenced during sintering. Sintering at a temperature of 800 °C, leads to the formation of a mixed iron-nickel ferrite with a very small amount of nickel, Ni1-xFexFe2O4.

  3. A threonine stabilizes the NiC and NiR catalytic intermediates of [NiFe]-hydrogenase.

    PubMed

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-03-27

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. PMID:25666617

  4. A Threonine Stabilizes the NiC and NiR Catalytic Intermediates of [NiFe]-hydrogenase*

    PubMed Central

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L.; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-01-01

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. PMID:25666617

  5. Breakdown of magnetism in sub-nanometric Ni clusters embedded in Ag.

    PubMed

    García-Prieto, A; Arteche, A; Aguilera-Granja, F; Torres, M B; Orue, I; Alonso, J; Barquín, L Fernández; Fernández-Gubieda, M L

    2015-11-13

    Downsizing to the nanoscale has opened up a spectrum of new magnetic phenomena yet to be discovered. In this context, we investigate the magnetic properties of Ni clusters embedded in a metallic Ag matrix. Unlike in Ni free-standing clusters, where the magnetic moment increases towards the atomic value when decreasing the cluster size, we show, by tuning the Ni cluster size down to the sub-nanoscale, that there is a size limit below which the clusters become non-magnetic when embedded in Ag. To this end, we have fabricated by DC-sputtering a system composed of sub-nanometer sized and non interacting Ni clusters embedded into a Ag matrix. A thorough experimental characterization by means of structural techniques (x-ray diffraction, x-ray absorption spectroscopy) and DC-magnetization confirms that the cluster size is in the sub-nanometric range and shows that the magnetization of the system is dramatically reduced, reaching only 38% of the bulk value. The experimental system has been reproduced by density functional theory calculations on Ni m clusters (m = 1-6, 10 and 13) embedded in Ag. The combination of the experimental and theoretical analysis points out that there is a breakdown of magnetism occurring below a cluster size of six atoms. According to our results, the loss of magnetic moment is not due to Ag-Ni hybridization but to charge transfer between the Ni sp and d orbitals, and the reduced magnetization observed experimentally is explained on the basis of the presence of a narrow cluster size-distribution where magnetic and non-magnetic clusters coexist. PMID:26487422

  6. Oxygen reduction on Ni, Ag, and Cu meniscus electrodes in molten carbonate

    SciTech Connect

    Ogura, Hiroyuki; Shirogami, Tamotsu

    1994-12-31

    The oxygen reduction pathways in molten carbonates have been investigated by analyzing the charge transfer resistances of the i-V curves on the meniscus electrodes of Ni, Cu, and Ag screens at 550 C. The electrochemical reduction pathways of oxygen at the meniscus electrode were found to be different depending on the electrode materials. For the Ni meniscus electrode system, the reactive material of charge transfer is the lithium doped nickel oxide, for the Ag system that is the silver oxide ion, and for the Cu system that is peroxide ion, respectively.

  7. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    DOE PAGESBeta

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increasemore » of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.« less

  8. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    SciTech Connect

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.

  9. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    PubMed Central

    Paik, Haemin; Choi, Yoon-Young; Hong, Seungbum; No, Kwangsoo

    2015-01-01

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. These enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles. PMID:26336795

  10. Radiation effects on interface reactions of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni)

    NASA Astrophysics Data System (ADS)

    Shao, Lin; Chen, Di; Wei, Chaochen; Martin, Michael S.; Wang, Xuemei; Park, Youngjoo; Dein, Ed; Coffey, Kevin R.; Sohn, Yongho; Sencer, Bulent H.; Rory Kennedy, J.

    2015-01-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 °C or 550 °C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reach the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick's laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.

  11. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    SciTech Connect

    Shao, Lin; Chen, Di; Wei, Chaochen; Martin, Michael S.; Wang, Xuemei; Park, Youngjoo; Dein, Ed; Coffey, Kevin R.; Sohn, Yongho; Sencer, Bulent H.; Rory Kennedy, J.

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reach the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.

  12. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    DOE PAGESBeta

    Shao, Lin; Chen, Di; Wei, Chaochen; Martin, Michael S.; Wang, Xuemei; Park, Youngjoo; Dein, Ed; Coffey, Kevin R.; Sohn, Yongho; Sencer, Bulent H.; et al

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reachmore » the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.« less

  13. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy.

    PubMed

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B; Gee, Leland B; Scott, Aubrey D; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the (57)Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique 'wagging' mode involving H(-) motion perpendicular to the Ni(μ-H)(57)Fe plane was studied using (57)Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)(57)Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)(57)Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)(57)Fe(CO)3](+) and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H(-) binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts. PMID:26259066

  14. The electrodeposition of FeCrNi stainless steel: microstructural changes induced by anode reactions.

    PubMed

    Hasegawa, Madoka; Yoon, Songhak; Guillonneau, Gaylord; Zhang, Yucheng; Frantz, Cédric; Niederberger, Christoph; Weidenkaff, Anke; Michler, Johann; Philippe, Laetitia

    2014-12-21

    The FeCrNi alloy, whose composition is close to that of stainless steel 304, was prepared by electrodeposition and characterized. Nanocrystalline FeCrNi (nc-FeCrNi) was obtained by employing a double-compartment cell where the anode is separated from the cathode compartment, while amorphous FeCrNi (a-FeCrNi) was deposited in a conventional single electrochemical cell. The carbon content of nc-FeCrNi was found to be significantly lower than that of a-FeCrNi, suggesting that carbon inclusion is responsible for the change in the microstructure. The major source of carbon is associated with the reaction compounds at the anode electrode, presumably decomposed glycine. Crystal structure analysis by XRD and TEM revealed that the as-deposited nc-FeCrNi deposits consist of α-Fe which transforms to γ-Fe upon thermal annealing. Nanoindentation tests showed that nc-FeCrNi exhibits higher hardness than a-FeCrNi, which is consistent with the inverse Hall-Petch behavior. PMID:25367332

  15. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique `wagging' mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts.

  16. A DNA-Assembled Fe3O4@Ag Nanorod in Silica Matrix for Cholesterol Biosensing

    NASA Astrophysics Data System (ADS)

    Satvekar, R. K.; Tiwari, A. P.; Rohiwal, S. S.; Tiwale, B. M.; Pawar, S. H.

    2015-12-01

    A novel nanocomposite having DNA-assembled Fe3O4@Ag nanorods in silica matrix has been proposed for fabrication of bienzymatic cholesterol nanobiosensor. Cholesterol oxidase and horseradish peroxidase have been co-encapsulated in Silica/Fe3O4@Ag-DNA nanocomposite deposited on the indium tin oxide electrode. Cyclic voltammetry was employed for the electrochemical behavior of proposed biosensor and used to estimate cholesterol with a linear range of 5-195 mg/dL.

  17. Hierachical Ni@Fe2O3 superparticles through epitaxial growth of γ-Fe2O3 nanorods on in situ formed Ni nanoplates.

    PubMed

    Tahir, Muhammad Nawaz; Herzberger, Jana; Natalio, Filipe; Köhler, Oskar; Branscheid, Robert; Mugnaioli, Enrico; Ksenofontov, Vadim; Panthöfer, Martin; Kolb, Ute; Frey, Holger; Tremel, Wolfgang

    2016-05-01

    One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water. PMID:26818395

  18. Modeling of the solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 in cryolite melts at 1300 K

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshu; Wu, Xiaoxia; Rapp, Robert A.

    2004-02-01

    Experiments to measure the solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 were performed, and the results confirmed existing literature values. The solubilities of NiAl2O4 and FeAl2O4 in Al2O3-saturated cryolite melts at 1300 K were modeled thermodynamically in terms of the Ni-containing complexes Na2NiF4 and Na4NiF6, and the Fe-containing solutes FeF2, Na2FeF4, and Na4FeF6. The experimental solubility data were fitted to multiple simultaneous equilibria. Equilibrium constants and ΔG f 0 values for the formation reactions of the these solutes were thereby estimated. The solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 and solute distributions in Al2O3-undersaturated cryolite melts were calculated for a number of melt compositions from the present model. The existence of several competitive solute species is inherent to highly buffered ionic cryolite solutions where the traditional log-log methodology had previously failed to identify dominant single solutes. In such solutions, individual solutes of oxides are not likely to dominate over a wide composition range so that a more global modeling is required. The principal solute species identified in the present study exhibit reasonable three-dimensional (3-D) anion geometries.

  19. Microstructure and magnetic properties in FeCoB/NiFe double layer

    NASA Astrophysics Data System (ADS)

    Kong, Sok-hyun; Okamoto, Takeshi; Nakagawa, Shigeki

    2004-05-01

    The origin of high anisotropy field Hk and low coercivity Hc of Fe-Co-B/Ni-Fe double layered film with high 4 πMs was investigated. In-plane and out-of-plane XRD studies clarified that the lattice spacing of planes along the easy axis direction was expanded than that along the hard axis direction. The fact was confirmed that such stress caused by the lattice expansion had significant effects on the magnetoelastic energy in this double layer.

  20. Self-Diffusion of small Ag and Ni islands on Ag(111) and Ni(111) using the self-learning kinetic Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Islamuddin Shah, Syed; Nandipati, Giridhar; Kara, Abdelkader; Rahman, Talat S.

    2012-02-01

    We have applied a modified Self-Learning Kinetic Monte Carlo (SLKMC) method [1] to examine the self-diffusion of small Ag and Ni islands, containing up to 10 atom, on the (111) surface of the respective metal. The pattern recognition scheme in this new SLKMC method allows occupancy of the fcc, hcp and top sites on the fcc(111) surface and employs them to identify the local neighborhood around a central atom. Molecular static calculations with semi empirical interatomic potential and reliable techniques for saddle point search revealed several new diffusion mechanisms that contribute to the diffusion of small islands. For comparison we have also evaluated the diffusion characteristics of Cu clusters on Cu(111) and compared results with previous findings [2]. Our results show a linear increase in effective energy barriers scaling almost as 0.043, 0.051 and 0.064 eV/atom for the Cu/Cu(111), Ag/Ag(111), and Ni/Ni(111) systems, respectively. For all three systems, diffusion of small islands proceeds mainly through concerted motion, although several multiple and single atom processes also contribute. [1] Oleg Trushin et al. Phys. Rev. B 72, 115401 (2005) [2] Altaf Karim et al. Phys. Rev. B 73, 165411 (2006)

  1. Structural and Mössbauer spectroscopic study of Fe-Ni alloy nanoparticles

    SciTech Connect

    Kumar, Asheesh; Banerjee, S. Sudarsan, V.; Meena, S. S.

    2014-04-24

    Nano-crystalline Fe-Ni alloys have been synthesized in ethylene glycol medium. Based on XRD studies it is confirmed that, in these alloys Fe atoms are incorporated at Ni site to form Ni-Fe solid solutions. Mössbauer studies have established that for alloy particles having smaller size there is significant concentration of two different types of paramagnetic Fe species and their relative concentration decreased with increase in particle size.

  2. Excitation of plasmons in Ag/Fe/W structure by spin-polarized electrons

    SciTech Connect

    Samarin, Sergey N.; Kostylev, Mikhail; Williams, J. F.; Artamonov, Oleg M.; Baraban, Alexander P.; Guagliardo, Paul

    2015-09-07

    Using Spin-polarized Electron-Energy Loss Spectroscopy (SPEELS), the plasmon excitations were probed in a few atomic layers thick Ag film deposited on an Fe layer or on a single crystal of W(110). The measurements were performed at two specular geometries with either a 25° or 72° angle of incidence. On a clean Fe layer (10 atomic layers thick), Stoner excitation asymmetry was observed, as expected. Deposition of a silver film on top of the Fe layer dramatically changed the asymmetry of the SPEELS spectra. The spin-effect depends on the kinematics of the scattering: angles of incidence and detection. The spin-dependence of the plasmon excitations in the silver film on the W(110) surface and on the ferromagnetic Fe film is suggested to arise from the spin-active Ag/W or Ag/Fe interfaces.

  3. Ag/α-Fe2O3 hollow microspheres: Preparation and application for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang; Zhang, Tingting; Guo, Tingting

    2015-09-01

    In this paper, we demonstrated a simple approach for preparing α-Fe2O3 hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe2O3 hollow spheres formation. Ag/α-Fe2O3 hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe2O3 hollow composites exhibited remarkable catalytic performance toward H2O2 reduction. The electrocatalytic activity mechanism of Ag/α-Fe2O3/GCE were discussed toward the reduction of H2O2 in this paper.

  4. Observation of second spin reorientation transition within ultrathin region in Fe films on Ag(001) surface

    SciTech Connect

    Khim, T.-Y.; Shin, M.; Lee, H. E-mail: jhp@postech.ac.kr; Park, B.-G.; Park, J.-H. E-mail: jhp@postech.ac.kr

    2014-06-21

    We acquired direct measurements for in-plane and perpendicular-to-plane magnetic moments of Fe films using an x-ray magnetic circular dichroism technique with increase of the Fe thickness (up to 40 Å) on the Ag(001) surface. Epitaxial Fe/Ag(001) films were grown in situ with the thickness varying from 2 Å to 40 Å, and the magnetic anisotropy was carefully investigated as a function of the film thickness. We found re-entrance of the in-plane magnetic anisotropy of the Fe film in ultrathin region. The results manifest that the epitaxial Fe/Ag(001) film undergoes two distinct spin reorientation transitions from in-plane to out-of-plane at the film thickness t ≈ 9 Å and back to in-plane at t ≈ 18 Å as t increases.

  5. Giant magnetoresistance studies in evaporated Ni-Fe/Cu and Ni-Fe-Co/Cu multilayers (abstract)

    NASA Astrophysics Data System (ADS)

    Haftek, E.; Zeltser, A. M.; Smith, Neil

    1997-04-01

    Room temperature giant magnetoresistance (GMR) and magnetic properties of (Ni-Fe/Cu)n and (Ni-Fe-Co/Cu)n multilayers were investigated. Alternating layers of Ni-Fe-(Co) and Cu were electron-beam evaporated in a computer-controlled high-vacuum system at base pressure of ⩽4×10-8 Torr and deposition rates of ⩽2 Å/s. To complement and expand our previous investigation,1 GMR properties were additionally studied here as a function of cobalt content of Ni-Fe-Co films, the number (n) of bilayers, deposition temperature, and type of buffer layer. The Co content was varied from 7 to 17 at. %, and the number of bilayers ranged from n=8 to 20. No significant GMR was observed in the as-deposited multilayers. To produce tangible GMR, these multilayers were annealed between 300 and 360 °C for 2 h in a 150 Oe magnetic field in an argon atmosphere. The GMR effect (ΔR/R) was essentially independent of copper spacer thickness, which varied between 25 and 30 Å. For Co containing multilayers the highest ΔR/R=7.6% was obtained for 17 at. % Co deposited at 100 °C. The ΔR/R in all Ni-Fe-Co/Cu multilayers was sensitive to the deposition temperature, and R-H loops always showed significant hysteresis independent of the type of buffer layer. For application of these materials to very high density reproduce heads,2 the best results were obtained for (27 Å NiFe/25 Å Cu)14-18 multilayers deposited at 160 °C on 70 Å Ta buffer layer. For example, n=17 multilayers annealed at 350 °C exhibited ΔR/R=7.5%, half-width at half-maximum of ˜50 Oe, essentially no anisotropy, and virtually zero hysteresis (Fig. 1). Frequency dependent permeability measurements showed constant permeability between 10 and 200 MHz. Low- and high-angle x-ray diffraction as well as atomic force microscopy were used to investigate the effect of different geometries of multilayers on structure and roughness and to correlate them with GMR properties.

  6. IMC Growth at the Interface of Sn-2.0Ag-2.5Zn Solder Joints with Cu, Ni, and Ni-W Substrates

    NASA Astrophysics Data System (ADS)

    Liang, Jiaxing; Wang, Haozhe; Hu, Anmin; Li, Ming

    2014-11-01

    Growth of intermetallic compounds (IMC) at the interface of Sn-2.0Ag-2.5Zn solder joints with Cu, Ni, and Ni-W substrates have been investigated. For the Cu substrate, a Cu5Zn8 IMC layer with Ag3Sn particles on top was observed at the interface; this acted as a barrier layer preventing further growth of Cu-Sn IMC. For the Ni substrate, a thin Ni3Sn4 film was observed between the solder and the Ni layer; the thickness of the film increased slowly and steadily with aging. For the Ni-W substrate, a thin Ni3Sn4 film was observed between the solder and Ni-W layer. During the aging process a thin layer of the Ni-W substrate was transformed into a bright layer, and the thickness of bright layer increased with aging.

  7. Mechanism of hydrogen activation by [NiFe] hydrogenases.

    PubMed

    Evans, Rhiannon M; Brooke, Emily J; Wehlin, Sara A M; Nomerotskaia, Elena; Sargent, Frank; Carr, Stephen B; Phillips, Simon E V; Armstrong, Fraser A

    2016-01-01

    The active site of [NiFe] hydrogenases contains a strictly conserved arginine that suspends a guanidine nitrogen atom <4.5 Å above the nickel and iron atoms. The guanidine headgroup interacts with the side chains of two conserved aspartic acid residues to complete an outer-shell canopy that has thus far proved intractable to investigation by site-directed mutagenesis. Using hydrogenase-1 from Escherichia coli, the strictly conserved residues R509 and D574 have been replaced by lysine (R509K) and asparagine (D574N) and the highly conserved D118 has been replaced by alanine (D118A) or asparagine (D118N/D574N). Each enzyme variant is stable, and their [(RS)2Niμ(SR)2Fe(CO)(CN)2] inner coordination shells are virtually unchanged. The R509K variant had >100-fold lower activity than native enzyme. Conversely, the variants D574N, D118A and D118N/D574N, in which the position of the guanidine headgroup is retained, showed 83%, 26% and 20% activity, respectively. The special kinetic requirement for R509 implicates the suspended guanidine group as the general base in H2 activation by [NiFe] hydrogenases. PMID:26619250

  8. Charge characteristics of Ni/Fe traction cells

    SciTech Connect

    DeLuca, W.H.; Biwer, R.L.; Tummillo, A.F.; Yao, N.P.

    1983-08-01

    The specific energy and cycle life of nickel/iron (Ni/Fe) battery systems exceed those of lead-acid systems. However, in order for the Ni/Fe system to achieve full capacity, a significant overcharge must be applied. As a result, electrolyte consumption and gassing levels are increased, and cycling efficiencies (Ah and Wh) are reduced. In a series of tests performed on 6V Ni/Fe modules, a range of recharge levels and charge rates were examined for three charge methods. The results show that higher discharge capacities are achieved at higher recharge Ah levels, but at lower Ah and Wh cycling efficiencies. However, when the modules are continuously cycled at any recharge level, repeatable module performance is obtained. Consequently, the optimum combination of module discharge capacity and cycle efficiency can be obtained for any given application by proper selection of the recharge level. It was also observed that at a fixed recharge level, module charge acceptance is virtually independent of the charge method. The tested modules also exhibited a self-discharge loss in capacity that was directly related to the length of the open-circuit stand time after charging and module state-of-charge. This paper describes the test procedures used, presents the test data, and discusses the results obtained.

  9. Effect of Ag addition on the thermal characteristics and structural evolution of Ag-Cu-Ni ternary alloy nanoclusters: Atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Subbaraman, Ram; Sankaranarayanan, Subramanian K. R. S.

    2011-08-01

    Atomic-scale compositional variation in Ag contents across Ag-Cu-Ni alloy upon being subjected to repeated annealing cycles is shown to result in significant differences in the structure and the thermal stability of ternary alloy nanoclusters. Molecular dynamics (MD) simulations employing quantum Sutton-Chen potentials were used to investigate the effect of Ag addition on the thermal characteristics of Ag-Cu-Ni ternary alloy nanoclusters of 4-nm diameter. The initial configurations were generated using Monte Carlo simulations and comprise surface-segregated structures with the lowest surface energy component, Ag, occupying low coordination sites such as corners, edges, and faces. A compositional oscillation between the Cu and Ni atoms was observed for layers beneath the surface which transitions into a bulk alloy composition at the core. We find that the Cu-Ni binary alloys on being subjected to annealing schedules demonstrated an increase in thermal stability, as indicated by the increase in melting points. The annealed configurations of the Ag-Cu-Ni ternary alloy, on the other hand, showed a nonmonotonic behavior. For Ag compositions less than 20%, we observe an initial increase in melting point followed by a decrease in the third cycle. For higher Ag compositions (>20%), we observe a decrease in melting point with annealing; the rate of decrease is strongly correlated to the Ag composition in the alloy. Cu-Ni nanoclusters having 50% Cu showed a transition from an initial icosahedral to a cuboctahedron-like structure whereas Ag-rich Ag-Cu-Ni ternary alloys showed a transition from icosahedral to an amorphous structure. Compositional analysis based on radial distribution functions and density profiles indicate that these transitions were dependent on the distribution of the alloying elements in the nanocluster. Calculated root-mean-square displacements and diffusion coefficients indicate that the rate of mixing of Ag increases with Ag content in the Ag-Cu-Ni

  10. Diffusion, phase equilibria and partitioning experiments in the Ni-Fe-Ru system

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Wasserburg, G. J.; Hutcheon, I. D.; Beckett, J. R.; Stolper, E. M.

    1989-01-01

    Results are presented on thin-film diffusion experiments designed to investigate phase equilibria in systems containing high concentrations of Pt-group elements, such as Ni-Fe-Ru-rich systems containing Pt, at temperatures of 1273, 1073, and 873 K. The rate of Ru diffusion in Ni was determined as a function of temperature, and, in addition, the degree of Pt and Ir partitioning between phases in a Ni-Fe-Ru-rich system and of V between phases in a Ni-Fe-O-rich system at 873 were determined. It was found that Pt preferentially partitions into the (gamma)Ni-Fe phase, whereas Ir prefers the (epsilon)Ru-Fe phase. V partitions strongly into Fe oxides relative to (gamma)Ni-Fe. These results have direct application to the origin and thermal history of the alloys rich in Pt-group elements in meteorites.

  11. A [NiFe]hydrogenase model that catalyses the release of hydrogen from formic acid.

    PubMed

    Nguyen, Nga T; Mori, Yuki; Matsumoto, Takahiro; Yatabe, Takeshi; Kabe, Ryota; Nakai, Hidetaka; Yoon, Ki-Seok; Ogo, Seiji

    2014-11-11

    We report the decomposition of formic acid to hydrogen and carbon dioxide, catalysed by a NiRu complex originally developed as a [NiFe]hydrogenase model. This is the first example of H2 evolution, catalysed by a [NiFe]hydrogenase model, which does not require additional energy. PMID:25234420

  12. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    SciTech Connect

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.

  13. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    DOE PAGESBeta

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; et al

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate amore » low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.« less

  14. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    PubMed Central

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging' mode involving H− motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H− binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts. PMID:26259066

  15. Electronic structure and magnetic properties of Mn, Co, and Ni substitution of Fe in Fe4N

    NASA Astrophysics Data System (ADS)

    Monachesi, Patrizia; Björkman, Torbjörn; Gasche, Thomas; Eriksson, Olle

    2013-08-01

    The magnetic properties of Mn, Co, and Ni substituted Fe4N are calculated from first principles theory. It is found that the generalized gradient approximation reproduces with good accuracy the magnetic moment and equilibrium volume for the parent Fe4N structure, with the atomic moment largest for the Fe atom furthest away from the N atom (Fe I site), approaching a value of 3 μB/atom, whereas the Fe atom closer to the N atom (Fe II site) has a moment closer to that of bcc Fe. The substitution of Fe for Mn, Co, or Ni, shows an intricate behavior in which the Mn substitution clearly favors the Fe II site, Ni favors substitution on the Fe I site, and Co shows no strong preference for either lattice site. The Ni and Co substitution results in a ferromagnetic coupling to the Fe atoms, whereas Mn couples antiferromagnetically on the Fe II site and ferromagnetically on the Fe I site. For all types of doping, the total magnetic moment is enhanced compared to Fe4N only in the energetically very unfavorable case of Mn doping at the Fe I site.

  16. Compatibility of potential reinforcing ceramics with Ni and Fe aluminides

    NASA Technical Reports Server (NTRS)

    Moser, J. A.; Aindow, M.; Clark, W. A. T.; Draper, S.; Fraser, H. L.

    1990-01-01

    The compatibility of candidate ceramic reinforcement materials with intermetallic matrices for high temperature composite systems has been evaluated. Powders of FeAl and NiAl were mixed with ceramic powders and consolidated by hot isostatic pressing and subsequent heat treatment. The microstructures of these composites and the nature of the ceramic/matrix interfaces were assessed using a wide variety of electron-beam techniques. The system FeAl/TiB2 was found to be particularly promising. The matrix appears to be bonded to the ceramic particles, which may be the result of diffusion of Fe into the ceramic. The particles stabilized in a previously unreported monoclinic crystal structure, rather than the equilibrium hexagonal form exhibited by the binary compound.

  17. Influence of Ni on the lattice stability of Fe-Ni alloys at multimegabar pressures

    NASA Astrophysics Data System (ADS)

    Vekilova, O. Yu.; Simak, S. I.; Ponomareva, A. V.; Abrikosov, I. A.

    2012-12-01

    The lattice stability trends of the primary candidate for Earth's core material, the Fe-Ni alloy, were examined from first principles. We employed the exact muffin-tin orbital method (EMTO) combined with the coherent potential approximation (CPA) for the treatment of alloying effects. It was revealed that high pressure reverses the trend in the relative stabilities of the body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp) phases observed at ambient conditions. In the low pressure region the increase of Ni concentration in the Fe-Ni alloy enhances the bcc phase destabilization relative to the more close-packed fcc and hcp phases. However, at 300 GPa (Earth's core pressure), the effect of Ni addition is opposite. The reverse of the trend is associated with the suppression of the ferromagnetism of Fe when going from ambient pressures to pressure conditions corresponding to those of Earth's core. The first-principles results are explained in the framework of the canonical band model.

  18. Hyperfine fields in Fe-Ni-X alloys and their application to a study of tempering of 9Ni steel

    SciTech Connect

    Fultz, B.; Morris, J.W. Jr.

    1984-12-01

    Hyperfine interactions due to solutes in Fe-Ni-X alloys were systematized, and interpreted with a model of linear response of hyperfine magnetic fields to magnetic moments. The effects of solutes on the /sup 57/Fe hmf were used for chemical analysis of the austenite formed in 9Ni steel during tempering. Diffusion kinetics of the Ni and X solutes were found to play an important role in the formation of the austenite particles.

  19. Interlayer coupling in Ni80Fe20/Ru/Ni80Fe20 multilayer films: Ferromagnetic resonance experiments and theory

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Nguyen, Hoa T.; Ding, J.; Cottam, M. G.; Adeyeye, A. O.

    2014-08-01

    We present a systematic study of the static and dynamic magnetization behavior of interlayer-coupled Ni80Fe20(200Å)/Ru(tRu)/Ni80Fe20(100 Å) trilayers as a function of the Ru spacer layer thickness tRu. As tRu was varied in the range from 0 to 15.8 Å, we observe a strong antiferromagnetic (AFM) exchange coupling between the two ferromagnetic (FM) layers for tRu = 5 Å, which becomes weak for tRu = 10 Å. For tRu = 14.1 Å, the coupled magnetic system changes from AFM to FM ordering. Using broadband ferromagnetic resonance spectroscopy, we have probed the effects of the different coupling mechanisms on both the acoustic and optic magnetic modes. We found that the biquadratic exchange coupling has a negligible effect compared to Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange coupling, while the uniaxial anisotropy at the Ni80Fe20/Ru interfaces also plays an important role in determining the behaviors of the modes. A mode anticrossing phenomenon is observed when the RKKY exchange interaction term is above a critical value. A theoretical framework developed is in very good agreement with our experimental results.

  20. Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles.

    PubMed

    Nie, Xiaoqin; Liu, Jianguo; Zeng, Xianwei; Yue, Dongbei

    2013-03-01

    The feasibility of the rapid degradation of hexachlorobenzene (HCB) by micron-size silver (Ag)/iron (Fe) particles was investigated. Ag/Fe particles with different ratios (0, 0.05%, 0.09%, 0.20%, and 0.45%) were prepared by electroless silver plating on 300 mesh Fe powder, and were used to degrade HCB at different pH values and temperatures. The dechlorination ability of Fe greatly increased with small Ag addition, whereas too much added Ag would cover the Fe surface and reduce the effective reaction surface, thereby decreasing the extent of dechlorination. The optimal Ag/Fe ratio was 0.09%. Tafel polarization curves showed that HCB was rapidly degraded at neutral or acidic pH, whereas low pH levels severely intensified H2 production, which consumed the reducing electrons needed for the HCB degradation. HCB degradation was more sensitive to temperature than pH. The rate constant of HCB dechlorination was 0.452 min- at 85 degrees C, 50 times higher than that at 31 degrees C. HCB was degraded in a successive dechlorination pathway, yielding the main products 1,2,4,5-tetrachlorobenzene and 1,2,4-trichlorobenzene within 2 hr. PMID:23923419

  1. Magnetoresistance effect in Ag-Fe3O4 and Al-Fe3O4 composite films

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hwa; Chen, Shang-Yi; Chang, Wen-Ming; Jian, T. S.; Chang, Ching-Ray; Lee, Shan-Fan

    2003-05-01

    The Agx-(Fe3O4)1-x and Agx-(Fe3O4)1-x composite films were prepared by dc sputtering on Si(100) substrates. The x-ray diffraction results show that the films contain essentially only the cubic inverse spinal phase from Fe3O4 and face-centered cubic phase from Ag or Al. The transmission electron microscopy images indicate that the metal granules are randomly distributed with Fe3O4 grains. The resistivity determined from the four-probe method decreases rapidly with increasing metal content. At x≒0.5, a percolation occurs. The conducting path is formed from metal granules in series with Fe3O4 grains. The magnetoresistance (MR) is defined to be {R(H=0.8 T)-R(H=0)}/R(H=0). It has been found that MR is isotropic and the appearance of Ag granules has significant impact on the MR effect. Furthermore, a positive MR region appears with 0.011Fe3O4)1-x. On the contrary, the incorporation of Al granules does not have the same effect on MR as in Agx-(Fe3O4)1-x. A slow increase of MR with Al content might be due to Coulomb blockade. The extra contribution to MR in Agx-(Fe3O4)1-x can be attributed to spin injection from Fe3O4 into Ag granules so that spin accumulation in Ag granules impedes the current causing a larger resistance under a field.

  2. Calculation of defect properties of NiTi and FeTi

    SciTech Connect

    Lutton, R.T.; Sabochick, M.J. . Dept. of Engineering Physics); Lam, N.Q. )

    1990-12-01

    The energies and configurations of interstitials and vacancies in the B2 ordered compounds NiTi and FeTi were calculated using atomistic simulation. The stable configuration of a vacancy after the removal of an Ni atom was a vacant Ni site; similarly, the removal of an Fe atom in FeTi resulted in a vacant Fe site. Removal of a Ti atom in both compounds, however, resulted in a vacant Ni or Fe site and an adjacent antisite defect. The effective vacancy formation energies in NiTi and FeTi were calculated to be 1.48 and 1.07 eV, respectively. Interstitials in NiTi formed split {l angle}111{r angle} configurations consisting of a Ni-Ni dumbbell oriented in the {l angle}111{r angle} direction with one or two adjacent antisite defects. The Fe interstitial in FeTi had a similar configuration, except the dumbbell contained Fe atoms. The Ti interstitial in FeTi formed an {l angle}110{r angle} Fe-Fe dumbbell. 8 refs., 2 tabs.

  3. Effects of Cr and Ni on Interdiffusion and Reaction between U and Fe-Cr-Ni Alloys

    SciTech Connect

    K. Huang; Y. Park; L. Zhou; K.R. Coffey; Y.H. Sohn; B.H. Sencer; J. R. Kennedy

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe–15 wt.%Cr or Fe–15 wt.%Cr–15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe–Cr–Ni exhibited a similar temperature dependence, while the U vs. Fe–Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases – lower growth rate at lower temperature but higher growth rate at higher temperature.

  4. Microstructure and Thermal Analysis of As-Cast Ag-Bi-Ni alloys

    NASA Astrophysics Data System (ADS)

    Fima, Przemyslaw; Garzel, Grzegorz; Berent, Katarzyna

    2016-01-01

    The calculated liquidus projection of the Ag-Bi-Ni ternary system has been experimentally examined. Alloys were prepared by induction melting, and their microstructure studied by scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Of the primary solidification phases, (Ni) solidifies over the largest concentration range, although it was found to be narrower than calculated. The range in which Bi3Ni is the primary solidification phase was found to be broader than calculated. Also, the liquid miscibility gap is broader than predicted from assessed thermodynamic parameters. Differential thermal analysis was used to study temperatures of phase transitions of as-cast alloys, and recorded temperatures of melting of Bi3Ni and BiNi phases in ternary alloys agree well with those calculated.

  5. Fabrication and catalytic activity of FeNi@Ni nanocables for the reduction of p-nitrophenol.

    PubMed

    Zhou, Linyi; Wen, Ming; Wu, Qingsheng; Wu, Dandan

    2014-06-01

    Magnetic FeNi@Ni nanocables were prepared as a superior recyclable catalyst towards the hydrogenation reduction of p-nitrophenol to p-aminophenol through a two-step tunable assembly process in a solvothermal system. The proposed fabrication mechanism was verified through characterization by SEM, TEM, XRD, XPS, and UV-Vis. The as-prepared FeNi@Ni nanocomposites are core-shell-structured nanocables with Ni nanoparticles (NPs) attached on FeNi nanorods (NRs) surface loosely. The catalytic reactivity monitored by means of a UV-vis dynamic process shows FeNi@Ni nanocables can catalyse the transformation of p-nitrophenol to p-aminophenol completely under an ambient atmosphere at room temperature, and enable the catalysis to be more efficient than its counterparts FeNi NRs and Ni NPs due to the interfacial synergistic effect. Additionally, the resultant hierarchical metal-alloy nanocomposites possess ferromagnetic behaviour, and can be easily separated and recycled by an external magnet field for application. PMID:24714959

  6. In situ preparation of monodispersed Ag/polyaniline/Fe3O4 nanoparticles via heterogeneous nucleation

    PubMed Central

    2013-01-01

    Acrylic acid and styrene were polymerized onto monodispersed Fe3O4 nanoparticles using a grafting copolymerization method. Aniline molecules were then bonded onto the Fe3O4 nanoparticles by electrostatic self-assembly and further polymerized to obtain uniform polyaniline/Fe3O4 (PANI/Fe3O4) nanoparticles (approximately 35 nm). Finally, monodispersed Ag/PANI/Fe3O4 nanoparticles were prepared by an in situ reduction reaction between emeraldine PANI and silver nitrate. Fourier transform infrared and UV-visible spectrometers and a transmission electron microscope were used to characterize both the chemical structure and the morphology of the resulting nanoparticles. PMID:23819820

  7. Phase Equilibria of the Fe-Ni-Sn Ternary System at 270°C

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Ting; Lin, Shih-Wei; Chen, Chih-Ming; Chen, Pei Yu; Yen, Yee-Wen

    2016-07-01

    The Fe-42 wt.% Ni alloy, also known as a 42 invar alloy (Alloy 42), is used as a lead-frame material because its thermal expansion coefficient is much closer to Si substrate than Cu or Ni substrates. In order to enhance the wettability between the substrate and solder, the Sn layer was commonly electroplated onto the Alloy 42 surface. A clear understanding of the phase equilibria of the Fe-Ni-Sn ternary system is necessary to ensure solder-joint reliability between Sn and Fe-Ni alloys. To determine the isothermal section of the Fe-Ni-Sn ternary system at 270°C, 26 Fe-Ni-Sn alloys with different compositions were prepared. The experimental results confirmed the presence of the Fe3Ni and FeNi phases at 270°C. Meanwhile, it observed that the isothermal section of the Fe-Ni-Sn ternary system was composed of 11 single-phase regions, 19 two-phase regions and nine tie-triangles. Moreover, no ternary compounds were found in the Fe-Ni-Sn system at 270°C.

  8. Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments

    NASA Astrophysics Data System (ADS)

    Savin, Peter; Guzmán, Jorge; Lepalovskij, Vladimir; Svalov, Andrey; Kurlyandskaya, Galina; Asenjo, Agustina; Vas'kovskiy, Vladimir; Vazquez, Manuel

    2016-03-01

    Short (5 min) post-deposition thermal treatments under magnetic field at low temperature (up to 200 °C) performed in exchange-coupled FeNi(40 nm)/FeMn(20 nm) bilayer thin films prepared by magnetron sputtering are shown to be effective to significantly modify their exchange field (from around 40 Oe down to 27 Oe) between FeNi and FeMn layers. A similar exchange field decrease was observed for the first deposited FeNi layer of the FeNi(40 nm)/FeMn(20 nm)/FeNi(40 nm) trilayer films after the same thermal treatments. The exchange field value for the second FeNi layer was not substantially changed. The X-ray diffraction patterns indicates that such a heat treatment has no effect on the grain size and crystalline texture of the films, while atomic force microscope studies reveal an increase of the surface roughness after the treatment which is more noticeable in the case of the trilayer film. Analysis of the experimental results leads us to conclude that the variations of the exchange field after heat treatment are likely caused by a modification of interfacial roughness and/or interfacial magnetic structure, but unlikely by the changes in the microstructure and/or changes of composition of the antiferromagnetic FeMn layer.

  9. High performance magnetoimpedance in FeNi/Ti nanostructured multilayers with opened magnetic flux.

    PubMed

    Fernández, E; Svalov, A V; García-Arribas, A; Feuchtwanger, J; Barandiaran, J M; Kurlyandskaya, G V

    2012-09-01

    Magnetic [FeNi (170 nm)/Ti (6 nm)]3/Cu (L(cu) = 250 or 500 nm)/[Ti (6 nm)/FeNi (170 nm)]3 multilayers were designed with focus on high frequency applications. They were deposited onto glass or a microfluidic system compatible flexible Ciclo Olefin Copolymer substrate and comparatively tested. A maximum sensitivity for the total impedance of 110%/Oe was obtained for a driving current frequency of 30 MHz for [FeNi/Ti]3/Cu (L(cu) = 500 nm)/[Ti/FeNi]3 multilayers deposited onto a glass substrate and 45%/Oe for a driving current frequency of 65 MHz for the same multilayers deposited onto the flexible polymer substrate, a very promising result for applications. The possibility of using flexible substrate/[FeNi/Ti],/Cu/[Ti/FeNi]3 multilayers as MI pressure-sensitive elements was also demonstrated. PMID:23035503

  10. Characterization of ion beam and magnetron sputtered thin Ta/NiFe films

    NASA Astrophysics Data System (ADS)

    Mao, M.; Leng, Q.; Huai, Y.; Johnson, P.; Miller, M.; Tong, H.-C.; Miloslavsky, L.; Qian, C.; Wang, J.; Hegde, H.

    1999-04-01

    Thin Ta/NiFe films were deposited using ion beam deposition (IBD), pulsed, and static magnetron sputtering techniques. These NiFe films show anisotropy field values ˜4 Oe, easy axis coercivities ⩽1 Oe, and hard axis coercivities ⩽0.3 Oe. IBD films exhibit higher magnetoresistance ratios (ΔR/R), while little difference is noted between different deposition techniques in the sheet resistance of NiFe films. A ΔR/R value of 1.8% has been measured for a 90 Å IBD NiFe films. X-ray diffraction measurements indicate that NiFe films of the same thickness have about the same grain size regardless of deposition technique, however, IBD films exhibit superior (111) texture and crystallinity. Our results clearly indicate that the superior magnetic properties of thin IBD Ta/NiFe films are a result of high crystallographic quality of these films.

  11. Magnetic structure and anisotropy of [Co/Pd ] 5/NiFe multilayers

    NASA Astrophysics Data System (ADS)

    Tryputen, Larysa; Guo, Feng; Liu, Frank; Nguyen, T. N. Anh; Mohseni, Majid S.; Chung, Sunjae; Fang, Yeyu; Ã kerman, Johan; McMichael, R. D.; Ross, Caroline A.

    2015-01-01

    The magnetization behavior, magnetic anisotropy, and domain configurations of Co/Pd multilayers with perpendicular magnetic anisotropy capped with permalloy is investigated using magnetometry, magnetic force microscopy, and ferromagnetic resonance. The thickness of the Ni80Fe20 layer in [Co/Pd ] 5/NiFe (t ) was varied from t =0 to 80 nm in order to study the interplay between the anisotropy and magnetization directions of Co/Pd and NiFe. By varying the thickness of the NiFe layer, the net anisotropy changes sign, but domains with plane-normal magnetization are present even for the thickest NiFe. Ferromagnetic resonance measurements show a decrease in damping with increasing NiFe thickness. The results demonstrate how the magnetic behavior of mixed-anisotropy thin films can be controlled.

  12. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  13. Fe3O4@Nico-Ag magnetically recyclable nanocatalyst for azo dyes reduction

    NASA Astrophysics Data System (ADS)

    Kurtan, U.; Amir, Md.; Baykal, A.

    2016-02-01

    In this study, we report the successful synthesis of Fe3O4@Nico-Ag nanocomposite as magnetically recyclable nanocatalyst (MRCs) via reflux process at 80 °C for 5 h followed by reduction of Ag+. FeCl3·6H2O, FeCl2·4H2O, AgNO3 as starting reactants and nicotinic acid as linker. The structure, morphology, thermal behaviour and magnetic properties of the product were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDX), thermal gravimetry (TG) and vibrating sample magnetometry (VSM), respectively. The catalytic activity of product for various azo dyes such as methylene blue (MB), methyl orange (MO), Rhodamine B (RhB) and eosin Y (EY) and their double mixtures were studied. It was found that Fe3O4@Nico-Ag MRCs is an efficient catalyst and can also rapidly separated from the reaction medium using magnet without considerable loss in its catalytic activity and used several times. Fe3O4@Nico-Ag MRCs has potential for the treatment of industrial dye pollutants.

  14. Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties

    SciTech Connect

    Wang, Xiuhua; Shi, Zhijie; Yao, Shangwu; Liao, Fan; Ding, Juanjuan; Shao, Mingwang

    2014-11-15

    AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.

  15. Synthesis and characterization of Fe3O4-SiO2-AgCl photocatalyst

    NASA Astrophysics Data System (ADS)

    Husni, H. N.; Mahmed, N.; Ngee, H. L.

    2016-07-01

    Magnetite-silica-silver chloride (Fe3O4-SiO2-AgCl) coreshell particles with AgCl crystallite size of 117 nm was prepared by a wet chemistry method at ambient temperature. The magnetite-core was synthesized by using iron (II) sulfate heptahydrate (FeSO4•7H2O) and iron (III) sulfate hydrate (Fe2(SO4)3) with ammonium hydroxide (NH4OH) as the precipitating agent. The silica-shell was synthesized by using a modified Stöber process. The silver ions (Ag+) was adsorbed onto the silica surface after Söber process, followed by the addition of Cl- and polyvinylpyrrolidone (PVP) for the formation of Fe3O4-SiO2-AgCl coreshell particles. The effectiveness of the synthesized photocatalyst was investigated by monitoring the degradation of the methylene blue (MB) under sunlight for five cycles. About 90 % of the MB solution can be degraded after 2 hours. The degradation of MB solution by the Fe3O4-SiO2-AgCl particles is highly efficient for first three cycles according to the MB concentration recorded by the UV-Visible spectroscopy (UV-Vis). Nevertheless, the synthesized particles could be a promising material for photocatalytic applications.

  16. Phonons and colossal thermal expansion behavior of Ag3Co(CN)6 and Ag3Fe(CN)6.

    PubMed

    Mittal, R; Zbiri, M; Schober, H; Achary, S N; Tyagi, A K; Chaplot, S L

    2012-12-19

    Recently colossal volume thermal expansion has been observed in the framework compounds Ag(3)Co(CN)(6) and Ag(3)Fe(CN)(6). We have measured phonon spectra using neutron time-of-flight spectroscopy as a function of temperature and pressure. Ab initio calculations were carried out for the sake of analysis and interpretation. Bonding is found to be very similar in the two compounds. At ambient pressure, modes in the intermediate frequency part of the vibrational spectra in the Co compound are shifted slightly to higher energies as compared to the Fe compound. The temperature dependence of the phonon spectra gives evidence for a large explicit anharmonic contribution to the total anharmonicity for low-energy modes below 5 meV. We have found that modes are mainly affected by the change in size of the unit cell, which in turn changes the bond lengths and vibrational frequencies. Thermal expansion has been calculated via the volume dependence of phonon spectra. Our analysis indicates that Ag phonon modes within the energy range 2-5 meV are strongly anharmonic and major contributors to thermal expansion in both systems. The application of pressure hardens the low-energy part of the phonon spectra involving Ag vibrations and confirms the highly anharmonic nature of these modes. PMID:23174851

  17. Synthesis of FeNi3/(Ni0.5Zn0.5)Fe2O4 nanocomposite and its high frequency complex permeability

    NASA Astrophysics Data System (ADS)

    Lu, Xuegang; Liang, Gongying; Zhang, Yumei; Zhang, Wei

    2007-01-01

    FeNi3/(Ni0.5Zn0.5)Fe2O4 nanocomposite particles were successfully synthesized using the hydrazine reduction combined with ammonia co-precipitation ferrite coating method. The x-ray and transmission electron microscopy analysis showed that face-centred cubic-structured FeNi3 nanoparticles were coated with spinel Ni-Zn ferrite. The composite particles were nearly spherical with diameters of about 80-200 nm and exhibited typical soft magnetic properties. The saturation magnetization (Ms) of the composite was greatly improved, compared with that of traditional ferrite. With increasing ferrite content, the eddy-current loss was effectively suppressed and a notable high frequency characteristic, in which the real part μ' of the permeability was almost independent of the frequency, was observed. The imaginary part μ'' remained at an extremely low value below the frequency of 300 MHz. The cut-off frequency fr was estimated to be above 1 GHz. The highest value of μ' reached 13 when the ratio of FeNi3 to Ni0.5Zn0.5Fe2O4 was 1:1. Two peaks were observed in the permeability spectra, which may be ascribed to the ferromagnetic resonances of FeNi3 and Ni-Zn ferrite respectively.

  18. Synergism between polyurethane and polydopamine in the synthesis of Ni-Fe alloy monoliths.

    PubMed

    Naresh Kumar, Thangavel; Sivabalan, Santhana; Chandrasekaran, Naveen; Phani, Kanala Lakshminarasimha

    2015-02-01

    Herein, we report the first synthesis of a light-weight macroporous 3-D alloy monolith of Ni-Fe/C using synergism between polydopamine (pDA) and polyurethane (pU); in situ formed polyurethane (pU) enables efficient mixing of pDA (carbon source) and Ni-FeOx resulting in Ni-Fe alloy monoliths at a temperature as low as ∼600 °C. The monolithic Ni-Fe/C exhibits enhanced oxygen evolution activity. PMID:25531680

  19. Properties of Bulk Fe-Ni/CNT Nanocomposites Prepared by Mechanical Milling and Sintering

    NASA Astrophysics Data System (ADS)

    Azadehranjbar, S.; Karimzadeh, F.; Enayati, M. H.; Mahmoodi, N.

    2013-08-01

    The effects of carbon nanotubes (CNTs) on mechanical and tribiological properties of the NiFe/CNT composites prepared by high energy mechanical alloying and hot pressing, were investigated. Bulk samples were prepared by sintering of cold pressed (300 MPa) samples at 1040°C for 1 h. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and optical microscopy were employed for evaluation of the phase composition, surface morphology and porosities of the samples. The microhardness of as-milled Ni3Fe and NiFe powders reached to 720 and 650 VHN, respectively. The hardness of NiFe and Ni3Fe bulk samples reduced to 190 and 270 Vickers because of the grain growth during sintering and remaining porosity. The hardness of NiFe-CNT and Ni3Fe-CNT bulk samples reached to 360 and 400 Vickers, respectively. The friction and wear properties of the bulk samples were investigated under dry conditions using a pin-on-disk test rig under an applied load of 8 N. The wear rate, mass loss and friction coefficient of the composite samples remarkably reduced in comparison with NiFe and Ni3Fe matrix alloys which demonstrate effects of the CNTs on mechanical and tribiological behavior of the composites resulting from the excellent mechanical properties and unique topological structure of the CNTs.

  20. The Model [NiFe]-Hydrogenases of Escherichia coli.

    PubMed

    Sargent, F

    2016-01-01

    In Escherichia coli, hydrogen metabolism plays a prominent role in anaerobic physiology. The genome contains the capability to produce and assemble up to four [NiFe]-hydrogenases, each of which are known, or predicted, to contribute to different aspects of cellular metabolism. In recent years, there have been major advances in the understanding of the structure, function, and roles of the E. coli [NiFe]-hydrogenases. The membrane-bound, periplasmically oriented, respiratory Hyd-1 isoenzyme has become one of the most important paradigm systems for understanding an important class of oxygen-tolerant enzymes, as well as providing key information on the mechanism of hydrogen activation per se. The membrane-bound, periplasmically oriented, Hyd-2 isoenzyme has emerged as an unusual, bidirectional redox valve able to link hydrogen oxidation to quinone reduction during anaerobic respiration, or to allow disposal of excess reducing equivalents as hydrogen gas. The membrane-bound, cytoplasmically oriented, Hyd-3 isoenzyme is part of the formate hydrogenlyase complex, which acts to detoxify excess formic acid under anaerobic fermentative conditions and is geared towards hydrogen production under those conditions. Sequence identity between some Hyd-3 subunits and those of the respiratory NADH dehydrogenases has led to hypotheses that the activity of this isoenzyme may be tightly coupled to the formation of transmembrane ion gradients. Finally, the E. coli genome encodes a homologue of Hyd-3, termed Hyd-4, however strong evidence for a physiological role for E. coli Hyd-4 remains elusive. In this review, the versatile hydrogen metabolism of E. coli will be discussed and the roles and potential applications of the spectrum of different types of [NiFe]-hydrogenases available will be explored. PMID:27134027

  1. Cu-Ni-Fe anodes having improved microstructure

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  2. Fe, Ni and Zn speciation, in airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Thiodjio Sendja, Bridinette; Aquilanti, Giuliana; Vassura, Ivano; Giorgetti, Marco

    2016-05-01

    The study of elemental speciation in atmospheric particulate matter is important for the assessment of the source of the particle as well for the evaluation of its toxicity. XANES data at Fe, Ni, and Zn K-edges are recorded on a sample of urban dust (from the Rimini area of Emilia Romagna region, Italy) deposited on a filter and on the NIST standard reference material 1648. Using linear combination fitting we give an indication of the chemical species of the three metals present in the samples.

  3. Generalized melting criterion for amorphization. [NiZr, NiZr[sub 2], NiTi, FeTi

    SciTech Connect

    Devanathan, R. Northwestern Univ., Evanston, IL . Dept. of Materials Science and Engineering); Lam, N.Q.; Okamoto, P.R. ); Meshii, M. . Dept. of Materials Science and Engineering)

    1992-12-01

    We present a thermodynamic model of solid-state amorphization based on a generalization of the well-known Lindemann criterion. The original Lindemann criterion proposes that melting occurs when the root-mean-square amplitude of thermal displacement exceeds a critical value. This criterion can be generalized to include solid-state amorphization by taking into account the static displacements. In an effort to verify the generalized melting criterion, we have performed molecular dynamics simulations of radiation-induced amorphization in NiZr, NiZr[sub 2], NiTi and FeTi using embedded-atom potentials. The average shear elastic constant G was calculated as a function of the total mean-square atomic displacement following random atom-exchanges and introduction of Frenkel pairs. Results provide strong support for the generalized melting criterion.

  4. Ultrasound assisted ambient temperature synthesis of ternary oxide AgMO{sub 2} (M=Fe, Ga)

    SciTech Connect

    Nagarajan, R.; Tomar, Nobel

    2009-06-15

    The application of ultrasound for the synthesis of ternary oxide AgMO{sub 2} (M=Fe, Ga) was investigated. Crystalline alpha-AgFeO{sub 2} was obtained from the alkaline solutions of silver and iron hydroxides by sonication for 40 minutes. alpha-AgFeO{sub 2} was found to absorb optical radiation in the 300-600 nm range as shown by diffuse reflectance spectroscopy. The Raman spectrum of alpha-AgFeO{sub 2} exhibited two bands at 345 and 638 cm{sup -1}. When beta-NaFeO{sub 2} was sonicated with aqueous silver nitrate solution for 60 minutes, beta-AgFeO{sub 2} possessing orthorhombic structure was obtained as the ion-exchanged product. The Raman spectrum of beta-AgFeO{sub 2} showed four strong bands at 295, 432, 630 and 690 cm{sup -1}. Sonication of beta-NaGaO{sub 2} with aqueous silver nitrate solution for 60 minutes resulted in olive green colored, alpha-AgGaO{sub 2}. The diffuse reflectance spectrum and the EDX analysis confirmed that the ion-exchange through sonication was complete. The Raman spectrum of alpha-AgGaO{sub 2} had weak bands at 471 and 650 cm{sup -1}. - Graphical abstract: The application of ultrasound in the formation of alpha and beta-forms of AgMO{sub 2} (M=Fe, Ga) has been demonstrated.

  5. Comparison between Ag (I) and Ni (II) removal from synthetic nuclear power plant coolant water by iron oxide nanoparticles

    PubMed Central

    2013-01-01

    The impact of effective parameters such as iron oxide nanoparticles dosage, contact time and solution pH was optimized for removal of Ag(I) and Ni(II) in the nuclear cooling system and the best conditions were compared. Nearly complete removal (97%) of Ni(II) and Ag(I) were obtained at adsorbent dosage of 40 and 20 g/L, respectively. Experiments showed that 4 hours was a good choice as optimum contact time for two ions removal. The effective parameter was pH, so that maximum removal efficiency was obtained for Ag(I) in acidic pH=3 and for Ni(II) in basic pH=10. It seems that removal of Ag(I) was controlled by adsorption-reduction mechanism, but Ni(II) could place only adsorption. Langmuir and Freundlich model was more suitable for nickel and silver removal by this adsorbent, respectively. Ag(I) and Ni(II) removal efficiency trend by this adsorbent is similar at periods but different in the concentrations, pHs and equilibrium model. The obtained results were very promising, as both Ag(I) and Ni(II) were effectively removed from synthetic wastewater and there was a possibility to remove Ag(I) very fast. Hence, the idea of using nanoparticles for application of metal ions removal from wastewaters seems to be very efficient and quite promising. PMID:24499654

  6. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  7. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism.

    PubMed

    Ogata, Hideaki; Lubitz, Wolfgang; Higuchi, Yoshiki

    2009-10-01

    [NiFe] hydrogenases catalyze the reversible oxidation of dihydrogen. For this simple reaction the molecule has developed a complex catalytic mechanism, during which the enzyme passes through various redox states. The [NiFe] hydrogenase contains several metal centres, including the bimetallic Ni-Fe active site, iron-sulfur clusters and a Mg(2+) ion. The Ni-Fe active site is located in the inner part of the protein molecule, therefore a number of pathways are involved in the catalytic reaction route. These consist of an electron transfer pathway, a proton transfer pathway and a gas-access channel. Over the last 10-15 years we have been investigating the crystal structures of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F, which is a sulfate-reducing anaerobic bacterium. So far the crystal structures of the oxidized, H(2)-reduced and carbon monoxide inhibited states have been determined at high resolution and have revealed a rather unique structure of the hetero-bimetallic Ni-Fe active site. Furthermore, intensive spectroscopic studies have been performed on the enzyme. Based on the crystal structure, a water-soluble Ni-Ru complex has been synthesized as a functional model for the [NiFe] hydrogenases. The present review gives an overview of the catalytic reaction mechanism of the [NiFe] hydrogenases. PMID:19759926

  8. Magnetism of NiMn2O4-Fe3O4 spinel interfaces

    SciTech Connect

    Arenholz, Elke; Nelson-Cheeseman, B. B.; Chopdekar, R. V.; Bettinger, J. S.; Arenholz, E.; Suzuki, Y.

    2007-09-13

    We investigate the magnetic properties of the isostructural spinel-spinel interface of NiMn{sub 2}O{sub 4}(NMO)-Fe{sub 3}O{sub 4}. Although the magnetic transition temperature of the NMO film is preserved, both bulk and interface sensitive measurements demonstrate that the interface exhibits strong interfacial magnetic coupling up to room temperature. While NMO thin films have a ferrimagnetic transition temperature of 60 K, both NiFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} are ferrimagnetic at room temperature. Our experimental results suggest that these magnetic properties arise from a thin interdiffused region of (Fe,Mn,Ni){sub 3}O{sub 4} at the interface, leading to Mn and Ni magnetic properties similar to those of MnFe{sub 2}O{sub 4} and NiFe{sub 2}O{sub 4}.

  9. Interfacial Reactions Between In-Sn Solder and Ni-Fe Platings

    NASA Astrophysics Data System (ADS)

    Daghfal, John P.; Shang, P. J.; Liu, Z. Q.; Shang, J. K.

    2009-12-01

    Interfacial interactions in a Ni- xFe-Sn-In eutectic solder ( x = 30 at.%, 55 at.%) have been examined. Transmission and scanning electron microscopy (TEM/SEM) were utilized to investigate the structure, composition, and morphology of the intermetallic compounds (IMCs). Upon reflow, Ni3Sn4 and FeSn2 phases appeared at the interface along with Cu6Sn5 in the solder. Annealing experiments revealed the formation of a bilayer IMC that was Fe-rich adjacent to the Ni-Fe metallization and Ni-rich on the solder side. Kinetic studies established the apparent activation energies for both systems to be 51.8 kJ/mol and 85.1 kJ/mol, for 30 at.% and 55 at.% Fe contents, respectively. In the Fe-rich system, globular Ni3Sn4 crystals were formed upon reflow, but were changed into a cubic/faceted structure after annealing.

  10. Surface electronic structure of polar NiO thin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-01

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  11. Surface electronic structure of polar NiO thin film grown on Ag(111)

    SciTech Connect

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-24

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  12. Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-09-01

    Understanding the thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical to alloy design and application of Mo-containing austenitic steels. Coupled with thermodynamic modeling, the thermal stability of intermetallic Chi and Laves phases in two Fe-Cr-Ni-Mo alloys was investigated at 1273 K, 1123 K, and 973 K (1000 °C, 850 °C, and 700 °C) for different annealing times. The morphologies, compositions, and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Two key findings resulted from this study. First, the Chi phase is stable at high temperature, and with the decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, and Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. The thermodynamic models that were developed were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  13. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE PAGESBeta

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less

  14. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    SciTech Connect

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed into the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.

  15. Evaluation of Binary Fe-Ni Alloys as Intermediate-Temperature SOFC Interconnect

    SciTech Connect

    Zhu, Jiahong; Geng, Shujiang; Lu, Z G; Porter, Wallace D

    2007-01-01

    Binary Fe-Ni alloys with 45-60Ni (wt %) were evaluated as an interconnect material for intermediate-temperature solid oxide fuel cells (SOFCs). The oxidation resistance of the Fe-Ni alloys in air improved with increasing Ni content. The thermally grown oxide scale on these alloys generally consisted of a Fe{sub 2}O{sub 3} top layer and a (Fe,Ni){sub 3}O{sub 4} spinel inner layer, with the thickness of the Fe{sub 2}O{sub 3} layer decreasing as the Ni content increased. No measurable weight change was observed after isothermal oxidation in Ar+4%H{sub 2}+3%H{sub 2}O at 800 C and a metallic surface was maintained. The coefficient of thermal expansion (CTE) increased with the Ni content in these alloys and the CTE values were similar to those of other cell components. The (Fe,Ni){sub 3}O{sub 4} spinel with a composition similar to that thermally grown on the Fe-50Ni alloy exhibited a CTE value close to the alloy substrate, which aids scale spallation resistance for this alloy. The scale area specific resistance of the Fe-Ni alloys was found to be comparable to that of the current interconnect alloys, as a result of high electrical conductivity of the (Fe,Ni){sub 3}O{sub 4} spinel. The promise and issue with these Fe-Ni alloys as interconnect materials are highlighted and potential approaches to address the issue are outlined.

  16. Low temperature crystalline Ag-Ni alloy formation from silver and nickel nanoparticles entrapped in a fatty acid composite film

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Damle, Chinmay; Sastry, Murali

    2001-11-01

    Nanoparticles of silver and nickel were grown in thermally evaporated fatty acid (stearic acid) films by immersion of the film sequentially in solutions containing Ag+ ions and Ni2+ ions. Attractive electrostatic interaction between the metal cations and the carboxylate ions in the fatty acid film leads to entrapment of the cations in the film. Thereafter, the metal ions were reduced in situ to yield nanoparticles of Ag and Ni of ˜30 nm diameter within the fatty acid matrix. Thermal treatment of the stearic acid-(silver+nickel) nanocomposite films led to the formation of a Ni-Ag alloy at ˜100 °C. Prolonged heat treatment at this temperature resulted in the phase separation of the alloy and the reformation of individual Ag and Ni nanoparticles.

  17. Abnormal magnetization behaviors in Sm-Ni-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Yang, W. Y.; Zhang, Y. F.; Zhao, H.; Chen, G. F.; Zhang, Y.; Du, H. L.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Yang, Y. C.; Yang, J. B.

    2016-06-01

    The magnetization behaviors in Sm-Ni-Fe-Cu alloys at low temperatures have been investigated. It was found that the hysteresis loops show wasp-waisted character at low temperatures, which has been proved to be related to the existence of multi-phases, the Fe/Ni soft magnetic phases and the CaCu5-type hard magnetic phase. A smooth-jump behavior of the magnetization is observed at T>5 K, whereas a step-like magnetization process appears at T<5 K. The CaCu5-type phase is responsible for such abnormal magnetization behavior. The magnetic moment reversal model with thermal activation is used to explain the relation of the critical magnetic field (Hcm) to the temperature (T>5 K). The reversal of the moment direction has to cross over an energy barrier of about 6.6×10-15 erg. The step-like jumps of the magnetization below 5 K is proposed to be resulted from a sharp increase of the sample temperature under the heat released by the irreversible domain wall motion.

  18. X-ray magnetic-circular-dichroism study of Ni/Fe (001) multilayers

    SciTech Connect

    Lin, T.; Schwickert, M.M.; Tomaz, M.A.; Chen, H.; Harp, G.R.

    1999-06-01

    The structure and magnetic properties of Fe/Ni(001) multilayers are studied using x-ray diffraction, magneto-optical Kerr effect magnetometry, and x-ray magnetic circular dichroism. Multilayers are deposited with constant Fe layers (12 {Angstrom}) and wedged Ni layers (0{endash}30 {Angstrom}), repeated 20 times, to explore the magnetic moment and the structure dependence upon thickness of Ni (t{sub Ni}). Up to t{sub Ni}{approx}16 {Angstrom} (11 ML), both the Fe and the Ni have a bct structure, similar to the bulk structure of bcc Fe. The magnetic moments of Ni in the bct region are nearly constant at 0.85{mu}{sub B} for a Ni thickness t{sub Ni} in the range 3 {Angstrom}{lt}t{sub Ni}{lt}16 {Angstrom}. This represents a significant enhancement over the moment in bulk fcc Ni (0.59{mu}B). The Fe/Ni multilayer undergoes a crystalline phase transition between 16 {Angstrom}{lt}t{sub Ni}{lt}23 {Angstrom}, beyond which both the Fe and Ni have an fct structure. In the fct region, the Ni magnetic moment is close to its bulk value and the Fe magnetic moment drops to 1.5{mu}{sub B}, which is {approximately}70{percent} of its bulk value. The crystalline phase transition is also accompanied by a rotation of the magnetic easy axis by 45{degree} in the plane of the film. {copyright} {ital 1999} {ital The American Physical Society}

  19. On the crack growth resistance and strength of the B2 iron aluminides Fe-40Al, Fe-45Al, and Fe-10Ni-40Al (at. %)

    SciTech Connect

    Schneibel, J.H.; Maziasz, P.J.

    1994-09-01

    The crack growth resistance and yield strength of the B2 iron aluminides Fe-40Al, Fe-45Al, are Fe-10Ni-40Al (at. %) have been investigated at room temperature laboratory air. After fast cooling from 1273 K, Fe-45Al and Fe-10Ni-40Al are much stronger than Fe-40Al, and exhibit considerably lower crack growth resistance. The crack growth resistance decreases with decreasing crack propagation velocity. Low crack propagation velocities favor intergranular fracture, whereas high velocities can lead to significant contributions from transgranular fracture. Boron additions to Fe-40Al and Fe-10Ni-40Al improve the crack growth resistance, reduce its dependence on the crack propagation velocity, and cause the path to be predominantly transgranular. In a plot of fracture toughness versus yield strength, the properties of the iron aluminides are similar to those of typical aluminum alloys.

  20. Mechanical properties of several Fe-Ni meteorites

    SciTech Connect

    Mulford, Roberta N; El - Dasher, Bassem

    2010-10-28

    The strength and elastic constants of meteorites are of increasing interest as predictions of meteorite impacts on earth come within the realm of possibility. In addition, meteorite impacts on extraterrestrial bodies provide an excellent sampling tool for evaluation of planetary compositions and properties. Fe-Ni meteorites provide a well-defined group of materials of fairly uniform composition. Iron-nickel meteorites exhibit a unique lamellar microstructure, a Widmanstatten structure, consisting of small regions with steep-iron-nickel composition gradients. This microstructure is found in the Fe-Ni system only in meteorites, and is believed to arise as a result of slow cooling in a planetary core or other large mass. Meteorites with compositions consisting of between 5 and 17% nickel in iron are termed 'octahedrite,' and further characterized according to the width of the Ni-poor kamacite bands; 'fine,' (0.2-0.5 mm) 'medium,' (0.5-1.3 mm) and 'coarse,' (1.5-3.3 mm). Many meteorites have inclusions and structures indicating that the material has been shocked at some point early in its evolution. Several Iron-nickel meteorites have been examined using Vickers and spherical indentation, x-ray fluorescence, and EBSD. Direct observation of mechanical properties in these highly structured materials provides a valuable supplement to bulk measurements, which frequently exhibit large variation in dynamic properties, even within a single sample. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens. Additional meteorite specimens have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon re-entry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure.

  1. MICROWAVE-ASSISTED SHAPE CONTROLLED BULK SYNTHESIS OF AG AND FE NANORODS IN POLY (ETHYLENE GLYCOL) SOLUTIONS

    EPA Science Inventory

    Bulk syntheses of silver (Ag) and iron (Fe) nanorods using poly (ethylene glycol), PEG, under microwave irradiation (MW) conditions are reported. Favorable conditions to make Ag nanorods were established and can be extended to make Fe nanorods with uniform size and shape. The nan...

  2. Exponentially decaying magnetic coupling in sputtered thin film FeNi/Cu/FeCo trilayers

    SciTech Connect

    Wei, Yajun Akansel, Serkan; Thersleff, Thomas; Brucas, Rimantas; Lansaker, Pia; Leifer, Klaus; Svedlindh, Peter; Harward, Ian; Celinski, Zbigniew; Ranjbar, Mojtaba; Dumas, Randy K.; Jana, Somnath; Pogoryelov, Yevgen; Karis, Olof; Åkerman, Johan

    2015-01-26

    Magnetic coupling in trilayer films of FeNi/Cu/FeCo deposited on Si/SiO{sub 2} substrates have been studied. While the thicknesses of the FeNi and FeCo layers were kept constant at 100 Å, the thickness of the Cu spacer was varied from 5 to 50 Å. Both hysteresis loop and ferromagnetic resonance results indicate that all films are ferromagnetically coupled. Micromagnetic simulations well reproduce the ferromagnetic resonance mode positions measured by experiments, enabling the extraction of the coupling constants. Films with a thin Cu spacer are found to be strongly coupled, with an effective coupling constant of 3 erg/cm{sup 2} for the sample with a 5 Å Cu spacer. The strong coupling strength is qualitatively understood within the framework of a combined effect of Ruderman-Kittel-Kasuya-Yosida and pinhole coupling, which is evidenced by transmission electron microscopy analysis. The magnetic coupling constant surprisingly decreases exponentially with increasing Cu spacer thickness, without showing an oscillatory thickness dependence. This is partially connected to the substantial interfacial roughness that washes away the oscillation. The results have implications on the design of multilayers for spintronic applications.

  3. Exponentially decaying magnetic coupling in sputtered thin film FeNi/Cu/FeCo trilayers

    NASA Astrophysics Data System (ADS)

    Wei, Yajun; Akansel, Serkan; Thersleff, Thomas; Harward, Ian; Brucas, Rimantas; Ranjbar, Mojtaba; Jana, Somnath; Lansaker, Pia; Pogoryelov, Yevgen; Dumas, Randy K.; Leifer, Klaus; Karis, Olof; Åkerman, Johan; Celinski, Zbigniew; Svedlindh, Peter

    2015-01-01

    Magnetic coupling in trilayer films of FeNi/Cu/FeCo deposited on Si/SiO2 substrates have been studied. While the thicknesses of the FeNi and FeCo layers were kept constant at 100 Å, the thickness of the Cu spacer was varied from 5 to 50 Å. Both hysteresis loop and ferromagnetic resonance results indicate that all films are ferromagnetically coupled. Micromagnetic simulations well reproduce the ferromagnetic resonance mode positions measured by experiments, enabling the extraction of the coupling constants. Films with a thin Cu spacer are found to be strongly coupled, with an effective coupling constant of 3 erg/cm2 for the sample with a 5 Å Cu spacer. The strong coupling strength is qualitatively understood within the framework of a combined effect of Ruderman-Kittel-Kasuya-Yosida and pinhole coupling, which is evidenced by transmission electron microscopy analysis. The magnetic coupling constant surprisingly decreases exponentially with increasing Cu spacer thickness, without showing an oscillatory thickness dependence. This is partially connected to the substantial interfacial roughness that washes away the oscillation. The results have implications on the design of multilayers for spintronic applications.

  4. Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sharma, Himani; Jain, Shubham; Raj, Pulugurtha Markondeya; Murali, K. P.; Tummala, Rao

    2015-10-01

    Metal-polymer composites were investigated for their microwave properties in the frequency range of 30-1000 MHz to assess their application as inductor cores and electromagnetic isolation shield structures. NiFe and Fe nanoparticles were dispersed in epoxy as nanocomposites, in different volume fractions. The permittivity, permeability, and loss tangents of the composites were measured with an impedance analyzer and correlated with the magnetic properties of the particle such as saturation magnetization and field anisotropy. Fe-epoxy showed lower magnetic permeability but improved frequency stability, compared to the NiFe-epoxy composites of the same volume loading. This is attributed to the differences in nanoparticle's structure such as effective metal core size and particle-porosity distribution in the polymer matrix. The dielectric properties of the nanocomposites were also characterized from 30 MHz to 1000 MHz. The instabilities in the dielectric constant and loss tangent were related to the interfacial polarization relaxation of the particles and the dielectric relaxation of the surface oxides.

  5. Ultra-sensitive biosensor based on genetically engineered acetylcholinesterase immobilized in poly (vinyl alcohol)/Fe-Ni alloy nanocomposite for phosmet detection in olive oil.

    PubMed

    El-Moghazy, A Y; Soliman, E A; Ibrahim, H Z; Noguer, T; Marty, J-L; Istamboulie, G

    2016-07-15

    An ultra-sensitive screen-printed biosensor was successfully developed for phosmet detection in olive oil, based on a genetically-engineered acetylcholinesterase (AChE) immobilized in a azide-unit water-pendant polyvinyl alcohol (PVA-AWP)/Fe-Ni alloy nanocomposite. Fe-Ni not only allowed amplifying the response current but also lowering the applied potential from 80 mV to 30 mV vs Ag/AgCl. The biosensor showed a very good analytical performance for phosmet detection, with a detection limit of 0.1 nM. This detection limit is lower than the allowable concentrations set by international regulations. In addition to the good reproducibility, operational and storage stability, the developed biosensor was successfully used for the determination of phosmet in olive oil samples without any laborious pre-treatment. The phosmet recovery rate was about 96% after a simple liquid-liquid extraction. PMID:26948591

  6. Electrical, magnetic, and corrosion resistance properties of TiO2 nanotubes filled with NiFe2O4 quantum dots and Ni-Fe nanoalloy

    NASA Astrophysics Data System (ADS)

    Bahgat, Mohamed; Farghali, Ahmed A.; Moustafa, Ahmed F.; Khedr, Mohamed H.; Mohassab-Ahmed, Mohassab Y.

    2013-06-01

    This work was carried out as an integral part of a project aiming to improve the catalytic, electrical, magnetic, and mechanical properties of synthesized TiO2NTs filled with metal ferrites. TiO2 nanotubes in the anatase-phase (TiO2NTs) were prepared using a hydrothermal method followed by ion exchange and phase transformation. The obtained TiO2NTs were filled with NiFe2O4 quantum dots (QDs) and then reacted at 600 °C in a reducing atmosphere to produce TiO2NTs filled with Ni-Fe nanoalloy. The effect of the TiO2NTs' coating on the dissolution rate of Ni-Fe nanoalloy in 0.5 M HCl solution was monitored chemically using a weight-loss technique that was performed at different temperatures. The TiO2NTs' coating exhibited high protective performance and amazing corrosion resistance. The magnetic properties of the TiO2NTs filled with NiFe2O4 QDs and Ni-Fe nanoalloy compacts were analyzed by a vibrating sample magnetometer. The electrical conductivity-temperature dependence of anatase TiO2NTs, anatase TiO2NTs filled with NiFe2O4 quantum dots, anatase TiO2NTs filled with Ni-Fe nanoalloy, and NiFe2O4 was measured in the temperature range of 25-850 °C. The conductivity increased with temperature, indicating the semiconductor-like nature of the sample. During cooling, the conductivity retains values higher than that obtained during heating.

  7. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  8. Directional alignment of FeCo crystallites in Si/NiFe/Ru/FeCoB multilayer with high anisotropy field above 500 Oe.

    PubMed

    Hirata, Ken-Ichiro; Gomi, Shunsuke; Nakagawa, Shigeki

    2011-03-01

    In-plane magnetic anisotropy and crystal structure of FeCoB layer on Si/NiFe/Ru underlayer were investigated by using X-Ray Diffraction (XRD) measurement. A pole-figure measurement of XRD showed directionally tilted alignment of FeCo crystallites in Si/NiFe/Ru/FeCoB multilayered film with high in-plane anisotropy field H(k) but no directional alignment was found in FeCoB single layered film. The higher H(k) appeared in the Si/NiFe/Ru/FeCoB multilayered configuration with the thicker FeCoB layer. Since Ru crystallites in a multiunderlayer configuration exhibited no directional alignment, the surface structure of underlayer should be no main reason for the directional alignment of FeCo crystallites deposited on it. The dependence of hickness of FeCoB layer in Si/NiFe/Ru/FeCoB film on H(k) indicated that the in-plane magnetic anisotropy is caused by not only the structure of Ru underlayer but also oblique incidence effect of sputtered particles, which is attained in configuration of Facing Targets Sputtering (FTS) system. From these experimental results, remarkably high H(k) of 540 Oe was obtained. PMID:21449466

  9. Point defect processes in neutron irradiated Ni, Fe-15Cr-16Ni and Ti-added modified SUS316SS

    NASA Astrophysics Data System (ADS)

    Horiki, M.; Yoshiie, T.; Sato, K.; Xu, Q.

    2013-05-01

    The defect structures in Ni, Fe-15Cr-16Ni and Ti-added modified SUS316SS (modified SUS316) were examined after neutron irradiation below 0.3 dpa by the Japan Materials Testing Reactor and Belgian Reactor 2 to compare their defect structural evolution. The growth behaviour of interstitial-type dislocation loops (I-loops), stacking fault tetrahedra (SFTs) and voids was found to be quite different among these specimens. I-loops developed at lower temperatures in Ni than in Fe-15Cr-16Ni and modified SUS316, and more swelling occurred in Ni than in Fe-15Cr-16Ni. Finally, there were no voids in modified SUS316. These results were analysed in terms of the I-loop energy. A large discrepancy was found between the analytical results and experimental observations for Ni and modified SUS316, which suggests the formation of unfaulted I-loops directly from collision cascades. The growth of SFTs was detected in Fe-15Cr-16Ni and modified SUS316, and can be explained by a change in the dislocation bias of SFTs resulting from the absorption of alloying elements.

  10. Grain boundary character distribution of CuNiSi and FeNi alloys processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Azzeddine, H.; Baudin, T.; Helbert, A. L.; Brisset, F.; Larbi, F. Hadj; Tirsatine, K.; Kawasaki, M.; Bradai, D.; Langdon, T. G.

    2015-04-01

    In this work the Grain Boundary Character Distribution (GBCD) in general and the relative proportion of low-Σ CSL (Coincidence Site Lattice) grain boundaries are determined through EBSD in Cu-2.5Ni-0.6Si (wt.%) and Fe-36Ni (wt.%) alloys after processing by high-pressure torsion, equal- channel angular pressing and accumulative roll bonding.

  11. Large spin pumping effect in antisymmetric precession of Ni79Fe21/Ru/Ni79Fe21

    NASA Astrophysics Data System (ADS)

    Yang, H.; Li, Y.; Bailey, W. E.

    2016-06-01

    In magnetic trilayer structures, a contribution to the Gilbert damping of ferromagnetic resonance arises from spin currents pumped from one layer to another. This contribution has been demonstrated for layers with weakly coupled, separated resonances, where magnetization dynamics are excited predominantly in one layer and the other layer acts as a spin sink. Here, we show that trilayer structures in which magnetizations are excited simultaneously, antisymmetrically, show a spin-pumping effect roughly twice as large. The antisymmetric (optical) mode of antiferromagnetically coupled Ni79Fe21(8 nm)/Ru/Ni79Fe21(8 nm) trilayers shows a Gilbert damping constant greater than that of the symmetric (acoustic) mode by an amount as large as the intrinsic damping of Py ( Δα≃0.006 ). The effect is shown equally in field-normal and field-parallel to film plane geometries over 3-25 GHz. The results confirm a prediction of the spin pumping model and have implications for the use of synthetic antiferromagnets (SAF)-structures in GHz devices.

  12. A systematic ALCHEMI study of Fe-doped NiAl alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-06-01

    ALCHEMI site-occupation studies of alloying additions to ordered aluminide intermetallic alloys have been performed with varying degrees of success, depending on the ionization delocalization correction. This study examines the variation in the site-occupancy of Fe in B2-ordered NiAl vs solute concentration and alloy stoichiometry. The fraction of Fe on the `Ni` site is plotted vs Fe concentration. The good separation among the data from alloys of the three stoichiometries shows that the site occupancy of iron depends on the relative concentrations of the Ni and Al host elements; however a preference for the `Ni` site is clearly indicated.

  13. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  14. Thermal plasma synthesis of Fe{sub 1−x}Ni{sub x} alloy nanoparticles

    SciTech Connect

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    Fe-Ni alloy nanoparticles are of great interest because of diverse practical applications in the fields such as magnetic fluids, high density recording media, catalysis and medicine. We report the synthesis of Fe-Ni nanoparticles via thermal plasma route. Thermal plasma assisted synthesis is a high temperature process and gives high yields of production. Here, we have used direct arc thermal plasma plume of 6kw as a source of energy at operating pressure 500 Torr. The mixture of Fe-Ni powder in required proportion (Fe{sub 1−x}Ni{sub x}; x=0.30, 0.32, 0.34, 0.36, 0.38 and 0.40) was made to evaporate simultaneously from the graphite anode in thermal plasma reactor to form Fe-Ni bimetallic nanoparticles. The as synthesized particles were characterized by X-Ray Diffraction (XRD), Thermo-Gravimetric Analysis/Differential Scanning Calorimtry (TGA/DSC)

  15. Structural and magnetic properties of FeNi thin films fabricated on amorphous substrates

    SciTech Connect

    Tashiro, T. Y.; Mizuguchi, M. Kojima, T.; Takanashi, K.; Koganezawa, T.; Kotsugi, M.; Ohtsuki, T.

    2015-05-07

    FeNi films were fabricated by sputtering and rapid thermal annealing on thermally amorphous substrates to realize the formation of an L1{sub 0}-FeNi phase by a simple method. Structural and magnetic properties of FeNi films were investigated by varying the annealing temperature. L1{sub 0}-FeNi superlattice peaks were not observed in X-ray diffraction patterns, indicating no formation of L1{sub 0}-ordered phase, however, the surface structure systematically changed with the annealing temperature. Magnetization curves also revealed a drastic change depending on the annealing temperature, which indicates the close relation between the morphology and magnetic properties of FeNi films fabricated on amorphous substrates.

  16. Molecular evolution of gas cavity in [NiFeSe] hydrogenases resurrected in silico.

    PubMed

    Tamura, Takashi; Tsunekawa, Naoki; Nemoto, Michiko; Inagaki, Kenji; Hirano, Toshiyuki; Sato, Fumitoshi

    2016-01-01

    Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni-Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobacteria globally distributed under various anoxic conditions. Ancestral sequences of [NiFeSe] Hases were elucidated and their three-dimensional structures were recreated in silico using homology modelling and molecular dynamic simulation, which suggested that deep gas channels gradually developed in [NiFeSe] Hases under absolute anaerobic conditions, whereas the enzyme remained as a sealed edifice under environmental conditions of a higher oxygen exposure risk. The development of a gas cavity appears to be driven by non-synonymous mutations, which cause subtle conformational changes locally and distantly, even including highly conserved sequence regions. PMID:26818780

  17. Molecular evolution of gas cavity in [NiFeSe] hydrogenases resurrected in silico

    NASA Astrophysics Data System (ADS)

    Tamura, Takashi; Tsunekawa, Naoki; Nemoto, Michiko; Inagaki, Kenji; Hirano, Toshiyuki; Sato, Fumitoshi

    2016-01-01

    Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni-Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobacteria globally distributed under various anoxic conditions. Ancestral sequences of [NiFeSe] Hases were elucidated and their three-dimensional structures were recreated in silico using homology modelling and molecular dynamic simulation, which suggested that deep gas channels gradually developed in [NiFeSe] Hases under absolute anaerobic conditions, whereas the enzyme remained as a sealed edifice under environmental conditions of a higher oxygen exposure risk. The development of a gas cavity appears to be driven by non-synonymous mutations, which cause subtle conformational changes locally and distantly, even including highly conserved sequence regions.

  18. Modulus measurements in ordered Co-Al, Fe-Al, and Ni-Al alloys

    NASA Technical Reports Server (NTRS)

    Harmouche, M. R.; Wolfenden, A.

    1985-01-01

    The composition and/or temperature dependence of the dynamic Young's modulus for the ordered B2 Co-Al, Fe-Al, and Ni-Al aluminides has been investigated using the piezoelectric ultrasonic composite oscillator technique (PUCOT). The modulus has been measured in the composition interval 48.49 to 52.58 at. pct Co, 50.87 to 60.2 at. pct Fe, and 49.22 to 55.95 at. pct Ni for Co-Al, Fe-Al, and Ni-Al, respectively. The measured values for Co-Al are in the temperature interval 300 to 1300 K, while those for the other systems are for ambient temperature only. The data points show that Co-Al is stiffer than Fe-Al, which is stiffer than Ni-Al. The data points for Fe-Al and Ni-Al are slightly higher than those reported in the literature.

  19. NiFe2O4/graphene nanocomposites with tunable magnetic properties

    NASA Astrophysics Data System (ADS)

    Heidari, Elham Kamali; Ataie, Abolghasem; Sohi, Mahmoud Heydarzadeh; Kim, Jang-Kyo

    2015-04-01

    Novel NiFe2O4/graphene nanocomposites were synthesized via facile, one-pot solvothermal route, and the effects of processing conditions and composition on their magnetic properties have been studied. The nanocomposites consisted of monolayer graphene sheets decorated with uniformly dispersed NiFe2O4 nanoparticles of 6 nm in diameter. Increases in solvothermal temperature and time gave rise to improved crystallinity of NiFe2O4 nanoparticles and thus enhanced magnetic properties, while a high NiFe2O4 content resulted in a similar ameliorating effect on saturation magnetization, demonstrating tailored functional properties. A magnetic interaction between NiFe2O4/grahene was observed.

  20. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Yan, Ling-Hao; Wu, Rong-Ting; Bao, De-Liang; Ren, Jun-Hai; Zhang, Yan-Fang; Zhang, Hai-Gang; Huang, Li; Wang, Ye-Liang; Du, Shi-Xuan; Huan, Qing; Gao, Hong-Jun

    2015-07-01

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms were adsorbed on the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that Fe sited in the center of the molecule is the most stable configuration, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Therefore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties. Project supported by the National Natural Science Foundation of China (Grant Nos. 61390501, 51325204, and 11204361), the National Basic Research Program of China (Grant Nos. 2011CB808401 and 2011CB921702), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ1203451), the National Supercomputing Center in Tianjin, China, and the Chinese Academy of Sciences.

  1. Effects of Ag additions on melt-spun RE2Fe14B microstructure and texture

    SciTech Connect

    Oster, N.T.; Cavanaugh, D.T.; Dennis, K.W.; Kramer, M.J.; McCallum, R.W.; Anderson, I.E.

    2012-03-07

    Control of microstructure and texture is of critical importance in forming rare earth (RE)-iron-boron particulate suitable for anisotropic polymer-bonded permanent magnets and anisotropic sintered permanent magnets. In this study, the selected approach to controlling grain size, while maintaining texture, is through stabilization and refinement of directional growth in melt-spun ribbons. Varying concentrations of Ag were added to melt-spun ribbons of composition (Y{sub 0.55}Nd{sub 0.45}){sub 2.2}Fe{sub 14}B{sub 1.1}. Effects on microstructure and texture were observed through scanning electron microscopy (SEM) and x-ray diffraction (XRD). It was determined that Ag stabilized columnar growth (compared to alloys with no Ag added) with additions as small as 0.3 at. %, but the Ag also produced a unique texture in the ribbons. In RE-Fe-B ribbons without Ag, strong <001> texture is observed at the free surface and a mechanism has been established. In all Ag-containing ribbons, the observed texture is canted to both the c- and a-axes, but the mechanism remains unclear.

  2. Effects of Ag additions on melt-spun RE2Fe14B microstructure and texture

    SciTech Connect

    Oster, N.T.; Cavanaugh, D.T.; Dennis, K.W.; Kramer, Matthew; McCallum, R.W.; Anderson, Iver

    2012-03-07

    Control of microstructure and texture is of critical importance in forming rare earth (RE)-iron-boron particulate suitable for anisotropic polymer-bonded permanent magnets and anisotropic sintered permanent magnets. In this study, the selected approach to controlling grain size, while maintaining texture, is through stabilization and refinement of directional growth in melt-spun ribbons. Varying concentrations of Ag were added to melt-spun ribbons of composition (Y0.55Nd0.45)2.2Fe14B1.1. Effects on microstructure and texture were observed through scanning electron microscopy (SEM) and x-ray diffraction (XRD). It was determined that Ag stabilized columnar growth (compared to alloys with no Ag added) with additions as small as 0.3 at. %, but the Ag also produced a unique texture in the ribbons. In RE-Fe-B ribbons without Ag, strong <00l> texture is observed at the free surface and a mechanism has been established. In all Ag-containing ribbons, the observed texture is canted to both the c- and a-axes, but the mechanism remains unclear.

  3. Phonon densities of states of face-centered-cubic Ni-Fe alloys

    SciTech Connect

    Lucas, Matthew; Mauger, L; Munoz, Jorge A.; Halevy, I; Horwath, J; Semiatin, S L; Leontsev, S. O.; Stone, Matthew B; Abernathy, Douglas L; Xiao, Yuming; Chow, P; Fultz, B.

    2013-01-01

    Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to determine the phonon densities of states of face-centered-cubic Ni-Fe alloys. Increasing Fe concentration results in an average softening of the phonon modes. Chemical ordering of the Ni0.72Fe0.28 alloy results in a reduction of the partial vibrational entropy of the Fe atoms but does not significantly change the partial vibrational entropy of the Ni atoms. Changes in the phonon densities of states with composition and chemical ordering are discussed and analyzed with a cluster expansion method.

  4. The Effect of Ni on the Fe-S system to 36 GPa

    NASA Astrophysics Data System (ADS)

    Stewart, A. J.; Schmidt, M. W.; van Westrenen, W.; Liebske, C.

    2005-12-01

    The metallic cores of the terrestrial planets are dominated by an iron-nickel-light element alloy. Sulfur is a major candidate for the dominant light element component, as such its phase relations with Fe-Ni metals are of paramount importance to understanding the nature of the cores of differentiated planets. Much previous work has focused on examining the phase diagram of the Fe-S binary, however only a few studies have yet included nickel as a major element. Here we present equilibrium multi-anvil research into metallic core phases to pressures equivalent to the center of Mars. In this work a series of experiments have been performed in both the Fe-S and Fe-Ni-S systems at 23 and 36 GPa and temperatures between 850 and 1600°C. The aim of these experiments was to determine the effect of nickel on the eutectic temperature and composition of the Fe-S system and to establish the Fe-S binary phase relations at much increased pressures. Four starting materials were prepared (in wt%): Fe60Ni34S6; Fe77Ni17S6; Fe86Ni8S6 (roughly corresponding to the Earth's core Fe:Ni ratio) and Fe94S6 from pure iron, pure sulfur and a Fe64Ni36 pre-alloy. Multi-anvil experiments were run at ETH Zurich using a 10/3.5 assembly on WC cubes and a 7/2 assemblage on sintered diamond cubes in a true split sphere apparatus. Both assemblies are symmetrical with respect to the furnace' mid-plane and use a radial thermocouple, allowing for two experimental charges within one run. This setup greatly reduces the number of experiments to be performed. Results indicate that nickel has a strong effect on the eutectic temperature, but only a minor effect on the composition of eutectic liquids. At 23 GPa, increasing nickel quantities, to maximum 34 wt%, increase the amount of divergence of the eutectic point from the pure Fe-S system. We find the eutectic point for the Fe-S system at 23 GPa to occur at 14.5 wt% sulfur and a temperature of 1025°C while the addition of up to 34 wt% Ni progressively shifts

  5. Surface phonons of NiO(001) ultrathin films grown pseudomorphically on Ag(001)

    NASA Astrophysics Data System (ADS)

    Kostov, K. L.; Polzin, S.; Schumann, F. O.; Widdra, W.

    2016-01-01

    For an ultrathin NiO(001) film of 4 monolayer (ML) thickness grown on Ag(001), the vibrational properties have been determined by high-resolution electron energy loss spectroscopy (HREELS). For the well-ordered pseudomorphically grown film, nine phonon modes have been identified and their dispersions have been revealed along the ΓbarΧbar high-symmetry direction. The comparison with phonon data for a 25 ML thick NiO(001) film shows that the NiO(001) phonon properties are already fully developed at 4 ML. Significant differences are found for the surface-localized phonon S6 which has an increased dispersion for the ultrathin film. The dipole-active Fuchs-Kliewer phonon-polariton exhibits a narrower lineshape than the mode found for a single-crystal surface, which might hint to a reduced antiferromagnetic coupling in the ultrathin film.

  6. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    NASA Astrophysics Data System (ADS)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  7. Transport and pinning properties of Ag-doped FeSe0.94

    NASA Astrophysics Data System (ADS)

    Nazarova, E.; Balchev, N.; Nenkov, K.; Buchkov, K.; Kovacheva, D.; Zahariev, A.; Fuchs, G.

    2015-02-01

    We investigated the superconducting transition and the pinning properties of undoped and Ag-doped FeSe0.94 at magnetic fields up to 14 T. We established that, due to Ag addition, the hexagonal phase formation in melted FeSe0.94 samples is suppressed and the grain connectivity is strongly improved. The obtained superconducting zero-field transition becomes sharp, with a transition width below 1 K. Tc and the upper critical field were found to increase, while the normal-state resistivity was significantly reduced, becoming comparable with that of FeSe single crystals. In addition, a considerable magnetoresistance was observed due to Ag doping. The resistive transition of undoped and Ag-doped FeSe0.94 is dominated by a thermally activated flux flow. From the activation energy U versus H dependence, we found a crossover from single-vortex pinning to a collective-creep pinning behavior by increasing the magnetic field.

  8. Growth and ordering of Ni(II) diphenylporphyrin monolayers on Ag(111) and Ag/Si(111) studied by STM and LEED.

    PubMed

    Murphy, B E; Krasnikov, S A; Cafolla, A A; Sergeeva, N N; Vinogradov, N A; Beggan, J P; Lübben, O; Senge, M O; Shvets, I V

    2012-02-01

    The room temperature self-assembly and ordering of (5,15-diphenylporphyrinato)nickel(II) (NiDPP) on the Ag(111) and Ag/Si(111)-(√3 × √3)R30° surfaces have been investigated using scanning tunnelling microscopy and low-energy electron diffraction. The self-assembled structures and lattice parameters of the NiDPP monolayer are shown to be extremely dependent on the reactivity of the substrate, and probable molecular binding sites are proposed. The NiDPP overlayer on Ag(111) grows from the substrate step edges, which results in a single-domain structure. This close-packed structure has an oblique unit cell and consists of molecular rows. The molecules in adjacent rows are rotated by approximately 17° with respect to each other. In turn, the NiDPP molecules form three equivalent domains on the Ag/Si(111)-(√3 × √3)R30° surface, which follow the three-fold symmetry of the substrate. The molecules adopt one of three equivalent orientations on the surface, acting as nucleation sites for these domains, due to the stronger molecule-substrate interaction compared to the case of the Ag(111). The results are explained in terms of the substrate reactivity and the lattice mismatch between the substrate and the molecular overlayer. PMID:22223550

  9. Si/NiFe seed layers for Ru intermediate layer in perpendicular magnetic recording tape media

    NASA Astrophysics Data System (ADS)

    Saemma, Gaku; Takahashi, Shota; Matsunuma, Satoshi; Inoue, Tetsutaro; Nakagawa, Shigeki

    2012-04-01

    Si/NiFe seed layers prepared at room temperature is effective to attain better c-axis orientation of Ru intermediate layer in the FeCoB/Ru/CoPtCr-SiO2 granular type recording tape media. The crystallinity and c-axis orientation of Ru layer with Si/NiFe seed layers were improved than that without Si/NiFe seed layer deposited on the laminated FeCoB SULs. When the Ru is thicker than 8 nm, Δθ50 of the CoPtCr-SiO2 recording layer shows small value of about 6.5°. Furthermore, even though the Ru thickness was only 3 nm, the Δθ50 retained comparatively small value of 8.0°. Si/NiFe layer is effective as a seed layer for the Ru intermediate layer.

  10. Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase

    SciTech Connect

    Smith, Dayle MA; Xiong, Yijia; Straatsma, TP; Rosso, Kevin M.; Squier, Thomas C.

    2012-05-09

    Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexible in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.

  11. The effect of Ni pre-implantation on surface morphology and optical absorption properties of Ag nanoparticles embedded in SiO2

    NASA Astrophysics Data System (ADS)

    Shen, Yanyan; Qi, Ting; Qiao, Yu; Yu, Shengwang; Hei, Hongjun; He, Zhiyong

    2016-02-01

    The effect of Ni ion fluence on Ag nucleation and particle growth was investigated by sequentially implantation of 60 keV Ni ions at fluences of 1 × 1016, 5 × 1016, 1 × 1017 ions/cm2 and 70 keV Ag ions at a fluence of 5 × 1016 ions/cm2. Due to the modification of the deposition and accumulation process of Ag implants caused by Ni pre-implantation, the surface morphology, structures, and optical absorption properties of the Ag nanoparticles (NPs) depends strongly on the Ni fluences. UV-vis absorption spectroscopy study showed that the introducing of Ni atoms lead to intensity decrease in the Ag SPR band. Remarkable local concentration increase of Ag profiles appeared for the sample pre-implanted by Ni ions of 5.0 × 1016 ions/cm2. In particular, the AgNi alloy NPs with dual absorption peaks centered at 406 nm and 563 nm have been formed after 600 °C annealing in Ar atmosphere. However, at a low fluence of 1.0 × 1016 ions/cm2, only small increase of the local Ag concentration than the Ag ions singly implanted sample can be observed. At a high fluence of 1.0 × 1017 ions/cm2, lots Ag atoms are trapped close to the surface, which result in heavy sputtering loss of Ag atoms and the sublimation of Ag atoms after 600 °C annealing.

  12. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the

  13. Comparison of microwave absorption properties of SrFe12O19, SrFe12O19/NiFe2O4, and NiFe2O4 particles

    NASA Astrophysics Data System (ADS)

    Mehdipour, M.; Shokrollahi, H.

    2013-07-01

    In this study, ferrimagnetic (SrFe12O19, SrFe12O19/NiFe2O4, and NiFe2O4) nanostructure particles were synthesized by the co-precipitation of chloride salts using the sodium hydroxide solution. The resulting precursors were heat-treated at 1100 °C for 4 h. After cooling in the furnace, the ferrite powders were pressed at 10 bars and then sintered at 1200 °C for 4 h. The saturation magnetization was increased and the coercivity was decreased by sintering (because of morphology changing) and alternating of the ferrite kind. For example, at SrFe12O19, the saturation magnetization was increased from 291 G to 300 G and the coercivity was decreased from 2.8 kOe to 1.8 kOe by sintering. The microwave absorption properties of the nanostructure particles were studied by ferromagnetic resonance and transmit-line theories, as well as Reflection Loss plots. Before sintering, the RL spectra of SrFe12O19 and the composite were below -3 dB, but they reached -6 dB at 11.1 GHz for NiFe2O4. The RL spectra of the samples were increased by sintering due to reduction of porosity and damping factor. The maximum microwave absorption reached -35 dB (at resonance frequency) for the NiFe2O4 state.

  14. Magnetostatic interactions in mesoscopic Ni80Fe20 ring arrays

    NASA Astrophysics Data System (ADS)

    Wang, J.; Adeyeye, A. O.; Singh, N.

    2005-12-01

    We investigate, directly using magnetic force microscopy, the effect of magnetostatic interactions in arrays of Ni80Fe20 mesoscopic rings. The rings were fabricated on silicon substrate using deep ultraviolet lithography at 248 nm exposure wavelength. We observed that the transitions from onion-to-vortex and vortex-to-reverse onion magnetic states are strongly dependent on the edge-to-edge-spacing of the rings due to dipolar magnetostatic interaction. For a closely packed ring array, the transition from onion to vortex state occurs at a much lower field due to collective magnetic switching as compared with widely spaced rings. The remanent magnetic state is found to be very sensitive to the orientation of the applied field due to shape anisotropy.

  15. Supercooling and structure of levitation melted Fe-Ni alloys

    NASA Technical Reports Server (NTRS)

    Abbaschian, G. J.; Flemings, M. C.

    1983-01-01

    A study has been made of the effect of supercooling, quenching rate, growth inhibitors, and grain refiners on the structure of levitation-melted Fe- 25 pct Ni alloys. A combination of three morphologies, dendritic, spherical, and mixed dendritic and spherical, is observed in samples superheated or supercooled by less than 175 K. At larger supercooling, however, only the spherical morphology is observed. The grain size and the grain boundary shape are found to be strongly dependent on the subgrain morphology but not on the quenching temperature. Considerable grain growth is evident in samples with spherical and mixed morphologies but not in the dendriitic samples. The average cooling rates during solidification and the heat transfer coefficients at the metal-quenching medium boundary are calculated. For samples solidified in water, molten lead, and ceramic molds, the heat transfer coefficients are 0.41, 0.52, and 0.15 w/sq cm, respectively.

  16. Charge characteristics of Ni/Fe traction cells

    SciTech Connect

    DeLuca, W.; Biwer, R.; Tummillo, A.; Yao, N.

    1983-01-01

    In a series of tests performed on 6-V Ni/Fe modules, a range of recharge levels and charge rates were examined for three charge methods. The results show that higher discharge capacities are achieved at higher recharge Ah levels, but at lower Ah and Wh cycling efficiencies. However, when the modules are continuously cycled at any recharge level, repeatable module performance is obtained. Consequently, the optimum combination of module discharge capacity and cycle efficiency can be obtained for any given application by proper selection of the recharge level. It was also observed that at a fixed recharge level, module charge acceptance is virtually independent of the charge method. The tested modules also exhibited a self-discharge loss in capacity that was directly related to the length of the open-circuit stand time after charging and module state-of-charge. This paper describes the test procedures used, presents the test data, and discusses the results obtained. 6 figures.

  17. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites.

    PubMed

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-03-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future. PMID:26884248

  18. Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.

    PubMed

    Dai, Ying; Chan, Yingzi; Jiang, Baojiang; Wang, Lei; Zou, Jinlong; Pan, Kai; Fu, Honggang

    2016-03-23

    Limitation of the oxygen reduction reaction (ORR) in single-chamber microbial fuel cells (SC-MFCs) is considered an important hurdle in achieving their practical application. The cathodic catalysts faced with a liquid phase are easily primed with the electrolyte, which provides more surface area for bacterial overgrowth, resulting in the difficulty in transporting protons to active sites. Ag/Fe/N/C composites prepared from Ag and Fe-chelated melamine are used as antibacterial ORR catalysts for SC-MFCs. The structure-activity correlations for Ag/Fe/N/C are investigated by tuning the carbonization temperature (600-900 °C) to clarify how the active-constituents of Ag/Fe and N-species influence the antibacterial and ORR activities. A maximum power density of 1791 mW m(-2) is obtained by Ag/Fe/N/C (630 °C), which is far higher than that of Pt/C (1192 mW m(-2)), only having a decline of 16.14% after 90 days of running. The Fe-bonded N and the cooperation of pyridinic N and pyrrolic N in Ag/Fe/N/C contribute equally to the highly catalytic activity toward ORR. The ·OH or O2(-) species originating from the catalysis of O2 can suppress the biofilm growth on Ag/Fe/N/C cathodes. The synergistic effects between the Ag/Fe heterojunction and N-species substantially contribute to the high power output and Coulombic efficiency of Ag/Fe/N/C catalysts. These new antibacterial ORR catalysts show promise for application in MFCs. PMID:26938657

  19. Evaluation of the antibacterial activity of Ag/Fe3O4 nanocomposites synthesized using starch.

    PubMed

    Ghaseminezhad, Seyedeh Masumeh; Shojaosadati, Seyed Abbas

    2016-06-25

    Ag/Fe3O4 nanocomposites were successfully synthesized by a facile and cost-effective method using starch. Starch acts as both a biocompatible capping agent for Fe3O4 nanoparticles and a reducing agent for the reduction of silver ions in an alkaline medium. Samples were characterized using several analytical techniques including field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), and Fourier-transform infrared (FT-IR) spectroscopy. The vibrating sample magnetometer revealed that the nanocomposites were superparamagnetic. The Ag/Fe3O4 nanocomposites demonstrated a high-antibacterial activity against Escherichia coli as evaluated by means of minimum inhibitory concentration. The characteristics and antibacterial activity of the nanocomposites were significantly influenced by the concentration of silver nitrate and pH. PMID:27083838

  20. Laser-wavelength dependence of the picosecond ultrasonic response of a NiFe/NiO/Si structure

    NASA Astrophysics Data System (ADS)

    Bosco, C. A.; Azevedo, A.; Acioli, L. H.

    2002-09-01

    Ultrafast optical excitation and detection of acoustic phonons has been used to analyze ultrathin films composed of NiFe/NiO/Si which are important for applications in magnetic storage and processing. Results are presented on the wavelength dependence of the ultrasonic response of the thin NiO film and bulk Si. Significant changes are observed between detection using the fundamental and the second harmonic of the femtosecond laser as the probe beam. Beatings between low order longitudinal phonons in the NiO layer are observed and measurements of its refractive index and absorption coefficients are performed.

  1. Redetermination of the Fe-rich portion of the Fe-Ni-Co phase diagram

    NASA Technical Reports Server (NTRS)

    Widge, S.; Goldstein, J. I.

    1977-01-01

    The iron rich portion of the Fe-Ni-Co ternary diagram was determined at four temperatures. The phase boundaries and tie-lines of the (alpha + gamma) phase field were measured by analyzing the alpha and gamma phases with an electron microprobe. Grain boundary allotrimorphs of the alpha phase were observed in the polished and etched sections of samples which were step cooled from the gamma phase into the (alpha + gamma) region. Widmanstaetten-type microstructures composed of gamma-precipitates were observed in samples which were directly heated from room temperature into the (alpha + gamma) region.

  2. Cyanide-bridged NiCr and alternate NiFe-NiCr magnetic ultrathin films on functionalized Si(100) surface.

    PubMed

    Tricard, Simon; Costa-Coquelard, Claire; Mazerat, Sandra; Rivière, Eric; Huc, Vincent; David, Christophe; Miserque, Frédéric; Jegou, Pascale; Palacin, Serge; Mallah, Talal

    2012-04-21

    Sequential growth in solution (SGS) was performed for the magnetic cyanide-bridged network obtained from the reaction of Ni(H(2)O)(2+) and Cr(CN)(6)(3-) (referred to as NiCr) on a Si(100) wafer already functionalized by a Ni(II) complex. The growth process led to isolated dots and a low coverage of the surface. We used the NiFe network as a template to improve the growth of the magnetic network. We elaborated alternate NiFe (paramagnetic)-NiCr (ferromagnetic) ultrathin films around 6 nm thick. The magnetic behaviour confirmed the alternate structure with the ferromagnetic zones isolated between the paramagnetic ones since the evolution of the blocking temperature is consistent with the evolution of the layers' thickness expected from the SGS process. PMID:22344390

  3. Vapor phase oxidation of benzoic acid to phenol over a novel catalyst system consisting of NiO and NiFe{sub 2}O{sub 4}

    SciTech Connect

    Miki, Jun; Asanuma, Minoru; Tachibana, Yakudo

    1995-02-01

    NiO and Fe{sub 2}O{sub 3} were found to show the catalytic activities for the vapor phase oxidation of benzoic acid to form phenol. Furthermore, the enhancement of the activity and phenol selectivity were achieved by combined Ni and Fe components prepared by precipitation. The calcination temperature and the atomic ratio of Ni to Fe were found to be important for the enhancement of activity. The homogeneous distribution profile of NiO and NiFe{sub 2}O{sub 4} on the surface and in the bulk of the catalyst is essential for the optimization of phenol formation. 32 refs., 7 figs., 4 tabs.

  4. Structural and magnetic properties of Ni/Fe nanostructures on Ir(111)

    NASA Astrophysics Data System (ADS)

    Iaia, Davide; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland

    2016-04-01

    The structural and magnetic properties of one atomic layer thin nanostructures of Ni deposited on fcc Fe monolayer stripes on Ir(111) have been studied by (spin-resolved) scanning tunneling microscopy measurements. Ni grows dominantly in fcc stacking on Ir(111), whereas it forms a dense reconstruction pattern on Fe/Ir(111), with bridge site dislocation lines separating triangularly shaped fcc and hcp regions. In the interior of the Ni nanostructures, fcc and hcp areas are of comparable size, but the fcc stacking dominates at the edges. The magnetic nanoskyrmion lattice of Fe/Ir(111) undergoes a transition to ferromagnetism where covered with a single layer of Ni. The Ni/Fe bilayer islands show an out-of-plane easy axis and can be switched by external magnetic fields of only 1.0 T-1.5 T.

  5. Behavior of Ni, Zn and Cr during low temperature aqueous Fe oxidation processes on Mars

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Yan S.; McLennan, Scott M.

    2013-05-01

    The behavior of Ni(II), Zn(II) and Cr(III) during the melanterite (FeSO4·7H2O) to hematite (α-Fe2O3) oxidative transformations involving evolution pathways via jarosite ((H3O,K)Fe3(OH)6(SO4)2), schwertmannite (Fe8O8(OH)6(SO4)) and goethite (α-FeOOH) were investigated in an acidic saturated MgSO4 matrix. Results provide important clues about how elevated levels of trace elements are incorporated into the secondary Fe mineralogy assemblages found on Mars and the mechanism for formation of hematitic concretions at Meridiani Planum on Mars. Our results demonstrate that starting at the same concentrations in the initial solution, final amounts of Ni, Zn and Cr in hematite via different pathways are very different. In Path 1 (melanterite → jarosite → hematite), partitioning of Ni, Zn and Cr into jarosite and hematite (formed through dissolution of jarosite) is most likely in the order: Cr > Zn > Ni. In Path 2 (melanterite → schwertmannite → goethite → hematite), schwertmannite and goethite exhibited strong affinities for divalent Ni and Zn. During such a pathway, Ni should accumulate more than Zn by at least a factor of two, and partitioning of Ni, Zn and Cr to the hematite is most likely in the order: Cr > Ni > Zn. Therefore, our results suggest that the high Ni and moderate Zn distribution pattern observed in Meridiani hematitic spherule-bearing samples can be explained best by the schwertmannite-goethite to hematite pathway (Path 2), without need for an additional high Ni source in this region. Although the lack of goethite at Meridiani renders it uncertain if goethite ever served as a precursor to facilitate hematite formation, dehydration of nano-crystalline goethite is thermodynamically favored and cannot be ruled out. On the other hand, if hematitic concretions were formed by dissolution of jarosite (Path 1), then much higher initial Ni/Zn ratios than 1 in initial diagenetic fluids may be necessary to explain the elevated levels of Ni in the spherules

  6. The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces

    SciTech Connect

    Fu, Tsu-Yi Wu, Jia-Yuan; Jhou, Ming-Kuan; Hsu, Hung-Chan

    2015-05-07

    Sub-monolayer iron atoms were deposited at room temperature on Ge (111)-c(2 × 8) substrates with and without Ag buffer layers. The behavior of Fe islands growth was investigated by using scanning tunneling microscope (STM) after different annealing temperatures. STM images show that iron atoms will cause defects and holes on substrates at room temperature. As the annealing temperature rises, iron atoms pull out germanium to form various kinds of alloyed islands. However, the silver layer can protect the Ag/Ge(111)-(√3×√3) reconstruction from forming defects. The phase diagram shows that ring, dot, and triangular defects were only found on Ge (111)-c(2 × 8) substrates. The kinds of islands found in Fe/Ge system are similar to Fe/Ag/Ge system. It indicates that Ge atoms were pulled out to form islands at high annealing temperatures whether there was a Ag layer or not. But a few differences in big pyramidal or strip islands show that the silver layer affects the development of islands by changing the surface symmetry and diffusion coefficient. The structure characters of various islands are also discussed.

  7. Synthesis, characterization and low temperature electrical conductivity of Polyaniline/NiFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Prasanna, G. D.; Prasad, V. B.; Jayanna, H. S.

    2015-02-01

    Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity cRT decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.

  8. Highly Efficient Antibacterial and Pb(II) Removal Effects of Ag-CoFe2O4-GO Nanocomposite.

    PubMed

    Ma, Shuanglong; Zhan, Sihui; Jia, Yanan; Zhou, Qixing

    2015-05-20

    Ag-CoFe2O4-graphene oxide (Ag-CoFe2O4-GO) nanocomposite was synthesized by doping silver and CoFe2O4 nanoparticles on the surface of GO, which was used to purify both bacteria and Pb(II) contaminated water. The Ag-CoFe2O4-GO nanomaterial was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), cyclic voltammetry (CV), and magnetic property tests. It can be found that Ag-CoFe2O4-GO nanocomposite exhibited excellent antibacterial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus compared with CoFe2O4, Ag-CoFe2O4, and CoFe2O4-GO composite. This superior disinfecting effect was possibly attributed to the combination of GO nanosheets and Ag nanoparticles. Several antibacterial factors including temperature, time, and pH were also investigated. It was obvious that E. coli was more susceptible than S. aureus toward all the four types of nanomaterials. The structural difference of bacterial membranes should be responsible for the resistant discrepancy. We also found that Ag-CoFe2O4-GO inactivated both bacteria in an irreversibly stronger manner than Ag-CoFe2O4 and CoFe2O4-GO. The Pb(II) removal efficiency with all the nanomaterials showed significant dependence on the surface area and zeta potential of the materials. In this work, not only did we demonstrate the simultaneous superior removal efficiency of bacteria and Pb(II) by Ag-CoFe2O4-GO but also the antibacterial mechanism was discussed to have a better understanding of the interaction between Ag-CoFe2O4-GO and bacteria. In a word, taking into consideration the easy magnetic separation, bulk availability, and irreversibly high antibacterial activity of Ag-CoFe2O4-GO, it is the very promising candidate material for advanced antimicrobial or Pb(II) contaminated water treatment. PMID:25905556

  9. Evidence for Ni-56 yields Co-56 yields Fe-56 decay in type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Kirshner, Robert P.; Pinto, Philip A.; Leibundgut, Bruno

    1994-01-01

    In the prevailing picture of Type Ia supernovae (SN Ia), their explosive burning produces Ni-56, and the radioactive decay chain Ni-56 yields Co-56 yields Fe-56 powers the subsequent emission. We test a central feature of this theory by measuring the relative strengths of a (Co III) emission feature near 5900 A and a (Fe III) emission feature near 4700 A. We measure 38 spectra from 13 SN Ia ranging from 48 to 310 days after maximum light. When we compare the observations with a simple multilevel calculation, we find that the observed Fe/Co flux ratio evolves as expected when the Fe-56/Co-56 abundance ratio follows from Ni-56 yields Co-56 yields Fe-56 decay. From this agreement, we conclude that the cobalt and iron atoms we observe through SN Ia emission lines are produced by the radioactive decay of Ni-56, just as predicted by a wide range of models for SN Ia explosions.

  10. Molecular evolution of gas cavity in [NiFeSe] hydrogenases resurrected in silico

    PubMed Central

    Tamura, Takashi; Tsunekawa, Naoki; Nemoto, Michiko; Inagaki, Kenji; Hirano, Toshiyuki; Sato, Fumitoshi

    2016-01-01

    Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni–Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobacteria globally distributed under various anoxic conditions. Ancestral sequences of [NiFeSe] Hases were elucidated and their three-dimensional structures were recreated in silico using homology modelling and molecular dynamic simulation, which suggested that deep gas channels gradually developed in [NiFeSe] Hases under absolute anaerobic conditions, whereas the enzyme remained as a sealed edifice under environmental conditions of a higher oxygen exposure risk. The development of a gas cavity appears to be driven by non-synonymous mutations, which cause subtle conformational changes locally and distantly, even including highly conserved sequence regions. PMID:26818780

  11. The dependence of Ni-Fe bioxide composites nanoparticles on the FeCl2 solution used

    PubMed Central

    2012-01-01

    Background Ni2O3- γ-Fe2O3 composite nanoparticles coated with a layer of 2FeCl3·5H2O can be prepared by co-precipitation and processing in FeCl2 solution. Using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) diffraction techniques, the dependence of the preparation on the concentration of the FeCl2 treatment solution is revealed. Results The magnetization of the as-prepared products varied non-monotonically as the FeCl2 concentration increased from 0.020 M to 1.000 M. The Experimental results show that for the composite nanoparticles, the size of the γ-Fe2O3 phase is constant at about 8 nm, the Ni2O3 phase decreased and the 2FeCl3·5H2O phase increased with increasing concentration of FeCl2 solution. The magnetization of the as-prepared products mainly results from the γ-Fe2O3 core, and the competition between the reduction of the Ni2O3 phase with the increase of the 2FeCl3·5H2O phase resulted in the apparent magnetization varying non-monotonically. Conclusions When the concentration of FeCl2 treatment solution did not exceed 0.100 M, the products are spherical nanoparticles of size about 11 nm; their magnetization increased monotonically with increasing the concentration of FeCl2 solution due to the decreasing proportion of Ni2O3 phase. PMID:23110795

  12. Synthetic Active Site Model of the [NiFeSe] Hydrogenase

    PubMed Central

    Wombwell, Claire; Reisner, Erwin

    2015-01-01

    A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe(‘S2Se2’)(CO)3] (H2‘S2Se2’=1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni(‘S2Se2’)] with [Fe(CO)3bda] (bda=benzylideneacetone). X-ray crystal structure analysis confirms that [NiFe(‘S2Se2’)(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe(‘S2Se2’)(CO)3] with the previously reported thiolate analogue [NiFe(‘S4’)(CO)3] (H2‘S4’=H2xbsms=1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) showed that the selenolate groups in [NiFe(‘S2Se2’)(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe(‘S2Se2’)(CO)3] and [NiFe(‘S4’)(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution. PMID:25847470

  13. H+-induced irradiation damage resistance in Fe- and Ni-based metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Hongran; Mei, Xianxiu; Zhang, Xiaonan; Li, Xiaona; Wang, Yingmin; Sun, Jianrong; Wang, Younian

    2016-05-01

    In this study, use of 40-keV H+ ion for irradiating metallic glass Fe80Si7.43B12.57 and Ni62Ta38 as well as metallic tungsten (W) at fluences of 1 × 1018 and 3 × 1018 ions/cm2, respectively, was investigated. At the fluence of 1 × 1018 ions/cm2, a crystalline layer appeared in metallic glass Fe80Si7.43B12.57, with α-Fe as the major crystalline phase, coupled with a little Fe2B, Fe3B, and metastable β-Mn-type phase. Fe80Si7.43B12.57 exhibited good soft magnetic properties after irradiation. At the fluence of 3 × 1018 ions/cm2, Ni62Ta38 was found to be amorphous-based, with a little μ-NiTa and Ni3Ta phases. No significant irradiation damage phenomenon appeared in metallic glasses Fe80Si7.43B12.57 and Ni62Ta38. Blistering, flaking, and other damage occurred on the surface of metallic W, and the root-mean-square (RMS) roughness increased with the increase of fluence. Metallic glass Ni62Ta38 exhibited better resistance to H+ irradiation than Fe80Si7.43B12.57, both of which were superior to the metallic W.

  14. s-process nucleosynthesis in massive stars: new results on 60Fe, 62Ni and 64Ni

    NASA Astrophysics Data System (ADS)

    Domingo-Pardo, C.; Dillmann, I.; Faestermann, T.; Giesen, U.; Görres, J.; Heil, M.; Horn, S.; Käppeler, F.; Köchli, S.; Korschinek, G.; Lachner, J.; Maiti, M.; Marganiec, J.; Neuhausen, J.; Nolte, R.; Poutivtsev, M.; Reifarth, R.; Rugel, R.; Schumann, D.; Uberseder, E.; Voss, F.; Walter, S.; Wiescher, M.

    2009-01-01

    The s process synthesizes the elements between Fe and Sr in massive stars during two major evolutionary stages, convective core He burning and C shell burning. This scenario implies fascinating consequences for the chemical evolution of the star. For instance, the neutron capture rate at each isotope can have a big influence on the production of many of the subsequent higher mass isotopes. Correspondingly, one needs to know the (n,γ) cross sections of the involved isotopes with high accuracy in order to determine the abundance pattern reliably and to obtain a consistent picture of this stage. This contribution gives an overview on recent and future experiments for the Fe/Ni nucleosynthesis in massive stars. New results on 60Fe, 62Ni and 64Ni are reported. 60Fe is mostly produced during the short convective C shell burning phase, where peak densities of ~1011 cm-3 are reached, prior to the SN explosion. The stellar (n,γ) cross section of 60Fe could be measured with a 1 μg sample obtained at PSI (Switzerland), which was sufficient for an activation measurement using the intense, quasi-stellar neutron field for a thermal energy of 25 keV at the Karlsruhe Van de Graaff accelerator. The FZK accelerator was also used for an activation of 62Ni, whereas in this case, the number of 63Ni nuclei produced were determined via accelerator mass spectroscopy at the Maier-Leibnitz-Laboratorium in Garching/Munich. The (n,γ) cross section of 64Ni at a stellar temperature equivalent to 50 keV has been measured in a collaboration between FZK Karlsruhe and PTB Braunschweig. Finally, complementary time of flight measurements on the Fe and Ni isotopes over a broad energy range are planned at the white neutron source n_TOF of CERN for the future campaign in 2009.

  15. Interface-assisted magnetoresistance behavior for ultrathin NiFe films

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Long; Chen, Xi; Yang, Kang; Han, Gang; Teng, Jiao; Li, Xu-Jing; Yang, Guang; Liu, Qian-Qian; Liu, Yi-Wei; Ding, Lei; Yu, Guang-Hua

    2015-11-01

    Interface-assisted magnetoresistance (MR) behavior has been studied in Ta/MgO/NiFe/MgO/Ta multilayers by inserting a Mg metal layer between the NiFe layer and the top MgO layer. It is shown that MR ratio is about 31% larger than that in the films without Mg insertion. X-ray photoelectron spectroscopy and high resolution transmission electron microscope analyses show that the enhanced MR is primarily ascribed to effective control of chemical states at the NiFe/MgO interface and crystallization of the top MgO layer.

  16. NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure

    SciTech Connect

    Mlynczak, E.; Luches, P.

    2013-06-21

    The magnetic and structural properties of NiO/Fe epitaxial bilayers grown on MgO(001) were studied using magnetooptic Kerr effect (MOKE) and conversion electron Moessbauer spectroscopy (CEMS). The bilayers were prepared under ultra high vacuum conditions using molecular beam epitaxy with oblique deposition. Two systems were compared: one showing the exchange bias (100ML-NiO/24ML-Fe), ML stands for a monolayer, and another where the exchange bias was not observed (50ML-NiO/50ML-Fe). For both, the magnetic anisotropy was found to be complex, yet dominated by the growth-induced uniaxial anisotropy. The training effect was observed for the 100ML-NiO/24ML-Fe system and quantitatively described using the spin glass model. The composition and magnetic state of the interfacial Fe layers were studied using {sup 57}Fe-CEMS. An iron oxide phase (Fe{sup 3+}{sub 4}Fe{sup 2+}{sub 1}O{sub 7}), as thick as 31 A, was identified at the NiO/Fe interface in the as-deposited samples. The ferrimagnetic nature of the interfacial iron oxide film explains the complex magnetic anisotropy observed in the samples.

  17. Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn-3.5Ag and Ni/Cu substrate

    SciTech Connect

    Choi, W.K.; Lee, H.M.

    1999-11-01

    The binary eutectic Sn-3.5wt.%Ag alloy was soldered on the Ni/Cu plate at 250 C, the thickness of the Ni layer changing from 0 through 2 and 4 {micro}m to infinity, and soldering time changing from 30 to 120 s at intervals of 30 s. The infinite thickness was equivalent to the bare Ni plate. The morphology, composition and phase identification of the intermetallic compound (IMC, hereafter) formed at the interface were examined. Depending on the initial Ni thickness, different IMC phases were observed at 30 s: Cu{sub 6}Sn{sub 5} on bare Cu, detestable NiSn{sub 3} + Ni{sub 3}Sn{sub 4} on Ni(2 {micro}m)/Cu, Ni{sub 3}Sn{sub 4} on Ni(4 {micro}m)/Cu, and Ni{sub 3}Sn + Ni{sub 3}Sn{sub 4} on bare Ni. With increased soldering time, a Cu-Sn-based {eta}-(Cu{sub 6}Sn{sub 5}){sub 1{minus}x}Ni{sub x} phase formed under the pre-formed Ni-Sn IMC layer both at 60s in the Ni(2 {micro}m)/Cu plate and at 90s in the Ni(4 {micro}m)/Cu plate. The two-layer IMC pattern remained thereafter. The wetting behavior of each joint was different and it may have resulted from the type of IMC formed on each plate. The thickness of the protective Ni layer over the Cu plate was found to be an important factor in determining the interfacial reaction and the wetting behavior.

  18. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli

    PubMed Central

    2010-01-01

    Background Hydrogenases catalyze reversible reaction between hydrogen (H2) and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hyaA and hyaB genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability. Results Recombinant BL21 expressing [NiFe]-hydrogenase 1 actively produced H2 (12.5 mL H2/(h·L) in 400 mL glucose minimal medium under micro-aerobic condition, whereas the wild type BL21 did not produce H2 even when formate was added as substrate for formate hydrogenlyase (FHL) pathway. The majority of recombinant protein was produced as an insoluble form, with translocation of a small fraction to the membrane. However, the membrane fraction displayed high activity (~65% of total cell fraction), based on unit protein mass. Supplement of nickel and iron to media showed these metals contribute essentially to the function of [NiFe]-hydrogenase 1 as components of catalytic site. In addition, purified E. coli [NiFe]-hydrogenase 1 using his6-tag displayed oxygen-tolerant activity of ~12 nmol H2/(min·mg protein) under a normal aeration environment, compared to [FeFe]-hydrogenase, which remains inactive under this condition. Conclusions This is the first report on physiological function of E. coli [NiFe]-hydrogenase 1 for H2 production. We found that [NiFe]-hydrogenase 1 has H2 production ability even under the existence of oxygen. This oxygen-tolerant property is a significant advantage because it is not necessary to protect

  19. Effect of external magnetic field on valence-electron structures of Fe and Ni in Invar, Permalloy and the other Fe-Ni alloys by using Kβ-to-Kα X-ray intensity ratios.

    PubMed

    Alım, Bünyamin; Han, İbrahim; Demir, Lütfü

    2016-06-01

    The effect of external magnetic field on the valence-electron structures of Fe and Ni in various Fe-Ni alloy compositions was investigated by using X-ray fluorescence spectroscopy. Firstly, Kβ-to-Kα X-ray intensity ratios of Fe and Ni in Invar (Fe0.64Ni0.36), Permalloy (Fe0.20Ni0.80) and FexNi1-x (x=0, 0.40, 0.52, 0.55, 0.61, and 1) alloys were measured without any magnetic field and under 0.5 and 1T external magnetic fields, separately. Later, the valence-electron structures of Fe and Ni in both pure form and alloys were obtained by comparison of measured X-ray intensity ratios with the results of multi-configurations Dirac-Fock (MCDF) calculations. The results obtained for valence-electron structures of Fe and Ni in various Fe-Ni alloys were evaluated in terms of magnetic field effect, delocalization and/or charge transfer phenomena. The results have shown that valence electron structure of Fe and Ni in Fe-Ni alloys are dependent on both external magnetic field and concentration of alloy elements. PMID:26974486

  20. LaFe0.6Sb2: Strongly to weakly correlated system with Ni doping

    NASA Astrophysics Data System (ADS)

    Misuraca, J. C.; Simonson, J. W.; Kistner-Morris, J. J.; Puri, A.; Orvis, T.; Greene, L. H.; Aronson, M. C.

    2014-03-01

    Since the discovery of superconducting Ca1-xLaxFeAs2 with a Tc of 34 K, there has been an increasing interest in growing 112 iron pnictides in the search for high Tc superconductivity. We have grown large single crystals of LaFe0.6Sb2, which form in a tetragonal 112 structure with a significant amount of Fe vacancies, confirmed via single crystal x-ray diffraction. We present a doping study utilizing Ni which replaces both the Fe and vacancies while transforming the material from strongly to weakly correlated, as determined by low temperature heat capacity measurements. The Sommerfeld coefficient γ of the undoped crystal is 50 mJ/mol Fe K2, indicating a large mass enhancement, while LaNiSb2 is 5 mJ/mol Ni K2 with no vacancies and up to 18% interstitial Ni according to energy-dispersive x-ray spectroscopy. When doping LaFeSb2 with Ni, γ remains constant when normalized per transition metal, possibly indicating a constant density of states. A divergence appears in C/T vs. T2 once the vacancies are filled, at 89% Ni, and the divergence remains until the LaNiSb2 sample, which is a weakly correlated 1 K superconductor. We acknowledge funding via an NSSEFF from the Office of Assistant Secretary of Defense for Research and Engineering and via ICAM from the NSF International Materials Institute Award: DMR-0844115.

  1. Low-spin γ-Fe-Ni (γLS) proposed as a new mineral in Fe-Ni-bearing meteorites: Epitaxial intergrowth of γLS and tetrataenite as a possible equilibrium state at ~20-40 at% Ni

    NASA Astrophysics Data System (ADS)

    Rancourt, D. G.; Scorzelli, R. B.

    1995-09-01

    We argue that the so-called paramagnetic phase seen by Mössbauer spectroscopy in taenite lamella from octahedrite meteorites, ataxite meteorites, the metal particles of Fe-Ni-bearing chondrite meteorites, and synthetic particle-irradiated Fe-Ni alloys is a low-spin γ-Fe-Ni phase (γLS), related to the close packed low-spin phases seen in the pressure-temperature phase diagrams of both metallic Fe and synthetic Fe-Ni alloys and many other Fe-alloy systems. At a given composition, this γLS phase is quite distinct from the ordinary (high-spin) γ-phase (γHS) in that it has a different electronic structure associated with very different magnetic properties (small-moment antiferromagnetism versus large-moment ferromagnetism) and a lower lattice parameter. It should be considered a new mineral for which we suggest the name antitaenite. We further propose that in the meteorites γLS always occurs in a fine epitaxial intergrowth with tetrataenite (atomically ordered FeNi). This resolves outstanding difficulties in meteoritic and particle-irradiated Fe-Ni metallurgy.

  2. Novel synthesis of Ni-ferrite (NiFe{sub 2}O{sub 4}) electrode material for supercapacitor applications

    SciTech Connect

    Venkatachalam, V.; Jayavel, R.

    2015-06-24

    Novel nanocrystalline NiFe{sub 2}O{sub 4} has been synthesized through combustion route using citric acid as a fuel. Phase of the synthesized material was analyzed using powder X-ray diffraction. The XRD study revealed the formation of spinel phase cubic NiFe{sub 2}O{sub 4} with high crystallinity. The average crystallite size of NiFe{sub 2}O{sub 4} nanomaterial was calculated from scherrer equation. The electrochemical properties were realized by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The electrode material shows a maximum specific capacitance of 454 F/g with pseudocapacitive behavior. High capacitance retention of electrode material over 1000 continuous charging-discharging cycles suggests its excellent electrochemical stability. The results revealed that the nickel ferrite electrode is a potential candidate for energy storage applications in supercapacitor.

  3. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys

    SciTech Connect

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.; Lei, Hechang; Li, Lijun; Cekic, B.; Koteski, V.; Petrovic, C.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor Vzz=1.6 1021Vm-2 matches well with the results of Mössbauer spectroscopy and indicates that the Fe atoms occupy Ni sites.

  4. The Fe/Ni ratio in ionized nebulae: clues on dust depletion patterns

    NASA Astrophysics Data System (ADS)

    Delgado-Inglada, G.; Mesa-Delgado, A.; García-Rojas, J.; Rodríguez, M.; Esteban, C.

    2016-03-01

    We perform a homogeneous analysis of the Fe/Ni abundance ratio in eight Galactic planetary nebulae and three Galactic H II regions that include the Orion nebula, where we study four nebular zones and one shocked region. We use [Fe II], [Fe III], and [Ni III] lines, and ionization correction factors (ICFs) that account for the unobserved ions. We derive an ICF for nickel from an extensive grid of photoionization models. We compare our results with those derived by other authors for 16 neutral clouds in the solar neighbourhood with available Fe/Ni ratios in the literature. We find an excellent agreement between the ionized nebulae and the diffuse clouds, with both types of regions showing a clear correlation between the Fe/Ni ratios and the iron and nickel depletion factors. The trend shows that the objects with a relatively low depletion have near solar Fe/Ni ratios whereas at higher depletions the Fe/Ni ratio increases with the depletion. Our results confirm that, compared to iron atoms, nickel ones are more efficiently stuck to the dust grains in ambients where dust formation or growth have been more efficient.

  5. Preparation of soft magnetic composites for Fe particles coated with (NiZn)Fe2O4 via microwave treatment

    NASA Astrophysics Data System (ADS)

    Peng, Yuandong; Nie, Junwu; Zhang, Wenjun; Bao, Chongxi; Ma, Jian; Cao, Yang

    2015-12-01

    Soft magnetic composites (SMCs) of Fe particles coated with fine particle Ni0.5Zn0.5Fe2O4 ferrite were prepared via microwave heat treatment, and the magnetic properties and microstructures of these composites were investigated. The results show that a well-distributed Ni0.5Zn0.5Fe2O4 coating layer was formed on the surface of the Fe particles upon microwave annealing. The SMCs sample treated by microwave heating at 800 °C for 30 min under N2 had a perfect insulation layer between the Fe particles and showed stable permeability and low core loss as well as good magnetic characteristics over a wide frequency range.

  6. Structural and magnetic properties of epitaxial Fe/CoO bilayers on Ag(001)

    NASA Astrophysics Data System (ADS)

    Abrudan, R.; Miguel, J.; Bernien, M.; Tieg, C.; Piantek, M.; Kirschner, J.; Kuch, W.

    2008-01-01

    We have investigated the magnetic coupling between a metallic ferromagnet and an oxidic antiferromagnet in epitaxial single-crystalline Fe/CoO bilayers on Ag(001) using x-ray absorption spectroscopy. Absorption spectra taken from bilayers with different amounts of deposited Fe show only a weak indication for the formation of Fe oxide at the Fe/CoO interface. From the spectral shape, it is concluded that an FeO type of oxide is formed. X-ray magnetic circular dichroism (XMCD) measurements exhibit a sizable induced ferromagnetic signal at the CoL2,3 absorption edges, corresponding to an interface layer of 1.1 ML of CoO in which the Co magnetic moments couple with the Fe moments. The angular dependence of the Fe XMCD and Co x-ray magnetic linear dichroic signals at the L2,3 edges shows that the orientation of the Co and Fe spins is parallel along the crystallographic ⟨110⟩ directions.

  7. Seismic parameters of hcp-Fe alloyed with Ni and Si in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Lin, Jung-Fu; Alatas, Ahmet; Hu, Michael Y.; Zhao, Jiyong; Dubrovinsky, Leonid

    2016-02-01

    Iron alloyed with Ni and Si has been suggested to be a major component of the Earth's inner core. High-pressure results on the combined alloying effects of Ni and Si on seismic parameters of iron are thus essential for establishing satisfactory geophysical and geochemical models of the region. Here we have investigated the compressional (VP) and shear (Vs) wave velocity-density (ρ) relations, Poisson's ratio (ν), and seismic heterogeneity ratios (dlnρ/dlnVP, dlnρ/dlnVS, and dlnVP/dlnVS) of hcp-Fe and hcp-Fe86.8Ni8.6Si4.6 alloy up to 206 GPa and 136 GPa, respectively, using multiple complementary techniques. Compared with the literature velocity values for hcp-Fe and Fe-Ni-Si alloys, our results show that the combined addition of 9.0 wt % Ni and 2.3 wt % Si slightly increases the VP but significantly decreases the VS of hcp-Fe at a given density relevant to the inner core. Such distinct alloying effects on velocities of hcp-Fe produce a high ν of about 0.40 for the alloy at inner core densities, which is approximately 20% higher than that for hcp-Fe. Analysis of the literature high P-T results on VP and VS of Fe alloyed with light elements shows that high temperature can further enhance the ν of hcp-Fe alloyed with Ni and Si. Most significantly, the derived seismic heterogeneity ratios of this hcp alloy present a better match with global seismic observations. Our results provide a multifactored geophysical constraint on the compositional model of the inner core which is consistent with silicon being a major light element alloyed with Fe and 5 wt % Ni.

  8. Magnetoresistance of a (γ-Fe2O3)80Ag20 nanocomposite prepared in reverse micelles

    NASA Astrophysics Data System (ADS)

    Wiemann, Joan A.; Carpenter, Everett E.; Wiggins, Jason; Zhou, Weilie; Tang, Jinke; Li, Sichu; John, Vijay T.; Long, Gary J.; Mohan, Amitabh

    2000-05-01

    The magnetic and transport properties of a (γ-Fe2O3)80Ag20 nanocomposite, prepared by a reverse micelle technique, have been studied. γ-Fe2O3 nanoparticles and Ag particles were individually synthesized in reverse micelles. The nanocomposite material was then prepared by mixing the two different particles in a γ-Fe2O3/Ag molar ratio 80/20. The morphology of the nanoparticles was examined with transmission electron microscopy. Mössbauer spectra revealed no obvious presence of any divalent iron. Zero field cooled and field cooled magnetic susceptibilities indicated a blocking temperature of about 40 K. Negative magnetoresistance was observed resembling that in ball milled γ-Fe2O3/Ag nanocomposites. However, the magnitude of the negative magnetoresistance is smaller and is ˜2.2% at 220 K and 9 T. Two possible mechanisms, spin-dependent hopping and tunneling across magnetic barriers, are discussed.

  9. One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Yan, Junqing; Wu, Huan; Zhang, Yunxia; Liu, Shengzhong (Frank)

    2016-08-01

    Water splitting has been intensively investigated as a promising solution to resolve the future environmental and energy crises. The oxygen evolution reaction (OER) of the photo- and electric field-induced water splitting limits the development of other reactions, including hydrogen evolution reaction (HER). Fe, Ni and NiFe (hydro) oxide-based catalysts are generally acknowledged among the best candidates of OER catalysts for water splitting. Herein, we developed a one-pot simple hydrothermal process to assemble NiFe2O4 nanoparticles onto the α-Ni(OH)2 nanosheets. The first formed NiFe2O4 under high temperature and pressure environment induces and assists the α-Ni(OH)2 formation without any further additives, because the distance between the neighboring Ni atoms in the cubic NiFe2O4 is similar to that in the α-Ni(OH)2 {003} facets. We have synthesized a series of NiFe2O4/α-Ni(OH)2 compounds and find that the overpotential decreases with the increase of Ni(OH)2 content while the OER kinetics stays unchanged, suggesting that Ni(OH)2 plays a major role in overpotential while NiFe2O4 mainly affects the OER kinetics. The obtained NiFe2O4/α-Ni(OH)2 compounds is also found to be a promising co-catalyst for the photocatalytic water oxidation. In fact, it is even more active than the noble PtOx with acceptable stability for the oxygen generation.

  10. Magnetic properties of NiFe2O4/carbon nanofibers from Venezuelan petcoke

    NASA Astrophysics Data System (ADS)

    Briceño, Sarah; Silva, Pedro; Molina, Wilmer; Brämer-Escamilla, Werner; Alcalá, Olgi; Cañizales, Edgard

    2015-05-01

    NiFe2O4/carbon nanofibers (NiFe2O4/CNFs) have been successfully synthesized by hydrotermal method using Venezuelan petroleum coke (petcoke) as carbon source and NiFe2O4 as catalyst. The morphology, structural and magnetic properties of nanocomposite products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometry (VSM) and electron paramagnetic resonance (EPR). XRD analysis revealed a cubic spinel structure and ferrite phase with high crystallinity. HR-TEM reveals the presence of CNFs with diameters of 4±2 nm. At room temperature, NiFe2O4/CNFs show superparamagnetic behavior with a maximum magnetization of 15.35 emu/g. Our findings indicate that Venezuelan petroleum coke is suitable industrial carbon source for the growth of magnetic CNFs.

  11. Influence of microstructure on the corrosion resistance of Fe-44Ni thin films

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Liu, Tian-cheng; Li, Xiao-gang

    2016-06-01

    An Fe-44Ni nanocrystalline (NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase (γ-(Fe,Ni)) and a body-centered cubic phase (α-(Fe,Ni)) when it is annealed at temperatures less than 400°C. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500°C and 600°C do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.

  12. Weldability of high toughness Fe-12% Ni alloys containing Ti, Al or Nb

    NASA Technical Reports Server (NTRS)

    Devletian, J. H.; Stephens, J. R.; Witzke, W. R.

    1977-01-01

    Three exceptionally high-toughness Fe-12%Ni alloys designed for cryogenic service were welded using the GTA welding process. Evaluation of weldability included equivalent energy (KIed) fracture toughness tests, transverse-weld tensile tests at -196 and 25 C and weld crack sensitivity tests. The Fe-12%Ni-0.25%Ti alloy proved extremely weldable for cryogenic applications, having weld and HAZ properties comparable with those of the wrought base alloy. The Fe-12%Ni-0.5%Al had good weld properties only after the weld joint was heat treated. The Fe-12%Ni-0.25%Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking.

  13. Effects of metals Cu, Fe, Ni, V, and Zn on rat lung epithelial cells.

    PubMed

    Riley, Mark R; Boesewetter, Dianne E; Kim, Aana M; Sirvent, Francisco P

    2003-08-28

    Inhalation of combustion-derived particulate matter can have a variety of negative impacts on human health. Metals are known to play a substantial role in these effects, however, the interactions between cellular responses caused by multiple metals is not well understood. The impact of metals (Zn, Cu, Ni, V, and Fe) individually and in combination on a rat lung epithelial cell line (RLE-6TN) was evaluated. Quantifications involved measurement of inhibition of cell culture metabolism (mitochondrial succinate dehydrogenase activity), cell death, mechanisms of cell death, and cytokine secretion. The ranking of metal toxicity based on TC(50) values is V>Zn>Cu>Ni>Fe. Interactions were observed for exposures containing multiple metals: Zn+V, Zn+Cu, Zn+Fe, and Zn+Ni. Zn appears to diminish the negative impact of V and Cu; has an additive effect with Ni, and has no substantial effect on Fe toxicity. PMID:12927373

  14. Atomic simulations of Fe/Ni multilayer nanocomposites on the radiation damage resistance

    NASA Astrophysics Data System (ADS)

    Chen, Feida; Tang, Xiaobin; Yang, Yahui; Huang, Hai; Liu, Jian; Li, Huan; Chen, Da

    2016-01-01

    We investigated the radiation damage resistance of the Fe/Ni multilayer nanocomposites by molecular dynamics. In the paper, two types of interface configuration with different orientation relationship were constructed. Their morphology evolution and number of final surviving defects induced by cascade collisions were discussed respectively. The interfaces of the two types of Fe/Ni multilayers kept distinct during the long-time relaxation before cascade. The comparison of surviving defects number produced by PKA with 5 keV at 100 K showed that the Fe/Ni multilayers have greater radiation tolerance than that of the bulk materials. However, the orientation relationship of the interface influences the defects self-healing capability greatly when the multilayers are irradiated by higher energy PKA or at high temperature. The radiation damage resistance of the Nishiyama - Wassermann type Fe/Ni multilayers which have larger lattice misfit is more stable than that of the Kurdjumov - Sachs type.

  15. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  16. Hydrazine reduction of metal ions to porous submicro-structures of Ag, Pd, Cu, Ni, and Bi

    SciTech Connect

    Wang Yue; Shi Yongfang; Chen Yubiao; Wu Liming

    2012-07-15

    Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. Phase purity, morphology, and specific surface area have been characterized. The reactions probably undergo three different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. The reductant hydrazine also plays an important role to the formation of the porous submicro-structure. The reaction temperature influences the size of the constituent particles and the overall architecture of the submicro-structure so as to influence the surface area value. The as-prepared porous metals have shown the second largest surface area ever reported, which are smaller than those made by the reduction of NaBH{sub 4}, but larger than those made by hard or soft template methods. - Graphical abstract: Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in the glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. The reactions undergo different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. Highlights: Black-Right-Pointing-Pointer Syntheses of porous Ag, Pd, Cu, Ni, and Bi with high surface area. Black-Right-Pointing-Pointer Ag and Pd undergo simple reduction. Black-Right-Pointing-Pointer Cu and Ni undergo coordination-then-reduction. Black-Right-Pointing-Pointer Bi undergoes hydrolysis-then-reduction. Black-Right-Pointing-Pointer The as-prepared metals have shown the second largest surface area ever reported.

  17. Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe⁴⁺ by Mössbauer Spectroscopy.

    PubMed

    Chen, Jamie Y C; Dang, Lianna; Liang, Hanfeng; Bi, Wenli; Gerken, James B; Jin, Song; Alp, E Ercan; Stahl, Shannon S

    2015-12-01

    Nickel-iron oxides/hydroxides are among the most active electrocatalysts for the oxygen evolution reaction. In an effort to gain insight into the role of Fe in these catalysts, we have performed operando Mössbauer spectroscopic studies of a 3:1 Ni:Fe layered hydroxide and a hydrous Fe oxide electrocatalyst. The catalysts were prepared by a hydrothermal precipitation method that enabled catalyst growth directly on carbon paper electrodes. Fe(4+) species were detected in the NiFe hydroxide catalyst during steady-state water oxidation, accounting for up to 21% of the total Fe. In contrast, no Fe(4+) was detected in the Fe oxide catalyst. The observed Fe(4+) species are not kinetically competent to serve as the active site in water oxidation; however, their presence has important implications for the role of Fe in NiFe oxide electrocatalysts. PMID:26601790

  18. Synthesis and characterization of Ag/Fe3O4 electromagnetic shielding particles

    NASA Astrophysics Data System (ADS)

    Li, Shichuan; Zhou, Zunning; Zhang, Tonglai; Jiang, Guotao; Su, Ruyi

    2014-05-01

    Ag/Fe3O4 nano-composites are synthesized by electroless silver plating technique and characterized by X-ray diffraction, scanning/transmission electron microscope, magnetic measurement equipment and vector network analyzer. They show the silver layer coated on the surface of the particles successfully, and which can enhance the dielectricity and permeability properties of the ferromagnetic particles. The dielectric loss values of the composites are more than 1.0 in the almost whole test frequency range and the imaginary part of permeability of Ag/Fe3O4 is higher than real part in 2-5 GHz. The value of Hc is increased to 165.2 Oe due to the extended relaxation time of magnetic domain deflection of the magnetic powders which covered by silver layer. And the calculated microwave loss is more than 20 dB in the whole frequency range. As a result, the Ag/Fe3O4 nano-composites are expected to be used as electromagnetic shielding particle material in multiband smoke agent.

  19. Unconventional spin distributions in thick Ni80Fe20 nanodisks

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Lupo, P.; Haldar, A.; Adeyeye, A. O.

    2016-05-01

    We study the spin distributions in permalloy (Py: Ni80Fe20) nanodisks as a function of diameter D (300 nm ≤ D ≤ 1 μm) and thickness L (30 nm ≤ L ≤ 100 nm). We observed that beyond a certain thickness, for a fixed disk diameter, an unconventional spin topology precipitates which is marked by the presence of a divergence field within the magnetic vortex curl. The strength of this divergence changes anti-symmetrically from negative to positive—depending on the core polarity—along the axis of the cylindrical nanodisk. This is also accompanied by a skyrmion-like out-of-plane bending of the spin vectors farther away from the disk center. Additionally, the vortex core dilates significantly when compared to its typical size. This has been directly observed using magnetic force microscopy. We determined from the ferromagnetic resonance spectroscopy measurements that the unconventional topology in the thicker nanodisks gyrated at a frequency, which is significantly lower than what is predicted by a magnetic vortex based analytical model. Micromagnetic simulations involving dipolar and exchange interactions appear to satisfactorily reproduce the experimentally observed static and dynamic behaviors. Besides providing a physical example of an unconventional topology, these results can also aid the design of topologically protected memory elements.

  20. HRLEED study of the roughening transitions in Cu(110), Ni(110) and Ag(110) surfaces

    SciTech Connect

    Wang, K.; Montano, P.A. |

    1996-12-01

    The authors present the results of High Resolution Low Energy Electron Diffraction (HRLEED) measurements of the thermal roughening transition on Cu(110), Ag(110) and Ni(110) surfaces. They performed careful spot profile intensity measurements as a function of temperature. They observed a proliferation of steps along the (110) and (001) directions. In addition a strong deviation from a Debye model was observed in the scattered intensity of the Bragg reflections. This deviation from the harmonic approximation occurs well below the roughening transition temperature. The behavior of the three metal surfaces is qualitatively similar except for the transition temperatures. Ni shows the highest transition temperature (1,300 K), Cu is intermediate (1,000 K) and Ag has the lowest temperature (730 K). Analyzing the behavior of the (00) reflection intensity, and the evolution of the line shape as a function of the temperature, they found clear evidence of a roughening transition at the (110) surface. A lineshape analysis of the (00) reflection shows the transition from a Lorentzian lineshape to a power law. They also proved, based on the experimental data and a recent theoretical model, that there is a tremendous increase in step density and a decrease in the average terrace size as the temperature increases. They used STM to corroborate the HRLEED results at room temperature. They found excellent agreement.

  1. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    DOEpatents

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  2. Heat treatment of NiCrFe alloy to optimize resistance to intergrannular stress corrosion

    DOEpatents

    Steeves, Arthur F.; Bibb, Albert E.

    1984-01-01

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprising heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cool the alloy body, and heat the cooled body to a temperature between 1100.degree. to 1500.degree. F. for about 1 to 30 hours.

  3. Precipitation and fracture behaviour of Fe-Mn-Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Heo, Yoon-Uk; Lee, Hu-Chul

    2013-12-01

    The effects of Al addition on the precipitation and fracture behaviour of Fe-Mn-Ni alloys were investigated. With the increasing of Al concentration, the matrix and grain boundary precipitates changed from L10 θ-MnNi to B2 Ni2MnAl phase, which is coherent and in cube-to-cube orientation relationship with the α‧-matrix. Due to the suppression of the θ-MnNi precipitates at prior austenite grain boundaries (PAGBs), the fracture mode changed from intergranular to transgranular cleavage fracture. Further addition of Al resulted in the discontinuous growth of Ni2MnAl precipitates in the alloy containing 4.2 wt.% Al and fracture occurred by void growth and coalescence, i.e. by ductile dimple rupture. The transition of the fracture behaviour of the Fe-Mn-Ni-Al alloys is discussed in relation to the conversion of the precipitates and their discontinuous precipitation behaviour at PAGBs.

  4. Effect of Process and Service Conditions on TLP-Bonded Components with (Ag,Ni-)Sn Interlayer Combinations

    NASA Astrophysics Data System (ADS)

    Lis, Adrian; Leinenbach, Christian

    2015-11-01

    Transient liquid phase (TLP) bonding of Cu substrates was conducted with interlayer systems with the stacking sequences Ag-Sn-Ag (samples A), Ni-Sn-Ni (samples B), and combined Ag-Sn-Ni (samples C). Because of the low mismatch of the coefficients of thermal expansion, characteristics of the TLP process and mechanical and thermal behavior of TLP-bonded samples could be investigated without interference from thermally induced residual stresses. An ideal process temperature of 300°C, at which the number of pores was lowest, was identified for all three layer systems. It was verified experimentally that formation of pores resulted from volume contraction during isothermal solidification of liquid Sn into intermetallic compounds (IMC). Temperature and interlayer-dependent growth characteristics of IMC accounted for the increasing size and number of defects with increasing process temperature and for different defect positions. The shear strength was measured to be 60.4 MPa, 27.4 MPa, and 40.7 MPa for samples A, B, and C, respectively, and ductile fracture features were observed for Ag3Sn IMC compared with the purely brittle behavior of Ni3Sn4 IMC. Excellent thermal stability for all three layer systems was confirmed during long-term annealing at 200°C for up to 1200 h, whereas at 300°C the microstructure was driven toward Ag-Sn solid solution, accompanied by Cu diffusion from the substrate along grain boundaries and Cu3Sn IMC formation (A), and toward Ni-rich IMC phases (B). Combined IMC interlayers (C) tended to be transformed into Ni-based IMC when held at 300°C; intermixing into (Ni,Cu)3Sn was accompanied by pore formation.

  5. Effects of annealing and pulse plating on soft magnetic properties of electroplated Fe-Ni films

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Azuma, K.; Eguchi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Fukunaga, H.

    2016-05-01

    We have already reported that Fe-Ni films prepared in citric-acid-based plating baths show good soft magnetic properties. In this paper, we investigated the effect of the grain size of the Fe-Ni crystalline phase in the films on magnetic properties, and employed an annealing and a pulse plating method in order to vary the grain size. The coercivity of the annealed Fe-Ni films at 600 °C shows large value, and good correlation between the grain growth and the coercivity was observed. The pulse plating enables us to reduce the grain size of the as-plated Fe-Ni films compared with the DC plating method, and we realized smooth surface and low coercivity of the Fe-Ni films using the pulse plating method. From these results, we confirmed the importance of the reduction in the grain size, and concluded that a pulse plating is an effective method to improve the good soft magnetic properties for our previously-reported Fe-Ni films.

  6. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhu, Huaiyu; Yang, Guangming; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-07-01

    In this study, a new anode catalyst based on a NiFeCu alloy is investigated for use in direct-methane solid oxide fuel cells (SOFCs). The influence of the conductive copper introduced into the anode catalyst layer on the performance of the SOFCs is systematically studied. The catalytic activity for partial oxidation of methane and coking resistance tests are proposed with various anode catalyst layer materials prepared using different methods, including glycine nitrate process (GNP), physical mixing (PM) and impregnation (IMP). The surface conductivity tests indicate that the conductivities of the NiFe-ZrO2/Cu (PM) and NiFe-ZrO2/Cu (IMP) catalysts are considerably greater than that of NiFe-ZrO2/Cu (GNP), which is consistent with the SEM results. Among the three preparation methods, the cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer performs best on CH4-O2 fuel, especially under reduced temperatures, because the coking resistance should be considered in real fuel cell conditions. The cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer also delivers an excellent operational stability using CH4-O2 fuel for 100 h without any signs of decay. In summary, this work provides new alternative anode catalytic materials to accelerate the commercialization of SOFC technology.

  7. Influence of M-B (M = Fe, Co, Ni) on aluminum-water reaction

    NASA Astrophysics Data System (ADS)

    Meng, H. X.; Wang, N.; Dong, Y. M.; Jia, Z. L.; Gao, L. J.; Chai, Y. J.

    2014-12-01

    In this work, the aluminum-water reaction induced by Fe-B, Co-B and Ni-B particles was studied. The catalysts were mixtures of the metal boride and metallic particles. The chainlike Fe-B catalyst forms a network structure under the influence of an external magnetic field and has a large specific surface area. Aggregated particles of Co-B and Ni-B catalyst have small specific surface area. Catalytic activity in the initial corrosion of aluminum increases with increasing Fe-B content because of the large specific surface area and the formation of a micro galvanic cell. However, the amount of hydrogen generated slowly decreases with increasing amount of Co-B and Ni-B. The activity of Fe-B, Co-B and Ni-B in the initial Al/H2O reaction decreases in the order Fe-B > Ni-B > Co-B. The calculated apparent activation energies in the presence of Fe-B, Co-B and Ni catalysts are 38.2, 39 and 29.6 kJ mol-1, respectively. Aluminum is rapidly and completely corroded in a weakly alkaline solution (pH < 10) after consecutive additions of Al batches because of high concentrations of OH- in the local domain and an increase in the amount of Al(OH)3 precipitate.

  8. Microstructure and mechanical behavior of Fe30Ni 20Mn35Al15 and modified Fe30Ni 20Mn35Al15 alloys

    NASA Astrophysics Data System (ADS)

    Meng, Fanling

    A novel alloy with nominal composition Fe30Ni 20Mn35Al15 has been found to show good room-temperature strength and significant ductility. The current project is to study the wear properties of as-cast Fe30Ni20Mn35Al 15 and discuss the possibility of further improving the mechanical properties of this alloy. The dry sliding wear of as-cast Fe30Ni20Mn 35Al15 was studied in in four different environments, i.e. air, dry oxygen, dry argon and a 4% hydrogen/nitrogen mixture. Two-body and three-body abrasive wear mechanism was found for tests in oxygen-containing environments, while plastic flow mechanisms dominated the wear behavior for tests in argon. Hydrogen embrittlement led to 1000% increase of wear loss by causing more rapid crack nucleation of the asperities. The effects of different additions of chromium (≤ 8 at. %) on both microstructure and fracture behavior of Fe30Ni20Mn 35Al15 were investigated. All alloys consisted of (Ni, Al)-rich B2 and (Fe, Mn)-rich f.c.c. phases with most of the Cr residing in the f.c.c. phase. The addition of 6 at. % Cr not only increased the room temperature ductility, but also completely suppressed the environmental embrittlement observed in the Cr-free alloy at low strain rates. The effects of varying the Al concentration on the microstructures and tensile properties of six two-phase FeNiMnAl alloys with a composition close to Fe30Ni20Mn35Al15 were studied. The increase in f.c.c. volume fraction and f.c.c. lamellar width led to an increase in ductility and a decrease in yield strength. The correlation between the yield stress and f.c.c. lamellar spacing lambda obeyed a Hall-Petch-type relationship, i.e. sigmay=252+0.00027lambda-1, where the units for sigmay and lambda are MPa and meter, respectively. FeNiMnAl alloy with B2 and f.c.c. phases aligned along was reported to show high strength at room temperature. The mechanical properties of Fe 28Ni18Mn33Al21, consisting of (Ni, Al)-enriched B2 and (Fe, Mn)-enriched f.c.c. phases with

  9. Crystal growth, electronic structure, and properties of Ni-substituted FeGa3

    NASA Astrophysics Data System (ADS)

    Likhanov, Maxim S.; Verchenko, Valeriy Yu.; Bykov, Mikhail A.; Tsirlin, Alexander A.; Gippius, Andrei A.; Berthebaud, David; Maignan, Antoine; Shevelkov, Andrei V.

    2016-04-01

    Crystals of the Fe1-xNixGa3 limited solid solution (x<0.045) have been grown from gallium flux. We have explored the electronic structure as well as magnetic and thermoelectric properties of Fe0.975Ni0.025Ga3 in comparison with Fe0.95Co0.05Ga3, following the rigid band approach and assuming that one Ni atom donates twice the number of electrons as one Co atom. However, important differences between the Co- and Ni-doped compounds are found below 620 K, which is the temperature of the metal-to-insulator transition for both compounds. We have found that Fe0.975Ni0.025Ga3 displays lower degree of spatial inhomogeneity on the local level and exhibits diamagnetic behavior with a broad shallow minimum in the magnetic susceptibility near 35 K, in sharp contrast with the Curie-Weiss paramagnetism of Fe0.95Co0.05Ga3. Transport measurements have shown the maximum of the thermoelectric figure-of-merit ZT of 0.09 and 0.14 at 620 K for Fe0.975Ni0.025Ga3 and Fe0.95Co0.05Ga3, respectively.

  10. Exchange bias effect in BiFeO3-NiO nanocomposite

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Kaushik; Sarkar, Babusona; Dev Ashok, Vishal; Das, Kajari; Sinha Chaudhuri, Sheli; Mitra, Amitava; De, S. K.

    2014-01-01

    Ferromagnetic BiFeO3 nanocrystals of average size 11 nm were used to form nanocomposites (x)BiFeO3/(100 - x)NiO, x = 0, 20, 40, 50, 60, 80, and 100 by simple solvothermal process. The ferromagnetic BiFeO3 nanocrystals embedded in antiferromagnetic NiO nanostructures were confirmed from X-ray diffraction and transmission electron microscope studies. The modification of cycloidal spin structure of bulk BiFeO3 owing to reduction in particle size compared to its spin spiral wavelength (62 nm) results in ferromagnetic ordering in pure BiFeO3 nanocrystals. High Neel temperature (TN) of NiO leads to significant exchange bias effect across the BiFeO3/NiO interface at room temperature. A maximum exchange bias field of 123.5 Oe at 300 K for x = 50 after field cooling at 7 kOe has been observed. The exchange bias coupling causes an enhancement of coercivity up to 235 Oe at 300 K. The observed exchange bias effect originates from the exchange coupling between the surface uncompensated spins of BiFeO3 nanocrystals and NiO nanostructures.

  11. The effects of substituting Ag for In on the magnetoresistance and magnetocaloric properties of Ni-Mn-In Heusler alloys

    NASA Astrophysics Data System (ADS)

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Samanta, Tapas; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    2016-05-01

    The effect of substituting Ag for In on the structural, magnetocaloric, and thermomagnetic properties of Ni50Mn35In15-xAgx (x = 0.1, 0.2, 0.5, and 1) Heusler alloys was studied. The magnitude of the magnetization change at the martensitic transition temperature (TM) decreased with increasing Ag concentration. Smaller magnetic entropy changes (ΔSM) were observed for the alloys with larger Ag concentrations and the martensitic transition shifted to higher temperature. A shift of TM by about 25 K to higher temperature was observed for an applied hydrostatic pressure of P = 6.6 kbar with respect to ambient pressure. A large drop in resistivity was observed for large Ag concentration. The magnetoresistance was dramatically suppressed due to an increase in the disorder of the system with increasing Ag concentration. Possible mechanisms responsible for the observed behavior are discussed.

  12. Nitriding-induced texture, ordering and coercivity enhancement in FePtAgB nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Crisan, O.; Vasiliu, F.; Palade, P.; Mercioniu, I.

    2016-03-01

    FePt system attracts currently a great deal of interest for applications as future RE free permanent magnets. Among the key issues to be solved one may count the decreasing of the ordering temperature and improvement of magnetic behavior. For that purpose we have studied the effect of a nitriding post-synthesis procedure on the FePtAgB melt spun ribbons, aimed at refining the microstructure and enhancing the magnetic performances. Deep structural characterization by transmission electron microscopy, electron diffraction, energy dispersive X-ray spectroscopy and X-ray diffraction allowed us to observe the morphology and to correctly assign and identify the nature of the main granular phases observed. Nitriding procedure is shown to strongly enhance the (001) texturing and the degree of ordering of the L10 FePt phase, as well as largely increase of coercivity, compared to the as-cast state. These changes are interpreted in terms of Ag segregation towards intergranular region associated to N diffusion and creation of vacancies that favor consistently the process of ordering the FePt grains into the L10 tetragonal phase.

  13. Interplay between out-of-plane anisotropic L1{sub 1}-type CoPt and in-plane anisotropic NiFe layers in CoPt/NiFe exchange springs

    SciTech Connect

    Saravanan, P.; Hsu, Jen-Hwa Tsai, C. L.; Tsai, C. Y.; Lin, Y. H.; Kuo, C. Y.; Wu, J.-C.; Lee, C.-M.

    2014-06-28

    Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysis on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.

  14. The effect of prolonged irradiation on defect production and ordering in Fe-Cr and Fe-Ni alloys.

    PubMed

    Vörtler, K; Juslin, N; Bonny, G; Malerba, L; Nordlund, K

    2011-09-01

    The understanding of the primary radiation damage in Fe-based alloys is of interest for the use of advanced steels in future fusion and fission reactors. In this work Fe-Cr alloys (with 5, 6.25, 10 and 15% Cr content) and Fe-Ni alloys (with 10, 40, 50 and 75% Ni content) were used as model materials for studying the features of steels from a radiation damage perspective. The effect of prolonged irradiation (neglecting diffusion), i.e. the overlapping of single 5 keV displacement cascade events, was studied by molecular dynamics simulation. Up to 200 single cascades were simulated, randomly induced in sequence in one simulation cell, to study the difference between fcc and bcc lattices, as well as initially ordered and random crystals. With increasing numbers of cascades we observed a saturation of Frenkel pairs in the bcc alloys. In fcc Fe-Ni, in contrast, we saw a continuous accumulation of defects: the growth of stacking-fault tetrahedra and a larger number of self-interstitial atom clusters were seen in contrast to bcc alloys. For all simulations the defect clusters and the short range order parameter were analysed in detail depending on the number of cascades in the crystal. We also report the modification of the repulsive part of the Fe-Ni interaction potential, which was needed to study the non-equilibrium processes. PMID:21846941

  15. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited.

    PubMed

    Tai, Hulin; Xu, Liyang; Inoue, Seiya; Nishikawa, Koji; Higuchi, Yoshiki; Hirota, Shun

    2016-08-10

    The Ni-SIr state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F was photoactivated to its Ni-SIa state by Ar(+) laser irradiation at 514.5 nm, whereas the Ni-SL state was light induced from a newly identified state, which was less active than any other identified state and existed in the "as-isolated" enzyme. PMID:27456760

  16. Five-fold twinned Pd2NiAg nanocrystals with increased surface Ni site availability to improve oxygen reduction activity.

    PubMed

    Liu, Suli; Zhang, Qinghua; Li, Yafei; Han, Min; Gu, Lin; Nan, Cewen; Bao, Jianchun; Dai, Zhihui

    2015-03-01

    The synthesis of highly active oxygen reduction reaction (ORR) catalysts with good durability and low cost is highly desirable but still remains a significant challenge. In this work, we present the synthesis of five-fold twinned Pd2NiAg nanocrystals (NCs) with a Ni-terminal surface which exhibit excellent electrocatalytic performance for ORR in alkaline media, even better than the performance of the commercial Pt/C catalyst. Using high-angle annular-dark-field imaging together with density functional theory calculations, it is found that the surfaces of the five-fold twinned Pd2NiAg NCs exhibit an unusual valence electron density. The maximum catalytic activity originates from the increased availability of surface Ni sites in five-fold twinned Pd2NiAg NCs and the features of twinned structural defects. This study provides an explanation of the enhanced ORR from the special structure of this novel material, which opens up new avenues for the design of novel classes of electrocatalysts for fuel cells and metal-air batteries. PMID:25626352

  17. Solid-state growth kinetics of Ni{sub 3}Sn{sub 4} at the Sn-3.5Ag solder/Ni interface

    SciTech Connect

    Alam, M.O.; Chan, Y.C.

    2005-12-15

    Systematic experimental work was carried out to understand the growth kinetics of Ni{sub 3}Sn{sub 4} at the Sn-3.5Ag solder/Ni interface. Sn-3.5%Ag solder was reflowed over Ni metallization at 240 deg. C for 0.5 min and solid-state aging was carried out at 150-200 deg. C, for different times ranging from 0 to 400 h. Cross-sectional studies of interfaces have been conducted by scanning electron microscopy and energy dispersive x ray. The growth exponent n for Ni{sub 3}Sn{sub 4} was found to be about 0.5, which indicates that it grows by a diffusion-controlled process even at a very high temperature near to the melting point of the SnAg solder. The activation energy for the growth of Ni{sub 3}Sn{sub 4} was determined to be 16 kJ/mol.

  18. Silicon's role in determining swelling in neutron-irradiated Fe-Cr-Ni-Si alloys

    SciTech Connect

    Sekimura, N. ); Garner, F. A. ); Newkirk, J.W. )

    1991-11-01

    Two silicon-modified alloy series, one based on Fe-15Cr-20Ni and another based on Fe-15Cr-25Ni were irradiated at target temperatures between 399 and 649{degree}C in EBR-II. The influence of silicon on swelling is more complex than previously envisioned and indicates that silicon plays two or more competing roles while in solution. Radiation-induced formation of {gamma}{prime} (Ni{sub 3}Si) precipitates is dependent on silicon and nickel content, as well as temperature. Precipitation of {gamma}{prime} appears to play only a minor role in void formation.

  19. Metal elution from Ni- and Fe-based alloy reactors under hydrothermal conditions.

    PubMed

    Faisal, Muhammad; Quitain, Armando T; Urano, Shin-Ya; Daimon, Hiroyuki; Fujie, Koichi

    2004-05-20

    Elution of metals from Ni- and Fe-based alloy (i.e. Inconel 625 and SUS 316) under hydrothermal conditions was investigated. Results showed that metals could be eluted even in a short contact time. At subcritical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo, and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. Several factors including temperature and contact time were found to affect elution behavior. The presence of air in the fluid even promoted elution under subcritical conditions. PMID:15120875

  20. A negative working potential supercapacitor electrode consisting of a continuous nanoporous Fe-Ni network

    NASA Astrophysics Data System (ADS)

    Xie, Yunsong; Chen, Yunpeng; Zhou, Yang; Unruh, Karl M.; Xiao, John Q.

    2016-06-01

    A new class of electrochemical electrodes operating in a negative voltage window has been developed by sintering chemically prepared Fe-Ni nanoparticles into a porous nanoscale mixture of an Fe-rich BCC Fe(Ni) phase and a Ni-rich FCC Fe-Ni phase. The selective conversion of the Fe-rich phase to hydroxides provides the electrochemically active component of the electrodes while the Ni-rich phase provides high conductivity and structural stability. The compositionally optimized electrodes exhibit a specific capacitance in excess of 350 F g-1 (all normalizations are to the total electrode mass rather than the much smaller electrochemically active mass) and retain more than 85% of their maximum specific capacitance after 2000 charging/discharging cycles. In addition to their inexpensive constituents, these electrodes are self-supporting and their thickness and mass loading density of about 65 μm and 20 mg cm-2 are compatible with the established manufacturing processes. This desirable combination of physical and electrochemical properties suggests that these electrodes may be useful as the negative electrode in high performance asymmetric supercapacitors.A new class of electrochemical electrodes operating in a negative voltage window has been developed by sintering chemically prepared Fe-Ni nanoparticles into a porous nanoscale mixture of an Fe-rich BCC Fe(Ni) phase and a Ni-rich FCC Fe-Ni phase. The selective conversion of the Fe-rich phase to hydroxides provides the electrochemically active component of the electrodes while the Ni-rich phase provides high conductivity and structural stability. The compositionally optimized electrodes exhibit a specific capacitance in excess of 350 F g-1 (all normalizations are to the total electrode mass rather than the much smaller electrochemically active mass) and retain more than 85% of their maximum specific capacitance after 2000 charging/discharging cycles. In addition to their inexpensive constituents, these electrodes are

  1. Overlapping solid solubility in mechanically alloyed Fe-Ni and Fe-Cu

    NASA Astrophysics Data System (ADS)

    Schilling, P. J.; Palshin, V.; Tittsworth, R. C.; He, J. H.; Ma, E.

    2003-12-01

    Solid solutions formed by mechanical alloying in the negative heat of mixing Fe-Ni system and the positive heat of mixing Fe-Cu system were studied. X-ray absorption near edge structure (XANES) spectroscopy data were analyzed to obtain the phase fractions and phase compositions for various overall compositions across the bcc/fcc two-phase region. For both systems, at each nominal composition of the powder mixture, the two solutions formed both have the same composition as the overall alloy. It is concluded that the two-phase coexistence represents an extended region of overlapping solubility for the two phases, rather than the usual two-phase region or a clear switchover at the concentration where the two phases have the same free energy. In terms of these features, the two binary systems, one with negative heat of mixing and one with positive heat of mixing, behave the same way. The external forcing action of mechanical alloying at low temperatures drives the system toward composition homogenization. There is no stable or metastable equilibrium, and the common tangent construction and lever rule are not applicable. What results is a novel two-phase coexistence which is defined by a region of overlapping solubility, rather than the normal solubility gap. That there can be two polymorphs at each composition even after the long ball-milling treatment represents a new type of steady-state two-phase coexistence that is completely different from the normal two-phase region dictated by thermodynamics.

  2. Magnetic characteristics of a high-layer-number NiFe/FeMn multilayer

    NASA Astrophysics Data System (ADS)

    Paterson, G. W.; Gonçalves, F. J. T.; McFadzean, S.; O'Reilly, S.; Bowman, R.; Stamps, R. L.

    2015-11-01

    We report the static and dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show that the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structural features, including the film widths and interface roughnesses. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.

  3. Magnetic characteristics of a high-layer-number NiFe/FeMn multilayer

    SciTech Connect

    Paterson, G. W. Gonçalves, F. J. T.; McFadzean, S.; Stamps, R. L.; O'Reilly, S.; Bowman, R.

    2015-11-28

    We report the static and dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show that the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structural features, including the film widths and interface roughnesses. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.

  4. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    SciTech Connect

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  5. Fe-30Ni-5NiO alloy as inert anode for low-temperature aluminum electrolysis

    NASA Astrophysics Data System (ADS)

    Zhu, Yuping; He, Yedong; Wang, Deren

    2011-05-01

    Fe-30Ni-5NiO alloy anodes were prepared by a spark plasma sintering process for aluminum electrolysis. NiO nano-particles with the size of ˜20 nm were dispersed in the anodes. The oxidation behaviors of the anodes were investigated at 800°C and 850°C, respectively. The electrolysis corrosion behaviors were tested in a cryolite-alumina electrolyte at a low temperature of 800°C with anodic current densities of ˜0.5 A/cm2. The results indicated that the oxidation kinetic of the anodes followed a parabolic law. A continuous Fe2O3 film selectively formed on the surface of the anode during the electrolysis process. A semi-continuous Al2O3 layer was observed at oxide film/alloy interface, probably caused by an in-situ chemical dissolution process.

  6. From ferromagnetic{endash}ferromagnetic to ferromagnetic{endash}antiferromagnetic exchange coupling in NiFe/MnNi bilayers

    SciTech Connect

    Spenato, David; Youssef, Jamal Ben; Le Gall, Henri; Ostorero, Jean

    2001-06-01

    The effect of the growth conditions and the Mn concentration on the exchange coupling between a ferromagnetic (F) NiFe and an antiferromagnetic (AF) MnNi layers were studied. We found that an F/AF coupling appears in the bilayers when the Mn concentration is more than 45%. Beyond this critical concentration the exchange field shows a maximum then decreases. The correlation between the exchange field and the microstructure of the film is discussed. We show that: (1) the enhancement of the exchange field is associated with the enhancement of the antiferromagnetic grain size and (2) the existence of the exchange field is associated with a third x-ray peak which may be an FeMnNi ternary allow type. This result was associated with interfacial diffusion confirmed by magnetization variation measurements before and after annealing. {copyright} 2001 American Institute of Physics.

  7. Formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters.

    PubMed

    Li, Guojian; Wang, Qiang; Sui, Xudong; Wang, Kai; Wu, Chun; He, Jicheng

    2015-09-01

    The formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters has been studied by molecular dynamics simulation using an embedded atom method. Structural evolution of the clusters, coalesced under varying temperature, Ni content and substrate conditions, was explored by interatomic energy, snapshots, pair distribution functions and bond order parameters. The results show that the formation of bcc and fcc is strongly related to Ni content, substrate and coalescence temperature. Free clusters coalesced at 1200 K form bcc at lower Ni contents with fcc forming at higher Ni concentrations and no observable coexistence of bcc and fcc. Differences in coalescence at 1000 K result from the coexistence of bcc and fcc within the Ni range of 50-70%. Free clusters supported on disordered Ni substrates were shown to transform from spherical morphology to islands of supported clusters with preferred epitaxial orientation. The Ni content required to form bcc and fcc coexistence on supported clusters at 1000 K decreased to 30-50% Ni. Free clusters possessing bcc and fcc generally stacked along the bcc (110) and fcc (111) facets, whereas supported clusters stacked along the (111) bcc and (100) fcc planes. Structural transformation was induced by clusters containing greater numbers of atoms. Spread over the substrate enhanced interatomic energy, order substrates affect the epitaxial growth direction and increase the melting points of the supported clusters. This study can be used to predict the nature of fcc and bcc formation in Fe-Ni films. PMID:26234423

  8. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.

    PubMed

    Tung, Le Minh; Cong, Nguyen Xuan; Huy, Le Thanh; Lan, Nguyen Thi; Phan, Vu Ngoc; Hoa, Nguyen Quang; Vinh, Le Khanh; Thinh, Nguyen Viet; Tai, Le Thanh; Ngo, Duc-The; Mølhave, Kristian; Huy, Tran Quang; Le, Anh-Tuan

    2016-06-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial properties and mechanism against methicilline-resistant Staphylococcus aureus (MRSA) pathogen. The formation of dimer-like nanostructure of Fe3O4-Ag hybrid NPs was confirmed by X-ray diffraction and High-resolution Transmission Electron Microscopy. Our biological analysis revealed that the Fe3O4-Ag hybrid NPs showed more noticeable bactericidal activity than that of plain Fe3O4 NPs and Ag-NPs. We suggest that the enhancement in bactericidal activity of Fe3O4-Ag hybrid NPs might be likely from main factors such as: (i) enhanced surface area property of hybrid nanoparticles; (ii) the high catalytic activity of Ag-NPs with good dispersion and aggregation stability due to the iron oxide magnetic carrier, and (iii) large direct physical contacts between the bacterial cell membrane and the hybrid nanoparticles. The superparamagnetic hybrid nanoparticles of iron oxide magnetic nanoparticles decorated with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment. PMID:27427651

  9. Synthesis and electromagnetic absorption properties of Ag-coated reduced graphene oxide with MnFe2O4 particles

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Wu, Xinming; Zhang, Wenzhi; Huang, Shuo

    2016-04-01

    A ternary composite of Ag/MnFe2O4/reduced graphene oxide (RGO) was synthesized by a facile hydrothermal method. The morphology, microstructure, magnetic and electromagnetic properties of as-prepared Ag/MnFe2O4/RGO composite were characterized by means of XRD, TEM, XPS, VSM and vector network analyzer. The maximum reflection loss (RL) of Ag/ MnFe2O4/RGO composite shows maximum absorption of -38 dB at 6 GHz with the thickness of 3.5 mm, and the absorption bandwidth with the RL below -10 dB is up to 3.5 GHz (from 3.7 to 7.2 GHz). The result demonstrates that the introduction of Ag significantly leads to the multiple absorbing mechanisms. It is believed that such composite could serve as a powerful candidate for microwave absorber.

  10. Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system.

    PubMed

    Zhou, Xiaobin; Jing, Guohua; Lv, Bihong; Zhou, Zuoming; Zhu, Runliang

    2016-10-01

    Highly active Fe/Ni bimetallic nanocomposites were prepared by using the liquid-phase reduction method, and they were proven to be effective for Cr(VI) removal coupled with US irradiation. The US-assisted Fe/Ni bimetallic system could maintain a good performance for Cr(VI) removal at a wide pH range of 3-9. Based on the characterization of the Fe/Ni nanoparticles before and after reaction, the high efficiency of the mixed system could attribute to the synergistic effects of the catalysis of Ni(0) and US cavitation. Ni(0) could facilitate the Cr(VI) reduction through electron transfer and catalytic hydrogenation. Meanwhile, US could fluidize the Fe/Ni nanoparticles to increase the actual reactive surface area and clean off the co-precipitated Fe(III)-Cr(III) hydroxides to maintain the active sites on the surface of the Fe/Ni nanoparticles. Thus, compared with shaking, the US-assisted Fe/Ni system was more efficient on Cr(VI) removal, which achieved 94.7% removal efficiency of Cr(VI) within 10 min. The pseudo-first-order rate constant (kobs) in US-assisted Fe/Ni system (0.5075 min(-1)) was over 5 times higher than that under shaking (0.0972 min(-1)). Moreover, the Fe/Ni nanoparticles still have a good performance under US irradiation after 26 days aging as well as regeneration. PMID:27393969

  11. Structural basis of a Ni acquisition cycle for [NiFe] hydrogenase by Ni-metallochaperone HypA and its enhancer

    PubMed Central

    Watanabe, Satoshi; Kawashima, Takumi; Nishitani, Yuichi; Kanai, Tamotsu; Wada, Takehiko; Inaba, Kenji; Atomi, Haruyuki; Imanaka, Tadayuki; Miki, Kunio

    2015-01-01

    The Ni atom at the catalytic center of [NiFe] hydrogenases is incorporated by a Ni-metallochaperone, HypA, and a GTPase/ATPase, HypB. We report the crystal structures of the transient complex formed between HypA and ATPase-type HypB (HypBAT) with Ni ions. Transient association between HypA and HypBAT is controlled by the ATP hydrolysis cycle of HypBAT, which is accelerated by HypA. Only the ATP-bound form of HypBAT can interact with HypA and induces drastic conformational changes of HypA. Consequently, upon complex formation, a conserved His residue of HypA comes close to the N-terminal conserved motif of HypA and forms a Ni-binding site, to which a Ni ion is bound with a nearly square-planar geometry. The Ni binding site in the HypABAT complex has a nanomolar affinity (Kd = 7 nM), which is in contrast to the micromolar affinity (Kd = 4 µM) observed with the isolated HypA. The ATP hydrolysis and Ni binding cause conformational changes of HypBAT, affecting its association with HypA. These findings indicate that HypA and HypBAT constitute an ATP-dependent Ni acquisition cycle for [NiFe]-hydrogenase maturation, wherein HypBAT functions as a metallochaperone enhancer and considerably increases the Ni-binding affinity of HypA. PMID:26056269

  12. Gel-limited synthesis of dumbbell-like Fe3O4-Ag composite microspheres and their SERS applications.

    PubMed

    Zhang, Xiaoli; Niu, Chunyu; Wang, Yongqiang; Zhou, Shaomin; Liu, Jin

    2014-11-01

    A novel gel-limited strategy was developed to synthesize dumbbell-like Fe3O4-Ag composite microspheres through a simple one-pot solvothermal method. In such a reaction system, a special precursor solution containing oleic, water, ethanol and silver ions was used and transformed into a bulk gel under heating at the very beginning of the reaction, thus all the subsequent reactions proceeded in the interior of the gel. The gel-limited reactions had two advantages, on the one hand, the magnetic Fe3O4 microspheres were fixed in the gel which avoided them aggregating together, whereas on the other hand, the silver ions stored in the gel could be gradually released and tended to diffuse towards the nearest Fe3O4 microsphere, which favored the generation of a dumbbell-like Fe3O4-Ag structure. From the time-dependent experiments under optimal conditions, the typical growth process of dumbbell-like structures clearly demonstrated that a silver seed first appeared on the surface of a single Fe3O4 microsphere, which then grew bigger slowly and finally formed a dumbbell-like Fe3O4-Ag structure. Moreover, the formation of the gel was found to be strongly affected by the ratio of water and ethanol in the precursor solution, which further influenced the morphologies of the Fe3O4-Ag microspheres. Furthermore, the effect of lattice match between Fe3O4 and Ag on the final products was also proven from the control experiments by using a template with a different surface crystalline structure. When used as SERS substrates, the final dumbbell-like Fe3O4-Ag microspheres show fast magnetic separation and the selective detection of thiram for the surface capped oleic chain during the growth process. PMID:25188029

  13. Enhancement of perpendicular magnetic anisotropy by compressive strain in alternately layered FeNi thin films.

    PubMed

    Sakamaki, M; Amemiya, K

    2014-04-23

    The effect of the lattice strain on magnetic anisotropy of alternately layered FeNi ultrathin films grown on a substrate, Cu(tCu = 0-70 ML)/Ni(48)Cu(52)(124 ML)/Cu(0 0 1) single crystal, is systematically studied by means of in situ x-ray magnetic circular dichroism (XMCD) and reflection high-energy electron diffraction (RHEED) analyses. To investigate the magnetic anisotropy of the FeNi layer itself, a non-magnetic substrate is adopted. From the RHEED analysis, the in-plane lattice constant, ain, of the substrate is found to shrink by 0.8% and 0.5% at tCu = 0 and 10 ML as compared to that of bulk Cu, respectively. Fe L-edge XMCD analysis is performed for n ML FeNi films grown on various ain, and perpendicular magnetic anisotropy (PMA) is observed at n = 3 and 5, whereas the film with n = 7 shows in-plane magnetic anisotropy. Moreover, it is found that PMA is enhanced with decreasing ain, in the case where a Cu spacer layer is inserted. We suppose that magnetic anisotropy in the FeNi films is mainly carried by Fe, and the delocalization of the in-plane orbitals near the Fermi level increases the perpendicular orbital magnetic moment, which leads to the enhancement of PMA. PMID:24695244

  14. Martensite Transformation and Magnetic Properties of Ni-Fe-Ga Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Nath, Hrusikesh; Phanikumar, Gandham

    2015-11-01

    Compositional instability and phase formation in Ni-Fe-Ga Heusler alloys are investigated. The alloys are synthesized into two-phase microstructure. Their structures are identified as fcc and L 21, respectively. The γ-phase formation could be suppressed with higher Ga-content in the alloy as Ga stabilizes austenite phase, but Ga lowers the martensite transformation temperature. The increase of Fe content improves the magnetization value and the increase of Ni from 52 to 55 at. pct raises the martensite transformation temperature from 216 K to 357 K (-57 °C to 84 °C). Magnetic properties and martensitic transformation behavior in Ni-Fe-Ga Heusler alloys follow opposite trends, while Ni replaces either Fe or Ga, whereas they follow similar trends, while Fe replaces Ga. Modulated martensite structure has low twinning stress and high magneto crystalline anisotropic properties. Thus, the observation of 10- and 14 M-modulated martensite structures in the studied Ni-Fe-Ga Heusler alloys is beneficial for shape memory applications. The interdependency of alloy composition, phase formation, magnetic properties, and martensite transformation are discussed.

  15. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    NASA Astrophysics Data System (ADS)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang; Zhang, Deyuan

    2015-08-01

    A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2-18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL -11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.

  16. Self-assembled 3D flower-like Ni2+-Fe3+ layered double hydroxides and their calcined products.

    PubMed

    Xiao, Ting; Tang, Yiwen; Jia, Zhiyong; Li, Dawei; Hu, Xiaoyan; Li, Bihui; Luo, Lijuan

    2009-11-25

    This paper describes a facile solvothermal method to synthesize self-assembled three-dimensional (3D) Ni2+-Fe3+ layered double hydroxides (LDHs). Flower-like Ni2+-Fe3+ LDHs constructed of thin nanopetals were obtained using ethylene glycol (EG) as a chelating reagent and urea as a hydrolysis agent. The reaction mechanism and self-assembly process are discussed. After calcinating the as-prepared LDHs at 450 degrees C in nitrogen gas, porous NiO/NiFe2O4 nanosheets were obtained. This work resulted in the development of a simple, cheap, and effective route for the fabrication of large area Ni2+-Fe3+ LDHs as well as porous NiO/NiFe2O4 nanosheets. PMID:19858561

  17. Loading the FeNiOOH cocatalyst on Pt-modified hematite nanostructures for efficient solar water oxidation.

    PubMed

    Deng, Jiujun; Lv, Xiaoxin; Zhang, Hui; Zhao, Binhua; Sun, Xuhui; Zhong, Jun

    2016-04-21

    A FeNiOOH-decorated hematite photoanode has been prepared using a facile electrodeposition method, with a significant cathodic shift of the onset potential (up to 190 mV) compared to the pristine sample. Synchrotron radiation based techniques have been used to identify the composition of the catalyst indicating the presence of FeOOH and NiOOH (FeNiOOH). The enhanced performance can be attributed to the better oxidation evolution reaction kinetics with the FeNiOOH cocatalyst. The FeNiOOH-decorated hematite is very stable for a long time. Moreover, the cocatalyst can be well coupled to the Pt-modified hematite photoanode achieving a high photocurrent of 2.21 mA cm(-2) at 1.23 V vs. RHE. The good catalytic properties and the facile preparation method suggest that the decoration of FeNiOOH is a favorable strategy to improve the performance of hematite. PMID:27029763

  18. [NiFe]Hydrogenase from Citrobacter sp. S-77 surpasses platinum as an electrode for H2 oxidation reaction.

    PubMed

    Matsumoto, Takahiro; Eguchi, Shigenobu; Nakai, Hidetaka; Hibino, Takashi; Yoon, Ki-Seok; Ogo, Seiji

    2014-08-18

    Reported herein is an electrode for dihydrogen (H2) oxidation, and it is based on [NiFe]Hydrogenase from Citrobacter sp. S-77 ([NiFe]S77). It has a 637 times higher mass activity than Pt (calculated based on 1 mg of [NiFe]S77 or Pt) at 50 mV in a hydrogen half-cell. The [NiFe]S77 electrode is also stable in air and, unlike Pt, can be recovered 100 % after poisoning by carbon monoxide. Following characterization of the [NiFe]S77 electrode, a fuel cell comprising a [NiFe]S77 anode and Pt cathode was constructed and shown to have a a higher power density than that achievable by Pt. PMID:24895095

  19. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Pereloma, E. V.; Stohr, R. A.; Miller, M. K.; Ringer, S. P.

    2009-12-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 °C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe)3Ti and (Ni,Fe)3(Al,Mn) precipitates eventually form after isothermal aging for ~60 seconds. The morphology of the (Ni,Fe)3Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe)3(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe)3Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

  20. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel using Atom Probe Tomography

    SciTech Connect

    Pereloma, E. V.; Stohr, R A; Miller, Michael K; Ringer, S. P.

    2009-01-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe){sub 3}Ti and (Ni,Fe){sub 3}(Al,Mn) precipitates eventually form after isothermal aging for {approx}60 seconds. The morphology of the (Ni,Fe){sub 3}Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe){sub 3}(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe){sub 3}Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

  1. Mechanism of inhibition of NiFe hydrogenase by nitric oxide.

    PubMed

    Ceccaldi, Pierre; Etienne, Emilien; Dementin, Sébastien; Guigliarelli, Bruno; Léger, Christophe; Burlat, Bénédicte

    2016-04-01

    Hydrogenases reversibly catalyze the oxidation of molecular hydrogen and are inhibited by several small molecules including O2, CO and NO. In the present work, we investigate the mechanism of inhibition by NO of the oxygen-sensitive NiFe hydrogenase from Desulfovibrio fructosovorans by coupling site-directed mutagenesis, protein film voltammetry (PFV) and EPR spectroscopy. We show that micromolar NO strongly inhibits NiFe hydrogenase and that the mechanism of inhibition is complex, with NO targeting several metallic sites in the protein. NO reacts readily at the NiFe active site according to a two-step mechanism. The first and faster step is the reversible binding of NO to the active site followed by a slower and irreversible transformation at the active site. NO also induces irreversible damage of the iron-sulfur centers chain. We give direct evidence of preferential nitrosylation of the medial [3Fe-4S] to form dinitrosyl-iron complexes. PMID:26827939

  2. Hydrothermal synthesis and near in situ analysis of NiFe2O4 nanoparticles.

    PubMed

    Almeida, Trevor P; Fay, Mike; Zhu, Yanqiu; Brown, Paul D

    2012-11-01

    The hydrothermal synthesis (HS) of NiFe2O4 nanoparticles (NPs) has been investigated using a novel valve-assisted pressure autoclave. This approach has facilitated the rapid quenching of hydrothermal suspensions into liquid nitrogen, providing 'snapshots' representative of the near in situ physical state of the synthesis reaction products as a function of known temperature. The acquired samples were examined using complementary characterisation techniques of transmission electron microscopy and X-ray diffractometry (XRD). The HS of NiFe2O4 NPs (< 25 nm) at pH - 8 proceeded through the formation and dissolution of intermediate amorphous Fe(OH)3 and FeNi3Cl2(OH)8 x H2O sheets with increasing reaction temperature. The near in situ nature of the HS suspension resulted in the formation of NaCI by-product during drying in advance of XRD investigation, not during the HS process. PMID:23421289

  3. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases.

    PubMed

    Flanagan, Lindsey A; Parkin, Alison

    2016-02-15

    Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH. PMID:26862221

  4. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases

    PubMed Central

    Flanagan, Lindsey A.; Parkin, Alison

    2016-01-01

    Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH. PMID:26862221

  5. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.

    PubMed

    Go, Gwang-Sub; Go, Yoo-Jin; Lee, Hong-Joo; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2016-02-01

    In this work, hydrogen production from glycerol by steam reforming was studied using Ni-metal oxide catalysts. Ni-based catalyst becomes deactivated during steam reforming reactions because of coke deposits and sintering. Therefore, the aim of this study was to reduce carbon deposits and sintering on the catalyst surface by adding a promoter. Ni-metal oxide catalysts supported on Al2O3 were prepared via impregnation method, and the calcined catalyst was reduced under H2 flow for 2 h prior to the reaction. The characteristics of the catalysts were examined by XRD, TPR, TGA, and SEM. The Ni-Fe-Ce/Al2O3 catalyst, which contained less than 2 wt% Ce, showed the highest hydrogen selectivity and glycerol conversion. Further analysis of the catalysts revealed that the Ni-Fe-Ce/Al2O3 catalyst required a lower reduction temperature and produced minimum carbon deposit. PMID:27433687

  6. Resistance of (Fe,Ni)/sub 3/V long-range-ordered alloys to radiation damage

    SciTech Connect

    Braski, D.N.

    1980-01-01

    The (Fe,Ni)/sub 3/V long-range-ordered (LRO) alloys (path D) are being developed at ORNL for possible application as a first-wall material for a fusion reactor. Alloys with different Fe/Ni ratios have been screened for their resistance to radiation by irradiating them with 4 MeV Ni ions to 70 dpa at temperatures from 525 to 680/sup 0/C. Helium (8 at. ppM/dpa) and deuterium ions (28 at. ppM/dpa) were simultaneously injected to better simulate fusion reactor conditions. Alloy LRO-16 (31 wt % Ni) contained sigma phase and showed swelling behavior similar to the 20%-cold-worked 316 stainless steel that was used as an internal standard. LRO-20 (39.5 wt % Ni), without sigma phase, swelled slightly less than the 316 stainless steel. Both alloys demonstrated noticeably lower swelling behavior when their composition was changed to include 0.4 wt % ti.

  7. Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst.

    PubMed

    Yan, Manqing; Shen, Yang; Zhang, Guiyang; Bi, Hong

    2016-01-01

    In this paper, the stable and environment-friendly Fe3O4 nanotubes with polyaniline (Fe3O4 NTs/PANI hybrids) have been prepared via mesoporous anodic alumina oxide (AAO) template, sol-gel method and in-situ polymerization. Then multifunctional Fe3O4 NTs/PANI/Ag hybrids have been obtained by decorating Ag nanoparticles by glucose reduction on surface of Fe3O4 NTs/PANI hybrids. The morphologies and structures of these hybrids were subsequently investigated by SEM, XRD, TEM and XPS measurements. The Fe3O4 NTs/PANI/Ag hybrids presented high catalytic activity due to the template-assisted presence, preventing Ag particulate agglomeration. Importantly, the Fe3O4 NTs/PANI/Ag hybrids achieve sensitive surface-enhanced Raman scattering (SERS) signals. Furthermore, the introduction of carbon dots (CDs) endows these hybrids good dispersion and stable photoluminescence (PL). Therefore, the obtained hybrids may have potential applications in waste water treatment, biomedicine, photocatalyst, and environmental analysis. PMID:26478345

  8. Nickel recovery from electronic waste II Electrodeposition of Ni and Ni–Fe alloys from diluted sulfate solutions

    SciTech Connect

    Robotin, B.; Ispas, A.; Coman, V.; Bund, A.; Ilea, P.

    2013-11-15

    Highlights: • Ni can be recovered from EG wastes as pure Ni or as Ni–Fe alloys. • The control of the experimental conditions gives a certain alloy composition. • Unusual deposits morphology shows different nucleation mechanisms for Ni vs Fe. • The nucleation mechanism was progressive for Ni and instantaneous for Fe and Ni–Fe. - Abstract: This study focuses on the electrodeposition of Ni and Ni–Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni{sup 2+}/Fe{sup 2+} ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits’ thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni–Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni–Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni–Fe, the obtained data points are best fitted to an instantaneous nucleation model.

  9. Swift heavy ion induced surface modification for tailoring coercivity in Fe-Ni based amorphous thin films

    SciTech Connect

    Thomas, Senoy; Thomas, Hysen; Anantharaman, M. R.; Avasthi, D. K.; Tripathi, A.; Ramanujan, R. V.

    2009-02-01

    Fe-Ni based amorphous thin films were prepared by thermal evaporation. These films were irradiated by 108 MeV Ag{sup 8+} ions at room temperature with fluences ranging from 1x10{sup 12} to 3x10{sup 13} ions/cm{sup 2} using a 15 UD Pelletron accelerator. Glancing angle x-ray diffraction studies showed that the irradiated films retain their amorphous nature. The topographical evolution of the films under swift heavy ion (SHI) bombardment was probed using atomic force microscope and it was noticed that surface roughening was taking place with ion beam irradiation. Magnetic measurements using a vibrating sample magnetometer showed that the coercivity of the films increases with an increase in the ion fluence. The observed coercivity changes are correlated with topographical evolution of the films under SHI irradiation. The ability to modify the magnetic properties via SHI irradiation could be utilized for applications in thin film magnetism.

  10. Low-frequency alternative-current magnetic susceptibility, photoelectric properties, and adhesive properties of Ni80Fe20 (XÅ)/ZnO(500Å) and ZnO(500Å)/Ni80Fe20(YÅ) on glass substrate

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Tsung

    2015-08-01

    The following conditions are deposited: (a) glass/Ni80Fe20(XÅ)/ZnO(500Å) and (b) glass/ZnO(500Å)/Ni80Fe20(YÅ), where each of X and Y is 1000Å, 1500Å, 2000Å or 2500Å. The substrate temperature was maintained at room temperature (RT), and post-annealing was performed with heating at (TA) = 150 °C for 1 h or (TA) = 250 °C for 1 h. The sputtering sequence and the thickness of the NiFe film were varied to study the effects of these factors on the low-frequency alternative-current magnetic susceptibility (χac), maximum χac with corresponding optimal resonance frequency (fres), transmission, electrical resistivity (ρ), and surface energy of the multilayered glass/Ni80Fe20(XÅ)/ZnO(500Å) and glass/ZnO(500Å)/Ni80Fe20(YÅ). Experimental results demonstrate that ZnO(500Å)/Ni80Fe20(YÅ) is superior to Ni80Fe20/ZnO(500Å) because diffraction from the ZnO (0 0 2) crystals at the bottom of ZnO(500Å)/Ni80Fe20(YÅ) improves the magneto crystalline anisotropy of Ni80Fe20, improving its magnetic and photoelectrical properties. X-ray diffraction patterns (XRD) reveal that the ZnO (0 0 2), ZnO (2 2 0), and NiFe (1 1 1) peaks of ZnO(500Å)/Ni80Fe20(YÅ) are more intense than those of Ni80Fe20/ZnO(500Å) under three substrate conditions, indicating the ZnO (0 0 2) peak reflects magneto crystalline anisotropy in the crystalline NiFe layer of ZnO(500Å)/Ni80Fe20(YÅ), yielding the highest χac of approximately 3.16 with an fres of 250 Hz upon post-annealing TA = 250 °C for 1 h. The (1 1 1) diffracted intensity and grain size of the thicker and post-annealed Ni80Fe20 thin films exceeded those of the thinner and as-deposited Ni80Fe20 thin films. A spectral analyzer was used to measure transmittance through NiFe of various thicknesses. The transmittance declined slightly as the thickness and grain size increased, because increasing thickness reduced penetration. Post-annealing promoted grain growth, increased the average size of the grains and reduced transmittance. Both as

  11. Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr.

    PubMed

    Ng, Tsz Wai; Zhang, Lisha; Liu, Jianshe; Huang, Guocheng; Wang, Wei; Wong, Po Keung

    2016-03-01

    Bacterial inactivation by magnetic photocatalyst receives increasing interests for the ease recovery and reuse of photocatalysts. This study investigated bacterial inactivation by a magnetic photocatalysts, Fe2O3-AgBr, under the irradiation of a commercially available light emitting diode lamp. The effects of different factors on the inactivation of Escherichia coli were also evaluated, in term of the efficiency in inactivation. The results showed that Fe2O3-AgBr was able to inactivate both Gram negative (E. coli) and Gram positive (Staphylococcus aureus) bacteria. Bacterial inactivation by Fe2O3-AgBr was more favorable under high temperature and alkaline pH. Presence of Ca(2+) promoted the bacterial inactivation while the presence of [Formula: see text] was inhibitory. The mechanisms of photocatalytic bacterial inactivation were systemically studied and the effects of the presence of various specific reactive species scavengers and argon suggest that Fe2O3-AgBr inactivate bacterial cells by the oxidation of H2O2 generated from the photo-generated electron and direct oxidation of photo-generated hole. The detection of different reactive species further supported the proposed mechanisms. The results provide information for the evaluation of bacterial inactivation performance of Fe2O3-AgBr under different conditions. More importantly, bacterial inactivation for five consecutive cycles demonstrated Fe2O3-AgBr exhibited highly stable bactericidal activity and suggest that the magnetic Fe2O3-AgBr has great potential for water disinfection. PMID:26724445

  12. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    SciTech Connect

    Kollu, Pratap E-mail: anirmalagrace@vit.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.; Mallick, Sudhanshu; Bahadur, D. E-mail: anirmalagrace@vit.ac.in; Santosh, Chella; Grace, Andrews Nirmala E-mail: anirmalagrace@vit.ac.in

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fields (100 Oe and 200 Oe) are explained on the basis of surface spin disorder.

  13. Coating geometry of Ag, Ti, Co, Ni, and Al nanoparticles on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Stranges, F.; Xu, F.

    2015-04-01

    We present a morphology study on laser ablation produced metal nanoparticles (NPs) deposited on carbon nanotube (CNT) substrates. We analyzed the coating geometry and topography by processing AFM and SEM images. Our results show that Ag NPs aggregate together to form large agglomerates, that Ti NPs are well dispersed on the substrate surface forming a quasi-continuous layer, and that Co, Ni, and Al NPs coat quite uniformly CNTs and locally grow in a layer like fashion. We interpret the coating and clustering geometries in terms of cohesion, surface, and interfacial energies and diffusion barriers. Fractal analysis of composites morphology suggests the formation of structures with a smoother topography relative to pure carbon nanotubes for reactive metal nanoparticles.

  14. Clathrates with Me = Mg, Pd, Ni, Au, Ag, Cu, Zn, Al, Sn

    NASA Astrophysics Data System (ADS)

    Wunderlich, Wilfried; Amano, Mao; Matsumura, Yoshihito

    2014-06-01

    Clathrate materials of AlSi, CuSi or NiSi type consisting of abundant elements have a realistic chance of becoming useful thermoelectrics in the near future, because the rattling effect due to their crystal cage structure provides a large figure of merit ZT even in experiments measured under large temperature gradients. In the search for better thermoelectrics, new element combinations in the clathrate type I structure with cubic space group Pm3n were calculated using VASP ab initio software. Predictions of the Seebeck coefficient were made by checking the electronic band structure and density of states for a large variety of input data. For x values around 4 to 6 in the structural formula Ba8Me x Si46- x the substituents Cu, Au, and Ag are best for good thermoelectric behavior, which is discussed in this paper as a result of the low electron-phonon interaction parameter.

  15. Low-energy electron elastic scattering from Mn, Cu, Zn, Ni, Ag, and Cd atoms

    SciTech Connect

    Felfli, Z.; Msezane, A. Z.; Sokolovski, D.

    2011-05-15

    Electron elastic total cross sections (TCSs) for ground and excited Mn, Cu, Zn, Ni, Ag, and Cd atoms have been investigated in the electron-impact energy range 0 {<=}E{<=} 1 eV. The near-threshold TCSs for both the ground and excited states of these atoms are found to be characterized by Ramsauer-Townsend minima, shape resonances, and extremely sharp resonances corresponding to the formation of stable bound negative ions. The recently developed Regge-pole methodology where the crucial electron-electron correlations are embedded is employed for the calculations. From close scrutiny of the imaginary parts of the complex angular momenta, we conclude that these atoms form stable weakly bound ground and excited negative ions as Regge resonances through slow electron collisions. The extracted electron binding energies from the elastic TCSs of these atoms are contrasted with the available experimental and theoretical values.

  16. Syntheses and catalytic performances of Ag-Ni bi-metals

    NASA Astrophysics Data System (ADS)

    Tang, Changlin; Li, Liping; Gao, Hongbo; Li, Guangshe; Qiu, Xiaoqing; Liu, Jiang

    Ag-Ni bi-metal nanocrystals were prepared by a novel solution method, in which ethanol was first taken as a green solvent with no use of any external toxic reducing agents. The as-prepared bi-metal nanocrystals were spherical and constructed by an aggregation of tiny crystals with particle size of about 12 nm. Infrared data indicated that the surfaces of the as-prepared nanocrystals were free of organic contaminants. The obtained bi-metal nanocrystals showed great potential as the additive in promoting the decomposition of ammonium perchlorate (AP), the key component of composite solid propellants. They were also initiated as the anode material of solid oxide fuel cells (SOFCs) which showed a maximum power density of 52.34 mW cm -2 for single cell at 800 °C.

  17. High-pressure and high-temperature phase diagram for Fe0.9Ni0.1-H alloy

    NASA Astrophysics Data System (ADS)

    Shibazaki, Yuki; Terasaki, Hidenori; Ohtani, Eiji; Tateyama, Ryuji; Nishida, Keisuke; Funakoshi, Ken-ichi; Higo, Yuji

    2014-03-01

    Planetary cores are considered to consist of an iron-nickel (Fe-Ni) alloy and light elements and hydrogen is one of plausible light elements in the core. Here we have performed in situ X-ray diffraction experiments on an Fe0.9Ni0.1-H system up to 15.1 GPa and 1673 K, and investigated the effect of Ni on phase relations of FeHx under high pressure and high temperature. The experimental system in the present work was oversaturated with hydrogen. We found a face-center-cubic (fcc) phase (with hydrogen concentration up to x∼1) and a body-center-cubic (bcc) phase (x < 0.1) as stable phases. The partial melting was observed below 6 GPa. We could not observe a double-hexagonal-close-packed (dhcp) phase because of limitations in pressure and temperature conditions. The stability field of each phase of Fe0.9Ni0.1Hx was almost same as that of FeHx. The solidus of Fe0.9Ni0.1Hx was 500-700 K lower than the melting curve of Fe and its liquidus was 400-600 K lower than that of Fe in the pressure range of this study. Both the solidus and liquidus of Fe0.9Ni0.1Hx were depressed at around 3.5 GPa, as was the solidus of FeHx. The hydrogen contents in fcc-Fe0.9Ni0.1Hx just below solidus were slightly lower than those of fcc-FeHx, which suggests that nickel is likely to prevent dissolution of hydrogen into iron. Due to the lower hydrogen solubilities in Fe0.9Ni0.1 compared to Fe, the solidus of Fe0.9Ni0.1Hx is about 100-150 K higher than that of FeHx.

  18. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. PMID:25262081

  19. Advanced thermal barrier system bond coatings for use on Ni, Co-, and Fe-base alloy substrates

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1985-01-01

    New and improved Ni-, Co-, and Fe-base bond coatings have been identified for the ZrO2-Y2O3 thermal barrier coatings to be used on NI-, Co-, and Fe-base alloy substrates. These bond coatings were evaluated in a cyclic furnace between 1120 and 1175 C. It was found that MCrAlYb (where M = Ni, Co, or Fe) bond coating thermal barrier systems. The longest life was obtained with the FeCrAlYb thermal barrier system followed by NiCrAlYb and CoCrAlYb thermal barrier systems in that order.

  20. Mixing and non-stoichiometry in Fe-Ni-Cr-Zn-O spinel compounds: density functional theory calculations.

    PubMed

    Andersson, David A; Stanek, Christopher R

    2013-10-01

    Density functional theory (DFT) calculations have been performed on A(2+)B2(3+)O4(2-) (where A(2+) = Fe, Ni or Zn, and B(3+) = Fe or Cr) spinel oxides in order to determine some of their thermodynamic properties. Mixing energies were calculated for Fe3O4-NiFe2O4, Fe3O4-ZnFe2O4, Fe3O4-FeCr2O4, NiFe2O4-ZnFe2O4, NiFe2O4-NiCr2O4, FeCr2O4-NiCr2O4, FeCr2O4-ZnCr2O4 and ZnCr2O4-ZnFe2O4 pseudo-binaries based on special quasi random (SQS) structures to account for cationic disorder. The results generally agree with available experimental data and the rule that two normal or two inverse spinel compounds easily form solid solutions, while inverse-normal spinel mixtures exhibit positive deviation from solid solution behavior (i.e. immiscibility). Even though the NiFe2O4-NiCr2O4 and Fe3O4-FeCr2O4 systems obey this rule, they exhibit additional features with implications for the corresponding phase diagrams. In addition to mixing enthalpies, non-stoichiometry was also considered by calculating the energies of the relevant defect reactions resulting in A, B and O excess (or deficiency). The DFT calculations predict close to zero or slightly exothermic reactions for both A and B excess in a number of spinel compounds. PMID:23942481

  1. Selective Internal Oxidation as a Mechanism for Intergranular Stress Corrosion Cracking of Ni-Cr-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Capell, Brent M.; Was, Gary S.

    2007-06-01

    The mechanism of selective internal oxidation (SIO) for intergranular stress corrosion cracking (IGSCC) of nickel-base alloys has been investigated through a series of experiments using high-purity alloys and a steam environment to control the formation of NiO on the surface. Five alloys (Ni-9Fe, Ni-5Cr, Ni-5Cr-9Fe, Ni-16Cr-9Fe, and Ni-30Cr-9Fe) were used to investigate oxidation and intergranular cracking behavior for hydrogen-to-water vapor partial pressure ratios (PPRs) between 0.001 and 0.9. The Ni-9Fe, Ni-5Cr, and Ni-5Cr-9Fe alloys formed a uniform Ni(OH)2 film at PPRs less than 0.09, and the higher chromium alloys formed chromium-rich oxide films over the entire PPR range studied. Corrosion coupon results show that grain boundary oxides extended for significant depths (>150 nm) below the sample surface for all but the highest Cr containing alloy. Constant extension rate tensile (CERT) test results showed that intergranular cracking varied with PPR and cracking was more pronounced at a PPR value where nonprotective Ni(OH)2 was able to form and a link between the nonprotective Ni(OH)2 film and the formation of grain boundary oxides is suggested. The observation of grain boundary oxides in stressed and unstressed samples as well as the influence of alloy content on IG cracking and oxidation support SIO as a mechanism for IGSCC.

  2. Purification and Characterization of [NiFe]-Hydrogenase of Shewanella oneidensis MR-1

    SciTech Connect

    Shi, Liang; Belchik, Sara M.; Plymale, Andrew E.; Heald, Steve M.; Dohnalkova, Alice; Sybirna, Kateryna; Bottin, Herve; Squier, Thomas C.; Zachara, John M.; Fredrickson, Jim K.

    2011-08-02

    The γ-proteobacterium Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H2ase) that was implicated in both H2 production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H2ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H2ase were cloned into a protein expression vector. The resulting plasmid was transformed into a MR-1 mutant deficient in H2 formation. Expression of MR-1 [NiFe]-H2ase in trans restored the mutant’s ability to produce H2 at 37% of that for wild type. Following expression, MR-1 [NiFe]-H2ase was purified to near homogeneity. The purified MR-1 [NiFe]-H2ase could couple H2 oxidation to reduction of Tc(VII) and methyl viologen directly. Change of the buffers used affected MR-1 [NiFe]-H2ase-mediated Tc(VII) but not methyl viologen reductions. Under the conditions tested, Tc(VII) reduction was complete in Tris buffer but not in HEPES buffer. The reduced Tc(IV) was soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc(IV) precipitates formed in HEPES buffer were packed with crystallites. Although X-ray absorption near-edge spectroscopy measurements confirmed that the reduction products found in both buffers were Tc(IV), extended X-ray adsorption fine-structure measurements revealed that these products were very different. While the product in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O2•nH2O. These results shows for the first time that MR-1 [NiFe]-H2ase is a bidirectional enzyme that catalyzes both H2 formation and oxidation as well as Tc(VII) reduction directly by coupling H2 oxidation.

  3. Enhancement in dielectric behavior of (Ni, Zn)Fe2O4 ferrite

    NASA Astrophysics Data System (ADS)

    Sheikh, Javed R.; Gaikwad, Vishwajit M.; Moon, Vaibhav C.; Acharya, Smita A.

    2016-05-01

    In present work, NiFe2O4(NFO), ZnFe2O4 (ZFO) and Ni0.5Zn0.5Fe2O4 (NZFO) are synthesized by microwave assisted co-precipitation route. Their structural properties are confirmed by X-ray diffraction and data is fitted through Reitveld refinement using Full-Prof software suite. After refinement, the systematic crystal structures of NFO, ZFO and NZFO compounds are generated using output .cif file by VESTA (Visualization for Electronic and Structural Analysis) program. Structural parameters obtained after refinement and unit cell construction, are systematically tabulated. Room temperature frequency dependence dielectric properties are studied. We found enhanced values of dielectric constant for NZFO than individual NFO and ZFO phases. For NZFO sample, greater electron exchange between Fe2+ and Fe3+ which enhances polarization and dielectric constant.

  4. Determination of standard thermodynamic properties of daubreelite (FeCr2S4) in the system Ag-Cr-Fe-S by the solid state galvanic cells method

    NASA Astrophysics Data System (ADS)

    Osadchii, Evgeniy; Voronin, Mikhail; Osadchii, Valentin

    2014-05-01

    Daubreelite is a common mineral in enstatite chondrites, but its thermodynamic properties have not been studied. This greatly complicates the study of the physico - chemical parameters of enstatite chondrites formation in their parent bodies. Analysis of the quaternary system Ag-Cr-Fe-S showed that at temperatures below 423 K can be stable phase association Ag2S + Cr2S3 + FeS2 + FeCr2S4, potential silver which can be defined in a completely solid state galvanic cell: (-) Pt | Ag | RbAg4I5 | Ag2S, Cr2S3, FeS2, FeCr2S4 | Pt (+), with a RbAg4I5 as a solid electrolyte with a specific conductivity of Ag+ ion. The overall potential forming process in the cell corresponds to a chemical reaction: 2Ag + Cr2S3 + FeS2 = Ag2S + FeCr2S4 Gibbs energy of this reaction is associated with the electromotive force of galvanic cells by fundamental equation of thermodynamics ΔrG =-nFE, where n = 2 - the number of electrons in the electrochemical process, F = 96485 C•mol-1 - Faraday constant, and E-electromotive force (emf) of galvanic cell in volts. Temperature dependence of the emf was determined in an electrochemical cell, a device which is described in detail in the works Osadchii and Chareev (2006), and Osadchii and Echmaeva (2007). The results were approximated by a linear dependence of E(T), which corresponds to the condition ΔrCp constant and equal to zero: E(mV)=76.32+0.2296•T, 339

  5. Thermal evolution of vacancy-type defects in quenched FeCrNi alloys

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Cao, X. Z.; Li, Y. H.; Jin, S. X.; Lu, E. Y.; Tian, H. W.; Zhang, P.; Wang, B. Y.

    2015-06-01

    The effect of isochronal annealing on vacancy-type defects in quenched FeCrNi alloys and SUS316 was investigated via positron annihilation technique. Vacancy-type defects clustered and grew with increasing annealing temperatures of up to 523 K and, in FeCrNi alloys, were gradually annihilated with increasing temperature. The annihilation temperature was relatively insensitive to the addition of Mo and nonmetal elements, and after annealing at 673 K, the vacancy-type defects were annihilated and dislocation-type defects were formed in all of the alloys. In addition, due to the formation of Mo-vacancy complexes, the density of defects in the Mo-diluted FeCrNi model alloy was lower than that in the FeCrNi model alloy. The long lifetime of vacancy-type defects in commercial stainless steel SUS316 was smaller than that in the FeCrNi model alloys due to the nonmetal-element-induced change in mobility of the defects. Moreover, the vacancy-type and dislocation-type defects contributed to the S and W parameters of positron annihilation during the entire annealing treatment.

  6. First-principles study of magnetic properties of Fe-Ni based alloys

    NASA Astrophysics Data System (ADS)

    Onoue, M.; Trimarchi, G.; Freeman, A. J.

    2013-03-01

    Investigations of the magnetic properties of Fe-Ni based alloys are important from the fundamental as well as technological points of view. Furthermore, the magnetization at saturation and Curie temperature (TC) of FeNi can be tuned for specific applications by alloying with other metallic species. We have performed electronic structure calculations on Fe-Ni- M alloys, where M are 3d transition metals, to determine how the magnetization depends on the species M and alloy composition. Electronic band structure and total energies are calculated by the Korringa-Kohn-Rostoker method within the coherent-potential-approximation (KKR-CPA). For the KKR-CPA calculations, we use the generalized gradient approximation of the exchange and correlation functional. In the case of Fe0.50Ni0.45M0 . 05 (M=Sc, Ti, V, Cr, Mn, and Co), the early 3 d atoms have antiparallel magnetic moments to the Fe or Ni, whereas the late ones, Mn and Co, have a parallel magnetic moment. Supported by the NU-Boeing Alliance

  7. A negative working potential supercapacitor electrode consisting of a continuous nanoporous Fe-Ni network.

    PubMed

    Xie, Yunsong; Chen, Yunpeng; Zhou, Yang; Unruh, Karl M; Xiao, John Q

    2016-06-01

    A new class of electrochemical electrodes operating in a negative voltage window has been developed by sintering chemically prepared Fe-Ni nanoparticles into a porous nanoscale mixture of an Fe-rich BCC Fe(Ni) phase and a Ni-rich FCC Fe-Ni phase. The selective conversion of the Fe-rich phase to hydroxides provides the electrochemically active component of the electrodes while the Ni-rich phase provides high conductivity and structural stability. The compositionally optimized electrodes exhibit a specific capacitance in excess of 350 F g(-1) (all normalizations are to the total electrode mass rather than the much smaller electrochemically active mass) and retain more than 85% of their maximum specific capacitance after 2000 charging/discharging cycles. In addition to their inexpensive constituents, these electrodes are self-supporting and their thickness and mass loading density of about 65 μm and 20 mg cm(-2) are compatible with the established manufacturing processes. This desirable combination of physical and electrochemical properties suggests that these electrodes may be useful as the negative electrode in high performance asymmetric supercapacitors. PMID:27232875

  8. Catalytic hydrodechlorination of monochloroacetic acid in wastewater using Ni-Fe bimetal prepared by ball milling.

    PubMed

    Zhu, Hong; Xu, Fuyuan; Zhao, Jianzhuang; Jia, Linfang; Wu, Kunming

    2015-09-01

    Monochloroacetic acid (MCA) is a chemically stable and biologically toxic pollutant. It is often generated during the production of the pesticide dimethoate. Conventional wastewater treatment processes have difficulty degrading it. In this work, the dechlorination effects of Ni-Fe bimetal prepared using ball milling (BM) technology for the high concentrations of MCA in wastewater were examined. The MCA in aqueous solution was found to be degraded efficiently by the Ni-Fe bimetal. However, S-(methoxycarbonyl) methyl O, O-dimethyl phosphorodithioate (SMOPD) in wastewater, a by-product of the dimethoate production process, significantly inhibited the reductive dechlorination activity of Ni-Fe bimetal. Increasing the reaction temperature in the MCA wastewater enhanced the reduction activity of the Ni-Fe bimetal effectively. Oxygen was found to be unfavorable to dechlorination. Sealing the reaction to prevent oxidation was found to render the degradation process more efficient. The process retained over 88% efficiency after 10 treatment cycles with 50 g/L of Ni-Fe bimetal under field conditions. PMID:25976331

  9. Preparation of Fe-Si-Ni soft magnetic composites with excellent high-frequency properties

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Wu, Chen; Yan, Mi

    2015-05-01

    Fe-Si-Ni powders were firstly prepared into soft magnetic composites (SMCs) by ball milling, surface passivation and subsequent compaction. The morphology, phase composition, and magnetic properties of the Fe-Si-Ni powders and their high-frequency performance as SMCs were investigated. The Fe-Si-Ni powders, with saturation magnetization (Ms) of 254.40 emu/g after annealing, were milled down to particle sizes ranging from 40 μm to 150 μm. Surface passivation of the powders was carried out with 0.2-1.0 wt% phosphoric acid solution prior to compaction. Evolution of the high-frequency properties for the Fe-Si-Ni SMCs with the passivator concentration and the molding pressure was studied. With optimized preparation parameters, high saturation flux density (Bs) of 1.23 T, stable permeability, and superior dc-bias property with a percentage permeability above 70% while H=50 Oe were achieved for the Fe-Si-Ni SMC. Minimum core loss (285 mW/cm3) was also measured at 50 kHz for Bm=50 mT.

  10. Evolution of cavity microstructure in ion-irradiated 316 SS and Fe-20Ni-15Cr alloy. [Fe-20Ni-15Cr

    SciTech Connect

    Kohyama, A.; Loomis, B.; Ayrault, G.; Igata, N.

    1984-04-01

    The effect of helium implantation schedule on the evolution of the cavity microstructure in 316 SS and Fe-20Ni-15Cr alloy during heavy-ion irradiation was investigated for damage levels up to 100 dpa with three helium injection schedules, i.e., 15 appm He/dpa, 50 appm He/dpa and 15 appm He preinjected prior to Ni/sup +/ ion irradiation. In the case of the dual-ion irradiated specimens, there was a trend towards a saturation of the swelling with increasing damage level that was closely related to the saturation and subsequent decrease of the number density of the small cavities (<8 nm diameter for 316 SS and <4 nm for Fe-20Ni-15Cr) and the dislocation density. The bi-model cavity size distribution that was determined for the Fe-20Ni-15Cr alloy at 40 dpa changed to uni-modal distribution at 65 and 100 dpa. Radiation-induced segregation was high and this was related to the saturation tendency for the swelling.

  11. Magnetic hyperthermia in brick-like Ag@Fe3O4 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Brollo, M. E. F.; Orozco-Henao, J. M.; López-Ruiz, R.; Muraca, D.; Dias, C. S. B.; Pirota, K. R.; Knobel, M.

    2016-01-01

    Heating efficiency of multifunctional Ag@Fe3O4 brick-like nanoparticles under alternating magnetic field was investigated by means of specific absorption rate (SAR) measurements, and compared with equivalent measurements for plain magnetite and dimer heteroparticles. The samples were synthesized by thermal decomposition reactions and present narrow size polydispersity and high degree of crystallinity. The SAR values are analyzed using the superparamagnetic theory, in which the basic morphology, size and dispersion of sizes play key roles. The results suggest that these novel brick-like nanoparticles are good candidates for hyperthermia applications, displaying heating efficiencies comparable with the most efficient plain nanoparticles.

  12. One-dimensional SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers and enhancement magnetic property.

    PubMed

    Song, Fuzhan; Shen, Xiangqian; Liu, Mingquan; Xiang, Jun

    2011-08-01

    SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers of diameters about 100 nm with mass ratio 1:1 have been prepared by the electrospinning and calcination process. The SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrites are formed after calcined at 700 degrees C for 2 hours. The composite ferrite nanofibers are fabricated from nanosized Ni(0.5)Zn(0.5)Fe2O4 and SrFe12O19 ferrite grains with a uniform phase distribution. The ferrite grain size increases from about 11 to 36 nm for Ni(0.5)Zn(0.5)Fe12O4 and 24 to 56 nm for SrFe12O19 with the calcination temperature increasing from 700 to 1100 degrees C. With the ferrite grain size increasing, the coercivity (Hc) and remanence (Mr) for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers initially increase, reaching a maximum value of 118.4 kA/m and 31.5 Am2/kg at the grain size about 40 nm (SrFe12O19) and 24 nm (Ni(0.5)Zn(0.5)Fe2O4) respectively, and then show a reduction tendency with a further increase of the ferrite grain size. The specific saturation magnetization (Msh) of 63.2 Am2/kg for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers obtained at 900 degrees C for 2 hours locates between that for the single SrFe12O19 ferrite (48.5 Am2/kg) and the single Ni(0.5)Zn(0.5)Fe2O4 ferrite (69.3 Am2/kg). In particular, the Mr value 31.5 Am2/kg for the SrFe12O19/Ni(0.5)Zn(0.5)Fe2O4 composite ferrite nanofibers is much higher than that for the individual SrFe12O19 (25.9 Am2/kg) and Ni(0.5)Zn(0.5)Fe2O4 ferrite (11.2 Am2/kg). These enhanced magnetic properties for the composite ferrite nanofibers can be attributed to the exchange-coupling interaction in the composite. PMID:22103109

  13. Supersolar Ni/Fe production in the Type IIP SN 2012ec

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Smartt, S. J.; Sollerman, J.; Inserra, C.; Fraser, M.; Spyromilio, J.; Fransson, C.; Chen, T.-W.; Barbarino, C.; Dall'Ora, M.; Botticella, M. T.; Della Valle, M.; Gal-Yam, A.; Valenti, S.; Maguire, K.; Mazzali, P.; Tomasella, L.

    2015-04-01

    SN 2012ec is a Type IIP supernova (SN) with a progenitor detection and comprehensive photospheric phase observational coverage. Here, we present Very Large Telescope and Public ESO Spectroscopic Survey of Transient Objects observations of this SN in the nebular phase. We model the nebular [O I] λλ6300, 6364 lines and find their strength to suggest a progenitor main-sequence mass of 13-15 M⊙. SN 2012ec is unique among hydrogen-rich SNe in showing a distinct line of stable nickel [Ni II] λ7378. This line is produced by 58Ni, a nuclear burning ash whose abundance is a sensitive tracer of explosive burning conditions. Using spectral synthesis modelling, we use the relative strengths of [Ni II] λ7378 and [Fe II] λ7155 (the progenitor of which is 56Ni) to derive a Ni/Fe production ratio of 0.20 ± 0.07 (by mass), which is a factor 3.4 ± 1.2 times the solar value. High production of stable nickel is confirmed by a strong [Ni II] 1.939 μm line. This is the third reported case of a core-collapse SN producing a Ni/Fe ratio far above the solar value, which has implications for core-collapse explosion theory and galactic chemical evolution models.

  14. Post-irradiation annealing behavior of neutron-irradiated FeCu, FeMnNi and FeMnNiCu model alloys investigated by means of small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Ulbricht, A.; Lindner, P.; Keiderling, U.; Malerba, L.

    2014-11-01

    Neutron irradiation of reactor pressure vessel steels gives rise to the formation of thermodynamically stable and unstable nano-features. The present work is focused on the stability of Cu-, Mn- and Ni-containing solute clusters in model alloys exposed to post-irradiation annealing. Fe0.1Cu, Fe1.2Mn0.7Ni and Fe1.2Mn0.7Ni0.1Cu (wt%) model alloys irradiated up to neutron exposures of 0.1 and 0.19 dpa (displacements per atom) were annealed at stepwise increasing temperatures in the range from 300 °C (i.e. near irradiation temperature) to 500 °C and characterized by means of small-angle neutron scattering (SANS). We have found characteristic differences in the annealing behavior of the alloys. In particular, there is a non-trivial (synergistic-antagonistic) interplay of Mn/Ni and Cu.

  15. Microscopic Investigation of Chemoselectivity in Ag-Pt-Fe3O4 Heterotrimer Formation: Mechanistic Insights and Implications for Controlling High-Order Hybrid Nanoparticle Morphology.

    PubMed

    Hodges, James M; Morse, James R; Williams, Mary Elizabeth; Schaak, Raymond E

    2015-12-16

    Three-component hybrid nanoparticle heterotrimers, which are important multifunctional constructs that underpin diverse applications, are commonly synthesized by growing a third domain off of a two-component heterodimer seed. However, because heterodimer seeds expose two distinct surfaces that often can both support nucleation and growth, selectively targeting one particular surface is critical for exclusively accessing a desired configuration. Understanding and controlling nucleation and growth therefore enables the rational formation of high-order hybrid nanoparticles. Here, we report an in-depth microscopic investigation that probes the chemoselective addition of Ag to Pt-Fe3O4 heterodimer seeds to form Ag-Pt-Fe3O4 heterotrimers. We find that the formation of the Ag-Pt-Fe3O4 heterotrimers initiates with indiscriminate Ag nucleation onto both the Pt and Fe3O4 surfaces of Pt-Fe3O4, followed by surface diffusion and coalescence of Ag onto the Pt surface to form the Ag-Pt-Fe3O4 product. Control experiments reveal that the size of the Ag domain of Ag-Pt-Fe3O4 correlates with the overall surface area of the Pt-Fe3O4 seeds, which is consistent with the coalescence of Ag through a surface-mediated process and can also be exploited to tune the size of the Ag domain. Additionally, we observe that small iron oxide islands on the Pt surface of the Pt-Fe3O4 seeds, deposited during the formation of Pt-Fe3O4, define the morphology of the Ag domain, which in turn influences its optical properties. These results provide unprecedented microscopic insights into the pathway by which Ag-Pt-Fe3O4 heterotrimer nanoparticles form and uncover new design guidelines for the synthesis of high-order hybrid nanoparticles with precisely targeted morphologies and properties. PMID:26599998

  16. HRTEM studies of NiNbZr + Ag amorphous-nanocrystalline composites.

    PubMed

    Dutkiewicz, J; Lityńska-Dobrzyńska, L; Kovacova, A; Rogal, L; Maziarz, W

    2009-11-01

    Amorphous powder of composition corresponding to Ni60Ti20Zr20 (in at%) was obtained by ball milling in a high-energy mills starting from pure elements. Formation of the amorphous structure was observed already after 20 h of milling, although complete amorphization occurred after 40 h. The microhardness of powders increased from about 30 HV for pure elements to above 400 HV (1290 MPa) after 40 h of milling. Transmission electron microscopy (TEM) allowed to identify nanocrystalline inclusions of intermetallic phases of size 2-10 nm. Uniaxial hot pressing was performed in vacuum at temperature below the crystallization T(x) it is 510 degrees C and pressure of 600 MPa, Mixed amorphous powders and nanocrystalline silver powders were used to form a composite, in which microhardness was near 970 MPa HV and 400 HV for the amorphous phase and nanocrystalline silver, respectively. The compression strength of the composite containing 20 wt% of nanocrystalline Ag powder was equal to 600 MPa and plastic strain was 2%. Microstructure studies showed low porosity of composites of less than 1%, uniform distribution of the silver phase and a transition zone between both components, about 150 nm thick, where diffusion of nickel, niobium and zirconium into silver was observed. High-resolution TEM allowed identifying the structure of nanocrystalline inclusions in the amorphous matrix after hot pressing as either Ni(3)Zr or Ni(17)Nb(3). The identification was performed basing on measurements of angles and interatomic distances using inverse Fourier transformed images with enhanced contrast using Digital Micrograph computer program. PMID:19903239

  17. Structural and magnetic stability of Fe{sub 2}NiSi

    SciTech Connect

    Gupta, Dinesh C. Bhat, Idris Hamid Chauhan, Mamta

    2014-04-24

    Full-potential ab-initio calculations in the stable F-43m phase have been performed to investigate the structural and magnetic properties of Fe{sub 2}NiSi inverse Heusler alloys. The spin magnetic moment distributions show that present material is ferromagnetic in stable F-43m phase. Further, spin resolved electronic structure calculations show that the discrepancy in magnetic moments of Fe-I and Fe-II depend upon the hybridization of Fe with the main group element. It is found that the main group electron concentration is predominantly responsible in establishing the magnetic properties, formation of magnetic moments and the magnetic order for present alloy.

  18. Hydrogen Activation by Biomimetic [NiFe]-Hydrogenase Model Containing Protected Cyanide Cofactors

    PubMed Central

    Manor, Brian C.; Rauchfuss, Thomas B.

    2013-01-01

    Described are experiments that allow incorporation of cyanide cofactors and hydride substrate into active site models [NiFe]-hydrogenases (H2ases). Complexes of the type (CO)2(CN)2Fe(pdt)Ni(dxpe), (dxpe = dppe, 1; dxpe = dcpe, 2) bind the Lewis acid B(C6F5)3 (BArF3) to give the adducts (CO)2(CNBArF3)2Fe(pdt)Ni(dxpe), (1(BArF3)2, 2(BArF3)2). Upon decarbonylation using amine oxides, these adducts react with H2 to give hydrido derivatives Et4N[(CO)(CNBArF3)2Fe(H)(pdt)Ni(dxpe)], (dxpe = dppe, Et4N[H3(BArF3)2]; dxpe = dcpe, Et4N[H4(BArF3)2]). Crystallographic analysis shows that Et4N[H3(BArF3)2] generally resembles the active site of the enzyme in the reduced, hydride-containing states (Ni-C/R). The Fe-H…Ni center is unsymmetrical with rFe-H = 1.51(3) and rNi-H = 1.71(3) Å. Both crystallographic and 19F NMR analysis show that the CNBArF3− ligands occupy basal and apical sites. Unlike cationic Ni-Fe hydrides, [H3(BArF3)2]− and [H4(BArF3)2]− oxidize at mild potentials, near the Fc+/0 couple. Electrochemical measurements indicate that in the presence of base, [H3(BArF3)2]− catalyzes the oxidation of H2. NMR evidence indicates dihydrogen bonding between these anionic hydrides and ammonium salts, which is relevant to the mechanism of hydrogenogenesis. In the case of Et4N[H3(BArF3)2], strong acids such as HCl induce H2 release to give the chloride Et4N[(CO)(CNBArF3)2Fe(pdt)(Cl)Ni(dppe)]. PMID:23899049

  19. Using granular C0-AI2O3 spacer for optimization of functional parameters of the FeMn/Fe20Ni80 magnetoresistive films

    NASA Astrophysics Data System (ADS)

    Gorkovenko, A. N.; Lepalovskij, V. N.; Adanakova, O. A.; Vas'kovskiy, V. O.

    2016-03-01

    In this paper we studied the possibility of tailoring the functional properties of the multilayer magnetoresistive medium with unidirectional anisotropy and the anisotropic magnetoresistance effect (AMR). Objects of the research were composite Co-Al2O3 films and Ta/Fe20Ni80/Fe50Mn50/Fe20Ni80/Co-Al2O3/Fe20Ni80/Ta multilayers structures obtained by magnetron sputtering and selectively subjected vacuum annealing. Structure, magnetic and magnetoresistive properties of the films in the temperature range 77÷440 K were investigated.

  20. The role of the non-magnetic material in spin pumping and magnetization dynamics in NiFe and CoFeB multilayer systems

    SciTech Connect

    Ruiz-Calaforra, A. Brächer, T.; Lauer, V.; Pirro, P.; Heinz, B.; Geilen, M.; Chumak, A. V.; Conca, A.; Leven, B.; Hillebrands, B.

    2015-04-28

    We present a study of the effective magnetization M{sub eff} and the effective damping parameter α{sub eff} by means of ferromagnetic resonance spectroscopy on the ferromagnetic (FM) materials Ni{sub 81}Fe{sub 19} (NiFe) and Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) in FM/Pt, FM/NM, and FM/NM/Pt systems with the non-magnetic (NM) materials Ru, Cr, Al, and MgO. Moreover, for NiFe layer systems, the influence of interface effects is studied by way of thickness dependent measurements of M{sub eff} and α{sub eff}. Additionally, spin pumping in NiFe/NM/Pt is investigated by means of inverse spin Hall effect (ISHE) measurements. We observe a large dependence of M{sub eff} and α{sub eff} of the NiFe films on the adjacent NM layer. While Cr and Al do not induce a large change in the magnetic properties, Ru, Pt, and MgO affect M{sub eff} and α{sub eff} in different degrees. In particular, NiFe/Ru and NiFe/Ru/Pt systems show a large perpendicular surface anisotropy and a significant enhancement of the damping. In contrast, the magnetic properties of CoFeB films do not have a large influence of the NM adjacent material and only CoFeB/Pt systems present an enhancement of α{sub eff}. However, this enhancement is much more pronounced in NiFe/Pt. By the introduction of the NM spacer material, this enhancement is reduced. Furthermore, a difference in symmetry between NiFe/NM/Pt and NiFe/NM systems in the output voltage signal from the ISHE measurements reveals the presence of spin pumping into the Pt layer in all-metallic NiFe/NM/Pt and NiFe/Pt systems.

  1. Accelerated Bonding of Magnesium and Aluminum with a CuNi/Ag/CuNi Sandwich Interlayer by Plasma-Activated Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Rao, Mei; Li, Leijun; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2016-02-01

    Plasma-activated sintering (PAS) has been applied, for the first time, to join magnesium and aluminum using a CuNi/Ag/CuNi sandwich structural interlayer. A cleaning effect and high efficient plasma heating mode in PAS have contributed to forming a strong interfacial diffusion bond under low temperature 673 K (400 °C) and short dwell time (0.6 ks). The designed interlayer provides a diffusion barrier effect and an enhanced physical contact between the interfaces. Strong bonding has been achieved without forming the brittle Mg-Al intermetallics.

  2. Effect of Yb2O3 doping on the grain boundary of NiFe2O4-10NiO-based cermets after sintering

    NASA Astrophysics Data System (ADS)

    He, Han-bing

    2015-12-01

    xYb2O3-15(20Ni-Cu)/(85 - x)(NiFe2O4-10NiO) ( x = 0, 0.25, 0.5, 0.75, 1.0, 2.0, and 10.0) cermets for aluminum electrolysis were prepared to investigate the effect of Yb2O3 doping on the grain boundary of the cermets after sintering. The results showed that each interface was very clear and that with increasing Yb2O3 content, most of the Yb was evenly distributed at the grain boundary. Moreover, according to the phase composition and microstructural analysis by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), and electron probe microanalysis (EPMA), YbFeO3 was produced along the grain boundary. The YbFeO3 was concluded to not only have formed from the interaction between the NiFe2O4 or Fe2O3 component and Yb2O3 at the grain boundary of the cermets, but also from the decomposition of NiFe2O4 into NiO and Fe2O3 and the subsequent reaction of Fe2O3 with Yb2O3. Thus, the production of YbFeO3 resulted in a cermet with high relative density, good electrical conductivity, and good corrosion resistance.

  3. Moessbauer spectroscopic investigations of bimetallic FeCo, FeNi, and FeRu model catalysts supported on magnesium hydroxide carbonate

    SciTech Connect

    Nagorny, K.; Bubert, S.

    1987-11-01

    FeCo, FeNi, and FeRu alloys supported on basic magnesium carbonate have been prepared by precipitation from salt solutions at 340 K onto the support using ion exchange and have been subsequently annealed for 20 h under argon. The reduction, oxidation, and sintering behavior of the samples under H/sub 2/ or CO exposure has been investigated at 723 K by means of Moessbauer spectroscopy. The comparison of the resonance absorption areas of the spectra taken at 4 and 295 K allowed the calculation of the Debye temperatures and Debye-Waller factors of the different components. From the Debye-Waller factors the relative fractions could be extrapolated to the conditions at 0 K. The kinetics of the H/sub 2/ exposure showed an increase in the reduction velocity as well as in the degree of reduction in the sequence FeCo < FeNi < FeRu. Above a critical particle diameter a phase separation occurred because of the segregation of an iron-rich phase at the surface of the alloy particles. The kinetics of the CO exposure demonstrated that with FeCo clusters iron(III) surface oxide layers form, whereas with FeNi clusters iron(II) surface oxide layers are generated. FeCo clusters with a cobalt content of 25% form only unstable surface carbides, whereas clusters with a cobalt content of about 5% form stable bulk carbides. The velocity of carbide formation increases with decreasing particle size. Based on the present data a model is proposed which explains the behavior of FeMe/magnesium hydroxide carbonates catalysts in H/sub 2/ and CO atmospheres.

  4. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    PubMed Central

    Hussein, Mohd Zobir; Mohamad Jaafar, Adila; Hj. Yahaya, Asmah; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-01-01

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs. PMID:25380526

  5. Formation and yield of multi-walled carbon nanotubes synthesized via chemical vapour deposition routes using different metal-based catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH.

    PubMed

    Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-01-01

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs. PMID:25380526

  6. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  7. Magnetic resonance of the NiFe2O4 nanoparticles in the gigahertz range

    PubMed Central

    2013-01-01

    We report an adjustable magnetic resonance frequency from 1.45 to 2.54 GHz for NiFe2O4 nanoparticles which were prepared by a sol–gel process. X-ray diffraction and scanning electron microscopy results indicate that the samples are polycrystalline nanoparticles, and the size of the particles increases obviously with the thermal treatment temperature. The consequence of the surface composition suggests that the oxygen defects are present in the nanoparticle surface, and this surface magnetic state can show a strong surface anisotropy. With decreasing size of the particle, the surface magnetic effect is predominant, resulting in an increase of resonance frequency for NiFe2O4 nanoparticles. This finding provides a new route for NiFe2O4 materials that can be used in the gigahertz range. PMID:24083340

  8. Morphology transition of deformation-induced lenticular martensite in Fe-Ni-C alloys

    SciTech Connect

    Zhang, X.M.; Li, D.F.; Xing, Z.S. . Inst. of Metal Research); Gautier, E.; Zhang, J.S.; Simon, A. . Lab. de Science et Genie des Materiaux Metalliques)

    1993-06-01

    The morphology and habit planes of deformation-induced lenticular martensite were investigated by optical and transmission electron microscopy in Fe-30Ni and Fe-30Ni-0.11C alloys. Transitions in morphology were observed with progressive deformation levels going from lenticular to butterfly martensite for the Fe-30Ni-0.11C alloy. The habit planes changed from (225)[sub f] or (259)[sub f] for the thermal lenticular martensite to (111)[sub f] for the strain-induced martensite. The morphology and crystallography of the small butterfly martensites was also investigated. A change in the orientation relationships from K-S to N-W relations was also observed. These changes were attributed to the contribution of mobile dislocations which modified the shear mode form twinning to slip, and to a plastic accommodation of transformation strains.

  9. Catalytic effect of Fe, Ni, Co and Mo on the CNTs production

    NASA Astrophysics Data System (ADS)

    Hoyos-Palacio, L. M.; García, A. G.; Pérez-Robles, J. F.; González, J.; Martínez-Tejada, H. V.

    2014-06-01

    In this work a chemical vapour deposition (CVD) process was implemented and automatized for the synthesis of carbon nanotubes (CNTs). Looking the possibility to make an extensive use of biogas, and also for decreasing the costs of the process, methane was used as carbon source. Different CNT structures were obtained using Fe, Ni, Co and also Mo nanoparticles, supported on silica-gel as catalyst for CNT's growing. The number of walls, the morphological effects and efficiency of the process showed dependency on the catalyst type. Cobalt helps the growing of CNTs with fewer layers, compared with Ni, Fe and Mo. Low quality structures are mainly obtained with Fe nanoparticles. Cobalt promotes small diameters in carbon nanotubes and Ni promotes the best quality and yielding during the CVD process.

  10. Factors influencing achievement of chemical order in tetragonal FeNi

    NASA Astrophysics Data System (ADS)

    Bordeaux, Nina; Montes-Arango, Ana Maria; Liu, Jiaxing; Barmak, Katayun; Lewis, Laura Henderson

    2015-03-01

    Chemically ordered ferromagnetic compounds with the L10 structure have attracted wide interest for rare-earth-free permanent magnet applications. In particular, L10-structured FeNi is a promising candidate due to the abundance and low cost of the constituent elements and high theoretical maximum energy product (BH)max = 42 MGOe. Synthesis of L10 FeNi has been hindered by extremely sluggish kinetics below the equilibrium order-disorder temperature TO/D = 320 ° and the phase is known to form in meteorites over millions of years. In this work, the thermodynamic stability of the L10 phase and kinetics of the L10 --> fcc magnetostructural phase transformation are quantitatively determined via magnetic and thermal measurements of bulk L10 FeNi extracted from meteorites. Influences on phase transformation kinetics, including effects of magnetism, will be discussed.

  11. Assessing deposition levels of 55Fe, 60Co and 63Ni in the Ignalina NPP environment.

    PubMed

    Gudelis, A; Druteikiene, R; Luksiene, B; Gvozdaite, R; Nielsen, S P; Hou, X; Mazeika, J; Petrosius, R

    2010-06-01

    Two RBMK-1500 reactor units operated in Lithuania in the 1987-2004 period (one of them was stopped for decommissioning in 2004). This study presents a preliminary investigation of surface deposition density levels of (55)Fe and (63)Ni in moss samples collected in the close vicinity of the Ignalina NPP. Non-destructive analysis by the HPGe gamma-spectrometry was followed by radiochemical separation. Radiochemical analysis was based on anion-exchange and extraction chromatography. (55)Fe and (63)Ni activities were measured by liquid scintillation counting (LSC). The results indicate that the deposition values of (55)Fe are generally higher than those of (60)Co and (63)Ni. PMID:18818005

  12. Electron-optical observations of ordered FeNi in the Estherville meteorite

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Novotny, P. M.; Williams, D. B.; Goldstein, J. I.

    1980-01-01

    Electron optical studies of the ordered FeNi (taenite) phase in the Estherville meteorite are reported. A thin section of the meteorite containing a large area of continuous anisotropic taenite was studied by crossed polar reflected light microscopy, and electron probe microanalysis, transmission electron microscopy, scanning transmission electron microscopy and X-ray energy dispersive spectrometry. Results reveal the presence of preferentially ion-etched regions of clear taenite corresponding to single crystals, with superlattice reflections in the fundamental FeNi reciprocal lattice arising from long-range ordering. The presence of antiphase domain boundaries within the regions also confirms the presence of ordering. It is thus proposed that clear taenite in the Estherville meteorite contains regions of ordered FeNi phase in a disordered gamma-phase matrix.

  13. Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn

    NASA Astrophysics Data System (ADS)

    Tshitoyan, V.; Ciccarelli, C.; Mihai, A. P.; Ali, M.; Irvine, A. C.; Moore, T. A.; Jungwirth, T.; Ferguson, A. J.

    2015-12-01

    We demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. In our study, we use an electrical detection technique of the ferromagnetic resonance driven by an in-plane ac current in a NiFe/IrMn bilayer. At room temperature, we observe antidampinglike spin torque acting on the NiFe ferromagnet, generated by an in-plane current driven through the IrMn antiferromagnet. A large enhancement of the torque, characterized by an effective spin-Hall angle exceeding most heavy transition metals, correlates with the presence of the exchange-bias field at the NiFe/IrMn interface. It highlights that, in addition to the strong spin-orbit coupling, the antiferromagnetic order in IrMn governs the observed phenomenon.

  14. Tensile Properties and Deformation Characteristics of a Ni-Fe-Base Superalloy for Steam Boiler Applications

    NASA Astrophysics Data System (ADS)

    Zhong, Zhihong; Gu, Yuefeng; Yuan, Yong; Shi, Zhan

    2014-01-01

    Ni-Fe-base superalloys due to their good manufacturability and low cost are the proper candidates for boiler materials in advanced power plants. The major concerns with Ni-Fe-base superalloys are the insufficient mechanical properties at elevated temperatures. In this paper, tensile properties, deformation, and fracture characteristics of a Ni-Fe-base superalloy primarily strengthened by γ' precipitates have been investigated from room temperature to 1073 K (800 °C). The results showed a gradual decrease in the strength up to about 973 K (700 °C) followed by a rapid drop above this temperature and a ductility minimum at around 973 K (700 °C). The fracture surfaces were studied using scanning electron microscopy and the deformation mechanisms were determined by the observation of deformed microstructures using transmission electron microscopy. An attempt has been made to correlate the tensile properties and fracture characteristics at different temperatures with the observed deformation mechanisms.

  15. Deposition temperature mediated tunable tilt angle magnetization in Co-Pt/Ni81Fe19 exchange springs

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Hsu, Jen-Hwa; Tsai, C. L.; Lee, C.-M.

    2015-05-01

    In this study, we investigate the effect of deposition temperature of Co-Pt fixed layer, Td,CoPt (150, 250 and 350 °C) on the tilt angle magnetization (θM) of Ni81Fe19-layer grown at room temperature (RT) and at different thicknesses (tNiFe=0, 1.0, 2.5 and 4.0 nm) in Co-Pt(Td,CoPt)/NiFe(tNiFe) exchange springs. The magnetic studies demonstrated a strong perpendicular magnetic anisotropy (PMA) for the equi-compositional ordered Co-Pt layer grown on glass substrate using the film sequence: Ta(20 nm)/Pt(20 nm)/CoPt(5 nm), regardless of Td,CoPt. The PMA can be retained with the addition of a 4-nm NiFe layer on the top when Td,CoPt≥250 °C. In contrast, relatively a thin layer of Ni-Fe (2.5 nm) can destroy the perpendicular exchange-spring behavior if the Co-Pt layer is deposited at RT. Using 3-D micromagnetic simulation, the interfacial exchange coupling strength (Aij) between the Co-Pt and NiFe-layers was estimated and the Aij value is found to increase rapidly when Td,CoPt is increased from RT to 300 °C. Besides, the magnetization tilted angle (θM) of NiFe can be easily tuned from completely out-of-plane to almost 60° when tNiFe=4.0 nm. Through this study, it is demonstrated that the θM of NiFe-layer can be tuned by not only altering the tNiFe; but also by varying the Td,CoPt.

  16. Two Liquid Phases Separation of Fe-Cu-B and Fe-Cu-Ag-B systems at 1873 and 1523 K

    NASA Astrophysics Data System (ADS)

    Ono-Nakazato, Hideki; Yamaguchi, Katsuhiro; Agawa, Shingo; Taguchi, Kenji; Usui, Tateo

    In recycling of steel scraps, the accumulation of tramp element in steel has been one of serious problems. Because copper in steel causes hot-shortness, the copper content of steel scraps is strictly adjusted under the upper limiting value in steelmaking process. In addition, recycling of steel scrap is necessary for energy savings and to realize a recycling-oriented society. In the present study,it was found that addition of boron could separate a single liquid in Fe-Cu system into Fe-rich and Cu-rich phases. Equilibrium experiments in Fe-Cu-B ternary system at 1873 and 1523 K showed that the copper content in Fe-rich phase decreased to 4.3 mass%. Subsequently, equilibrium experiments in Fe-Cu-Ag-B system were carried out and the copper was observed to be distributed between Fe-B and Ag phases. The distribution ratio of [mass%Cu](in Ag) / [mass%Cu](in Fe) was about 6 at 1873 K, regardless of copper content. It was found that the copper content of iron could be decreased by using silver as the solvent.

  17. Synthesis of triple-layered Ag@Co@Ni core-shell nanoparticles for the catalytic dehydrogenation of ammonia borane.

    PubMed

    Qiu, Fangyuan; Liu, Guang; Li, Li; Wang, Ying; Xu, Changchang; An, Cuihua; Chen, Chengcheng; Xu, Yanan; Huang, Yanan; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2014-01-01

    Triple-layered Ag@Co@Ni core-shell nanoparticles (NPs) containing a silver core, a cobalt inner shell, and a nickel outer shell were formed by an in situ chemical reduction method. The thickness of the double shells varied with different cobalt and nickel contents. Ag0.04 @Co0.48 @Ni0.48 showed the most distinct core-shell structure. Compared with its bimetallic core-shell counterparts, this catalyst showed higher catalytic activity for the hydrolysis of NH3 BH3 (AB). The synergetic interaction between Co and Ni in Ag0.04 @Co0.48 @Ni0.48 NPs may play a critical role in the enhanced catalytic activity. Furthermore, cobalt-nickel double shells surrounding the silver core in the special triple-layered core-shell structure provided increasing amounts of active sites on the surface to facilitate the catalytic reaction. These promising catalysts may lead to applications for AB in the field of fuel cells. PMID:24302541

  18. Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures

    NASA Astrophysics Data System (ADS)

    Ozoliņš, V.; Wolverton, C.; Zunger, Alex

    1998-03-01

    The classic metallurgical systems-noble-metal alloys-that have formed the benchmark for various alloy theories are revisited. First-principles fully relaxed general-potential linearized augmented plane-wave (LAPW) total energies of a few ordered structures are used as input to a mixed-space cluster expansion calculation to study the phase stability, thermodynamic properties, and bond lengths in Cu-Au, Ag-Au, Cu-Ag, and Ni-Au alloys. (i) Our theoretical calculations correctly reproduce the tendencies of Ag-Au and Cu-Au to form compounds and Ni-Au and Cu-Ag to phase separate at T=0 K. (ii) Of all possible structures, Cu3Au (L12) and CuAu (L10) are found to be the most stable low-temperature phases of Cu1-xAux with transition temperatures of 530 K and 660 K, respectively, compared to the experimental values 663 K and ~670 K. The significant improvement over previous first-principles studies is attributed to the more accurate treatment of atomic relaxations in the present work. (iii) LAPW formation enthalpies demonstrate that L12, the commonly assumed stable phase of CuAu3, is not the ground state for Au-rich alloys, but rather that ordered (100) superlattices are stabilized. (iv) We extract the nonconfigurational (e.g., vibrational) entropies of formation and obtain large values for the size-mismatched systems: 0.48 kB/atom in Ni0.5Au0.5 (T=1100 K), 0.37 kB/atom in Cu0.141Ag0.859 (T=1052 K), and 0.16 kB/atom in Cu0.5Au0.5 (T=800 K). (v) Using 8 atom/cell special quasirandom structures we study the bond lengths in disordered Cu-Au and Ni-Au alloys and obtain good qualitative agreement with recent extended x-ray-absorption fine-structure measurements.

  19. PVD synthesis and high-throughput property characterization of NiFeCr alloy libraries

    SciTech Connect

    Rar, A.; Frafjord, J. J.; Fowlkes, Jason D.; Specht, E. D.; Rack, P. D.; Santella, M. L.; Bei, H.; George, E. P.; Pharr, G. M.

    2004-12-16

    Three methods of alloy library synthesis, thick-layer deposition followed by interdiffusion, composition-spread codeposition and electron-beam melting of thick deposited layers, have been applied to Ni-Fe-Cr ternary and Ni-Cr binary alloys. Structural XRD mapping and mechanical characterization by means of nanoindentation have been used to characterize the properties of the libraries. The library synthesis methods are compared from the point of view of the structural and mechanical information they can provide.

  20. Effects of Fe content on the microstructure and properties of CuNi10FeMn1 alloy tubes fabricated by HCCM horizontal continuous casting

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-bin; Xu, Jun; Liu, Xin-hua; Xie, Jian-xin

    2016-04-01

    Heating-cooling combined mold (HCCM) horizontal continuous casting technology developed by our research group was used to produce high axial columnar-grained CuNi10FeMn1 alloy tubes with different Fe contents. The effects of Fe content (1.08wt%-2.01wt%) on the microstructure, segregation, and flushing corrosion resistance in simulated flowing seawater as well as the mechanical properties of the alloy tubes were investigated. The results show that when the Fe content is increased from 1.08wt% to 2.01wt%, the segregation degree of Ni and Fe elements increases, and the segregation coefficient of Ni and Fe elements falls from 0.92 to 0.70 and from 0.92 to 0.63, respectively. With increasing Fe content, the corrosion rate of the alloy decreases initially and then increases. When the Fe content is 1.83wt%, the corrosion rate approaches the minimum and dense, less-defect corrosion films, which contain rich Ni and Fe elements, form on the surface of the alloy; these films effectively protect the α-matrix and reduce the corrosion rate. When the Fe content is increased from 1.08wt% to 2.01wt%, the tensile strength of the alloy tube increases from 204 MPa to 236 MPa, while the elongation to failure changes slightly about 46%, indicating the excellent workability of the CuNi10FeMn1 alloy tubes.

  1. Coercivity, microstructure and magnetization reversal mechanism in TiNi-doped L10 FePt thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Yongmei; Li, Xiaohong; Jing, Jingjing; Zhang, Xiangyi; Zhao, Yuhong

    2016-06-01

    Controlling coercivity and understanding how it is affected by the microstructure are of essential importance for practical application of FePt thin films as a recording media. In this study, the small size of ordered domain, lower coercivity and weak intergranular exchange coupling interaction in TiNi-doped L10 FePt thin films are obtained. The TiNi additions maybe diffuse out of the FePt lattice into FePt grain boundaries, which separate FePt grains. The doping in grain boundary provides the nucleation center of reversed domain, which leads both nucleation-type and pinning-type mechanism to coexist in magnetization reversal processes for TiNi-doped FePt thin films. The decrease of anisotropy constant and nucleation field of reversed domain provides an explanation for the coercivity reduction of FePt thin films after TiNi doping.

  2. The effect of multiple martensitic transformations on diffusion of Fe and Ni atoms in Fe-31.7%Ni-0.06%C alloy

    PubMed Central

    2014-01-01

    Diffusion characteristics of iron and nickel atoms were investigated using radioactive isotopes method in phase-hardened metastable iron-nickel Fe-31.7%Ni-0.06%C alloy with nanofragmented structure. It has been found that diffusion mobility of nickel and iron atoms in reverted austenite of Fe-31.7%Ni-0.06%C alloy significantly increases as the result of multiple γ-α-γ martensitic transformations. The diffusion coefficients of nickel and iron in the austenite at 400°C corresponded to the stationary diffusion coefficients at the temperatures above 900°C. The revealed diffusion acceleration at low temperatures is caused by high-density dislocations and additional low-angle subboundaries of disoriented nanofragments of reverted austenite and deformation twin subboundaries formed during multiple γ-α-γ cycles. PMID:25024684

  3. Lattice dynamics in austenitic stainless steels Fe 18Cr 12Ni 2Mo and Fe 18Cr 16Ni 10Mn

    NASA Astrophysics Data System (ADS)

    Rajevac, V.; Hoelzel, M.; Danilkin, S. A.; Hoser, A.; Fuess, H.

    2004-04-01

    Phonon dispersion curves of austenitic stainless steels Fe-18Cr-16Ni-10Mn and Fe-18Cr-12Ni-2Mo have been measured by triple-axis neutron spectroscopy. The data were analysed using Born-von Karman interactions as well as calculations including the contribution of conduction electrons on the lattice dynamics. An appropriate description of the experimental data was obtained by taking into account two-neighbour shells plus the contribution of the electron gas. The elastic constants and moduli obtained are close to reported results by ultrasonic studies on polycrystalline samples. The phonon densities of states in both systems calculated from the dispersion curves agree well with results obtained by time-of-flight neutron spectroscopy on polycrystalline samples. The Debye temperature THgr(T) shows a minimum around 40 K, similar to copper and nickel.

  4. Microstructure and Fracture Toughness of FeNiCr-TiC Composite Produced by Thermite Reaction

    NASA Astrophysics Data System (ADS)

    Xi, Wenjun; Shi, Chaoliang

    The microstructures of the FeNiCr-TiC composite produced by the rapid solidification thermite process were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The effects of aging treatment on the microstructure and fracture toughness of the composite were examined. Results showed that the FeNiCr-TiC composite was composed of ferrite (α-FeNiCr), TiC and NiAl (β phase). TiC particles in the matrix were in the shape of polygon and uniformly distributed, and their size was less than 3 µm. The β phase was coherent with the ferrite matrix, and its average size was about 50 nm. The fracture toughness of composite was 22 MPa·m1/2 without aging. When the aging temperature was below 600°C, the fracture toughness of the composite had higher plateau values and reached the maximum of 32 MPa·m1/2 at aging temperature 500°C due to the precipitation of NiAl phase on the nanometer scale. The fracture toughness decreased rapidly aged at 650°C, and then kept homology value in the range of 700 to 900°C, which was attributed to the precipitation of needle-shaped carbide (Cr/Fe)7C3 at the grain boundaries.

  5. ALCHEMI of Fe-doped B2-ordered NiAl alloys with different doping levels

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1994-09-01

    The ALCHEMI technique yields exact expressions for best-fit parameters in terms of ionization localization constants and site distributions of 3 elements distributed over two sublattices. In this paper, a graphical plotting technique is applied to Fe-doped NiAl B2-ordered alloys Ni{sub 0.5-x}Fe{sub x}Al{sub 0.5}, with x=0.02 or 0.10. The thin foil samples were examined in an electron microscope with an x-ray spectrometer.

  6. Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni

    SciTech Connect

    Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.

    2010-08-03

    We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.

  7. A Parametric Analysis of Solidification in Y(Fe,Ni,Cr)-Nb-C Alloys

    SciTech Connect

    DuPont, J.N.; Robino, C.V.

    1999-02-22

    A parametric analysis is presented which summarizes the amount of total ({gamma}/NbC + {gamma}/Laves) and individual {gamma}/NbC and {gamma}/Laves constituents which form during solidification of {gamma}{sub (Fe,Ni,Cr)} alloys with variations in nominal Nb and C contents. Calculated results are presented for Fe base alloys and Ni base alloys. The results provide a quantitative rationale for understanding the relation between alloy composition and solidification microstructures and should provide useful insight into commercial alloys of similar composition.

  8. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions.

    PubMed

    Huber, C; Wächtershäuser, G

    1997-04-11

    In experiments modeling the reactions of the reductive acetyl-coenzyme A pathway at hydrothermal temperatures, it was found that an aqueous slurry of coprecipitated NiS and FeS converted CO and CH3SH into the activated thioester CH3-CO-SCH3, which hydrolyzed to acetic acid. In the presence of aniline, acetanilide was formed. When NiS-FeS was modified with catalytic amounts of selenium, acetic acid and CH3SH were formed from CO and H2S alone. The reaction can be considered as the primordial initiation reaction for a chemoautotrophic origin of life. PMID:9092471

  9. The observation of a 3-D to 2-D crossover in the magnetism of epitaxial Fe(110) / Ag(111) multilayers

    NASA Astrophysics Data System (ADS)

    Gutierrez, C. J.; Qui, Z. Q.; Wieczorek, M. D.; Tang, H.; Walker, J. C.

    1991-02-01

    Transmission 57Fe Mössbauer spectroscopy (TMS) was used to determine the temperature dependence of the magnetization of a series of Fe(110)/Ag(111) multilayer films grown by molecular beam epitaxy (MBE). The multilayer series of films had 3 monolayer (ML) thick Fe(110) bilayer components, and Ag(111) bilayer component thicknesses equal to 4, 8, 12 and 20 ML. The TMS spectra of each of these films consisted of a single magnetically-split sextet, with no additional superparamagnetic central features apparent. The multilayer with the 4 ML Ag bilayer component exhibited a T{3}/{2} hyperfine field temperature dependence. However, a transitional crossover in the Mössbauer hyperfine field temperature dependence with mixed T{3}/{2} and linear behavior was observed for the multilayers with intermediate Ag bilayer component thicknesses, while the 20 ML Ag bilayer component multilayer exhibited a linear hyperfine field temperature dependence. In the light of the absence of significant superparamagnetism in these films, the linear hyperfine field temperature dependence in the thickest Ag bilayer component multilayer is most likely the result of a genuine quasi-two-dimensional behavior.

  10. Immiscibility in the NiFe2O4-NiCr2O4 Spinel Binary

    SciTech Connect

    S Ziemniak

    2004-08-13

    The solid solution behavior of the Ni(Fe{sub 1-n}Cr{sub n}){sub 2}O{sub 4} spinel binary is investigated in the temperature range 400-1200 C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 C. Air-annealing for one year at 600 C resulted in partial phase separation in a spinel binary having n = 0.5. Spinel crystals grown from NiO, Fe{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} reactants, mixed to give NiCrFeO{sub 4}, by Ostwald ripening in a molten salt solvent, exhibited single phase stability down to about 750 C (the estimated consolute solution temperature, T{sub cs}). A solvus exists below T{sub cs}. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature.

  11. High-sensitivity planar Hall sensor based on simple gaint magneto resistance NiFe/Cu/NiFe structure for biochip application

    NASA Astrophysics Data System (ADS)

    Bui, Dinh Tu; Danh Tran, Mau; Nguyen, Huu Duc; Binh Nguyen, Hai

    2013-03-01

    The planar Hall effect (PHE) sensor based on a simple giant magneto resistance (GMR) trilayer structure NiFe/Cu/NiFe has been designed and fabricated successfully using conventional clean room fabrication methods. The PHE sensor is integrated by 24 sensor patterns with dimensions of 50 × 50 μm. Influence of individual layer thickness to sensitivity of sensor has been investigated. Sensitivity and planar Hall voltage increases with the decrease of Cu-layer thickness. The results are discussed in terms of the reinforcement of the antiferromagnetic interaction between NiFe layers and shunting current through the layer Cu. The optimum configuration has been found in the structure with the Cu-layer of 1 nm. In this case a single planar Hall effect sensor exhibits a high sensitivity of about 8 μV Oe-1 and a maximal of the signal change as large as ▵V ˜ 55 μV. These values are comparable to those of the typical PHE sensor based on complex GMR spin-valve structure. With a high sensitivity and simple structure, this sensor is very promising for practical detection of magnetic beads and identifying multiple biological agents in the environment.

  12. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  13. Crystallization induced ordering of hard magnetic L10 phase in melt-spun FeNi-based ribbons

    NASA Astrophysics Data System (ADS)

    Sato, Kazuhisa; Sharma, Parmanand; Zhang, Yan; Takenaka, Kana; Makino, Akihiro

    2016-05-01

    The microstructure of newly developed hard magnetic Fe42Ni41.3SixB12-xP4Cu0.7 (x = 2 to 8 at%) nanocrystalline alloy ribbons has been studied by transmission electron microscopy (TEM) and electron diffraction. A high-density polycrystalline grains, ˜30 nm in size, were formed in a ribbon after annealing at 673 K for 288 hours. Elemental mapping of the annealed specimen revealed the coexistence of three regions, Fe-rich, Ni-rich, and nearly equiatomic Fe-Ni, with areal fractions of 37%, 40%, and 23 %, respectively. The equiatomic L10-type ordered phase of FeNi was detected in between the Fe and Ni-rich phases. The presence of superlattice reflections in nanobeam electron diffraction patterns confirmed the formation of the hard magnetic L10 phase beyond any doubt. The L10 phase of FeNi was detected in alloys annealed in the temperature range of 673 to 813 K. The present results suggest that the order-disorder transition temperature of L10 FeNi is higher than the previously reported value (593 K). The high diffusion rates of the constituent elements induced by the crystallization of an amorphous phase at relatively low temperature (˜673K) are responsible for the development of atomic ordering in FeNi.

  14. The microstructure of near-equiatomic B2/f.c.c. FeNiMnAl alloys

    SciTech Connect

    Baker, I.; Wu, H.; Wu, X.; Miller, M.K.; Munroe, P.R.

    2011-10-15

    A microstructural analysis of two FeNiMnAl alloys, Fe{sub 30}Ni{sub 20}Mn{sub 30}Al{sub 20} and Fe{sub 25}Ni{sub 25}Mn{sub 30}Al{sub 20}, was performed by a combination of atom probe tomography and transmission electron microscopy techniques. Although the microstructures of both alloys, which consist of alternating platelets aligned along < 100> of the B2-ordered phase, are similar to B2/b.c.c. two-phase alloys previously observed in the FeNiMnAl system, the two phases present in the current alloys are B2-ordered and f.c.c., with the latter phase being heavily twinned. Very fine ({approx} 5 nm) precipitates, whose chemistry was similar to that of the f.c.c. (Fe, Mn)-rich phase, were found within the B2 (Ni, Al)-rich phase in both alloys. - Highlights: {yields} The microstructures of the novel alloys Fe{sub 30}Ni{sub 20}Mn{sub 30}Al{sub 20} and Fe{sub 25}Ni{sub 25}Mn{sub 30}Al{sub 20} were characterized. {yields} Atom probe tomography and transmission electron microscopy were used in the study. {yields} A < 100>-aligned B2-ordered phase and heavily-twinned f.c.c. phase were present. {yields} Very fine (Fe, Mn)-rich precipitates were found within the B2 (Ni, Al)-rich phase.

  15. Oxidation and electrical behavior of ferritic stainless steel interconnect with Fe-Co-Ni coating by electroplating

    NASA Astrophysics Data System (ADS)

    Geng, Shujiang; Qi, Shaojun; Xiang, Dong; Zhu, Shenglong; Wang, Fuhui

    2012-10-01

    Fe-Co-Ni coating is deposited on ferritic stainless steel using a cost-effective technique of electroplating for intermediate-temperature solid oxide fuel cell (SOFC) interconnects application. The steel with Fe-Co-Ni coating has been evaluated in air at 800 °C corresponding to the cathode environment of SOFC. The results indicate that the steel with Fe-Co-Ni coating experiences an initially large mass gain, and then the mass gain increases slightly after the first-week rapid oxidation stage. After thermal exposure in air at 800 °C, the Fe-Co-Ni coating has been converted into (Fe,Co,Ni)3O4 spinel layer underneath which a Cr2O3 layer is developed from the steel substrate. The outer layer of (Fe,Co,Ni)3O4 spinel has not only suppressed Cr migration outward but also reduced the growth rate of the inner layer of Cr2O3. The steel with Fe-Co-Ni coating exhibits a stable surface oxide scale area specific resistance (ASR) which is much lower than that of the bare steel. (Fe,Co,Ni)3O4 spinel is a promising protective coating for SOFC steel interconnect.

  16. Synthesis and characterization of nano Cdo/NiO, nano Ag/ZnO composites & Ag/Zno embedded polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Godasu, Rahul

    Nanoparticles are finest structures whose size composition is within nanometer range. Thus nanoparticles are a collection of atoms bonded together with structural radius less than 100 nm. Nanocomposites are multiphase solid materials where one of the phases has one, two or three dimensions of less than 100 mn. Nano composites are prepared to improve mechanical, electrical, thermal, optical, electrochemical, catalytic properties from its parent materials. For instance, blend of nanoparticles with a polymer are called polymer nanocomposites. Nanostructured composites like Cadmium oxide/Nickel oxide (CdO/NiO) and silver/zinc oxide (Ag/ZnO) were prepared. Characterization of these prepared nanocomposites were carried out using X-ray powder diffraction, Differential scanning calorimetry, Scanning electron microscopy and the average sizes were determined using zeta sizer. Results obtained using characterization methods were in agreement stating that we were successful in synthesizing composites. The prepared Ag/ZnO nano composite was embedded in PCL polymer and we made films of PCL embedded with nano composite. The SEM image of the 5% Ag/ZnO embedded film clearly shows two regions, which indicates that Ag/ZnO nano composite was successfully embedded into the polymer using a non insitu method. SEM results also showed that the Zinc Oxide nano particles were successfully embedded into the polymer .

  17. In-situ synthesis of magnetic (NiFe 2O 4/CuO/FeO) nanocomposites

    NASA Astrophysics Data System (ADS)

    Srivastava, Manish; Ojha, Animesh K.; Chaubey, S.; Singh, Jay

    2010-11-01

    In-situ synthesis of magnetic nanocomposites with (NiFe 2O 4/CuO/FeO) crystal phases has been done using a sol-gel method by taking a non-stoichiometric composition of the precursors. The average particle size of the nanocomposites was calculated using X-ray diffraction (XRD) and high resolution tunneling electron microscope (HR-TEM) and it turns out to be ˜20 nm. The vibrating sample magnetometer (VSM) measurements demonstrate the ferromagnetic nature of the nanocomposites. The synthesized nanocomposite was used to prepare magnetic fluid using tetramethylammonium hydroxide as a surfactant and its stability in the solution was also discussed.

  18. Electrodeposition of amorphous Ni P coatings onto Nd Fe B permanent magnet substrates

    NASA Astrophysics Data System (ADS)

    Ma, C. B.; Cao, F. H.; Zhang, Z.; Zhang, J. Q.

    2006-12-01

    Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H 3PO 3 on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni 2P/Ni 3P and the resultant formation of multi-phase coatings (such as Ni 2P-P).

  19. Morphology and composition of chalcopyrite, chromite, Cu, Ni-Fe, pentlandite, and troilite in vugs of 76015 and 76215

    NASA Technical Reports Server (NTRS)

    Carter, J. L.; Clanton, U. S.; Laughon, R. B.; Mckay, D. S.; Usselman, T. M.; Fuhrman, R.

    1975-01-01

    Vugs from 76015 and 76215 are lined with euhedral crystals of plagioclase, pyroxene, ilmenite, Ni-Fe, and troilite. Smaller crystals of chromite, pentlandite, and chalcopyrite occur on the surface of the troilite in 76015. Wire Cu and dendritic-metallic Cu occurs with metallic Ni-Fe and troilite in some vugs of 76215. Troilite in both samples may have crystallized from an immiscible sulfide liquid. With falling temperature, chalcopyrite, and pentlandite may have exsolved from the troilite in 76015. By contrast, metallic Cu may have formed in 76215 by thermal breakdown of a bornite, troilite, and Ni-Fe assemblage which originally crystallized from a low-Ni immiscible sulfide liquid.

  20. Preparation and electromagnetic properties of Polyaniline(polypyrrole)-BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Ying; Wang, Qiufen; He, Qian; Chen, Lin

    2012-10-01

    The nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2 Fe2O4) was prepared by the sol-gel process, and then the polyaniline(PANI)/polypyrrole(PPY)-BaFe12O19/Ni0.8Zn0.2Fe2O4 was produced by in situ polymerization method. The structures, morphology and electromagnetic properties of the samples were characterized by various instruments. XRD, TEM, and FTIR analysis indicated that BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite were homogenously enwrapped by PANI(PPY) coating. The VSM and SDY-4 measurement show that the magnetic properties of the composites decreased with the increase in PANI(PPY) amount, However, the electrical conductivity is on the contrary. The electromagnetic properties of the composites were much better than BaFe12O19/Ni0.8Zn0.2Fe2O4 in the frequency range of 2-15 GHz, which mainly depends on the dielectric loss of PANI(PPY). A minimum reflection loss of the PANI(PPY)-BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite nanocomposite is -19.7 dB(-21.5 dB) at the frequency of 7.3 GHz (10.7 GHz).

  1. Microscale mineralogical characterization of As, Fe, and Ni in uranium mine tailings

    NASA Astrophysics Data System (ADS)

    Essilfie-Dughan, Joseph; Hendry, M. Jim; Warner, Jeff; Kotzer, Tom

    2012-11-01

    Uranium (U) ores can contain high concentrations of elements of concern (EOCs), such as arsenic (As) and nickel (Ni) present in sulfide and arsenide minerals. The U in these ores is often solubilized by adding H2SO4 to attain a pH ∼1 under oxic conditions. This process releases some EOCs from the primary minerals into solution. The barren raffinate (solution remaining after U extraction) is subsequently neutralized with Ca(OH)2 to a terminal pH of ∼10.5, resulting in a reduction in the aqueous concentrations of the EOCs. These neutralized raffinates are mixed with the non-reacted primary minerals and discharged as tailing into tailings management facilities (TMFs). To aid in the accurate characterization and quantification of the mineralogical controls on the concentrations of EOCs in the tailings porewater, their spatial distribution and speciation were studied at the micron scale in tailings samples collected from the Deilmann U Tailings Management Facility (DTMF), northern Saskatchewan, Canada. Backscattered electron images of the tailings samples generated using an electron microprobe show the presence of nodules (10-200 μm size) surrounded by bright rims. Wavelength dispersive spectrometric (WDS) and synchrotron-based micro-X-ray fluorescence (μ-XRF) elemental mapping show that the nodules are dominated by Ca and S (as gypsum) and the bright rims are dominated by Fe, As, and Ni. Micro-X-ray absorption near-edge structure (μ-XANES) spectra collected within and near the rims indicate that the Fe and Ni are present mainly in the +3 and +2 oxidation states, respectively; for As, the +5 oxidation state dominates but significant amounts of the +3 oxidation state are present in some areas. Linear combination fit analyses of the K-edges for the Fe, As, and Ni μ-XANES spectra to reference compounds suggest the Fe in the rims is present as ferrihydrite with As and Ni are adsorbed to it. Energy dispersive spectrometric (EDS) data indicate that isolated, highly

  2. Exchange-bias phenomena and modeling in nanocrystalline powders of MnO/FeCo and NiO/Fe

    NASA Astrophysics Data System (ADS)

    Cornejo, D. R.; Padrón Hernández, E.; Azevedo, A.; Rezende, S. M.

    2005-05-01

    An approach towards the modeling of the magnetic behavior in heterogeneous systems of exchange-coupled antiferromagnetic (AF) and ferromagnetic (FM) particles with composition (AF)x+(FM)1-x is presented. The model is based on the Preisach hysteresis model and correctly predicts the correlation between the exchange-bias field and the mean grain size of the material, as established from the measurements of the hysteresis loops in mechanically alloyed (MnO)+(α-FeCo). The model was also used to calculate the unidirectional anisotropy interface energies in both this and (NiO)x+(α-Fe)1-x system; in the latter case, the predicted value was in full agreement with that reported for antiferromagnetic layers of NiO.

  3. Constraints on Explosive Silicon Burning in Core-collapse Supernovae from Measured Ni/Fe Ratios

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Timmes, F. X.; Magkotsios, G.; Sim, S. A.; Fransson, C.; Spyromilio, J.; Müller, B.; Heger, A.; Sollerman, J.; Smartt, S. J.

    2015-07-01

    Measurements of explosive nucleosynthesis yields in core-collapse supernovae provide tests for explosion models. We investigate constraints on explosive conditions derivable from measured amounts of nickel and iron after radioactive decays using nucleosynthesis networks with parameterized thermodynamic trajectories. The Ni/Fe ratio is for most regimes dominated by the production ratio of 58Ni/(54Fe + 56Ni), which tends to grow with higher neutron excess and with higher entropy. For SN 2012ec, a supernova (SN) that produced a Ni/Fe ratio of 3.4 ± 1.2 times solar, we find that burning of a fuel with neutron excess η ≈ 6× {10}-3 is required. Unless the progenitor metallicity is over five times solar, the only layer in the progenitor with such a neutron excess is the silicon shell. SNe producing large amounts of stable nickel thus suggest that this deep-lying layer can be, at least partially, ejected in the explosion. We find that common spherically symmetric models of {M}{ZAMS}≲ 13 {M}⊙ stars exploding with a delay time of less than one second ({M}{cut}\\lt 1.5 {M}⊙ ) are able to achieve such silicon-shell ejection. SNe that produce solar or subsolar Ni/Fe ratios, such as SN 1987A, must instead have burnt and ejected only oxygen-shell material, which allows a lower limit to the mass cut to be set. Finally, we find that the extreme Ni/Fe value of 60-75 times solar derived for the Crab cannot be reproduced by any realistic entropy burning outside the iron core, and neutrino-neutronization obtained in electron capture models remains the only viable explanation.

  4. The Reaction Mechanism of Decomposing Chloroform by Bi-Metal Nano-Metallic Particles of Fe/Ni

    SciTech Connect

    Hsieh, Su-Hwei; Horng, Jao-Jia

    2004-03-31

    By adding Ni into the production of Fe/Ni nano-metallic particles, the acceleration of reduction ability of particles to decompose Chloroform is observed. The addition also could inhibit the shielding effect of pure iron compounds. This research studied the production and properties of the nano-particle metallic compounds of Fe and Ni, the decomposition of Chloroform by the particles and the mechanism of the decomposition processes. The experimental results indicated effective and rapid decomposition of chloroform by the Fe/Ni nano-particles on aluminum oxides, comparing to nano particles of iron in other researches. The reaction mechanism of Fe/Ni particles was pseudo first order with the half life about 0.7 hour, which was much shorter than the nano-Fe particles.

  5. The Microstructure of Near-Equiatomic B2/f.c.c. FeNiMnAl Alloys

    SciTech Connect

    Baker, Ian; Wu, H; Wu, Xiaolan; Miller, Michael K; Munroe, P R

    2011-01-01

    A microstructural analysis of two FeNiMnAl alloys, Fe{sub 30}Ni{sub 20}Mn{sub 30}Al{sub 20} and Fe{sub 25}Ni{sub 25}Mn{sub 30}Al{sub 20}, was performed by a combination of atom probe tomography and transmission electron microscopy techniques. Although the microstructures of both alloys, which consist of alternating platelets aligned along <100> of the B2-ordered phase, are similar to B2/b.c.c. two-phase alloys previously observed in the FeNiMnAl system, the two phases present in the current alloys are B2-ordered and f.c.c., with the latter phase being heavily twinned. Very fine ({approx} 5 nm) precipitates, whose chemistry was similar to that of the f.c.c. (Fe, Mn)-rich phase, were found within the B2 (Ni, Al)-rich phase in both alloys.

  6. Structural, thermal and magnetic properties of Ni 1-xMn xFe 2O 4 nanoferrites

    NASA Astrophysics Data System (ADS)

    Shobana, M. K.; Sankar, S.

    2009-07-01

    In this paper, the structural, thermal and magnetic properties of Ni 1-xMn xFe 2O 4 are presented. It is observed that high concentration of Mn 2+ ions into NiFe 2O 4 tends to reduce the particle size. Calcination at 500 °C has resulted in the growth of Ni 1-xMn xFe 2O 4 nanoparticles, but the calcination at 900 °C has led to the evaporation of the majorities of the polyvinyl alcohol. After calcination at 900 °C, crystallographically oriented NiMnFe 2O 4 nanoparticles are formed. These Ni 1-xMn xFe 2O 4 nanoparticles show hysteresis behaviour upon magnetization. On the other hand, saturation magnetization (Ms) values decreases with increasing Mn content in ferrite due to the influence of Mn 2+ ion in the sub lattice.

  7. Defect and solute properties in dilute Fe-Cr-Ni austenitic alloys from first principles

    NASA Astrophysics Data System (ADS)

    Klaver, T. P. C.; Hepburn, D. J.; Ackland, G. J.

    2012-05-01

    We present results of an extensive set of first-principles density functional theory calculations of point defect formation, binding, and clustering energies in austenitic Fe with dilute concentrations of Cr and Ni solutes. A large number of possible collinear magnetic structures were investigated as appropriate reference states for austenite. We found that the antiferromagnetic single- and double-layer structures with tetragonal relaxation of the unit cell were the most suitable reference states and highlighted the inherent instabilities in the ferromagnetic states. Test calculations for the presence and influence of noncollinear magnetism were performed but proved mostly negative. We calculate the vacancy formation energy to be between 1.8 and 1.95 eV. Vacancy cluster binding was initially weak at 0.1 eV for divacancies but rapidly increased with additional vacancies. Clusters of up to six vacancies were studied and a highly stable octahedral cluster and stacking fault tetrahedron were found with total binding energies of 2.5 and 2.3 eV, respectively. The <100> dumbbell was found to be the most stable self-interstitial with a formation energy of between 3.2 and 3.6 eV and was found to form strongly bound clusters, consistent with other fcc metals. Pair interaction models were found to be capable of capturing the trends in the defect cluster binding energy data. Solute-solute interactions were found to be weak in general, with a maximal positive binding of 0.1 eV found for Ni-Ni pairs and maximum repulsion found for Cr-Cr pairs of -0.1 eV. Solute cluster binding was found to be consistent with a pair interaction model, with Ni-rich clusters being the most stable. Solute-defect interactions were consistent with Ni and Cr being modestly oversized and undersized solutes, respectively, which is exactly opposite to the experimentally derived size factors for Ni and Cr solutes in type 316 stainless steel and in the pure materials. Ni was found to bind to the vacancy and

  8. Equilibrium point defects in intermetallics with the [ital B]2 structure: NiAl and FeAl

    SciTech Connect

    Fu, C.L.; Ye, Y.; Yoo, M.H. ); Ho, K.M. )

    1993-09-01

    Equilibrium point defects and their relation to the contrasting mechanical behavior of NiAl and FeAl are investigated. For NiAl, the defect structure is dominated by two types of defects---monovacancies on the Ni sites and substitutional antisite defects on the Al sites. The defect structure of FeAl differs from that of NiAl in the occurrence of antisite defects at the transition-metal sites for Al-rich alloys and the tendency for vacancy clustering. The strong ordering (and brittleness) of NiAl is attributed mainly to the difference in atomic size between constituent atoms.

  9. Effect of minor Fe substitution for Ni on the magnetic properties of a Gd55Al20Ni25 bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Li, Zheng; Wang, Zheng Wen; Wu, Cheng; Zhang, Yi Qing

    2016-03-01

    In this work, we studied the effect of micro-alloying on the glass-forming ability (GFA) and magnetic properties of Gd55Al20Ni25 bulk metallic glass (BMG). By minor Fe substitution for Ni, we obtained Gd55Al20Ni23Fe2 BMG with enhanced magneto-caloric effect (MCE) and GFA similar to Gd55Al20Ni25 BMG. The maximum magnetic entropy change (-ΔSmpeak) and the magnetic refrigerant capacity (Rc) of Gd55Al20Ni23Fe2 BMG within the field range of 5 T are about 9.05 J kg-1 K-1 and 850J ṡkg-1, respectively, both of which are larger than the values of Gd55Ni25Al20 BMG. The mechanism for the improved MCE of the Gd55Al20Ni23Fe2 BMG was investigated and the magneto-caloric behaviors were studied by constructing the field dependence of - ΔSmpeak of Gd55Al20Ni23Fe2 BMG.

  10. A broad survey reveals substitution tolerance of residues ligating FeS clusters in [NiFe] hydrogenase

    PubMed Central

    2014-01-01

    Background In order to understand the effects of FeS cluster attachment in [NiFe] hydrogenase, we undertook a study to substitute all 12 amino acid positions normally ligating the three FeS clusters in the hydrogenase small subunit. Using the hydrogenase from Alteromonas macleodii “deep ecotype” as a model, we substituted one of four amino acids (Asp, His, Asn, Gln) at each of the 12 ligating positions because these amino acids are alternative coordinating residues in otherwise conserved-cysteine positions found in a broad survey of NiFe hydrogenase sequences. We also hoped to discover an enzyme with elevated hydrogen evolution activity relative to a previously reported “G1” (H230C/P285C) improved enzyme in which the medial FeS cluster Pro and the distal FeS cluster His were each substituted for Cys. Results Among all the substitutions screened, aspartic acid substitutions were generally well-tolerated, and examination suggests that the observed deficiency in enzyme activity may be largely due to misprocessing of the small subunit of the enzyme. Alignment of hydrogenase sequences from sequence databases revealed many rare substitutions; the five substitutions present in databases that we tested all exhibited measurable hydrogen evolution activity. Select substitutions were purified and tested, supporting the results of the screening assay. Analysis of these results confirms the importance of small subunit processing. Normalizing activity to quantity of mature small subunit, indicative of total enzyme maturation, weakly suggests an improvement over the “G1” enzyme. Conclusions We have comprehensively screened 48 amino acid substitutions of the hydrogenase from A. macleodii “deep ecotype”, to understand non-canonical ligations of amino acids to FeS clusters and to improve hydrogen evolution activity of this class of hydrogenase. Our studies show that non-canonical ligations can be functional and also suggests a new limiting factor in the production of

  11. Corrosion Behavior of NiCrFe Alloy 600 in High Temperature, Hydrogenated Water

    SciTech Connect

    SE Ziemniak; ME Hanson

    2004-11-02

    The corrosion behavior of Alloy 600 (UNS N06600) is investigated in hydrogenated water at 260 C. The corrosion kinetics are observed to be parabolic, the parabolic rate constant being determined by chemical descaling to be 0.055 mg dm{sup -2} hr{sup -1/2}. A combination of scanning and transmission electron microscopy, supplemented by energy dispersive X-ray spectroscopy and grazing incidence X-ray diffraction, are used to identify the oxide phases present (i.e., spinel) and to characterize their morphology and thickness. Two oxide layers are identified: an outer, ferrite-rich layer and an inner, chromite-rich layer. X-ray photoelectron spectroscopy with argon ion milling and target factor analysis is applied to determine spinel stoichiometry; the inner layer is (Ni{sub 0.7}Fe{sub 0.3})(Fe{sub 0.3}Cr{sub 0.7}){sub 2}O{sub 4}, while the outer layer is (Ni{sub 0.9}Fe{sub 0.1})(Fe{sub 0.85}Cr{sub 0.15}){sub 2}O{sub 4}. The distribution of trivalent iron and chromium cations in the inner and outer oxide layers is essentially the same as that found previously in stainless steel corrosion oxides, thus confirming their invariant nature as solvi in the immiscible spinel binary Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} (or NiFe{sub 2}O{sub 4}-NiCr{sub 2}O{sub 4}). Although oxidation occurred non-selectively, excess quantities of nickel(II) oxide were not found. Instead, the excess nickel was accounted for as recrystallized nickel metal in the inner layer, as additional nickel ferrite in the outer layer, formed by pickup of iron ions from the aqueous phase, and by selective release to the aqueous phase.

  12. Ag/α-Fe{sub 2}O{sub 3} hollow microspheres: Preparation and application for hydrogen peroxide detection

    SciTech Connect

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang Zhang, Tingting; Guo, Tingting

    2015-09-15

    In this paper, we demonstrated a simple approach for preparing α-Fe{sub 2}O{sub 3} hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe{sub 2}O{sub 3} hollow spheres formation. Ag/α-Fe{sub 2}O{sub 3} hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe{sub 2}O{sub 3} hollow composites exhibited remarkable catalytic performance toward H{sub 2}O{sub 2} reduction. The electrocatalytic activity mechanism of Ag/α-Fe{sub 2}O{sub 3}/GCE were discussed toward the reduction of H{sub 2}O{sub 2} in this paper. - Graphical abstract: Glucose is carbonized as carbon balls in the 180 °C hydrothermal carbonization process, which plays a role of a soft template. Carbon spherical shell is rich in many hydroxyls, which have good hydrophilicity and surface reactivity. When Fe(NO{sub 3}){sub 3} is added to the aqueous solution of Glucose, the hydrophilic -OH will adsorb Fe{sup 3+} to form coordination compound by coordination bond. α-FeOOH is formed on the surface of carbon balls by hydrothermal reaction. After calcination at 500 °C, carbon spheres react with oxygen to form carbon dioxide, which disappears in the air. Meanwhile α-FeOOH is calcined to form α-Fe{sub 2}O{sub 3} hollow spheres.

  13. Construction of the Magnetic Phase Diagram of FeMn/Ni/Cu(001) Using Photoemission Electron Microscopy

    SciTech Connect

    Wu, J.; Scholl, A.; Arenholz, E.; Hwang, C.; Qiu, Z. Q.

    2011-01-04

    Single crystalline FeMn/Ni bilayer was epitaxially grown on Cu(001) substrate and investigated by photoemission electron microscopy (PEEM). The FeMn and Ni films were grown into two cross wedges to facilitate an independent control of the FeMn (0-20 ML) and Ni (0-20 ML) film thicknesses. The Ni magnetic phases were determined by Ni domain images as a function of the Ni thickness (d{sub Ni}) and the FeMn thickness (d{sub FeMn}). The result shows that as the Ni thickness increases, the Ni film undergoes a paramagnetic-to-ferromagnetic state transition at a critical thickness of d{sub FM} and an in-plane to out-of-plane spin reorientation transition at a thicker thickness d{sub SRT}. The phase diagram shows that both d{sub FM} and d{sub SRT} increase as the FeMn film establishes its antiferromagnetic order.

  14. Analysis of the microstructure of Cr-Ni surface layers deposited on Fe{sub 3}Al by TIG

    SciTech Connect

    Ma Haijun . E-mail: hjma123@mail.sdu.edu.cn; Li Yajiang; Wang Juan

    2006-12-15

    A series of Cr-Ni alloys were overlaid on a Fe{sub 3}Al surface by tungsten inert gas arc welding (TIG) technology. The microstructure of the Cr-Ni surface layers were analysed by means of optical metallography, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that when the appropriate TIG parameters were used and Cr25-Ni13 and Cr25-Ni20 alloys were used for the overlaid materials, the Cr-Ni surface layers were crack-free. The matrix of the surface layer was austenite (A), pro-eutectoid ferrite (PF), acicular ferrite (AF), carbide-free bainite (CFB) and lath martensite (LM), distributed on the austenitic grain boundaries as well as inside the grains. The phase constituents of the Cr25-Ni13 surface layer were {gamma}-Fe, Fe{sub 3}Al, FeAl, NiAl, an Fe-C compound and an Fe-C-Cr compound. The microhardness of the fusion zone was lower than that of the Fe{sub 3}Al base metal and Cr25-Ni13 surface layer.

  15. on the High-Temperature Performance of Ni-Based Welding Material NiCrFe-7

    NASA Astrophysics Data System (ADS)

    Mo, Wenlin; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    2014-10-01

    The effects of M 23C6 ( M = Cr, Fe) on the high-temperature performance of the NiCrFe-7 welding rods and weld metals were studied by high-temperature tensile tests and microstructure analysis. M 23C6 at the grain boundaries (GBs) has a cube-on-cube coherence with one grain in the NiCrFe-7 weld metals, and the adjacent M 23C6 has the coherence relationship with the same grain. The grain with a coherent M 23C6 has a Cr-depletion region. The number and size of M 23C6 particles can be adjusted by heat treatment and alloying. There are two temperatures [ T E1: 923 K to 1083 K (650 °C to 810 °C) and T E2: 1143 K to 1203 K (870 °C to 930 °C)] at which the GBs and grains of the NiCrFe-7 welding rod have equal strength during the high-temperature tensile test. When the temperatures are between T E1 and T E2, the strength of the GBs is lower than that of the grains, and the tensile fractures are intergranular. When the temperatures are below T E1 or over T E2, the strength of the GBs is higher than that of the grains, and the tensile fractures are dimples. M 23C6 precipitates at the GBs, which deteriorates the ductility of the welding rods at temperature between T E1 and T E2. M 23C6 aggravates ductility-dip-cracking (DDC) in the weld metals. The addition of Nb and Ti can form MX ( M = Ti, Nb, X = C, N), fix C in grain, decrease the initial precipitation temperature of M 23C6, and mitigate the precipitation of M 23C6, which is helpful for minimizing DDC in the weld.

  16. Weak-beam imaging of dissociated dislocations in HVEM-irradiated Fe-Ni-Cr alloys

    SciTech Connect

    King, S.L.; Jenkins, M.L.; Kirk, M.A.; English, C.A.

    1992-06-01

    We report here on studies by weak-beam electron microscopy of the evolution of microstructures at and near preexisting line dislocations in a number of Fe-Ni-Cr alloys under electronirradiation in a high-voltage electron microscope (HVEM). The detailed observations are discussed in terms of dislocation climb mechanisms in these materials and a model based on interstitial pipe diffusion.

  17. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGESBeta

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  18. Pancam Visible/Near-Infrared Spectra of Large Fe-Ni Meteorites at Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Johnson, J. R.; Herkenhoff, K. E.; Bell, J. F.; Farrand, W. H.; Ashley, J.; Weitz, C.; Squyres, S. W.

    2010-03-01

    The MER Opportunity rover imaged three large Fe-Ni meteorites in 2009. Pancam reflectance spectra of coatings on the rocks are consistent with ferric oxides (e.g., np-hematite), suggestive of chemical weathering on portions of the meteorite surfaces.

  19. Magnetism in NiFeMo disordered alloys: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Banerjee, Mitali; Banerjee, Rudra; Majumdar, A. K.; Mookerjee, Abhijit; Sanyal, Biplab; Nigam, A. K.

    2010-10-01

    In this communication we carry out experimental investigation of the behavior of magnetization with temperature and magnetic field of six samples at different compositions of the disordered ternary alloy NiFeMo. We analyze the data using a fist-principles density functional based electronic structure method and a mean-field phase diagram study.

  20. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    SciTech Connect

    Kim, J; Kim, M; Herrault, F; Park, JY; Allen, MG

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g., higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.

  1. Debinding Process of Fe-6Ni-4Cu Compact Fabricated by Metal Injection Molding

    NASA Astrophysics Data System (ADS)

    Wang, Jenn-Shing; Lin, Shih-Pin; Hon, Min-Hsiung; Wang, Moo-Chin

    2000-02-01

    The debinding process in the case of metal injection molding for fabrication of the Fe-6Ni-4Cu compact and variables such as temperature and time has been studied. The debinding process of multiple organic binders in the Fe-6Ni-4Cu compact was investigated by thermal gravimetric analysis (TGA) weight loss and mercury porosimetry analysis. The weight loss of wax and SA dramatically increases from below 10 wt% to 76.0 wt% and 86.0 wt% after immersion in 35°C and 40°C n-hexane for 6 h, respectively. The interdiffusion coefficients of the binder and solvent are 9.763× 10-7 cm2/s and 1.295× 10-6 cm2/s, respectively. The temperature dependent interdiffusion coefficient for the Fe-6Ni-4Cu compact can be expressed as Dx=4.534× 10\\exp({-}5437.2/T). The distribution of pore size is about 0.1-1.9 μm for the Fe-6Ni-4Cu compact.

  2. Degradation of tetrachloromethane and tetrachloroethene by Ni/Fe bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Y. Y.; Liu, F.; Li, H. D.

    2009-09-01

    The study investigated the potential of nanoscale Ni/Fe bimetallic particles reduction for carbon tetrachloride (CT) and tetrachloroethene (PCE). BET specific surface areas of the laboratory synthesized Ni/Fe (2% wt.) particle, with diameter on the order of 20-60nm, was approximately 52.61m2/g. Batch studies demonstrated that rapid transformations of PCE and CT were achieved with nanoscale Ni/Fe particles. The degradation process appeared to be pseudo-first-order. Values of the surface area normalized rate coefficients (KSA) of PCE and CT for the reaction with nano Ni/Fe were 2.068mL/(m2·h), 10.08mL/(m2·h), respectively. This indicated that the degradation rate of CT was about 5 times larger than that of PCE under comparable environmental condition. Significant amounts of DCM were detected for the reaction with CT unlike the PCE transformation where ethane was the only end-product, amount to 103% of the initial PCE carbon. Both DCM (~15%) and methane (~27%) were the major end products for CT reaction. Based on the rapid rate of degradation and no or less chlorinated byproducts, the nanoscale particles technology offered great opportunities for both fundamental research and technological application for remediation of contaminated ground water.

  3. Electrofabrication of multilayer Fe-Ni alloy coatings for better corrosion protection

    NASA Astrophysics Data System (ADS)

    Ullal, Yathish; Hegde, A. Chitharanjan

    2014-09-01

    Electrofabrication of multilayer Fe-Ni alloy coatings were accomplished successfully on mild steel and their corrosion behaviors were studied. Multilayer comprised of alternatively formed `nano-size' layers of Fe-Ni alloy of different composition have been produced from a single bath having Fe2+and Ni2+ ions using modulated (i.e. periodic pulse control) current density (cd). The deposition conditions were optimized for both composition and thickness of individual layers for best performance of the coatings against corrosion. The deposits were analyzed using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Hardness Tester, electrochemical AC and DC methods respectively. The multi layered deposits showed better corrosion resistances compared to the monolayer Fe-Ni (CR = 3.77 mm year-1) coating deposited using DC from the same bath; the maximum corrosion resistance being shown by the coating having 300 layers, deposited at cyclic cathodic current densities of 2.0 and 4.0 A dm-2 (CR = 0.03 mm year-1). Drastic improvement in the corrosion performance of multilayer coatings were explained in the light of changed kinetics of mass transfer at cathode and increased surface area due to modulation and layering.

  4. Static and Dynamic Magnetization of Gradient FeNi Alloy Nanowire.

    PubMed

    Yang, Haozhe; Li, Yi; Zeng, Min; Cao, Wei; Bailey, William E; Yu, Ronghai

    2016-01-01

    FeNi binary nanowires with gradient composition are fabricated by the electrodeposition method. The energy dispersive spec-trometer line-sweep results show that the composition changes gradually along the wire axis. The gradient FeNi nanowires exhibit polycrystalline and crystal twinning at different areas along the nanowire axis, with a textured face-centered cubic structure. The static and dynamic magnetization properties are characterized by a hysteresis loop and ferromagnetic reso-nance with pumping frequencies from 12- 40 GHz. The linear dispersion of the pumping frequency vs: the resonance field has been observed with the applied bias field higher than the saturation field, corresponding to the hysteresis loop. The field-sweep linewidths decrease with increasing pumping frequency, and the frequency-sweep linewidths stay nearly constant at the unsaturated region. The linewidth is a Gilbert type at the saturated state, with damping of 0.035 ± 0.003. Compared with the damping of the homogeneous composition FeNi nanowire (a = 0.044 ± 0.005), the gradient FeNi nanowire may have less eddy current damping, which could make it an alternative candidate for spintronics and microstrip antennas. PMID:26864282

  5. Magnetic NiFe/Au barcode nanowires with self-powered motion

    NASA Astrophysics Data System (ADS)

    Jeon, In Tak; Yoon, Seung Jae; Kim, Bong Gun; Lee, Ji Sung; An, Boo Hyun; Ju, Jae-Seon; Wu, Jun Hua; Kim, Young Keun

    2012-04-01

    NiFe/Au barcode nanowires were synthesized by pulsed electrodeposition using anodic aluminum oxide nanotemplate, comprising magnetic, catalytic, and optical segments, respectively. The self-powered motion of the BNWs due to the catalytic reaction was observed in aqueous H2O2. The approach demonstrates how sophistication in barcode nanoarchitecture can be used to synthesize a wide range of hybrid materials.

  6. Static and Dynamic Magnetization of Gradient FeNi Alloy Nanowire

    NASA Astrophysics Data System (ADS)

    Yang, Haozhe; Li, Yi; Zeng, Min; Cao, Wei; Bailey, William E.; Yu, Ronghai

    2016-02-01

    FeNi binary nanowires with gradient composition are fabricated by the electrodeposition method. The energy dispersive spec-trometer line-sweep results show that the composition changes gradually along the wire axis. The gradient FeNi nanowires exhibit polycrystalline and crystal twinning at different areas along the nanowire axis, with a textured face-centered cubic structure. The static and dynamic magnetization properties are characterized by a hysteresis loop and ferromagnetic reso-nance with pumping frequencies from 12- 40 GHz. The linear dispersion of the pumping frequency vs: the resonance field has been observed with the applied bias field higher than the saturation field, corresponding to the hysteresis loop. The field-sweep linewidths decrease with increasing pumping frequency, and the frequency-sweep linewidths stay nearly constant at the unsaturated region. The linewidth is a Gilbert type at the saturated state, with damping of 0.035 ± 0.003. Compared with the damping of the homogeneous composition FeNi nanowire (a = 0.044 ± 0.005), the gradient FeNi nanowire may have less eddy current damping, which could make it an alternative candidate for spintronics and microstrip antennas.

  7. Static and Dynamic Magnetization of Gradient FeNi Alloy Nanowire

    PubMed Central

    Yang, Haozhe; Li, Yi; Zeng, Min; Cao, Wei; Bailey, William E.; Yu, Ronghai

    2016-01-01

    FeNi binary nanowires with gradient composition are fabricated by the electrodeposition method. The energy dispersive spec-trometer line-sweep results show that the composition changes gradually along the wire axis. The gradient FeNi nanowires exhibit polycrystalline and crystal twinning at different areas along the nanowire axis, with a textured face-centered cubic structure. The static and dynamic magnetization properties are characterized by a hysteresis loop and ferromagnetic reso-nance with pumping frequencies from 12– 40 GHz. The linear dispersion of the pumping frequency vs: the resonance field has been observed with the applied bias field higher than the saturation field, corresponding to the hysteresis loop. The field-sweep linewidths decrease with increasing pumping frequency, and the frequency-sweep linewidths stay nearly constant at the unsaturated region. The linewidth is a Gilbert type at the saturated state, with damping of 0.035 ± 0.003. Compared with the damping of the homogeneous composition FeNi nanowire (a = 0.044 ± 0.005), the gradient FeNi nanowire may have less eddy current damping, which could make it an alternative candidate for spintronics and microstrip antennas. PMID:26864282

  8. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts.

    PubMed

    Lu, Zhiyi; Qian, Li; Tian, Yang; Li, Yaping; Sun, Xiaoming; Duan, Xue

    2016-01-18

    Layered double hydroxides (LDHs) are a family of layer materials that receive heightened attention. Herein a ternary NiFeMn-LDH is investigated with superior oxygen evolution activity, which is attributed to the Mn(4+) doping in the intralayer, which modifies the electronic structure and improves the conductivity of the electrocatalyst. PMID:26579843

  9. Chemical compatibility of uranium carbides with Cr-Fe-Ni alloys

    SciTech Connect

    Beahm, E.C.; Culpepper, C.A.

    1981-08-01

    This paper discusses the chemical compatibility of uranium carbides and Cr-Fe-Ni alloys, which has been evaluated by thermodynamic modeling and experimental phase studies. Two reaction temperatures, 973 and 1273 K, were used to simulate normal and overtemperature operation of advanced liquid-metal fast breeder reactor fuel-cladding couples. 27 refs.

  10. Phase Transformation Behavior of Hot Isostatically Pressed NiTi-X (X = Ag, Nb, W) Alloys for Functional Engineering Applications

    NASA Astrophysics Data System (ADS)

    Bitzer, M.; Bram, M.; Buchkremer, H. P.; Stöver, D.

    2012-12-01

    Owing to their unique properties, NiTi-based shape memory alloys (SMAs) are highly attractive candidates for a lot of functional engineering applications like biomedical implants (stents), actuators, or coupling elements. Adding a third element is an effective measure to adjust or stabilize the phase transformation behavior to a certain extent. In this context, addition of alloying elements, which are low soluble or almost insoluble in the NiTi matrix is a promising approach and—with the exception of adding Nb—has rarely been reported in the literature so far, especially if the manufacturing of the net-shaped parts of these alloys is aspired. In the case of addition of elemental Nb, broadening of hysteresis between austenitic and martensitic phase transformation temperatures after plastic deformation of the Nb phase is a well-known effect, which is the key of function of coupling elements already established on the market. In the present study, we replaced Nb with additions of elemental Ag and W, both of which are almost insoluble in the NiTi matrix. Compared with Nb, Ag is characterized by higher ductility in combination with lower melting point, enabling liquid phase sintering already at moderate temperatures. Vice versa, addition of W might act in opposite manner considering its inherent brittleness combined with high melting temperature. In the present study, hot isostatic pressing was used for manufacturing such alloys starting from prealloyed NiTi powder and with the additions of Nb, Ag, and W as elemental powders. Microstructures, interdiffusion phenomena, phase transformation behaviors, and impurity contents were investigated aiming to better understand the influence of insoluble phases on bulk properties of NiTi SMAs.

  11. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water.

    PubMed

    Ma, Wei; Ma, Renzhi; Wang, Chengxiang; Liang, Jianbo; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2015-02-24

    Cost-effective electrocatalysts based on nonprecious metals for efficient water splitting are crucial for various technological applications represented by fuel cell. Here, 3d transition metal layered double hydroxides (LDHs) with varied contents of Ni and Fe were successfully synthesized through a homogeneous precipitation. The exfoliated Ni-Fe LDH nanosheets were heteroassembled with graphene oxide (GO) as well as reduced graphene oxide (rGO) into superlattice-like hybrids, in which two kinds of oppositely charged nanosheets are stacked face-to-face in alternating sequence. Heterostructured composites of Ni2/3Fe1/3 LDH nanosheets and GO (Ni2/3Fe1/3-GO) exhibited an excellent oxygen evolution reaction (OER) efficiency with a small overpotential of about 0.23 V and Tafel slope of 42 mV/decade. The activity was further improved via the combination of Ni2/3Fe1/3 LDH nanosheets with more conductive rGO (Ni2/3Fe1/3-rGO) to achieve an overpotential as low as 0.21 V and Tafel plot of 40 mV/decade. The catalytic activity was enhanced with an increased Fe content in the bimetallic Ni-Fe system. Moreover, the composite catalysts were found to be effective for hydrogen evolution reaction. An electrolyzer cell powered by a single AA battery of 1.5 V was demonstrated by using the bifunctional catalysts. PMID:25605063

  12. Conduction and magnetization improvement of BiFeO{sub 3} multiferroic nanoparticles by Ag{sup +} doping

    SciTech Connect

    Ahmed, M.A.; Mansour, S.F.; El-Dek, S.I.; Abu-Abdeen, M.

    2014-01-01

    Graphical abstract: HRTEM micrographs of the samples BiFeO{sub 3}. - Highlights: • Flash auto combustion method was successful in the preparation of Ag doped BiFeO{sub 3} in nanosize. • Ag doping results in hexagonal platelet shapes up to x = 0.10, at x ≥ 0.15 needle shape predominates. • Mixed conduction is obtained in Ag doped samples. • This nanometric multiferroic could be recommended as attractive cathode for solid oxide fuel cell. - Abstract: Nanometric multiferroic namely Ag doped (BiFeO{sub 3}) was synthesized using flash auto combustion technique and glycine as a fuel. Single phase rhombohedral–hexagonal perovskite structure was obtained by annealing at 550 °C, as determined from XRD. High resolution transmission electron microscope (HRTEM) clarifies the hexagonal platelet shape with size 17.9 nm. Maximum room temperature AC conductivity was obtained at Ag content of x = 0.10. The results of this study promote the use of such multiferroic in solid oxide fuel cell applications.

  13. The importance of holes in aluminium tris-8-hydroxyquinoline (Alq{sub 3}) devices with Fe and NiFe contacts

    SciTech Connect

    Zhang, Hongtao; Desai, P.; Kreouzis, T.; Zhan, Y. Q.; Drew, A. J.; Gillin, W. P.

    2014-01-06

    To study the dominant charge carrier polarity in aluminium tris-8-hydroxyquinoline (Alq{sub 3}) based spin valves, single Alq{sub 3} layer devices with NiFe, ITO, Fe, and aluminium electrodes were fabricated and characterised by Time of Flight (ToF) and Dark Injection (DI) techniques, yielding a lower hole mobility compared to electron mobility. We compare the mobility measured by DI for the dominant carrier injected from NiFe and Fe electrodes into Alq{sub 3}, to that of holes measured by ToF. This comparison leads us to conclude that the dominant charge carriers in Alq{sub 3} based spin valves with NiFe or Fe electrodes are holes.

  14. Effect of magnetism on surface segregation in FeNi alloys.

    PubMed

    Sansa, Myriam; Ribeiro, Fabienne; Dhouib, Adnene; Tréglia, Guy

    2016-02-17

    Modelling the segregation of the various chemical species in the vicinity of crystallographic defects in FeNi alloys is essential because it affects the macroscopic properties of these materials, which are widely used in technological applications. We present here a theoretical study of surface segregation, within a mean-field approach based on the tight-binding Ising model grounded on density functional theory calculations. The most important result is that, although FeNi presents none of the driving forces (i.e. surface energy, size mismatch) which generally favour surface enrichment in the same element in the whole range of concentrations, there exists a wide temperature range in which Ni is found to segregate at the surface irrespective of the concentration. This is due to a complex interplay between magnetic and ordering/phase separation effects. PMID:26794606

  15. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  16. Precipitates and Grain Boundary Strength of an Fe-Mn-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Heo, Yoon-Uk; Jang, Jae Hoon; Lee, Hu-Chul

    2012-11-01

    The effect of grain boundary (GB) precipitates on the GB strength of an age-hardened Fe-7.8Mn-8.2Ni alloy was investigated. Premature intergranular fracture was observed after age hardening due to the precipitation of θ-MnNi precipitates at prior austenite grain boundaries. However, the conversion of GB θ precipitates to austenite by a short second aging at 793 K (520 °C) after peak aging at 713 K (440 °C) resulted in a remarkable improvement of GB strength. The result strongly supports the proposition that the weak bonding of GB θ precipitates to the matrix is the main reason for GB embrittlement in age-hardened Fe-Mn-Ni alloys.

  17. Atomic scale understanding of magnetic properties in Ni50Fe35Co15

    NASA Astrophysics Data System (ADS)

    Herojit Singh, L.; Govindaraj, R.; Ravishankar, C.; Rajagopalan, S.; Amarendra, G.

    2016-02-01

    Mössbauer spectroscopic studies have been carried out at different temperatures across ferromagnetic to paramagnetic transition in Ni50Fe35Co15 and the evolution of hyperfine parameters such as centre shift and magnetic hyperfine fields with temperature has been studied. Mössbauer spectrum obtained at 300 K in Ni50Fe35Co15 exhibiting fcc crystal structure is a six line pattern with the mean value of the hyperfine field close to 33 Tesla. Ferromagnetic to paramagnetic transition has been observed to occur in this system around 895 K matching with that of magnetization results. Debye temperature of this nickel rich alloy is deduced to be around 470 K matching with that of Ni. Effect of prolonged annealing at 750 K on the magnetic property is also investigated with respect to the thermal stability of the alloy .

  18. Ductile-brittle-ductile transition and grain boundary segregation of Mn and Ni in an Fe-6Mn-12Ni alloy

    SciTech Connect

    Heo, N.H.

    1996-05-15

    Recently, Heo and Lee reported a ductile-brittle-ductile (DBD) transition in an Fe-8Mn-7Ni ternary alloy, which was caused by manganese segregation to the grain boundaries and its desegregation into the matrix. More recently Heo theoretically analyzed the nonequilibrium segregation behaviors of the elements in the Fe-8Mn-7Ni alloy. The aim of the present study is to investigate whether other Fe-6Mn-12Ni ternary alloy also shows the ductile-brittle-ductile transition, and is additionally to ascertain whether calculated results are consistent with experimental data. The study encompasses experimental procedures and a modeling based on the previous research. A general discussion will show that such an approach allows a comprehensive understanding of the ductile-brittle-ductile transition in the Fe-Mn-Ni ternary alloys.

  19. Granular L1{sub 0} FePt-B and FePt-B-Ag (001) thin films for heat assisted magnetic recording

    SciTech Connect

    Granz, Steven D.; Barmak, Katayun; Kryder, Mark H.

    2012-04-01

    A comparison was made of FePt-B and FePt-B-Ag thin films having different volume contents of boron, which were RF sputtered with in-situ heating at 425-575 deg. C onto Si substrates with 20 nm thick (002) MgO. By introducing boron into FePt and varying the sputtering conditions, films with grain sizes ranging from 2.5 to 10 nm were produced. The boron promoted columnar growth, but made ordering more difficult. However, by adding Ag into FePt-B, ordering improved while coercivity increased from 7 to 11 kOe with no significant impact on the microstructure. We obtained films with grain sizes down to 2.5 nm with center-to-center spacing of 3.1 nm. The reduced grain size, columnar microstructure and increase in ordering and coercivity by adding Ag into the FePt-B thin films are favorable for application in heat assisted magnetic recording.

  20. Evaluation of trichloroethylene degradation by starch supported Fe/Ni nanoparticles via response surface methodology.

    PubMed

    Nikroo, Razieh; Alemzadeh, Iran; Vossoughi, Manouchehr; Haddadian, Kamran

    2016-01-01

    In this study, degradation of trichloroethylene (TCE), a chlorinated hydrocarbon, using starch supported Fe/Ni nanoparticles was investigated. The scanning electron microscope images showed applying water soluble starch as a stabilizer for the Fe/Ni nanoparticles tended to reduce agglomeration and discrete particle. Also the mean particle diameter reduced from about 70 nm (unsupported Fe/Ni nanoparticle) to about 30 nm. Effects of three key independent operating parameters including initial TCE concentration (10.0-300.0 mg L(-1)), initial pH (4.00-10.00) and Fe(0) dosage (0.10-2.00) g L(-1) on TCE dechlorination efficiency in 1 hour were analysed by employing response surface methodology (RSM). Based on a five-level three-factor central composite design, TCE removal efficiency was examined and optimized. The obtained RSM model fitted the experimental data to a second order polynomial equation. The optimum dechlorination conditions at initial TCE concentration 100.0 mg L(-1) were initial pH 5.77, Fe(0) dosage 1.67 g L(-1). At these conditions TCE removal concentration reached 94.87%, which is in close acceptance with predicted value by the RSM model. PMID:26901738

  1. Phase transformations during deformation of Fe-Ni and Fe-Mn alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Cherdyntsev, V. V.; Pustov, L. Yu.; Kaloshkin, S. D.; Tomilin, I. A.; Shelekhov, E. V.; Laptev, A. I.; Baldokhin, Yu. V.; Estrin, E. I.

    2007-10-01

    Compositions of Fe(100 - x)Mn x ( x = 10 and 12 at. %) and Fe(100 - y)Ni y ( y = 18 and 20 at. %) were produced by combined mechanical alloying of pure-metal powders and annealed in the austenitic field. After annealing and cooling to room temperature, the alloys had a single-phase austenitic structure. During deformation, the γ phase partially transforms into the α 2 phase (and/or ɛ phase in Fe-Mn alloys). The phase composition of the alloys after deformation depends on the amount of alloying elements and the predeformation annealing regime. The amount of martensite in the structure of a bulk alloy obtained by powder compacting grows proportionally to the degree of deformation of the sample.

  2. Ag-doped FeSe0.94 polycrystalline samples obtained through hot isostatic pressing with improved grain connectivity

    NASA Astrophysics Data System (ADS)

    Gajda, G.; Morawski, A.; Rogacki, K.; Cetner, T.; Zaleski, A. J.; Buchkov, K.; Nazarova, E.; Balchev, N.; Hossain, M. S. A.; Diduszko, R.; Gruszka, K.; Przysłupski, P.; Fajfrowski, Ł.; Gajda, D.

    2016-09-01

    We evaluate the effects of high pressure during annealing on the structural and superconducting properties of Ag-doped FeSe bulks. The results obtained in this work indicate that the annealing at high pressure increases the critical temperature, upper critical field and irreversibility field due to the improved uniformity and grain connectivity.

  3. A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection.

    PubMed

    Zhang, Hongfang; Ma, Lina; Li, Pengli; Zheng, Jianbin

    2016-11-15

    A hybrid nanostructure of Fe3O4 nanospheres and Ag@Au nanorods prepared by polydopamine coating was utilized as nanoelectrocatalyst to construct a novel sandwich-type electrochemical immunosensor. Ag@Au-Fe3O4 nanohybrid modified electrode exhibited much better electrocatalytic activity toward the reduction of hydrogen peroxide than Fe3O4 nanospheres or Ag@Au nanorods due to the synergetic catalytic effect. The immunosensor was prepared by immobilizing the capture antibodies on the amine-terminated nanocomposite of carbon nanofibers-chitosan, whilst the trace tag was prepared by loading detection antibodies on the Ag@Au-Fe3O4 nanocomposite. After the parameter optimization, the amperometric signal increased linearly with human IgG concentration in the broad range of 0.1pgmL(-1) to 5μgmL(-1) with a detection limit of 50fgmL(-1). Meanwhile, the enzyme-free catalyst based immunosensor also showed acceptable selectivity, reproducibility and stability. PMID:27183286

  4. Magnetic properties of mixed spinel BaTiO3-NiFe2O4 composites

    NASA Astrophysics Data System (ADS)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal; Chakrabarti, Kaushik; Mitra, Amitava; De, S. K.

    2014-03-01

    Solid solution of nickel ferrite (NiFe2O4) and barium titanate (BaTiO3), (100-x)BaTiO3-(x) NiFe2O4 has been prepared by solid state reaction. Compressive strain is developed in NiFe2O4 due to mutual structural interaction across the interface of NiFe2O4 and BaTiO3 phases. Quantitative analysis of X-ray diffraction and X-ray photo electron spectrum suggest mixed spinel structure of NiFe2O4. A systematic study of composition dependence of composite indicates BaTiO3 causes a random distribution of Fe and Ni cations among octahedral and tetrahedral sites during non-equilibrium growth of NiFe2O4. The degree of inversion decreases monotonically from 0.97 to 0.75 with increase of BaTiO3 content. Temperature dependence of magnetization has been analyzed by four sublattice model to describe complex magnetic exchange interactions in mixed spinel phase. Curie temperature and saturation magnetization decrease with increase of BaTiO3 concentration. Enhancement of strain and larger occupancy of Ni2+ at tetrahedral site increase coercivity up to 200 Oe. Magnetostructual coupling induced by BaTiO3 improves coercivity in NiFe2O4. An increase in the demagnetization and homogeneity in magnetization process in NiFe2O4 is observed due to the interaction with diamagnetic BaTiO3.

  5. Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase.

    PubMed

    Ogata, Hideaki; Nishikawa, Koji; Lubitz, Wolfgang

    2015-04-23

    The enzyme hydrogenase reversibly converts dihydrogen to protons and electrons at a metal catalyst. The location of the abundant hydrogens is of key importance for understanding structure and function of the protein. However, in protein X-ray crystallography the detection of hydrogen atoms is one of the major problems, since they display only weak contributions to diffraction and the quality of the single crystals is often insufficient to obtain sub-ångström resolution. Here we report the crystal structure of a standard [NiFe] hydrogenase (∼91.3 kDa molecular mass) at 0.89 Å resolution. The strictly anoxically isolated hydrogenase has been obtained in a specific spectroscopic state, the active reduced Ni-R (subform Ni-R1) state. The high resolution, proper refinement strategy and careful modelling allow the positioning of a large part of the hydrogen atoms in the structure. This has led to the direct detection of the products of the heterolytic splitting of dihydrogen into a hydride (H(-)) bridging the Ni and Fe and a proton (H(+)) attached to the sulphur of a cysteine ligand. The Ni-H(-) and Fe-H(-) bond lengths are 1.58 Å and 1.78Å, respectively. Furthermore, we can assign the Fe-CO and Fe-CN(-) ligands at the active site, and can obtain the hydrogen-bond networks and the preferred proton transfer pathway in the hydrogenase. Our results demonstrate the precise comprehensive information available from ultra-high-resolution structures of proteins as an alternative to neutron diffraction and other methods such as NMR structural analysis. PMID:25624102

  6. Effects of pre-annealed ITO film on the electrical characteristics of high-reflectance Ni/Ag/Ni/Au contacts to p-type GaN

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Long; Liu, Li; Wang, Hong; Zhang, Xi-Chun

    2015-12-01

    In this study, a Ni/Ag/Ni/Au multilayer with first Ni layer of 0.5 nm was first optimized for high reflectivity (92.3%), low specific contact resistance (2.1 × 10-3 Ω cm2) and good attachment strength to p-type GaN. To further decrease the contact resistance, the p-type GaN surface was previously treated with pre-annealed indium-tin-oxide (ITO) film before deposition of the Ni/Ag/Ni/Au multilayer, and resulted in a lower specific contact resistance of 1.9 × 10-4 Ω cm2. The X-ray photoelectron spectroscopy results indicated that Ga 2p core level of the p-type GaN surface with the pre-annealed ITO film had a lower binding energy, leading to a reduction in the contact resistance. Furthermore, GaN-based flip-chip light-emitting diodes (LEDs) with and without the pre-annealed ITO film were fabricated. The average forward voltage of the flip-chip LEDs fabricated with the pre-annealed ITO film is 3.22 V at an injection current density of 35 A/cm2, which is much lower than that (3.49 V) of flip-chip LEDs without the pre-annealed ITO film. These results reveal that the proposed approach is effectively to fabricate high quality p-type contacts toward high power GaN-based LEDs.

  7. Synthesis and characterization of LiNi0.49Mn1.49Y0.02O4@Ag by electroless plating technique

    NASA Astrophysics Data System (ADS)

    Xiong, Lizhi; Liu, Wenping; Wu, Yuxian; He, Zeqiang

    2015-02-01

    Silver (Ag) coated LiNi0.49Mn1.49Y0.02O4 (LiNi0.49Mn1.49Y0.02O4@Ag) was prepared by electroless plating method. The microstructure, surface morphology and electronic conductivity of LiNi0.49Mn1.49Y0.02O4@Ag were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electronic conductivity tests. The results showed that 4 wt% silver was tightly coated in Ag0 state on the surface of LiNi0.49Mn1.49Y0.02O4 to form a uniform Ag-coating layer of about 30 nm. Electrochemical tests stated clearly that the cycling performance of LiNi0.49Mn1.49Y0.02O4@Ag was more stable and the rate capability was more outstanding than that of LiNi0.49Mn1.49Y0.02O4 due to the coating of Ag on the surface of LiNi0.49Mn1.49Y0.02O4 by improving the electronic conductivity, preventing LiNi0.49Mn1.49Y0.02O4 from being attacked by electrolyte, decreasing the electrochemical polarization during cycling and increasing the lithium ion diffusion coefficient on cathode materials.

  8. Ni 80Fe 20 permalloy nanoparticles: Wet chemical preparation, size control and their dynamic permeability characteristics when composited with Fe micron particles

    NASA Astrophysics Data System (ADS)

    Qin, G. W.; Pei, W. L.; Ren, Y. P.; Shimada, Y.; Endo, Y.; Yamaguchi, M.; Okamoto, S.; Kitakami, O.

    2009-12-01

    Ni 80Fe 20 permalloy nanoparticles (NPs) have been prepared by the polyol processing at 180 °C for 2 h and their particle sizes can be precisely controlled in the size range of 20-440 nm by proper addition of K 2PtCl 4 agent. X-ray diffraction results show that the Ni-Fe NPs are of FCC structure, and a homogeneous composition and a narrow size distribution of these NPs have been confirmed by scanning electron microscopy assisted with energy dispersion spectroscopy of X-ray (SEM-EDX). The saturation magnetization of ~440nm NPs is 80.8 emu/g that is comparable to that of bulk Ni 80Fe 20 alloys, but it decreases to 28.7 emu/g for ~20 nm NPs. The coercive force decreases from 90 to 3 Oe with decreasing NP size. The wide range of particle size is exploited to seek for high permeability composite particles. The planar type samples composed of the NiFe NPs exhibit low initial permeability due to the deteriorated magnetic softness and low packing density. However, when they are mixed with Fe micron particles, the initial permeability significantly increases depending on the mixing ratio and the NiFe NP size. A maximum initial permeability is achieved to be ~9.1 at 1 GHz for the Fe-10 vol%NiFe (~20 nmΦ), which is about three times that of pure Fe micron particles. The effects of Ni-Fe particle size, volume percentage and solvent on the static and dynamic permeability are discussed.

  9. Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states.

    PubMed

    Volbeda, Anne; Martin, Lydie; Barbier, Elodie; Gutiérrez-Sanz, Oscar; De Lacey, Antonio L; Liebgott, Pierre-Pol; Dementin, Sébastien; Rousset, Marc; Fontecilla-Camps, Juan C

    2015-01-01

    Catalytically inactive oxidized O2-sensitive [NiFe]-hydrogenases are characterized by a mixture of the paramagnetic Ni-A and Ni-B states. Upon O2 exposure, enzymes in a partially reduced state preferentially form the unready Ni-A state. Because partial O2 reduction should generate a peroxide intermediate, this species was previously assigned to the elongated Ni-Fe bridging electron density observed for preparations of [NiFe]-hydrogenases known to contain the Ni-A state. However, this proposition has been challenged based on the stability of this state to UV light exposure and the possibility of generating it anaerobically under either chemical or electrochemical oxidizing conditions. Consequently, we have considered alternative structures for the Ni-A species including oxidation of thiolate ligands to either sulfenate or sulfenic acid. Here, we report both new and revised [NiFe]-hydrogenases structures and conclude, taking into account corresponding characterizations by Fourier transform infrared spectroscopy (FTIR), that the Ni-A species contains oxidized cysteine and bridging hydroxide ligands instead of the peroxide ligand we proposed earlier. Our analysis was rendered difficult by the typical formation of mixtures of unready oxidized states that, furthermore, can be reduced by X-ray induced photoelectrons. The present study could be carried out thanks to the use of Desulfovibrio fructosovorans [NiFe]-hydrogenase mutants with special properties. In addition to the Ni-A state, crystallographic results are also reported for two diamagnetic unready states, allowing the proposal of a revised oxidized inactive Ni-SU model and a new structure characterized by a persulfide ion that is assigned to an Ni-'Sox' species. PMID:25315838

  10. Exchange bias effects in Heusler alloy Ni2MnAl/Fe bilayers

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Tomoki; Kubota, Takahide; Sugiyama, Tomoko; Huminiuc, Teodor; Hirohata, Atsufumi; Takanashi, Koki

    2016-06-01

    Ni2MnAl Heusler alloy thin films were epitaxially grown on MgO(1 0 0) single crystal substrates by ultra-high-vacuum magnetron sputtering technique. X-ray diffraction and transmission electron microscopy observation revealed that the structures of all the Ni2MnAl thin films were B2-ordered regardless of the deposition temperature ranging from room temperature to 600 °C. The temperature dependence of electrical resistivity showed a kink about 280 K, which was consistent with a reported value of the Néel temperature for antiferromagnetic B2-Ni2MnAl. The magnetization curves of Ni2MnAl/Fe bilayer samples showed a shift caused by the interfacial exchange interaction at 10 K. The maximum value of the exchange bias field H ex was 55 Oe corresponding to the exchange coupling energy J k of 0.03 erg cm‑2.

  11. Fabrication of Magnetic NiFe2O4 Nanorods and Their Removal Performances of Congo Red.

    PubMed

    Li, Yunlong; Lu, Lu; Li, Xiuping; Chen, Dan; Ma, Liyu; Liu, Ruijiang

    2016-06-01

    Magnetic NiFe2O4 nanorods were prepared successfully via a facile solution combustion process, the morphology, chemical composition, microstructure and magnetic properties of as-prepared NiFe2O4 nanorods were investigated by XRD, VSM, SEM, TEM, EDX, SAED and BET techniques. The magnetic NiFe2O4 nanorods were characterized with average length of about 130 nm, the diameter of around 25 nm, the specific magnetization of 105.2 Am2/kg, and the specific surface area of 88.8 m2/g. The nanorods were employed to remove congo red (CR) from aqueous solutions, the adsorption kinetic and adsorption isotherm of CR onto NiFe2O4 nanorods at room temperature were investigated. The regression equation was found in good agreement with the pseudo-second-order kinetic model in a range of initial CR concentrations of 80-400 mg/L. Compared with Freundlich and Temkin models, Langmuir model fitted the adsorption isotherm of CR onto NiFe2O4 nanorods better, which suggested that the adsorption of CR onto NiFe2O4 nanorods was a monolayer absorbing mechanism. Meanwhile, the adsorption capacity of CR onto NiFe2O4 nanorods is large when pH is less than 9. PMID:27427682

  12. Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism.

    PubMed

    Liu, Zongtang; Gu, Chenggang; Ye, Mao; Bian, Yongrong; Cheng, Yinwen; Wang, Fang; Yang, Xinglun; Song, Yang; Jiang, Xin

    2015-11-15

    To enhance the removal efficiency of 2,2',4,4'-tetrabromodiphenylether (BDE47) in aqueous solutions, novel attapulgite-supported Fe/Ni bimetallic nanoparticles (A-Fe/Ni), which were characterized by a core-shell nanoparticle structure and with an average diameter of 20-40 nm, were synthesized for use in BDE47 degradation. The presence of attapulgite in bimetallic systems could reduce Fe/Ni nanoparticle aggregation and enhance their reactivity. BDE47 was degraded with a significant improvement in removal efficiency of at least 96% by A-Fe/Ni that played a reductive role in the reaction. The degradation kinetics of BDE47 by A-Fe/Ni complied with pseudo-first-order characteristics. To better understand the removal mechanism, detailed analyses were performed for several influential parameters. The improved dosage of A-Fe/Ni was found to be beneficial, and higher values of initial concentration, pH, and methanol/water ratio hindered the degradation rate, which, for example, decreased significantly in mixtures with a methanol proportion higher than 50%. The identification of BDE47 degradation products revealed a stepwise debromination from n-bromo-DE to (n-1)-bromo-DE as a possible pathway, wherein the para-Br was more easily eliminated than ortho-Br. Our findings provide insight into the removal mechanism and evidence for polybrominated diphenyl ether debromination by clay-Fe/Ni bimetallic nanoparticles. PMID:26094061

  13. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Tacchi, S.; Del Bianco, L.; Bonfiglioli, E.; Giovannini, L.; Tamisari, M.; Spizzo, F.; Zivieri, R.

    2015-05-01

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  14. Negative permittivity behavior in Fe50Ni50/Al2O3 magnetic composite near percolation threshold

    NASA Astrophysics Data System (ADS)

    Chen, Min; Fan, Run-hua; Gao, Meng; Pan, Shi-bing; Yu, Ming-xun; Zhang, Zi-dong

    2015-05-01

    The physical properties of conductor-insulator composites often take dramatic changes near the percolation threshold (fc), leading to interesting applications, such as double negative material. This phenomenon also will be enlarged by increasing the differences between the properties of the constitutive phases. In this paper, the Fe50Ni50/Al2O3 magnetic cermets with different Fe50Ni50 volume contents (10%, 20%, 30%, 40%) were prepared via hot-pressing sintering. The permittivity of Fe50Ni50/Al2O3 composites has been studied in the radio frequency range. The results indicate that when the Fe50Ni50 content is below fc, the reactance of the composites takes a negative value, which indicates a capacitive character. The metallic Fe50Ni50 grains are isolated in the insulating ceramic matrix, leading to an insulator-like dielectric property. When the volume fraction of Fe50Ni50 reaches 40% which is above fc, the composites manifest an inductive character. In this case, the negative permittivity has been obtained over the whole test frequency range due to the percolation phenomenon, which makes Fe50Ni50/Al2O3 composites as promising candidates for double negative materials.

  15. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    SciTech Connect

    Gubbiotti, G. Tacchi, S.; Del Bianco, L.; Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R.; Tamisari, M.

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  16. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa

    PubMed Central

    Pataky, Garrett J.; Ertekin, Elif; Sehitoglu, Huseyin

    2015-01-01

    Infrared thermogrpahy was utilized to record the temperature change during tensile loading cycles of two shape memory alloy single crystals with pseudoelastic behavior. During unloading, a giant temperature drop was measured in the gage section due to the elastocaloric effect. This data article provides a video of a [001] oriented Ni2FeGa single crystal, including the corresponding stress–strain curve, shows the temperature drop over one cycle. The second video of a [148] oriented NiTi single crystal depicts the repeatability of the elastocaloric effect by showing two consecutive cycles. The videos are supplied in this paper. For further analysis and enhanced discussion of large temperature change in shape memory alloys, see Pataky et al. [1] PMID:26380838

  17. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa.

    PubMed

    Pataky, Garrett J; Ertekin, Elif; Sehitoglu, Huseyin

    2015-12-01

    Infrared thermogrpahy was utilized to record the temperature change during tensile loading cycles of two shape memory alloy single crystals with pseudoelastic behavior. During unloading, a giant temperature drop was measured in the gage section due to the elastocaloric effect. This data article provides a video of a [001] oriented Ni2FeGa single crystal, including the corresponding stress-strain curve, shows the temperature drop over one cycle. The second video of a [148] oriented NiTi single crystal depicts the repeatability of the elastocaloric effect by showing two consecutive cycles. The videos are supplied in this paper. For further analysis and enhanced discussion of large temperature change in shape memory alloys, see Pataky et al. [1]. PMID:26380838

  18. Precise Opacities for Astrophysics (Fe and Ni) and ICF modeling

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel; Gilles, Dominique; Busquet, Michel

    2015-11-01

    Opacities of FeIII - FeXV at Te =15-20 eV and densities 1.e16-1.e23 cm-3 have been computed with an improved version of the HULLAC code. More than 109 transitions have been computed, with different ways to account for configuration interactions (CI). Spectra with CI limited to each non-relativistic configuration (CIinNRC) are compared to more extended full Relativistic CI (RCI). The effect of increasing the size of the CI basis is investigated. These comparisons enable optimizing the method for each temperature/density regime. With powerful computers, HULLAC -generated opacity databases could then be envisioned, bypassing the need for statistical approximations.

  19. Anisotropic nanolaminated CoNiFe cores integrated into microinductors for high-frequency dc-dc power conversion

    NASA Astrophysics Data System (ADS)

    Kim, Jooncheol; Kim, Minsoo; Kim, Jung-Kwun; Herrault, Florian; Allen, Mark G.

    2015-11-01

    This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300-1000 nm thick metallic alloys (i.e. Ni80Fe20 or Co44Ni37Fe19) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50-100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500-1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc-dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors.

  20. Hydrogen evolution in [NiFe] hydrogenases and related biomimetic systems: similarities and differences.

    PubMed

    Das, Ranjita; Neese, Frank; van Gastel, Maurice

    2016-09-21

    In this work, a detailed quantum chemical study of the mechanism of [Ni(bdt)(dppf)] (Ni(II)L) catalyzed hydrogen formation [A. Gan, T. L. Groy, P. Tarakeshwar, S. K. S. Mazinani, J. Shearer, V. Mujica and A. K. Jones, J. Am. Chem. Soc., 2015, 137, 1109-1115] following an electro-chemical-electro-chemical (ECEC) pathway is reported. The complex exclusively catalyzes the reduction of protons to molecular hydrogen. The calculations suggest that the first one-electron reduction of the [Ni(II)L] catalyst is the rate limiting step of the catalytic cycle and hence, the buildup of detectable reaction intermediates is not expected. The catalytic activity of the [Ni(II)L] complex is facilitated by the flexibility of the ligand system, which allows the ligand framework to adapt to changes in the Ni oxidation state over the course of the reaction. Additionally, a comparison is made with the catalytic activity of [NiFe] hydrogenase. It is argued that the directionality of the reversible hydrogen formation reaction is controlled by the ligand field of the nickel ion and the possibility for side-on (η(2)) binding of H2: if the ligand framework does not allow for η(2) binding of H2, as is the case for [Ni(II)L], the catalyst irreversibly reduces protons. If the ligand field allows η(2) binding of H2, the catalyst can in principle work reversibly. The conditions for η(2) binding are discussed. PMID:27545687

  1. Oxidation of ethyl acetate by a high performance nanostructure (Ni, Mn)-Ag/ZSM-5 bimetallic catalysts and development of an artificial neural networks predictive modeling.

    PubMed

    Jodaei, Azadeh; Salari, Darush; Niaei, Ali; Khatamian, Masumeh; Hosseini, Seyed Ali

    2011-01-01

    The catalytic oxidation of ethyl acetate in low concentration was investigated over mono-metallic Ag/ZSM5 and bimetallic (Ni, Mn)-Ag/ZSM-5 catalysts. Catalytic studies were carried out in a catalytic fixed bed reactor under atmospheric pressure. The sequence of catalytic activity was as follows: Ni-Ag-ZSM-5 > Mn-Ag-ZSM-5 > Ag-ZSM-5 > H-ZSM-5. The catalysts were characterized by ICP-AES, X-ray diffraction (XRD), low temperature nitrogen adsorption, NH(3)-TPD, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and diffuse reflectance UV-vis spectra (UV-vis). An artificial neural networks (ANN) model was developed to predict the performance of catalytic oxidation process over bimetallic Ni-Ag/ZSM-5 catalyst based on experimental data. For this purpose the standard feed forward back propagation algorithm was employed to train the model by using laboratory experimental data. A good agreement was resulted between experimental results and those obtained by ANN. Following order for variables effects on conversion yield of ethyl acetate was predicted by ANN model: reaction temperature (32.99%) > Ag loading (27.38%) > initial ethyl acetate concentration (23.58%) > Ni loading (16.05%). PMID:21104495

  2. Enhanced ferromagnetic properties in Ho and Ni co-doped BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Yoo, Y. J.; Hwang, J. S.; Kang, J.-H.; Lee, B. W.; Lee, Y. P.

    2014-01-01

    The magnetic properties of polycrystalline Bi1-xHoxFe1-yNiyO3 (x = 0, 0.1; y = 0, 0.03), which were prepared by the solid-state method, have been investigated. The powder X-ray diffraction reveals that all the samples are polycrystalline and show rhombohedral perovskite structure. The micro-Raman scattering studies confirm that Bi0.9Ho0.1Fe0.97Ni0.03O3 has a compressive lattice distortion induced by the simultaneous substitution of Ho and Ni ions at A and B-sites, respectively. From the magnetization dependences at room temperature, Bi0.9Ho0.1Fe0.97Ni0.03O3 has enhanced magnetization (0.2280 emu/g) and low coercive field (280 Oe). It was revealed that the Ni dopant plays an important role for the improved ferromagnetic properties and the Ho dopant favors the magnetic exchange interactions in the co-doped ceramic.

  3. Characterization of Magnetic NiFe Nanoparticles with Controlled Bimetallic Composition

    SciTech Connect

    Liu, Yan; Chi, Yanxiu; Shan, Shiyao; Yin, Jun; Luo, Jin; Zhong, Chuan-Jian

    2014-02-25

    The exploration of the magnetic properties of bimetallic alloy nanoparticles for various technological applications requires the ability to control the morphology, composition, and surface properties. In this report, we describe new findings of an investigation of the morphology and composition of NiFe alloy nanoparticles synthesized under controlled conditions. The controllability over the bimetallic composition has been demonstrated by the observation of an approximate linear relationship between the composition in the nanoparticles and in the synthetic feeding. The morphology of the NiFe nanoparticles is consistent with an fcc-type alloy, with the lattice strain increasing linearly with the iron content in the nanoparticles. The alloy nanoparticles exhibit remarkable resistance to air oxidation in comparison with Ni or Fe particles. The thermal stability and the magnetic properties of the as-synthesized alloy nanoparticles are shown to depend on the composition. The alloy nanoparticles have also be sown to display low saturation magnetization and coercivity values in comparison with the Ni nanoparticles, in line with the superparamagnetic characteristic. These findings have important implications for the design of stable and controllable magnetic nanoparticles for various technological applications.

  4. K-shell ionization cross section for Ti, Fe, Cu, Zr, and Ag

    SciTech Connect

    Benka, O.; Geretschlager, M.

    1981-04-01

    Absolute K-shell ionisation cross sections have been measured for thin targets of Ti, Fe, Cu, Zr and Ag for protons in the energy range 85-790 keV and for thin targets of Ti, Fe and Cu for He ions in the energy range 190-750 keV. In addition the relative variation of the cross sections with energy has been determined with high accuracy. The experimental values are compared to the perturbed stationary state approximation (CPSSR) and the semiclassical approximation (SCA). The CPSSR theory provides the best overall agreement with experimental cross sections. For higher scaled energies the CPSSR theory predicts the energy dependence of the cross sections very well but in the lower energy range it overpredicts the cross sections by as much as a factor of two and this overprediction seems to increase with Z/sub 2/ at a fixed scaled energy y. The SCA theory predicts slightly too large ionisation cross sections except for the lowest pounds values. The relative variation of the cross sections with energy is not well described in either energy range.

  5. Intrinsic magnetic properties of L1(0) FeNi obtained from meteorite NWA 6259

    SciTech Connect

    Poirier, E; Pinkerton, FE; Kubic, R; Mishra, RK; Bordeaux, N; Mubarok, A; Lewis, LH; Goldstein, JI; Skomski, R; Barmak, K

    2015-05-07

    FeNi having the tetragonal L1(0) crystal structure is a promising new rare-earth-free permanent magnet material. Laboratory synthesis is challenging, however, tetragonal L1(0) FeNi-the mineral "tetrataenite"-has been characterized using specimens found in nickel-iron meteorites. Most notably, the meteorite NWA 6259 recovered from Northwest Africa is 95 vol.% tetrataenite with a composition of 43 at.% Ni. Hysteresis loops were measured as a function of sample orientation on a specimen cut from NWA 6259 in order to rigorously deduce the intrinsic hard magnetic properties of its L1(0) phase. Electron backscatter diffraction showed that NWA 6259 is strongly textured, containing L1(0) grains oriented along any one of the three equivalent cubic directions of the parent fcc structure. The magnetic structure was modeled as a superposition of the three orthonormal uniaxial variants. By simultaneously fitting first-quadrant magnetization data for 13 different orientations of the sample with respect to the applied field direction, the intrinsic magnetic properties were estimated to be saturation magnetization 4 pi M-s = 14.7 kG and anisotropy field H-a = 14.4 kOe. The anisotropy constant K = 0.84 MJ/m(3) is somewhat smaller than the value K = 1.3 MJ/m(3) obtained by earlier researchers from nominally equiatomic FeNi prepared by neutron irradiation accompanied by annealing in a magnetic field, suggesting that higher Ni content (fewer Fe antisite defects) may improve the anisotropy. The fit also indicated that NWA 6259 contains one dominant variant (62% by volume), the remainder of the sample being a second variant, and the third variant being absent altogether. (C) 2015 AIP Publishing LLC.

  6. Semiconductor to metallic type transition in Ni1.5Fe1.5O4 ferrite

    NASA Astrophysics Data System (ADS)

    Aneeshkumar K., S.; Bhowmik, R. N.

    2016-05-01

    We have investigated electrical properties of Ni1.5Fe1.5O4 ferrite. The sample has been prepared by chemical coprecipitation route. The dc limit of conductivity has been derived from the fitting of ac conductivity data using Johnscher power law and Cole-Cole plot of impedance spectrum. The temperature dependence of dc conductivity data indicated a semiconductor to metallic type transition at 373K and metallic to semiconductor transition at 413K. Such electrical transition may be attributed to the effect of localization and de-localization of charge carriers in the hopping paths (Fe3+-O-Fe3+) and (Ni2+-O-Ni3+).

  7. Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion.

    PubMed

    Park, Gi Dae; Cho, Jung Sang; Kang, Yun Chan

    2015-08-01

    Multicomponent metal oxide hollow-nanosphere decorated reduced graphene oxide (rGO) composite powders are prepared by spray pyrolysis with nanoscale Kirkendall diffusion. The double-layer NiFe2O4@NiO-hollow-nanosphere decorated rGO composite powders are prepared using the first target material. The NiFe-alloy-nanopowder decorated rGO powders are prepared as an intermediate product by post-treatment under the reducing atmosphere of the NiFe2O4/NiO-decorated rGO composite powders obtained by spray pyrolysis. The different diffusion rates of Ni (83 pm for Ni(2+)) and Fe (76 pm for Fe(2+), 65 pm for Fe(3+)) cations with different radii during nanoscale Kirkendall diffusion result in multiphase and double-layer NiFe2O4@NiO hollow nanospheres. The mean size of the hollow NiFe2O4@NiO nanospheres decorated uniformly within crumpled rGO is 14 nm. The first discharge capacities of the nanosphere-decorated rGO composite powders with filled NiFe2O4/NiO and hollow NiFe2O4@NiO at a current density of 1 A g(-1) are 1168 and 1319 mA h g(-1), respectively. Their discharge capacities for the 100th cycle are 597 and 951 mA h g(-1), respectively. The discharge capacity of the NiFe2O4@NiO-hollow-nanosphere-decorated rGO composite powders at the high current density of 4 A g(-1) for the 400th cycle is 789 mA h g(-1). PMID:26186601

  8. Si-rich Fe-Ni grains in highly unequilibrated chondrites

    NASA Astrophysics Data System (ADS)

    Rambaldi, E. R.; Sears, D. W.; Wasson, J. T.

    1980-10-01

    Consideration is given to the Si contents of Fe-Ni grains in highly unequilibrated chondrites, which have undergone little metamorphosis and thus best preserve the record of processes in the solar nebula. Electron microprobe determinations of silicon content in grains of the Bishunpur chondrite are presented for the six Si-bearing Fe-Ni grains for which data could be obtained, five of which were found to be embedded in olivine chondrules. In addition, all grains are found to be Cr-rich, with Cr increased in concentration towards the grain edge, and to be encased in FeS shells which evidently preserved the Si that entered the FeNi at higher temperatures. A mechanism for the production of Si-bearing metal during the condensation of the cooling solar nebula is proposed which considers the metal to have condensed heterogeneously while the mafic silicates condensed homogeneously with amounts of required undercooling in the low-pressure regions where ordinary and carbonaceous chondrites formed, resulting in Si mole fractions of 0.003 at nebular pressures less than 0.000001 atm.

  9. Switching magnetic interactions in the NiFe Prussian Blue Analogue: an ab initio inspection.

    PubMed

    Krah, Tim; Amor, Nadia Ben; Robert, Vincent

    2014-05-28

    The magnetic interaction in the Ni(ii)-Fe(iii) Prussian Blue Analogue is investigated by means of Difference Dedicated Configuration Interaction (DDCI) calculations. Embedded cluster calculations are performed to extract the exchange coupling constant J with respect to an opening of the Ni-NC-Fe bridge while maintaining a rigid Fe(CN)6 unit. It is shown that such active distortion significantly modifies the magnetic interaction scheme in the material. Not only a ferromagnetic to antiferromagnetic transition is observed, but the J value is varied from +11.4 cm(-1) to -12.5 cm(-1) when the Ni-Fe cyanide bridge is opened by 20°. The enhancement of the intersite hopping electron transfer integral by a factor of 1.5 can be correlated with the observed Na(+)-ion mobility in a unified "cation-coupled electron transfer" (CCET) process. These results stress the complexity and originality of this class of compounds evidenced by the versatility of their magnetic network. PMID:24722793

  10. FMR spin pumping in YIG/ferromagnet bilayers (ferromagnet = Fe, Co, Ni, Py)

    NASA Astrophysics Data System (ADS)

    Yang, Fengyuan; Wang, Hailong; Du, Chunhui; Hammel, P. Chris

    2014-03-01

    Generation of pure spin currents from ferromagnets (FM) to normal metals (NM) has been extensively studied by thermal and ferromagnetic resonance (FMR) spin pumping. Recently, Miao et al. demonstrated thermal injection of spin currents from Y3Fe5O12 (YIG) into Py detected by inverse spin Hall effect (ISHE) in the FM. The ISHE in FM is in fact the inverse anomalous Hall effect (SHE), but with all the signatures of ISHE in NMs. Here we report robust FMR spin pumping in YIG/FM bilayers with FM = Fe, Co, Ni and Py using cavity FMR. The resonance fields of the FMs and YIG are clearly separated, which allows distinction of spin pumping induced ISHE voltages at the YIG resonance field and the voltage signals at the FM resonance fields. The ISHE voltages reaches 220 uV for YIG/Py(2nm) bilayer and tens of uV for all YIG/FM bilayers with 10-nm FM at an rf power of 200 mW. The sign of the ISHE voltages for Py and Ni are opposite to those for Fe and Co, which agrees with the opposite signs of AHE in Ni as compared to Fe and Co.

  11. Si-rich Fe-Ni grains in highly unequilibrated chondrites

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.; Sears, D. W.; Wasson, J. T.

    1980-01-01

    Consideration is given to the Si contents of Fe-Ni grains in highly unequilibrated chondrites, which have undergone little metamorphosis and thus best preserve the record of processes in the solar nebula. Electron microprobe determinations of silicon content in grains of the Bishunpur chondrite are presented for the six Si-bearing Fe-Ni grains for which data could be obtained, five of which were found to be embedded in olivine chondrules. In addition, all grains are found to be Cr-rich, with Cr increased in concentration towards the grain edge, and to be encased in FeS shells which evidently preserved the Si that entered the FeNi at higher temperatures. A mechanism for the production of Si-bearing metal during the condensation of the cooling solar nebula is proposed which considers the metal to have condensed heterogeneously while the mafic silicates condensed homogeneously with amounts of required undercooling in the low-pressure regions where ordinary and carbonaceous chondrites formed, resulting in Si mole fractions of 0.003 at nebular pressures less than 0.000001 atm.

  12. Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-01

    The Hall effect and the magnetoresistance of Fe2YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3 d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit ( H > 10 kOe), the value and the sign of the normal ( R 0) and anomalous ( R s ) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R s in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio ( R s ∝ ρ 0 3.1 ), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  13. A Universal Scaffold for Synthesis of the Fe(CN)2(CO) Moiety of [NiFe] Hydrogenase*

    PubMed Central

    Bürstel, Ingmar; Siebert, Elisabeth; Winter, Gordon; Hummel, Philipp; Zebger, Ingo; Friedrich, Bärbel; Lenz, Oliver

    2012-01-01

    Hydrogen-cycling [NiFe] hydrogenases harbor a dinuclear catalytic center composed of nickel and iron ions, which are coordinated by four cysteine residues. Three unusual diatomic ligands in the form of two cyanides (CN−) and one carbon monoxide (CO) are bound to the iron and apparently account for the complexity of the cofactor assembly process, which involves the function of at least six auxiliary proteins, designated HypA, -B, -C, -D, -E, and -F. It has been demonstrated previously that the HypC, -D, -E, and -F proteins participate in cyanide synthesis and transfer. Here, we show by infrared spectroscopic analysis that the purified HypCD complexes from Ralstonia eutropha and Escherichia coli carry in addition to both cyanides the CO ligand. We present experimental evidence that in vivo the attachment of the CN− ligands is a prerequisite for subsequent CO binding. With the aid of genetic engineering and subsequent mutant analysis, the functional role of conserved cysteine residues in HypD from R. eutropha was investigated. Our results demonstrate that the HypCD complex serves as a scaffold for the assembly of the Fe(CN)2(CO) entity of [NiFe] hydrogenase. PMID:23019332

  14. Galvanomagnetic properties of Fe{sub 2}YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-15

    The Hall effect and the magnetoresistance of Fe{sub 2}YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit (H > 10 kOe), the value and the sign of the normal (R{sub 0}) and anomalous (R{sub s}) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R{sub s} in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio (R{sub s} ∝ ρ{sub 0}{sup 3.1}), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  15. Spark plasma sintering of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy

    NASA Astrophysics Data System (ADS)

    Zúñiga, Alejandro; Ajdelsztajn, Leonardo; Lavernia, Enrique J.

    2006-04-01

    The microstructure and aging behavior of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy was studied. The nanocrystalline powders were produced by milling at liquid nitrogen temperature and then consolidated using spark plasma sintering (SPS). The microstructure after SPS consisted of a bimodal aluminum grain structure (coarse-grained and fine-grained regions), along with Al9FeNi and Al2CuMg particles dispersed throughout. The microstructure observed in the as-consolidated sample is rationalized on the basis of high current densities that are generated during sintering. Solution treatment and aging of the SPS Al-Cu-Mg-Fe-Ni-Sc sample resulted in softening instead of hardening. This observation can be explained by the reduced amount of Cu, Mg, and Si in solid solution available to form S' Al2CuMg due to the precipitation of Al7FeCu2 and Si-rich particles, and by the fact that rodlike S' Al2CuMg particles could only precipitate out in the coarse-grained regions, greatly decreasing their influence on the hardness. This lack of precipitation in the fine-grained region is argued to represent a new physical observation and is rationalized on the basis of physical and thermodynamic effects. The nanocrystalline SPS Al-Cu-Mg-Fe-Ni-Sc sample was also extremely thermally stable, retaining a fine-grained structure even after solution treatment at 530°C for 5 h. The observed thermal stability is rationalized on the basis of solute drag and Zener pinning caused by the impurities introduced during the cryomilling process.

  16. A model for the CO-inhibited form of [NiFe] hydrogenase: synthesis of (CO)3Fe(μ-StBu)3Ni{SC6H3-2,6-(mesityl)2} and reversible CO addition at the Ni site

    PubMed Central

    Ohki, Yasuhiro; Yasumura, Kazunari; Ando, Masaru; Shimokata, Satoko; Tatsumi, Kazuyuki

    2010-01-01

    A [NiFe] hydrogenase model compound having a distorted trigonal-pyramidal nickel center, (CO)3Fe(μ-StBu)3Ni(SDmp), 1 (Dmp = C6H3-2,6-(mesityl)2), was synthesized from the reaction of the tetranuclear Fe-Ni-Ni-Fe complex [(CO)3Fe(μ-StBu)3Ni]2(μ-Br)2, 2 with NaSDmp at -40 °C. The nickel site of complex 1 was found to add CO or CNtBu at -40 °C to give (CO)3Fe(StBu)(μ-StBu)2Ni(CO)(SDmp), 3, or (CO)3Fe(StBu)(μ-StBu)2Ni(CNtBu)(SDmp), 4, respectively. One of the CO bands of 3, appearing at 2055 cm-1 in the infrared spectrum, was assigned as the Ni-CO band, and this frequency is comparable to those observed for the CO-inhibited forms of [NiFe] hydrogenase. Like the CO-inhibited forms of [NiFe] hydrogenase, the coordination of CO at the nickel site of 1 is reversible, while the CNtBu adduct 4 is more robust. PMID:20147622

  17. Structural and Raman scattering study of Ni-doped CoFe{sub 2}O{sub 4}

    SciTech Connect

    Kumar, Ashwini Dar, Mashkoor A. Sharma, Poorva Varshney, Dinesh

    2014-04-24

    Raman scattering measurements were made on polycrystalline CoFe{sub 2}O{sub 4} and Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrites as prepared by solid-state reaction route. Rietveld refined X-ray diffraction pattern confirmed the formation of single-phase and both of the samples perfectly indexed in cubic spinel structure with Fd3m space group. Slight reduction in the lattice parameter of Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} has been observed as compared to CoFe{sub 2}O{sub 4}. From Raman scattering spectra, a shoulder like feature has been observed in both of the compounds reveals that octahedral site is occupied by Co, Ni and Fe ions and tetrahedral site is occupied by only Fe ion.

  18. Ni/Cu/Ag plated contacts: A study of resistivity and contact adhesion for crystalline-Si solar cells

    NASA Astrophysics Data System (ADS)

    ur Rehman, Atteq; Lee, Sang Hee; Bhopal, Muhammad Fahad; Lee, Soo Hong

    2016-07-01

    Ni/Cu/Ag plated contacts were examined as an alternate to Ag screen printed contacts for silicon (Si) solar cell metallization. To realize a reliable contact for industrial applications, the contact resistance and its adhesion to Si substrates were evaluated. Si surface roughness by picosecond (ps) laser ablation of silicon-nitride (SiNx) antireflection coating (ARC) was done in order to prepare the patterns. The sintering process after Ni/Cu/Ag full metallization in the form of the post-annealing process was applied to investigate the contact resistivity and adhesion. A very low contact resistivity of approximately 0.5 mΩcm2 has been achieved with measurements made by the transfer length method (TLM). Thin finger lines of about 26 μm wide and a line resistance of 0.51 Ω/cm have been realized by plating technology. Improved contact adhesion by combining the ps-laser-ablation and post-annealing process has been achieved. We have shown the peel-off strengths >1 N/mm with a higher average adhesion of 1.9 N/mm. Our pull-tab adhesion tests demonstrate excellent strength well above the wafer breakage force. [Figure not available: see fulltext.

  19. The importance of a Ni correction with ion counter in the double spike analysis of Fe isotope compositions using a 57Fe/58Fe double spike

    NASA Astrophysics Data System (ADS)

    Finlayson, V. A.; Konter, J. G.; Ma, L.

    2015-12-01

    We present a new method capable of measuring iron isotope ratios of igneous materials to high precision by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) using a 57Fe-58Fe double spike. After sample purification, near-baseline signal levels of nickel are still present in the sample solution, acting as an isobaric interference on 58 amu. To correct for the interference, the minor 60Ni isotope is monitored and used to subtract a proportional 58Ni signal from the total 58 amu beam. The 60Ni signal is difficult to precisely measure on the Faraday detector due to Johnson noise occurring at similar magnitude. This noise-dominated signal is subtracted from the total 58 amu beam, and its error amplified during the double spike correction. Placing the 60Ni beam on an ion counter produces a more precise measurement, resulting in a near-threefold improvement in δ56Fe reproducibility, from ±0.145‰ when measured on Faraday to 0.052‰. Faraday detectors quantify the 60Ni signal poorly, and fail to discern the transient 20Ne40Ar interference visible on the ion counter, which is likely responsible for poor reproducibility. Another consideration is instrumental stability (defined herein as drift in peak center mass), which affects high-resolution analyses. Analyses experiencing large drift relative to bracketing standards often yield nonreplicating data. Based on this, we present a quantitative outlier detection method capable of detecting drift-affected data. After outlier rejection, long-term precision on individual runs of our secondary standard improves to ±0.046‰. Averaging 3-4 analyses further improves precision to 0.019‰, allowing distinction between ultramafic minerals.

  20. Transition-metal and metalloid substitutions in L1(0)-ordered FeNi

    SciTech Connect

    Manchanda, P; Skomski, R; Bordeaux, N; Lewis, LH; Kashyap, A

    2014-05-07

    The effect of atomic substitutions on the magnetization, exchange, and magnetocrystalline anisotropy energy of L1(0)-ordered FeNi (tetrataenite) is computationally investigated. The compound naturally occurs in meteorites but has attracted renewed attention as a potential material for permanent magnets, and elemental additives will likely be necessary to facilitate the phase formation. Our density functional theory calculations use the Vienna ab-initio simulation package, applied to 4-atom unit cells of Fe2XNi and 32-atom supercells (X = Al, P, S, Ti, V, Cr, Mn, Fe, Co). While it is found that most additives deteriorate the magnetic properties, there are exceptions: excess substitutional Fe and Co additions improve the magnetization, whereas Cr, S, and interstitial B additions improve the magnetocrystalline anisotropy. (C) 2014 AIP Publishing LLC.

  1. Transition-metal and metalloid substitutions in L1{sub 0}-ordered FeNi

    SciTech Connect

    Manchanda, Priyanka; Skomski, Ralph; Bordeaux, N.; Lewis, L. H.; Kashyap, Arti

    2014-05-07

    The effect of atomic substitutions on the magnetization, exchange, and magnetocrystalline anisotropy energy of L1{sub 0}-ordered FeNi (tetrataenite) is computationally investigated. The compound naturally occurs in meteorites but has attracted renewed attention as a potential material for permanent magnets, and elemental additives will likely be necessary to facilitate the phase formation. Our density functional theory calculations use the Vienna ab-initio simulation package, applied to 4-atom unit cells of Fe{sub 2}XNi and 32-atom supercells (X = Al, P, S, Ti, V, Cr, Mn, Fe, Co). While it is found that most additives deteriorate the magnetic properties, there are exceptions: excess substitutional Fe and Co additions improve the magnetization, whereas Cr, S, and interstitial B additions improve the magnetocrystalline anisotropy.

  2. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    DOE PAGESBeta

    Zhang, Sen; Hao, Yizhou; Su, Dong; Doan-Nguyen, Vicky V. T.; Wu, Yaoting; Li, Jing; Sun, Shouheng; Murray, Christopher B.

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mgPt at 0.9 Vmore » (vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mgPt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less

  3. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    SciTech Connect

    Zhang, Sen; Hao, Yizhou; Su, Dong; Doan-Nguyen, Vicky V. T.; Wu, Yaoting; Li, Jing; Sun, Shouheng; Murray, Christopher B.

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mgPt at 0.9 V (vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mgPt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.

  4. Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction

    NASA Astrophysics Data System (ADS)

    Espejo, A. P.; Zierold, R.; Gooth, J.; Dendooven, J.; Detavernier, C.; Escrig, J.; Nielsch, K.

    2016-08-01

    Nickel-rich NiFe thin films (Ni92Fe8, Ni89Fe11 and Ni83Fe17) were prepared by combining atomic layer deposition (ALD) with a subsequent thermal reduction process. In order to obtain Ni x Fe1‑x O y films, one ALD supercycle was performed according to the following sequence: m NiCp2/O3, with m = 1, 2 or 3, followed by one FeCp2/O3 cycle. The supercycle was repeated n times. The thermal reduction process in hydrogen atmosphere was investigated by in situ x-ray diffraction studies as a function of temperature. The metallic nickel iron alloy thin films were investigated and characterized with respect to crystallinity, morphology, resistivity, and magnetism. As proof-of-concept magnetic properties of an array of Ni83Fe17, close to the perfect Permalloy stoichiometry, nanotubes and an isolated tube were investigated.

  5. Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction.

    PubMed

    Espejo, A P; Zierold, R; Gooth, J; Dendooven, J; Detavernier, C; Escrig, J; Nielsch, K

    2016-08-26

    Nickel-rich NiFe thin films (Ni92Fe8, Ni89Fe11 and Ni83Fe17) were prepared by combining atomic layer deposition (ALD) with a subsequent thermal reduction process. In order to obtain Ni x Fe1-x O y films, one ALD supercycle was performed according to the following sequence: m NiCp2/O3, with m = 1, 2 or 3, followed by one FeCp2/O3 cycle. The supercycle was repeated n times. The thermal reduction process in hydrogen atmosphere was investigated by in situ x-ray diffraction studies as a function of temperature. The metallic nickel iron alloy thin films were investigated and characterized with respect to crystallinity, morphology, resistivity, and magnetism. As proof-of-concept magnetic properties of an array of Ni83Fe17, close to the perfect Permalloy stoichiometry, nanotubes and an isolated tube were investigated. PMID:27454574

  6. Photocatalytic degradation of gaseous toluene over hollow “spindle-like” α-Fe{sub 2}O{sub 3} loaded with Ag

    SciTech Connect

    Li, Hong; Department of Basic, Dalian Naval Academy, Dalian 116018 ; Zhao, Qidong; Li, Xinyong; Department of Chemical Engineering, Curtin University, Perth, WA 6845 ; Shi, Yong; Zhu, Zhengru; Tade, Moses; Liu, Shaomin

    2012-06-15

    Highlights: ► Hollow α-Fe{sub 2}O{sub 3} spindle-shaped microparticles were prepared for Ag support. ► The hollow α-Fe{sub 2}O{sub 3} and Ag/α-Fe{sub 2}O{sub 3} materials were used to degrade gaseous toluene. ► Complete degradation of toluene occurred on the Ag/α-Fe{sub 2}O{sub 3} surface. -- Abstract: In this work, hollow “spindle-like” α-Fe{sub 2}O{sub 3} nanoparticles were synthesized by a hydrothermal route. The Ag/α-Fe{sub 2}O{sub 3} catalyst was prepared based on the spindle-shaped α-Fe{sub 2}O{sub 3} with CTAB as the surfactant, which showed excellent photoelectric property and photocatalytic activity. The structural properties of these samples were systematically investigated by X-ray powder diffraction, scanning electronic microscopy, transmission electronic microscopy, energy-dispersive X-ray spectra, and UV–Vis diffuse reflectance spectroscopy techniques. The photo-induced charge separation in the samples was demonstrated by surface photovoltage measurement. The photocatalytic performances of the Ag/α-Fe{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} samples were comparatively studied in the degradation of toluene under xenon lamp irradiation by in situ FTIR spectroscopy. Benzaldehyde and benzoic acid species could be observed on the α-Fe{sub 2}O{sub 3} surface rather than Ag/α-Fe{sub 2}O{sub 3} surface. The results indicate that the Ag/α-Fe{sub 2}O{sub 3} sample exhibited higher photocatalytic efficiency.

  7. In search of metal hydrides: an X-ray absorption and emission study of [NiFe] hydrogenase model complexes.

    PubMed

    Hugenbruch, Stefan; Shafaat, Hannah S; Krämer, Tobias; Delgado-Jaime, Mario Ulises; Weber, Katharina; Neese, Frank; Lubitz, Wolfgang; DeBeer, Serena

    2016-04-28

    Metal hydrides are invoked as important intermediates in both chemical and biological H2 production. In the [NiFe] hydrogenase enzymes, pulsed EPR and high-resolution crystallography have argued that the hydride interacts primarily at the Ni site. In contrast, in [NiFe] hydrogenase model complexes, it is observed that the bridging hydride interacts primarily with the Fe. Herein, we utilize a combination of Ni and Fe X-ray absorption (XAS) and emission (XES) spectroscopies to examine the contribution of the bridging hydride to the observed spectral features in [(dppe)Ni(μ-pdt)(μ-H)Fe(CO)3](+). The corresponding data on (dppe)Ni(μ-pdt)Fe(CO)3 are used as a reference for the changes that occur in the absence of a hydride bridge. For further interpretation of the observed spectral features, all experimental spectra were calculated using a density functional theory (DFT) approach, with excellent agreement between theory and experiment. It is found that the iron valence-to-core (VtC) XES spectra reveal clear signatures for the presence of a Fe-H interaction in the hydride bridged model complex. In contrast, the Ni VtC XES spectrum largely reflects changes in the local Ni geometry and shows little contribution from a Ni-H interaction. A stepwise theoretical analysis of the hydride contribution and the Ni site symmetry provides insights into the factors, which govern the different metal-hydride interactions in both the model complexes and the enzyme. Furthermore, these results establish the utility of two-color XES to reveal important insights into the electronic structure of various metal-hydride species. PMID:26924248

  8. Mobility of iron and nickel at low temperatures: Implications for 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Telus, Myriam; Huss, Gary R.; Ogliore, Ryan C.; Nagashima, Kazuhide; Howard, Daryl L.; Newville, Matthew G.; Tomkins, Andrew G.

    2016-04-01

    The Fe and Ni isotopic composition of ferromagnesian silicates in chondrules from unequilibrated ordinary chondrites (UOCs) have been used to estimate the initial abundance of the short-lived radionuclide, 60Fe, in the early Solar System. However, these estimates vary widely, and there are systematic discrepancies in initial 60Fe/56Fe ratios inferred from in situ and bulk analyses of chondrules. A possible explanation is that the Fe-Ni isotope system in UOC chondrules has not remained closed (a necessary condition for isotopic dating), and Fe and Ni have been redistributed since the chondrules formed. In order to evaluate this, we collected high-spatial-resolution X-ray fluorescence (XRF) maps of UOC chondrules to better understand the distribution and mobility of Fe and Ni at the low metamorphic temperatures of these chondrites. We used synchrotron X-ray-fluorescence microscopy to map the distribution of Fe, Ni and other elements in portions of 71 chondrules from 8 UOCs (types 3.00-3.2). The synchrotron XRF maps show clear enrichment of Fe and/or Ni in fractures ranging down to micrometer scale in chondrules from all UOCs analyzed for this study regardless of petrologic type and regardless of whether fall or find, indicating that there was significant exchange of Fe and Ni between chondrules and matrix and that the Fe-Ni system was not closed. Sixty percent of chondrules in Semarkona (LL3.00) have Fe and Ni enrichment along fractures, while 80-100% of chondrules analyzed from the other UOCs show these enrichments. Mobilization was likely a result of fluid transport of Fe and Ni during aqueous alteration on the parent body and/or during terrestrial weathering. In situ and bulk Fe-Ni analyses that incorporate extraneous Fe and Ni from chondrule fractures will result in lowering the inferred initial 60Fe/56Fe ratios.

  9. Catalytic dechlorination of 2,4-dichlorophenol by Ni/Fe nanoparticles prepared in the presence of ultrasonic irradiation.

    PubMed

    Zhao, Deming; Zheng, Yiya; Li, Min; Baig, Shams Ali; Wu, Donglei; Xu, Xinhua

    2014-09-01

    In this study, nickle/iron (Ni/Fe) nanoparticles were synthesized by liquid phase reductive method in the presence of 20 kHz ultrasonic irradiation to improve nanoparticles' disparity and avoid agglomeration. The characterized results showed that this method has obviously modified most of the particles in term of sizes and specific surface areas. Meanwhile, the improved nanoscale Ni/Fe particles were employed for the reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) as a function of some influential factors (Ni content, Ni/Fe nanoparticles dosage, reaction temperature and initial pH values) and degradation path. Experimental results showed that 2,4-DCP was first adsorbed by Ni/Fe nanoparticles, then quickly reduced to o-chlorophenol (o-CP), p-chlorophenol (p-CP), and finally to phenol (P). The application of ultrasonic irradiation for Ni/Fe nanoparticles synthesis was found to significantly enhance the removal efficiency of 2,4-DCP. Consequently, the phenol production rates increased from 68% (in the absence of ultrasonic irradiation) to 87% (in the presence of ultrasonic irradiation) within 180 min. Nearly 96% of 2,4-DCP was removed after 300 min reaction with these optimized conditions: Ni content over Fe(0) 3 wt%, initial 2,4-DCP concentration 20 mg L(-1), Ni/Fe dosage 3 g L(-1), initial pH value 3.0, and reaction temperature 25 °C. The degradation of 2,4-DCP followed pseudo-first-order kinetics reaction and the apparent pseudo-first-order kinetics constant was 0.0737 min(-1). This study suggested that the presence of ultrasonic irradiation in the synthesis of nanoscale Ni/Fe particles could be a promising technique to enhance nanoparticle's disparity and avoid agglomeration. PMID:24679843

  10. Design of α-Fe2O3 nanorods functionalized tubular NiO nanostructure for discriminating toluene molecules

    PubMed Central

    Wang, Chen; Wang, Tianshuang; Wang, Boqun; Zhou, Xin; Cheng, Xiaoyang; Sun, Peng; Zheng, Jie; Lu, Geyu

    2016-01-01

    A novel tubular NiO nanostructure was synthesized by a facile and low-cost hydrothermal strategy and then further functionalized by decorating α-Fe2O3 nanorods. The images of electron microscopy indicated that the α-Fe2O3 nanorods were assembled epitaxially on the surfaces of NiO nanotubes to form α-Fe2O3/NiO nanotubes. As a proof-of-concept demonstration of the function, gas sensing devices were fabricated from as-prepared α-Fe2O3/NiO nanotubes, and showed enhanced gas response and excellent selectivity toward toluene, giving a response of 8.8 to 5 ppm target gas, which was about 7.8 times higher than that of pure NiO nanotubes at 275 °C. The improved gas sensing performance of α-Fe2O3/NiO nanotubes could be attributed to the unique tubular morphology features, p-n heterojunctions and the synergetic behavior of α-Fe2O3 and NiO. PMID:27193353

  11. Design of α-Fe2O3 nanorods functionalized tubular NiO nanostructure for discriminating toluene molecules.

    PubMed

    Wang, Chen; Wang, Tianshuang; Wang, Boqun; Zhou, Xin; Cheng, Xiaoyang; Sun, Peng; Zheng, Jie; Lu, Geyu

    2016-01-01

    A novel tubular NiO nanostructure was synthesized by a facile and low-cost hydrothermal strategy and then further functionalized by decorating α-Fe2O3 nanorods. The images of electron microscopy indicated that the α-Fe2O3 nanorods were assembled epitaxially on the surfaces of NiO nanotubes to form α-Fe2O3/NiO nanotubes. As a proof-of-concept demonstration of the function, gas sensing devices were fabricated from as-prepared α-Fe2O3/NiO nanotubes, and showed enhanced gas response and excellent selectivity toward toluene, giving a response of 8.8 to 5 ppm target gas, which was about 7.8 times higher than that of pure NiO nanotubes at 275 °C. The improved gas sensing performance of α-Fe2O3/NiO nanotubes could be attributed to the unique tubular morphology features, p-n heterojunctions and the synergetic behavior of α-Fe2O3 and NiO. PMID:27193353

  12. Design of α-Fe2O3 nanorods functionalized tubular NiO nanostructure for discriminating toluene molecules

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Wang, Tianshuang; Wang, Boqun; Zhou, Xin; Cheng, Xiaoyang; Sun, Peng; Zheng, Jie; Lu, Geyu

    2016-05-01

    A novel tubular NiO nanostructure was synthesized by a facile and low-cost hydrothermal strategy and then further functionalized by decorating α-Fe2O3 nanorods. The images of electron microscopy indicated that the α-Fe2O3 nanorods were assembled epitaxially on the surfaces of NiO nanotubes to form α-Fe2O3/NiO nanotubes. As a proof-of-concept demonstration of the function, gas sensing devices were fabricated from as-prepared α-Fe2O3/NiO nanotubes, and showed enhanced gas response and excellent selectivity toward toluene, giving a response of 8.8 to 5 ppm target gas, which was about 7.8 times higher than that of pure NiO nanotubes at 275 °C. The improved gas sensing performance of α-Fe2O3/NiO nanotubes could be attributed to the unique tubular morphology features, p-n heterojunctions and the synergetic behavior of α-Fe2O3 and NiO.

  13. Electronic correlations in Fe at Earth's inner core conditions: Effects of alloying with Ni

    NASA Astrophysics Data System (ADS)

    Vekilova, O. Yu.; Pourovskii, L. V.; Abrikosov, I. A.; Simak, S. I.

    2015-06-01

    We have studied the body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp) phases of Fe alloyed with 25 at.% of Ni at Earth's core conditions using an ab initio local density approximation + dynamical mean-field theory approach. The alloys have been modeled by ordered crystal structures based on the bcc, fcc, and hcp unit cells with the minimum possible cell size allowing for the proper composition. Our calculations demonstrate that the strength of electronic correlations on the Fe 3 d shell is highly sensitive to the phase and local environment. In the bcc phase, the 3 d electrons at the Fe site with Fe only nearest neighbors remain rather strongly correlated, even at extreme pressure-temperature conditions, with the local and uniform magnetic susceptibility exhibiting a Curie-Weiss-like temperature evolution and the quasiparticle lifetime Γ featuring a non-Fermi-liquid temperature dependence. In contrast, for the corresponding Fe site in the hcp phase, we predict a weakly correlated Fermi-liquid state with a temperature-independent local susceptibility and a quadratic temperature dependence of Γ. The iron sites with nickel atoms in the local environment exhibit behavior in the range between those two extreme cases, with the strength of correlations gradually increasing along the hcp-fcc-bcc sequence. Further, the intersite magnetic interactions in the bcc and hcp phases are also strongly affected by the presence of Ni nearest neighbors. The sensitivity to the local environment is related to modifications of the Fe partial density of states due to mixing with Ni 3 d states.

  14. Toward CH4 dissociation and C diffusion during Ni/Fe-catalyzed carbon nanofiber growth: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Fan, Chen; Zhou, Xing-Gui; Chen, De; Cheng, Hong-Ye; Zhu, Yi-An

    2011-04-01

    First-principles calculations have been performed to investigate CH4 dissociation and C diffusion during the Ni/Fe-catalyzed growth of carbon nanofibers (CNFs). Two bulk models with different Ni to Fe molar ratios (1:1 and 2:1) are constructed, and x-ray diffraction (XRD) simulations are conducted to evaluate their reliability. With the comparison between the calculated and experimental XRD patterns, these models are found to be well suited to reproduce the crystalline structures of Ni/Fe bulk alloys. The calculations indicate the binding of the C1 derivatives to the Ni/Fe closest-packed surfaces is strengthened compared to that on Ni(111), arising from the upshift of the weighted d-band centers of catalyst surfaces. Then, the transition states for the four successive dehydrogenation steps in CH4 dissociation are located using the dimer method. It is found that the energy barriers for the first three steps are rather close on the alloyed Ni/Fe and Ni surfaces, while the activation energy for CH dissociation is substantially lowered with the introduction of Fe. The dissolution of the generated C from the surface into the bulk of the Ni/Fe alloys is thermodynamically favorable, and the diffusion of C through catalyst particles is hindered by the Fe component. With the combination of density functional theory calculations and kinetic analysis, the C concentration in catalyst particles is predicted to increase with the Fe content. Meanwhile, other experimental conditions, such as the composition of carbon-containing gases, feedstock partial pressure, and reaction temperature, are also found to play a key role in determining the C concentration in bulk metal, and hence the microstructures of generated CNFs.

  15. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Jiang, Yanfeng; Yang, Meiyin; Allard, Lawrence F.; Wang, Jian-Ping

    2016-05-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize the binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain.

  16. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag(+), Cu(2+) and Fe(3+) from industrial effluents.

    PubMed

    Liu, Peng; Borrell, Pere Ferrer; Božič, Mojca; Kokol, Vanja; Oksman, Kristiina; Mathew, Aji P

    2015-08-30

    The potential of nanoscaled cellulose and enzymatically phosphorylated derivatives as bio-adsorbents to remove metal ions (Ag(+), Cu(2+) and Fe(3+)) from model water and industrial effluents is demonstrated. Introduction of phosphate groups onto nanocelluloses significantly improved the metal sorption velocity and sorption capacity. The removal efficiency was considered to be driven by the high surface area of these nanomaterials as well as the nature and density of functional groups on the nanocellulose surface. Generally, in the solutions containing only single types of metal ions, the metal ion selectivity was in the order Ag(+)>Cu(2+)>Fe(3+), while in the case of mixtures of ions, the order changed to Ag(+)>Fe(3+)>Cu(2+), irrespective of the surface functionality of the nanocellulose. In the case of industrial effluent from the mirror making industry, 99% removal of Cu(2+) and Fe(3+) by phosphorylated nanocellulose was observed. The study showed that phosphorylated nanocelluloses are highly efficient biomaterials for scavenging multiple metal ions, simultaneously, from industrial effluents. PMID:25867590

  17. Thermoelastic Martensitic Transformations in Single Crystals of FeNiCoAlX(B) Alloys

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kuts, O. A.; Platonova, Yu. N.; Poklonov, V. V.; Kukshauzen, I. V.; Kukshauzen, D. A.; Panchenko, M. Yu.; Reunova, K. A.

    2016-03-01

    Using single crystals of Fe-based disordered alloys (Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% X (0.05% B) (at.%) (X = Ti, Nb(B), (Ti + Nb)B), undergoing thermoelastic γ-α '-martensitic transformations (MTs), it is shown that precipitation of particles of the ordered γ'-phase in the course of aging at T = 973 K for 5 h results in the development of shape memory (SME) and superelasticity (SE) effects. It is experimentally found that variation in chemical composition and size of disperse particles of the γ'-phase allows controlling both mechanical and functional properties - SME and SE.

  18. Tunneling conductance studies in the ion-beam sputtered CoFe/Mg/MgO/NiFe magnetic tunnel junctions

    SciTech Connect

    Singh, Braj Bhusan; Chaudhary, Sujeet

    2013-06-03

    Magnetic tunnel junctions consisting of CoFe(10 nm)/Mg(1 nm)/MgO(3.5 nm)/NiFe(10 nm) are grown at room temperature using dual ion beam sputtering via in-situ shadow masking. The effective barrier thickness and average barrier height are estimated to be 3.5 nm (2.9 nm) and 0.69 eV (1.09 eV) at 290 K (70 K), respectively. The tunnel magnetoresistance value of 0.2 % and 2.3 % was observed at 290 K and 60 K, respectively. The temperature dependence of tunneling conductance revealed the presence of localized states present within the forbidden gap of the MgO barrier leading to finite inelastic spin independent tunneling contributions, which degrade the TMR value.

  19. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II).

    PubMed

    Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna

    2016-08-20

    The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters. PMID:27178907

  20. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.