Sample records for ag-au solid solution

  1. Isomorphism and solid solutions among Ag- and Au-selenides

    NASA Astrophysics Data System (ADS)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Kokh, Konstantin A.; Bakakin, Vladimir V.

    2016-09-01

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag2-xAuxSe with a step of х=0.25 (0≤х≤2) to 1050 °С and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag2Se - Ag1.94Au0.06Se, fischesserite Ag3AuSe2 - Ag3.2Au0.8Se2 and gold selenide AuSe - Au0.94Ag0.06Se. Solid solutions and AgAuSe phases were added to the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe.

  2. Isomorphism and solid solutions among Ag- and Au-selenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Novosibirsk State University

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag{sub 2−x}Au{sub x}Se with a step of x=0.25 (0≤x≤2) to 1050 °C and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag{sub 2}Se – Ag{sub 1.94}Au{sub 0.06}Se, fischesserite Ag{sub 3}AuSe{sub 2} - Ag{sub 3.2}Au{sub 0.8}Se{sub 2} and gold selenide AuSe - Au{sub 0.94}Ag{sub 0.06}Se. Solid solutions and AgAuSe phases were added tomore » the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe. - Highlights: • Au-Ag selenides were synthesized. • Limited Ag-Au isomorphism in the selenides is affected by structural features. • Some new phases were introduced to the phase diagram Ag-Au-Se.« less

  3. The extraction characteristic of Au-Ag from Au concentrate by thiourea solution

    NASA Astrophysics Data System (ADS)

    Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.

  4. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of

  5. Nanoporous Au structures by dealloying Au/Ag thermal- or laser-dewetted bilayers on surfaces

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Torrisi, V.; Grillo, R.; Cacciato, G.; Zimbone, M.; Piccitto, G.; Grimaldi, M. G.

    2017-03-01

    Nanoporous Au attracts great technological interest and it is a promising candidate for optical and electrochemical sensors. In addition to nanoporous Au leafs and films, recently, interest was focused on nanoporous Au micro- and nano-structures on surfaces. In this work we report on the study of the characteristics of nanoporous Au structures produced on surfaces. We developed the following procedures to fabricate the nanoporous Au structures: we deposited thin Au/Ag bilayers on SiO2 or FTO (fluorine-doped tin oxide) substrates with thickness xAu and xAg of the Au and Ag layers; we induced the alloying and dewetting processes of the bilayers by furnace annealing processes of the bilayers deposited on SiO2 and by laser irradiations of the bilayers deposited on FTO; the alloying and dewetting processes result in the formation of AuxAgy alloy sub-micron particles being x and y tunable by xAu and xAg. These particles are dealloyed in HNO3 solution to remove the Ag atoms. We obtain, so, nanoporous sub-micron Au particles on the substrates. Analyzing the characteristics of these particles we find that: a) the size and shape of the particles depend on the nature of the dewetting process (solid-state dewetting on SiO2, molten-state dewetting on FTO); b) the porosity fraction of the particles depends on how the alloying process is reached: about 32% of porosity for the particles fabricated by the furnace annealing at 900 °C, about 45% of porosity for the particles fabricated by the laser irradiation at 0.5 J/cm2, in both cases independently on the Ag concentration in the alloy; c) After the dealloying process the mean volume of the Au particles shrinks of about 39%; d) After an annealing at 400 °C the nanoporous Au particles reprise their initial volume while the porosity fraction is reduced. Arguments to justify these behaviors are presented.

  6. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles.

    PubMed

    Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel

    2016-04-06

    A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO₃ solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system.

  7. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles

    PubMed Central

    Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel

    2016-01-01

    A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO3 solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system. PMID:28773393

  8. Biosynthesis and stabilization of Au and Au Ag alloy nanoparticles by fungus, Fusarium semitectum

    NASA Astrophysics Data System (ADS)

    Dasaratrao Sawle, Balaji; Salimath, Basavaraja; Deshpande, Raghunandan; Dhondojirao Bedre, Mahesh; Krishnamurthy Prabhakar, Belawadi; Venkataraman, Abbaraju

    2008-09-01

    Crystallized and spherical-shaped Au and Au-Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio) for Au-Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP) and Au-Ag alloy nanoparticles (Au-AgNP). Analysis of the feasibility of the biosynthesized nanoparticles and core-shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au-Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR) peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Possible optoelectronics and medical applications of these nanoparticles are envisaged.

  9. Fabrication and surface enhanced Raman scattering effect of centimeter level AgCuAu composite nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Dapeng; Zhang, Song; Yang, Wei; Chen, Jian

    2017-10-01

    Centimeter level AgCuAu composite nanowires were prepared by a solid-state ionics method under a direct current electric field (DCEF) using fast ionic conductor RbAg4I5 films and vacuum thermal evaporation method. The surface morphology and chemical composition of the AuAgCu composite nanowires were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively. Raman enhancement performance of the AgCuAu composite nanowires substrates was detected by Rhodamine 6G (R6G) aqueous solutions as probe molecules. Long-range order and short-range order AgCuAu composite nanowires with the length of 1 cm were prepared. The nanowires were bamboo-shaped with high surface roughness and the diameters of nanowires ranged from 60 to 100 nm. The molar ratio of Ag:Cu:Au in composite nanowires is 15:2:1. The intrinsic Raman peaks of 10-16 mol/L R6G at 612, 773, 1125, 1182, 1307, 1361, 1418, 1506, 1545, 1575, 1597, 1650 cm-1 are all present when AgCuAu composite nanowires were used as the SERS substrates.

  10. Study of Ag induced bimetallic (Au-Ag) nanowires on silicon (5 5 12) surfaces: Experiment and theoretical aspects

    NASA Astrophysics Data System (ADS)

    Bhukta, Anjan; Bagarti, Trilochan; Guha, Puspendu; Ravulapalli, Sathyavathi; Satpati, Biswarup; Rakshit, Bipul; Maiti, Paramita; Parlapalli, Venkata Satyam

    2017-10-01

    The reconstructed vicinal (high index) silicon surfaces, such as, Si (5 5 12) composes row-like structures that can be used as templates for growing aligned nanowires. By using a sub-monolayers of Ag, prior to Au deposition on reconstructed Si (5 512) surface, intermixing of Au and Ag, enhancement of aspect ratio of bimetallic Au-Ag nanowires with tunable morphology is reported. This is attributed to a combined effect of pre-grown Ag strips as nucleation centers for incoming Au ad-atoms and anisotropic Au-Ag intermixing. To achieve optimum conditions for the growth of larger aspect ratio Au-Ag nanostructures, the growth kinetics have been studied by varying growth and annealing temperatures. At ≈400 °C, the Ag diffused into silicon substrate and the inter-diffusion found to inhibit the formation of Au-Ag bimetallic nanostructures. Controlled experiments under ultra-high vacuum condition in a molecular beam epitaxy system and in-situ scanning tunneling microscopy measurements along with ex-situ scanning transmission and secondary electron microscopy measurements have been carried out to understand the bimetallic nanostructure growth. Kinetic Monte Carlo (KMC) simulations based on kinematics of ad-atoms on an anisotropic template with a solid on solid model in which the relative ratios of binding energies (that are obtained from the Density Functional Theory) have been used and the KMC simulations results agree with the experimental observations. Advantage of having bimetallic structures as effective substrates for Surface enhanced Raman spectroscopy application is demonstrated by detecting Rhodamine 6 G (R6G) molecule at the concentration of 10-7M.

  11. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    NASA Astrophysics Data System (ADS)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  12. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles.

    PubMed

    de Julián Fernández, C; Mattei, G; Paz, E; Novak, R L; Cavigli, L; Bogani, L; Palomares, F J; Mazzoldi, P; Caneschi, A

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO(2) matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  13. Corrosion resistance evaluation of Pd-free Ag-Au-Pt-Cu dental alloys.

    PubMed

    Fujita, Takeshi; Shiraishi, Takanobu; Takuma, Yasuko; Hisatsune, Kunihiro

    2011-01-01

    The corrosion resistance of nine experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.9% NaCl solution was investigated using cyclic voltammetry (CV), optical microscopy, and scanning electron microscopy (SEM). CV measurements revealed that the breakdown potential (E(bd)) and zero current potential (E(zc)) increased with increasing Au/(Au+Ag) atomic ratio. Thus, the Au/(Au+Ag) atomic ratio, but not the Cu content, influenced the corrosion resistance of Ag-Au-Pt-Cu alloys. After the forward scan of CV, both optical and scanning electron microscope images showed that in all the experimental alloys, the matrix phase was corroded but not the second phase. From corrosion resistance viewpoint, the Ag-Au-Pt-Cu alloys seemed to be suitable for clinical application.

  14. Hollow Au-Ag Nanoparticles Labeled Immunochromatography Strip for Highly Sensitive Detection of Clenbuterol

    NASA Astrophysics Data System (ADS)

    Wang, Jingyun; Zhang, Lei; Huang, Youju; Dandapat, Anirban; Dai, Liwei; Zhang, Ganggang; Lu, Xuefei; Zhang, Jiawei; Lai, Weihua; Chen, Tao

    2017-01-01

    The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples.

  15. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels.

    PubMed

    Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou

    2013-06-21

    A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results.

  16. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures

    NASA Astrophysics Data System (ADS)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-01

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks ( 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from 510 to 475 nm along with the decreased average size of alloy nanostructures.

  17. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures.

    PubMed

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-16

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd 150 nm /Ag 80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.

  18. Sulfonated poly(ether ether ketone)/poly(vinyl alcohol) sensitizing system for solution photogeneration of small Ag, Au, and Cu crystallites.

    PubMed

    Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G

    2005-04-28

    Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.

  19. Fabrication of Porous Ag/TiO2/Au Coatings with Excellent Multipactor Suppression

    PubMed Central

    Wu, Duoduo; Ma, Jianzhong; Bao, Yan; Cui, Wanzhao; Hu, Tiancun; Yang, Jing; Bai, Yuanrui

    2017-01-01

    Porous Ag/TiO2/Au coatings with excellent multipactor suppression were prepared by fabrication of porous Ag surface through two-step wet chemical etching, synthesis of TiO2 coatings by electroless-plating-like solution deposition and deposition of Au coatings via electroless plating. Porous structure of Ag surface, TiO2 coatings on porous Ag surface and Au coatings on porous Ag/TiO2 surface were verified by field-emission scanning electron microscopy, the composition and crystal type of TiO2 coatings was characterized by X-ray photoelectron spectroscopy and X-ray diffraction. Secondary electron yield (SEY) measurement was used to monitor the SEY coefficient of the porous Ag coatings and Ag/TiO2/Au coatings. The as-obtained porous Ag coatings were proved exhibiting low SEY below 1.2, and the process was highly reproducible. In addition, the porous Ag/TiO2/Au coatings showed excellent multipactor suppression with the SEY 1.23 and good environmental stability. It is worth mentioning that the whole preparation process is simple and feasible, which would provide a promising application in RF devices. PMID:28281546

  20. Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure.

    PubMed

    Yao, Lin-Hua; Zhang, Jun-Pei; Dai, Hong-Wei; Wang, Ming-Shan; Zhang, Lu-Man; Wang, Xia; Han, Jun-Bo

    2018-06-27

    A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.

  1. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    NASA Astrophysics Data System (ADS)

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  2. Reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} by Fe{sup II}/Fe{sup III} hydroxysulfate green rust.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Kelly, S. D.; Kemner, K. M.

    Green rusts are mixed Fe{sup II}/Fe{sup III} hydroxides that are found in many suboxic environments where they are believed to play a central role in the biogeochemical cycling of iron. X-ray absorption fine structure analysis of hydroxysulfate green rust suspensions spiked with aqueous solutions of AgCH{sub 3}COO, AuCl{sub n}(OH){sub 4-n}, CuCl{sub 2}, or HgCl{sub 2} showed that Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} were readily reduced to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}. Imaging of the resulting solids from the Ag{sup I}-, Au{sup III}-, and Cu{sup II}-amended green rust suspensions by transmission electron microscopymore » indicated the formation of submicron-sized particles of Ag{sup 0}, Au{sup 0}, and Cu{sup 0}. The facile reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}, respectively, by green rust suggests that the presence of green rusts in suboxic soils and sediments can have a significant impact on the biogeochemistry of silver, gold, copper, and mercury, particularly with respect to their mobility.« less

  3. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin.

    PubMed

    Wang, Zhongmin; Li, Xiaojuan; Liang, Haijun; Ning, Jingliang; Zhou, Zhide; Li, Guiyin

    2017-10-01

    In this study, a novel bio-adsorbent (PT-GO) was prepared by functionalization persimmon tannin (PT) with graphene oxide (GO) and the effective adsorption behaviors of Au 3+ , Pd 2+ and Ag + ions from aqueous solution was investigated. The PT-GO was characterized by Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), thermogravimetric analysis (TGA) and Zeta potential. Many influence factors such as pH value, bio-adsorbent dosage, initial concentration of metal ions and contact time were optimized. The maximum adsorption capacity for Au 3+ , Pd 2+ and Ag + was 1325.09mg/g, 797.66mg/g and 421.01mg/g, respectively. The equilibrium isotherm for the adsorption of Au 3+ and Ag + on PT-GO were found to obey the Langmuir model, while the Freundlich model fitted better for Pd 2+ . The adsorption process of Au 3+ , Pd 2+ presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model, while the pseudo-first-order kinetic model was suitable for describing the adsorption of Ag + . Combination of ion exchange, electrostatic interaction and physical adsorption was the mechanism for adsorption of Au 3+ , Pd 2+ and Ag + onto PT-GO bio-adsorbent. Therefore, the PT-GO bio-adsorbent would be an ideal adsorbent for removal of precious metal ions and broaden the potential applications of persimmon tannin in environmental research. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 3D morphology of Au and Au@Ag nanobipyramids

    NASA Astrophysics Data System (ADS)

    Burgin, Julien; Florea, Ileana; Majimel, Jérôme; Dobri, Adam; Ersen, Ovidiu; Tréguer-Delapierre, Mona

    2012-02-01

    The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance.The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11454b

  5. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials

    NASA Astrophysics Data System (ADS)

    Yallappa, S.; Manjanna, J.; Dhananjaya, B. L.

    2015-02-01

    A green chemistry approach for the synthesis of Au, Ag and Au-Ag alloy nanoparticles (NPs) using the corresponding metal precursors and Jasminum sambac leaves extract as both reducing and capping media, under microwave irradiation, is reported. During the formation, as expected, the reaction mixture shows marginal decrease in pH and an increase in solution potential. The formation of NPs is evident from their surface plasmon resonance (SPR) peak observed at ∼555 nm for Au, ∼435 nm for Ag and ∼510 nm for Au-Ag alloy. The XRD pattern shows fcc structure while the FTIR spectra indicate the presence of plant residues adsorbed on these NPs. Such a bio-capping of NPs is characterized by their weight loss, ∼35% due to thermal degradation of biomass, as observed in TG analysis. The colloidal dispersion of NPs is stable for about 6 weeks. The near spherical shape of NPs (ϕ20-50 nm) is observed by FE-SEM/TEM images and EDAX gives the expected elemental composition. Furthermore, these NPs showed enhanced antimicrobial activity (∼1-4-fold increase in zone of inhibition) in combination with antimicrobials against test strains. Thus, the phytosynthesized NPs could be used as effective growth inhibitors for various microorganisms.

  6. An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.

    PubMed

    Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming

    2016-08-01

    A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A comparative theoretical study of the catalytic activities of Au2(-) and AuAg(-) dimers for CO oxidation.

    PubMed

    Liu, Peng; Song, Ke; Zhang, Dongju; Liu, Chengbu

    2012-05-01

    The detailed mechanisms of catalytic CO oxidation over Au(2)(-) and AuAg(-) dimers, which represent the simplest models for monometal Au and bimetallic Au-Ag nanoparticles, have been studied by performing density functional theory calculations. It is found that both Au(2)(-) and AuAg(-) dimers catalyze the reaction according to the similar mono-center Eley-Rideal mechanism. The catalytic reaction is of the multi-channel and multi-step characteristic, which can proceed along four possible pathways via two or three elementary steps. In AuAg(-), the Au site is more active than the Ag site, and the calculated energy barrier values for the rate-determining step of the Au-site catalytic reaction are remarkably smaller than those for both the Ag-site catalytic reaction and the Au(2)(-) catalytic reaction. The better catalytic activity of bimetallic AuAg(-) dimer is attributed to the synergistic effect between Au and Ag atom. The present results provide valuable information for understanding the higher catalytic activity of Au-Ag nanoparticles and nanoalloys for low-temperature CO oxidation than either pure metallic catalyst.

  8. Specific composition of native silver from the Rogovik Au-Ag deposit, Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Kravtsova, R. G.; Tauson, V. L.; Palyanova, G. A.; Makshakov, A. S.; Pavlova, L. A.

    2017-09-01

    The first data on native silver from the Rogovik Au-Ag deposit in northeastern Russia are presented. The deposit is situated in central part of the Okhotsk-Chukchi Volcanic Belt (OCVB) in the territory of the Omsukchan Trough, unique in its silver resources. Native silver in the studied ore makes up finely dispersed inclusions no larger than 50 μm in size, which are hosted in quartz; fills microfractures and interstices in association with küstelite, electrum, acanthite, silver sulfosalts and selenides, argyrodite, and pyrite. It has been shown that the chemical composition of native silver, along with its typomorphic features, is a stable indication of the various stages of deposit formation and types of mineralization: gold-silver (Au-Ag), silver-base metal (Ag-Pb), and gold-silver-base metal (Au-Ag-Pb). The specificity of native silver is expressed in the amount of trace elements and their concentrations. In Au-Ag ore, the following trace elements have been established in native silver (wt %): up to 2.72 S, up to 1.86 Au, up to 1.70 Hg, up to 1.75 Sb, and up to 1.01 Se. Native silver in Ag-Pb ore is characterized by the absence of Au, high Hg concentrations (up to 12.62 wt %), and an increase in Sb, Se, and S contents; the appearance of Te, Cu, Zn, and Fe is notable. All previously established trace elements—Hg, Au, Sb, Se, Te, Cu, Zn, Fe, and S—are contained in native silver of Au-Ag-Pb ore. In addition, Pb appears, and silver and gold amalgams are widespread, as well as up to 24.61 wt % Hg and 11.02 wt % Au. Comparison of trace element concentrations in native silver at the Rogovik deposit with the literature data, based on their solubility in solid silver, shows that the content of chalcogenides (S, Se, Te) exceeds saturated concentrations. Possible mechanisms by which elevated concentrations of these elements are achieved in native silver are discussed. It is suggested that the appearance of silver amalgams, which is unusual for Au-Ag mineralization

  9. Laccase/AuAg Hybrid Glucose Microfludic Fuel Cell

    NASA Astrophysics Data System (ADS)

    López-González, B.; Cuevas-Muñiz, F. M.; Guerra-Balcázar, M.; Déctor, A.; Arjona, N.; Ledesma-García, J.; Arriaga, L. G.

    2013-12-01

    In this work a hybrid microfluidic fuel cell was fabricated and evaluated with a AuAg/C bimetallic material for the anode and an enzymatic cathode. The cathodic catalyst was prepared adsorbing laccase and ABTS on Vulcan carbon (Lac-ABTS/C). This material was characterized by FTIR-ATR, the results shows the presence of absorption bands corresponding to the amide bounds. The electrochemical evaluation for the materials consisted in cyclic voltammetry (CV). The glucose electrooxidation reaction in AuAg/C occurs around - 0.3 V vs. NHE. Both electrocatalytic materials were placed in a microfluidic fuel cell. The fuel cell was fed with PBS pH 5 oxygen saturated solution in the cathodic compartment and 5 mM glucose + 0.3 M KOH in the anodic side. Several polarization curves were performed and the maximum power density obtained was 0.3 mWcm-2 .

  10. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.

  11. Biogenic synthesis of Ag-Au-In decorated on rGO nanosheet and its antioxidant and biological activities

    NASA Astrophysics Data System (ADS)

    Hazarika, Moushumi; Sonowal, Shashanka; Saikia, Indranirekha; Boruah, Purna K.; Das, Manash R.; Tamuly, Chandan

    2017-09-01

    Au-Ag-In-rGO nanocomposite was synthesized using fruit extract of Zanthoxylum rhetsa which is an eco-friendly, simple and green method. It was characterized by UV-visible, FT-IR, XRD, XPS, EDX, TEM technique. The antioxidant capacity of the nanocomposite was evaluated in presence of AgNO3, HAuCl4 and InCl3 solution respectively at 25 °C. The results showed significant antioxidant activity in presence of 1  ×  10-5 mM AgNO3 solution. The antibacterial activity of Au-Ag-In-rGO nanoparticles was carried out against the gram  -ve bacteria Pseudomonas aeruginosa, Escherichia coli and gram  +ve bacteria Staphylococcus aureus and Bacillus cereus. The bacterial growth kinetics was studied. The bacterial strain E. coli and S. aureus showed complete inhibition at concentration 100 µg ml-1. The activity is more effective in case of Au-Ag-In-rGO compared to GO.

  12. Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: Photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens.

    PubMed

    Karthika, Viswanathan; Arumugam, Ayyakannu; Gopinath, Kasi; Kaleeswarran, Periyannan; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni

    2017-02-01

    In the present study, we focused on a quick and green method to fabricate Ag, Au and Ag/Au alloy nanoparticles (NPs) using the bark extract of Guazuma ulmifolia L. Green synthesized metal NPs were characterized using different techniques, including UV-Vis spectroscopy, FT-IR, XRD, AFM and HR-TEM analyses. The production of Ag, Au and Ag/Au alloy NPs was observed monitoring color change from colorless to brown, followed by pink and dark brown, as confirmed by UV-Vis spectroscopy characteristic peaks at 436, 522 and 510nm, respectively. TEM shed light on the spherical shapes of NPs with size ranges of 10-15, 20-25 and 10-20nm. Biosynthesized NPs showed good catalytic activity reducing two organic dyes, 4-nitrophenol (4-NP) and Congo red (CR). UV-vis spectroscopy, fluorescence, circular dichroism spectroscopy and viscosity analyses were used to investigate the NP binding with calf thymus DNA. The binding constant of NPs with DNA calculated in UV-Vis absorption studies were 1.18×10 4 , 1.83×10 4 and 2.91×10 4 M -1 , respectively, indicating that NPs were able to bind DNA with variable binding affinity: Ag/Au alloy NPs>Ag NPs>Au NPs. Ag/Au alloy NPs also showed binding activity to bovine serum albumin (BSA) over the other NPs. Ag and Ag/Au alloy NPs exhibited good antimicrobial activity on 14 species of microbial pathogens. In addition, the cytotoxic effects of Ag/Au alloy NPs were studied on human cervical cancer cells (HeLa) using MTT assay. Overall, our work showed the promising potential of bark-synthesized Ag and Ag/Au alloy NPs as cheap sources to develop novel and safer photocatalytic, antimicrobial and anticancer agents. Copyright © 2017. Published by Elsevier B.V.

  13. Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation.

    PubMed

    Liu, Jun-Hong; Wang, Ai-Qin; Chi, Yu-Shan; Lin, Hong-Ping; Mou, Chung-Yuan

    2005-01-13

    Au-Ag alloy nanoparticles supported on mesoporous aluminosilicate have been prepared by one-pot synthesis using hexadecyltrimethylammonium bromide (CTAB) both as a stabilizing agent for nanoparticles and as a template for the formation of mesoporous structure. The formation of Au-Ag alloy nanoparticles was confirmed by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM). Although the Au-Ag alloy nanoparticles have a larger particle size than the monometallic gold particles, they exhibited exceptionally high activity in catalysis for low-temperature CO oxidation. Even at a low temperature of 250 K, the reaction rate can reach 8.7 x 10(-6) mol.g(cat.)(-1).s(-1) at an Au/Ag molar ratio of 3/1. While neither monometallic Au@MCM-41 nor Ag@MCM-41 shows activity at this temperature, the Au-Ag alloy system shows a strongly synergistic effect in high catalytic activity. In this alloy system, the size effect is no longer a critical factor, whereas Ag is believed to play a key role in the activation of oxygen.

  14. Highly Stretchable and Transparent Supercapacitor by Ag-Au Core-Shell Nanowire Network with High Electrochemical Stability.

    PubMed

    Lee, Habeom; Hong, Sukjoon; Lee, Jinhwan; Suh, Young Duk; Kwon, Jinhyeong; Moon, Hyunjin; Kim, Hyeonseok; Yeo, Junyeob; Ko, Seung Hwan

    2016-06-22

    Stretchable and transparent electronics have steadily attracted huge attention in wearable devices. Although Ag nanowire is the one of the most promising candidates for transparent and stretchable electronics, its electrochemical instability has forbidden its application to the development of electrochemical energy devices such as supercapacitors. Here, we introduce a highly stretchable and transparent supercapacitor based on electrochemically stable Ag-Au core-shell nanowire percolation network electrode. We developed a simple solution process to synthesize the Ag-Au core-shell nanowire with excellent electrical conductivity as well as greatly enhanced chemical and electrochemical stabilities compared to pristine Ag nanowire. The proposed core-shell nanowire-based supercapacitor still possesses fine optical transmittance and outstanding mechanical stability up to 60% strain. The Ag-Au core-shell nanowire can be a strong candidate for future wearable electrochemical energy devices.

  15. Structure and optical properties of silica-supported Ag-Au nanoparticles.

    PubMed

    Barreca, Davide; Gasparotto, Alberto; Maragno, Cinzia; Tondello, Eugenio; Gialanella, Stefano

    2007-07-01

    Bimetallic Ag-Au nanoparticles are synthesized by sequential deposition of Au and Ag on amorphous silica by Radio Frequency (RF)-sputtering under mild conditions. Specimens are thoroughly characterized by a multi-technique approach, aimed at investigating the system properties as a function of the Ag/Au content, as well as the evolution induced by ex-situ annealing under inert (N2) or reducing (4% H2/N2) atmospheres. The obtained results demonstrate the possibility to obtain Ag-Au alloyed nanoparticles with controllable size, shape, structure, and dispersion under mild conditions, so that the optical properties can be finely tuned as a function of the synthesis and thermal treatment conditions.

  16. Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Boris N.; Liu, Zhonghui; Ye, Jian; Khlebtsov, Nikolai G.

    2015-12-01

    Recent studies have conclusively shown that the plasmonic properties of Au nanorods can be finely controlled by Ag coating. Here, we investigate the effect of asymmetric silver overgrowth of Au nanorods on their extinction and surface-enhanced Raman scattering (SERS) properties for colloids and self-assembled monolayers. Au@Ag core/shell cuboids and dumbbells were fabricated through a seed-mediated anisotropic growth process, in which AgCl was reduced by use of Au nanorods with narrow size and shape distribution as seeds. Upon tailoring the reaction rate, monodisperse cuboids and dumbbells were synthesized and further transformed into water-soluble powders of PEGylated nanoparticles. The extinction spectra of AuNRs were in excellent agreement with T-matrix simulations based on size and shape distributions of randomly oriented particles. The multimodal plasmonic properties of the Au@Ag cuboids and dumbbells were investigated by comparing the experimental extinction spectra with finite-difference time-domain (FDTD) simulations. The SERS efficiencies of the Au@Ag cuboids and dumbbells were compared in two options: (1) individual SERS enhancers in colloids and (2) self-assembled monolayers formed on a silicon wafer by drop casting of nanopowder solutions mixed with a drop of Raman reporters. By using 1,4-aminothiophenol Raman reporter molecules, the analytical SERS enhancement factor (AEF) of the colloidal dumbbells was determined to be 5.1×106, which is an order of magnitude higher than the AEF=4.0×105 for the cuboids. This difference can be explained by better fitting of the dumbbell plasmon resonance to the excitation laser wavelength. In contrast to the colloidal measurements, the AEF=5×107 of self-assembled cuboid monolayers was almost twofold higher than that for dumbbell monolayers, as determined with rhodamine 6G Raman reporters. According to TEM data and electromagnetic simulations, the better SERS response of the self-assembled cuboids is due to uniform

  17. Exploration of new methods for growing Ag films on Au(111) studied by ARPES

    NASA Astrophysics Data System (ADS)

    Luh, Dah-An; Cheng, Cheng-Maw; Tsai, Chi-Ting; Tsuei, Ku-Ding

    2007-03-01

    Ag/Au(111) thin films have attracted lots of interests as a model system in the past decades. Ag and Au are lattice-matched, and thin Ag films of very high quality are expected to grow on Au(111). However, the intermixing between Ag and Au at elevated temperatures has been a major concern during the growth of Ag films on the Au(111) surface. In many previous studies, Ag was deposited on the Au(111) surface at near room temperature to avoid the intermixing problem. Investigating the results from these studies, the Ag films on Au(111) grown by this recipe still show clear thickness variation. This thickness variation may result from Ag-Au intermixing or film roughening during the process of room temperature deposition. We are revisiting this classical model system with new growth methods. Our goal is to find growth methods that will stop the intermixing between Ag and Au and reduce the variation in the thickness of Ag films. Preliminary results from our study will be presented in this poster.

  18. Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shmarakov, Igor; Mukha, Iuliia; Vityuk, Nadiia; Borschovetska, Vira; Zhyshchynska, Nelya; Grodzyuk, Galyna; Eremenko, Anna

    2017-05-01

    Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological activity, a primary concern relates to their size, shape, composition, charge, etc. However, the impact of metal components/composition as well as metal topological distribution within NPs is incompletely characterized and remains to be further elucidated and clarified. In the present work, we tested a series of colloidal solutions of AgAu NPs of alloy and core-shell type for an antitumor activity depending on metal molar ratios (Ag:Au = 1:1; 1:3; 3:1) and topological distribution of gold and silver within NPs (AucoreAgshell; AgcoreAushell). The efficacy at which an administration of the gold and silver NPs inhibits mouse Lewis lung carcinoma (LLC) growth in vivo was compared. The data suggest that in vivo antitumor activity of the studied NPs strongly depends on gold and silver interaction arising from their ordered topological distribution. NPs with Ag core covered by Au shell were the most effective among the NPs tested towards LLC tumor growth and metastasizing inhibition. Our data show that among the NPs tested in this study, AgcoreAushell NPs may serve as a suitable anticancerous prototype.

  19. Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Liu, Maomao; Zhao, Yue; Kou, Qiangwei; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Yang, Jinghai; Jung, Young Mee

    2018-03-01

    We successfully synthesized Au-decorated Ag@Cu2O heterostructures via a simple galvanic replacement method. As the Au precursor concentration increased, the density of the Au nanoparticles (NPs) on the Ag@Cu2O surface increased, which changed the catalytic activity of the Ag@Cu2O-Au structure. The combination of Au, Ag, and Cu2O exhibited excellent catalytic properties, which can further effect on the catalyst activity of the Ag@Cu2O-Au structure. In addition, the proposed Ag@Cu2O-Au nanocomposite was used to transform the organic, toxic pollutant, 4-nitrophenol (4-NP), into its nontoxic and medicinally important amino derivative via a catalytic reduction to optimize the material performance. The proposed Au-decorated Ag@Cu2O exhibited excellent catalytic activity, and the catalytic reduction time greatly decreased (5 min). Thus, three novel properties of Ag@Cu2O-Au, i.e., charge redistribution and transfer, adsorption, and catalytic reduction of organic pollutants, were ascertained for water remediation. The proposed catalytic properties have potential applications for photocatalysis and localized surface plasmon resonance (LSPR)- and peroxidase-like catalysis.

  20. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE PAGES

    Wu, Yiren; Su, Dong; Qin, Dong

    2017-02-22

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  1. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yiren; Su, Dong; Qin, Dong

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  2. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials.

    PubMed

    Youssef, Ahmed M; Abdel-Aziz, Mohamed S; El-Sayed, Samah M

    2014-08-01

    Chitosan-silver (CS-Ag) and Chitosan-gold (CS-Au) nanocomposites films were synthesized by a simple chemical method. A local bacterial isolate identified as Bacillus subtilis ss subtilis was found to be capable to synthesize both silver nanoparticles (Ag-NP) and gold nanoparticles (Au-NP) from silver nitrate (AgNO3) and chloroauric acid (AuCl(4-)) solutions, respectively. The biosynthesis of both Ag-NP and Au-NP characterize using UV/vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and then added to chitosan by different ratios (0.5, 1 and 2%). The prepared chitosan nanocomposites films were characterize using UV, XRD, SEM and TEM. Moreover, the antibacterial activity of the prepared films was evaluated against gram positive (Staphylococcus aureus) and gram negative bacteria (Pseudomonas aerugenosa), fungi (Aspergillus niger) and yeast (Candida albicans). Therefore, these materials can be potential used as antimicrobial agents in packaging applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A colorimetric assay for measuring iodide using Au@Ag core-shell nanoparticles coupled with Cu(2+).

    PubMed

    Zeng, Jingbin; Cao, Yingying; Lu, Chun-Hua; Wang, Xu-Dong; Wang, Qianru; Wen, Cong-Ying; Qu, Jian-Bo; Yuan, Cunguang; Yan, Zi-Feng; Chen, Xi

    2015-09-03

    Au@Ag core-shell nanoparticles (NPs) were synthesized and coupled with copper ion (Cu(2+)) for the colorimetric sensing of iodide ion (I(-)). This assay relies on the fact that the absorption spectra and the color of metallic core-shell NPs are sensitive to their chemical ingredient and dimensional core-to-shell ratio. When I(-) was added to the Au@Ag core-shell NPs-Cu(2+) system/solution, Cu(2+) can oxidize I(-) into iodine (I2), which can further oxidize silver shells to form silver iodide (AgI). The generated Au@AgI core-shell NPs led to color changes from yellow to purple, which was utilized for the colorimetric sensing of I(-). The assay only took 10 min with a lowest detectable concentration of 0.5 μM, and it exhibited excellent selectivity for I(-) over other common anions tested. Furthermore, Au@Ag core-shell NPs-Cu(2+) was embedded into agarose gels as inexpensive and portable "test strips", which were successfully used for the semi-quantitation of I(-) in dried kelps. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Accumulation and interparticle connections of triangular Ag-coated Au nanoprisms by oil-coating method for surface-enhanced Raman scattering applications

    NASA Astrophysics Data System (ADS)

    Noda, Yuta; Asaka, Toru; Fudouzi, Hiroshi; Hayakawa, Tomokatsu

    2018-03-01

    To examine the optical responses of surface-enhanced Raman scattering (SERS) for tuned plasmonic nanoparticles, triangular Ag-coated Au (Au@Ag) nanoprisms with different sizes were separately synthesized, which were well controlled in their size (edge-length) and localized surface plasmon resonance (LSPR) wavelength (69.0 ± 8.4 to 173.8 ± 25.6 nm in size and 662-943 nm in LSPR wavelength). The mechanism of Ag shell formation on the Au nanoprisms was also studied with scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS). The Au@Ag nanoprisms were immobilized by covering a colloidal solution containing the nanoprisms with silicone oil and evaporating the solvent in the oil (oil-coating method) so as to form a layer of accumulated plasmonic Au@Ag nanoprisms that had LSPR peak wavelengths tuned from 839 to 1182 nm. The accumulation conditions were analyzed by field-emission scanning electron microscopy (FE-SEM) and a Raman mapping technique. The Au@Ag nanoprisms under excitation at 632.8 nm exhibited higher SERS signals of rhodamine 6G, and SERS-mapped images of the novel immobilized films were obtained at different magnifications. It was concluded that accumulated Au@Ag nanoprisms undergoing tip-planar interconnections could produce enhanced local fields, resulting in higher SERS signals.

  5. Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core-shell heterostructures for ultrasensitive SERS probes

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Lei, Yanhua; Pan, Zhengyin; Shibayama, Tamaki; Cai, Lintao

    2017-06-01

    Being able to precisely control the morphologies of noble metallic nanostructures is of essential significance for promoting the surface-enhanced Raman scattering (SERS) effect. Herein, we demonstrate an overgrowth strategy for synthesizing Au @ M (M = Au, Ag, Pd, Pt) core-shell heterogeneous nanocrystals with an orientated structural evolution and highly improved properties by using Au nanorods as seeds. With the same reaction condition system applied, we obtain four well-designed heterostructures with diverse shapes, including Au concave nanocuboids (Au CNs), Au @ Ag crystalizing face central cube nanopeanuts, Au @ Pd porous nanocuboids and Au @ Pt nanotrepangs. Subsequently, the exact overgrowth mechanism of the above heterostructural building blocks is further analysed via the systematic optimiziation of a series of fabrications. Remarkably, the well-defined Au CNs and Au @ Ag nanopeanuts both exhibit highly promoted SERS activity. We expect to be able to supply a facile strategy for the fabrication of multimetallic heterogeneous nanostructures, exploring the high SERS effect and catalytic activities.

  6. Effect of ablation time on femtosecond laser synthesis of Au- Ag colloidal nanoalloys

    NASA Astrophysics Data System (ADS)

    Hidayah, A. N.; Triyono, D.; Herbani, Y.; Isnaeni; Suliyanti, M. M.

    2018-03-01

    Au-Ag nanoalloys have been synthesized by laser irradiation technique. First, Au and Ag nanoparticles were prepared from Au and Ag pure metal (99.9%) ablated using an 800 nm femtosecond laser in distilled water. Using the same laser, Au and Ag nanoparticle with 1:1 ratio were subsequently mixed and irradiated with various irradiation time, i.e. 0, 5, 20, and 35 minutes. We varied the ablation time for each metal nanoparticles, i.e. 25 minutes and 1 hour to see its effect on the production of nanoalloys in the subsequent irradiation. Au-Ag nanoalloys were characterized and analyzed using transmission electron microscope and UV-Vis spectrophotometry. The result shows that Au-Ag nanoalloys were already formed in 20 minutes irradiation, either for the sample ablated for 25 minutes or 1 hour. The result of TEM shows that the size of Au-Ag nanoalloys prepared from 1 hour ablation was around 15.03 nm.

  7. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures.

    PubMed

    Yang, Huayan; Wang, Yu; Huang, Huaqi; Gell, Lars; Lehtovaara, Lauri; Malola, Sami; Häkkinen, Hannu; Zheng, Nanfeng

    2013-01-01

    Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag44(SR)30 and three Au12Ag32(SR)30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR=SPhF, SPhF2 or SPhCF3). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag2(SR)5 units. Positive counterions in the crystal indicate a high negative charge of 4(-) per nanoparticle, and density functional theory calculations explain the stability as an 18-electron superatom shell closure in the metal core. Highly featured optical absorption spectra in the ultraviolet-visible region are analysed using time-dependent density functional perturbation theory. This work forms a basis for further understanding, engineering and controlling of stability as well as electronic and optical properties of these novel nanomaterials.

  8. Au crystal growth on natural occurring Au-Ag aggregate elucidated by means of precession electron diffraction (PED)

    NASA Astrophysics Data System (ADS)

    Roqué Rosell, Josep; Portillo Serra, Joaquim; Aiglsperger, Thomas; Plana-Ruiz, Sergi; Trifonov, Trifon; Proenza, Joaquín A.

    2018-02-01

    In the present work, a lamella from an Au-Ag aggregate found in Ni-laterites has been examined using Transmission Electron Microscope to produce a series of Precision Electron Diffraction (PED) patterns. The analysis of the structural data obtained, coupled with Energy Dispersive X-ray microanalysis, made it possible to determine the orientation of twinned native gold growing on the Au-Ag aggregate. The native Au crystal domains are found to have grown at the outermost part of the aggregate whereas the inner core of the aggregate is an Au-Ag alloy (∼4 wt% Ag). The submicron structural study of the natural occurring Au aggregate points to the mobilization and precipitation of gold in laterites and provides insights on Au aggregates development at supergene conditions. This manuscript demonstrates the great potential of electron crystallographic analysis, and in particular, PED to study submicron structural features of micron sized mineral aggregates by using the example of a gold grain found in a Ni-laterite deposits.

  9. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    PubMed

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  10. Picosecond laser fabricated Ag, Au and Ag-Au nanoparticles for detecting ammonium perchlorate using a portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Byram, Chandu; Moram, Sree Sathya Bharathi; Soma, Venugopal Rao

    2018-04-01

    In this paper, we present the results from fabrication studies of Ag, Au, and Ag-Au alloy nanoparticles (NPs) using picosecond laser ablation technique in the presence of liquid media. The alloy formation in the NPs was confirmed from UV-Visible measurements. The shape and crystallinity of NPs were investigated by using high resolution transmission electron microscopy (HRTEM), selected area diffraction pattern (SAED) and energy dispersive spectroscopy (EDS). The SERS effect of fabricated NPs was tested with methylene blue and an explosive molecule (ammonium perchlorate) using a portable Raman spectrometer and achieved EFs of ˜106.

  11. Plasmon Mapping in Au@Ag Nanocube Assemblies

    PubMed Central

    2014-01-01

    Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991

  12. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1 - 5, 147) and monometallic Au and Ag low-energy surfaces*

    NASA Astrophysics Data System (ADS)

    Gould, Anna L.; Catlow, C. Richard A.; Logsdail, Andrew J.

    2018-02-01

    Density functional theory calculations have been performed to investigate the use of CO as a probe molecule for the determination of the structure and composition of Au, Ag and AuAg nanoparticles. For very small nanoclusters (x = 1 - 5), the CO vibrational frequencies can be directly correlated to CO adsorption strength, whereas larger 147-atom nanoparticles show a strong energetic preference for CO adsorption at a vertex position but the highest wavenumbers are for the bridge positions. We also studied CO adsorption on Au and Ag (100) and (111) surfaces, for a 1 monolayer coverage, which proves to be energetically favourable on atop only and bridge positions for Au (100) and atop for Ag (100); vibrational frequencies of the CO molecules red-shift to lower wavenumbers as a result of increased metal coordination. We conclude that CO vibrational frequencies cannot be solely relied upon in order to obtain accurate compositional analysis, but we do propose that elemental rearrangement in the core@shell nanoclusters, from Ag@Au (or Au@Ag) to an alloy, would result in a shift in the CO vibrational frequencies that indicate changes in the surface composition. Contribution to the Topical Issue "Shaping Nanocatalysts", edited by Francesca Baletto, Roy L. Johnston, Jochen Blumberger and Alex Shluger.Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80280-7

  13. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com; Qi, Yingying; Zhang, Fu-Shen

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercriticalmore » water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.« less

  14. Preparation of plasmonic porous Au@AgVO3 belt-like nanocomposites with enhanced visible light photocatalytic activity.

    PubMed

    Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue

    2018-07-20

    This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO 3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO 3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer-Emmett-Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO 3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5-20 nm) were well distributed on the surface of the nanobelts. The UV-vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO 3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min -1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO 3 nanocomposites, the 3% (molar ratio) Au decorated AgVO 3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min -1 ) was almost two times higher than that of the pure AgVO 3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.

  15. Preparation of plasmonic porous Au@AgVO3 belt-like nanocomposites with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue

    2018-07-01

    This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer–Emmett–Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5–20 nm) were well distributed on the surface of the nanobelts. The UV–vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min‑1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO3 nanocomposites, the 3% (molar ratio) Au decorated AgVO3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min‑1) was almost two times higher than that of the pure AgVO3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.

  16. Beet juice utilization: Expeditious green synthesis of nobel metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves

    EPA Science Inventory

    Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...

  17. Novel multifunctional graphene sheets with encased Au/Ag nanoparticles for advanced electrochemical analysis of organic compounds.

    PubMed

    Pruneanu, Stela; Biris, Alexandru R; Pogacean, Florina; Lazar, Diana Mihaela; Ardelean, Stefania; Watanabe, Fumyia; Dervishi, Enkeleda; Biris, Alexandru S

    2012-11-12

    This work is the first presentation of the synthesis of few-layer graphene decorated with gold and silver nanoparticles (Gr-Au-Ag) by chemical vapor deposition over a catalytic system formed of bimetallic Au-Ag nanoclusters supported on MgO and with methane used as the source of carbon. The sheetlike morphology of the graphene nanostructures, with mean sizes in the range of hundreds of nanometers, was observed by high-resolution electron microscopy. The distinctive feature found in all the samples was the regular rectangular or square shapes. This multi-component organic-inorganic nanomaterial was used to modify a platinum substrate and subsequently employed for the detection of carbamazepine, an anti-convulsion drug. UV/Vis spectroscopy revealed that a strong hypochromism occurred over time, after mixing solutions of graphene-Au-Ag with carbamazepine. This can be attributed to π-π stacking between the aromatic groups of the two compounds. Linear sweep voltammetry (LCV) provided evidence that the modified platinum substrate presented a significant electrocatalytic reaction toward the oxidation of carbamazepine. The intensity of the current was found to increase by up to 2.5 times, and the oxidation potential shifted from +1.5 to +1.35 V(Ag/AgCl) in comparison with the unmodified electrode. Electrochemical impedance spectroscopy (EIS) was further used to thoroughly assess the activity of the platinum electrode that was modified by the deposition of the Gr-Au-Ag composites in the presence of various concentrations of carbamazepine. The experimental EIS records were used for the generation of an equivalent electrical circuit, based on the charge-transfer resistance (R(ct)), Warburg impedance (Z(D)), solution resistance (R(s)), and a constant phase element (CPE) that characterizes the non-ideal interface capacitive responses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Xu, Zai-jie; Weng, Guo-jun; Zhao, Jing; Li, Jian-jun; Zhao, Jun-wu

    2018-07-01

    In this report, Ag-dielectric-Au three-layered nanoshells with controlled inner core size were synthesized. The fluorescence emission of the rhodamine 6G (R6G) could be quenched by the three-layered nanoshells distinctly. What's more, the fluorescence quenching efficiency could be further improved by tuning the etching of inner Ag nanosphere. The maximum fluorescence quenching efficiency is obtained when the separate layer just appears between the inner Ag core and the outer Au shell. Whereas the fluorescence quenching efficiency is weakened when no gaps take place around the inner Ag core or the separate layer is too thick and greater than 13 nm. The fluorescence quenching properties of the Ag-dielectric-Au three-layered nanoshells with different initial sizes of the Ag nanoparticles are also studied. The maximum fluorescence quenching efficiency is obtained when the three-layered nanoshells are synthesized based on the Ag nanoparticles with 60 nm, which is better than others two sizes (42 and 79 nm). Thus we believe that the size of initial Ag nanospheres also greatly affects the optimized fluorescence quenching efficiency. These results about fluorescence quenching properties of Ag-dielectric-Au three-layered nanoshells present a potential for design and fabrication of fluorescence nanosensors based on tuning the geometry of the inner core and the separate layer.

  19. Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites

    PubMed Central

    Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela

    2014-01-01

    In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10−5 M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10−6 to 5×10−3 M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine. PMID:24596464

  20. Continuous-flow biosynthesis of Au-Ag bimetallic nanoparticles in a microreactor

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Huang, Jiale; Sun, Daohua; Odoom-Wubah, Tareque; Li, Jun; Li, Qingbiao

    2014-11-01

    Herein, a microfluidic biosynthesis of Au-Ag bimetallic nanoparticle (NP) in a tubular microreactor, based on simultaneous reduction of HAuCl4 and AgNO3 precursors in the presence of Cacumen Platycladi ( C. Platycladi) extract was studied. The flow velocity profile was numerically analyzed with computational fluid dynamics. Au-Ag bimetallic NPs with Ag/Au molar ratios of 1:1 and 2:1 were synthesized, respectively. The alloy formation, morphology, structure, and size were investigated by UV-Vis spectra analysis, transmission electron microscopy (TEM), high resolution TEM, scanning TEM, and energy-dispersive X-ray analysis. In addition, the effects of volumetric flow rate, reaction temperature, and concentration of C. Platycladi extract and NaOH on the properties of the as-synthesized Au-Ag bimetallic NPs were investigated. The results indicated that these factors could not only affect the molar ratios of the two elements in the Au-Ag bimetallic NPs, but also affect particle size which can be adjusted from 3.3 to 5.6 nm. The process was very rapid and green, since a microreactor was employed with no additional synthetic reagents used. This work is anticipated to provide useful parameters for continuous-flow biosynthesis of bimetallic NPs in microreactors.

  1. Third-order optical nonlinearity studies of bilayer Au/Ag metallic films

    NASA Astrophysics Data System (ADS)

    Mezher, M. H.; Chong, W. Y.; Zakaria, R.

    2016-05-01

    This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and  -1.61)  ×  10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at  -1.24  ×  10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.

  2. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18](-) Nanocluster.

    PubMed

    Bootharaju, Megalamane S; Joshi, Chakra P; Parida, Manas R; Mohammed, Omar F; Bakr, Osman M

    2016-01-18

    Synthesis of atom-precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18](-) cluster (SR: thiolate) using a pure [Ag25(SR)18](-) cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag(25-x)Au(x)(SR)18](-), x=1-8. Mass spectrometry and crystallography of [Ag24Au(SR)18](-) reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single-atom level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.

    PubMed

    Wang, Ai-Qin; Chang, Chun-Ming; Mou, Chung-Yuan

    2005-10-13

    We report a novel Au-Ag alloy catalyst supported on mesoporous aluminosilicate Au-Ag@MCM prepared by a one-pot synthesis procedure, which is very active for low-temperature CO oxidation. The activity was highly dependent on the hydrogen pretreatment conditions. Reduction at 550-650 degrees C led to high activity at room temperature, whereas as-synthesized or calcined samples did not show any activity at the same temperature. Using various characterization techniques, such as XRD, UV-vis, XPS, and EXAFS, we elucidated the structure and surface composition change during calcination and the reduction process. The XRD patterns show that particle size increased only during the calcination process on those Ag-containing samples. XPS and EXAFS data demonstrate that calcination led to complete phase segregation of the Au-Ag alloy and the catalyst surface is greatly enriched with AgBr after the calcination process. However, subsequent reduction treatment removed Br- completely and the Au-Ag alloy was formed again. The surface composition of the reduced Au-Ag@MCM (nominal Au/Ag = 3/1) was more enriched with Ag, with the surface Au/Ag ratio being 0.75. ESR spectra show that superoxides are formed on the surface of the catalyst and its intensity change correlates well with the trend of catalytic activity. A DFT calculation shows that CO and O2 coadsorption on neighboring sites on the Au-Ag alloy was stronger than that on either Au or Ag. The strong synergism in the coadsorption of CO and O2 on the Au-Ag nanoparticle can thus explain the observed synergetic effect in catalysis.

  4. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru; Markova, Tat’jana, E-mail: patriot-rf@mail.ru

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  5. Photoelectron spectroscopic and computational study of (M-CO2)- anions, M = Cu, Ag, Au

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Lim, Eunhak; Kim, Seong K.; Bowen, Kit H.

    2015-11-01

    In a combined photoelectron spectroscopic and computational study of (M-CO2)-, M = Au, Ag, Cu, anionic complexes, we show that (Au-CO2)- forms both the chemisorbed and physisorbed isomers, AuCO 2- and Au-(CO2), respectively; that (Ag-CO2)- forms only the physisorbed isomer, Ag-(CO2); and that (Cu-CO2)- forms only the chemisorbed isomer, CuCO 2- . The two chemisorbed complexes, AuCO 2- and CuCO 2- , are covalently bound, formate-like anions, in which their CO2 moieties are significantly reduced. These two species are examples of electron-induced CO2 activation. The two physisorbed complexes, Au-(CO2) and Ag-(CO2), are electrostatically and thus weakly bound.

  6. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    PubMed

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Fei; Hou, Xiangshu; Xu, Kun

    2015-10-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core-shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H2O2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core-shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum.

  8. Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection.

    PubMed

    Zhao, Yuan; Yang, Yaxin; Cui, Linyan; Zheng, Fangjie; Song, Qijun

    2018-05-26

    In this work, a novel and facile electrochemical sensor is reported for the highly selective and sensitive detection of dissolved hydrogen sulfide (H 2 S), attributing to the redox reaction between Au@Ag core-shell nanoparticles (Au@Ag NPs) and H 2 S. Electroactive Au@Ag NPs not only possess excellent conductivity, but exhibit great electrochemical reactivity at 0.26 V due to the electrochemical oxidation from Ag° to Ag + . In the presence of H 2 S, the Ag shell of Au@Ag NPs can be oxidized to Ag 2 S, resulting in the decrease of differential pulse voltammetry (DPV) peak at 0.26 V. The electrochemical sensor exhibits a wide linear response range from 0.1 nM to 500 nM. The limit of detection (LOD) for H 2 S is as low as 0.04 nM. The developed sensor shows significant prospects in the study of pathological processes related to the mechanism of H 2 S production. Copyright © 2018. Published by Elsevier B.V.

  9. Nanoporous Au: An experimental study on the porosity of dealloyed AuAg leafs

    NASA Astrophysics Data System (ADS)

    Grillo, R.; Torrisi, V.; Ruffino, F.

    2016-12-01

    We present a study on the fraction of porosity for dealloyed nanoporous Au leafs. Nanoporous Au is attracting great scientific interest due to its peculiar plasmonic properties and the high exposed surface (∼10 m2/g). As examples, it was used in prototypes of chemical and biological devices. However, the maximization of the devices sensitivity is subjected to the maximization of the exposed surface by the nanoporous Au, i. e. maximization of the porosity fraction. So, we report on the analyses of the porosity fraction in nanoporous Au leafs as a function of the fabrication process parameters. We dealloyed 60 μm-thick Au23Ag77 at.% leafs and we show that: a) for dealloying time till to 6 h, only a 450 nm-thick surface layer of the leafs assumes a nanoporous structure with a porosity fraction of 32%. For a dealloying time of 20 h the leafs result fragmented in small black pieces with a porosity fraction increased to 60%. b) After 600 °C-30 minutes annealing of the previous samples, the nanopores disappear due to the Au/residual Ag inter-diffusion. c) After a second dealloying process on the previously annealed samples, the surface nanoporous structure is, again, obtained with the porosity fraction increased to 50%.

  10. Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy

    DOE PAGES

    Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren; ...

    2016-01-26

    In this paper, we report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic acid (AA), NaOH, and poly(vinylpyrrolidone) (PVP) at room temperature. Initially, the Au atoms derived from the reduction of Au 3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concavemore » cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H 2O 2 because of the protection by a complete Au shell. These two unique attributes enable in-situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene ( trans-DMAB) intermediate and the subsequent oxidation of 4-ATP back to trans-DMAB upon the introduction of H 2O 2.« less

  11. Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren

    In this paper, we report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic acid (AA), NaOH, and poly(vinylpyrrolidone) (PVP) at room temperature. Initially, the Au atoms derived from the reduction of Au 3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concavemore » cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H 2O 2 because of the protection by a complete Au shell. These two unique attributes enable in-situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene ( trans-DMAB) intermediate and the subsequent oxidation of 4-ATP back to trans-DMAB upon the introduction of H 2O 2.« less

  12. Adjustable coordination of a hybrid phosphine-phosphine oxide ligand in luminescent Cu, Ag and Au complexes.

    PubMed

    Dau, Thuy Minh; Asamoah, Benjamin Darko; Belyaev, Andrey; Chakkaradhari, Gomathy; Hirva, Pipsa; Jänis, Janne; Grachova, Elena V; Tunik, Sergey P; Koshevoy, Igor O

    2016-09-28

    A potentially tridentate hemilabile ligand, PPh2-C6H4-PPh(O)-C6H4-PPh2 (P(3)O), has been used for the construction of a family of bimetallic complexes [MM'(P(3)O)2](2+) (M = M' = Cu (1), Ag (2), Au (3); M = Au, M' = Cu (4)) and their mononuclear halide congeners M(P(3)O)Hal (M = Cu (5-7), Ag (8-10)). Compounds 1-10 have been characterized in the solid state by single-crystal X-ray diffraction analysis to reveal a variable coordination mode of the phosphine-oxide group of the P(3)O ligand depending on the preferable number of coordination vacancies on the metal center. According to the theoretical studies, the interaction of the hard donor P[double bond, length as m-dash]O moiety with d(10) ions becomes less effective in the order Cu > Ag > Au. 1-10 exhibit room temperature luminescence in the solid state, and the intensity and energy of emission are mostly determined by the nature of metal atoms. The photophysical characteristics of the monometallic species were compared with those of the related compounds M(P(3))Hal (11-16) with the non-oxidized ligand P(3). It was found that in the case of the copper complexes 5-7 the P(3)O hybrid ligand introduces effective non-radiative pathways of the excited state relaxation leading to poor emission, while for the silver luminophores the P[double bond, length as m-dash]O group leads mainly to the modulation of luminescence wavelength.

  13. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electricmore » field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.« less

  14. Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films

    NASA Astrophysics Data System (ADS)

    Oh, Yoonseok; Lee, Jeeyoung; Lee, Myeongkyu

    2018-03-01

    We here show that Ag-Au bimetallic nanoparticles (NPs) can be produced by dewetting an Ag/Au bilayer film coated on glass using a nanosecond-pulsed laser beam. Elemental analysis revealed that the obtained bimetallic NPs are Ag-Au alloys, with two elements well mixed over the whole volume of the particle. The composition of the produced particles was controllable by changing the relative thickness of each layer. The localized surface plasmon resonance (LSPR) peak was red-shifted with an increasing Au content and the LSPR wavelength could be tuned from 415 to 525 nm by varying the alloy composition. A film area of several square centimeters could be transformed into Ag-Au NPs by a single laser pulse of 6 ns duration. This study provides a facile and scalable route to prepare bimetallic NPs for plasmonic and other applications.

  15. One-Step Synthesis of Au-Ag Nanowires through Microorganism-Mediated, CTAB-Directed Approach.

    PubMed

    Xu, Luhang; Huang, Dengpo; Chen, Huimei; Jing, Xiaoling; Huang, Jiale; Odoom-Wubah, Tareque; Li, Qingbiao

    2018-05-28

    Synthesis and applications of one dimensional (1D) metal nanostructures have attracted much attention. However, one-step synthesis of bimetallic nanowires (NWs) has remained challenging. In this work, we developed a microorganism-mediated, hexadecyltrimethylammonium bromide (CTAB)-directed (MCD) approach to synthesize closely packed and long Au-Ag NWs with the assistance of a continuous injection pump. Characterization results confirmed that the branched Au-Ag alloy NWs was polycrystalline. And the Au-Ag NWs exhibited a strong absorbance at around 1950 nm in the near-infrared (NIR) region, which can find potential application in NIR absorption. In addition, the Au-Ag NWs showed excellent surface-enhanced Raman scattering (SERS) enhancement when 4-mercaptobenzoic acid (MBA) and rhodamine 6G (R6G) were used as probe molecules.

  16. Structure formation in Ag-X (X = Au, Cu) alloys synthesized far-from-equilibrium

    NASA Astrophysics Data System (ADS)

    Elofsson, V.; Almyras, G. A.; Lü, B.; Garbrecht, M.; Boyd, R. D.; Sarakinos, K.

    2018-04-01

    We employ sub-monolayer, pulsed Ag and Au vapor fluxes, along with deterministic growth simulations, and nanoscale probes to study structure formation in miscible Ag-Au films synthesized under far-from-equilibrium conditions. Our results show that nanoscale atomic arrangement is primarily determined by roughness build up at the film growth front, whereby larger roughness leads to increased intermixing between Ag and Au. These findings suggest a different structure formation pathway as compared to the immiscible Ag-Cu system for which the present study, in combination with previously published data, reveals that no significant roughness is developed, and the local atomic structure is predominantly determined by the tendency of Ag and Cu to phase-separate.

  17. XPS and Ag L3-edge XANES characterization of silver and silver-gold sulfoselenides

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri L.; Pal'yanova, Galina A.; Tomashevich, Yevgeny V.; Vishnyakova, Elena A.; Vorobyev, Sergey A.; Kokh, Konstantin A.

    2018-05-01

    Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1-x (0 < x < 1), AgAuS, and Ag3AuSxSe2-x (x = 0, 1, 2). Upon substitution of Se with S, a steady increase in the positive charge at Ag(I) sites and only minor changes in the local charge at chalcogen atoms were found from the photoelectron Ag 3d, S 2p, Se 3d, and Ag M4,5VV Auger spectra. The intensity of the Ag L3-edge peak, which is known to correlate with hole counts in the Ag 4d shell having a formal d10 configuration, was enhanced by 20-25% from Ag2Se to Ag2S and from Ag3AuSe2 to Ag3AuS2. The effect of gold is more pronounced, and the number of Ag d holes and the negative charge of S and Se notably decreased for Au-containing compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal-chalcogen and especially the Ausbnd Ag interatomic distances in substances having similar coordination geometry.

  18. Melting curve of metals Cu, Ag and Au under pressure

    NASA Astrophysics Data System (ADS)

    Tam, Pham Dinh; Hoc, Nguyen Quang; Tinh, Bui Duc; Tan, Pham Duy

    2016-01-01

    In this paper, the dependence of the melting temperature of metals Cu, Ag and Au under pressure in the interval from 0 kbar to 40 kbar is studied by the statistical moment method (SMM). This dependence has the form of near linearity and the calculated slopes of melting curve are 3.9 for Cu, 5.7 for Ag and 6 for Au. These results are in good agreement with the experimental data.

  19. Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.

    2016-12-01

    Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.

  20. Controlling Shape and Plasmon Resonance of Pt-Etched Au@Ag Nanorods.

    PubMed

    Ye, Rongkai; Zhang, Yanping; Chen, Yuyu; Tang, Liangfeng; Wang, Qiong; Wang, Qianyu; Li, Bishan; Zhou, Xuan; Liu, Jianyu; Hu, Jianqiang

    2018-05-22

    Pt-based catalysts with novel structure have attracted great attention due to their outstanding performance. In this work, H 2 PtCl 6 was used as both precursor and etching agent to realize the shape-controlled synthesis of Pt-modified Au@Ag nanorods (NRs). During the synthesis, the as-prepared Ag shell played a crucial role in both protecting the Au NRs from being etched away by PtCl 6 2- and leading to an unusual growth mode of Pt component. The site-specified etching and/or growth depended on the concentration of H 2 PtCl 6 , where high-yield core-shell structure or dumbbell-like structure could be obtained. The shape-controlled synthesis also led to a tunable longitudinal surface plasmon resonance from ca. 649 to 900 nm. Meanwhile, the core-shell Pt-modified Au@Ag NRs showed approximately 4-fold enhancement in catalytic reduction reaction of p-nitrophenol than that of the Au NRs, suggesting the great potential for photocatalytic reaction.

  1. Ion irradiation synthesis of Ag-Au bimetallic nanospheroids in SiO2 glass substrate with tunable surface plasmon resonance frequency

    NASA Astrophysics Data System (ADS)

    Meng, Xuan; Shibayama, Tamaki; Yu, Ruixuan; Takayanagi, Shinya; Watanabe, Seiichi

    2013-08-01

    Ag-Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar-ion irradiation of 30 nm Ag-Au bimetallic films deposited on SiO2 glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 1017 cm-2, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linear shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag-Au nanospheroids with a FCC structure partially embedded in the SiO2 substrate was confirmed, which has a potential application in solid-state devices.

  2. Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu; Chen, Feng; Xu, Chunxiang; Yang, Guangcan; Zhu, Ye; Luo, Zhaoxu

    2017-12-01

    Monitoring the nucleation and growth of nanomaterials is a key technique for material synthesis design and control. An efficient fabrication method can be realized deeply understanding the growth mechanisms. Here, noble metal nanostructures, gold (Au) nanoparticles, silver nanostructures (Ag nanoparticles/Ag nanowires) and gold-silver alloy nanoparticles were prepared in a facile method at room temperature. The growth processes of the Au nanoparticles, Ag nanowires and Au-Ag alloy nanoparticles can be monitored real-timely through the ultraviolet visible absorption (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is found that the whole formation involved Digestive ripening and Ostwald ripening cooperative mechanism. Furthermore, the self-assembly growth is noticed in the oriented attachment of precursor Ag monomers into nanowires under the same synthetic conditions without external templates or rigorous conditions. This result can provide a platform to discover the underlying growth mechanism of wet-chemistry methods for metal nanostructure fabrication.

  3. How Ag Nanospheres Are Transformed into AgAu Nanocages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, Liane M.; Schurman, Charles A.; Kewalramani, Sumit

    Bimetallic hollow, porous noble metal nanoparticles are of broad interest for biomedical, optical and catalytic applications. The most straightforward method for preparing such structures involves the reaction between HAuCl4 and well-formed Ag particles, typically spheres, cubes, or triangular prisms, yet the mechanism underlying their formation is poorly understood at the atomic scale. By combining in situ nanoscopic and atomic-scale characterization techniques (XAFS, SAXS, XRF, and electron microscopy) to follow the process, we elucidate a plausible reaction pathway for the conversion of citrate-capped Ag nanospheres to AgAu nanocages; importantly, the hollowing event cannot be explained by the nanoscale Kirkendall effect, normore » by Galvanic exchange alone, two processes that have been previously proposed. We propose a modification of the bulk Galvanic exchange process that takes into account considerations that can only occur with nanoscale particles. This nanoscale Galvanic exchange process explains the novel morphological and chemical changes associated with the typically observed hollowing process.« less

  4. SERS activity studies of Ag/Au bimetallic films prepared by galvanic replacement

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong

    2012-10-01

    Ag films on Si substrates were fabricated by immersion plating, which served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement method. SEM images displayed that the sacrificial Ag films presenting island morphology experienced interesting structural evolution process during galvanic replacement reaction, and nano-scaled holes were formed in the resultant bimetallic films. SERS measurements using crystal violet as an analyte showed that SERS intensities of bimetallic films were enhanced significantly compared with that of pure Ag films and related mechanisms were discussed. Immersion plating experiment carried out on Ag films on PEN substrates fabricated by photoinduced reduction method further confirmed that galvanic replacement is an easy method to fabricate Ag/Au bimetallic and a potential approach to improve the SERS performance of Ag films.

  5. Au-Ag-Cu nano-alloys: tailoring of permittivity

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-04-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.

  6. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole.

    PubMed

    Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan

    2013-12-15

    In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines. © 2013 Elsevier B.V. All rights reserved.

  7. Fabrication and surface-enhanced Raman scattering (SERS) of Ag/Au bimetallic films on Si substrates

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong; Cheng, Mingfei

    2011-11-01

    Ag films on Si substrates were fabricated by immersion plating and served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement reaction. The formation procedure of films on the surface of Si was studied by scanning electron microscopy (SEM), which revealed Ag films with island and dendritic morphologies experienced novel structural evolution process during galvanic replacement reaction, and nanostructures with holes were produced within the resultant Ag/Au bimetallic films. SERS activity both of sacrificial Ag films and resultant Ag/Au bimetallic films was investigated by using crystal violet as an analyte. It has been shown that SERS signals increased with the process of galvanic substitution and reached intensity significantly stronger than that obtained from pure Ag films.

  8. Au-Ag-Cu nano-alloys: tailoring of permittivity

    PubMed Central

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  9. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-01-01

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to

  10. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays.

    PubMed

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-04-03

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to

  11. Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.

    PubMed

    García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar

    2017-08-17

    To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.

  12. Autoclave mediated one-pot-one-minute synthesis of AgNPs and Au-Ag nanocomposite from Melia azedarach bark extract with antimicrobial activity against food pathogens.

    PubMed

    Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii

    2016-01-01

    The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.

  13. Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.

    PubMed

    Li, Yu; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-02-08

    Much progress has been made in understanding the transport properties of atomic-scale conductors. We prepared atomic-scale metal contacts of Cu, Ag, Au and Pt using a mechanically controllable break junction method at 10 K in a cryogenic vacuum. Water molecules were exposed to the metal atomic contacts and the effect of molecular adsorption was investigated by electronic conductance measurements. Statistical analysis of the electronic conductance showed that the water molecule(s) interacted with the surface of the inert Au contact and the reactive Cu ant Pt contacts, where molecular adsorption decreased the electronic conductance. A clear conductance signature of water adsorption was not apparent at the Ag contact. Detailed analysis of the conductance behaviour during a contact-stretching process indicated that metal atomic wires were formed for the Au and Pt contacts. The formation of an Au atomic wire consisting of low coordination number atoms leads to increased reactivity of the inert Au surface towards the adsorption of water.

  14. Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure

    PubMed Central

    Chen, Tao; Yang, Sha; Chai, Jinsong; Song, Yongbo; Fan, Jiqiang; Rao, Bo; Sheng, Hongting; Yu, Haizhu; Zhu, Manzhou

    2017-01-01

    We report the first noble metal nanocluster with a formula of Au4Ag13(DPPM)3(SR)9 exhibiting crystallization-induced emission enhancement (CIEE), where DPPM denotes bis(diphenylphosphino)methane and HSR denotes 2,5-dimethylbenzenethiol. The precise atomic structure is determined by x-ray crystallography. The crystalline state of Au4Ag13 shows strong luminescence at 695 nm, in striking contrast to the weak emission of the amorphous state and hardly any emission in solution phase. The structural analysis and the density functional theory calculations imply that the compact C–H⋯π interactions significantly restrict the intramolecular rotations and vibrations and thus considerably enhance the radiative transitions in the crystalline state. Because the noncovalent interactions can be easily modulated via varying the chemical environments, the CIEE phenomenon might represent a general strategy to amplify the fluorescence from weakly (or even non-) emissive nanoclusters. PMID:28835926

  15. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-01

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl4- and Ag+ ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate).

  16. Study on surface-enhanced Raman scattering efficiency of Ag core-Au shell bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Gu, Huaimin; Kang, Jian; Yuan, Xiaojuan

    2009-08-01

    In this article, the relationship between the states of Ag core-Au shell (core-shell) nanoparticles (NP) and the intensity of Raman scattering of analytes dissolved in the water and adsorbed on the NP was studied. The core-shell NP were synthesised by coating Au layers over Ag seeds by the method of "seed-growth". To highlight the advantage of the core-shell NP, Ag colloid and Au colloid were chosen for contrasting. The analyte that were chosen for this testing were methylene blue (MB) for the reason that MB has very strong signal in surface-enhanced Raman scattering (SERS). The SERS activity of optimalizing states of Ag and Au colloids were compared with that of core-shell NP when MB was used as analyte. In this study, sodium chloride, sodium sulfate and sodium nitrate were used as aggregating agents for Ag, Au colloids and core-shell NP, because anions have a strong influence on the SERS efficiency and the stability of colloids. The results indicate that core-shell NP can obviously enhance the SERS of MB. The aim of this study is to prove that compared with the metal colloid, the core-shell NP is a high efficiency SERS active substrate.

  17. A first principles study on the electronic origins of silver segregation at the Ag-Au (111) surface

    NASA Astrophysics Data System (ADS)

    Hoppe, Sandra; Müller, Stefan

    2017-12-01

    The special electronic structure of gold gives rise to many interesting phenomena, such as its color. The surface segregation of the silver-gold system has been the subject of numerous experimental and theoretical studies, yielding conflicting results ranging from strong Ag surface enrichment to Au surface segregation. Via a combined approach of density functional theory (DFT) and statistical physics, we have analyzed the segregation at the Ag-Au (111) surface with different Ag bulk concentrations. Interestingly, we observe a moderate Au surface segregation, which is due to a charge transfer from the less electronegative Ag to Au. Canonical Monte Carlo simulations suggest that the calculated concentration profile with a Au-enriched surface layer remains stable up to higher temperatures. However, the presence of adsorbed oxygen reverses the segregation behavior and leads to strong Ag enrichment of the surface layer.

  18. Dissociative adsorption of water on Au/MgO/Ag(001) from first principles calculations

    NASA Astrophysics Data System (ADS)

    Nevalaita, J.; Häkkinen, H.; Honkala, K.

    2015-10-01

    The molecular and dissociative adsorption of water on a Ag-supported 1 ML, 2 ML and 3 ML-a six atomic layer-thick MgO films with a single Au adatom is investigated using density functional theory calculations. The obtained results are compared to a bulk MgO(001) surface with an Au atom. On thin films the negatively charged Au strengthens the binding of the polar water molecule due to the attractive Au-H interaction. The adsorption energy trends of OH and H with respect to the film thickness depend on an adsorption site. In the case OH or H binds atop Au on MgO/Ag(001), the adsorption becomes more exothermic with the increasing film thickness, while the reverse trend is seen when the adsorption takes place on bare MgO/Ag(001). This behavior can be explained by different bonding mechanisms identified with the Bader analysis. Interestingly, we find that the rumpling of the MgO film and the MgO-Ag interface distance correlate with the charge transfer over the thin film and the interface charge, respectively. Moreover, we employ a modified Born-Haber-cycle to analyze the effect of film thickness to the adsorption energy of isolated Au and OH species on MgO/Ag(001). The analysis shows that the attractive Coulomb interaction between the negatively charged adsorbate and the positive MgO-Ag-interface does not completely account for the weaker binding with increasing film thickness. The redox energy associated with the charge transfer from the interface to the adsorbate is more exothermic with the increasing film thickness and partly compensates the decrease in the attractive Coulomb interaction.

  19. Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production

    NASA Astrophysics Data System (ADS)

    Herbani, Y.; Irmaniar; Nasution, R. S.; Mujtahid, F.; Masse, S.

    2018-03-01

    We have fabricated metal and oxide nanoparticles using pulse laser ablation of Au, Ag, and Cu metal targets immersed in water. While laser ablation of Au and Ag targets in water produced metal nanoparticles which were stable for a month even without any dispersant, we found CuO nanoparticles for Cu target due to rapid oxidation of Cu in water resulted in its poor stability. Au, Ag, and CuO nanoparticles production were barely identified by naked eyes for their distinctive colour of red, yellow, and dark green colloidal suspensions, respectively. It was also verified using UV-Vis spectrometer that Au, Ag, and CuO colloidal nanoparticles have their respective surface plasmon resonance at 520, 400, and 620 nm. TEM observation showed that particle sizes for all the fabricated nanoparticles were in the range of 20 – 40 nm with crystalline structures.

  20. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  1. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces.

    PubMed

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-15

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl 4 - and Ag + ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fabrication of Sb₂S₃ Hybrid Solar Cells Based on Embedded Photoelectrodes of Ag Nanowires-Au Nanoparticles Composite.

    PubMed

    Kim, Kang-Pil; Hwang, Dae-Kue; Woo, Sung-Ho; Kim, Dae-Hwan

    2018-09-01

    The Ag nanowire (NW) + Au nanoparticle (NP)-embedded TiO2 photoelectrodes were adopted for conventional planar TiO2-based Sb2S3 hybrid solar cells to improve the cell efficiency. Compared to conventional planar TiO2-based Sb2S3 hybrid solar cells, the Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells exhibited an improvement of approximately 40% in the cell efficiency due to the significant increase in both Jsc and Voc. These enhanced Jsc and Voc were attributed to the increased surface area, charge-collection efficiency, and light absorption by embedding the Ag NWs + Au NPs composite. The Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells showed the highest efficiency of 2.17%, demonstrating that the Ag NW + Au NP-embedded TiO2 photoelectrode was a suitable photoelectrode structure to improve the power conversion efficiency in the Sb2S3 hybrid solar cells.

  3. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells.

    PubMed

    Baek, Se-Woong; Park, Garam; Noh, Jonghyeon; Cho, Changsoon; Lee, Chun-Ho; Seo, Min-Kyo; Song, Hyunjoon; Lee, Jung-Yong

    2014-04-22

    In this report, we propose a metal-metal core-shell nanocube (NC) as an advanced plasmonic material for highly efficient organic solar cells (OSCs). We covered an Au core with a thin Ag shell as a scattering enhancer to build Au@Ag NCs, which showed stronger scattering efficiency than Au nanoparticles (AuNPs) throughout the visible range. Highly efficient plasmonic organic solar cells were fabricated by embedding Au@Ag NCs into an anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and the power conversion efficiency was enhanced to 6.3% from 5.3% in poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC70BM) based OSCs and 9.2% from 7.9% in polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM based OSCs. The Au@Ag NC plasmonic PCDTBT:PC70BM-based organic solar cells showed 2.2-fold higher external quantum efficiency enhancement compared to AuNPs devices at a wavelength of 450-700 nm due to the amplified plasmonic scattering effect. Finally, we proved the strongly enhanced plasmonic scattering efficiency of Au@Ag NCs embedded in organic solar cells via theoretical calculations and detailed optical measurements.

  4. Studies on plasmon characteristics and the local density of states of Au and Ag based nanoparticles

    NASA Astrophysics Data System (ADS)

    Vinod, M.; Biju, V.; Gopchandran, K. G.

    2016-01-01

    Knowledge about the conductive properties and the local density of states of chemically pure Au, Ag, Ag@Au core-shell and Au-Ag bimetallic nanoparticles is technologically important. Herein, the I-V characteristics and the density of states derived from scanning tunneling microscopy measurements made under atmospheric conditions is reported. The nanoparticles in thin film form used in this study were prepared by laser ablation in water followed by drop and evaporation. The morphology of the surface of the nanostructures was observed from optimizing tunneling current in each case. The monometallic Au and Ag particles shows almost similar current characteristics as well as discrete energy states but the slope of I-V characteristics was different for bimetallic structures. An attempt has also been made to compare the current measurements done in the nanoscale with the surface plasmon characteristics.

  5. Correlating structural dynamics and catalytic activity of AgAu nanoparticles with ultrafast spectroscopy and all-atom molecular dynamics simulations.

    PubMed

    Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A

    2018-05-29

    In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.

  6. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    NASA Astrophysics Data System (ADS)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  7. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang

    2013-05-01

    Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.

  8. Room temperature synthesis and optical studies on Ag and Au mixed nanocomposite polyvinylpyrrolidone polymer films.

    PubMed

    Udayabhaskar, R; Mangalaraja, R V; Manikandan, D; Arjunan, V; Karthikeyan, B

    2012-12-01

    Optical properties of silver, gold and bimetallic (Au:Ag) nanocomposite polymer films which are prepared by chemical method have been reported. The experimental data was correlated with the theoretical calculations using Mie theory. We adopt small change in the theoretical calculations of bimetallic/mixed particle nanocomposite and the theory agrees well with the experimental data. Polyvinylpyrrolidone (PVP) was used as reducing and capping agent. Fourier transform infrared spectroscopy (FTIR) study reveals the presence of different functional groups, the possible mechanism that leads to the formation of nanoparticles by using PVP alone as reducing agent. Optical absorption spectra of Ag and Au nanocomposite polymers show a surface plasmon resonance (SPR) band around 430 and 532 nm, respectively. Thermal annealing effect on the prepared samples at 60 °C for different time durations result in shift of SPR band maximum and varies the full width at half maximum (FWHM). Absorption spectra of Au:Ag bimetallic films show bands at 412 and 547 nm confirms the presence of Ag and Au nanoparticles in the composite. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application.

    PubMed

    Gupta, Vinod Kumar; Atar, Necip; Yola, Mehmet Lütfi; Eryılmaz, Merve; Torul, Hilal; Tamer, Uğur; Boyacı, Ismail Hakkı; Ustündağ, Zafer

    2013-09-15

    This study represents a novel template demonstration of a glucose biosensor based on mercaptophenyl boronic acid (MBA) terminated Ag@AuNPs/graphene oxide (Ag@AuNPs-GO) nanomaterials. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) method. The TEM image shows that Ag@AuNPs in the nanocomposite is in the range of diameters of 10-20 nm. The nanocomposite was used for the determination of glucose through the complexation between boronic acid and diol groups of glucose. Thus, a novel glucose biosensor was further fabricated by immobilizing glucose oxidase (GOD) into MBA terminated Ag@AuNPs-GO nanocomposite film (MBA-Ag@AuNPs-GO). The linearity range of glucose was obtained as 2-6mM with detection limit of 0.33 mM. The developed biosensor was also applied successfully for the determination of glucose in blood samples. The concentration value of glucose in blood samples was calculated to be 1.97±0.002 mM from measurements repeated for six times. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Silver flip chip interconnect technology and solid state bonding

    NASA Astrophysics Data System (ADS)

    Sha, Chu-Hsuan

    In this dissertation, fluxless transient liquid phase (TLP) bonding and solid state bonding between thermal expansion mismatch materials have been developed using Ag-In binary systems, pure Au, Ag, and Cu-Ag composite. In contrast to the conventional soldering process, fluxless bonding technique eliminates any corrosion and contamination problems caused by flux. Without flux, it is possible to fabricate high quality joints in large bonding areas where the flux is difficult to clean entirely. High quality joints are crucial to bonding thermal expansion mismatch materials since shear stress develops in the bonded pair. Stress concentration at voids in joints could increases breakage probability. In addition, intermetallic compound (IMC) formation between solder and underbump metallurgy (UBM) is essential for interconnect joint formation in conventional soldering process. However, the interface between IMC and solder is shown to be the weak interface that tends to break first during thermal cycling and drop tests. In our solid state bonding technique, there is no IMC involved in the bonding between Au to Au, Ag and Cu, and Ag and Au. All the reliability issues related to IMC or IMC growth is not our concern. To sum up, ductile bonding media, such as Ag or Au, and proper metallic layered structure are utilized in this research to produce high quality joints. The research starts with developing a low temperature fluxless bonding process using electroplated Ag/In/Ag multilayer structures between Si chip and 304 stainless steel (304SS) substrate. Because the outer thin Ag layer effectively protects inner In layer from oxidation, In layer dissolves Ag layer and joints to Ag layer on the to-be-bonded Si chip when temperature reaches the reflow temperature of 166ºC. Joints consist of mainly Ag-rich Ag-In solid solution and Ag2In. Using this fluxless bonding technique, two 304SS substrates can be bonded together as well. From the high magnification SEM images taken at cross

  11. Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhaned Raman Spectrosocpy Based Trace Explosives Detection

    NASA Astrophysics Data System (ADS)

    Sree Satya Bharati, Moram; Byram, Chandu; Soma, Venugopal R.

    2018-03-01

    Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs) using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk) in HAuCl4 (5 mM) solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2, 4, 6-trinitrophenol (PA), 2, 4-dinitrotoluene (DNT) and a common dye methylene blue (MB) using the surface enhanced Raman spectroscopy (SERS) technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT) and few picograms in the case of a common dye molecule (MB). Typical enhancement factors achieved were estimated to be 104, 105 and 107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.

  12. Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching

    NASA Astrophysics Data System (ADS)

    Choi, Nag-Choul; Cho, Kang Hee; Kim, Bong Ju; Lee, Soonjae; Park, Cheon Young

    2018-03-01

    The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au-Ag-Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.

  13. Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.

    2005-01-01

    Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.

  14. Proton, Deuteron and Helion Spectra from Central Au+Au collisions at the AG

    NASA Astrophysics Data System (ADS)

    Baumgart, Stephen

    2002-10-01

    The AGS E895 experiment ran Au+Au collisions at bombarding energies of 2, 4, 6 and 8 AGeV. For central collisions, particle spectra have been measured for pions, kaons, protons, deuterons, and helions. From these spectra, the dN/dy distributions have been determined across a rapidity range from approximately -1.5 to 1.5 at maximum beam energy. Integration of the rapidity densities gives the total yields of each particle species. The final charge of the system can be calculated from the total yields to show that all of the initial charge is accounted for. The conclusions from the analyses of the condensate particle spectra will be presented. Fits to the spectra determine the freeze-out temperatures, radial flow velocities, and chemical potentials. The rapidity density distributions are used to estimate the longitudinal flow. The proton phase space density can be estimated by combining the proton spectra with the gaussian freeze-out radii intrepreted from a coalescence model employing the yields of protons, deuterons, tritons, and helions. Comparisons of the above results will be made to the experimental evidence from SIS, the AGS, the SPS, and RHIC.

  15. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2012-11-01

    The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of

  16. Doping of the step-edge Si chain: Ag on a Si(557)-Au surface

    NASA Astrophysics Data System (ADS)

    Krawiec, M.; Jałochowski, M.

    2010-11-01

    Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.

  17. Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)

    PubMed Central

    Tesch, Julia; Leicht, Philipp; Blumenschein, Felix; Gragnaniello, Luca; Fonin, Mikhail; Marsoner Steinkasserer, Lukas Eugen; Paulus, Beate; Voloshina, Elena; Dedkov, Yuriy

    2016-01-01

    We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that the parabolic dispersion of Au(111) and Ag(111) surface states remains unchanged with the band minimum shifted to higher energies for the regions of the metal surface covered by graphene, reflecting a rather weak interaction between graphene and the metal surface. The analysis of graphene-related scattering on single nanoflakes yields a linear dispersion relation E(k), with a slight p-doping for graphene/Au(111) and a larger n-doping for graphene/Ag(111). The obtained experimental data (doping level, band dispersions around EF, and Fermi velocity) are very well reproduced within DFT-D2/D3 approaches, which provide a detailed insight into the site-specific interaction between graphene and the underlying substrate. PMID:27002297

  18. Highly efficient and porous TiO2-coated Ag@Fe3O4@C-Au microspheres for degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Shen, Mao; Chen, Suqing; Jia, Wenping; Fan, Guodong; Jin, Yanxian; Liang, Huading

    2016-12-01

    In this paper, we reported a novel hierarchical porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe3O4 magnetic embedded Ag core (Ag@Fe3O4), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe3O4@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe3O4@C-PEI (Ag@Fe3O4@C-Au), and an ordered porous TiO2 structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO2 and Ag@Fe3O4@C@TiO2 microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.

  19. Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Beverly D.; Palafox-Hernandez, J. Pablo; Li, Yue

    Materials-binding peptides represent a unique avenue towards controlling the shape and size of nanoparticles (NPs) grown under aqueous conditions. Here, employing a bionanocombinatorics approach, two such materials-binding peptides were linked at either end of a photoswitchable spacer, forming a multi-domain materials-binding molecule to control the in situ synthesis and organization of Ag and Au NPs under ambient conditions. These multi-domain molecules retained the peptides’ ability to nucleate, grow, and stabilize Ag and Au NPs in aqueous media. Disordered co-assemblies of the two nanomaterials were observed by TEM imaging of dried samples after sequential growth of the two metals, and showedmore » a clustering behavior that was not observed without both metals and the linker molecules. While TEM evidence indicated the formation of AuNP/AgNP assemblies upon drying, SAXS analysis indicated that no extended assemblies existed in solution, suggesting that sample drying plays an important role in facilitating NP clustering. Molecular simulations and experimental data revealed tunable materials-binding based upon the isomerization state of the photoswitchable unit and metal employed. This work is a first step in generating externally actuated biomolecules with specific material-binding properties that could be used as the building blocks to achieve multi-material switchable NP assemblies.« less

  20. Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir

    NASA Astrophysics Data System (ADS)

    Jiménez-Díaz, Laura M.; Pérez, Luis A.

    2018-03-01

    In this work, we present a density functional theory study of the structural and electronic properties of isolated neutral clusters of the type Au12M, with M = Cu, Ag, or Ir. On the other hand, there is experimental evidence that gold-silver, gold-copper and gold-iridium nanoparticles have an enhanced catalytic activity for the CO oxidation reaction. In order to address these phenomena, we also performed density functional calculations of the adsorption and dissociation of O2 on these nanoparticles. Moreover, to understand the effects of Cu, Ag, and Ir impurity atoms on the dissociation of O2, we also analyze this reaction in the corresponding pure gold cluster. The results indicate that the substitution of one gold atom in a Au13 cluster by Ag, Cu or Ir diminishes the activation energy barrier for the O2 dissociation by nearly 1 eV. This energy barrier is similar for Au12Ag and Au12Cu, whereas for Au12Ir is even lower. These results suggest that the addition of other transition metal atoms to gold nanoclusters can enhance their catalytic activity towards the CO oxidation reaction, independently of the effect that the substrate could have on supported nanoclusters.

  1. On the Effect of Native SiO2 on Si over the SPR-mediated Photocatalytic Activities of Au and Ag Nanoparticles.

    PubMed

    Wang, Jiale; de Freitas, Isabel C; Alves, Tiago V; Ando, Romulo A; Fang, Zebo; Camargo, Pedro H C

    2017-05-29

    In hybrid materials containing plasmonic nanoparticles such as Au and Ag, charge-transfer processes from and to Au or Ag can affect both activities and selectivity in plasmonic catalysis. Inspired by the widespread utilization of commercial Si wafers in surface-enhanced Raman spectroscopy (SERS) studies, we investigated herein the effect of the native SiO 2 layer on Si wafers over the surface plasmon resonance (SPR)-mediated activities of the Au and Ag nanoparticles (NPs). We prepared SERS-active plasmonic comprised of Au and Ag NPs deposited onto a Si wafer. Here, two kinds of Si wafers were employed: Si with a native oxide surface layer (Si/SiO 2 ) and Si without a native oxide surface layer (Si). This led to Si/SiO 2 /Au, Si/SiO 2 /Ag, Si/Au, and Si/Ag NPs. The SPR-mediated oxidation of p-aminothiophenol (PATP) to p,p'-dimercaptoazobenzene (DMAB) was employed as a model transformation. By comparing the performances and band structures for the Si/Au and Si/Ag relative to Si/SiO 2 /Au and Si/SiO 2 /Ag NPs, it was found that the presence of a SiO 2 layer was crucial to enable higher SPR-mediated PATP to DMAB conversions. The SiO 2 layer acts to prevent the charge transfer of SPR-excited hot electrons from Au or Ag nanoparticles to the Si substrate. This enabled SPR-excited hot electrons to be transferred to adsorbed O 2 molecules, which then participate in the selective oxidation of PATP to DMAB. In the absence of a SiO 2 layer, SPR-excited hot electrons are preferentially transferred to Si instead of adsorbed O 2 molecules, leading to much lower PATP oxidation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. c-T phase diagram and Landau free energies of (AgAu)55 nanoalloy via neural-network molecular dynamic simulations.

    PubMed

    Chiriki, Siva; Jindal, Shweta; Bulusu, Satya S

    2017-10-21

    For understanding the structure, dynamics, and thermal stability of (AgAu) 55 nanoalloys, knowledge of the composition-temperature (c-T) phase diagram is essential due to the explicit dependence of properties on composition and temperature. Experimentally, generating the phase diagrams is very challenging, and therefore theoretical insight is necessary. We use an artificial neural network potential for (AgAu) 55 nanoalloys. Predicted global minimum structures for pure gold and gold rich compositions are lower in energy compared to previous reports by density functional theory. The present work based on c-T phase diagram, surface area, surface charge, probability of isomers, and Landau free energies supports the enhancement of catalytic property of Ag-Au nanoalloys by incorporation of Ag up to 24% by composition in Au nanoparticles as found experimentally. The phase diagram shows that there is a coexistence temperature range of 70 K for Ag 28 Au 27 compared to all other compositions. We propose the power spectrum coefficients derived from spherical harmonics as an order parameter to calculate Landau free energies.

  3. Effect of (Ag, Sn) Doping on the Structure and Optical Properties of Au Nanocluster

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Karna, Shashi

    2014-03-01

    Noble metal nanoclusters (NCs) consisting of a few to 35 atoms in size in the sub 2 nm range dimension are considered to be nontoxic as opposed to nanoparticles that are cytotoxic. Also, due to the quantum confinement of electrons, these NCs exhibit atom-like energy spectrum and display fluorescent properties useful in a wide range of applications, including medical diagnosis. The unique features of NCs such as size-tunable optical properties, intense fluorescence in the visible, and biocompatibility have stimulated an active area of investigation of noble metal NCs comprised of Au, Ag, Cu, and Pt. Furthermore, the electronic properties of nanoclusters can be modified by combining them with other elements. In this study, we consider the space-filled configuration of Au32 NC and investigate the effects of Ag and Sn atom incorporation on geometry and electronic spectrum. Our study suggests that Ag and Sn doping of Au32 NC red-shifts the absorption maximum and also reduces the oscillator strength.

  4. A theoretical investigation on Cu/Ag/Au bonding in XH2P⋯MY(X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxu; Liu, Yi; Zheng, Baishu; Zhou, Fengxiang; Jiao, Yinchun; Liu, Yuan; Ding, XunLei; Lu, Tian

    2018-05-01

    Intermolecular interaction of XH2P...MY (X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes was investigated by means of an ab initio method. The molecular interaction energies are in the order Ag < Cu < Au and increased with the decrease of RP...M. Interaction energies are strengthened when electron-donating substituents X connected to XH2P, while electron-withdrawing substituents produce the opposite effect. The strongest P...M bond was found in CH3H2P...AuF with -70.95 kcal/mol, while the weakest one was found in NO2H2P...AgI with -20.45 kcal/mol. The three-center/four-electron (3c/4e) resonance-type of P:-M-:Y hyperbond was recognized by the natural resonance theory and the natural bond orbital analysis. The competition of P:M-Y ↔ P-M:Y resonance structures mainly arises from hyperconjugation interactions; the bond order of bP-M and bM-Y is in line with the conservation of the idealized relationship bP-M + bM-Y ≈ 1. In all MF-containing complexes, P-M:F resonance accounted for a larger proportion which leads to the covalent characters for partial ionicity of MF. The interaction energies of these Cu/Ag/Au complexes are basically above the characteristic values of the halogen-bond complexes and close to the observed strong hydrogen bonds in ionic hydrogen-bonded species.

  5. A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orza, Anamaria; Wu, Hui; Li, Yuancheng

    Purpose: To develop a core/shell nanodimer of gold (core) and silver iodine (shell) as a dual-modal contrast-enhancing agent for biomarker targeted x-ray computed tomography (CT) and photoacoustic imaging (PAI) applications. Methods: The gold and silver iodine core/shell nanodimer (Au/AgICSD) was prepared by fusing together components of gold, silver, and iodine. The physicochemical properties of Au/AgICSD were then characterized using different optical and imaging techniques (e.g., HR- transmission electron microscope, scanning transmission electron microscope, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, Z-potential, and UV-vis). The CT and PAI contrast-enhancing effects were tested and then compared with a clinically used CT contrast agentmore » and Au nanoparticles. To confer biocompatibility and the capability for efficient biomarker targeting, the surface of the Au/AgICSD nanodimer was modified with the amphiphilic diblock polymer and then functionalized with transferrin for targeting transferrin receptor that is overexpressed in various cancer cells. Cytotoxicity of the prepared Au/AgICSD nanodimer was also tested with both normal and cancer cell lines. Results: The characterizations of prepared Au/AgI core/shell nanostructure confirmed the formation of Au/AgICSD nanodimers. Au/AgICSD nanodimer is stable in physiological conditions for in vivo applications. Au/AgICSD nanodimer exhibited higher contrast enhancement in both CT and PAI for dual-modality imaging. Moreover, transferrin functionalized Au/AgICSD nanodimer showed specific binding to the tumor cells that have a high level of expression of the transferrin receptor. Conclusions: The developed Au/AgICSD nanodimer can be used as a potential biomarker targeted dual-modal contrast agent for both or combined CT and PAI molecular imaging.« less

  6. Cu, Ag, Au: Electrical Resistivity Along their Melting Boundaries

    NASA Astrophysics Data System (ADS)

    Secco, R.; Littleton, J. A. H.; Berrada, M.; Ezenwa, I.; Yong, W.

    2017-12-01

    Electrical resistivity of Cu, Ag and Au was measured at pressures up to 5 GPa and temperatures up to 300 K above melting in a 1000-ton cubic anvil press. Two W/Re thermocouples placed at opposite ends of the wire sample served as T probes as well as 4-wire resistance electrodes in a switched circuit. A polarity switch was also used to remove any bias associated with current flow and voltage measurement using thermocouple legs. Examination of the composition of recovered and sectioned samples was carried out using electron microprobe analyses. Melting temperatures at high pressures were determined from the large jump in resistivity on heating at constant pressure and these agree well with previous experimental and theoretical phase diagram studies. With increasing P and T, electrical resistivity behavior in these noble metals is consistent with 1atm data. The resistivity values at the melting temperature of Cu and Ag decrease with increasing high pressure and Au seems to behave similarly. The results are compared to prediction by Stacey and Anderson (PEPI, 2001).

  7. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands.

    PubMed

    Wang, Yu; Su, Haifeng; Xu, Chaofa; Li, Gang; Gell, Lars; Lin, Shuichao; Tang, Zichao; Häkkinen, Hannu; Zheng, Nanfeng

    2015-04-08

    An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L = PhC≡C(-) or 2-pyridylthiolate) on the cluster. The co-presence of three different surface ligands allows the site-specific surface and functional modification of the cluster. The lability of PhC≡C(-) ligands on the cluster was demonstrated, making it possible to keep the metal core intact while removing partial surface capping. Moreover, it was found that ligand exchange on the cluster occurs easily to offer various derivatives with the same metal core but different surface functionality and thus different solubility.

  8. Controlled preparation of M(Ag, Au)/TiO2 through sulfydryl-assisted method for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Xia, Hongbo; Wu, Suli; Bi, Jiajie; Zhang, Shufen

    2017-11-01

    Here a simple and effective method was explored to fabricate M/TiO2 (M = Ag, Au) composites, which required neither pre-treatment of TiO2 nor any additives as reducing agent. Using amorphous TiO2 spheres functionalized with SH groups as starting materials, the noble metallic ions (Ag, Au) can be adsorbed by TiO2 due to their special affinity with SH groups, which is beneficial to the uniform dispersion of metallic ions on the surface of TiO2. Then the adsorbed ions were reduced to form noble metal nanoparticles by heating process (95 °C) directly without additive as reduction agent. Meanwhile, the amorphous TiO2 was transformed into anatase phase during the heating process. Thus, the transformation of TiO2 along with the reduction of noble metallic ions (Ag, Au) was simultaneously carried out by heating. The XRD patterns proved the formation of anatase TiO2 after heating. The characterizations of XPS and TEM proved the formation of Ag and Au nanoparticles on the surface of TiO2. The element mapping indicated that Ag nanoparticles are dispersed uniformly on the surface of TiO2. The photocatalytic activity of the composites has been investigated by the degradation of methyl orange under visible light irradiation. The results showed that when Ag/TiO2 (2.8 wt%) was used as photocatalyst, about 98% of the MO molecules were degraded in 70 min.

  9. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys.

    PubMed

    Chen, Mian; Yang, Lei; Zhang, Lan; Han, Yong; Lu, Zheng; Qin, Gaowu; Zhang, Erlin

    2017-06-01

    In this research, Ti-Ag alloys were prepared by powder metallurgy, casting and heat treatment method in order to investigate the effect of Ag compound particles on the bio-corrosion, the antibacterial property and the cell biocompatibility. Ti-Ag alloys with different sizes of Ag or Ag-compounds particles were successfully prepared: small amount of submicro-scale (100nm) Ti 2 Ag precipitates with solid solution state of Ag, large amount of nano-scale (20-30nm) Ti 2 Ag precipitates with small amount of solid solution state of Ag and micro-scale lamellar Ti 2 Ag phases, and complete solid solution state of Ag. The mechanical tests indicated that both nano/micro-scale Ti 2 Ag phases had a strong dispersion strengthening ability and Ag had a high solid solution strengthening ability. Electrochemical results shown the Ag content and the size of Ag particles had a limited influence on the bio-corrosion resistance although nano-scale Ti 2 Ag precipitates slightly improved corrosion resistance. It was demonstrated that the nano Ag compounds precipitates have a significant influence on the antibacterial properties of Ti-Ag alloys but no effect on the cell biocompatibility. It was thought that both Ag ions release and Ti 2 Ag precipitates contributed to the antibacterial ability, in which nano-scale and homogeneously distributed Ti 2 Ag phases would play a key role in antibacterial process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ferritin-mediated biomimetic synthesis of bimetallic Au-Ag nanoparticles on graphene nanosheets for electrochemical detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Jiku; Ni, Pengjuan; Li, Zhuang

    2015-03-01

    We demonstrated a biomimetic green synthesis of bimetallic Au-Ag nanoparticles (NPs) on graphene nanosheets (GNs). The spherical protein, ferritin (Fr), was bound onto GNs and served as the template for the synthesis of GN/Au-Ag nanohybrids. The created GN/Au-Ag nanohybrids were further utilized to fabricate a non-enzymatic amperometric biosensor for the sensitive detection of hydrogen peroxide (H2O2), and this biosensor displayed high performances to determine H2O2 with a detection limit of 20.0 × 10-6 M and a linear detection range from 2.0 μM to 7.0 mM.

  11. Wetting reaction of Sn-Ag based solder systems on Cu substrates plated with Au and/or Pd layer

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Li, Jian; Vandentop, G. J.; Choi, W. J.; Tu, K. N.

    2001-05-01

    The wetting behavior of SnAg based Pb-free solders on Cu and Cu substrates plated with Au, Pd, and Au/Pd thin films have been studied. The wetting angle and kinetics of interfacial reaction were measured. The Au-plated substrates exhibit better wetting than the Pd-plated substrates. In the case of SnAg on Pd-plated Cu, SEM observation revealed that the solder cap was surrounded by an innerring of Cu-Sn compound and an outer ring of Pd-Sn compound. This implies that the molten SnAg solder had removed the Pd and wetted the Cu directly in the equilibrium state. The effects of pre-doping Cu in the SnAg solder on wetting behavior were also investigated. We found that wettability decreases with increasing Cu content in the solder. We also observed that the SnAgCu solders have a lower Cu consumption rate than the SnAg solder.

  12. Centrality and collision system dependence of antiproton production from p+A to Au+Au collisions at AGS energies

    NASA Technical Reports Server (NTRS)

    Sako, H.; Ahle, L.; Akiba, Y.; Ashktorab, K.; Baker, M. D.; Beavis, D.; Britt, H. C.; Chang, J.; Chasman, C.; Chen, Z.; hide

    1997-01-01

    Antiproton production in heavy ion collisions reflects subtle interplay between initial production and absorption by nucleons. Because the AGS energies (10--20 A(center-dot)GeV/c) are close to the antiproton production threshold, antiproton may be sensitive to cooperative processes such as QGP and hadronic multi-step processes. On the other hand, antiproton has been proposed as a probe of baryon density due to large N(anti N) annihilation cross sections. Cascade models predict the maximum baryon density reaches about 10 times the normal nucleus density in central Au+Au collisions, where the strong antiproton absorption is expected. In this paper, the authors show systematic studies of antiproton production from p+A to Au+Au collisions.

  13. Synthesis of Ag and Au nanoparticles embedded in carbon film: Optical, crystalline and topography analysis

    NASA Astrophysics Data System (ADS)

    Gholamali, Hediyeh; Shafiekhani, Azizollah; Darabi, Elham; Elahi, Seyed Mohammad

    2018-03-01

    Atomic force microscopy (AFM) images give valuable information about surface roughness of thin films based on the results of power spectral density (PSD) through the fast Fourier transform (FFT) algorithms. In the present work, AFM data are studied for silver and gold nanoparticles (Ag NPs a-C: H and Au NPs a-C: H) embedded in amorphous hydrogenated carbon films and co-deposited on glass substrate via of RF-Sputtering and RF-Plasma Enhanced Chemical Vapor Deposition methods. Here, the working gas is acetylene and the targets are Ag and Au. While time and power are constant, the only variable parameter in this study is initial pressure. In addition, the crystalline structure of Ag NPs a-C: H and Au NPs a-C: H are studied using X-ray diffraction (XRD). UV-visible spectrophotometry will also investigate optical properties and localized surface plasmon resonance (LSPR) of samples.

  14. New insights into the formation mechanism of Ag, Au and AgAu nanoparticles in aqueous alkaline media: alkoxides from alcohols, aldehydes and ketones as universal reducing agents.

    PubMed

    Gomes, Janaina F; Garcia, Amanda C; Ferreira, Eduardo B; Pires, Cleiton; Oliveira, Vanessa L; Tremiliosi-Filho, Germano; Gasparotto, Luiz H S

    2015-09-07

    In this report we present new insights into the formation mechanism of Ag, Au and AgAu nanoparticles with alcohols, aldehydes and ketones in alkaline medium at room temperature. We selected methanol, ethanol, glycerol, formaldehyde, acetaldehyde and acetone to demonstrate their capability of reducing gold and silver ions under the above-mentioned conditions. We showed that the particles are also formed with potassium tert-butoxide in the absence of hydroxides. Our results strongly suggest that alkoxides, formed from any molecule containing a hydroxyl or a functional group capable of generating them in alkaline medium, are the actual and universal reducing agent of silver and gold ions, in opposition to the currently accepted mechanisms. The universality of the reaction mechanism proposed in this work may impact on the production of noble nanoparticles with simple chemicals normally found in standard laboratories.

  15. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  16. Au 329–xAg x(SR) 84 Nanomolecules: Plasmonic Alloy Faradaurate-329

    DOE PAGES

    Kumara, Chanaka; Zuo, Xiaobing; Cullen, David A.; ...

    2015-08-10

    Though significant progress has been made to improve the monodispersity of larger (>10 nm) alloy metal nanoparticles, there still exists a significant variation in nanoparticle composition, ranging from ±1000s of atoms. Here in this paper, for the first time, we report the synthesis of atomically precise (±0 metal atom variation) Au 329–xAg x(SCH 2CH 2Ph) 84 alloy nanomolecules. The composition was determined using high resolution electrospray ionization mass spectrometry. In contrast to larger (>10 nm) Au–Ag nanoparticles, the surface plasmon resonance (SPR) peak does not show a major shift, but a minor ~10 nm red-shift, upon increasing silver content. Themore » intensity of the SPR peak also varies in an intriguing manner, where a dampening is observed with medium silver incorporation, and a significant sharpening is observed upon higher Ag content. The report outlines (a) an unprecedented advance in nanoparticle mass spectrometry of high mass at atomic precision; and (b) the unexpected optical behavior of Au–Ag alloys in the region where nascent SPR emerges; specifically, in this work, the SPR-like peak does not show a major ~100 nm blue-shift with Ag alloying of Au 329 nanomolecules, as shown to be common in larger nanoparticles.« less

  17. Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells

    NASA Astrophysics Data System (ADS)

    Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.

    2018-06-01

    The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.

  18. Pulsed electrodeposition of two-dimensional Ag nanostructures on Au(111).

    PubMed

    Borissov, D; Tsekov, R; Freyland, W

    2006-08-17

    One-step pulsed potential electrodeposition of Ag on Au(111) in the underpotential deposition (UPD) region has been studied in 0.5 mM Ag2SO4 + 0.1 M H2SO4 aqueous electrolyte at various pulse durations from 0.2 to 500 ms. Evolution of the deposited Ag nanostructures was followed by in situ scanning tunneling microscopy (STM) and by measurement of the respective current transients. At short pulse durations a relatively high number density (4 x 10(11) cm(-2)) of two-dimensional Ag clusters with a narrow size and distance distribution is observed. They exhibit a remarkably high stability characterized by a dissolution potential which lies about 200 mV more anodically than the typical potential of Ag-(1 x 1) monolayer dissolution. To elucidate the underlying nucleation and growth mechanism, two models have been considered: two-dimensional lattice incorporation and a newly developed coupled diffusion-adsorption model. The first one yields a qualitative description of the current transients, whereas the second one is in nearly quantitative agreement with the experimental data. In this model the transformation of a Ag-(3 x 3) into a Ag-(1 x 1) structure indicated in the cyclic voltammogram (peaks at 520 vs 20 mV) is taken into account.

  19. Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Saunders, J. A.; Unger, D. L.; Kamenov, G. D.; Fayek, M.; Hames, W. E.; Utterback, W. C.

    2008-09-01

    Epithermal deposits with bonanza Au-Ag veins in the northern Great Basin (NGB) are spatially and temporally associated with Middle Miocene bimodal volcanism that was related to a mantle plume that has now migrated to the Yellowstone National Park area. The Au-Ag deposits formed between 16.5 and 14 Ma, but exhibit different mineralogical compositions, the latter due to the nature of the country rocks hosting the deposits. Where host rocks were primarily of meta-sedimentary or granitic origin, adularia-rich gold mineralization formed. Where glassy rhyolitic country rocks host veins, colloidal silica textures and precious metal-colloid aggregation textures resulted. Where basalts are the country rocks, clay-rich mineralization (with silica minerals, adularia, and carbonate) developed. Oxygen isotope data from quartz (originally amorphous silica and gels) from super-high-grade banded ores from the Sleeper deposit show that ore-forming solutions had δ 18O values up to 10‰ heavier than mid-Miocene meteoric water. The geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the “epithermal suite” elements. A mantle source for the gold in the deposits is further supported by the Pb isotopic signature of the gold ores. Apparently the host rocks control the mineralization style and gangue mineralogy of ores. However, all deposits are considered to have derived precious metals and metalloids from mafic magmas related to the initial emergence of the Yellowstone hotspot. Basalt-derived volatiles and metal(loid)s are inferred to have been absorbed by meteoric-water-dominated geothermal systems heated by shallow rhyolitic magma chambers. Episodic discharge of volatiles and metal(loid)s from deep basaltic magmas mixed with

  20. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-06-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.

  1. A platonic solid templating Archimedean solid: an unprecedented nanometre-sized Ag37 cluster

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Yu; Su, Hai-Feng; Yu, Kai; Tan, Yuan-Zhi; Wang, Xing-Po; Zhao, Ya-Qin; Sun, Di; Zheng, Lan-Sun

    2015-04-01

    The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12]} cluster (1) that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4tBu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that 1 is a Td symmetric spherical molecule with a [Ag36(SC6H4tBu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of 1 belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles.The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12]} cluster (1) that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4tBu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that 1 is a Td symmetric spherical molecule with a [Ag36(SC6H4tBu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of 1 belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles

  2. Influence of Cu, Au and Ag on structural and surface properties of bioactive coatings based on titanium.

    PubMed

    Wojcieszak, D; Mazur, M; Kalisz, M; Grobelny, M

    2017-02-01

    In this work influence of copper, silver and gold additives on structural and surface properties of biologically active thin films based on titanium have been described. Coatings were prepared by magnetron sputtering method. During each process metallic discs (targets) - Ti and the additive (Cu, Ag or Au) were co-sputtered in argon atmosphere. Structural investigation of as-deposited coatings was performed with the aid of XRD and SEM/EDS method. It was found that all prepared thin films were homogenous. Addition of Cu, Ag and Au resulted in nanocrystalline structure. Moreover, influence of these additives on hardness and antibacterial activity of titanium coatings was also studied. Ti-Cu, Ti-Ag and Ti-Au films had lower hardness as-compared to Ti. According to AAS results the difference of their activity was related to the ion migration process. It was found that Ti-Ag and Ti-Au coatings had biocidal effect related to direct contact of their surface with microorganisms. In the case of Ti-Cu antimicrobial activity had direct and indirect nature due to efficient ion migration process from the film surface to the surrounding environment. Functional features of coatings such as wettability and corrosion resistance were also examined and included in the comprehensive analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Carbon dot-Au(i)Ag(0) assembly for the construction of an artificial light harvesting system.

    PubMed

    Jana, Jayasmita; Aditya, Teresa; Pal, Tarasankar

    2018-03-06

    Artificial light harvesting systems (LHS) with inorganic counterparts are considered to be robust as well as mechanistically simple, where the system follows the donor-acceptor principle with an unchanged structural pattern. Plasmonic gold or silver nanoparticles are mostly chosen as inorganic counterparts to design artificial LHS. To capitalize on its electron accepting capability, Au(i) has been considered in this work for the synergistic stabilization of a system with intriguingly fluorescing silver(0) clusters produced in situ. Thus a stable fluorescent Au(i)Ag(0) assembly is generated with electron accepting capabilities. On the other hand, carbon dots have evolved as new fluorescent probes due to their unique physicochemical properties. Utilizing the simple electronic behavior of carbon dots, an electronic interaction between the fluorescent Au(i)Ag(0) and a carbon dot has been investigated for the construction of a new artificial light harvesting system. This coinage metal assembly allows surface energy transfer where it acts as an acceptor, while the carbon dot behaves as a good donor. The energy transfer efficiency has been calculated experimentally to be significant (81.3%) and the Au(i)Ag(0)-carbon dot assembly paves the way for efficient artificial LHS.

  4. A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhang, Di; Deng, Xinyu; Sun, Ying; Wang, Xinghua; Ma, Pinyi; Song, Daqian

    2018-02-01

    Herein we report a novel polydopamine-silver nanoparticle-polydopamine-gold (PDA-AgNPs-PDA-Au) film based surface plasmon resonance (SPR) biosensor for horse IgG detection. The PDA-AgNPs-PDA-Au film sensing platform was built on Au-film via layer-by-layer self-assembly. Ag ion was reduced in situ to AgNPs in presence of PDA. The top PDA layer can prevent AgNPs from being oxidized and connect with antibody via Schiff alkali reaction directly. The morphology and thickness of the modified gold film were characterized using scanning electron microscope and Talystep. Experimental results show that the PDA-AgNPs-PDA-Au film sensing platform is stable, regenerative and sensitive for horse IgG detection. The detection limit of horse IgG obtained with the present biosensor is 0.625 μg mL- 1, which is 2-fold and 4-fold lower than that obtained with biosensor based on PDA modified Au film and conventional biosensor based on MPA, respectively. Furthermore, when challenged to real serum samples, our sensor exhibited excellent specificity to horse IgG, suggesting its potential for industrial application.

  5. [Mechanism of gold solid extraction from aurocyanide solution using D3520 resin impregnated with TRPO].

    PubMed

    Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong

    2014-02-01

    Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.

  6. Electronic structures and nonlinear optical properties of trinuclear transition metal clusters M-(mu-S)-M' (M = Mo, W; M' = Cu, Ag, Au).

    PubMed

    Chen, Xihua; Wu, Kechen; Snijders, Jaap G; Lin, Chensheng

    2003-01-27

    A series of trinuclear metal clusters MS4(M'PPh3)2(M'PPh3) (M = Mo, W; M' = Cu, Ag, Au) have been studied using the density functional theory (DFT) method. The static polarizabilities and hyperpolarizabilities of the model clusters have been calculated using the finite-field (F-F) method. The model clusters, divided into two groups, are alike in the structure of two fragments of rhombic units M-(mu-S)2-M' (M = Mo, W; M' = Cu, Ag, Au), perpendicular to each other, which are joined by sharing the bridge metal M. It is the charge transfer from one of these moieties to the other in these characteristic sulfido-transitional metal cores that is responsible for the polarizabilities and hyperpolarizabilities. This kind of electronic delocalization, different from that of the planar pi-system, is interesting and warrants further investigation. The structural effects on properties are important. In these models, considerable third-order nonlinearities are exhibited. The element substitution effect of Mo and W is weak, while that of Cu and Ag is relatively substantial. An overall order is gamma xxxx(Mo-Ag) > gamma xxxx(W-Ag) > gamma xxxx(Mo-Au) > gamma xxxx(W-Au) > gamma xxxx (Mo-Cu) > gamma xxxx(W-Cu) and gamma av(Mo-Ag) approximately gamma av(W-Ag) > gamma av(Mo-Au) approximately gamma av(W-Au) approximately gamma av (Mo-Cu) approximately gamma av(W-Cu).

  7. Interfacial surfactant competition and its impact on poly(ethylene oxide)/Au and poly(ethylene oxide)/Ag nanocomposite properties

    PubMed Central

    Seyhan, Merve; Kucharczyk, William; Yarar, U Ecem; Rickard, Katherine; Rende, Deniz; Baysal, Nihat; Bucak, Seyda; Ozisik, Rahmi

    2017-01-01

    The structure and properties of nanocomposites of poly(ethylene oxide), with Ag and Au nanoparticles, surface modified with a 1:1 (by volume) oleylamine/oleic acid mixture, were investigated via transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared spectroscopy, dynamic mechanical analysis, and static mechanical testing. Results indicated that there was more oleylamine on Ag nanoparticles but more oleic acid on Au nanoparticles. This difference in surfactant populations on each nanoparticle led to different interfacial interactions with poly(ethylene oxide) and drastically influenced the glass transition temperature of these two nanocomposite systems. Almost all other properties were found to correlate strongly with dispersion and distribution state of Au and Ag nanoparticles, such that the property in question changed direction at the onset of agglomeration. PMID:28461744

  8. Mineralogy, alteration patterns, geochemistry, and fluid properties of the Ag-Au epithermal deposit Nová Baňa, Slovakia

    NASA Astrophysics Data System (ADS)

    Majzlan, Juraj; Berkh, Khulan; Kiefer, Stefan; Koděra, Peter; Fallick, Anthony E.; Chovan, Martin; Bakos, František; Biroň, Adrián; Ferenc, Štefan; Lexa, Jaroslav

    2018-02-01

    In this contribution, we report new data on mineralogy, alteration patterns, geochemistry, fluid properties and source of fluids for the deposit Nová Baňa, one of the smaller epithermal deposits in the Middle Miocene Štiavnica andesite stratovolcano (Western Carpathians, Slovakia). Ore veins and the associated rocks were studied in samples from outcrops and old mines, grab samples, and bore holes from the central part of the deposit (ore structures Althandel, Jozef, Jakub, Vavrinec), northern part (Freischurf), SE part (Gupňa) and SW part (Šibeničný vrch). Pervasive hydrothermal alteration transformed the rock-forming minerals into a mixture of adularia and fine-grained quartz, with lesser amount of pyrite, Ti oxides and Fe oxides. This assemblage was further altered to omnipresent interstratified illite/smectite that was used in this study as a geothermometer, corroborating the results from the fluid inclusion work. Ore minerals comprise predominantly pyrite, sphalerite, galena but all sulfides are relatively sparse in the samples studied. Minerals of precious metals are electrum, Ag-tetrahedrite, acanthite, members of the polybasite-pearceite and pyrargyrite-proustite solid solution, and rare miargyrite, Hg-Ag tetrahedrite, and diaphorite. In the central part, we have found also some stibnite. In the SE part of the deposit, acanthite, uytenbogaardtite, and petrovskaite occur and seem to be related to supergene enrichment of the ores. In bulk ore samples, Zn usually dominates over Pb and Cu. The average Ag:Au ratio for the entire deposit is 64:1. The concentrations of precious metals in the grab samples reach maxima of 50 ppm Au and 570 ppm Ag in the SE part and 116 ppm Au and 1110 ppm Ag in the central part of the deposit. Fluid inclusions show signs of trapping of a heterogeneous fluid. In the central, northern and SE parts of the deposit, homogenization temperatures of 190-260 °C and consistently low salinities of <5 wt% NaCl eq were recorded. In the SW

  9. Thermosensitive polymer stabilized core-shell AuNR@Ag nanostructures as "smart" recyclable catalyst

    NASA Astrophysics Data System (ADS)

    Li, Dongxiang; Liu, Na; Gao, Yuanyuan; Lin, Weihong; Li, Chunfang

    2017-11-01

    Core-shell AuNR@Ag nanostructures were synthesized and surface-grafted with thermosensitive poly( N-isopropylacrylamide) to enhance stability and endow stimuli-responsive property. The AuNR cores showed average dimensions of 8-nm diameter and 33-nm length, while the anisotropic silver shells displayed 1-2 nm thin side and maximal 8 nm fat side. The obtained polymer-stabilized AuNR@Ag nanostructures as catalysts showed normal Arrhenius change of apparent rate constant, k app, in catalyzed reaction between 20 and 30 °C, but displayed a decrease of k app with respect to the temperature increasing between 32.5-40 °C, showing self-inhibition of the observed catalytic activity. Such "smart" self-inhibition of catalytic activity at enhanced temperature can be attributed to the thermosensitive response of the grafted polymer molecules and should be significant to control the reaction rate and avoid superheat for exothermic reactions. Such polymer-stabilized nanocatalyst also could be recovered and reused in the catalytic system. [Figure not available: see fulltext.

  10. Two phase microstructure for Ag-Ni nanowires

    NASA Astrophysics Data System (ADS)

    Srivastava, Chandan; Rai, Rajesh Kumar

    2013-03-01

    In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of ˜200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase.

  11. Optical spectroscopy of arrays of Ag-Au nanoparticles obtained by vacuum-thermal evaporation

    NASA Astrophysics Data System (ADS)

    Gromov, D. G.; Mel'nikov, I. V.; Savitskii, A. I.; Trifonov, A. Yu.; Redichev, E. N.; Astapenko, V. A.

    2017-03-01

    The possibility of creating irregular arrays of bimetallic Ag-Au nanoparticles is investigated. The ability to manipulate their optical properties based on the simple engineering processes of thermal spraying followed by low-temperature annealing is demonstrated.

  12. Comment on ``(Au-Ag)144(SR)60 alloy nanomolecules'' by C. Kumara and A. Dass, Nanoscale, 2011, 3, 3064

    NASA Astrophysics Data System (ADS)

    Barcaro, Giovanni; Sementa, Luca; Fortunelli, Alessandro; Stener, Mauro

    2015-04-01

    A recent paper in this journal reported the synthesis and characterization via electrospray ionization mass spectroscopy and UV-vis spectroscopy of (Au-Ag)144(SR)60 alloy nanomolecules with different compositions, ranging from 1 : 0 to 1 : 0.75 Au : Ag ratios. The UV-vis spectra of such systems were found to exhibit absorption peaks at 310 nm, 425 nm and 560 nm, interpreted as reminiscent of the silver surface plasmon resonance band due to simple atomic replacement of Au by Ag atoms in a fixed structural framework. On the basis of a comparison of experimentally observed and theoretically simulated optical absorption spectra, we conclude that the experimental situation must be more complicated, and that further work is needed to achieve atomistic insight into these fascinating systems.

  13. Solid phase extraction and spectrophotometric determination of Au(III) with 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine.

    PubMed

    Hu, Qiufen; Chen, Xiubin; Yang, Xiangjun; Huang, Zhangjie; Chen, Jing; Yang, Guangyu

    2006-04-01

    A new chromogenic reagent, 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine (HNATR) was synthesized. A highly sensitive, selective and rapid method for the determination microg l(-1) level of Au(III) based on the rapid reaction of Au(III) with HNATR and the solid phase extraction of the colored complex with a reversed phase polymer-based C(18) cartridge have been developed. The HNATR reacted with Au(III) to form a red complex of a molar ratio 1:2 (Au(III) to HNATR) in the presence of 0.05 - 0.5 mol l(-1) of phosphoric acid solution and emulsifier-OP medium. This complex was enriched by the solid phase extraction with a polymer-based C(18) cartridge. The enrichment factor of 100 was achieved. The molar absorptivity of the complex is 1.37 x 10(5) l mol(-1) cm(-1) at 520 nm in the measured solution. The system obeys Beer's law in the range of 0.01 - 3 microg ml(-1). The relative standard deviation for eleven replicates sample of 0.5 microg l(-1) level is 2.18%. The detection limit, based on the three times of standard deviation is 0.02 microg l(-1) in the original sample. This method was applied to the determination of gold in water and ore with good results.

  14. Adsorption of squaraine molecules to Au(111) and Ag(001) surfaces

    NASA Astrophysics Data System (ADS)

    Luft, Maike; Groß, Boris; Schulz, Matthias; Lützen, Arne; Schiek, Manuela; Nilius, Niklas

    2018-02-01

    The adsorption of anilino squaraines, an important chromophore for the use in organic solar cells, to Ag(001) and Au(111) has been studied with scanning tunneling microscopy. Self-assembly into square building blocks with eight molecules per unit cell is revealed on the Ag surface, while no ordering effects occur on gold. The squaraine-silver interaction is mediated by the carbonyl and hydroxyl oxygens located in the center of the molecule. The intermolecular coupling, on the other hand, is governed by hydrogen bonds formed between the terminal isobutyl groups and oxygen species of adjacent molecules. The latter gets maximized by rotating the molecules by a few degrees against a perfect square alignment. A similar molecular pattern does not form on Au(111) due to symmetry mismatch. Moreover, the high electronegativity of gold reduces the directing effect of oxygen-metal bonds that trigger the ordering process on silver. As a consequence, only frustrated three-fold symmetric units that do not expand into an ordered molecular network are present on the gold surface.

  15. The photovoltaic performance of Ag2S quantum dots-sensitized solar cells using plasmonic Au nanoparticles/TiO2 working electrodes

    NASA Astrophysics Data System (ADS)

    Badawi, Ali; Mostafa, Nasser Y.; Al-Hosiny, Najm M.; Merazga, Amar; Albaradi, Ateyyah M.; Abdel-Wahab, F.; Atta, A. A.

    2018-06-01

    The photovoltaic performance of silver sulfide (Ag2S) quantum dots-sensitized solar cells (QDSSCs) using different concentrations (0, 0.05, 0.1, 0.3 and 0.5 wt.%) of plasmonic Au nanoparticles (NPs)/titania (TiO2) electrodes has been investigated. Ag2S quantum dots (QDs) were adsorbed onto the Au NPs/titania electrodes using the successive ionic layer adsorption and reaction (SILAR) deposition technique. The morphological properties of the Au NPs and the prepared titania electrodes were characterized using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The energy-dispersive X-ray (EDX) spectra of the bare titania and Ag2S QDs-sensitized titania electrodes were recorded. The optical properties of the prepared Ag2S QDs-sensitized titania electrodes were measured using a UV-visible spectrophotometer. The estimated energy band gap of Ag2S QDs-sensitized titania electrodes is 1.96 eV. The photovoltaic performance of the assembled Ag2S QDSSCs was measured under 100 mW/cm2 solar illumination. The optimal photovoltaic parameters were obtained as follows: open circuit voltage Voc = 0.50 V, current density Jsc = 3.18 mA/cm2, fill factor (FF) = 0.35 and energy conversion efficiency η = 0.55% for 0.3 wt.% of Au NPs/titania electrode. These results are attributed to the enhancement in the absorption and decrease in the electron-hole pairs recombination rate. The open circuit voltage decay (OCVD) measurements of the assembled Ag2S QDSSCs were measured. The calculated electron lifetime (τ) in Ag2S QDSSCs with Au NPs/titania electrodes is at least one order of magnitude more than that with bare titania electrode. The cut-on-cut-off cycles of the solar illumination measurements show the rapid sensitivity and good reproducibility of the assembled Ag2S QDSSCs.

  16. Nano-scaled Pt/Ag/Ni/Au contacts on p-type GaN for low contact resistance and high reflectivity.

    PubMed

    Kwon, Y W; Ju, I C; Kim, S K; Choi, Y S; Kim, M H; Yoo, S H; Kang, D H; Sung, H K; Shin, K; Ko, C G

    2011-07-01

    We synthesized the vertical-structured LED (VLED) using nano-scaled Pt between p-type GaN and Ag-based reflector. The metallization scheme on p-type GaN for high reflectance and low was the nano-scaled Pt/Ag/Ni/Au. Nano-scaled Pt (5 A) on Ag/Ni/Au exhibited reasonably high reflectance of 86.2% at the wavelength of 460 nm due to high transmittance of light through nano-scaled Pt (5 A) onto Ag layer. Ohmic behavior of contact metal, Pt/Ag/Ni/Au, to p-type GaN was achieved using surface treatments of p-type GaN prior to the deposition of contact metals and the specific contact resistance was observed with decreasing Pt thickness of 5 A, resulting in 1.5 x 10(-4) ohms cm2. Forward voltages of Pt (5 A)/Ag/Ni contact to p-type GaN showed 4.19 V with the current injection of 350 mA. Output voltages with various thickness of Pt showed the highest value at the smallest thickness of Pt due to its high transmittance of light onto Ag, leading to high reflectance. Our results propose that nano-scaled Pt/Ag/Ni could act as a promising contact metal to p-type GaN for improving the performance of VLEDs.

  17. Label-free sensitive luminescence biosensor for immunoglobulin G based on Ag6Au6 ethisterone cluster-estrogen receptor α aggregation and graphene.

    PubMed

    Chen, Nannan; Guo, Wenjing; Lin, Zhixiang; Wei, Qiaohua; Chen, Guonan

    2018-08-01

    A specific and label-free "on-off-on" luminescence biosensor based on a novel heterometallic cluster [Ag 6 Au 6 (ethisterone) 12 ]-estrogen receptor α (Ag 6 Au 6 Eth-ERα) aggregation utilizing graphene oxide (GO) as a quencher to lead a small background signal was firstly constructed to detect immunoglobulin G (IgG) with a simple process and high selectivity. The efficient photoluminescent (PL) Ag 6 Au 6 Eth-ERα aggregation is strongly quenched by GO. In the presence of IgG, the PL of this system will be restored, and perceivable by human eyes under UV lamp excitation (365 nm). The quenching mechanism of GO on Ag 6 Au 6 Eth-ERα and enhancement mechanism of IgG on Ag 6 Au 6 Eth-ERα-GO were investigated in detail. Under the optimum conditions, the biosensor for high sensitive IgG detection expressed a wider linear range of 0.0078-10 ng/mL and a lower detection limit of 0.65 pg/mL with good stability and repeatability, which provided a new approach for label-free IgG detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Mixed Phytochemicals Mediated Synthesis of Multifunctional Ag-Au-Pd Nanoparticles for Glucose Oxidation and Antimicrobial Applications.

    PubMed

    Rao, K Jagajjanani; Paria, Santanu

    2015-07-01

    The growing awareness toward the environment is increasing commercial demand for nanoparticles by green route syntheses. In this study, alloy-like Ag-Au-Pd trimetallic nanoparticles have been prepared by two plants extracts Aegle marmelos leaf (LE) and Syzygium aromaticum bud extracts (CE). Compositionally different Ag-Au-Pd nanoparticles with an atomic ratio of 5.26:2.16:1.0 (by LE) and 11.36:13.14:1.0 (by LE + CE) of Ag:Au:Pd were easily synthesized within 10 min at ambient conditions by changing the composition of phytochemicals. The average diameters of the nanoparticles by LE and LE + CE are ∼8 and ∼11 nm. The catalytic activity of the trimetallic nanoparticles was studied, and they were found to be efficient catalysts for the glucose oxidation process. The prepared nanoparticles also exhibited efficient antibacterial activity against a model Gram-negative bacteria Escherichia coli. The catalytic and antimicrobial properties of these readymade trimetallic nanoparticles have high possibility to be utilized in diverse fields of applications such as health care to environmental.

  19. The origin of Ag-Au-S-Se minerals in adularia-sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki Goldfield, New Zealand

    NASA Astrophysics Data System (ADS)

    Cocker, Helen A.; Mauk, Jeffrey L.; Rabone, Stuart D. C.

    2013-02-01

    The 7.1 Ma Broken Hills adularia-sericite Au-Ag deposit is currently the only producing rhyolite-hosted epithermal deposit in the Hauraki Goldfield of New Zealand. The opaque minerals include pyrite, electrum, acanthite (Ag2S), sphalerite, and galena, which are common in other adularia-sericite epithermal deposits in the Hauraki Goldfield and elsewhere worldwide. Broken Hills ores also contain the less common minerals aguilarite (Ag4SeS), naumannite (Ag2Se), petrovskaite (AuAgS), uytenbogaardtite (Ag3AuS2), fischesserite (Ag3AuSe2), an unnamed silver chloride (Ag2Cl), and unnamed Ag ± Au minerals. Uytenbogaardtite and petrovskaite occur with high-fineness electrum. Broken Hills is the only deposit in the Hauraki Goldfield where uytenbogaardtite and petrovskaite have been identified, and these phases appear to have formed predominantly from unmixing of a precursor high-temperature phase under hypogene conditions. Supergene minerals include covellite, chalcocite, Au-rich electrum, barite, and a variety of iron oxyhydroxide minerals. Uytenbogaardtite can form under supergene and hypogene conditions, and textural relationships between uytenbogaardtite and associated high-fineness electrum may be similar in both conditions. Distinguishing the likely environment of formation rests principally on identification of other supergene minerals and documenting their relationships with uytenbogaardtite. The presence of aguilarite, naumannite, petrovskaite, and fischesserite at Broken Hills reflects a Se-rich mineral assemblage. In the Hauraki Goldfield and the western Great Basin, USA, Se-rich minerals are more abundant in provinces that are characterized by bimodal rhyolite-andesite volcanism, but in other epithermal provinces worldwide, the controls on the occurrences of Se-bearing minerals remain poorly constrained, in spite of the unusually high grades associated with many Se-rich epithermal deposits.

  20. Cytidine-directed rapid synthesis of water-soluble and highly yellow fluorescent bimetallic AuAg nanoclusters.

    PubMed

    Zhang, Yuanyuan; Jiang, Hui; Ge, Wei; Li, Qiwei; Wang, Xuemei

    2014-09-16

    Fluorescent gold/silver nanoclusters templated by DNA or oligonucleotides have been widely reported since DNA or oligonucleotides could be designed to position a few metal ions at close proximity prior to their reduction, but nucleoside-templated synthesis is more challenging. In this work, a novel type of strategy taking cytidine (C) as template to rapid synthesis of fluorescent, water-soluble gold and silver nanoclusters (C-AuAg NCs) has been developed. The as-prepared C-AuAg NCs have been characterized by UV-vis absorption spectroscopy, fluorescence, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma mass spectroscopy (ICP-MS). The characterizations demonstrate that C-AuAg NCs with a diameter of 1.50 ± 0.31 nm, a quantum yield ∼9%, and an average lifetime ∼6.07 μs possess prominent fluorescence properties, good dispersibility, and easy water solubility, indicating the promising application in bioanalysis and biomedical diagnosis. Furthermore, this strategy by rapid producing of highly fluorescent nanoclusters could be explored for the possible recognition of some disease-related changes in blood serum. This raises the possibility of their promising application in bioanalysis and biomedical diagnosis.

  1. Study of the effects of MeV Ag, Cu, Au, and Sn implantation on the optical properties of LiNbO3

    NASA Technical Reports Server (NTRS)

    Williams, E. K.; Ila, D.; Sarkisov, S.; Curley, M.; Poker, D. B.; Hensley, D. K.; Borel, C.

    1998-01-01

    The authors present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Ag was implanted at 1.5 MeV to fluences of 2 to 17 x 17(exp 16)/sq cm at room temperature. Au and Cu were implanted to fluences of 5 to 20 x 10(exp 16)/sq cm at an energy of 2.0 MeV. Sn was implanted to a fluence of 1.6 x 10(exp 17)/sq cm at 160 kV. Optical absorption spectrometry indicated an absorption peak for the Au implanted samples after heat treatment at 1,000 C at approx. 620 nm. The Ag implanted samples absorption peaks shifted from approx. 450 nm before heat treatment to 550 nm after 500 C for 1h. Heat treatment at 800 C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500 C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not change appreciably in size with heat treatment. The Au clusters increased from 3 to 9 nm diameter upon heat treatment at 1000 C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices were carried out using the Z-scan method with a tunable dye laser pumped by a frequency doubled mode-locked Nd:YAG laser. The dye laser had a 4.5 ps pulse duration time and 76 MHz pulse repetition rate (575 nm).

  2. Phototodynamic activity of zinc monocarboxyphenoxy phthalocyane (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Manoto, Sello L.; Oluwole, David O.; Malabi, Rudzani; Maphanga, Charles; Ombinda-Lemboumba, Saturnin; Nyokong, Tebello; Mthunzi-Kufa, Patience

    2017-02-01

    Photodynamic therapy (PDT) is a minimally invasive therapeutic modality for the treatment of neoplastic and non-neoplastic diseases. In PDT of cancer, irradiation with light of a specific wavelength leads to activation of a photosensitizer which results in generation of reactive oxygen species (ROS) which induces cell death. Many phthalocyanine photosensitizers are hydrophobic and insoluble in water, which limits their therapeutic efficiency. Consequently, advanced delivery systems and strategies are needed to improve the effectiveness of these photosensitizers. Nanoparticles have shown promising results in increasing aqueous solubility, bioavailability, stability and delivery of photosensitizers to their target. This study investigated the photodynamic activity of zinc monocarboxyphenoxy phthalocyanine (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells. The photodynamic activity of ZnMCPPc conjugated to AuAg nanoparticles were evaluated using cellular morphology, viability, proliferation and cytotoxicity. Untreated cells showed no changes in cellular morphology, proliferation and cytotoxicity. However, photoactivated ZnMCPPc conjugated to AuAg nanoparticles showed changes in cell morphology and a dose dependent decrease in cellular viability, proliferation and an increase in cell membrane damage. The ZnMCPPc conjugated to AuAg nanoparticles used in this study was highly effective in inducing cell death of melanoma cancer cells.

  3. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    NASA Astrophysics Data System (ADS)

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-02-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.

  4. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    PubMed Central

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-01-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors. PMID:28155913

  5. Effect of thione primers on adhesive bonding between an indirect composite material and Ag-Pd-Cu-Au alloy.

    PubMed

    Imai, Hideyuki; Koizumi, Hiroyasu; Shimoe, Saiji; Hirata, Isao; Matsumura, Hideo; Nikawa, Hiroki

    2014-01-01

    The current study evaluated the effect of primers on the shear bond strength of an indirect composite material joined to a silverpalladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell). Disk specimens were cast from the alloy and were air-abraded with alumina. Eight metal primers were applied to the alloy surface. A light-polymerized indirect composite material (Solidex) was bonded to the alloy. Shear bond strength was determined both before and after the application of thermocycling. Two groups primed with Metaltite (thione) and M. L. Primer (sulfide) showed the greatest post-thermocycling bond strength (8.8 and 6.5 MPa). The results of the X-ray photoelectron spectroscopic (XPS) analysis suggested that the thione monomer (MTU-6) in the Metaltite primer was strongly adsorbed onto the Ag-Pd-Cu-Au alloy surface even after repeated cleaning with acetone. The application of either the thione (MTU-6) or sulfide primer is effective for enhancing the bonding between a composite material and Ag-Pd-Cu-Au alloy.

  6. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH2OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H2PtCl6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  7. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template.

    PubMed

    Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), xi-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH(2)OH.HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H(2)PtCl(6) to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  8. Determination of the structure and composition of Au-Ag bimetallic spherical nanoparticles using single particle ICP-MS measurements performed with normal and high temporal resolution.

    PubMed

    Kéri, Albert; Kálomista, Ildikó; Ungor, Ditta; Bélteki, Ádám; Csapó, Edit; Dékány, Imre; Prohaska, Thomas; Galbács, Gábor

    2018-03-01

    In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characterized homogenous alloy Au-Ag nanoparticle batches of different composition were used in the experiments as BNP samples. By scrutinizing the high resolution spICP-MS signal time profiles, it was revealed that the width of the signal peak linearly correlates with the diameter of nanoparticles. It was also observed that the width of the peak for same-size nanoparticles is always significantly larger for Au than for Ag. It was also found that it can be reliably determined whether a BNP is of homogeneus alloy or core-shell structure and that, in the case of the latter, the core comprises of which element. We also assessed the performance of several ICP-MS based analytical methods in the analysis of the quantitative composition of bimetallic nanoparticles. Out of the three methods (normal resolution spICP-MS, direct NP nebulization with solution-mode ICP-MS, and solution-mode ICP-MS after the acid dissolution of the nanoparticles), the best accuracy and precision was achieved by spICP-MS. This method allows the determination of the composition with less than 10% relative inaccuracy and better than 3% precision. The analysis is fast and only requires the usual standard colloids for size calibration. Combining the results from both quantitative and structural analyses, the core diameter and shell thickness of core-shell particles can also be calculated. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Real-time wetting dynamics and interfacial chemistry in low-melting 57Bi-42Sn-1Ag solder paste on Ni-Au

    NASA Astrophysics Data System (ADS)

    Bozack, M. J.

    2004-11-01

    We report the observation of real-time, in situ, wetting and spreading dynamics for 57Bi-42Sn-1Ag solder paste on Ni-Au surfaces during melting in a scanning electron microscope. The 57Bi-42Sn-1Ag is a low melting (139 °C) Pb-free eutectic alloy currently under consideration by automobile manufacturers for use in instrument displays. We find that, while there is excellent wetting of 57Bi-42Sn-1Ag solder paste on Ni-Au, there is almost no spreading. A large amount of Bi segregates to the surface of 57Bi-42Sn-1Ag solder balls during the sintering process. At melting, excessive flux outgassing and pooling are observed, several melted solder balls float on top of the flux, and substantial elemental segregation occurs during the first minutes of wetting. Neither Ni nor Au fully intermixes throughout the alloy at the interface within seconds of wetting. Bi does not move outward with the expanding alloy front. This combination of detrimental effects forms voids in the solder paste, contributes to low reliability of solder joints, and complicates the materials science at the solder-substrate interface as shown by Auger electron spectroscopy. Reliability work in progress (3000 cycles) shows that 57Bi-42Sn-1Ag on Ni-Au is less reliable than eutectic Sn-37Pb on Ni-Au for 2512 chip resistors cycled from -40 to 125 °C.

  10. Structural phase transitions in the Ag{sub 2}Nb{sub 4}O{sub 11}-Na{sub 2}Nb{sub 4}O{sub 11} solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, David I., E-mail: d.i.woodward@warwick.ac.uk; Lees, Martin R.; Thomas, Pam A.

    2012-08-15

    The phase transitions between various structural modifications of the natrotantite-structured system xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} have been investigated and a phase diagram constructed as a function of temperature and composition. This shows three separate phase transition types: (1) paraelectric-ferroelectric, (2) rhombohedral-monoclinic and (3) a phase transition within the ferroelectric rhombohedral zone between space groups R3c and R3. The parent structure for the entire series has space group R3{sup Macron }c. Compositions with x>0.75 are rhombohedral at all temperatures whereas compositions with x<0.75 are all monoclinic at room temperature and below. At x=0.75, rhombohedral and monoclinic phases coexistmore » with the phase boundary below room temperature being virtually temperature-independent. The ferroelectric phase boundary extends into the monoclinic phase field. No evidence was found for the R3-R3c phase boundary extending into the monoclinic phase field and it is concluded that a triple point is formed. - Graphical abstract: Phase diagram for xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} solid solution showing changes in crystal symmetry as a function of temperature and composition. The crystal structure is depicted. Highlights: Black-Right-Pointing-Triangle Ferroelectric, rhombohedral Ag{sub 2}Nb{sub 4}O{sub 11} in solid solution with monoclinic Na{sub 2}Nb{sub 4}O{sub 11}. Black-Right-Pointing-Triangle Three phase boundaries were studied as a function of composition and temperature. Black-Right-Pointing-Triangle Both rhombohedral and monoclinic variants exhibit ferroelectricity. The parent phase of the series has space group R3{sup Macron }c.« less

  11. Highly Efficient SERS Nanowire/Ag Composites

    DTIC Science & Technology

    2007-01-01

    Ga2O3 nanowires was performed by the vapor- liquid-solid (VLS) growth in a tube furnace, using Si(100) and Si(111) substrates and a 20 nm Au film3. Ga...Rhodamine 6G/methanol and DNT/methanol dilutions. The Ga2O3 /Ag nanowire composite substrates are shown in Figure 1a. As can be seen, they consist of a...significant improvement over nanosphere-type SERS substrates. Conclusion: Randomly oriented Ga2O3 /Ag nanowire networks have been formed and we

  12. The enhancing of Au-Ag-Te content in tellurium-bearing ore mineral by bio-oxidation-leaching

    NASA Astrophysics Data System (ADS)

    Kim, PyeongMan; Kim, HyunSoo; Myung, EunJi; Kim, YoonJung; Lee, YongBum; Park*, CheonYoung

    2015-04-01

    The purpose of this study is to enhance the content of valuable metals such as Au-Ag-Te in tellurium-bearing minerals by bio-oxidation-leaching. It was confirmed that pyrite, chalcopyrite, sphalerite and galena were produced together with tellurium-bearing minerals including hessite, sylvanite and tellurobismuthite from ore minerals and concentrates through microscopic observation and SEM/EDS analysis. In a bio-oxidation-leaching experiment, with regard to Au, Ag, Te, Cu and Fe, the changes in the amount of leaching and the content of leaching residues were compared and analyzed with each other depending on the adaptation of an indigenous microbe identified as Acidithiobacillus ferrooxidans. As a result of the experiment, the Au-Ag-Te content in tellurium-bearing ore mineral was enhanced in the order of physical oxidation leaching, physical/non-adaptive bio-oxidation-leaching and physical/adaptive biological leaching. It suggests that the bio-oxidation-leaching using microbes adapted in tellurium-bearing ore mineral can be used as a pre-treatment and a main process in a recovery process of valuable metals. "This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2004898)"

  13. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  14. Enhancing the ag precipitation by surface mechanical attrition treatment on Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Zhang, Lehao; Liu, Jingjing; Huang, Liuyi; Gu, Hao; Fang, Youtong; Meng, Liang; Zhang, Jian

    2016-09-01

    The influence of surface mechanical attrition treatment (SMAT) on Ag precipitation in Cu-Ag alloys was investigated. Cu-6 wt% Ag was melt, cold rolled and solution treated to be Cu-Ag solid solution, which was either aged at 250 and 350 °C for 24 h directly or SMAT-ed before aging. Ag precipitates were hard be found in the directly aged Cu-Ag sample while they were observed clearly in the SMAT-ed counterpart at 250 °C. The Ag precipitates formed in the surface layer by SMAT are much coarser than those in the un-SMAT-ed sample. It is obvious that the precipitating behavior of Ag was promoted significantly by SMAT approach. A large number of defects were generated by SMAT and they were acting as fast atomic diffusion channels that facilitated the atomic diffusion of Ag.

  15. Real-time ab initio KMC simulation of the self-assembly and sintering of bimetallic epitaxial nanoclusters: Au + Ag on Ag(100).

    PubMed

    Han, Yong; Liu, Da-Jiang; Evans, James W

    2014-08-13

    Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).

  16. Real-Time Ab Initio KMC Simulation of the Self-Assembly and Sintering of Bimetallic Epitaxial Nanoclusters: Au + Ag on Ag(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Liu, Da-Jiang; Evans, James W

    2014-08-13

    Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).

  17. Phase diagram of Ag-Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior.

    PubMed

    Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo

    2009-07-07

    This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.

  18. Different behaviors in the transformation of PATP adsorbed on Ag or Au nanoparticles investigated by surface-enhanced Raman spectroscopy - A study of the effects from laser energy and annealing

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Fang; Luo, Shi-Yi; Liu, Guo-Kun

    2015-05-01

    In order to explore the key role of surface plasmon resonance (SPR) and active 3O2 for the chemical transformation to 4,4-dimercaptoazobenzene (DMAB) from p-aminothiophenol (PATP) adsorbed on Ag or Au NPs, we systematically investigated the laser wavelength and temperature dependent surface-enhanced Raman spectra of PATP capped Ag and Au NPs. DMAB can be easily observed at the 514.5 nm laser for Ag NPs but at the 632.8 nm laser for Au NPs, indicating that a suitable energy level is necessary for the formation of DMAB. The tendency is consistent with the wavelength dependent SPR properties of Ag or Au NPs accordingly. With the energy provided by annealing, the transformation of PATP to DMAB is much easier on Ag NPs at a lower temperature, and more DMAB can be observed at the same temperature, compared to the case of Au NPs under the same condition. It is mainly due to the active 3O2 on Ag surfaces could be more easily formed than that on Au surfaces.

  19. Laser-induced transformation of supramolecular complexes: approach to controlled formation of hybrid multi-yolk-shell Au-Ag@a-C:H nanostructures

    PubMed Central

    Manshina, A. A.; Grachova, E. V.; Povolotskiy, A. V.; Povolotckaia, A. V.; Petrov, Y. V.; Koshevoy, I. O.; Makarova, A. A.; Vyalikh, D. V.; Tunik, S. P.

    2015-01-01

    In the present work an efficient approach of the controlled formation of hybrid Au–Ag–C nanostructures based on laser-induced transformation of organometallic supramolecular cluster compound is suggested. Herein the one-step process of the laser-induced synthesis of hybrid multi-yolk-shell Au-Ag@a-C:H nanoparticles which are bimetallic gold-silver subnanoclusters dispersed in nanospheres of amorphous hydrogenated a-C:H carbon is reported in details. It has been demonstrated that variation of the experimental parameters such as type of the organometallic precursor, solvent, deposition geometry and duration of laser irradiation allows directed control of nanoparticles’ dimension and morphology. The mechanism of Au-Ag@a-C:H nanoparticles formation is suggested: the photo-excitation of the precursor molecule through metal-to-ligand charge transfer followed by rupture of metallophilic bonds, transformation of the cluster core including red-ox intramolecular reaction and aggregation of heterometallic species that results in the hybrid metal/carbon nanoparticles with multi-yolk-shell architecture formation. It has been found that the nanoparticles obtained can be efficiently used for the Surface-Enhanced Raman Spectroscopy label-free detection of human serum albumin in low concentration solution. PMID:26153347

  20. Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.

    PubMed

    López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J

    2014-12-15

    A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Band-gap tailoring and visible-light-driven photocatalytic performance of porous (GaN)1-x(ZnO)x solid solution.

    PubMed

    Wu, Aimin; Li, Jing; Liu, Baodan; Yang, Wenjin; Jiang, Yanan; Liu, Lusheng; Zhang, Xinglai; Xiong, Changmin; Jiang, Xin

    2017-02-21

    (GaN) 1-x (ZnO) x solid solution has attracted extensive attention due to its feasible band-gap tunability and excellent photocatalytic performance in overall water splitting. However, its potential application in the photodegradation of organic pollutants and environmental processing has rarely been reported. In this study, we developed a rapid synthesis process to fabricate porous (GaN) 1-x (ZnO) x solid solution with a tunable band gap in the range of 2.38-2.76 eV for phenol photodegradation. Under visible-light irradiation, (GaN) 0.75 (ZnO) 0.25 solid solution achieved the highest photocatalytic performance compared to other (GaN) 1-x (ZnO) x solid solutions with x = 0.45, 0.65 and 0.85 due to its higher redox capability and lower lattice deformation. Slight Ag decoration with a content of 1 wt% on the surface of the (GaN) 0.75 (ZnO) 0.25 solid solution leads to a significant enhancement in phenol degradation, with a reaction rate eight times faster than that of pristine (GaN) 0.75 (ZnO) 0.25 . Interestingly, phenol in aqueous solution (10 mg L -1 ) can also be completely degraded within 60 min, even under the direct exposure of sunlight irradiation. The photocurrent response indicates that the enhanced photocatalytic activity of (GaN) 0.75 (ZnO) 0.25 /Ag is directly induced by the improved transfer efficiency of the photogenerated electrons at the interface. The excellent phenol degradation performance of (GaN) 1-x (ZnO) x /Ag further broadens their promising photocatalytic utilization in environmental processing, besides in overall water splitting for hydrogen production.

  2. Solid and solution NMR studies of the complexation of Ag + with the trans isomer of captopril: Biological activities of this high blood pressure drug along with its Ag + complex

    NASA Astrophysics Data System (ADS)

    Isab, Anvarhusein A.; Wazeer, Mohamed I. M.

    2006-09-01

    Complexation of Ag + with captopril, 1-[(2 S)-3-mercapto-2-methylpropionyl]- L-proline, has been studied by 1H and 13C-NMR spectroscopy. The equilibrium constants for the trans to cis isomers of captopril bound to Ag + were measured by 1H NMR spectroscopy. It is observed that the trans isomer of the drug binds more strongly to Ag + between pH 5 and 8, as shown by the broadening of the trans isomer's resonances in 13C NMR spectra on complexation. A monodentate complexation of the trans captopril with Ag + via the thiol site is proposed based on the solid-state NMR and IR data. A superior antimicrobial activity is exhibited by the Cap-Ag(I) complex compared to captopril ligand itself against Heterotrotropic Plate Counts (HPC), Pseudomonas aeruginosa and Fecal streptococcus bacteria.

  3. Kinetics of transformation of deformation processed gold-matrix composite

    NASA Astrophysics Data System (ADS)

    Wongpreedee, Kageeporn

    Gold matrix Ḏeformation-processed M&barbelow;etal M&barbelow;etal C&barbelow;omposites (DMMC) have been developed that have better strength and conductivity than conventional gold alloys. However, DMMC possess metastable two-phase microstructures, and their strength and conductivity decrease after prolonged exposure to elevated temperatures. The kinetics of the transformation from the metastable two-phase microstructure to the equilibrium single-phase solid solution is of interest. This document describes a study of the elevated temperature stability of Au DMMC's and the relationship between microstructure and resistivity of three compositions: Au-7 vol %Ag, Au-14 vol %Ag, and Au-vol 7%Pt. DMMC samples were prepared by a powder metallurgy technique and mechanical processes. The smallest final diameter of these wires was 120 mum. Avrami and Arrhenius relations were used to evaluate the kinetic transformation. The extensive deformation used to produce these composites reshaped the initially equi-axed powder particles into a nanofilamentary composite. Electrical resistivity measurements were used to determine the degree of transformation from the initial metastable nano-filamentary composite to the equilibrium solid solution condition. These measurements indicated that this transformation in Au-14 at%Ag, Au-7 at %Ag Au and Au-7 at %Pt DMMC wires proceeded with activation energies of 141, 156, and 167 kJ/mol, respectively. It is thought that these empirically determined activation energies differ from those determined in single crystal, planar interface Au-Ag and Au-Pt diffusion couples due to chemical potential, surface curvature, and strain effects. The DMMC systems reach the equilibrium solid solution condition faster than single crystal, planar interface systems for two reasons: (1) far more defects (dislocations, grain boundaries, vacancies from non-conservative dislocation motion, etc.) are present in the Au-Ag and Au-Pt DMMC composites, and (2) the small

  4. 120 MeV Ag ion induced effects in Au/HfO2/Si MOSCAPs

    NASA Astrophysics Data System (ADS)

    Manikanthababu, N.; Prajna, K.; Pathak, A. P.; Rao, S. V. S. Nageswara

    2018-05-01

    HfO2/Si thinfilms were deposited by RF sputtering technique. 120 MeV Ag ion irradiation has been used to study the electrical properties of Au/HfO2/Si MOSCAPs. SHI (120 MeV Ag) induced annealing, defects creation and intermixing effects on the electrical properties of these systems have been studied. Here, we have observed that the high electronic excitation can cause a significant reduction of leakage currents in these MOSCAP devices. Various quantum mechanical tunneling phenomenon has been observed from the I-V characteristics.

  5. Role of Dispersion in Metallophilic Hg···M Interactions (M = Cu, Ag, Au) within Coinage Metal Complexes of Bis(6-diphenylphosphinoacenaphth-5-yl)mercury.

    PubMed

    Hupf, Emanuel; Kather, Ralf; Vogt, Matthias; Lork, Enno; Mebs, Stefan; Beckmann, Jens

    2016-11-07

    The previously reported bis(6-diphenylphosphinoacenaphth-5-yl)mercury (1) was used as ligand for the preparation of the copper(I) complexes, 1·CuCl and [1·Cu(NCMe)]BF 4 , which were characterized by multinuclear NMR spectroscopy and X-ray crystallography. DFT calculations employing topological analysis of the electron and electron pair densities within the AIM and ELI-D space-partitioning schemes revealed significant metallophilic Hg···Cu interactions. Evaluation of noncovalent bonding aspects according to the noncovalent interaction (NCI) index was applied not only for the Cu complexes 1·CuCl and [1·Cu(NCMe)]BF 4 but also for the previously reported Ag and Au complexes, namely, [1·MCl] (M = Ag, Au) and [1·M(NCMe) n ] + (M = Ag, n = 2; M = Au, n = 0), and facilitated the assignment of attractive dispersive Hg···M interactions with the Hg···Cu contacts being comparable to the Hg···Ag but weaker than the Hg···Au interactions. The localization of the attractive noncovalent bonding regions increases in the order Cu < Ag < Au.

  6. In situ solid-state fabrication of hybrid AgCl/AgI/AgIO3 with improved UV-to-visible photocatalytic performance.

    PubMed

    Xie, Jing; Cao, Yali; Jia, Dianzeng; Li, Yizhao; Wang, Kun; Xu, Hui

    2017-09-28

    The AgCl/AgI/AgIO 3 composites were synthesized through a one-pot room-temperature in situ solid-state approach with the feature of convenient and eco-friendly. The as-prepared composites exhibit superior photocatalytic performance than pure AgIO 3 for the degradation of methyl orange (MO) under both UV and visible light irradiation. The photodegradation rate toward MO of the AgCl/AgI/AgIO 3 photocatalyst can reach 100% after 12 min irradiation under UV light, or 85.4% after 50 min irradiation under visible light, being significantly higher than AgCl, AgI, AgIO 3 and AgI/AgIO 3 . In addition, the AgCl/AgI/AgIO 3 photocatalyst possesses strong photooxidation ability for the degradation of rhodamine B (RhB), methylene blue (MB), phenol, bisphenol A (BPA) and tetracycline hydrochloride under visible light irradiation. The reactive species capture experiments confirmed that the h + and •O 2- play an essential role during the photocatalytic process under UV light or visible light irradiation. The enhanced effect may be beneficial from the enhanced light adsorption in full spectrum and increased separation efficiency of photogenerated hole-electron pairs, which can be ascribed to the synergistic effect among AgCl, AgI and AgIO 3 nanoplates in AgCl/AgI/AgIO 3 composites.

  7. Effect of impurities on the mechanical and electronic properties of Au, Ag, and Cu monatomic chain nanowires

    NASA Astrophysics Data System (ADS)

    Çakır, D.; Gülseren, O.

    2011-08-01

    In this study, we have investigated the interaction of various different atomic and molecular species (H, C, O, H2, and O2) with the monatomic chains of Au, Ag, and Cu via total-energy calculations using the plane-wave pseudopotential method based on density functional theory. The stability, energetics, mechanical, and electronic properties of the clean and contaminated Au, Ag, and Cu nanowires have been presented. We have observed that the interaction of H, C, or O atoms with the monatomic chains are much stronger than the one of H2 or O2 molecules. The atomic impurities can easily be incorporated into these nanowires; they form stable and strong bonds with these one-dimensional structures when they are inserted in or placed close to the nanowires. Moreover, the metal-atomic impurity bond is much stronger than the metal-metal bond. Upon elongation, the nanowires contaminated with atomic impurities usually break from the remote metal-metal bond. We have observed both metallic and semiconducting contaminated nanowires depending on the type of impurity, whereas all clean monatomic chains of Au, Cu, and Ag exhibit metallic behavior. Our findings indicate that the stability and the electronic properties of these monatomic chains can be tuned by using appropriate molecular or atomic additives.

  8. Tunable Catalysis of Water to Peroxide with Anionic, Cationic, and Neutral Atomic Au, Ag, Pd, Rh, and Os

    NASA Astrophysics Data System (ADS)

    Suggs, K.; Kiros, F.; Tesfamichael, A.; Felfli, Z.; Msezane, A. Z.

    2015-05-01

    Fundamental anionic, cationic, and neutral atomic metal predictions utilizing density functional theory calculations validate the recent discovery identifying the interplay between Regge resonances and Ramsauer-Townsend minima obtained through complex angular momentum analysis as the fundamental atomic mechanism underlying nanoscale catalysis. Here we investigate the optimization of the catalytic behavior of Au, Ag, Pd, Rh, and Os atomic systems via polarization effects and conclude that anionic atomic systems are optimal and therefore ideal for catalyzing the oxidation of water to peroxide, with anionic Os being the best candidate. The discovery that cationic systems increase the transition energy barrier in the synthesis of peroxide could be important as inhibitors in controlling and regulating catalysis. These findings usher in a fundamental and comprehensive atomic theoretical framework for the generation of tunable catalytic systems. The ultimate aim is to design giant atomic catalysts and sensors, in the context of the recently synthesized tri-metal Ag@Au@Pt and bimetal Ag@Au nanoparticles for greatly enhanced plasmonic properties and improved chemical stability for chemical and biological sensing. Research was supported by U.S. DOE Office of Basic Energy Sciences.

  9. Invoking Direct Exciton-Plasmon Interactions by Catalytic Ag Deposition on Au Nanoparticles: Photoelectrochemical Bioanalysis with High Efficiency.

    PubMed

    Ma, Zheng-Yuan; Xu, Fei; Qin, Yu; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-04-19

    In this work, direct exciton-plasmon interactions (EPI) between CdS quantum dots (QDs) and Ag nanoparticles (NPs) were invoked ingeniously by catalytic Ag deposition on Au NPs for the stimulation of high efficient damping effect toward the excitonic responses in CdS QDs, on the basis of which a novel photoelectrochemical (PEC) bioanalytical format was achieved for sensitive microRNA detection. Specifically, upon the configurational change from the hairpin probe DNA to the "Y"-shaped ternary conjugate consisting of the original probe DNA, assistant DNA, and the target microRNA, the alkaline phosphatase (ALP) catalytic chemistry would then trigger the transition of the interparticle interplay from the CdS QDs-Au NPs to the CdS QDs-Ag NPs systems for the microRNA detection due to the dependence of the photocurrent quenching on the target concentration. This work not only provided a unique method for EPI generation among the PEC nanosystems but also offered a versatile and general protocol for future PEC bioanalysis development.

  10. Retrieval of Au, Ag, Cu precious metals coupled with electric energy production via an unconventional coupled redox fuel cell reactor.

    PubMed

    Zhang, Hui-Min; Fan, Zheng; Xu, Wei; Feng, Xiao; Wu, Zu-Cheng

    2017-09-15

    The recovery of heavy metals from aqueous solutions or e-wastes is of upmost importance. Retrieval of Au, Ag, and Cu with electricity generation through building an ethanol-metal coupled redox fuel cells (CRFCs) is demonstrated. The cell was uniquely assembled on PdNi/C anode the electro-oxidation of ethanol takes place to give electrons and then go through the external circuit reducing metal ions to metallic on the cathode, metals are recovered. Taking an example of removal of 100mgL -1 gold in 0.5M HAc-NaAc buffer solution as the catholyte, 2.0M ethanol in 1.0M alkaline solution as the anolyte, an open circuit voltage of 1.4V, more than 96% of gold removal efficiency in 20h, and equivalent energy production of 2.0kWhkg -1 of gold can be readily achieved in this system. When gold and copper ions coexist, it was confirmed that metallic Cu is formed on the cathodic electrode later than metallic Au formation by XPS analysis. Thus, this system can achieve step by step electrodeposition of gold and copper while the two metal ions coexisting. This work develops a new approach to retrieve valuable metals from aqueous solution or e-wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Different growth regimes in InP nanowire growth mediated by Ag nanoparticles.

    PubMed

    Oliveira, D S; Zavarize, M; Tizei, L H G; Walls, M; Ospina, C A; Iikawa, F; Ugarte, D; Cotta, M A

    2017-12-15

    We report on the existence of two different regimes in one-step Ag-seeded InP nanowire growth. The vapor-liquid-solid-mechanism is present at larger In precursor flows and temperatures, ∼500 °C, yielding high aspect ratio and pure wurtzite InP nanowires with a semi-spherical metal particle at the thin apex. Periodic diameter oscillations can be achieved under extreme In supersaturations at this temperature range, showing the presence of a liquid catalyst. However, under lower temperatures and In precursor flows, large diameter InP nanowires with mixed wurtzite/zincblende segments are obtained, similarly to In-assisted growth. Chemical composition analysis suggest that In-rich droplet formation is catalyzed at the substrate surface via Ag nanoparticles; this process might be facilitated by the sulfur contamination detected in these nanoparticles. Furthermore, part of the original Ag nanoparticle remains solid and is embedded inside the actual catalyst, providing an in situ method to switch growth mechanisms upon changing In precursor flow. Nevertheless, our Ag-seeded InP nanowires exhibit overall optical emission spectra consistent with the observed structural properties and similar to Au-catalyzed InP nanowires. We thus show that Ag nanoparticles may be a suitable replacement for Au in InP nanowire growth.

  12. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-07-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs.

  13. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles.

    PubMed

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-01-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs.

  14. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    PubMed Central

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-01-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs. PMID:23817586

  15. Mixed oxide solid solutions

    DOEpatents

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  16. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells.

    PubMed

    Lu, Luyao; Luo, Zhiqiang; Xu, Tao; Yu, Luping

    2013-01-09

    This article describes a cooperative plasmonic effect on improving the performance of polymer bulk heterojunction solar cells. When mixed Ag and Au nanoparticles are incorporated into the anode buffer layer, dual nanoparticles show superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to the realization of a polymer solar cell with a power conversion efficiency of 8.67%, accounting for a 20% enhancement. The cooperative plasmonic effect aroused from dual resonance enhancement of two different nanoparticles. The idea was further unraveled by comparing Au nanorods with Au nanoparticles for solar cell application. Detailed studies shed light into the influence of plasmonic nanostructures on exciton generation, dissociation, and charge recombination and transport inside thin film devices.

  17. Chemical trend of superconducting transition temperature in hole-doped delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-12-01

    We have performed the first-principles calculations about the superconducting transition temperature Tc of hole-doped delafossite CuAlO2, AgAlO2 and AuAlO2. Calculated Tc are about 50 K (CuAlO2), 40 K (AgAlO2) and 3 K(AuAlO2) at maximum in the optimum hole-doping concentration. The low Tc of AuAlO2 is attributed to the weak electron-phonon interaction caused by the low covalency and heavy atomic mass.

  18. Organogold oligomers: Exploiting iClick and aurophilic cluster formation to prepare solution stable Au 4 repeating units

    DOE PAGES

    Yang, Xi; Wang, Shanshan; Ghiviriga, Ion; ...

    2015-05-19

    A novel synthetic method to create gold based metallo–oligomers/polymers via the combination of inorganic click (iClick) with intermolecular aurophilic interactions is demonstrated. Complexes [PEt 3Au] 4(μ-N 3C 2C 6H 5) (1) and [PPhMe 2Au] 43C 2C 6H 5) (2) and {[PEt 3Au] 4[(μ-N 3C 2) 2-9,9-dihexyl-9H-fluorene]} n (8) have been synthesized via iClick. The tetranuclear structures of 1 and 2, induced by aurophilic bonding, are confirmed in the solid state through single crystal X-ray diffraction experiments and in solution via variable temperature NMR spectroscopy. The extended 1D structure of 8 is constructed by aurophilic induced self-assembly. 1H DOSY NMR analysismore » reveals that the aurophilic bonds in 1, 2, and 8 are retained in the solution phase. The degree of polymerization within complex 8 is temperature and concentration dependent, as determined by 1H DOSY NMR. The complex 8 is a rare example of a solution stable higher ordered structure linked by aurophilic interactions.« less

  19. Fabrication of Ternary AgPdAu Alloy Nanoparticles on c-Plane Sapphire by the Systematical Control of Film Thickness and Deposition Sequence

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-06-01

    In this work, a systematic study on the fabrication of ternary AgPdAu alloy nanoparticles (NPs) on c-plane sapphire (0001) is presented and the corresponding structural and optical characteristics are demonstrated. The metallic trilayers of various thicknesses and deposition orders are annealed in a controlled manner (400 °C to 900 °C) to induce the solid-state dewetting that yields the various structural configurations of AgPdAu alloy NPs. The dewetting of relatively thicker trilayers (15 nm) is gradually progressed with void nucleation, growth, and coalescence, isolated NP formation, and shape transformation, along with the temperature control. For 6 nm thickness, owing to the sufficient dewetting of trilayers along with enhanced diffusion, dense and small spherical alloy NPs are fabricated. Depending on the specific growth condition, the surface diffusion and interdiffusion of metal atoms, surface and interface energy minimization, Rayleigh instability, and equilibrium configuration are correlated to describe the fabrication of ternary alloy NPs. Ternary alloy NPs exhibit morphology-dependent ultraviolet-visible-near infrared (UV-VIS-NIR) reflectance properties such as the inverse relationship of average reflectance with the surface coverage, absorption enhancement in specific regions, and reflectance maxima in UV and NIR regions. In addition, Raman spectra depict the six active phonon modes of sapphires and their intensity and position modulation by the alloy NPs.

  20. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  1. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers

    NASA Astrophysics Data System (ADS)

    Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2015-03-01

    Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.

  2. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.

    PubMed

    Wang, Chaoguang; Wu, Xuezhong; Dong, Peitao; Chen, Jian; Xiao, Rui

    2016-12-15

    Paraquat (PQ) pollutions are ultra-toxic to human beings and hard to be decomposed in the environment, thus requiring an on-site detection strategy. Herein, we developed a robust and rapid PQ sensing strategy based on the surface-enhanced Raman scattering (SERS) technique. A hybrid SERS substrate was prepared by grafting the Au@Ag core-shell nanoparticles (NPs) on the Au film over slightly etched nanoparticles (Au FOSEN). Hotspots were engineered at the junctions as indicated by the finite difference time domain calculation. SERS performance of the hybrid substrate was explored using p-ATP as the Raman probe. The hybrid substrate gives higher enhancement factor comparing to either the Au FOSEN substrate or the Au@Ag core-shell NPs, and exhibits excellent reproducibility, homogeneity and stability. The proposed SERS substrates were prepared in batches for the practical PQ sensing. The total analysis time for a single sample, including the pre-treatment and measurement, was less than 5min with a PQ detection limit of 10nM. Peak intensities of the SERS signal were plotted as a function of the PQ concentrations to calibrate the sensitivity by fitting the Hill's equation. The plotted calibration curve showed a good log-log linearity with the coefficient of determination of 0.98. The selectivity of the sensing proposal was based on the "finger print" Raman spectra of the analyte. The proposed substrate exhibited good recovery when it applied to real water samples, including lab tap water, bottled water, and commercially obtained apple juice and grape juice. This SERS-based PQ detection method is simple, rapid, sensitive and selective, which shows great potential in pesticide residue and additives abuse monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Ran, Huili; Fan, Jiajie; Zhang, Xiaoli; Mao, Jing; Shao, Guosheng

    2018-02-01

    Novel double-layer films were prepared and applied to dye-sensitized solar cells (DSSCs) using commercial TiO2 nanoparticles as a bonding underlayer and noble metal (Au and Ag) nanoparticles (NP) and nanowires (NW) incorporated to hybrid TiO2 composites, consisting of 3 dimensional (3D) hierarchical microspheres, 3D hollow spheres, 2 dimensional (2D) nanosheets and commercial P25 nanoparticles, as multifunctional light scattering overlayer. The influence of Au NP, Ag NP, Au NW, and Ag NW on of microstructures of the film electrodes and the photovoltaic (PV) performances of DSSCs was investigated. The result revealed that the ranges and intensity of sunlight absorption, the photo capture ability for dye molecules of the hybrid nanocomposite film electrodes, and the photoelectric conversion efficiency (PCE) of the cells were all significantly enhanced due to the plasmonic effect of the noble metal nanostructures. All composite DSSCs with noble metal nanostructures have higher PCE than the pure TiO2 solar cell. This is attributed the improved electron transport of the noble metal nanostructures, and the improvement of light absorption because of their local surface plasmon resonance (LSPR) effect. Under optical conditions, a PCE of 5.74% was obtained in the TiO2-AgNW DSSC, representing a 25.3% enhancement compared to a reference solar cell based on pure TiO2 film (4.58%). The main reason of the advancement is the improved electron transport of AgNW, the light absorption enhancement on account of the LSPR effect of AgNW, and increased light scattering due to the incorporation of the large one dimensional AgNWs within the photo-anode.

  4. Enhanced flexibility and electron-beam-controlled shape recovery in alumina-coated Au and Ag core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Vlassov, Sergei; Polyakov, Boris; Vahtrus, Mikk; Mets, Magnus; Antsov, Mikk; Oras, Sven; Tarre, Aivar; Arroval, Tõnis; Lõhmus, Rünno; Aarik, Jaan

    2017-12-01

    The proper choice of coating materials and methods in core-shell nanowire (NW) engineering is crucial to assuring improved characteristics or even new functionalities of the resulting composite structures. In this paper, we have reported electron-beam-induced reversible elastic-to-plastic transition in Ag/Al2O3 and Au/Al2O3 NWs prepared by the coating of Ag and Au NWs with Al2O3 by low-temperature atomic layer deposition. The observed phenomenon enabled freezing the bent core-shell NW at any arbitrary curvature below the yield strength of the materials and later restoring its initially straight profile by irradiating the NW with electrons. In addition, we demonstrated that the coating efficiently protects the core material from fracture and plastic yield, allowing it to withstand significantly higher deformations and stresses in comparison to uncoated NW.

  5. Toehold-mediated DNA displacement-based surface-enhanced Raman scattering DNA sensor utilizing an Au-Ag bimetallic nanodendrite substrate.

    PubMed

    Kim, Saetbyeol; Tran Ngoc, Huan; Kim, Joohoon; Yoo, So Young; Chung, Hoeil

    2015-07-23

    A simple and sensitive surface enhanced Raman scattering (SERS)-based DNA sensor that utilizes the toehold-mediated DNA displacement reaction as a target-capturing scheme has been demonstrated. For a SERS substrate, Au-Ag bimetallic nanodendrites were electrochemically synthesized and used as a sensor platform. The incorporation of both Ag and Au was employed to simultaneously secure high sensitivity and stability of the substrate. An optimal composition of Ag and Au that satisfied these needs was determined. A double-strand composed of 'a probe DNA (pDNA)' complementary to 'a target DNA (tDNA)' and 'an indicator DNA tagged with a Raman reporter (iDNA)' was conjugated on the substrate. The conjugation made the reporter molecule close to the surface and induced generation of the Raman signal. The tDNA released the pre-hybridized iDNA from the pDNA via toehold-mediated displacement, and the displacement of the iDNA resulted in the decrease of Raman intensity. The variation of percent intensity change was sensitive and linear in the concentration range from 200fM to 20nM, and the achieved limit of detection (LOD) was 96.3fM, superior to those reported in previous studies that adopted different signal taggings based on such as fluorescence and electrochemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Surface structural evolution of AuAg/TiO2 catalyst in the transformation of benzyl alcohol to sodium benzoate

    NASA Astrophysics Data System (ADS)

    Cui, Yuanyuan; Wang, Ying; Fan, Kangnian; Dai, Wei-Lin

    2013-08-01

    A series of AuAg/TiO2 catalysts calcined at different temperatures were used for single-pot, solvent-free synthesis of sodium benzoate and benzoic acid through the green oxidation of benzyl alcohol. The best catalytic performance, which produced a sodium benzoate yield of up to 85%, was obtained over the AuAg/TiO2 catalyst calcined at 623 K. Systematic characterizations including BET, XRD, TEM, XPS, and UV-vis DRS and ICP were carried out to investigate the influence of calcined temperature on the structural evolution of the bimetallic AuAg/TiO2 catalysts. TEM images showed that both low (473 K) and high calcinations temperatures (973 K) resulted in larger particles. The smallest particles (8.2 nm) were obtained at 623 K. This decrease in particle size may have been induced by the re-dispersion and interaction of the bimetallic species. XRD and XPS results showed that proper calcination temperature (623 K) could promote interactions between the bimetallic particles and the TiO2 support as well as the dispersion of active bimetallic species. The higher catalytic performance of the 623 K calcined catalyst could be attributed to the smaller particle size and the synergetic interaction between nano-bimetallic gold and silver species.

  7. Extending atomistic simulation timescale in solid/liquid systems: crystal growth from solution by a parallel-replica dynamics and continuum hybrid method.

    PubMed

    Lu, Chun-Yaung; Voter, Arthur F; Perez, Danny

    2014-01-28

    Deposition of solid material from solution is ubiquitous in nature. However, due to the inherent complexity of such systems, this process is comparatively much less understood than deposition from a gas or vacuum. Further, the accurate atomistic modeling of such systems is computationally expensive, therefore leaving many intriguing long-timescale phenomena out of reach. We present an atomistic/continuum hybrid method for extending the simulation timescales of dynamics at solid/liquid interfaces. We demonstrate the method by simulating the deposition of Ag on Ag (001) from solution with a significant speedup over standard MD. The results reveal specific features of diffusive deposition dynamics, such as a dramatic increase in the roughness of the film.

  8. Insights into the genesis of the epithermal Au-Ag mineralization at Rio Blanco in the Cordillera Occidental of southwestern Ecuador: Constraints from U-Pb and Ar/Ar geochronology

    NASA Astrophysics Data System (ADS)

    Bineli Betsi, Thierry; Ponce, Miguel; Chiaradia, Massimo; Ulianov, Alex; Camacho, Alfredo

    2017-12-01

    The genesis of the Au-Ag mineralization at Rio Blanco in the Cordillera Occidental (Western Cordillera) of southwest of Ecuador is here constrained. This was done by investigating the temporal and by inference the genetic relationship between the Au-Ag mineralization and the spatially associated magmatic host rocks using zircon U-Pb [chemical abrasion (CA) IDTIMS and laser ablation (LA) ICPMS] and adularia 40Ar/39Ar geochronology. Whereas volcanics hosting the Au-Au mineralization range in age from 37.35 ± 0.30 to 33.09 ± 0.20 Ma (Late Eocene-Early Oligocene), the spatially associated intrusions are of at least two discontinuous phases of magmatism and these include: (i) Late Eocene intrusions that range in age from 35.77 ± 0.19 to 36.03 ± 0.19 Ma, and; (ii) Miocene intrusions of 15.58 ± 0.04 Ma. The 40Ar/39Ar age of adularia from a Bonanza Au (334 g/t)-Ag (2060 g/t)-bearing epithermal vein is bracketed between 14.3 and 14.9 Ma. The temporal relationship between adularia and by inference mineralization and the spatially associated rocks therefore rules out any temporal link between the Late Eocene-Early Oligocene Rio Blanco Formation, but rather favors a possible genetic relationship between the Rio Blanco Au-Ag mineralization and the Miocene intrusions. The determined Rio Blanco Au-Ag mineralization age is consistent with the established Oligocene-Miocene period of ore deposits in Ecuador and coincides with the extensional tectonic event, which developed intramontane basins in southern Ecuador.

  9. Tunable energy transfer from d 10 heterobimetallic dicyanide(I) donor ions to terbium(III) acceptor ions in luminescent Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1)

    NASA Astrophysics Data System (ADS)

    Lu, Haiyan; Yson, Renante; Ford, James; Tracy, Henry J.; Carrier, Alora B.; Keller, Aaron; Mullin, Jerome L.; Poissan, Michelle J.; Sawan, Samuel; Patterson, Howard H.

    2007-07-01

    We report on the heterobimetallic system, Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1), in which sensitization of terbium luminescence occurs by energy transfer from [Ag xAu 1- x(CN) 2] - donor excited states. The donor states have energies which are tunable and dependent on the Ag/Au stoichiometric ratio. We report on their use as donor systems with Tb(III) ions as acceptor ions in energy transfer studies. Luminescence results show that the mixed metal dicyanides with the higher silver loading have a better energy transfer efficiency than the pure Ag(CN)2- and Au(CN)2- donors. The better energy transfer efficiency is due to the greater overlap between the donor emission and acceptor excitation.

  10. Sequestration of Ag(I) from aqueous solution as Ag(0) nanostructures by nanoscale zero valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    Zhang, Yalei; Yan, Jing; Dai, Chaomeng; Li, Yuting; Zhu, Yan; Zhou, Xuefei

    2015-11-01

    This study investigates the application of nanoparticle zero valent iron (nZVI) to sequester Ag(I) as Ag(0) nanostructures from aqueous solution. Batch experiments were performed with nZVI exposed to aqueous Ag(I) to investigate the effects of environmental parameters, including nZVI dose, temperature and pH. High temperature facilitates Ag(I) sequestration, and the rate constants are determined to be 0.02, 0.12, and 0.31 mg L/m2 at 30, 50, and 60 °C, respectively. Ag(I) sequestration was adversely affected by adding nitric acid to the solution due to significant acid washing, decreasing the available nZVI active sites. Characterization techniques including TEM, XRD, and HR-XPS revealed that nZVI is oxidized to lepidocrocite and magnetite/maghemite and confirmed the formation of nanocrystalline silver. HR-XPS analysis indicated that Ag2O forms rapidly as an intermediate due to Ag(I) adsorption onto the FeOOH layer. The Ag(0) nanostructures that are formed are fractal, spherical, and dendritic or rod-like, respectively, in morphology by FE-TEM images at different Ag/Fe mass ratios. A general reaction model for the interaction Ag(I) with nZVI is proposed. Our results suggest that nZVI is effective for Ag(I) removal.

  11. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  12. LSPR Tuning from 470 to 800 nm and Improved Stability of Au-Ag Nanoparticles Formed by Gold Deposition and Rebuilding in the Presence of Poly(styrenesulfonate).

    PubMed

    Cathcart, Nicole; Chen, Jennifer I L; Kitaev, Vladimir

    2018-01-16

    Stability and precise control over functional properties of metal nanoparticles remain a challenge for the realization of prospective applications. Our described process of shell formation and rebuilding can address both these challenges. Template silver nanoparticles (AgNPs) stabilized by poly(styrenesulfonate) are first transformed with gold deposition, after which the resulting shell rebuilds with the replaced silver. The shell formation and rebuilding are accompanied by large shifts in localized surface plasmon resonance (LSPR) peak position, which enables LSPR tuning in a range from 470 to 800 nm. Furthermore, chemical stability of Au-AgNPs is significantly improved compared to AgNPs due to gold stability. Silver templates of different shapes and sizes were demonstrated to transform to AuAg composite NPs to further extend the accessible LSPR range tuning. Stabilization of template AgNPs with poly(styrenesulfonate), in contrast to commonly used poly(vinylpyrrolidone), was found to be a key factor for shell rebuilding. The developed Au-AgNPs were shown to be advantageous for surface plasmon resonance (SPR) detection and surface-enhanced Raman spectroscopy (SERS) owing to their tunable LSPR and enhanced stability.

  13. Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films

    PubMed Central

    Yang, Kyungwhan; Cho, Kyoungah; Yoon, Dae Sung; Kim, Sangsig

    2017-01-01

    In this study, we fabricate bendable solid-state supercapacitors with Au nanoparticle (NP)-embedded graphene hydrogel (GH) electrodes and investigate the influence of the Au NP embedment on the internal resistance and capacitive performance. Embedding the Au NPs into the GH electrodes results in a decrease of the internal resistance from 35 to 21 Ω, and a threefold reduction of the IR drop at a current density of 5 A/g when compared with GH electrodes without Au NPs. The Au NP-embedded GH supercapacitors (NP-GH SCs) exhibit excellent capacitive performances, with large specific capacitance (135 F/g) and high energy density (15.2 W·h/kg). Moreover, the NP-GH SCs exhibit comparable areal capacitance (168 mF/cm2) and operate under tensile/compressive bending. PMID:28074865

  14. Tunable surface plasmon resonance frequency of Au-Ag bimetallic asymmetric structure thin films in the UV and IR region

    NASA Astrophysics Data System (ADS)

    Hong, Ruijin; Ji, Jialin; Tao, Chunxian; Zhang, Dawei

    2016-10-01

    Au/ZnO/Ag sandwich structure films were fabricated by DC magnetron sputter at room temperature. The tunability of the surface plasmon resonance wavelength was realized by varying the thickness of ZnO thin film. The effects of ZnO layer on the optical properties of Au/ZnO/Au thin films were investigated by optical absorption and Raman scattering measurements. It has been found that both the surface plasmon resonance frequency and SERS can be controlled by adjusting the thickness of ZnO layer due to the coupling of metal and semiconductor.

  15. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for pesticide detection

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-04-01

    As a novel surface-enhanced Raman spectroscopic (SERS) nanocomposite, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles (NPs) were synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size were achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity was achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling a PEI shell via sonication. Furthermore, the Au@Ag particles were densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibited an excellent SERS behavior, reflected by the low detection of limit (p-ATP) at the 5 × 10-14 M level. Moreover, these nanocubes were used for the detection of thiram, and the detection limit can reach 5 × 10-11 M. Meanwhile, the U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in the rapid detection of chemical, biological, and environment pollutants with a simple portable Raman instrument at trace level.

  16. Anti p and anti Lambda production in Si + Au collisions at the AGS

    NASA Technical Reports Server (NTRS)

    Wu, Yue-Dong

    1996-01-01

    (anti (ital p)) and (anti (Lambda)) production in central Si + Au collisions has been measured by E589 at the BNL-AGS. Preliminary (ital m)(sub (perpendicular)) spectra are presented for (anti (ital p))'s and (anti (Lambda))'s. The (ital dn/dy) distribution for (anti (ital p))'s is also presented. Based on the (anti (ital p)) and (anti (Lambda)) measurements, (anti (Lambda))/(anti (ital p)) ratios are calculated in the rapidity range of 1.1-1.5.

  17. An experimental study of Au removal from solution by non-metabolizing bacterial cells and their exudates

    NASA Astrophysics Data System (ADS)

    Kenney, Janice P. L.; Song, Zhen; Bunker, Bruce A.; Fein, Jeremy B.

    2012-06-01

    In this study, we examine the initial interactions between aqueous Au(III)-hydroxide-chloride aqueous complexes and bacteria by measuring the effects of non-metabolizing cells on the speciation and distribution of Au. We conducted batch Au(III) removal experiments, measuring the kinetics and pH dependence of Au removal, and tracking valence state transformations and binding environments using XANES spectroscopy. These experiments were conducted using non-metabolizing cells of Bacillus subtilis or Pseudomonas putida suspended in a 5 ppm Au(III)-(hydroxide)-chloride starting solution of 0.1 M NaClO4 to buffer ionic strength. Both bacterial species removed greater than 85% of the Au from solution after 2 h of exposure time below approximately pH 5. Above pH 5, the extent of Au removed from solution decreased with increasing pH, with less than approximately 10% removal of Au from solution above pH 7.5. Kinetics experiments indicated that the Au removal with both bacterial species was rapid at pH 3, and slowed with increasing pH. Reversibility experiments demonstrated that (1) once the Au was removed from solution, adjusting 35 the pH alone did not remobilize the Au into solution and (2) the presence of cysteine in solution in the reversibility experiments caused Au to desorb, suggesting that the Au was not internalized within the bacterial cells. Our results suggest that Au removal occurs as a two-step pH-dependent adsorption reduction process. The speciation of the aqueous Au and the bacterial surface appears to control the rate of Au removal from solution. Under low pH conditions, the cell walls are only weakly negatively charged and aqueous Au complexes adsorb readily and rapidly. With increasing pH, the cell wall becomes more negatively charged, slowing adsorption significantly. The XANES data demonstrate that the reduction of Au(III) by bacterial exudates is slower and less extensive than the reduction observed in the bacteria-bearing systems, and we conclude that

  18. The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.

    PubMed

    Klitzke, Sondra; Metreveli, George; Peters, Andre; Schaumann, Gabriele E; Lang, Friederike

    2015-12-01

    Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces. Copyright © 2014. Published by Elsevier B.V.

  19. Nanobiophotonics for molecular imaging of cancer: Au- and Ag-based Epidermal Growth Factor receptor (EGFR) specific nanoprobes

    NASA Astrophysics Data System (ADS)

    Lucas, Leanne J.; Hewitt, Kevin C.

    2012-03-01

    Our aim is to create and validate a novel SERS-based nanoprobe for optical imaging of the epidermal growth factor receptor (EGFR). Gold and silver nanoparticles (Au/AgNPs) of various sizes were synthesized and coupled to epidermal growth factor (EGF) via a short ligand, α-lipoic acid (206 g/mol), which binds strongly to both Au and Ag nanoparticles via its disulfide end group. We used carbodiimide chemistry to couple EGF to α-lipoic acid. These nanoprobes were tested for binding affinity using Enzyme Linked ImmunoSorbent Assay (ELISA) and, in-vitro, using EGFRoverexpressing A431 cells. The nanoprobes show excellent EGFR-specific binding. Time of Flight Mass Spectrometry demonstrate the carbodiimide based linking of the carboxylic acid end-group of α-lipoic acid to one or more of the three (terminal, or 2 lysine) amine groups on EGF. ELISA confirms that the linked EGF is active by itself, and following conjugation with gold or silver nanoparticles. Compared with bare nanoparticles, UV-Vis spectroscopy of Ag-based nanoprobes exhibit significant plasmon red-shift, while there was no discernable shift for Au-based ones. Dark field microscopy shows abundant uptake by EGFR overexpressing A431 cells, and serves to further confirm the excellent binding affinity. Nanoprobe internalization and consequent aggregation is thought to be the basis of enhanced light scattering in the dark field images, supporting the notion that these nanoprobes should provide excellent SERS signals at all nanoprobe sizes. In summary, novel EGFR-specific nanoprobes have been synthesized and validated by standard assay and in cell culture for use as SERS optical imaging probes.

  20. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions.

    PubMed

    Padil, Vinod Vellora Thekkae; Černík, Miroslav

    2015-04-28

    In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV-vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe3O4) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt>Au>Ag>CuO>Fe3O4. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Silver nanoparticle formation by femtosecond laser induced reduction of ammonia-containing AgNO3 solution

    NASA Astrophysics Data System (ADS)

    Herbani, Y.; Nakamura, T.; Sato, S.

    2017-04-01

    This paper reports the synthesis of silver colloids by femtosecond laser ablation of ammonia-containing AgNO3 solution. Effect of ammonia concentration in solution on the production of Ag nanoparticles was discussed. It is found that ammonia rules out significantly to the formation of Ag nanoparticles at which no Ag nanoparticle were formed in the solution without ammonia. Using the solution with the optimum ratio of ammonia to Ag+ ions, we further investigate the growth process of Ag nanoparticle by monitoring the evolution of its absorption spectra at 402 nm as a function of irradiation time. The result showed that the growth process was fit to the simple exponential function, and confirmed that the addition of ammonia alone to the metal ion system can boost the particle production by femtosecond laser.

  2. A solid-state thin-film Ag/AgCl reference electrode coated with graphene oxide and its use in a pH sensor.

    PubMed

    Kim, Tae Yong; Hong, Sung A; Yang, Sung

    2015-03-17

    In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE) that was coated with a protective layer of graphene oxide (GO). This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN)63- as calculated from the cathodic peaks of the SSRE was 6.48 × 10-6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD) card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99.

  3. Microhardness and In Vitro Corrosion of Heat-Treated Mg–Y–Ag Biodegradable Alloy

    PubMed Central

    Vlček, Marián; Lukáč, František; Kudrnová, Hana; Smola, Bohumil; Stulíková, Ivana; Luczak, Monika; Szakács, Gábor; Hort, Norbert; Willumeit-Römer, Regine

    2017-01-01

    Magnesium alloys are promising candidates for biodegradable medical implants which reduce the necessity of second surgery to remove the implants. Yttrium in solid solution is an attractive alloying element because it improves mechanical properties and exhibits suitable corrosion properties. Silver was shown to have an antibacterial effect and can also enhance the mechanical properties of magnesium alloys. Measurements of microhardness and electrical resistivity were used to study the response of Mg–4Y and Mg–4Y–1Ag alloys to isochronal or isothermal heat treatments. Hardening response and electrical resistivity annealing curves in these alloys were compared in order to investigate the effect of silver addition. Procedures for solid solution annealing and artificial aging of the Mg–4Y–1Ag alloy were developed. The corrosion rate of the as-cast and heat-treated Mg–4Y–1Ag alloy was measured by the mass loss method. It was found out that solid solution heat treatment, as well artificial aging to peak hardness, lead to substantial improvement in the corrosion properties of the Mg–4Y–1Ag alloy. PMID:28772414

  4. Stability of M 3S 3 complexes on fcc M(111) surfaces: M = Au, Ag, Cu, and Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Lee, Jiyoung; Windus, Theresa L.

    Density Functional Theory is utilized to assess the stability of metal (M)-sulfur (S) complexes adsorbed on fcc M(111) surfaces, specifically considering S-decorated planar M trimers, M 3S 3. Scanning Tunneling Microscopy studies have identified structures proposed to be Ni 3S 3 on Ni(111), and Au 3S 3 on Au(111). In addition, Cu 3S 3 on Cu(111) has been suggested to facilitate enhanced Cu surface mass transport. Our analysis considers M 3S 3 complexes for M = Au, Ag, Cu, and Ni, assessing key measures of stability on surfaces, and also comparing behavior with trends in gas-phase stability. These surface andmore » gas-phase analyses are systematically related within the framework of Hess’s law, which allows elucidation of various contributions to the overall energetics. In all cases, the adsorbed complex is stable relative to its separated constituents adsorbed on the terrace. However, only for Ag does one find a negative energy of formation from excess S on terraces and M extracted from kink sites along step edges, implying spontaneous complex formation for this pathway. We interpret various experimental observations in the context of our results for energetics.« less

  5. Stability of M 3S 3 complexes on fcc M(111) surfaces: M = Au, Ag, Cu, and Ni

    DOE PAGES

    Liu, Da-Jiang; Lee, Jiyoung; Windus, Theresa L.; ...

    2018-02-08

    Density Functional Theory is utilized to assess the stability of metal (M)-sulfur (S) complexes adsorbed on fcc M(111) surfaces, specifically considering S-decorated planar M trimers, M 3S 3. Scanning Tunneling Microscopy studies have identified structures proposed to be Ni 3S 3 on Ni(111), and Au 3S 3 on Au(111). In addition, Cu 3S 3 on Cu(111) has been suggested to facilitate enhanced Cu surface mass transport. Our analysis considers M 3S 3 complexes for M = Au, Ag, Cu, and Ni, assessing key measures of stability on surfaces, and also comparing behavior with trends in gas-phase stability. These surface andmore » gas-phase analyses are systematically related within the framework of Hess’s law, which allows elucidation of various contributions to the overall energetics. In all cases, the adsorbed complex is stable relative to its separated constituents adsorbed on the terrace. However, only for Ag does one find a negative energy of formation from excess S on terraces and M extracted from kink sites along step edges, implying spontaneous complex formation for this pathway. We interpret various experimental observations in the context of our results for energetics.« less

  6. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for detection of pesticide.

    PubMed

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-02-09

    As a novel SERS nanocomposities, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles have been synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size can be achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity were achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling PEI shell via sonication. Furthermore, the Au@Ag particles can be densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibit an excellent surface-enhanced Raman (SERS) behavior, reflected from low detection of limit (p-ATP) at 5×10-14 M level. Moreover, these nanocubes are used for detection of thiram and the detection limit can reach up to 5×10-11 M, while the rule of U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in rapid detection of chemical, biological and environment pollutants with a simple portable Raman instrument at trace level. © 2018 IOP Publishing Ltd.

  7. Role of electron-phonon coupling in finite-temperature dielectric functions of Au, Ag, and Cu

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Yang, Jia-Yue; Zhang, Shangyu; Liu, Linhua

    2017-09-01

    Realistic representation of finite temperature dielectric functions of noble metals is crucial in describing the optical properties of advancing applications in plasmonics and optical metamaterials. However, the atomistic origins of the temperature dependence of noble metals' dielectric functions still lack full explanation. In this paper, we implement electronic structure calculations as well as ellipsometry experiments to study the finite temperature dielectric functions of noble metals Au, Ag, and Cu. Theoretically, the intraband dielectric function is described by the Drude model, of which the important quantity electron lifetime is obtained by considering the electron-phonon, electron-electron, and electron-surface scattering mechanism. The electron-phonon coupling is key to determining the temperature dependence of electron lifetime and intraband dielectric function. For the interband dielectric function, it arises from the electronic interband transition. Due to the limitation of incorporating electron-phonon coupling into the interband transition scheme, the temperature dependence of the interband dielectric function is mainly determined by the thermal expansion effect. Experimentally, variable angle spectroscopic ellipsometry measures the dielectric functions of Au and Ag over the temperature range of 300-700 K and spectral range of 2-20 µm. Those experimental measurements are consistent with theoretical results and thus verify the theoretical models for the finite temperature dielectric function.

  8. The Improvement of Ion Plated Ag and Au Film Adherence to Si3N4 and SiC Surfaces for Increased Tribological Performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1998-01-01

    A modified dc-diode plating system, utilizing a metallic screen cage as a cathode and referred as SCREEN CAGE ION PLATING (SCIP), is used to deposit Ag and Au lubricating films on Si3N4 and SiC surfaces. When deposition is performed in Ar or N2, glow discharge, the surface displays poor adhesive strength (less than 5 MPa). A dramatic increase in adhesive strength (less than 80 MPa) is achieved when plating is performed in a reactive 50% 02 + 50% Ar glow discharge. The excited/ionized oxygen species (O2(+)/O(+) in the glow discharge contribute to the oxidation of the Si3N4 or SiC surfaces as determined by X-ray Photoelectron Spectroscopy (XTS) depth profiling. The reactively sputter-oxidized S3N4 or SiC surfaces and the activated-oxidized-metastable Ag or Au species formed in the plasma cooperatively contribute to the increased adherence. As a result, the linear thermal expansion coefficient mismatch at the interface is reduced. These lubricating Ag and Au films under sliding conditions reduce the friction coefficient by a factor of 2-1/2 to 4.

  9. Secondary ion emission from Ti, V, Cu, Ag and Au surfaces under KeV Cs + irradiation

    NASA Astrophysics Data System (ADS)

    van der Heide, P. A. W.

    2005-02-01

    Low energy mono-atomic singly charged secondary ion emissions from Ti, V, Cu, Ag and Au substrates during the initial stages of sputtering with Cs + primary ions have been studied. With the exception of the Ag - secondary ions, all exhibited exponential like correlations with the Cs induced work function changes. This, along with the lack of variations in the valence band structure around the Fermi edge, is consistent with resonance charge transfer to/from states located at the Fermi edge. The insensitivity of Ag - to work function appears to stem from the dominance of a separate ion formation process, namely charge transfer into vacant 4d states in the sputtered population, which themselves appear to be produced through collective oscillations. A similar excitation-mediated process involving different levels also appears to be active in the formation of other negatively charged transition metal ions, albeit to a much lesser degree.

  10. A new approach for the recovery of precious metals from solution and from leachates derived from electronic scrap.

    PubMed

    Macaskie, L E; Creamer, N J; Essa, A M M; Brown, N L

    2007-03-01

    A new approach is described for the recovery of precious metals (PMs: Au, Pd and Ag) with >99% efficiency from aqueous solution utilising biogas produced during the aerobic growth of Klebsiella pneumoniae. Gold was recovered from electronic scrap leachate ( approximately 95%) by this method, with some selectivity against Cu. The recovered PM solids all contained metal and sulphur as determined by energy dispersive X-ray microanalysis (EDX). X-ray powder diffraction analysis (XRD) showed no crystalline metal sulphur compounds but a crystalline palladium amine was recorded. Silver was recovered as a sulphide (found by EDX), carbonate and oxide (found by XRD). EDX analysis of the Au-precipitate showed mainly gold and sulphur, with some metallic Au(0) detected by XRD. The gold compound was shock-sensitive; upon grinding it detonated to leave a sooty black deposit.

  11. NaEuF4/Au@Ag2S nanoparticles-based fluorescence resonant transfer DNA sensor for ultrasensitive detection of DNA energy.

    PubMed

    Liu, Yuhong; Zhao, Linlin; Zhang, Jin; Zhang, Jinzha; Zhao, Wenbo; Mao, Chun

    2016-12-01

    The work investigates a new fluorescence resonance energy transfer (FRET) system using NaEuF 4 nanoparticles (NPs) and Au@Ag 2 S NPs as the energy donor-acceptor pair for the first time. The NaEuF 4 /Au@Ag 2 S NPs-based FRET DNA sensor was constructed with NaEuF 4 NPs as the fluorescence (FL) donor and Au@Ag 2 S core-shell NPs as FL acceptor. In order to find the matching energy acceptor, the amount of AgNO 3 and Na 2 S were controlled in the synthesis process to overlap the absorption spectrum of energy acceptor with the emission spectrum of energy donors. The sensitivity of FRET-based DNA sensor can be enhanced and the self-absorption of ligand as well as the background of signals can be decreased because of Eu 3+ which owns large Stokes shifts and narrow emission bands due to f-f electronic transitions of 4f shell. We obtained the efficient FRET system by studying suitable distance between the donor and acceptor. Then the FRET-based DNA sensor was used for the design of specific and sensitive detection of target DNA and the quenching efficiency (ΔFL/F 0 , ΔFL=F-F 0 ) of FL was logarithmically related to the concentration of the target DNA, ranging from 100aM to 100pM. We can realize an ultrasensitive detection of target DNA with a detection limit of 32 aM. This proposed method was feasible to analyse target DNA in real samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au.

    PubMed

    Kumagai, Takashi; Ladenthin, Janina N; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats

    2018-03-14

    Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ∼23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence

  13. Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au

    NASA Astrophysics Data System (ADS)

    Kumagai, Takashi; Ladenthin, Janina N.; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats

    2018-03-01

    Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ˜23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence

  14. Modification of the internal surface of photonic crystal fibers with Ag and Au nanoparticles for application as sensor elements

    NASA Astrophysics Data System (ADS)

    Pidenko, Pavel S.; Borzov, Victor M.; Savenko, Olga A.; Skaptsov, Alexander A.; Skibina, Yulia S.; Goryacheva, Irina Yu.; Rusanova, Tatiana Yu.

    2017-03-01

    Photonic crystal fibers (PCFs) are one of the most promising materials for biosensors construction due to their unique optical properties. The modification of PCF by noble metal nanoparticles (NPs) provides the SPR and SERS signal detection where as the application amino group-containing compounds allows efficient binding of biomolecules. In this work the internal surface of glass hollow core photonic crystal fibers (HC-PCFs) has been modified Ag and Au nanoparticles using three different approaches. PCFs were treated by: 1) mixture of NPs and precursors for silanization (tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES)); 2) alternately deposition of polyelectrolytes and NPs, 3) mixture of chitosan with NPs. The shift of local maxima in the HC-PCF transmission spectrum has been selected as a signal for estimating the amount of NPs on the HC-PCF inner surface. The most efficient techniques were the chitosan application for Ag NPs and silanization for Au NPs. The obtaining PCFs could be useful for creating biosensitive elements.

  15. A new variable temperature solution-solid interface scanning tunneling microscope.

    PubMed

    Jahanbekam, Abdolreza; Mazur, Ursula; Hipps, K W

    2014-10-01

    We present a new solution-solid (SS) interface scanning tunneling microscope design that enables imaging at high temperatures with low thermal drift and with volatile solvents. In this new design, distinct from the conventional designs, the entire microscope is surrounded in a controlled-temperature and controlled-atmosphere chamber. This allows users to take measurements at high temperatures while minimizing thermal drift. By incorporating an open solution reservoir in the chamber, solvent evaporation from the sample is minimized; allowing users to use volatile solvents for temperature dependent studies at high temperatures. The new design enables the user to image at the SS interface with some volatile solvents for long periods of time (>24 h). An increase in the nonlinearity of the piezoelectric scanner in the lateral direction as a function of temperature is addressed. A temperature dependent study of cobalt(II) octaethylporphyrin (CoOEP) at the toluene/Au(111) interface has been performed with this instrument. It is demonstrated that the lattice parameters remain constant within experimental error from 24 °C to 75 °C. Similar quality images were obtained over the entire temperature range. We report the unit cell of CoOEP at the toluene/Au(111) interface (based on two molecules per unit cell) to be A = (1.36 ± 0.04) nm, B = (2.51 ± 0.04) nm, and α = 97° ± 2°.

  16. Structure reactivity relationships during N2O hydrogenation over Au-Ag alloys: A study by field emission techniques

    NASA Astrophysics Data System (ADS)

    Jacobs, Luc; Barroo, Cédric; Gilis, Natalia; Lambeets, Sten V.; Genty, Eric; Visart de Bocarmé, Thierry

    2018-03-01

    To make available atomic oxygen at the surface of a catalyst is the key step for oxidation reactions on Au-based catalysts. In this context, Au-Ag alloys catalysts exhibit promising properties for selective oxidation reactions of alcohols: low temperature activity and high selectivity. The presence of O(ads) and its effects on the catalytic reactivity is studied via the N2O dissociative adsorption and subsequent hydrogenation. Field emission techniques are particularly suited to study this reaction: Field Ion Microscopy (FIM) and Field Emission Microscopy (FEM) enable to image the extremity of sharp metallic tips, the size and morphology of which are close to those of one single catalytic particle. The reaction dynamics is studied in the 300-320 K temperature range and at a pressure of 3.5 × 10-3 Pa. The main results are a strong structure/reactivity relationship during N2O + H2 reaction over Au-8.8 at.%Ag model catalysts. Comparison of high-resolution FIM images of the clean sample and FEM images during reaction shows a sensitivity of the reaction to the local structure of the facets, independently of the used partial pressures of both N2O and H2. This suggests a localised dissociative adsorption step for N2O and H2 with the formation of a reactive interface around the {210} facets.

  17. Enhancement of Thermoelectric Properties in SnTe with (Ag, In) Co-Doping

    NASA Astrophysics Data System (ADS)

    Li, J. Q.; Yang, N.; Li, S. M.; Li, Y.; Liu, F. S.; Ao, W. Q.

    2018-01-01

    A lead-free SnTe compound shows good electrical property but high thermal conductivity, resulting in a low figure-of-merit ZT. We present a significant enhancement of the thermoelectric properties of p-type SnTe with (Ag, In) co-doping. The Ag and In co-doped Sn1-2 x Ag x In x Te ( x = 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) are prepared by melting, quenching and spark plasma sintering. A homogeneous NaCl-type SnTe-based solid solution forms in the alloys at low Ag and In content ( x ≤ 0.02), while a AgInTe2 minor secondary phase precipitates for higher x. Similar to In doping, the introduction of Ag and In at Sn sites in SnTe considerably increases the Seebeck coefficient and power factor by creating resonant levels near the Fermi energy. In addition, the Ag and In solute atoms in the SnTe-based solid solution and the minor secondary phase AgInTe2 enhance phonon scattering and thus significantly reduce the carrier and lattice thermal conductivity. Ag and In co-doping shows a collective advantage on the overall thermoelectric performance of SnTe or In-doped SnTe. A maximum ZT of 1.23 at 873 K and average ZT of 0.58 can be obtained in the alloy Sn1-2 x Ag x In x Te with x = 0.03.

  18. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    NASA Astrophysics Data System (ADS)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  19. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys.

    PubMed

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-19

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn 2 ][Ir(NO 2 ) 6 ], [AuEn 2 ][Ir(NO 2 ) 6 ] х [Rh(NO 2 ) 6 ] 1-х and [AuEn 2 ][Rh(NO 2 ) 6 ]. The precursors employed contain all desired metals 'mixed' at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr 0.75 Rh 0.25 , AuIr 0.50 Rh 0.50 and AuIr 0.25 Rh 0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the 'conversion chemistry' mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  20. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  1. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.

    PubMed

    Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping

    2014-10-01

    p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.

  2. Mechanical properties and grindability of experimental Ti-Au alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Okuno, Osamu

    2004-06-01

    Experimental Ti-Au alloys (5, 10, 20 and 40 mass% Au) were made. Mechanical properties and grindability of the castings of the Ti-Au alloys were examined. As the concentration of gold increased to 20%, the yield strength and the tensile strength of the Ti-Au alloys became higher without markedly deteriorating their ductility. This higher strength can be explained by the solid-solution strengthening of the a titanium. The Ti-40%Au alloy became brittle because the intermetallic compound Ti3Au precipitated intensively near the grain boundaries. There was no significant difference in the grinding rate and grinding ratio among all the Ti-Au alloys and the pure titanium at any speed.

  3. Sandwiching spherical 1,2-dioleoyltrimethylammoniumpropane liposome in gold nanoparticle on solid transducer for electrochemical ultrasensitive DNA detection and transfection.

    PubMed

    Shankara Narayanan, Jeyaraman; Bhuvana, Mohanlal; Dharuman, Venkataraman

    2014-08-15

    Cationic N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium propane (DOTAP) liposome is spherically sandwiched in gold nanoparticle (abbreviated as sDOTAP-AuNP) onto a gold electrode surface. The sDOTAP-AuNP is applied for electrochemical label free DNA sensing and Escherichia coli cell transfection for the first time. Complementary target (named as hybridized), non-complementary target (un-hybridized) and single base mismatch target (named as SMM) hybridized surfaces are discriminated sensitively and selectively in presence of [Fe(CN)6](3-/4-). Double strand specific intercalator methylene blue in combination with [Fe(CN)6](3-) is used to enhance target detection limit down to femtomolar concentration. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV) techniques are used for characterizing DNA sensing. High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) techniques are used to confirm the spherical nature of the sDOTAP-AuNP-DNA composite in solution and on the solid surface. DNA on the sDOTAP-ssDNA is transferred by potential stripping method (+0.2V (Ag/AgCl)) into buffer solution containing E. coli cells. The transfection is confirmed by the contrast images for the transfected and non-transfected cell from Confocal Laser Scanning Microscopy (CLSM). The results demonstrate effectiveness of the electrochemical DNA transfection method developed and could be applied for other cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Radical-induced generation of small silver particles in SPEEK/PVA polymer films and solutions: UV-Vis, EPR, and FT-IR studies.

    PubMed

    Korchev, A S; Konovalova, T; Cammarata, V; Kispert, L; Slaten, L; Mills, G

    2006-01-03

    The present study is centered on the processes involved in the photochemical generation of nanometer-sized Ag particles via illumination at 350 nm of aqueous solutions and cross linked films containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol). Optical and electron paramagnetic resonance experiments, including electron nuclear double resonance data, proved conclusively that the photogenerated chromophore exhibiting a band with lambda(max) = 565 nm is an alpha-hydroxy aromatic (ketyl) radical of the polymeric ketone. This reducing species was produced by illumination of either solutions or films, but the radical lifetime extended from minutes in the fluid phase to hours in the solid. Direct evidence is presented that this long-lived chromophore reduces Ag(I), Cu(II), and Au(III) ions in solution. A rate constant of k = 1.4 x 10(3) M(-)(1) s(-)(1) was obtained for the reduction of Ag(+) by the ketyl radical from the post-irradiation formation of Ag crystallites. FTIR results confirmed that the photoprocess yielding polymeric ketyl radicals involves a reaction between the macromolecules. The photochemical oxidation of the polymeric alcohol, as well as the formation of light-absorbing macromolecular products and polyols, indicates that the sulfonated polyketone experienced transformations similar to those encountered during illumination of the benzophenone/2-propanol system.

  5. Episodic formation of the world-class Waihi epithermal Au-Ag vein system, Hauraki Goldfield, New Zealand

    USGS Publications Warehouse

    Gasston, Erin; Mauk, Jeffrey L.; Cosca, Michael A.; Morgan, Leah; Hall, Chris M.

    2017-01-01

    The world-class Waihi vein system in New Zealand has produced more than 248,400 kg Au and 1.43 million kg Ag. New high-precision 40Ar/39Ar dates of adularia from different veins show that some veins formed at different times (6.15 Ma Martha vs. 5.83 and 5.85 Ma Empire and Welcome, respectively), even though they have similar mineralogy. The Martha vein formed over a period of approximately 150,000 years. The Moonlight vein, which has a different ore mineral assemblage, appears to have formed over a longer time interval that spanned formation of the Martha, Welcome, and Empire veins. These dates suggest that some veins in the Waihi vein system formed relatively quickly during only part of the lifetime of the hydrothermal system, whereas other veins may have formed over longer periods of time. However, the Au endowment of the Martha vein exceeds the Au endowment of the Moonlight vein, indicating that the total lifetime of the vein-forming hydrothermal system does not determine metal endowment.

  6. Interaction of Au, Ag, and Bi ions with Ba2YCu3O(7-y) - Implications for superconductor applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    Results are presented on the reactions of Au, Ag, and Bi ions with Ba2YCu3O(7-y) oxides and on the properties of the resultant materials. The results indicate that Au(3+) structural chemistry makes gold an excellent candidate for multiphase structures of the Ba2Y(Cu/1-x/Au/x/)3O(7-y)-type substituted superconductors. Silver is structurally and chemically compatible with the perovskite structure, but when it forms a second phase, it does so without the destruction of the superconducting phase, making silver a useful metal for metal/ceramic applications. On the other hand, bismuth was shown to degrade Tc phase or to form other phases, indicating that it may not be useful in applications with rare-earth-based superconductors.

  7. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions

    PubMed Central

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments. PMID:22163467

  8. Fabrication and performance of all-solid-state chloride sensors in synthetic concrete pore solutions.

    PubMed

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  9. Electronic Absorption and MCD Spectra for Pd(AuPPh(3))(8)(2+), Pt(AuPPh(3))(8)(2+), and Related Platinum-Centered Gold Cluster Complexes.

    PubMed

    Adrowski, Michael J.; Mason, W. Roy

    1997-03-26

    Electronic absorption and 7.0 T magnetic circular dichroism (MCD) spectra in the UV-vis region, 1.6 to approximately 4.0 &mgr;m(-)(1) (1 &mgr;m(-)(1) = 10(4) cm(-)(1)) are reported for [Pd(AuPPh(3))(8)](NO(3))(2) and [Pt(AuPPh(3))(8)](NO(3))(2) in acetonitrile solutions at room temperature. The MCD spectra are better resolved than the absorption spectra and consist of both A and B terms. The spectra are interpreted in terms of D(4)(d)() skeletal geometry and MO's that are approximated by 5s and 6s orbitals for Pd and Pt/Au atoms, respectively. The lowest energy excited configurations and states are attributed to intraframework (IF) Au(8)(2+) transitions. Evidence is also presented for Pt 5d --> Au 6s transitions in the MCD spectra for Pt(AuPPh(3))(8)(2+). Acetonitrile solution absorption and MCD spectra for the related Pt-centered cluster complexes [Pt(CO)(AuPPh(3))(8)](NO(3))(2), [Pt(AuP(p-tolyl)(3))(8)](NO(3))(2), [Pt(CuCl)(AuPPh(3))(8)](NO(3))(2), [Pt(AgNO(3))(AuPPh(3))(8)](NO(3))(2), [Pt(Hg)(2)(AuPPh(3))(8)](NO(3))(2), [Pt(HgCl)(2)(AuPPh(3))(8)](BF(4))(2), and [Pt(HgNO(3))(2)(AuPPh(3))(8)](BF(4))(2) are also reported and interpreted within the context of the model developed for the M(AuPPh(3))(8)(2+) complexes.

  10. Synthesis of Two-Electron Bimetallic Cu-Ag and Cu-Au Clusters by using [Cu13 (S2 CNn Bu2 )6 (C≡CPh)4 ]+ as a Template.

    PubMed

    Silalahi, Rhone P Brocha; Chakrahari, Kiran Kumarvarma; Liao, Jian-Hong; Kahlal, Samia; Liu, Yu-Chiao; Chiang, Ming-Hsi; Saillard, Jean-Yves; Liu, C W

    2018-03-02

    Atomically precise Cu-rich bimetallic superatom clusters have been synthesized by adopting a galvanic exchange strategy. [Cu@Cu 12 (S 2 CN n Bu 2 ) 6 (C≡CPh) 4 ][CuCl 2 ] (1) was used as a template to generate compositionally uniform clusters [M@Cu 12 (S 2 CN n Bu 2 ) 6 (C≡CPh) 4 ][CuCl 2 ], where M=Ag (2), Au (3). Structures of 1, 2 and 3 were determined by single crystal X-ray diffraction and the results were supported by ESI-MS. The anatomies of clusters 1-3 are very similar, with a centred cuboctahedral cationic core that is surrounded by six di-butyldithiocarbamate (dtc) and four phenylacetylide ligands. The doped Ag and Au atoms were found to preferentially occupy the centre of the 13-atom cuboctahedral core. Experimental and theoretical analyses of the synthesized clusters revealed that both Ag and Au doping result in significant changes in cluster stability, optical characteristics and enhancement in luminescence properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds.

    PubMed

    González-Valdez, Eduardo; Alarcón, Alejandro; Ferrera-Cerrato, Ronald; Vega-Carrillo, Héctor René; Maldonado-Vega, María; Salas-Luévano, Miguel Ángel; Argumedo-Delira, Rosalba

    2018-06-15

    This study evaluated the ability of Brassica napus for extracting gold (Au), silver (Ag) and copper (Cu) from a mine tailings, with the inoculation of two Aspergillus niger strains, and the application of ammonium thiocyanate (NH 4 SCN) or ammonium thiosulfate [(NH 4 ) 2 S 2 O 3 ]. After seven weeks of growth inoculated or non-inoculated plants were applied with 1 or 2 g kg -1 of either NH 4 SCN or (NH 4 ) 2 S 2 O 3 , respectively. Eight days after the application of the chemical compounds, plants were harvested for determining the total dry biomass, and the content of Au, Ag, and Cu in plant organs. Application of (NH 4 ) 2 S 2 O 3 or NH 4 SCN resulted in enhanced Au-accumulation in stems (447% and 507%, respectively), while either (NH 4 ) 2 S 2 O 3 +Aspergillus, or NH 4 SCN increased the Au-accumulation in roots (198.5% and 404%, respectively) when compared to the control. Treatments with (NH 4 ) 2 S 2 O 3 or (NH 4 ) 2 S 2 O 3 +Aspergillus significantly increased (P ≤ 0.001) the accumulation of Ag in leaves (677% and 1376%, respectively), while NH 4 SCN + Aspergillus, and (NH 4 ) 2 S 2 O 3 enhanced the accumulation in stems (7153% and 6717.5%). The Ag-accumulation in roots was stimulated by NH 4 SCN+ Aspergillus, and (NH 4 ) 2 S 2 O 3 + Aspergillus (132.5% and 178%, respectively), when compared to the control. The combination of NH 4 SCN+Aspergillus significantly enhanced the Cu-accumulation in leaves (228%); whereas NH 4 SCN+ Aspergillus, or (NH 4 ) 2 S 2 O 3 + Aspergillus resulted in greater accumulation of Cu in stems (1233.5% and 1580%, respectively) than the control. Results suggest that either NH 4 SCN or (NH 4 ) 2 S 2 O 3 (with or without Aspergillus) improved the accumulation of Au and Ag by B. napus. Accumulation of Au and Ag in plant organs overpassed the hyperaccumulation criterion (> 1 mg kg -1 of plant biomass); whereas Cu-accumulation in stems and roots also overpassed such criterion (> 1000 mg kg -1 ) by applying

  12. End-Member Formulation of Solid Solutions and Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtner, Peter C.

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less

  13. Frictional behavior and adhesion of Ag and Au films applied to aluminum oxide by oxygen-ion assisted Screen Cage Ion Plating (SCIP)

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.

    1994-01-01

    A modified dc-diode ion plating system, by utilizing a metallic screen cage as a cathode, is introduced for coating nonconductors such as ceramics. Screen cage ion plating (SCIP) is used to apply Ag and Au lubricating films on aluminum oxide surfaces. This process has excellent ability to coat around corners to produce three-dimensional coverage of the substrate. A dramatic increase in adhesion is achieved when plating is performed in a reactive 50 percent O2 - 50 percent Ar glow discharge compared to the adhesion when plating is performed in 100 percent Ar. The presence of oxygen ion assistance contributes to the excellent adhesion as measured in a pull-type adhesion tester. The Ag and Au film adhesion is significantly increased (less than 70MPa) and generally exceeds the cohesion of the substrate such that portions of the alumina are pulled out.

  14. Preparation, Spectroscopic Characterization, and Frontier MO Study of the Heteronuclear Luminescent [Pt(2)Au(2)(dmb)(2)(PPh(3))(4)](PF(6))(2) Cluster (dmb = 1,8-Diisocyano-p-menthane). A Cluster with a Formal Au(0)-Au(0) Bond Encapsulated inside a "Pt(2)(dmb)(2)(2+) " Fragment.

    PubMed

    Zhang, Tianle; Drouin, Marc; Harvey, Pierre D.

    1999-11-01

    The title compound is prepared from the direct reaction of Pt(2)(dba)(3) (dba = dibenzylideneacetone) and [Au(PPh(3))(2)](PF(6)) in the presence of 1,8-diisocyano-p-methane (dmb), with Pt(2)(dmb)(2)Cl(2), [Pt(4)(dmb)(4)(PPh(3))(2)](PF(6))(2), and (PPh(3))AuCl being formed as parallel products. X-ray crystallography reveals the presence of a quasi-linear PPh(3)Au-AuPPh(3) fragment encapsulated inside a "Pt(2)(dmb)(2)(2+)" ring which is axially coordinated with two PPh(3) ligands. The d(AuAu) is 2.5977(6) Å and is indicative of a strong Au-Au single bond. The IR nu(CN) data reveal that the Pt oxidation state is I, which places the Au oxidation state at 0. The PtAu distances are 2.8422(5) and 2.8082(5) Å. The Raman-active nu(Au(2)), nu(PtAu) (b(2g) + a(g)), nu(PtP), nu(AuP), and nu(PtC) are found at 121.2, approximately 100, 85.5, 162.1, 183.1, and 457.2, and 440.9 cm(-)(1), respectively. The PtAu (0.67 mdyn Å(-)(1)) and Au(2) (1.21 mdyn Å(-)(1)) force constants (F) confirm the presence of medium PtAu and strong Au(2) bonding interactions. The absorption spectra are characterized by strong bands at lambda(max) (epsilon, M(-1) cm(-1)) at 316 (32 300), 366 (37 800), and 418 nm (21 500) and lower intensity features at 516 (2860) and 655 nm (834). The cluster is luminescent at low temperatures (solid and frozen glasses), and in the solid state at room temperature, and exhibits an emission band at approximately 875 nm, and an emission lifetime, tau(e), of 4.4 +/- 0.4 ns (solvent = butyronitrile, T = 77 K).

  15. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    NASA Astrophysics Data System (ADS)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  16. Enhanced photocatalytic performance of BiVO4 in aqueous AgNO3 solution under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-03-01

    Monoclinic-phase bismuth vanadate (BiVO4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO3 to BiVO4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO4/Ag+. Superior photocatalytic performance was obtained when BiVO4 was mixed with 0.01%(w/v) AgNO3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO4 or AgNO3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron-hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag+ and the formation of a BiVO4/Ag heterojunction. The synergic effect between BiVO4 and Ag+ was discovered to be unique. BiVO4/Ag+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO4 and a R6G solution to detect Ag+ ions in water was discovered.

  17. Galvanic corrosion behaviors of Cu connected to Au on a printed circuit board in ammonia solution

    NASA Astrophysics Data System (ADS)

    Oh, SeKwon; Kim, YoungJun; Jung, KiMin; Park, MiSeok; Shon, MinYoung; Kwon, HyukSang

    2018-01-01

    During etching treatments of printed circuit board (PCB) with ammnioa solution, galvanic corrosion occurs between electrically connected gold and copper, and resulting in unexpected over-etching problems. Herein, we determine corrosion of galvanic coupled Cu to Au quantitatively in ammonia solutions, and evaluate factors influencing corrosion of galvanic coupled Cu to Au (i.e., area ratio of anode to cathode and stirring speed). The difference of the corrosion rate (Δi = icouple, (Cu-Au)-icorr, Cu) of Cu connected to Au (117 μA/cm2) and of single Cu (86 μA/cm2) infers the amount of over-etching of Cu resulting from galvanic corrosion in ammonia solution (Δi = 0.31 μA/cm2). As the stirring speed increases from 0 to 400 rpm, the corrosion rate of galvanic coupled Cu to Au increases from 36 to 191 μA/cm2. Furthermore, we confirm that an increase in the area ratio (Au/Cu) from 0.5 to 25 results in a higher rate of corrosion of Cu connected to Au. The corrosion rate of galvanic coupled Cu to Au is approximately 20 times higher when the area ratio of Au to Cu is 25 (1360 μA/cm2) than when the ratio is 0.5 (67 μA/cm2).

  18. Development of a complex of instrumental nuclear-physical methods to detect PGE, Re, Au, and Ag in hard-to-analyze rocks and complex ores

    NASA Astrophysics Data System (ADS)

    Kolmogorov, Yu. P.; Mezentsev, N. A.; Mironov, A. G.; Parkhomenko, V. S.; Spiridonov, A. M.; Shaporenko, A. D.; Yusupov, T. S.; Zhmodik, S. M.; Zolotarev, K. V.; Anoshin, G. N.

    2009-05-01

    A system of methods to detect platinum group elements (PGE): Re, Au, and Ag in hard-to-analyze rocks and complex ores has been developed. It applies the SRXRF for Ru, Rh, Pd, and Ag and the INAA method for Os, Ir, Pt and Ag and implies mechanoactivation of probes to study. The results of measurement of standard samples of carbonaceous rocks and ores in order to PGE, gold, and silver confirm the possibility of detecting some of the above-listed elements with a detection limit of 10 ppb.

  19. Matrix infrared spectroscopy and quantum-chemical calculations for the coinage-metal fluorides: comparisons of Ar-AuF, Ne-AuF, and Molecules MF2 and MF3.

    PubMed

    Wang, Xuefeng; Andrews, Lester; Brosi, Felix; Riedel, Sebastian

    2013-01-21

    The reactions of laser-ablated Au, Ag, and Cu atoms with F(2) in excess argon and neon gave new absorptions in the M-F stretching region of their IR spectra, which were assigned to metal-fluoride species. For gold, a Ng-AuF bond was identified in mixed neon/argon samples. However, this bonding was much weaker with AgF and CuF. Molecules MF(2) and MF(3) (M=Au, Ag, Cu) were identified from the isotopic distribution of the Cu and Ag atoms, comparison of the frequencies for three metal fluorides, and theoretical frequency calculations. The AuF(5) molecule was characterized by its strongest stretching mode and theoretical frequency calculations. Additional evidence was observed for the formation of the Au(2) F(6) molecule. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com

    2016-07-06

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO{sub 3} as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films weremore » characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.« less

  1. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO2 nanoparticles and surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Chao; Xu, Min-Min; Fang, Cong-Wei; Jin, Qi; Yuan, Ya-Xian; Yao, Jian-Lin

    2017-03-01

    Traditional "sandwich" structure immunoassay is mainly based on the self-assembly of "antibody on solid substrate-antigen-antibody with nanotags" architectures, and the sensitivity of this strategy is critically depended on the surface enhanced Raman scattering (SERS) activities and stability of nanotags. Therefore, the rational design and fabrication on the SERS nanotags attracts the common interests to the bio-related detecting and imaging. Herein, silica encapsulated Au with mercaptobenzoic acid (MBA) core-shell nanoparticles (Au-MBA@SiO2) are fabricated instead of the traditional naked Au or Ag nanoparticles for the SERS-based immunoassay on human and mouse IgG antigens. The MBA molecules facilitate the formation of continuous pinhole-free silica shell and are also used as SERS labels. The silica shell is employed to protect MBA labels and to isolate Au core from the ambient solution for blocking the aggregation. This shell also played the similar role to BSA in inhibiting the nonspecific bindings, which allowed the procedures for constructing "sandwich" structures to be simplified. All of these merits of the Au-MBA@SiO2 brought the high performance in the related immunoassay. Benefiting from the introduction of silica shell to encapsulate MBA labels, the detection sensitivity was improved by about 1- 2 orders of magnitude by comparing with the traditional approach based on naked Au-MBA nanoparticles. This kind of label-embedded core-shell nanoparticles could be developed as the versatile nanotags for the bioanalysis and bioimaging.

  2. Comparison of GaP nanowires grown from Au and Sn vapor-liquid-solid catalysts as photoelectrode materials

    NASA Astrophysics Data System (ADS)

    Lee, Sudarat; Wen, Wen; Cheek, Quintin; Maldonado, Stephen

    2018-01-01

    Gallium phosphide (GaP) nanowire film electrodes have been prepared via solid sublimation of GaP powder using both gold (Au) and tin (Sn) nanoparticles as the vapor-liquid-solid (VLS) catalysts on Si(1 1 1) and GaP(1 1 1)B substrates. The resultant GaP nanowires are compared and contrasted in terms of structures and photoactivity in photoelectrochemical half cells. Raman spectra implicated a difference in the surface condition of the two types of nanowires. Complete wet etching removal of metallic VLS catalysts from the as-prepared GaP nanowires was possible with Sn catalysts but not with Au catalysts. The photoresponses of both Sn- and Au-seeded GaP nanowire films were collected and examined under 100 mW cm-2 white light illumination. Au-seeded nanowire films exhibited strong n-type characteristics when measured in nonaqueous electrolyte with ferrocene/ferricenium as the redox species while Sn-seeded nanowires showed behavior consistent with degenerate n-type doping.

  3. The alloying effect and AgCl-directing growth for synthesizing a trimetallic nanoring with improved SERS

    NASA Astrophysics Data System (ADS)

    Han, Shuhua; Zhou, Guangju; Fu, Yunzhi; Ma, Ying; Xu, Li; Zou, Chao; Chen, Wei; Yang, Yun; Huang, Shaoming

    2015-12-01

    We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl2]-/Au because of the alloying effect, resulting in the dissolved O2 molecules that serve as an effective etchant for oxidizing Au to Au(i). Ascorbic acid (AA) and chloroplatinic acid (H2PtCl6) are weak acids which can accelerate the etching by increasing the concentration of H+. The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H2PtCl6 here via their complexing interaction. AA reduces Pt(iv) and Ag(i) to atoms which grow on {100} facets. The formed Pt/Ag layer changes the etching direction from along [100] to [111] and generates the TAAPN. Besides, it has been noted that the TAAPNs exhibit good Surface Enhanced Raman Scattering (SERS) performance.We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl2]-/Au because of the alloying effect, resulting in the dissolved O2 molecules that serve as an effective etchant for oxidizing Au to Au(i). Ascorbic acid (AA) and chloroplatinic acid (H2PtCl6) are weak acids which can accelerate the etching by increasing the concentration of H+. The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H2PtCl6 here via their complexing interaction. AA reduces Pt(iv) and Ag(i) to atoms which grow on {100} facets. The formed

  4. Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing.

    PubMed

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul

    2012-10-05

    Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.

  5. Antireflective coating for AgBr-TlI and AgBr-TlBr0.46I0.54 solid solution crystals

    NASA Astrophysics Data System (ADS)

    Korsakov, Alexandr; Salimgareev, Dmitrii; Lvov, Alexandr; Zhukova, Liya

    2016-12-01

    We researched the process of ultraviolet (UV) irradiation for the crystals of AgBr-TlI and AgBr-TlBr0.46I0.54 systems. It was found that on the surface of irradiated crystals, the film is formed and film grain size depends on exposure time and crystal composition. This film proved to gain the transmission by reducing the reflection from its surface within the 8.0-27.0 μm range.

  6. Synthesis and characterization of Ag+ ion conducting glassy electrolytes

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh; Bhatt, Alok; Chandra, Archana

    2013-07-01

    Synthesis and characterization of new Ag+ ion conducting glassy systems: x[0.75AgI:0.25AgC1]: (1 - x)[Ag2O:P2O5], where 0.1 < x < 1 in molar weight fraction, are reported. The present glassy electrolytes have been synthesized by melt-quench technique using a high-speed twin roller-quencher. An alternate host salt: "quenched [0.75AgI:0.25AgC1] mixed system/solid solution", has been used in place of the traditional host AgI. The compositional dependence conductivity studies on the glassy systems: x[0.75AgI:0.25AgC1]:(1 - x)[Ag2O:P2O5] as well as xAgI:(1 - x)[Ag2O:P2O5] prepared identically, indicated that the composition at x = 0.75 exhibited the highest room temperature conductivity (σ ~ 5.5 x 10-3 S cm-1). The composition: 0.75[0.75AgI:0.25AgC1]:0.25[Ag2O:P2O5] has been referred to as optimum conducting composition (OCC). The some basic ion transport parameters viz. ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic drift velocity (vd), ion transference number (tion) and activation energy (Ea) values have been characterized with the help of various experimental techniques. A solid state battery was fabricated and its basic cell parameters calculated.

  7. The Effect of Dielectric Constants on Noble Metal/Semiconductor SERS Enhancement: FDTD Simulation and Experiment Validation of Ag/Ge and Ag/Si Substrates

    PubMed Central

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-01-01

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 109) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 107 and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones. PMID:24514430

  8. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates.

    PubMed

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-02-11

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

  9. Environment-resistive coating for the thin-film-based superconducting fault-current limiter Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Kondo, W.; Tsukada, K.; Sohma, M.; Yamaguchi, I.; Kumagai, T.; Manabe, T.; Arai, K.; Yamasaki, H.

    2010-02-01

    We have studied environment-resistive coatings (ERC) for the thin-film-based superconducting fault-current limiter (SFCL) Ag/Au-Ag/YBa 2Cu 3O 7/CeO 2/Al 2O 3. We evaluated nine candidate ERC materials by two accelerating-environment tests, and revealed that the shellac- and the fluorine-resin have a high environmental resistance. Especially, the shellac resin almost completely protected Jc of an element exposed to 60 °C saturated water vapor for 2 h (3.4->3.2 MA/cm 2). We also performed a practical operation test of SFCL using an element half covered by shellac, and found that the ERC does not diminish the current limiting properties similarly to the previous results of the Teflon-coated SFCL [1].

  10. Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cui, Senlin; Rao, Weifeng

    2018-07-01

    A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.

  11. Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cui, Senlin; Rao, Weifeng

    2018-05-01

    A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.

  12. Gold(I) Complexes with N-Donor Ligands. 2.(1) Reactions of Ammonium Salts with [Au(acac-kappaC(2))(PR(3))] To Give [Au(NH(3))L](+), [(AuL)(2)(&mgr;(2)-NH(2))](+), [(AuL)(4)(&mgr;(4)-N)](+), or [(AuL)(3)(&mgr;(3)-O)](+). A New and Facile Synthesis of [Au(NH(3))(2)](+) Salts. Crystal Structure of [{AuP(C(6)H(4)OMe-4)(3)}(3)(&mgr;(3)-O)]CF(3)SO(3).

    PubMed

    Vicente, José; Chicote, María-Teresa; Guerrero, Rita; Jones, Peter G.; Ramírez De Arellano, M. Carmen

    1997-09-24

    The complexes [Au(acac-kappaC(2))(PR(3))] (acac = acetylacetonate, R = Ph, C(6)H(4)OMe-4) react with (NH(4))ClO(4) to give amminegold(I), [Au(NH(3))(PR(3))]ClO(4), amidogold(I), [(AuPR(3))(2)(&mgr;(2)-NH(2))]ClO(4), or nitridogold(I), [(AuPR(3))(4)(&mgr;(4)-N)]ClO(4), complexes, depending on the reaction conditions. Similarly, [Au(acac-kappaC(2))(PPh(3))] reacts with (NH(3)R')OTf (OTf = CF(3)SO(3)) (1:1) or with [H(3)N(CH(2))(2)NH(2)]OTf (1:1) to give (amine)gold(I) complexes [Au(NH(2)R')(PPh(3))]OTf (R' = Me, C(6)H(4)NO(2)-4) or [(AuPPh(3))(2){&mgr;(2)-H(2)N(CH(2))(2)NH(2)}](OTf)(2), respectively. The ammonium salts (NH(2)R'(2))OTf (R' = Et, Ph) react with [Au(acac-kappaC(2))(PR(3))] (R = Ph, C(6)H(4)OMe-4) (1:2) to give, after hydrolysis, the oxonium salts [(AuPR(3))(3)(&mgr;(3)-O)]OTf (R = Ph, C(6)H(4)OMe-4). When NH(3) is bubbled through a solution of [AuCl(tht)] (tht = tetrahydrothiophene), the complex [Au(NH(3))(2)]Cl precipitates. Addition of [Au(NH(3))(2)]Cl to a solution of AgClO(4) or TlOTf leads to the isolation of [Au(NH(3))(2)]ClO(4) or [Au(NH(3))(2)]OTf, respectively. The crystal structure of [(AuPR(3))(3)(&mgr;(3)-O)]OTf.Me(2)CO (R = C(6)H(4)OMe-4) has been determined: triclinic, space group P&onemacr;, a = 14.884(3) Å, b = 15.828(3) Å, c = 16.061(3) Å, alpha = 83.39(3) degrees, beta = 86.28(3) degrees, gamma = 65.54(3) degrees, R1 (wR2) = 0.0370 (0.0788). The [(AuPR(3))(3)(&mgr;(3)-O)](+) cation shows an essentially trigonal pyramidal array of three gold atoms and one oxygen atom with O-Au-P bond angles of ca. 175 degrees and Au.Au contacts in the range 2.9585(7)-3.0505(14) Å. These cations are linked into centrosymmetric dimers through two short Au.Au [2.9585(7), 3.0919(9) Å] contacts. The gold atoms of the dimer form a six-membered ring with a chair conformation.

  13. Structural, (197)Au Mössbauer and solid state (31)P CP/MAS NMR studies on bis (cis-bis(diphenylphosphino)ethylene) gold(I) complexes [Au(dppey)(2)]X for X = PF(6), I.

    PubMed

    Healy, Peter C; Loughrey, Bradley T; Bowmaker, Graham A; Hanna, John V

    2008-07-28

    (197)Au Mössbauer spectra for the d(10) gold(i) phosphine complexes, [Au(dppey)(2)]X (X = PF(6), I; dppey = (cis-bis(diphenylphosphino)ethylene), and the single crystal X-ray structure and solid state (31)P CPMAS NMR spectrum of [Au(dppey)(2)]I are reported here. In [Au(dppey)(2)]I the AuP(4) coordination geometry is distorted from the approximately D(2) symmetry observed for the PF(6)(-) complex with Au-P bond lengths 2.380(2)-2.426(2) A and inter-ligand P-Au-P angles 110.63(5)-137.71(8) degrees . Quadrupole splitting parameters derived from the Mössbauer spectra are consistent with the increased distortion of the AuP(4) coordination sphere with values of 1.22 and 1.46 mm s(-1) for the PF(6)(-) and I(-) complexes respectively. In the solid state (31)P CP MAS NMR spectrum of [Au(dppey)(2)]I, signals for each of the four crystallographically independent phosphorus nuclei are observed, with the magnitude of the (197)Au quadrupole coupling being sufficiently large to produce a collapse of (1)J(Au-P) splitting from quartets to doublets. The results highlight the important role played by the counter anion in the determination of the structural and spectroscopic properties of these sterically crowded d(10) complexes.

  14. 197 Au Mössbauer study of the gold species adsorbed on carbon from cyanide solutions

    NASA Astrophysics Data System (ADS)

    Kongolo, K.; Bahr, A.; Friedl, J.; Wagner, F. E.

    1990-04-01

    The gold species present on activated carbon after adsorption from solutions of Au(CN)2 - have been studied by197Au Mössbauer spectroscopy as a function of the pH value of the solution, the loading of the carbon, the coadsorption of polyvalent cations, and the treatment of the samples after adsorption. The gold was found to be adsorbed mainly as Au(CN)2 -. Coadsorbed polyvalent cations (Ca²+, Gd³+) have no influence on the Mössbauer parameters of the adsorbed gold complex. After adsorption from acidic solutions (pH ≲ 4), one finds a substantial amount of adsorbed gold with Mössbauer parameters similar to those of crystalline AuCN. Presumably, this gold is bound in Aux(CN)x+1 oligomers which form during drying. An additional product with Mössbauer parameters close to those of KAu(CN)2Cl2 was observed on dried samples after adsorption at pH 1. A minor gold species with an uncommonly small electric quadrupole splitting was found on wet carbons but disappeared on drying.

  15. Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)

    NASA Astrophysics Data System (ADS)

    Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.

    2013-12-01

    The Patricia Zn-Pb-Ag ore deposit is located within the Paguanta mining project, situated at the northern end of the Andean Oligocene Porphyry Copper Belt of Chile. The sulfide mineralization occurs as W-E oriented veins hosted in volcanic rocks, mainly andesite (pyroclastic, ash and lavas), of Upper Cretaceous to Middle Tertiary age. The ore mineralogy (obtained by EMPA analyses) comprises in order of abundance, pyrite, sphalerite (5.5 - 10.89 wt % Fe, 9.8-19 % molar FeS and 0.52 wt % Cd), galena, arsenopyrite, chalcopyrite and Ag-bearing sulfosalts. The veins show a zoned and banded internal structure with pyrite at the edges and sphalerite in the center. The Ag occurs mostly as Ag-Cu-Sb sulfosalts, in order of abundance: series freibergite - argentotennantite -polybasite and stephanite. Other minor Ag phases such as argentite, pyrargirite and diaphorite were also identified. These Ag phases are typically associated with the base-metal sulfides. Freibergite occurs filling voids within sphalerite, chalcopyrite and at the contact between sphalerite and galena. Polybasite, stephanite, pyrargirite and argentite are mostly in close association with freibergite. In the case of diaphorite, it commonly occurs filling voids between galena crystals or as inclusions within galena. Some minor Ag-bearing sulfosalts are also identified between pyrite crystals. The alteration minerals are dominated by chlorite, illite and kaolinite. The gangue minerals consist of quartz and carbonates identified by XRD as kutnahorite. We obtained linear correlation statistically significant only for Ag, As Au, Cd, Cu, Pb, Sb and Zn and therefore we generated an enhanced scatter plot matrix of these elements. Bulk rock analyses (ICP/MS and XRF) of drill cores show that Ag is strongly and positively correlated with Pb and As, moderately with Cd, Sb, Au and Zn and weakly with Cu, while Au is moderately and positively correlated with Ag, As, Cd, Sb and Zn and weakly with Cu and Pb. These results

  16. Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor.

    PubMed

    Xu, Jian-Long; Liu, Yan-Hua; Gao, Xu; Sun, Yilin; Shen, Su; Cai, Xinlei; Chen, Linsen; Wang, Sui-Dong

    2017-08-23

    Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (R S ∼ 2.0 Ω sq -1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.

  17. Solid-state diffusion-controlled growth of the phases in the Au-Sn system

    NASA Astrophysics Data System (ADS)

    Baheti, Varun A.; Kashyap, Sanjay; Kumar, Praveen; Chattopadhyay, Kamanio; Paul, Aloke

    2018-01-01

    The solid state diffusion-controlled growth of the phases is studied for the Au-Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.

  18. New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO2 core-shell assemblies

    NASA Astrophysics Data System (ADS)

    Ledeuil, J. B.; Uhart, A.; Soulé, S.; Allouche, J.; Dupin, J. C.; Martinez, H.

    2014-09-01

    This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (~12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming

  19. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    PubMed

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  20. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  1. Composition distributions in FePt(Au) nanoparticles

    NASA Astrophysics Data System (ADS)

    Srivastava, C.; Nikles, D. E.; Harrell, J. W.; Thompson, G. B.

    2010-08-01

    Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe44Pt45Au11, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.

  2. Noble gas data from Goldfield and Tonopah epithermal Au-Ag deposits, ancestral Cascades Arc, USA: Evidence for a primitive mantle volatile source

    USGS Publications Warehouse

    Manning, Andrew H.; Hofstra, Albert H.

    2017-01-01

    The He, Ne, and Ar isotopic composition of fluid inclusions in ore and gangue minerals were analyzed to determine the source of volatiles in the high-grade Goldfield and Tonopah epithermal Au-Ag deposits in southwestern Nevada, USA. Ar and Ne are mainly atmospheric, whereas He has only a minor atmospheric component. Corrected 3He/4He ratios (with atmospheric He removed) range widely from 0.05 to 35.8 times the air 3He/4He ratio (RA), with a median of 1.43 RA. Forty-one percent of measured 3He/4He ratios are ≥4 RA, corresponding to ≥50% mantle He assuming a mantle ratio of 8 RA. These results suggest that mafic magmas were part of the magmatic-hydrothermal system underlying Goldfield and Tonopah, and that associated mantle-sourced volatiles may have played a role in ore formation. The three highest corrected 3He/4He ratios of 17.0, 23.7, and 35.8 RAindicate a primitive mantle He source and are the highest yet reported for any epithermal-porphyry system and for the Cascades arc region. Compiled 3He/4He measurements from epithermal-porphyry systems in subduction-related magmatic arcs around the world (n = 209) display a statistically significant correlation between 3He/4He and Au-Ag grade. The correlation suggests that conditions which promote higher fluid inclusion 3He/4He ratios (abundance of mantle volatiles and focused upward volatile transport) have some relation to conditions that promote higher Au-Ag grades (focused flow of metal-bearing fluids and efficient chemical traps). Results of this and previous investigations of He isotopes in epithermal-porphyry systems are consistent with the hypothesis posed in recent studies that mafic magmas serve an important function in the formation of these deposits.

  3. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    PubMed

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  4. Thermodynamic Properties of AgIn2Te3I and AgIn2Te3Br, Determined by EMF Method

    NASA Astrophysics Data System (ADS)

    Moroz, M. V.; Prokhorenko, M. V.; Prokhorenko, S. V.; Yatskov, M. V.; Reshetnyak, O. V.

    2018-01-01

    Differential thermal analysis (DTA), X-ray diffraction (XRD), and electromotive force (EMF) are used to triangulate Ag-In-Te-I(Br) systems in the vicinity of compounds AgIn2Te3I and AgIn2Te3Br. The three-dimensional position of the AgIn2Te3I-InTe-Ag2Te-AgI and AgIn2Te3Br-InTe-Ag3TeBr phase areas with respect to the figurative points of silver is used to create equations of potential-determining chemical reactions. The potential-determining reactions are conducted in (-)C|Ag|Ag3GeS3I(Br) glass|D|C(+) electrochemical cells (ECCs), where C stands for inert (graphite) electrodes, Ag and D are ECC electrodes (D denotes alloys of one-, three-, and four-phase areas), and Ag3GeS3I and Ag3GeS3Br glasses are membranes with purely ionic Ag+ conductivity. Linear parts of the temperature dependences of the cell EMFs are used to calculate the standard integral thermodynamic functions of saturated solid solutions based on AgIn2Te3I and AgIn2Te3Br, and the relative partial thermodynamic functions of silver in the stoichiometric quaternary compounds.

  5. Structural, thermodynamic, and mechanical properties of WCu solid solutions

    NASA Astrophysics Data System (ADS)

    Liang, C. P.; Wu, C. Y.; Fan, J. L.; Gong, H. R.

    2017-11-01

    Various properties of Wsbnd Cu solid solutions are systematically investigated through a combined use of first-principles calculation, cluster expansion, special quasirandom structures (SQS), and lattice dynamics. It is shown that SQS are effective to unravel the intrinsic nature of solid solutions, and that BCC and FCC W100-xCux solid solutions are energetically more stable when 0 ≤ x ≤ 70 and 70 < x ≤ 100, respectively. Calculations also reveal that the Debye model should be appropriate to derive thermodynamic properties of Wsbnd Cu, and that the coefficients of thermal expansion of W100-xCux solid solutions are much lower than those of corresponding mechanical mixtures. In addition, the G/B values of W100-xCux solid solutions reach a minimum at x = 50, which is fundamentally due to the softening of phonons as well as strong chemical bonding between W and Cu with a mainly metallic feature.

  6. Measurement of antiproton annihilation on Cu, Ag and Au with emulsion films

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Huse, T.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienaecker, B.; RØhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Vamosi, S.; Vladymyrov, M.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.

    2017-04-01

    The characteristics of low energy antiproton annihilations on nuclei (e.g. hadronization and product multiplicities) are not well known, and Monte Carlo simulation packages that use different models provide different descriptions of the annihilation events. In this study, we measured the particle multiplicities resulting from antiproton annihilations on nuclei. The results were compared with predictions obtained using different models in the simulation tools GEANT4 and FLUKA. For this study, we exposed thin targets (Cu, Ag and Au) to a very low energy antiproton beam from CERN's Antiproton Decelerator, exploiting the secondary beamline available in the AEgIS experimental zone. The antiproton annihilation products were detected using emulsion films developed at the Laboratory of High Energy Physics in Bern, where they were analysed at the automatic microscope facility. The fragment multiplicity measured in this study is in good agreement with results obtained with FLUKA simulations for both minimally and heavily ionizing particles.

  7. Charge transfer process at the Ag/MPH/TiO2 interface by SERS: alignment of the Fermi level.

    PubMed

    Zhang, Xiaolei; Sui, Huimin; Wang, Xiaolei; Su, Hongyang; Cheng, Weina; Wang, Xu; Zhao, Bing

    2016-11-02

    A nanoscale metal-molecule-semiconductor assembly (Ag/4-mercaptophenol/TiO 2 ) has been fabricated over Au nanoparticle (NP) films as a model to study the interfacial charge transfer (CT) effects involved in Ag/MPH/TiO 2 . Due to the interaction between Au NPs and Ag NPs, some distinct differences occur in the SERS spectra. We also measured the SERS of Ag/MPH (4-mercaptophenol), Ag/MPH/TiO 2 , and Au/Ag/MPH/TiO 2 assemblies at excitation wavelengths of 477, 514, 532, 633, and 785 nm. We found that the changes in the CT process, caused by the introduction of TiO 2 and Au, can be reflected in SERS. Then in combination with other detection methods, we proposed a possible CT process involved in the Ag/MPH, Ag/MPH/TiO 2 , and Au/Ag/MPH/TiO 2 assemblies. A Pt/Ag/MPH/TiO 2 assembly was also constructed to verify our proposed CT mechanism. This work not only provides more details about CT between metal-molecule-semiconductor interfaces but also aids in constructing nanoscale models to study interfacial problems with the SERS technique.

  8. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity

    NASA Astrophysics Data System (ADS)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I.

    2016-03-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA

  9. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells.

    PubMed

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-28

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ∼80% at 550 nm and sheet resistance of 18 Ω sq(-1). Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.

  10. On the nature of the {SO2-4}/{Ag(111) } and {SO2-4}/{Au(111) } surface bonding

    NASA Astrophysics Data System (ADS)

    Patrito, E. M.; Olivera, P. Paredes; Sellers, Harrell

    1997-05-01

    The nature of sulfate-Ag(111) and sulfate-Au(111) surface bonding has been investigated at the SCF + MP2 level of theory. Convergence of binding energy with cluster size is investigated and, unlike neutral adsorbates, large clusters are required in order to obtain reliable binding energies. In the most stable adsorption mode, sulfate binds to the surface via three oxygen atoms (C 3v symmetry) with a binding energy of 159.3 kcal/mol on Ag(111) and 143.9 kcal/mol on Au(111). The geometry of adsorbed sulfate was optimized at the SCF level. While the bond length between sulfur and the oxygens coordinated to the surface increases, the sulfur-uncoordinated oxygen bond length decreases. This weakening and strengthening of the bonds, respectively, is consistent with bond order conservation in adsorbates on metal surfaces. Although a charge transfer of 0.4 electrons towards the metal is observed, the adsorbate remains very much sulfate-like. The molecular orbital analysis indicates that there is also some charge back-donation towards unoccupied orbitals of sulfate. This results in an increased electron density around sulfur as revealed in the electron density difference maps. Analysis of the Laplacian of the charge density of free sulfate provides a suitable framework to understand the nature of the different charge transfer processes and allows us to establish some similarities with the CO- and SO 2-metal bondings.

  11. Biomimetics with a self-assembled monolayer of catalytically active tethered isoalloxazine on Au.

    PubMed

    Calvo, Ernesto J; Rothacher, M Silvina; Bonazzola, Cecilia; Wheeldon, Ian R; Salvarezza, Roberto C; Vela, Maria Elena; Benitez, Guillermo

    2005-08-16

    A new biomimetic nanostructured electrocatalyst comprised of a self-assembled monolayer (SAM) of flavin covalently attached to Au by reaction of methylformylisoalloxazine with chemisorbed cysteamine is introduced. Examinations by Fourier transform infrared spectroscopy and scanning tunneling microscopy (STM) show that the flavin molecules are oriented perpendicular to the surface with a 2 nm separation between flavin molecules. As a result of the contrast observed in the STM profiles between areas only covered by unreacted cysteamine and those covered by flavin-cysteamine moieties, it can be seen that the flavin molecules rise 0.7 nm above the chemisorbed cysteamines. The SAM flavin electrocatalyst undergoes fast electron transfer with the underlying Au and shows activity toward the oxidation of enzymatically active beta-NADH at pH 7 and very low potential (-0.2 V vs Ag/AgCl), a requirement for use in an enzymatic biofuel cell, and a 100-fold increase in activity with respect to the collisional reaction in solution.

  12. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons.

    PubMed

    Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A

    2007-01-01

    The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.

  13. Controlling Magnetism via Transition Metal Exchange in the Series of Intermetallics Eu( T1, T2)5In ( T = Cu, Ag, Au)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudring, Anja -Verena; Smetana, Volodymyr; Pecharsky, Vitalij K.

    Three series of intermetallic compounds Eu( T1, T2) 5In (T = Cu, Ag, Au) have been investigated in full compositional ranges. Single crystals of all compounds have been obtained by self-flux and were analyzed by single X-ray diffraction revealing the representatives to fall into two structure types: CeCu 6 ( oP28, Pnma, a = 8.832(3)–9.121(2) Å, b = 5.306(2)–5.645(1) Å, c = 11.059(4)–11.437(3) Å, V = 518.3(3)–588.9(2) Å 3) and YbMo2Al4 ( t I14, I4/ mmm, a = 5.417(3)–5.508(1) Å, c = 7.139(2)– 7.199(2) Å, V = 276.1(2)–285.8(1) Å 3). The structural preference was found to depend on the cation/anionmore » size ratio, while the positional preference within the CeCu 6 type structure shows an apparent correlation with the anion size. Chemical compression, hence, a change in cell volume, which occurs upon anion substitution appears to be the main driving force for the change of magnetic ordering. While EuAg 5In shows antiferromagnetic behavior at low temperatures, mixing Cu and Au within the same type of structure results in considerable changes in the magnetism. The Eu(Cu,Au) 5In alloys with CeCu 6 structure show complex magnetic behaviors and strong magnetic field-induced spin-reorientation transition with the critical field of the transition being dependent on Cu/Au ratio. The alloys adopting the YbMo 2Al 4 type structure are ferromagnets exhibiting unusually high magnetic moments. The heat capacity of EuAu 2.66Cu 2.34In reveals a double-peak structure evolving with the magnetic field. Furthermore, low-temperature X-ray powder diffraction does not show a structural transition.« less

  14. Controlling Magnetism via Transition Metal Exchange in the Series of Intermetallics Eu( T1, T2)5In ( T = Cu, Ag, Au)

    DOE PAGES

    Mudring, Anja -Verena; Smetana, Volodymyr; Pecharsky, Vitalij K.; ...

    2017-11-24

    Three series of intermetallic compounds Eu( T1, T2) 5In (T = Cu, Ag, Au) have been investigated in full compositional ranges. Single crystals of all compounds have been obtained by self-flux and were analyzed by single X-ray diffraction revealing the representatives to fall into two structure types: CeCu 6 ( oP28, Pnma, a = 8.832(3)–9.121(2) Å, b = 5.306(2)–5.645(1) Å, c = 11.059(4)–11.437(3) Å, V = 518.3(3)–588.9(2) Å 3) and YbMo2Al4 ( t I14, I4/ mmm, a = 5.417(3)–5.508(1) Å, c = 7.139(2)– 7.199(2) Å, V = 276.1(2)–285.8(1) Å 3). The structural preference was found to depend on the cation/anionmore » size ratio, while the positional preference within the CeCu 6 type structure shows an apparent correlation with the anion size. Chemical compression, hence, a change in cell volume, which occurs upon anion substitution appears to be the main driving force for the change of magnetic ordering. While EuAg 5In shows antiferromagnetic behavior at low temperatures, mixing Cu and Au within the same type of structure results in considerable changes in the magnetism. The Eu(Cu,Au) 5In alloys with CeCu 6 structure show complex magnetic behaviors and strong magnetic field-induced spin-reorientation transition with the critical field of the transition being dependent on Cu/Au ratio. The alloys adopting the YbMo 2Al 4 type structure are ferromagnets exhibiting unusually high magnetic moments. The heat capacity of EuAu 2.66Cu 2.34In reveals a double-peak structure evolving with the magnetic field. Furthermore, low-temperature X-ray powder diffraction does not show a structural transition.« less

  15. Design principles for radiation-resistant solid solutions

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Trinkle, Dallas R.; Bellon, Pascal; Averback, Robert

    2017-05-01

    We develop a multiscale approach to quantify the increase in the recombined fraction of point defects under irradiation resulting from dilute solute additions to a solid solution. This methodology provides design principles for radiation-resistant materials. Using an existing database of solute diffusivities, we identify Sb as one of the most efficient solutes for this purpose in a Cu matrix. We perform density-functional-theory calculations to obtain binding and migration energies of Sb atoms, vacancies, and self-interstitial atoms in various configurations. The computed data informs the self-consistent mean-field formalism to calculate transport coefficients, allowing us to make quantitative predictions of the recombined fraction of point defects as a function of temperature and irradiation rate using homogeneous rate equations. We identify two different mechanisms according to which solutes lead to an increase in the recombined fraction of point defects; at low temperature, solutes slow down vacancies (kinetic effect), while at high temperature, solutes stabilize vacancies in the solid solution (thermodynamic effect). Extension to other metallic matrices and solutes are discussed.

  16. Enhanced peroxydisulfate electrochemiluminescence for dopamine biosensing based on Au nanoparticle decorated reduced graphene oxide.

    PubMed

    Yan, Yuting; Liu, Qian; Wang, Kun; Jiang, Ling; Yang, Xingwang; Qian, Jing; Dong, Xiaoya; Qiu, Baijing

    2013-12-07

    This work reports a novel strategy to amplify the electrochemiluminescence (ECL) signal of peroxydisulfate solution based on the Au nanoparticle decorated reduced graphene oxide (Au NP-RGO), and further an ECL biosensor for sensitive and selective detection of dopamine (DA) was constructed. Due to the synergistic amplification of Au NPs and RGO, the ECL signal of peroxydisulfate solution on the Au NP-RGO modified electrode was about 5-fold enhanced compared to that of the bare electrode with the ECL onset potential positively shifted from -1.2 V to -0.9 V. More interestingly, the ECL intensity of peroxydisulfate solution increased with the increase of DA concentration, based on which an ECL biosensor for DA determination was fabricated. The as-prepared solid-state ECL DA sensor showed a wide linear response of 0.02-40 μM with a detection limit of 6.7 nM (S/N = 3). Moreover, we expect this work would open up a new field in the application of peroxydisulfate solution ECL for highly sensitive bioassays.

  17. Bovine Serum Albulmin Protein-Templated Silver Nanocluster (BSA-Ag13 ): An Effective Singlet Oxygen Generator for Photodynamic Cancer Therapy.

    PubMed

    Yu, Yong; Geng, Junlong; Ong, Edward Yong Xi; Chellappan, Vijila; Tan, Yen Nee

    2016-10-01

    This paper reports a novel synthesis approach of bovine serum albumin (BSA) protein-templated ultrasmall (<2 nm) Ag nanocluster (NC) with strong singlet oxygen generation capacity for photodynamic therapy (PDT). An atomically precise BSA-Ag 13 NC (i.e., 13 Ag atoms per cluster) is successfully synthesized for the first time by using NaOH-dissolved NaBH 4 solution as the controlling reducing agent. The ubiquitous size of BSA-Ag 13 NC results in unique behaviors of its photoexcited states as characterized by the ultrafast laser spectroscopy using time-correlated single photon counting and transient absorption techniques. In particular, triply excited states can be largely present in the excited BSA-Ag 13 NC and readily sensitized molecular oxygen to produce singlet oxygen ( 1 O 2 ) with a high quantum efficiency (≈1.26 using Rose Bengal as a standard). This value is much higher than its Au analogue (i.e., ≈0.07 for BSA-Au 25 NC) and the commonly available photosensitizers. Due to the good cellular uptake and inherent biocompatibility imparted by the surface protein, BSA-Ag 13 NC can be applied as an effective PDT agent in generating 1 O 2 to kill cancer cell as demonstrated in this study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sodium citrate assisted facile synthesis of AuPd alloy networks for ethanol electrooxidation with high activity and durability

    NASA Astrophysics Data System (ADS)

    Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan

    2016-10-01

    The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.

  19. High-Solids Polyimide Precursor Solutions

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2004-01-01

    The invention is a highly concentrated stable solution of polymide precursors (monometers) having a solids content ranging from about 80 to 98 percent by weight in lower aliphatic alcohols i.e. methyl and/or ethylalcohol. the concentrated polyimide precursos solution comparisons effective amounts of at least one aromatic diamine, at least one aromatic dianhydride, and a monofunctional endcap including monoamines, monoanhydrides and lower alkyl esters of said monoanhydrides. These concentrated polyimide precursor solutions are particularly useful for the preparation of fibrous prepregs and composites for use in structural materials for military and civil applications.

  20. R 14 (Au, M) 51 (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi): Stability Ranges and Site Preference in the Gd 14Ag 51 Structure Type

    DOE PAGES

    Celania, Chris; Smetana, Volodymyr; Provino, Alessia; ...

    2017-12-19

    Twenty new ternary representatives of the Gd 14Ag 51 structure type have been synthesized within the R-Au-M family (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi) using solid state synthesis techniques. The list of post transition metals (M) involved in the formation of this type of structure could be augmented by five new representatives. All compounds crystallize in the hexagonal space group P6/m (#175) with the unit cell ranges of a = 12.3136(2)–12.918(1) Å and c = 8.9967(3)–9.385(1) Å, and incorporate different degrees of Au/M mixing. The involvement of themore » post transition element in the structure varies from one to another compound both qualitatively and quantitatively. A rather significant phase width can be expected for the majority of compounds, however, not without exclusions. The distribution of the post transition metals within the structure has been analyzed via single crystal X-ray diffraction. While the positional disorder of one near-origin Au position is expectable for all compounds due to steric reasons, two specimens show an obvious deviation from the others including another Au position split along the c axis. Lastly, possible factors affecting this behavior are discussed.« less

  1. R 14 (Au, M) 51 (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi): Stability Ranges and Site Preference in the Gd 14Ag 51 Structure Type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celania, Chris; Smetana, Volodymyr; Provino, Alessia

    Twenty new ternary representatives of the Gd 14Ag 51 structure type have been synthesized within the R-Au-M family (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi) using solid state synthesis techniques. The list of post transition metals (M) involved in the formation of this type of structure could be augmented by five new representatives. All compounds crystallize in the hexagonal space group P6/m (#175) with the unit cell ranges of a = 12.3136(2)–12.918(1) Å and c = 8.9967(3)–9.385(1) Å, and incorporate different degrees of Au/M mixing. The involvement of themore » post transition element in the structure varies from one to another compound both qualitatively and quantitatively. A rather significant phase width can be expected for the majority of compounds, however, not without exclusions. The distribution of the post transition metals within the structure has been analyzed via single crystal X-ray diffraction. While the positional disorder of one near-origin Au position is expectable for all compounds due to steric reasons, two specimens show an obvious deviation from the others including another Au position split along the c axis. Lastly, possible factors affecting this behavior are discussed.« less

  2. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  3. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution.

    PubMed

    Mao, Ping; Liu, Ying; Liu, Xiaodong; Wang, Yuechan; Liang, Jie; Zhou, Qihang; Dai, Yuexuan; Jiao, Yan; Chen, Shouwen; Yang, Yi

    2017-08-01

    To further improve the capacity of Cu 2 O to absorb I - anions from solution, and to understand the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents, bimetallic AgCu was doped into Cu 2 O through a facile solvothermal route. Samples were characterized and employed to adsorb I - anions under different experimental conditions. The results show that the Cu content can be tuned by adding different volumes of Ag sols. After doping bimetallic AgCu, the adsorption capacity of the samples can be increased from 0.02 mmol g -1 to 0.52 mmol g -1 . Moreover, the optimal adsorption is reached within only 240 min. Meanwhile, the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents was verified, and the cooperative adsorption mechanism of the AgCu/Cu 2 O hybrid was proposed and verified. In addition, the AgCu/Cu 2 O hybrid showed excellent selectivity, e.g., its adsorption efficiencies are 85.1%, 81.9%, 85.9% and 85.7% in the presence of the Cl - , CO 3 2- , SO 4 2- and NO 3 - competitive anions, respectively. Furthermore, the AgCu/Cu 2 O hybrid can worked well in other harsh environments (e.g., acidic, alkaline and seawater environments). Therefore, this study is expected to promote the development of Cu 2 O into a highly efficient adsorbent for the removal of iodide from solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO2 core-shell assemblies.

    PubMed

    Ledeuil, J B; Uhart, A; Soulé, S; Allouche, J; Dupin, J C; Martinez, H

    2014-10-07

    This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (≈12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.

  5. Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis.

    PubMed

    Liu, Kai; Bai, Yaocai; Zhang, Lei; Yang, Zhongbo; Fan, Qikui; Zheng, Haoquan; Yin, Yadong; Gao, Chuanbo

    2016-06-08

    Colloidal plasmonic metal nanoparticles have enabled surface-enhanced Raman scattering (SERS) for a variety of analytical applications. While great efforts have been made to create hotspots for amplifying Raman signals, it remains a great challenge to ensure their high density and accessibility for improved sensitivity of the analysis. Here we report a dealloying process for the fabrication of porous Au-Ag alloy nanoparticles containing abundant inherent hotspots, which were encased in ultrathin hollow silica shells so that the need of conventional organic capping ligands for stabilization is eliminated, producing colloidal plasmonic nanoparticles with clean surface and thus high accessibility of the hotspots. As a result, these novel nanostructures show excellent SERS activity with an enhancement factor of ∼1.3 × 10(7) on a single particle basis (off-resonant condition), promising high applicability in many SERS-based analytical and biomedical applications.

  6. Effects of Ag addition on FePt L1{sub 0} ordering transition: A direct observation of ordering transition and Ag segregation in FePtAg alloy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Yu, Youxing, E-mail: yuyouxing@buaa.edu.cn; Gao, Tenghua

    FePt and (FePt){sub 91.2}Ag{sub 8.8} alloy films were deposited by magnetron sputtering. The average coercivity of (FePt){sub 91.2}Ag{sub 8.8} films reaches 8.51 × 10{sup 5} A/m, which is 0.63 × 10{sup 5} A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L1{sub 0} ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution revealsmore » more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L1{sub 0} ordering transition.« less

  7. Identification of volatile biomarkers of gastric cancer cells and ultrasensitive electrochemical detection based on sensing interface of Au-Ag alloy coated MWCNTs.

    PubMed

    Zhang, Yixia; Gao, Guo; Liu, Huijuan; Fu, Hualin; Fan, Jun; Wang, Kan; Chen, Yunsheng; Li, Baojie; Zhang, Chunlei; Zhi, Xiao; He, Lin; Cui, Daxiang

    2014-01-01

    Successful development of novel electrochemical biosensing interface for ultrasensitive detection of volatile biomarkers of gastric cancer cells is a challenging task. Herein we reported to screen out novel volatile biomarkers associated with gastric cancer cells and develop a novel Au-Ag alloy composites-coated MWCNTs as sensing interface for ultrasensitive detection of volatile biomarkers. MGC-803 gastric cancer cells and GES-1 gastric mucous cells were cultured in serum-free media. The sample preparation approaches and HS-SPME conditions were optimized for screening volatile biomarkers. Volatiles emitted from the headspace of the cells/medium culture were identified using GC-MS. The Au-Ag nanoparticles-coated multiwalled carbon nanotubes were prepared as a sensing interface for detection of volatile biomarkers. Results showed that eight different volatile metabolites were screened out between MGC-803 cells and GES-1 cells. Two compounds such as 3-octanone and butanone were specifically present in the headspace of the MGC-803 cells. Three volatiles such as 4-isopropoxybutanol, nonanol and 4-butoxy 1-butanol coexisted in the headspace of both the MGC-803 cells and the GES-1 cells, their concentrations in the headspace of the GES-1cells were markedly higher than those in the MGC-803 cells, three volatiles such as formic acid propyl ester, 1.4-butanediol and 2, 6, 11-trimethyl dodecane solely existed in the headspace of the GES-1 cells. The nanocomposites of MWNTs loaded with Au-Ag nanoparticles were prepared as a electrochemical sensing interface for detection of two volatile biomarkers, cyclic voltammetry studies showed that the fabricated sensor could detect 3-octanone in the range of 0~0.0025% (v/v) and with a detection limitation of 0.3 ppb, could detect butanone in the range of 0 ~ 0.055% (v/v), and with a detection limitation of 0.5 ppb, and exhibited good selectivity. The novel electrochemical biosensor combined with volatile biomarkers of gastric cancer

  8. Identification of Volatile Biomarkers of Gastric Cancer Cells and Ultrasensitive Electrochemical Detection based on Sensing Interface of Au-Ag Alloy coated MWCNTs

    PubMed Central

    Zhang, Yixia; Gao, Guo; Liu, Huijuan; Fu, Hualin; Fan, Jun; Wang, Kan; Chen, Yunsheng; Li, Baojie; Zhang, Chunlei; Zhi, Xiao; He, Lin; Cui, Daxiang

    2014-01-01

    Successful development of novel electrochemical biosensing interface for ultrasensitive detection of volatile biomarkers of gastric cancer cells is a challenging task. Herein we reported to screen out novel volatile biomarkers associated with gastric cancer cells and develop a novel Au-Ag alloy composites-coated MWCNTs as sensing interface for ultrasensitive detection of volatile biomarkers. MGC-803 gastric cancer cells and GES-1 gastric mucous cells were cultured in serum-free media. The sample preparation approaches and HS-SPME conditions were optimized for screening volatile biomarkers. Volatiles emitted from the headspace of the cells/medium culture were identified using GC-MS. The Au-Ag nanoparticles-coated multiwalled carbon nanotubes were prepared as a sensing interface for detection of volatile biomarkers. Results showed that eight different volatile metabolites were screened out between MGC-803 cells and GES-1 cells. Two compounds such as 3-octanone and butanone were specifically present in the headspace of the MGC-803 cells. Three volatiles such as 4-isopropoxybutanol, nonanol and 4-butoxy 1-butanol coexisted in the headspace of both the MGC-803 cells and the GES-1 cells, their concentrations in the headspace of the GES-1cells were markedly higher than those in the MGC-803 cells, three volatiles such as formic acid propyl ester, 1.4-butanediol and 2, 6, 11-trimethyl dodecane solely existed in the headspace of the GES-1 cells. The nanocomposites of MWNTs loaded with Au-Ag nanoparticles were prepared as a electrochemical sensing interface for detection of two volatile biomarkers, cyclic voltammetry studies showed that the fabricated sensor could detect 3-octanone in the range of 0~0.0025% (v/v) and with a detection limitation of 0.3 ppb, could detect butanone in the range of 0 ~ 0.055% (v/v), and with a detection limitation of 0.5 ppb, and exhibited good selectivity. The novel electrochemical biosensor combined with volatile biomarkers of gastric cancer

  9. The solely motif-doped Au36-xAgx(SPh-tBu)24 (x = 1-8) nanoclusters: X-ray crystal structure and optical properties.

    PubMed

    Fan, Jiqiang; Song, Yongbo; Chai, Jinsong; Yang, Sha; Chen, Tao; Rao, Bo; Yu, Haizhu; Zhu, Manzhou

    2016-08-18

    We report the observation of new doping behavior in Au36-xAgx(SR)24 nanoclusters (NCs) with x = 1 to 8. The atomic arrangements of Au and Ag atoms are determined by X-ray crystallography. The new gold-silver bimetallic NCs share the same framework as that of the homogold counterpart, i.e. possessing an fcc-type Au28 kernel, four dimeric AuAg(SR)3 staple motifs and twelve simple bridging SR ligands. Interestingly, all the Ag dopants in the Au36-xAgx(SR)24 NCs are selectively incorporated into the surface motifs, which is in contrast to the previously reported Au-Ag alloy structures with the Ag dopants preferentially displacing the core gold atoms. This distinct doping behavior implies that the previous assignments of an fcc Au28 core with four dimers and 12 bridging thiolates for Au36(SR)24 are more justified than other assignments of core vs. surface motifs. The UV-Vis adsorption spectrum of Au36-xAgx(SR)24 is almost the same as that of Au36(SR)24, indicating that the Ag dopants in the motifs do not change the optical properties. The similar UV-Vis spectra are further confirmed by TD-DFT calculations. DFT also reveals that the energies of the HOMO and LUMO of the motif-doped AuAg alloy NC are comparable to those of the homogold Au36 NC, indicating that the electronic structure is not disturbed by the motif Ag dopants. Overall, this study reveals a new silver-doping mode in alloy NCs.

  10. 1 : 2 Adducts of copper(I) halides with 1,2-bis(di-2-pyridylphosphino)ethane: solid state and solution structural studies and antitumour activity.

    PubMed

    Bowen, Richard J; Navarro, Maribel; Shearwood, Anne-Marie J; Healy, Peter C; Skelton, Brian W; Filipovska, Aleksandra; Berners-Price, Susan J

    2009-12-28

    The 1 : 2 adducts of copper(I) halides with 1,2-bis(2-pyridylphosphino)ethane (d2pype) have been synthesized and solution properties characterized by variable temperature (1)H, (31)P and (65)Cu NMR spectroscopy. Single-crystal structure determinations for the chloride, bromide and iodide complexes show these to crystallize from acetonitrile in the triclinic space group P1 as isostructural centrosymmetric dimers [(d2pype)Cu(mu-d2pype)(2)Cu(d2pype)]X(2).(solvent) with a approximately 12.6, b approximately 12.7, c approximately 15.3 A, alpha approximately 84, beta approximately 67, gamma approximately 84 degrees. In contrast to the analogous AuCl:2(d2pype) and AgNO(3):2(d2pype) adducts, in solution these CuX:2(d2pype) adducts (where X = Cl, Br and I) exist almost exclusively as bis-chelated monomeric [Cu(d2pype)(2)]X; evidence for an equilibrium between monomeric and dimeric forms is detected only for the CuCl adduct in methanol. Cytotoxicity studies in two human breast cancer lines and two matched liver progenitor cell lines indicate that [Cu(d2pype)(2)]Cl is non selectively toxic to both non-tumourigenic and tumourigenic cells. However, the analogous Au(I) compound [Au(d2pype)(2)]Cl, is toxic to highly tumourigenic cells and more selective in its toxicity to tumourigenic cells compared to non-tumourigenic cells. The significance of these results to the further development of selective, mitochondria-targeted, Au(I) antitumour complexes is discussed.

  11. Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au

    PubMed Central

    Wang, Lu-Cun; Zhong, Yi; Jin, Haijun; Widmann, Daniel; Weissmüller, Jörg

    2013-01-01

    Summary The catalytic properties of nanostructured Au and their physical origin were investigated by using the low-temperature CO oxidation as a test reaction. In order to distinguish between structural effects (structure–activity correlations) and bimetallic/bifunctional effects, unsupported nanoporous gold (NPG) samples prepared from different Au alloys (AuAg, AuCu) by selective leaching of a less noble metal (Ag, Cu) were employed, whose structure (surface area, ligament size) as well as their residual amount of the second metal were systematically varied by applying different potentials for dealloying. The structural and chemical properties before and after 1000 min reaction were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The catalytic behavior was evaluated by kinetic measurements in a conventional microreactor and by dynamic measurements in a temporal analysis of products (TAP) reactor. The data reveal a clear influence of the surface contents of residual Ag and Cu species on both O2 activation and catalytic activity, while correlations between activity and structural parameters such as surface area or ligament/crystallite size are less evident. Consequences for the mechanistic understanding and the role of the nanostructure in these NPG catalysts are discussed. PMID:23503603

  12. Preparation of Sic/AIN Solid Solutions Using Organometallic Precursors

    DTIC Science & Technology

    1989-02-15

    pyrolysis of organoaluminum and organosilicon compounds was investigated as a potential source of SiC /AUI solid solutions. Using two different co... pyrolysis methods, homogeneous mixtures of organoaluminum amides and both a vinylic polysilane and a poly- carbosilane were convertec to a preceramic ...solid that transformed to crystalline SiC /AiN solid solutions at 򒸀 C. Moreover, the liquid, polymeric , form of these precursor mixtures provides a

  13. Solid-solution thermodynamics in Al-Li alloys

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Lukina, E. A.

    2016-05-01

    The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.

  14. Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag(+) and Hg(2+).

    PubMed

    Zhang, Yuanyuan; Jiang, Hui; Wang, Xuemei

    2015-04-22

    In this study, we have developed a label-free, dual functional detection strategy for highly selective and sensitive determination of aqueous Ag(+) and Hg(2+) by using cytidine stabilized Au NCs and AuAg NCs as fluorescent turn-on and turn off probes, respectively. The Au NCs and AuAg NCs showed a remarkably rapid response and high selectivity for Ag(+) and Hg(2+) over other metal ions, and relevant detection limit of Ag(+) and Hg(2+) is ca. 10 nM and 30 nM, respectively. Importantly, the fluorescence enhanced Au NCs by doping Ag(+) can be conveniently reusable for the detection of Hg(2+) based on the corresponding fluorescence quenching. The sensing mechanism was based on the high-affinity metallophilic Hg(2+)-Ag(+) interaction, which effectively quenched the fluorescence of AuAg NCs. Furthermore, these fluorescent nanoprobes could be readily applied to Ag(+) and Hg(2+) detection in environmental water samples, indicating their possibility to be utilized as a convenient, dual functional, rapid response, and label-free fluorescence sensor for related environmental and health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ag{sup II} doped MIL-101 and its adsorption of iodine with high speed in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Ping; Qi, Bingbing; Liu, Ying

    In order to improve the adsorption speed of iodine from water, MIL-101 with extra-large specific surface area (3054 m{sup 2}/g) was chosen as a base material, and then, Ag was doped into MIL-101 to enhance its adsorption capacity through an incipient-wetness impregnation method. With the characterization of SEM-EDS, TEM, XRD, XPS, TGA, IR, and BET techniques, the resulting Ag was identified to be stay in the framework of MIL-101 stably in the form of Ag{sup II} (generally, Ag{sup II} cation is not stable). However, after the adsorption of I{sup −} anions, Ag{sup II} stay in the cages of MIL-101 inmore » the form of AgI/AgI{sub 3}. It is important to note that, all adsorbents show high adsorption speed of iodine in solution. The equilibrium adsorption time of the adsorbents were acquired by only a few minutes, which can be attributed to its large BET surface area. An interesting note is that, when the doping amount of Ag is less than 9%, the iodine anions adsorption capacity of Ag@MIL-101 is greater than its theoretical adsorption capacity. It shows that both physical adsorption and chemical adsorption are existed in the adsorption process. This study hopefully leads to a new and highly efficient Ag-based adsorbent for iodide adsorb from solutions. - Graphical abstract: Ag{sup II} stay in the framework of MIL-101 stably because of F{sup -}, after the adsorption of I{sup -} anions, Ag{sup I}I /Ag{sup I}I{sub 3} stay in the cages of MIL-101. The equilibrium adsorption time of Ag@MIL-101 were acquired by only a few minutes. - Highlights: • Ag{sup II} was doped into MIL-101 by an incipient-wetness impregnation method. • Both physical adsorption and chemical adsorption are verified in the adsorption process. • Ag@MIL-101 exhibits high adsorption speed and adsorption capacity. • Ag@MIL-101 can be effectively applied to the removal of radioactive iodide anions from water in acidic and neutral medium.« less

  16. Synthesis of solid solutions of perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.

    The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoreticalmore » value and showing zero apparent porosity and water absorption.« less

  17. Embedded atom method potential for studying mechanical properties of binary Cu–Au alloys

    NASA Astrophysics Data System (ADS)

    Gola, Adrien; Pastewka, Lars

    2018-07-01

    We present an embedded atom method (EAM) potential for the binary Cu–Au system. The unary phases are described by two well-tested unary EAM potentials for Cu and Au. We fitted the interaction between Cu and Au to experimental properties of the binary intermetallic phases Cu3Au, CuAu and CuAu3. Particular attention has been paid to reproducing stacking fault energies in order to obtain a potential suitable for studying deformation in this binary system. The resulting energies, lattice constant, elastic properties and melting points are in good agreement with available experimental data. We use nested sampling to show that our potential reproduces the phase boundaries between intermetallic phases and the disordered face-centered cubic solid solution. We benchmark our potential against four popular Cu–Au EAM parameterizations and density-functional theory calculations.

  18. A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures.

    PubMed

    Fang, Jixiang; Zhang, Lingling; Li, Jiang; Lu, Lu; Ma, Chuansheng; Cheng, Shaodong; Li, Zhiyuan; Xiong, Qihua; You, Hongjun

    2018-02-06

    Metal species have a relatively high mobility inside mesoporous silica; thus, it is difficult to introduce the metal precursors into silica mesopores and suppress the migration of metal species during a reduction process. Therefore, until now, the controlled growth of metal nanocrystals in a confined space, i.e., mesoporous channels, has been very challenging. Here, by using a soft-enveloping reaction at the interfaces of the solid, liquid, and solution phases, we successfully control the growth of metallic nanocrystals inside a mesoporous silica template. Diverse monodispersed nanostructures with well-defined sizes and shapes, including Ag nanowires, 3D mesoporous Au, AuAg alloys, Pt networks, and Au nanoparticle superlattices are successfully obtained. The 3D mesoporous AuAg networks exhibit enhanced catalytic activities in an electrochemical methanol oxidation reaction. The current soft-enveloping synthetic strategy offers a robust approach to synthesize diverse mesoporous metal nanostructures that can be utilized in catalysis, optics, and biomedicine applications.

  19. Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented-AU pyramid superstructure.

    PubMed

    Zhao, Sen; Ma, Wei; Xu, Liguang; Wu, Xiaoling; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2015-06-15

    For the first time, we demonstrated the fabrication of silver nanoparticle ornamented-gold nanoparticle pyramids (Ag-Au Pys) using an aptamer-based self-assembly process and investigated their surface-enhanced Raman scattering (SERS) properties in the detection of vascular endothelial growth factor (VEGF). Under optimized conditions, the SERS signal was negatively related to VEGF concentration over the range 0.01-1.0 fM and the limit of detection (LOD) was as low as 22.6 aM. The matrix effect and the specificity of this developed method were further examined, and the results showed that the superstructure sensor was ultrasensitive and highly selective. This developed aptamer-based SERS detection method suggests that it may be a promising strategy for a variety of sensing applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Coinage metal complexes of 2-diphenylphosphino-3-methylindole.

    PubMed

    Koshevoy, Igor O; Shakirova, Julia R; Melnikov, Alexei S; Haukka, Matti; Tunik, Sergey P; Pakkanen, Tapani A

    2011-08-21

    Coordination of P,N indolyl-phosphine ligands to Au(I), Ag(I) and Cu(I) metal ions under weakly basic conditions results in easy deprotonation of the indolyl N-H function and effective formation of a family of homo- and heterobimetallic complexes MM'(PPh(2)C(9)H(7)N)(2) (M = M' = Au (2), Ag (5); M = Au, M' = Cu (3), Ag (4)). The latter (4) exists as an inseparable mixture of four different complexes, which are in equilibrium driven by slow dynamics. The reaction of silver(I) and copper(I) ions with PPh(2)(C(9)H(8)N) affords a rare tetranuclear Z-shaped cluster Ag(2)Cu(2)(PPh(2)C(9)H(7)N)(4) (6), which exhibits red luminescence in solid state (650 nm) and a weak dual emission in solution with the main component in the near-IR region (746 nm). This journal is © The Royal Society of Chemistry 2011

  1. Excitation functions of parameters extracted from three-source (net-)proton rapidity distributions in Au-Au and Pb-Pb collisions over an energy range from AGS to RHIC

    NASA Astrophysics Data System (ADS)

    Gao, Li-Na; Liu, Fu-Hu; Sun, Yan; Sun, Zhu; Lacey, Roy A.

    2017-03-01

    Experimental results of the rapidity spectra of protons and net-protons (protons minus antiprotons) emitted in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions, measured by a few collaborations at the alternating gradient synchrotron (AGS), super proton synchrotron (SPS), and relativistic heavy ion collider (RHIC), are described by a three-source distribution. The values of the distribution width σC and fraction kC of the central rapidity region, and the distribution width σF and rapidity shift Δ y of the forward/backward rapidity regions, are then obtained. The excitation function of σC increases generally with increase of the center-of-mass energy per nucleon pair √{s_{NN}}. The excitation function of σF shows a saturation at √{s_{NN}}=8.8 GeV. The excitation function of kC shows a minimum at √{s_{NN}}=8.8 GeV and a saturation at √{s_{NN}} ≈ 17 GeV. The excitation function of Δ y increases linearly with ln(√{s_{NN}}) in the considered energy range.

  2. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.

    2015-08-17

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observedmore » phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.« less

  3. Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole).

    PubMed

    Nomiya, K; Noguchi, R; Ohsawa, K; Tsuda, K; Oda, M

    2000-03-01

    Two isomeric gold(I)-triphenylphosphine complexes with nitrogen-containing heterocycles, [Au(L)(PPh3) (HL = pyrazole (1), imidazole (2)) were isolated as colorless cubic crystals for 1 and colorless plate crystals for 2, respectively. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. These complexes were also fully characterized by complete elemental analyses, thermogravimetric/differential thermal analyses (TG/DTA) and FT-IR in the solid state and by solution NMR (31P, 1H and 13C) spectroscopy and molecular weight measurements in acetone solution. These complexes consisted of a monomeric 2-coordinate AuNP core both in the solid state and in solution. The molecular structures of 1 and 2 were compared with those of related gold(I) complexes, [Au(1,2,3-triz)(PPh3)] (3, Htriz = triazole), [Au(1,2,4-triz)(PPh3)]2 (4) as a dimer through a gold(I)-gold(I) bond in the solid state, and [Au(tetz)(PPh3)] (5, Htetz = tetrazole). Selective and effective antimicrobial activities against two gram-positive bacteria (B. subtilis, S. aureus) and modest activities against one yeast (C. albicans) found in these gold(I) complexes 1-4 are noteworthy, in contrast to poor activities observed in the corresponding silver(I) complexes.

  4. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  5. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.

    PubMed

    Wang, Chongwen; Gu, Bing; Liu, Qiqi; Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe 3 O 4 @Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe 3 O 4 @Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe 3 O 4 @Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0-11.0), a short assay time (<30 min), and a low detection limit (5×10 2 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli , Gram-positive bacterium Staphylococcus aureus , and methicillin-resistant S. aureus . This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.

  6. Effect of Au-dextran NPs as anti-tumor agent against EAC and solid tumor in mice by biochemical evaluations and histopathological investigations.

    PubMed

    Medhat, Dalia; Hussein, Jihan; El-Naggar, Mehrez E; Attia, Mohamed F; Anwar, Mona; Latif, Yasmine Abdel; Booles, Hoda F; Morsy, Safaa; Farrag, Abdel Razik; Khalil, Wagdy K B; El-Khayat, Zakaria

    2017-07-01

    Dextran-capped gold nanoparticles (Au-dextran NPs) were prepared exploiting the natural polysaccharide polymer as both reducing and stabilizing agent in the synthesis process, aiming at studying their antitumor effect on solid carcinoma and EAC-bearing mice. To this end, Au-dextran NPs were designed via simple eco-friendly chemical reaction and they were characterized revealing the monodispersed particles with narrow distributed size of around 49nm with high negative charge. In vivo experiments were performed on mice. Biochemical analysis of liver and kidney functions and oxidation stress ratio in addition to histopathological investigations of such tumor tissues were done demonstrating the potentiality of Au-dextran NPs as antitumor agent. The obtained results revealed that EAC and solid tumors caused significant increase in liver and kidney functions, liver oxidant parameters, alpha feto protein levels and diminished liver antioxidant accompanied by positive expression of tumor protein p53 of liver while the treatment with Au-dextran NPs for both types caused improvement in liver and kidney functions, increased liver antioxidant, increased the expression level of B-cell lymphoma 2 gene and subsequently suppressed the apoptotic pathway. As a result, the obtained data provides significant antitumor effects of the Au-dextran NPs in both Ehrlich ascites and solid tumor in mice models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Ag(I)-bovine serum albumin hydrosol-mediated formation of Ag3PO4/reduced graphene oxide composites for visible-light degradation of Rhodamine B solution.

    PubMed

    Ma, Peiyan; Chen, Anliang; Wu, Yan; Fu, Zhengyi; Kong, Wei; Che, Liyuan; Ma, Ruifang

    2014-03-01

    A cost-effective Ag(I)-bovine serum albumin (BSA) supramolecular hydrosol strategy was utilized to assemble Ag3PO4 nanospheres onto reduced graphene oxide (rGO) sheets. The obtained composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy. Compared with the pure Ag3PO4 crystals and Ag3PO4 particles prepared with Ag(I)-BSA hydrosol as precursor, the Ag3PO4/rGO composites obtained with different content of graphene oxide indicated improved visible-light-driven photocatalysis activity for the decomposition of Rhodamine B aqueous solution. The results pointed to the possibility of synthesizing graphene-based photocatalysts by metal ion-BSA hydrosol. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Combinatorial Study of Gradient Ag-Al Thin Films: Microstructure, Phase Formation, Mechanical and Electrical Properties.

    PubMed

    Mao, Fang; Taher, Mamoun; Kryshtal, Oleksandr; Kruk, Adam; Czyrska-Filemonowicz, Aleksandra; Ottosson, Mikael; Andersson, Anna M; Wiklund, Urban; Jansson, Ulf

    2016-11-09

    A combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way. For low Al contents (<13 atom %), a highly (111)-textured fcc phase was formed. At higher Al contents, a (002)-textured hcp solid solution phase was formed followed by a fcc phase in the most Al-rich regions. No indication of a μ phase was observed. The Ag-Al films with fcc-Ag matrix is prone to adhesive material transfer leading to a high friction coefficient (>1) and adhesive wear, similar to the behavior of pure Ag. In contrast, the hexagonal solid solution phase (from ca. 15 atom %Al) exhibited dramatically reduced friction coefficients (about 15% of that of the fcc phase) and dramatically reduced adhesive wear when tested against the pure Ag counter surface. The increase in contact resistance of the Ag-Al films is limited to only 50% higher than a pure Ag reference sample at the low friction and low wear region (19-27 atom %). This suggests that a hcp Ag-Al alloy can have a potential use in sliding electrical contact applications and in the future will replace pure Ag in specific electromechanical applications.

  9. Solid state synthesis of Mn{sub 5}Ge{sub 3} in Ge/Ag/Mn trilayers: Structural and magnetic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myagkov, V.G.; Bykova, L.E.; Matsynin, A.A.

    The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 µm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was ~ 120 °C and increased slightly up to ~ 250 °C when the Ag barrier layer thickness increased up to 2.2 µm. In spite of the Ag layer, only the ferromagnetic Mn{sub 5}Ge{sub 3} compoundmore » and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn{sub 5}Ge{sub 3} formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 µm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms. - Graphical abstract: The direct visualization of the solid state reaction between Mn and Ge across a Ag buffer layer at 500 °C. - Highlights: • The migration of Ge, via an inert 2.2 µm Ag barrier, into a Mn layer. • The first Mn{sub 5}Ge{sub 3} phase was observed in reactions with different Ag layers. • The Ge is the sole diffusing species during Mn{sub 5}Ge{sub 3} formation • The long-range chemical interactions control the Ge atomic transfer.« less

  10. Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)

    PubMed Central

    Lefebvre, Julie; Korčok, Jasmine L.; Katz, Michael J.; Leznoff, Daniel B.

    2012-01-01

    A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(μ-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(μ-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate. PMID:22737031

  11. A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters

    NASA Astrophysics Data System (ADS)

    Heard, Christopher J.; Johnston, Roy L.

    2013-02-01

    The effect of doping on the energetics and dimensionality of eight atom coinage metal subnanometre particles is fully resolved using a genetic algorithm in tandem with on the fly density functional theory calculations to determine the global minima (GM) for Cu n Ag(8- n) and Cu n Au(8- n) clusters. Comparisons are made to previous ab initio work on mono- and bimetallic clusters, with excellent agreement found. Charge transfer and geometric arguments are considered to rationalise the stability of the particular permutational isomers found. An interesting transition between three dimensional and two dimensional GM structures is observed for copper-gold clusters, which is sharper and appears earlier in the doping series than is known for gold-silver particles.

  12. Pentacene on Au(1 1 1), Ag(1 1 1) and Cu(1 1 1): From physisorption to chemisorption.

    PubMed

    Lu, Meng-Chao; Wang, Rong-Bin; Yang, Ao; Duhm, Steffen

    2016-03-09

    We measured the electronic and the molecular surface structure of pentacene deposited on the (1 1 1)-surfaces of coinage metals by means of ultraviolet photoelectron spectroscopy (UPS) and low-energy electron diffraction (LEED). Pentacene is almost flat-lying in monolayers on all three substrates and highly ordered on Au(1 1 1) and on Cu(1 1 1). On Ag(1 1 1), however, weak chemisorption leads to almost disordered monolayers, both, at room temperature and at 78 K. On Cu(1 1 1) pentacene is strongly chemisorbed and the lowest unoccupied molecular orbital becomes observable in UPS by a charge transfer from the substrate. On Ag(1 1 1) and Cu(1 1 1) multilayers adopt a tilted orientation and a high degree of crystallinity. On Au(1 1 1), most likely, also in multilayers the molecular short and long axes are parallel to the substrate, leading to a distinctively different electronic structure than on Ag(1 1 1) and Cu(1 1 1). Overall, it could be demonstrated that the substrate not only determines the geometric and electronic characteristics of molecular monolayer films but also plays a crucial role for multilayer film growth.

  13. Thermal properties of spinel based solid solutions

    NASA Astrophysics Data System (ADS)

    O'Hara, Kelley Rae

    Solid solution formation in spinel based systems proved to be a viable approach to decreasing thermal conductivity. Samples with systematically varied additions of MgGa2O4 to MgAl2O 4 were prepared and thermal diffusivity was measured using the laser flash technique. Additionally, heat capacity was measured using differential scanning calorimetry and modeled for the MgAl2O4-MgGa 2O4 system. At 200°C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. The solid solution continued to decrease the thermal conductivity by 13% up to 1000°C with 5 mol% addition. The decrease in thermal conductivity ultimately resulted in a decrease in heat flux when applied to a theoretical furnace lining, which could lead to energy savings in industrial settings. The MgAl2O4-Al2O3 phase equilibria was investigated to fully understand the system and the thermal properties at elevated temperatures. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al 2O3 at 1500°C, 83.0 wt% Al2O4 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been identified at temperatures up to 1700°C which could have significant implications for material processing and properties. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevated temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present. Thermal properties in the MgAl2O4-Al2O 3 system were investigated in both the single phase solid solution region and the two phase region. The thermal diffusivity decreased through the MgAl 2O4 solid solution region and was at a minimum through the entire metastable (nucleation and growth) region. As Al2O 3 became present as a second phase the thermal diffusivity increased with Al2O3 content. There was an 11.7% increase in thermal diffusivity with a change in overall chemistry of 85.20 wt% Al2O 3 to 87.71 wt% Al2O3, due to the drastic change in

  14. Effects of composition modulation on the luminescence properties of Eu(3+) doped Li1-xAgxLu(MoO4)2 solid-solution phosphors.

    PubMed

    Cheng, Fangrui; Xia, Zhiguo; Molokeev, Maxim S; Jing, Xiping

    2015-11-07

    Double molybdate scheelite-type solid-solution phosphors Li1-xAgxLu1-y(MoO4)2:yEu(3+) were synthesized by the solid state reaction method, and their crystal structures and luminescence properties were investigated in detail. The composition modulation and structural evolution of this series of samples were studied and the selected AgEu(MoO4)2, AgLu(MoO4)2, LiLu(MoO4)2 and LiEu(MoO4)2 phases were analyzed based on the Rietveld refinement. Depending on the variation of the Li/Ag ratio in Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors, the difference in the luminescence properties of Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors was ascribed to two factors, one reason could be assigned to the coupling effect and the nonradiative transition between the energy levels of LixAg1-xLu(MoO4)2 matrices and the activator Eu(3+), another could be due to the near ultraviolet energy absorption and transmission efficiency between the charge-transfer (CT) band of O(2-)-Mo(6+) and the 4f → 4f emissive transitions of Eu(3+). The ultraviolet-visible diffuse reflection spectra (UV-vis DRS) and Raman spectra analysis were also used to verify the above mechanism.

  15. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  16. Simulation of 6 to 3 to 1 merge and squeeze of Au77+ bunches in AGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C. J.

    2016-05-09

    In order to increase the intensity per Au77+ bunch at AGS extraction, a 6 to 3 to 1 merge scheme was developed and implemented by K. Zeno during the 2016 RHIC run. For this scheme, 12 Booster loads, each consisting of a single bunch, are delivered to AGS per AGS magnetic cycle. The bunch from Booster is itself the result of a 4 to 2 to 1 merge which is carried out on a flat porch during the Booster magnetic cycle. Each Booster bunch is injected into a harmonic 24 bucket on the AGS injection porch. In order to fitmore » into the buckets and allow for the AGS injection kicker rise time, the bunch width must be reduced by exciting quadrupole oscillations just before extraction from Booster. The bunches are injected into two groups of six adjacent harmonic 24 buckets. In each group the 6 bunches are merged into 3 by bringing on RF harmonic 12 while reducing harmonic 24. This is a straightforward 2 to 1 merge (in which two adjacent bunches are merged into one). One ends up with two groups of three adjacent bunches sitting in harmonic 12 buckets. These bunches are accelerated to an intermediate porch for further merging. Doing the merge on a porch that sits above injection energy helps reduce losses that are believed to be due to the space-charge force acting on the bunched particles. (The 6 to 3 merge is done on the injection porch because the harmonic 24 frequency on the intermediate porch would be too high for the AGS RF cavities.) On the intermediate porch each group of 3 bunches is merged into one by bringing on RF harmonics 8 and 4 and then reducing harmonics 12 and 8. One ends up with 2 bunches, each the result of a 6 to 3 to 1 merge and each sitting in a harmonic 4 bucket. This puts 6 Booster loads into each bunch. Each merged bunch needs to be squeezed into a harmonic 12 bucket for subsequent acceleration. This is done by again bringing on harmonic 8 and then harmonic 12. Results of simulations of the 6 to 3 to 1 merge and the subsequent squeeze into harmonic

  17. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie

    Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less

  18. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis

    DOE PAGES

    Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie; ...

    2017-03-22

    Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less

  19. Concurrent growth of InSe wires and In2O3 tulip-like structures in the Au-catalytic vapour-liquid-solid process

    NASA Astrophysics Data System (ADS)

    Taurino, A.; Signore, M. A.

    2015-06-01

    In this work, the concurrent growth of InSe and In2O3 nanostructures, obtained by thermal evaporation of InSe powders on Au-covered Si substrates, has been investigated by scanning and transmission electron microscopy techniques. The vapour-solid and Au catalytic vapour-liquid-solid growth mechanisms, responsible of the simultaneous development of the two different types of nanostructures, i.e. InSe wires and In2O3 tulip-like structures respectively, are discussed in detail. The thermodynamic processes giving rise to the obtained morphologies and materials are explained.

  20. Site Preference of Ternary Alloying Additions to AuTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    Atomistic modeling of the site substitution behavior of several alloying additions, namely. Na, Mg, Al, Si. Sc, V, Cr, Mn. Fe, Co, Ni, Cu, Zn, Y, Zr. Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, and Pt in B2 TiAu is reported. The 30 elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice. Results of large scale simulations are also presented, distinguishing between additions that remain in solution from those that precipitate a second phase.

  1. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra

    2016-05-01

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.

  2. Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity

    NASA Astrophysics Data System (ADS)

    Tornos, Fernando; Velasco, Francisco; Menor-Salván, César; Delgado, Antonio; Slack, John F.; Escobar, Juan Manuel

    2014-08-01

    Las Cruces is a base-metal deposit in the Iberian Pyrite Belt, one of the world’s best-known ore provinces. Here we report the occurrence of major Pb-Ag-Au mineralization resulting from recent sub-surface replacement of supergene oxyhydroxides by carbonate and sulphide minerals. This is probably the largest documented occurrence of recent microbial activity producing an ore assemblage previously unknown in supergene mineralizing environments. The presence of microbial features in the sulphides suggests that these may be the first-described natural bacteriomorphs of galena. The low δ13C values of the carbonate minerals indicate formation by deep anaerobic microbial processes. Sulphur isotope values of sulphides are interpreted here as reflecting microbial reduction in a system impoverished in sulphate. We suggest that biogenic activity has produced around 3.1 × 109 moles of reduced sulphur and 1010 moles of CO2, promoting the formation of ca. 1.19 Mt of carbonates, 114,000 t of galena, 638 t of silver sulphides and 6.5 t of gold.

  3. R 3Au 9 Pn ( R = Y, Gd–Tm; Pn = Sb, Bi): A link between Cu 10Sn 3 and Gd 14Ag 51

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celania, Chris; Smetana, Volodymyr; Provino, Alessia

    A new series of intermetallic compounds R 3Au 9 Pn ( R = Y, Gd–Tm; Pn = Sb, Bi) has been discovered during the explorations of the Au-rich parts of rare-earth-containing ternary systems with p-block elements. The existence of the series is strongly restricted by both geometric and electronic factors. R 3Au 9 Pn compounds crystallize in the hexagonal crystal system with space group P6 3/m (a = 8.08–8.24 Å, c = 8.98–9.08 Å). All compounds feature Au- Pn, formally anionic, networks built up by layers of alternating edge-sharing Au@Au 6 and Sb@Au 6 trigonal antiprisms of overall composition Aumore » 6/2 Pn connected through additional Au atoms and separated by a triangular cationic substructure formed by R atoms. From a first look, the series appears to be isostructural with recently reported R 3Au 7Sn 3 (a ternary ordered derivative of the Cu 10Sn 3-structure type), but no example of R 3Au 9M is known when M is a triel or tetrel element. R 3Au 9 Pn also contains Au@Au 6Au 2 R 3 fully capped trigonal prisms, which are found to be isostructural with those found in the well-researched R 14Au 51 series. This structural motif, not present in R 3Au 7Sn 3, represents a previously unrecognized link between Cu 10Sn 3 and Gd 14Ag 51 parent structure types. Magnetic property measurements carried out for Ho 3Au 9Sb reveal a complex magnetic structure characterized by antiferromagnetic interactions at low temperature ( T N = 10 K). Two metamagnetic transitions occur at high field with a change from antiferromagnetic toward ferromagnetic ordering. Density functional theory based computations were performed to understand the materials’ properties and to shed some light on the stability ranges. As a result, this allowed a better understanding of the bonding pattern, especially of the Au-containing substructure, and elucidation of the role of the third element in the stability of the structure type.« less

  4. R 3Au 9 Pn ( R = Y, Gd–Tm; Pn = Sb, Bi): A link between Cu 10Sn 3 and Gd 14Ag 51

    DOE PAGES

    Celania, Chris; Smetana, Volodymyr; Provino, Alessia; ...

    2017-06-05

    A new series of intermetallic compounds R 3Au 9 Pn ( R = Y, Gd–Tm; Pn = Sb, Bi) has been discovered during the explorations of the Au-rich parts of rare-earth-containing ternary systems with p-block elements. The existence of the series is strongly restricted by both geometric and electronic factors. R 3Au 9 Pn compounds crystallize in the hexagonal crystal system with space group P6 3/m (a = 8.08–8.24 Å, c = 8.98–9.08 Å). All compounds feature Au- Pn, formally anionic, networks built up by layers of alternating edge-sharing Au@Au 6 and Sb@Au 6 trigonal antiprisms of overall composition Aumore » 6/2 Pn connected through additional Au atoms and separated by a triangular cationic substructure formed by R atoms. From a first look, the series appears to be isostructural with recently reported R 3Au 7Sn 3 (a ternary ordered derivative of the Cu 10Sn 3-structure type), but no example of R 3Au 9M is known when M is a triel or tetrel element. R 3Au 9 Pn also contains Au@Au 6Au 2 R 3 fully capped trigonal prisms, which are found to be isostructural with those found in the well-researched R 14Au 51 series. This structural motif, not present in R 3Au 7Sn 3, represents a previously unrecognized link between Cu 10Sn 3 and Gd 14Ag 51 parent structure types. Magnetic property measurements carried out for Ho 3Au 9Sb reveal a complex magnetic structure characterized by antiferromagnetic interactions at low temperature ( T N = 10 K). Two metamagnetic transitions occur at high field with a change from antiferromagnetic toward ferromagnetic ordering. Density functional theory based computations were performed to understand the materials’ properties and to shed some light on the stability ranges. As a result, this allowed a better understanding of the bonding pattern, especially of the Au-containing substructure, and elucidation of the role of the third element in the stability of the structure type.« less

  5. Solid-state dewetting of thin Au films studied with real-time, in situ spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Magnozzi, M.; Bisio, F.; Canepa, M.

    2017-11-01

    We report the design and testing of a small, high vacuum chamber that allows real-time, in situ spectroscopic ellipsometry (SE) measurements; the chamber was designed to be easily inserted within the arms of a commercial ellipsometer. As a test application, we investigated the temperature-induced solid-state dewetting of thin (20 to 8 nm) Au layers on Si wafers. In situ SE measurements acquired in real time during the heating of the samples reveal features that can be related to the birth of a localized surface plasmon resonance (LSPR), and demonstrate the presence of a temperature threshold for the solid-state dewetting.

  6. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria

    PubMed Central

    Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Background Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. Methods We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe3O4@Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe3O4@Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe3O4@Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. Results The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0–11.0), a short assay time (<30 min), and a low detection limit (5×102 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus, and methicillin-resistant S. aureus. Conclusion This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis. PMID:29520142

  7. Influence of gold species (AuCl4(-) and AuCl2(-)) on self-assembly of PS-b-P2VP in solutions and morphology of composite thin films fabricated at the air/liquid interfaces.

    PubMed

    Zhao, Xingjuan; Wang, Qian; Zhang, Xiaokai; Lee, Yong-Ill; Liu, Hong-Guo

    2016-01-21

    Composite thin films doped with Au species were fabricated at an air/liquid interface via a series of steps, including the mass transfer of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) across the liquid/liquid interface between a DMF/CHCl3 solution and an aqueous solution containing either AuCl4(-) or AuCl2(-), self-assembly of PS-b-P2VP in a mixed DMF-water solution, and adsorption and further self-organization of the formed aggregates at the air/liquid interface. This is a new approach for fabricating composite polymer films and can be completed within a very short time. AuCl4(-) and AuCl2(-) ions were found to significantly influence the self-assembly behavior of the block copolymer and the morphologies of the composite films, leading to the formation of nanowire arrays and a foam structure at the air/liquid interface, respectively, which originated from rod-like micelles and microcapsules that had formed in the respective solutions. The effect of the metal complex was analyzed based on the packing parameters of the amphiphilic polymer molecules in different microenvironments and the interactions between the pyridine groups and the metal chloride anions. In addition, these composite thin films exhibited stable and durable performance as heterogeneous catalysts for the hydrogenation of nitroaromatics in aqueous solutions.

  8. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Sumithra Sivadas; Anitha, R.; Baskar, K.

    2016-05-23

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 °more » C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.« less

  9. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A.; Liu, Aihua

    2014-10-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm2. The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.

  10. Halo-substituted azobenzenes adsorbed at Ag(111) and Au(111) interfaces: Structures and optical properties

    NASA Astrophysics Data System (ADS)

    Hughes, Zak E.; Baev, Alexander; Prasad, Paras N.; Walsh, Tiffany R.

    2017-05-01

    The adsorption of azobenzene (AB), ortho fluoro-azobenzene (FAB) and ortho chlor-azobenzol (ClAB), in both the cis and trans isomers, at the Au(111) and Ag(111) surfaces is investigated using plane-wave density functional calculations with the revPBE-vdW-DF functional. The resulting adsorption energies and internal structures of AB adsorbed to both metal surfaces are in broad agreement with available experimental data. In the gas phase, FAB and ClAB feature a significant reduction in the energy difference between the two isomeric states, compared with AB. This relative reduction in the energy difference is still significant for the adsorbed form of FAB but is only weakly apparent for ClAB. The absorption spectra of the molecules have also been calculated, with the halogen substituents generating significant changes in the gas phase, but only a modest difference for the adsorbed molecules.

  11. Interaction of intermetallic compound formation in Cu/SnAgCu/NiAu sandwich solder joints

    NASA Astrophysics Data System (ADS)

    Xia, Yanghua; Lu, Chuanyan; Chang, Junling; Xie, Xiaoming

    2006-05-01

    The interaction between Cu/solder interface and solder/Ni interface at a Cu/SnAgCu/NiAu sandwich solder joint with various surface finishes and solder heights was investigated. The interfacial microstructure and composition of intermetallic compounds (IMCs) were characterized by a scanning electron microscope (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX). The phase structure of IMC was identified by x-ray diffraction (XRD). It is found that ternary (Cu,Ni)6Sn5 IMCs form at both interfaces. The composition, thickness, and morphology of the ternary IMCs depend not only on the interface itself, but also on the opposite interface. That is to say, strong coupling effects exist between the two interfaces. Lattice parameters of (Cu,Ni)6Sn5 shrink with increasing Ni content, in agreement with Vegard’s law. The mechanism of ternary IMC formation and interface coupling effects are discussed in this paper.

  12. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    PubMed Central

    2011-01-01

    In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO) were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future. PMID:21982417

  13. Evolution in the charge injection efficiency of evaporated Au contacts on a molecularly doped polymer

    NASA Astrophysics Data System (ADS)

    Ioannidis, Andronique; Facci, John S.; Abkowitz, Martin A.

    1998-08-01

    Injection efficiency from evaporated Au contacts on a molecularly doped polymer (MDP) system has been previously observed to evolve from blocking to ohmic over time. In the present article this contact forming phenomenon is analyzed in detail. The initially blocking nature of the Au contact is in contrast with that expected from the relative workfunctions of Au and of the polymer which suggest Au should inject holes efficiently. It is also in apparent contrast to a differently prepared interface of the same materials. The phenomenon is not unique to this interface, having been confirmed also for evaporated Ag and mechanically made liquid Hg contacts on the same MDP. The MDP is a disordered solid state solution of electroactive triarylamine hole transporting TPD molecules in a polycarbonate matrix. The trap-free hole-transport MDP provides a model system for the study of metal/polymer interfaces by enabling the use of a recently developed technique that gives a quantitative measure of contact injection efficiency. The technique combines field-dependent steady state injection current measurements at a contact under test with time-of-flight (TOF) mobility measurements made on the same sample. In the present case, MDP films were prepared with two top vapor-deposited contacts, one of Au (test contact) and one of Al (for TOF), and a bottom carbon-loaded polymer electrode which is known to be ohmic for hole injection. The samples were aged at various temperatures below the glass transition of the MDP (85 °C) and the evolution of current versus field and capacitance versus frequency behaviors are followed in detail over time and analyzed. Control measurements ensure that the evolution of the electrical properties is due to the Au/polymer interface behavior and not the bulk. All evaporated Au contacts eventually achieved ohmic injection. The evaporated Au/MDP interface was also investigated by transmission electron microscopy as a function of time and showed no evidence of

  14. Solid-state dewetting of Au-Ni bi-layer films mediated through individual layer thickness and stacking sequence

    NASA Astrophysics Data System (ADS)

    Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter

    2018-06-01

    In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.

  15. Facile synthesis of "green" gold nanocrystals using cynarin in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Katircioğlu, Zeynep; Şakalak, Hüseyin; Ulaşan, Mehmet; Gören, Ahmet Ceyhan; Yavuz, Mustafa Selman

    2014-11-01

    Herein we describe a water-based protocol that generates Au nanoparticles (AuNPs) by mixing aqueous solutions of HAuCl4 and cynarin (a natural product extract from artichoke leaf). Based on the observations from 1H NMR spectrum of AuNPs, a polyol oxidation mechanism by metal ions which eventually results in AuNPs formation, is proposed. Basically, the aromatic alcohol groups (1,2-benzenediol) of cynarin are oxidized to α-hydroxy ketone intermediate product, and then further oxidized to the vicinal diketone final product while the Au3+ ions are reduced to its atomic form (Au0) which leads the generation of Au nanoparticles. This new protocol has also been employed to prepare multiply twinned Pd nanoparticles and Ag cubical aggregates. Due to exclusion of organic solvent, surfactant, or stabilizer for all these synthesis, this protocol may provide a simple, versatile, and environmentally benign route to fabricate noble-metal nanoparticles having various compositions and morphologies.

  16. Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Bettini, S.; Pagano, R.; Valli, L.; Giancane, G.

    2014-08-01

    A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%.A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02583k

  17. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies.

    PubMed

    Zhao, Yufeng; Wang, Dongfang; Xie, Hezhen; Won, Sung Wook; Cui, Longzhe; Wu, Guiping

    2015-01-01

    One type of biosorbents, brewer fermentation industry waste yeast, was developed to adsorb the Ag (I) in aqueous solution. The result of FTIR analysis of waste yeast indicated that the ion exchange, chelating and reduction were the main binding mechanisms between the silver ions and the binding sites on the surface of the biomass. Furthermore, TEM, XRD and XPS results suggested that Ag(0) nanoparticles were deposited on the surface of yeast. The kinetic experiments revealed that sorption equilibrium could reach within 60 min, and the removal efficiency of Ag (I) could be still over 93 % when the initial concentration of Ag (I) was below 100 mg/L. Thermodynamic parameters of the adsorption process (ΔG, ΔH and ΔS) identified that the adsorption was a spontaneous and exothermic process. The waste yeast, playing a significant role in the adsorption of the silver ions, is useful to fast adsorb Ag (I) from low concentration.

  18. Computer simulation of concentrated solid solution strengthening

    NASA Technical Reports Server (NTRS)

    Kuo, C. T. K.; Arsenault, R. J.

    1976-01-01

    The interaction forces between a straight edge dislocation moving through a three-dimensional block containing a random array of solute atoms were determined. The yield stress at 0 K was obtained by determining the average maximum solute-dislocation interaction force that is encountered by edge dislocation, and an expression relating the yield stress to the length of the dislocation and the solute concentration is provided. The magnitude of the solid solution strengthening due to solute atoms can be determined directly from the numerical results, provided the dislocation line length that moves as a unit is specified.

  19. Theoretical investigation of thermoelectric and elastic properties of intermetallic compounds ScTM (TM = Cu, Ag, Au and Pd)

    NASA Astrophysics Data System (ADS)

    Iqbal, R.; Bilal, M.; Jalali-Asadabadi, S.; Rahnamaye Aliabad, H. A.; Ahmad, Iftikhar

    2018-01-01

    In this paper, we explore the structural, electronic, thermoelectric and elastic properties of intermetallic compounds ScTM (TM = Cu, Ag, Au and Pd) using density functional theory. The produced results show high values of Seebeck coefficients and electrical conductivity for these materials. High power factor for these materials at room-temperature shows that these materials may be beneficial for low-temperature thermoelectric devices and alternative energy sources. Furthermore, elastic properties of these compounds are also calculated, which are used to evaluate their mechanical properties. The Cauchy’s pressure and B/G ratio figure out that these compounds are ductile in nature. The calculated results also predict that these compounds are stable against deforming force.

  20. A facile method to prepare "green" nano-phosphors with a large Stokes-shift and solid-state enhanced photophysical properties based on surface-modified gold nanoclusters.

    PubMed

    Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T

    2017-12-15

    Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Computational materials design of negative effective U system in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Fukushima, Tetsuya; Uede, Hiroki; Katayama-Yoshida, Hiroshi

    2015-03-01

    In order to realize the super-high-TC superconductors (TC>1,000K) based on the general design rules for the negative Ueff system, we have performed computational materials design for theUeff<0 system in the hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 from the first principles. We find the interesting chemical trend of TC in 2D and 3D systems; where the TC increases exponentially in the weak coupling regime (|Ueff (-0.44eV)|< W(2eV), W is the band width) for hole-doped CuFeS2, then the TC goes through a maximum when |Ueff (-4.88eV, -4.14eV)| ~ W (2.8eV, 3.5eV) for hole-doped AgAlO2 and AuAlO2, and the TC decreases with increasing |Ueff|in strong coupling regime, where |Ueff (-4.53eV)|> W(1.7eV) for hole-doped CuAlO2

  2. Cyanide-Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence.

    PubMed

    Belyaev, Andrey; Eskelinen, Toni; Dau, Thuy Minh; Ershova, Yana Yu; Tunik, Sergey P; Melnikov, Alexei S; Hirva, Pipsa; Koshevoy, Igor O

    2018-01-26

    The series of cyanide-bridged coordination polymers [(P 2 )CuCN] n (1), [(P 2 )Cu{M(CN) 2 }] n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P 4 )MM'(CN)} 2 ] 2+ (MM'=Cu 2 6, Ag 2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P 2 and tetradentate P 4 phosphane ligands (P 2 =1,2-bis(diphenylphosphino)benzene; P 4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d 10 -d 10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP 2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T 1 and S 1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S 1 -T 1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Metal-ligand bond directionality in the M2-NH3 complexes (M = Cu, Ag and Au)

    NASA Astrophysics Data System (ADS)

    Eskandari, K.; Ebadinejad, F.

    2018-05-01

    The metal-ligand bonds in the M2-NH3 complexes (M = Au, Ag and Cu) are directional and the M-M-N angles tend to be linear. Natural energy decomposition analysis (NEDA) and localised molecular orbital energy decomposition analysis (LMOEDA) approaches indicate that the metal-ligand bonds in these complexes are mainly electrostatic in nature, however, the electrostatic is not the cause of the linearity of M-M-N arrangements. Instead, NEDA shows that the charge transfer and core repulsion are mainly responsible for the directionality of these bonds. In the LMOEDA point of view, the repulsion term is the main reason for the linearity of these complexes. Interacting quantum atoms (IQA) analysis shows that inter-atomic and inter-fragment interactions favour the nonlinear arrangements; however, these terms are compensated by the atomic self-energies, which stabilise the linear structure.

  4. Photocatalytic degradation of H2S aqueous media using sulfide nanostructured solid-solution solar-energy-materials to produce hydrogen fuel.

    PubMed

    Lashgari, Mohsen; Ghanimati, Majid

    2018-03-05

    H 2 S is a corrosive, flammable and noxious gas, which can be neutralized by dissolving in alkaline media and employed as H 2 -source by utilizing inside semiconductor-assisted/photochemical reactors. Herein, through a facile hydrothermal route, a ternary nanostructured solid-solution of iron, zinc and sulfur was synthesized in the absence and presence of Ag-dopant, and applied as efficient photocatalyst of hydrogen fuel production from H 2 S media. The effect of pH on the photocatalyst performance was scrutinized and the maximum activity was attained at pH=11, where HS - concentration is high. BET, diffuse reflectance and photoluminescence studies indicated that the ternary solid-solution photocatalyst, in comparison to its solid-solvent (ZnS), has a greater surface area, stronger photon absorption and less charge recombination, which justify its superiority. Moreover, the effect of silver-dopant on the photocatalyst performance was examined. The investigations revealed that although silver could boost the absorption of photons and increase the surface area, it could not appreciably enhance the photocatalyst performance due to its weak influence on retarding the charge-recombination process. Finally, the phenomenon was discussed in detail from mechanistic viewpoint. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    PubMed

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  6. Growth of Solid Solution Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Holland, L. R.

    1985-01-01

    The major objective of this program is to determine the conditions under which single crystals of solid solutions can be grown from the melt in a Bridgman configuration with a high degree of chemical homogeneity. The central aim is to assess the role of gravity in the growth process and to explore the possible advantages for growth in the absence of gravity. The alloy system being investigated is the solid solution semiconductor with x-values appropriate for infrared detector applications in Hg sub (1-x) Cd sub x Te the 8 to 14 micro m wavelength region. Both melt and Te-solvent growth are being considered. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. Experimental facilities have been established for the purification, casting, and crystal growth of the alloy system. Facilities have been also established for the metallurgical, compositional, electric and optical characterization of the alloys. Crystals are being grown by the Bridgman-Stockbarger method and are analyzed by various experimental techniques to evaluate the effects of growth conditions on the longitudinal and radial compositional variations and defect densities in the crystals.

  7. Environmentally friendly ultrosound synthesis and antibacterial activity of cellulose/Ag/AgCl hybrids.

    PubMed

    Dong, Yan-Yan; Deng, Fu; Zhao, Jin-Jin; He, Jing; Ma, Ming-Guo; Xu, Feng; Sun, Run-Cang

    2014-01-01

    This study aims to investigate the fabrication and property of cellulose/Ag/AgCl hybrids. In this article, preparation of cellulose/Ag/AgCl hybrids was reported using the cellulose solution, AgNO₃, AlCl₃·6H₂O with ultrasound agitation method. The cellulose solution was synthesized by the dissolution of the microcrystalline cellulose in NaOH/urea aqueous solution. Influences of the experimental parameters of ultrasound treatment time and ultrasonic intermittent on the hybrids were investigated. The phase, microstructure, thermal stability, and morphology of the hybrids were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). Results showed the successful synthesis of cellulose/Ag/AgCl hybrids with good thermal stability. Moreover, the hybrids displayed desirable antimicrobial activities. Compared with other conventional methods, the rapid, green, and environmentally friendly ultrasound agitation method opens a new window to the high value-added applications of biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Au]/[Ag]-catalysed expedient synthesis of branched heneicosafuranosyl arabinogalactan motif of Mycobacterium tuberculosis cell wall

    NASA Astrophysics Data System (ADS)

    Thadke, Shivaji A.; Mishra, Bijoyananda; Islam, Maidul; Pasari, Sandip; Manmode, Sujit; Rao, Boddu Venkateswara; Neralkar, Mahesh; Shinde, Ganesh P.; Walke, Gulab; Hotha, Srinivas

    2017-01-01

    Emergence of multidrug-resistant and extreme-drug-resistant strains of Mycobacterium tuberculosis (MTb) can cause serious socioeconomic burdens. Arabinogalactan present on the cellular envelope of MTb is unique and is required for its survival; access to arabinogalactan is essential for understanding the biosynthetic machinery that assembles it. Isolation from Nature is a herculean task and, as a result, chemical synthesis is the most sought after technique. Here we report a convergent synthesis of branched heneicosafuranosyl arabinogalactan (HAG) of MTb. Key furanosylations are performed using [Au]/[Ag] catalysts. The synthesis of HAG is achieved by the repetitive use of three reactions namely 1,2-trans furanoside synthesis by propargyl 1,2-orthoester donors, unmasking of silyl ether, and conversion of n-pentenyl furanosides into 1,2-orthoesters. Synthesis of HAG is achieved in 47 steps (with an overall yield of 0.09%) of which 21 are installation of furanosidic linkages in a stereoselective manner.

  9. Synthesis by picosecond laser ablation of ligand-free Ag and Au nanoparticles for SERS applications

    NASA Astrophysics Data System (ADS)

    Fazio, Enza; Spadaro, Salvatore; Santoro, Marco; Trusso, Sebastiano; Lucotti, Andrea.; Tommasini, Matteo.; Neri, Fortunato; Maria Ossi, Paolo

    2018-01-01

    The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS) measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  10. Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution.

    PubMed

    Azzam, Eid M S; Eshaq, Gh; Rabie, A M; Bakr, A A; Abd-Elaal, Ali A; El Metwally, A E; Tawfik, Salah M

    2016-08-01

    In the present study, chitosan assembled on gold and silver nanoparticles were prepared and characterized by UV-vis, TEM, EDX and DLS techniques. The nanocomposites chitosan (Ch)/clay, chitosan (Ch)/AgNPs/clay and chitosan (Ch)/AuNPs/clay were prepared by solution mixing method and characterized by FTIR, XRD, and SEM techniques. The adsorption of copper(II) ions onto the prepared hybrid composites from an aqueous solution using batch adsorption was examined. The results showed that benefiting from the surface property of clay, the abundant amino and hydroxyl functional groups of chitosan, the adsorbent provides adequate and versatile adsorption for the Cu(II) ions under investigation. The batch adsorption experiments showed that the adsorption of the Cu(II) is considerably dependent on pH of milieu, the amount of adsorbent, and contact time. Batch adsorption studies revealed that the adsorption capacity of Cu(II) increased with increase in initial concentration and contact time with optimum pH in the range around neutral. The maximum uptake of Cu(II) ions by (Ch)/AgNPs/clay composite was found to be 181.5mg/g. The adsorption efficiency of Cu(II) ions by prepared (Ch)/AgNPs/clay and (Ch)/AuNPs/clay is bigger than that the individual chitosan (Ch)/clay composite which clarifies the role of metal nanoparticles in enhancement the adsorption characters. The study suggests that the (Ch)/AgNPs/clay hybrid composite is a promising nano-adsorbent for the removal of Cu(II) ions from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie, J.C., E-mail: jiejc@dlut.edu.cn; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001; Wang, H.W.

    2014-01-15

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solutionmore » appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.« less

  12. AgPO2F2 and Ag9(PO2F2)14: the first Ag(i) and Ag(i)/Ag(ii) difluorophosphates with complex crystal structures.

    PubMed

    Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech

    2015-12-07

    The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations.

  13. Comparison of secondary ion intensity enhancement from polymers on silicon and silver substrates by using Au-TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Kudo, M.; Aimoto, K.; Sunagawa, Y.; Kato, N.; Aoyagi, S.; Iida, S.; Sanada, N.

    2008-12-01

    The usefulness of the usage of cluster primary ion source together with an Ag substrate and detection of Ag cationized molecular ions was studied from the standpoint to realize high sensitivity TOF-SIMS analysis of organic materials. Although secondary ions from polymer thin films on a Si substrate can be detected in a higher sensitivity with Au 3+ cluster primary ion compared with Ga + ion bombardment, it was clearly observed that the secondary ion intensities from samples on an Ag substrate showed quite a different tendency from that on Si. When monoatomic primary ions, e.g., Au + and Ga +, were used for the measurement of the sample on an Ag substrate, [M+Ag] + ions (M corresponds to polyethylene glycol molecule) were detected in a high sensitivity. On the contrary, when Au 3+ was used, no intensity enhancement of [M+Ag] + ions was observed. The acceleration energy dependence of the detected secondary ions implies the different ionization mechanisms on the different substrates.

  14. Computational materials design of attractive Fermion system with large negative effective Ueff in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2: Charge-excitation induced Ueff < 0

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Fukushima, T.; Uede, H.; Katayama-Yoshida, H.

    2015-12-01

    On the basis of general design rules for negative effective U(Ueff) systems by controlling purely-electronic and attractive Fermion mechanisms, we perform computational materials design (CMD®) for the negative Ueff system in hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 by ab initio calculations with local density approximation (LDA) and self-interaction corrected-LDA (SIC-LDA). It is found that the large negative Ueff in the hole-doped attractive Fermion systems for CuAlO2 (UeffLDA = - 4.53 eV and UeffSIC-LDA = - 4.20 eV), AgAlO2 (UeffLDA = - 4.88 eV and UeffSIC-LDA = - 4.55 eV) and AuAlO2 (UeffLDA = - 4.14 eV and UeffSIC-LDA = - 3.55 eV). These values are 10 times larger than that in hole-doped three-dimensional (3D) CuFeS2 (Ueff = - 0.44 eV). For future calculations of Tc and phase diagram by quantum Monte Carlo simulations, we propose the negative Ueff Hubbard model with the anti-bonding single π-band model for CuAlO2, AgAlO2 and AuAlO2 using the mapped parameters obtained from ab initio electronic structure calculations. Based on the theory of negative Ueff Hubbard model (Noziéres and Schmitt-Rink, 1985), we discuss |Ueff| dependence of superconducting critical temperature (Tc) in the 2D Delafossite of CuAlO2, AgAlO2 and AuAlO2 and 3D Chalcopyrite of CuFeS2, which shows the interesting chemical trend, i.e., Tc increases exponentially (Tc ∝ exp [ - 1 / | Ueff | ]) in the weak coupling regime | Ueff(- 0.44 eV) | < W(∼ 2 eV) (where W is the band width of the negative Ueff Hubbard model) for the hole-doped CuFeS2, and then Tc goes through a maximum when | Ueff(- 4.88 eV , - 4.14 eV) | ∼ W(2.8 eV , 3.5 eV) for the hole-doped AgAlO2 and AuAlO2, and finally Tc decreases with increasing |Ueff| in the strong coupling regime, where | Ueff(- 4.53 eV) | > W(1.7 eV) , for the hole-doped CuAlO2.

  15. Evaluation of performance of three different hybrid mesoporous solids based on silica for preconcentration purposes in analytical chemistry: From the study of sorption features to the determination of elements of group IB.

    PubMed

    Kim, Manuela Leticia; Tudino, Mabel Beatríz

    2010-08-15

    Several studies involving the physicochemical interaction of three silica based hybrid mesoporous materials with metal ions of the group IB have been performed in order to employ them for preconcentration purposes in the determination of traces of Cu(II), Ag(I) and Au(III). The three solids were obtained from mesoporous silica functionalized with 3-aminopropyl (APS), 3-mercaptopropyl (MPS) and N-[2-aminoethyl]-3-aminopropyl (NN) groups, respectively. Adsorption capacities for Au, Cu and Ag were calculated using Langmuir's isotherm model and then, the optimal values for the retention of each element onto each one of the solids were found. Physicochemical data obtained under thermodynamic equilibrium and under kinetic conditions - imposed by flow through experiments - allowed the design of simple analytical methodologies where the solids were employed as fillings of microcolumns held in continuous systems coupled on-line to an atomic absorption spectrometry. In order to control the interaction between the filling and the analyte at short times (flow through conditions) and thus, its effect on the analytical signal and the presence of interferences, the initial adsorption velocities were calculated using the pseudo second order model. All these experiments allowed the comparison of the solids in terms of their analytical behaviour at the moment of facing the determination of the three elements. Under optimized conditions mainly given by the features of the filling, the analytical methodologies developed in this work showed excellent performances with limits of detection of 0.14, 0.02 and 0.025 microg L(-1) and RSD % values of 3.4, 2.7 and 3.1 for Au, Cu and Ag, respectively. A full discussion of the main findings on the interaction metal ions/fillings will be provided. The analytical results for the determination of the three metals will be also presented. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Design of high-strength refractory complex solid-solution alloys

    DOE PAGES

    Singh, Prashant; Sharma, Aayush; Smirnov, A. V.; ...

    2018-03-28

    Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less

  17. Design of high-strength refractory complex solid-solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prashant; Sharma, Aayush; Smirnov, A. V.

    Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less

  18. Active control of methanol carbonylation selectivity over Au/carbon anode by electrochemical potential.

    PubMed

    Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi

    2005-05-12

    Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (<+1.2 V (Ag/AgCl)). On the other hand, Au(3+) is the active spices for the selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).

  19. Photo- and thermally induced property change in Ag diffusion into Ag/As2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Aparimita, Adyasha; Sripan, C.; Ganesan, R.; Naik, Ramakanta

    2018-03-01

    In the present report, we have prepared As2Se3 and bilayer Ag/As2Se3 chalcogenide thin films prepared by thermal evaporation process. The top Ag layer is being diffused into the bottom As2Se3 layer by 532 nm laser irradiation and thermal annealing process. The photo and thermal energy drives the Ag+ ions into the As2Se3 matrix that enhances the formation of As-Se-Ag solid solution which shows the changes of optical properties such as transmission, absorption power, refractive index, and optical band gap. The transmission power drastically decreased for the thermal-induced film than the laser induced one; and the reverse effect is seen for the absorption coefficient. The non-linear refractive index is found to be increased due to the Ag diffusion into As2Se3 film. The indirect allowed optical band gap is being reduced by a significant amount of 0.17 eV (thermal diffusion) and 0.03 eV (photo diffusion) from the Ag/As2Se3 film. The Ag diffusion creates chemical disorderness in the film observed from the two parameters which measures the degree of disorder such as Urbach energy and Tauc parameter. The structural change is not noticed in the studied film as seen from the X-ray diffraction pattern. Scanning electron microscopy and atomic force microscopy investigations showed that the surface morphology was influenced by the diffusion phenomena. The change in optical constants in such type of film can be used in optical waveguides and optical devices.

  20. Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches

    NASA Astrophysics Data System (ADS)

    Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.

    2017-12-01

    Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.

  1. Multiple Nonstoichiometric Phases with Discrete Composition Ranges in the CaAu5−CaAu4Bi−BiAu2 System. A Case Study of the Chemistry of Spinodal Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Qisheng; Corbett, John D.

    2010-04-01

    Synthetic explorations in the CaAu{sub 5}-CaAu{sub 4}Bi-BiAu{sub 2} system at 400 C reveal five separate solid solution regions that show three distinct substitution patterns in the CaAu{sub 5} parent: (I) CaAu{sub 4}(Au{sub 1-m}Bi{sub m}) with 0 {le} m {le} 0.15(1), (II) 0.33(1) {le} m {le} 0.64(1), (III) 0.85(4) {le} m {le} 0.90(2); (IV) (Ca{sub 1-r}Au{sub r})Au{sub 4}(Bi{sub 1-s}Au{sub s}) with 0 {le} r {le} 0.39(1) and 0 {le} s {le} 0.12(2); (V) (Ca{sub 1-p-q}Au{sub p}Bi{sub q})Au{sub 4}Bi with 0.09(2) {le} p {le} 0.13(1) and 0.31(2) {le} q {le} 0.72(4). Single crystal X-ray studies establish that all of these phase regionsmore » have common cubic symmetry F{sub 4}3m and that their structures (MgCu{sub 4}Sn-type, an ordered derivative of MgCu{sub 2}) all feature three-dimensional networks of Au{sub 4} tetrahedra, in which the truncated tetrahedra are centered and capped by Ca/Au, Au/Bi, or Ca/Au/Bi mixtures to give 16-atom Friauf polyhedra. TB-LMTO-ASA and -COHP calculations also reveal that direct interactions between Ca-Au and Ca-Bi pairs of atoms are relatively weak and that the Bi-Au interactions in the unstable ideal CaAu{sub 4}Bi are antibonding in character at E{sub F} but that their bonding is optimized at {+-}1 e. Compositions between the five nonstoichiometric phases appear to undergo spinodal decompositions. The last phenomenon has been confirmed by HRTEM, STEM-HAADF, EPMA, and XRD studies of the nominal composition CaAu{sub 4.25}Bi{sub 0.75}. Its DTA analyses suggest that the phases resulting from spinodal decomposition have nearly the same melting point ({approx}807 C), as expected, and that they are interconvertible through peritectic reactions at {approx}717 C.« less

  2. Investigation of compositional segregation during unidirectional solidification of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Wang, J. C.

    1982-01-01

    Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.

  3. Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase

    DOE PAGES

    Dou, Jian; Tang, Yu; Nguyen, Luan; ...

    2016-12-22

    Nanoporous gold with minor silver content has been identified as a new type of gold based catalyst for selective oxidation of cyclohexene with molecular oxygen in liquid. By oxidation of the leached nanoporous gold foils in ozone, the minor silver content was oxidized in this paper to form silver oxide nanoclusters on the surface of nanoporous gold. With further treatment in methanol, the surface silver oxide was reduced and surface alloy was formed on gold ligaments. Both nanoporous gold treated with ozone only and the one with ozone and then methanol are very active for selective oxidation of cyclohexene withmore » molecular oxygen in liquid of cyclohexene with a turn-over-frequency (TOF) of 0.55–0.99 molecules per surface Au atom per second under a solvent-free and initiator- free condition. The total selectivity for production of 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was increased from 57.5 % to 80.8 % by an additional treatment of nanoporous gold in methanol after activation in zone. Finally, the correlation of catalytic selectivity for the production of the three products and corresponding surface chemistry of ligament suggests that (1) the formed Au–Ag alloy surface is favorable for the formation of 2-cyclohexen-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide and (2) the surface silver oxide is favorable for the production of cyclohexenyl hydroperoxide.« less

  4. Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Jian; Tang, Yu; Nguyen, Luan

    Nanoporous gold with minor silver content has been identified as a new type of gold based catalyst for selective oxidation of cyclohexene with molecular oxygen in liquid. By oxidation of the leached nanoporous gold foils in ozone, the minor silver content was oxidized in this paper to form silver oxide nanoclusters on the surface of nanoporous gold. With further treatment in methanol, the surface silver oxide was reduced and surface alloy was formed on gold ligaments. Both nanoporous gold treated with ozone only and the one with ozone and then methanol are very active for selective oxidation of cyclohexene withmore » molecular oxygen in liquid of cyclohexene with a turn-over-frequency (TOF) of 0.55–0.99 molecules per surface Au atom per second under a solvent-free and initiator- free condition. The total selectivity for production of 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was increased from 57.5 % to 80.8 % by an additional treatment of nanoporous gold in methanol after activation in zone. Finally, the correlation of catalytic selectivity for the production of the three products and corresponding surface chemistry of ligament suggests that (1) the formed Au–Ag alloy surface is favorable for the formation of 2-cyclohexen-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide and (2) the surface silver oxide is favorable for the production of cyclohexenyl hydroperoxide.« less

  5. Crystal-face-selective adsorption of Au nanoparticles onto polycrystalline diamond surfaces.

    PubMed

    Kondo, Takeshi; Aoshima, Shinsuke; Hirata, Kousuke; Honda, Kensuke; Einaga, Yasuaki; Fujishima, Akira; Kawai, Takeshi

    2008-07-15

    Crystal-face-selective adsorption of Au nanoparticles (AuNPs) was achieved on polycrystalline boron-doped diamond (BDD) surface via the self-assembly method combined with a UV/ozone treatment. To the best of our knowledge, this is the first report of crystal-face-selective adsorption on an inorganic solid surface. Hydrogen-plasma-treated BDD samples and those followed by UV/ozone treatment for 2 min or longer showed almost no adsorption of AuNP after immersion in the AuNP solution prepared by the citrate reduction method. However, the samples treated by UV/ozone for 10 s showed AuNP adsorption on their (111) facets selectively after the immersion. Moreover, the sample treated with UV/ozone for 40-60 s showed AuNP adsorption on the whole surface. These results indicate that the AuNP adsorption behavior can be controlled by UV/ozone treatment time. This phenomenon was highly reproducible and was applied to a two-step adsorption method, where AuNPs from different batches were adsorbed on the (111) and (100) surface in this order. Our findings may be of great value for the fabrication of advanced nanoparticle-based functional materials via bottom-up approaches with simple macroscale procedures.

  6. Engineering the Charge Transport of Ag Nanocrystals for Highly Accurate, Wearable Temperature Sensors through All-Solution Processes.

    PubMed

    Joh, Hyungmok; Lee, Seung-Wook; Seong, Mingi; Lee, Woo Seok; Oh, Soong Ju

    2017-06-01

    All-nanocrystal (NC)-based and all-solution-processed wearable resistance temperature detectors (RTDs) are introduced. The charge transport mechanisms of Ag NC thin films are engineered through various ligand treatments to design high performance RTDs. Highly conductive Ag NC thin films exhibiting metallic transport behavior with high positive temperature coefficients of resistance (TCRs) are achieved through tetrabutylammonium bromide treatment. Ag NC thin films showing hopping transport with high negative TCRs are created through organic ligand treatment. All-solution-based, one-step photolithography techniques that integrate two distinct opposite-sign TCR Ag NC thin films into an ultrathin single device are developed to decouple the mechanical effects such as human motion. The unconventional materials design and strategy enables highly accurate, sensitive, wearable and motion-free RTDs, demonstrated by experiments on moving or curved objects such as human skin, and simulation results based on charge transport analysis. This strategy provides a low cost and simple method to design wearable multifunctional sensors with high sensitivity which could be utilized in various fields such as biointegrated sensors or electronic skin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Tuscarora Au-Ag district: Eocene volcanic-hosted epithermal deposits in the Carlin gold region, Nevada

    USGS Publications Warehouse

    Castor, S.B.; Boden, D.R.; Henry, C.D.; Cline, J.S.; Hofstra, A.H.; McIntosh, W.C.; Tosdal, R.M.; Wooden, J.P.

    2003-01-01

    The Tuscarora mining district contains the oldest and the only productive Eocene epithermal deposits in Nevada. The district is a particularly clear example of association of low-sulfidation deposits with igneous activity and structure, and it is unusual in that it consists of two adjoining but physically and chemically distinct types of low-sulfidation deposits. Moreover, Tuscarora deposits are of interest because they formed contemporaneously with nearby, giant Carlin-type gold deposits. The Tuscarora deposits formed within the 39.9 to 39.3 Ma Tuscarora volcanic field, along and just outside the southeastern margin of the caldera-like Mount Blitzen volcanic center. Both deposit types formed at 39.3 Ma, contemporaneous with the only major intrusive activity in the volcanic field. No deposits are known to have formed during any of the intense volcanic phases of the field. Intrusions were the apparent heat source, and structures related to the Mount Blitzen center were conduits for hydrothermal circulation. The ore-forming fluids interacted dominantly with Eocene igneous rocks. The two deposit types occur in a northern silver-rich zone that is characterized by relatively high Ag/Au ratios (110-150), narrow alteration zones, and quartz and carbonate veins developed mostly in intrusive dacite, and in a southern gold-rich zone that is typified by relatively low Ag/Au ratios (4-14), more widespread alteration, and quartz-fissure and stockwork veins commonly developed in tuffaceous sedimentary rocks. The deposit types have similar fluid inclusion and Pb and S isotope characteristics but different geochemical signatures. Quartz veins from both zones have similar thermal and paragenetic histories and contain fluid inclusions that indicate that fluids cooled from between 260?? and 230??C to less than 200??C. Fluid boiling may have contributed to precious-metal deposition. Veins in both zones have relatively high As and Sb and low Bi, Te, and W. The silver zone has high Ca

  8. On the mechanisms of cation injection in conducting bridge memories: The case of HfO{sub 2} in contact with noble metal anodes (Au, Cu, Ag)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saadi, M.; CNRS, LTM, F-38000 Grenoble; El Manar University, LMOP, 2092 Tunis

    Resistance switching is studied in HfO{sub 2} as a function of the anode metal (Au, Cu, and Ag) in view of its application to resistive memories (resistive random access memories, RRAM). Current-voltage (I-V) and current-time (I-t) characteristics are presented. For Au anodes, resistance transition is controlled by oxygen vacancies (oxygen-based resistive random access memory, OxRRAM). For Ag anodes, resistance switching is governed by cation injection (Conducting Bridge random access memory, CBRAM). Cu anodes lead to an intermediate case. I-t experiments are shown to be a valuable tool to distinguish between OxRRAM and CBRAM behaviors. A model is proposed to explainmore » the high-to-low resistance transition in CBRAMs. The model is based on the theory of low-temperature oxidation of metals (Cabrera-Mott theory). Upon electron injection, oxygen vacancies and oxygen ions are generated in the oxide. Oxygen ions are drifted to the anode, and an interfacial oxide is formed at the HfO{sub 2}/anode interface. If oxygen ion mobility is low in the interfacial oxide, a negative space charge builds-up at the HfO{sub 2}/oxide interface. This negative space charge is the source of a strong electric field across the interfacial oxide thickness, which pulls out cations from the anode (CBRAM case). Inversely, if oxygen ions migration through the interfacial oxide is important (or if the anode does not oxidize such as Au), bulk oxygen vacancies govern resistance transition (OxRRAM case).« less

  9. Template synthesis of Ag/AgCl microrods and their efficient visible light-driven photocatalytic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hua; Xiao, Liang; Huang, Jianhua, E-mail: jhhuang@zstu.edu.cn

    2014-09-15

    Highlights: • Preparation ofAg/AgCl microrods by reaction of Ag{sub 2}WO{sub 4} microrods with NaCl solution. • Generation of metallic Ag is induced by the ambient light in the synthesis process. • Ag/AgCl shows excellent visible light-driven photodegradation of organic dyes. - Abstract: Ag/AgCl microrods, aggregated by nanoparticles with a diameter ranging from 100 nm to 2 μm, were prepared by an ion-exchange reaction at 80 °C between Ag{sub 2}WO{sub 4} template and NaCl solution. The existence of metallic Ag species was confirmed by XRD, DRS and XPS measurements. Ag/AgCl microrods showed excellent photocatalytic activity for the degradation of rhodamine Bmore » and methylene blue under visible light irradiation. The degradation rate constants of rhodamine B and methylene blue are 0.176 and 0.114 min{sup −1}, respectively. The cycling photodegradation experiments suggest that Ag/AgCl microds could be employed as stable plasmonic photocatalysts for the degradation of organic dyes under visible light irradiation.« less

  10. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

    USGS Publications Warehouse

    Glynn, P.D.; Reardon, E.J.; Plummer, Niel; Busenberg, E.

    1990-01-01

    Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.

  11. Atomic-level simulation of ferroelectricity in perovskite solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepliarsky, M.; Instituto de Fisica Rosario, CONICET-UNR, Rosario,; Phillpot, S. R.

    2000-06-26

    Building on the insights gained from electronic-structure calculations and from experience obtained with an earlier atomic-level method, we developed an atomic-level simulation approach based on the traditional Buckingham potential with shell model which correctly reproduces the ferroelectric phase behavior and dielectric and piezoelectric properties of KNbO{sub 3}. This approach now enables the simulation of solid solutions and defected systems; we illustrate this capability by elucidating the ferroelectric properties of a KTa{sub 0.5}Nb{sub 0.5}O{sub 3} random solid solution. (c) 2000 American Institute of Physics.

  12. Exploring the work function variability and structural stability of VO2(1 1 0) surface upon noble metal (Ag, Au, Pt) adsorption and incorporation

    NASA Astrophysics Data System (ADS)

    Chen, Lanli; Cui, Yuanyuan; Shi, Siqi; Luo, Hongjie; Gao, Yanfeng

    2018-08-01

    Vanadium dioxide (VO2) has attracted great attention, with scientific and technological advances over the past few decades due to its reversible metal-insulator transition at 340 K. However, the high phase transition temperature (Tc) of VO2 limits its practical applications. Our first-principles calculations show that VO2(1 1 0) surfaces with adsorbed noble metals (Ag, Au, Pt) exhibit a lower work function compared with the clean surface and further induces a lower Tc due to charge transfer from the noble metals to the VO2(1 1 0) surface. However, the work functions of the VO2(1 1 0) surfaces after the incorporation of noble metals are higher than that of the clean surface. In addition, the results of formation energies of various configurations show that the VO2(1 1 0) surface with the adsorption and incorporation of Ag is energetically more favorable than those with Au and Pt. Therefore, it may be concluded that the adsorption and incorporation of noble metals can not only tailor the work function of VO2, in turn realizing the rational tuning of Tc of VO2, but also stabilize the structures of VO2 thin films. These results provide guidance for further exploration of VO2-based optical switching devices and smart windows.

  13. Myochrysine Solution Structure and Reactivity

    PubMed Central

    Jones, William B.; Zhao, Zheng; Dorsey, John G.; Tepperman, Katherine

    1994-01-01

    We have determined the framework structure of Myochrysine (disodium gold(I)thiomalate) in the solid state and extremely concentrated aqueous solution, previously. It consists of an open chain polymer with linear gold coordination to two thiolates from the thiomalic acid moieties which bridge between pairs of gold atoms providing an Au-S-Au angle of 95°. The question remained: was this structure relevant to the dilute solutions of drugs administered and the still lower concentrations of gold found in the bodies of patients (typically 1 ppm Au in blood and urine or 5 μM in Au). We have provided an answer to that question using extended X-ray absorption spectroscopy (EXAFS) and capillary zone electrophoresis (CZE). EXAFS studies confirm that the polymeric structure with two sulfur atoms per gold atom persists from molar concentrations down to millimolar concentrations. CZE is able to separate and detect Myochrysine at millimolar levels. More importantly, at micromolar levels Myochrysine solutions exhibit identical CZE behavior to that measured at millimolar levels. Thus, aqueous solutions of the drug remain oligomeric at concentrations commensurate with those found in patient blood and urine. The reactivity of Myochrysine with cyanide, a species especially prevalent in smoking patients, was explored using CZE. Cyanide freely replaces thiomalic acid to form [Au(CN)2]- and thiomalic acid via a mixed ligand intermediate. The overall apparent equilibrium constant (Kapp) for the reaction is 6×10-4M-1. Further reaction of [Au(CN)2]- with a large excess of L, where L is cysteine, N-acetylcysteine, or glutathione, shows that these amino acids readily replace cyanide to form [AuL2]-. These species are thus potential metabolites and could possibly be active forms of gold in vivo. That all of these species are readily separated and quantified using CZE demonstrates that capillary electrophoresis is an accessible and powerful tool to add to those used for the study of gold

  14. A3-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films

    PubMed Central

    Huang, Jian-Lin

    2013-01-01

    Summary We decorated HS-functionalized cellulose nanocrystallite (CNC) films with monodisperse Au nanoparticles (AuNPs) to form a novel nanocomposite catalyst AuNPs@HS-CNC. The uniform, fine AuNPs were made by the reduction of HAuCl4 solution with thiol (HS-) group-functionalized CNC films. The AuNPs@HS-CNC nanocomposites were examined by X-ray photoelectron spectroscopy (XPS), TEM, ATR-IR and solid-state NMR. Characterizations suggested that the size of the AuNPs was about 2–3 nm and they were evenly distributed onto the surface of CNC films. Furthermore, the unique nanocomposite Au@HS-CNC catalyst displayed high catalytic efficiency in promoting three-component coupling of an aldehyde, an alkyne, and an amine (A3-coupling) either in water or without solvent. Most importantly, the catalyst could be used repetitively more than 11 times without significant deactivation. Our strategy also promotes the use of naturally renewable cellulose to prepare reusable nanocomposite catalysts for organic synthesis. PMID:23946833

  15. Suppression of vacancy cluster growth in concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...

    2016-12-13

    Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less

  16. Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn-Cu-Ag-Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, Yasser; Surour, Adel A.; El-Manawi, Abdel Hamid W.; El-Dougdoug, Abdel-Monem A.; Omar, Sayed

    2015-04-01

    The Wadi Hamama area is a volcanogenic Zn-Cu-Au-Ag prospect. It is hosted by a Neoproterozoic bimodal-mafic sequence, which comprises basalt, dacite and rhyolite along with volcaniclastic rocks. The rocks have a low-K tholeiitic affinity and are enriched in large ion lithophile elements over high field strength elements, which indicated their formation in an intra-oceanic island arc tectonic setting. The area was intruded by a tonalite-trondhjemite body, which has an intra-oceanic island arc affinity and later by diorite, which has a cordilleran-margin geochemical affinity. These rock units were intruded by post-tectonic granite dykes, which have a within-plate geochemical signature. There is a quartz-carbonate horizon extending along the contact between the basalt and the volcaniclastic rocks, mainly banded and lapilli tuffs. This horizon is of exhalative origin and is underlain by a mushroom-shaped alteration zone extending from the horizon down to the massive basalt. The footwall alteration is characterized by a silica-rich core surrounded by a thick chlorite sheath. Both the quartz-carbonate horizon and the footwall-altered rocks enclose historical trenches and pits. Sulfide-rich core samples are enriched in Zn, relative to Cu, and in Ag, which indicates the low-temperature nature of the hydrothermal system. The prospect was affected by supergene processes, which led to the widespread occurrence of secondary copper minerals and gold enrichment relative to the leached base metals, especially Zn. The prospect formed through a limited rifting of an intra-oceanic island arc which resulted in the formation of a small-scale volcanogenic Zn-Cu-Ag-Au prospect.

  17. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less

  18. The effect of copper and silver on the properties of Au-ZnO catalyst and its activity in glycerol oxidation

    NASA Astrophysics Data System (ADS)

    Kaskow, Iveta; Decyk, Piotr; Sobczak, Izabela

    2018-06-01

    The goal of this work was to use ZnO as a support for gold and copper (Au-Cu system) or gold and silver (Au-Ag system) and comparison of the effect of copper and silver on the properties of gold and its activity in glycerol oxidation with oxygen in the liquid phase. The samples prepared were fully characterized by XRD, TEM techniques and UV-vis, XPS, ESR spectroscopic methods. It was found that the introduction of copper and silver changed the electronic state of gold loaded on ZnO by the electron transfer between metals. Three different metallic gold species were identified in calcined catalysts: (Au°)δ- (Au-ZnO), (Au°)η- (AuCu-ZnO) and (Au°)γ- (AuAg-ZnO), where δ-,η-,γ- indicate a different partial negative charge on metallic gold and γ > δ > η. The results showed that (Au°)η- centers (metallic gold with the lowest negative charge) formed on AuCu-ZnO were the most active in glycerol oxidation. The increase in the negative charge on metallic gold loaded on AuAg-ZnO reduced the gold activity in silver containing sample. The glyceric acid adsorption and desorption rate influenced the selectivity of the catalysts.

  19. The chemistry of the superheavy elements. II. The stability of high oxidation states in group 11 elements: Relativistic coupled cluster calculations for the di-, tetra- and hexafluoro metallates of Cu, Ag, Au, and element 111

    NASA Astrophysics Data System (ADS)

    Seth, Michael; Cooke, Fiona; Schwerdtfeger, Peter; Heully, Jean-Louis; Pelissier, Michel

    1998-09-01

    The stability of the high oxidation states +3 and +5 in Group 11 fluorides is studied by relativistic Møller-Plesset (MP) and coupled cluster methods. Higher metal oxidation states are stabilized by relativistic effects. As a result, the hexafluoro complex of the Group 11 element with nuclear charge 111 and oxidation state +5 is the most stable compared to the other congeners. The results also suggest that AgF6- is thermodynamically stable and, therefore, it might be feasable to synthesize this compound. For the copper fluorides we observe very large oscillations in the Møller-Plesset series up to the fourth order. Nonrelativistic calculations lead to the expected trend in the metal-fluorine bond distances for the MF2- compounds, CuF2-<AgF2-<AuF2-<(111)F2-. However, relativistic effects change this trend to CuF2-<AuF2-<(111)F2-<AgF2-. Vibrational frequencies are predicted for all compounds. Where experimental data are available, they generally agree very well with our calculated results.

  20. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    PubMed

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Hetero-diffusion of Au epitaxy on stepped Ag(110) surface: Study of the jump rate and diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Benlattar, M.; El koraychy, E.; Kotri, A.; Mazroui, M.

    2017-12-01

    We have used molecular dynamics simulations combined with an interatomic potential derived from the embedded atom method, to investigate the hetero-diffusion of Au adatom near a stepped Ag(110) surface with the height of one monoatomic layer. The activation energies for different diffusion processes, which occur on the terrace and near the step edge, are calculated both by molecular statics and molecular dynamics simulations. Static energies are found by the drag method, whereas the dynamic barriers are computed at high temperature from the Arrhenius plots. Our numerical results reveal that the jump process requires very high activation energy compared to the exchange process either on the terrace or near the step edge. In this work, other processes, such as upward and downward diffusion at step edges, have also been discussed.

  2. Chemical synthesis and structural characterization of small AuZn nanoparticles

    NASA Astrophysics Data System (ADS)

    Juárez-Ruiz, E.; Pal, U.; Lombardero-Chartuni, J. A.; Medina, A.; Ascencio, J. A.

    2007-03-01

    In this paper, we report the aqueous synthesis of bimetallic Au-Zn nanoparticles of different compositions by the simultaneous reduction technique. The stability and atomic configuration of the particles are studied through high-resolution transmission electron microscopy (HRTEM) and UV-Vis optical absorption techniques. Depending on the composition, small bimetallic nanoparticles of 1 15 nm in size were obtained. The average size and size distribution of the bimetallic nanoparticles are seen to be critically dependent on the atomic ratio of the constituting elements Au and Zn. While a 1:1 atomic proportion of Au and Zn produced most stable nanoparticles of smallest average size, nanoparticles produced with higher content of either of the component elements are unstable, inducing agglomeration and coalescence to form elongated structures with uneven morphologies. Au3Zn1 nanoparticles followed a directional growth pattern, producing bimetallic nanorods with multiple crystalline domains. Interestingly, in these rod-like nanostructures, the domains are in well array of solid solution-like bimetallic and pure mono-metallic regions alternatively. Such nanostructures with uneven morphology and compositions might show distinct catalytic selectivity in chemical reactions.

  3. Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F

    2007-01-01

    The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. Themore » theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.« less

  4. Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy.

    PubMed

    Michalcová, Alena; Marek, Ivo; Knaislová, Anna; Sofer, Zdeněk; Vojtěch, Dalibor

    2018-01-27

    Self-healing alloys are promising materials that can decrease the consequences of accidents. To detect crack formation in a material is simple task that can be performed by e.g., sonic or ultrasound detection, but it is not always possible to immediately replace the damaged parts. In this situation, it is very advantageous to have the chance to heal the crack during operation, which can be done e.g., by annealing. In this paper, self-healing behavior was proven by TEM (Transmission electron microscope) observation of crack healing after annealing. The crack was observed in the rapidly solidified Al-30Ag alloy with non-equilibrium phase composition formed by a minor amount of Ag₂Al and a supersaturated solid solution of Ag in an fcc-Al matrix (fcc = face centered cubic). After annealing at 450 °C, equilibrium phase composition was obtained by forming a higher amount of Ag₂Al. This phase transformation did not allow the crack to be healed. Subsequent annealing at 550 °C caused recrystallization to a supersaturated solid solution of Ag in fcc-Al, followed by a return to the mixture of fcc-Al and Ag₂Al by cooling, and this process was accompanied by the closing of the crack. This observation proved the self-healing possibilities of the Ag₂Al phase. Practical application of this self-healing behavior could be achieved through the dispersion of fine Ag₂Al particles in a structural material, which will enrich the material with self-healing properties.

  5. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings.

    PubMed

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; Guo, Yunxia; Sun, Xin; Gao, Wei

    2017-08-10

    In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  6. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria

    NASA Astrophysics Data System (ADS)

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-01

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems.

  7. Au38(SPh)24: Au38 Protected with Aromatic Thiolate Ligands.

    PubMed

    Rambukwella, Milan; Burrage, Shayna; Neubrander, Marie; Baseggio, Oscar; Aprà, Edoardo; Stener, Mauro; Fortunelli, Alessandro; Dass, Amala

    2017-04-06

    Au 38 (SR) 24 is one of the most extensively investigated gold nanomolecules along with Au 25 (SR) 18 and Au 144 (SR) 60 . However, so far it has only been prepared using aliphatic-like ligands, where R = -SC 6 H 13 , -SC 12 H 25 and -SCH 2 CH 2 Ph. Au 38 (SCH 2 CH 2 Ph) 24 when reacted with HSPh undergoes core-size conversion to Au 36 (SPh) 24 , and existing literature suggests that Au 38 (SPh) 24 cannot be synthesized. Here, contrary to prevailing knowledge, we demonstrate that Au 38 (SPh) 24 can be prepared if the ligand exchanged conditions are optimized, under delicate conditions, without any formation of Au 36 (SPh) 24 . Conclusive evidence is presented in the form of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), electrospray ionization mass spectra (ESI-MS) characterization, and optical spectra of Au 38 (SPh) 24 in a solid glass form showing distinct differences from that of Au 38 (S-aliphatic) 24 . Theoretical analysis confirms experimental assignment of the optical spectrum and shows that the stability of Au 38 (SPh) 24 is not negligible with respect to that of its aliphatic analogous, and contains a significant component of ligand-ligand attractive interactions. Thus, while Au 38 (SPh) 24 is stable at RT, it converts to Au 36 (SPh) 24 either on prolonged etching (longer than 2 hours) at RT or when etched at 80 °C.

  8. Effect of Te substitution on crystal structure and transport properties of AgBiSe2 thermoelectric material.

    PubMed

    Goto, Y; Nishida, A; Nishiate, H; Murata, M; Lee, C H; Miura, A; Moriyoshi, C; Kuroiwa, Y; Mizuguchi, Y

    2018-02-20

    Silver bismuth diselenide (AgBiSe 2 ) has attracted much attention as an efficient thermoelectric material, owing to its intrinsically low lattice thermal conductivity. While samples synthesized using a solid-state reaction showed n-type conductivity and their dimensionless figure of merit (ZT) reached ∼1 by electron doping, theoretical calculations predicted that a remarkably high thermoelectric performance can be achieved in p-type AgBiSe 2 . In this paper, we present the effect of Te substitution on the crystal structure and thermoelectric properties of AgBiSe 2 , expecting p-type conductivity due to the shallowing of the energy potential of the valence band. We found that all AgBiSe 2-x Te x (x = 0-0.8) prepared using a solid-state reaction exhibits n-type conductivity from 300 to 750 K. The room-temperature lattice thermal conductivity decreased to as low as 0.3 W m -1 K -1 by Te substitution, which was qualitatively described using the point defect scattering model for the solid solution. We show that ZT reaches ∼0.6 for x = 0.8 at a broad range of temperatures, from 550 to 750 K, due to the increased power factor, although the carrier concentration has not been optimized yet.

  9. Computational Discovery of Two Lead Free Halide Double Perovskites with Band Gaps in the Visible Range: Cs2BiAgCl6 and Cs2BiAgBr6

    NASA Astrophysics Data System (ADS)

    Filip, Marina; Volonakis, George; Haghighirad, Amir Abbas; Hillman, Samuel; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry; Giustino, Feliciano

    The perovskite solar cell is emerging as one of the most promising solution processable photovoltaic technologies, with an efficiency that now exceeds the performance of thin-film silicon devices. This performance is exclusively due to the optimum optoelectronic properties of the prototypical methylammonium lead-iodide perovskite (MAPI). However, the presence of lead in MAPI, and its problematic stability in ambient conditions poses concerns for its potential environmental impact. These concerns are motivating the search for novel non-toxic halide perovskites with similar optoelectronic properties to MAPI. In this work we will present the computational search for the homovalent and the heterovalent replacement of Pb in lead-halide perovskites. This search has lead to the computational discovery and experimental synthesis of two stable lead-free halide double perovskites based on Bi and Ag: Cs2BiAgCl6 and Cs2BiAgBr6. These new compounds are highly stable, they are semiconducting and absorb light in the visible range. In this talk we will present the electronic and optical properties of Cs2BiAgCl6 and Cs2BiAgBr6 calculated within DFT and GW and discuss the stability and formability of the entire Cs2BB'X6 family of semiconductors (B = Bi, Sb, B = Cu, Ag, Au, X = Cl, Br, I). This work was supported by the and the Leverhulme Trust (RL-2012-001).

  10. Surface-enhanced Raman scattering of a Ag/oligo(phenyleneethynylene)/Ag sandwich.

    PubMed

    Fletcher, Melissa; Alexson, D M; Prokes, Sharka; Glembocki, Orest; Vivoni, Alberto; Hosten, Charles

    2011-02-01

    α,ω-Dithiols are a useful class of compounds in molecular electronics because of their ability to easily adsorb to two metal surfaces, producing a molecular junction. We have prepared Ag nanosphere/oligo(phenyleneethynylene)/Ag sol (AgNS/OPE/Ag sol) and Ag nanowire/oligo(phenyleneethynylene)/Ag sol (AgNW/OPE/Ag sol) sandwiches to simulate the architecture of a molecular electronic device. This was achieved by self-assembly of OPE on the silver nanosurface, deprotection of the terminal sulfur, and deposition of Ag sol atop the monolayer. These sandwiches were then characterized by surface-enhanced Raman scattering (SERS) spectroscopy. The resulting spectra were compared to the bulk spectrum of the dimer and to the Ag nanosurface/OPE SERS spectra. The intensities of the SERS spectra in both systems exhibit a strong dependence on Ag deposition time and the results are also suggestive of intense interparticle coupling of the electromagnetic fields in both the AgNW/OPE/Ag and the AgNS/OPE/Ag systems. Three previously unobserved bands (1219, 1234, 2037 cm(-1)) arose in the SER spectra of the sandwiches and their presence is attributed to the strong enhancement of the electromagnetic field which is predicted from the COSMOL computational package. The 544 cm(-1) disulfide bond which is observed in the spectrum of solid OPE but is absent in the AgNS/OPE/Ag and AgNW/OPE/Ag spectra is indicative of chemisorption of OPE to the nanoparticles through oxidative dissociation of the disulfide bond. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Simultaneous determination of cadmium, lead and mercury ions at trace level by magnetic solid phase extraction with Fe@Ag@Dimercaptobenzene coupled to high performance liquid chromatography.

    PubMed

    Zhou, Qingxiang; Lei, Man; Liu, Yongli; Wu, Yalin; Yuan, Yongyong

    2017-12-01

    Pollution resulted from heavy metal ions have absorbed much attention, and it is of great importance to develop sensitive and simultaneous determination method for them with common technologies without highly sensitive instruments. We prepared a new and functional core-shell magnetic nano-material, Fe@Ag@dimercaptobenzene (Fe@Ag@DMB), by a one-step method with sodium borohydride as the reducing agent and transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) were used for characterisation. The mercapto functional groups on the newly synthesised magnetic nanoparticles could interact with Cd 2+ , Pb 2+ , and Hg 2+ ions in water samples and then efficient extraction for Cd 2+ , Pb 2+ , and Hg 2+ ions was achieved. DDTC-Na solution was a good elutent for elution of these ions from Fe@Ag@DMB nanoparticles. Based on these, a sensitive method was developed for simultaneous preconcentration and determination of the aforementioned ions using magnetic Fe@Ag@DMB nanoparticles as the magnetic solid phase extraction adsorbent prior to high performance liquid chromatography coupled with variable wavelength detection. Under the optimal conditions, the detection limits of the three metal ions were in the range of 0.011-0.031μgL -1 , and precisions were below 2.37% (n=6). The proposed method was evaluated with real water samples, and excellent spiked recoveries achieved indicated that the developed method would be a promising tool for monitoring these heavy metal ions in water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparative analysis of cobalt oxide nanoisland stability and edge structures on three related noble metal surfaces: Au(111), Pt(111) and Ag(111)

    DOE PAGES

    Fester, Jakob; Bajdich, Michal; Walton, Alex S.; ...

    2016-09-12

    Here, metal oxide nanostructures and thin films grown on metallic substrates have attracted strong attention as model catalysts and as interesting inverse catalyst systems in their own right. In this study, we investigate the role of metal support in the growth and stabilization of cobalt oxide nanostructures on the three related (111) surfaces of Au, Pt and Ag, as investigated by means of high-resolution scanning tunneling microscopy and DFT calculations. All three substrates promote the growth of crystalline CoO x (x = 1–2) islands under oxidative conditions, but we find several noteworthy differences in the occurrence and stabilization of fourmore » distinct cobalt oxide island phases: Co–O bilayers, O–Co–O trilayers, Co–O–Co–O double bilayers and O–Co–O–Co–O multilayers. Using atom-resolved images combined with analysis of defect lines in bilayer islands on Au and Pt, we furthermore unambiguously determine the edge structure. Interestingly, the island shape and abundances of edge types in bilayers change radically from mixed Co/O edge terminations on Au(111) to a predominance of Co terminated edges (~91 %) on Pt(111) which is especially interesting since the Co metal edges are expected to host the most active sites for water dissociation.« less

  13. Glass Forming Ability in the Equilibrium Immiscible Ag-Ta System Studied by Molecular Dynamics Simulation and Ion Beam Mixing

    NASA Astrophysics Data System (ADS)

    Zhao, Man; Dai, Xiaodong; Shen, Yixiong; Liu, Baixin

    2008-07-01

    For the equilibrium immiscible Ag-Ta system characterized by a positive heat of formation of +23 kJ/mol, a proved realistic extended Finnis-Sinclair potential is applied to study the crystal-to-amorphous transition through molecular dynamics simulations and a glass-forming range (GFR) of the Ag-Ta system is determined to be from 10 to 80 at. % of Ta, within which a disordered state is energetically favored than its crystalline counterpart of solid solution. In experiment, the uniform amorphous phases are indeed obtained, by ion beam mixing of far-from-equilibrium, in the Ag38Ta62, Ag30Ta70 and Ag20Ta80 Ag-Ta multilayered films, which fall within the GFR and thus confirm the relevance of the calculated GFR of the system.

  14. Fe-U-PGE-Au-Ag-Cu Deposits of the Udokan-Chiney Region (East Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Gongalskiy, B.; Krivolutskaya, N.; Murashov, K.; Nistratov, S.; Gryazev, S.

    2012-04-01

    Introduction. Cupriferous sandstones-shales and magmatic copper-nickel deposits mark out the western and southern boundaries of the Siberian Craton accordingly. Of special interest are the Paleoproterozoic deposits of the Udokan-Chiney mining district (Gongalskiy, Krivolutskaya, 2008). Copper reserves and resources of this region are estimated at more than 50 Mt. Half of them is concentrated at the unique Udokan Deposit and the second half is distributed among sedimentary (Unkur, Pravoingamakitskoye, Sakinskoye, Krasnoye, Burpala) and magmatic deposits of the Chiney (Rudnoye, Verkhnechineyskoye, Kontaktovoye), Luktur and Maylav massifs. Results. It was established that the ores are characterized by similarity in chemical composition (main, major and rare elements that are Ag, Au, PGE) and mineral assemblages with varying proportions. It is important to emphasize that Fe role in mineralization was previously ignored. Meanwhile the Udokan deposit contains 10 Mt of magnetite metacrystals so as chalcocite ores may contain up to 50% magnetite too. It has been recently found that the Chiney titanomagnetite ores comprise commercially significant uranium and rare-earth metal concentrations (Makaryev et al., 2011). Thus the Udokan-Chiney region comprises Cu, Fe, Ti, V, U, REE, Ag, Au, PGE. These deposits differ from similar objects, the Olympic Dam in particular, by a much smaller content of fluid-bearing minerals. Copper mineralization at the Udokan is represented by chalcocite-bornite ores. They occur as ore beds conformable with sedimentary structures or as cross-cutting veins. The central zones of the former are often brecciated. They are rimmed by fine magnetite, bornite, and chalcocite dissemination. Bornite-chalcopyrite and chalcopyrite-pyrite veins are known at the lower levels of the Udokan ore bed. Such ore compositions are predominant in other ore deposits in sedimentary rocks (Pravoingamakitskoye, Unkur) and have a hydrothermal origin. Silver grades are up to

  15. Second harmonic generation response of the cubic chalcogenides Ba( 6-x)Sr x[Ag( 4-y)Sn( y/4)](SnS 4) 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, Alyssa S.; Liu, Te-Kun; Frazer, Laszlo

    We synthesized the barium/strontium solid solution sequence Ba 6-xSr x[Ag( 4-y)Sn( y/4)](SnS 4) 4 for nonlinear optical (NLO) applications in the infrared (IR) via a flux synthesis route. All title compounds are isotypic, crystallizing in the cubic space group Imore » $$\\bar{_4}$$ 3d and are composed of a three-dimensional (3D) anionic framework of alternating corner-sharing SnS 4 and AgS 4 tetrahedra charge balanced by Ba and Sr. The shrinkage of Ba/Sr-S bond lengths causes the tetrahedra in the anionic framework to become more distorted, which results in a tunable band gap from 1.58 to 1.38 eV with increasing x values. The performance of the barium limit (x=0) is also superior to that of Sr (x=6), but surprisingly second harmonic generation (SHG) of the solid solution remains strong and is insensitive to the value of x over the range 0-3.8. Results show that the non-type-I phase-matched SHG produced by these cubic chalcogenides display intensities higher than the benchmark AgGaSe 2 from 600 to 1000 nm.« less

  16. ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation.

    PubMed

    Kwon, Jinhyeong; Cho, Hyunmin; Jung, Jinwook; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Han, Seungyong; Ko, Seung Hwan

    2018-05-12

    To date, solar energy generation devices have been widely studied to meet a clean and sustainable energy source. Among them, water splitting photoelectrochemical cell is regarded as a promising energy generation way for splitting water molecules and generating hydrogen by sunlight. While many nanostructured metal oxides are considered as a candidate, most of them have an improper bandgap structure lowering energy transition efficiency. Herein, we introduce a novel wet-based, successive photoreduction process that can improve charge transfer efficiency by surface plasmon effect for a solar-driven water splitting device. The proposed process enables to fabricate ZnO/CuO/Ag or ZnO/CuO/Au hierarchical nanostructure, having an enhanced electrical, optical, photoelectrochemical property. The fabricated hierarchical nanostructures are demonstrated as a photocathode in the photoelectrochemical cell and characterized by using various analytic tools.

  17. ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation

    PubMed Central

    Kwon, Jinhyeong; Cho, Hyunmin; Jung, Jinwook; Lee, Habeom; Han, Seungyong

    2018-01-01

    To date, solar energy generation devices have been widely studied to meet a clean and sustainable energy source. Among them, water splitting photoelectrochemical cell is regarded as a promising energy generation way for splitting water molecules and generating hydrogen by sunlight. While many nanostructured metal oxides are considered as a candidate, most of them have an improper bandgap structure lowering energy transition efficiency. Herein, we introduce a novel wet-based, successive photoreduction process that can improve charge transfer efficiency by surface plasmon effect for a solar-driven water splitting device. The proposed process enables to fabricate ZnO/CuO/Ag or ZnO/CuO/Au hierarchical nanostructure, having an enhanced electrical, optical, photoelectrochemical property. The fabricated hierarchical nanostructures are demonstrated as a photocathode in the photoelectrochemical cell and characterized by using various analytic tools. PMID:29757225

  18. Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2018-07-01

    In this work, in situ growth of Ni nanocatalysts to attach onto the ceria (CeO2) surface through direct Ni ex-solution from the NiO-CeO2 solid solution in a reducing atmosphere at high temperatures with an aim to improve the catalytic activity, and stability for low temperature carbon monoxide (CO) oxidation reaction have been reported. The NiO-CeO2 solid solutions were prepared by solution combustion method, and the results of XRD and RAMAN showed that doping of Ni increases the oxygen vacancies due to charge compensation. Ni is clearly visible in XRD and TEM of Ni ex-solved sample (R-UCe5Ni10) after reduction of NiO-CeO2 (UCe5Ni10) sample by 5% H2/Ar reduction at 1000 °C. TEM analysis revealed a size of 9.2 nm of Ni nanoparticle that is ex-solved on the surface CeO2. This ex-solved sample showed very high catalytic activity (T50 ~ 110 °C), and stability (100 h) for CO oxidation reaction as compared to prepared solid solution samples. This is due to the highly active metallic nano-phase which is ex-solved on the surface of CeO2 and strongly adherent to the support. The apparent activation energy Ni ex-solved sample is found out to be 48.4 kJ mol-1. Thus, the above Ni ex-solved sample shows a practical applicability for the CO reaction.

  19. Magnetic Damping of Solid Solution Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar

    1999-01-01

    The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations.

  20. Freeze the Moment: High Speed Capturing of Weakly Bonded Dynamic Nanoparticle Assemblies in Solution by Ag Ion Soldering.

    PubMed

    Wang, Yueliang; Fang, Lingling; Chen, Gaoli; Song, Lei; Deng, Zhaoxiang

    2018-02-01

    Despite the versatile forms of colloidal aggregates, these spontaneously formed structures are often hard to find a suitable application in nanotechnology and materials science. A determinate reason is the lack of a suitable method to capture the transiently formed and quickly evolving colloidal structures in solution. To address this challenge, a simple but highly efficient strategy is herein reported to capture the dynamic and metastable colloidal assemblies formed in an aqueous or nonaqueous solution. This process takes advantage of a recently developed Ag ion soldering reaction to realize a rapid fixation of as-formed metastable assemblies. This method works efficiently for both solid (3D) nanoparticle aggregates and weakly bonded fractal nanoparticle chains (1D). In both cases, very high capturing speed and close to 100% efficiency are achieved to fully retain a quickly growing structure. The soldered nanochains further enable a fabrication of discrete, uniform, and functionalizable nanoparticle clusters with enriched linear conformation by mechanical shearing, which would otherwise be difficult to make. The captured products are water dispersible and mechanically robust, favoring an exploration of their properties toward possible applications. The work paves a way to previously untouched aspects of colloidal science and thus would create new chances in nanotechnology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. PHOTONICS AND NANOTECHNOLOGY Laser synthesis and modification of composite nanoparticles in liquids

    NASA Astrophysics Data System (ADS)

    Tarasenko, N. V.; Butsen, A. V.

    2010-12-01

    The works devoted to the formation and modification of nanoparticles using laser ablation of solid targets in liquids are reviewed. Several approaches to implement laser ablation in liquids, aimed at synthesising nanoparticles of complex composition, are considered: direct laser ablation of a target of corresponding composition, laser ablation of a combined target composed of two different metals, laser irradiation of a mixture of two or more colloidal solutions, and laser ablation in reactive liquids. The properties of two-component bimetallic systems (Ag — Cu, AgAu), semiconductor nanocrystals (ZnO, CdSe), chalcopyrite nanoparticles, and doped oxide nanoparticles (ZnO:Ag, Gd2O2:Tb3+) formed as a result of single- and double-pulse laser ablation in different liquids (water, ethanol, acetone, solutions of polysaccharides) are discussed.

  2. A comparative study of the effects of Ag2S films prepared by MPD and HRTD methods on the performance of polymer solar cells

    NASA Astrophysics Data System (ADS)

    Zhai, Yong; Li, Fumin; Ling, Lanyun; Chen, Chong

    2016-10-01

    In this work, the Ag2S nanocrystalline thin films are deposited on ITO glass via molecular precursor decomposition (MPD) method and newly developed HRTD method for organic solar cells (ITO/Ag2S/P3HT:PCBM/MoO3/Au) as an electron selective layer and a light absorption material. The surface morphology, structure characterization, and optical property of the Ag2S films prepared by these two methods were compared and the effect of the prepared Ag2S film on the device performance is investigated. It is found that the Ag2S films prepared by HRTD method have lower roughness and better uniformity than the corresponding films prepared by the MPD method. In addition, a more effective and rapid transporting ability for the electrons and holes in the ITO/Ag2S(HRTD, n)/P3HT:PCBM/MoO3/Au cells is found, which reduces the charge recombination, and thus, improves the device performance. The highest efficiency of 3.21% achieved for the ITO/Ag2S(HRTD, 50)/P3HT:PCBM/MoO3/Au cell is 93% higher than that of the ITO/Ag2S(MPD, 2)/P3HT:PCBM/MoO3/Au cell.

  3. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Huang, H. Y.; Cai, K. B.; Chang, L. Y.; Chen, P. W.; Lin, T. N.; Lin, C. A. J.; Shen, J. L.; Talite, M. J.; Chou, W. C.; Yuan, C. T.

    2017-09-01

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in ‘green photonics’. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing ‘green’ LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for ‘green’ LSCs by further enhancing solid-state PL-QYs.

  4. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters.

    PubMed

    Huang, H Y; Cai, K B; Chang, L Y; Chen, P W; Lin, T N; Lin, C A J; Shen, J L; Talite, M J; Chou, W C; Yuan, C T

    2017-09-15

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in 'green photonics'. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing 'green' LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for 'green' LSCs by further enhancing solid-state PL-QYs.

  5. Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, Niel

    1989-01-01

    The stability of magnesian calcites was reexamined, and new results are presented for 28 natural inorganic, 12 biogenic, and 32 synthetic magnesian calcites. The magnesian calcite solid-solutions were separated into two groups on the basis of differences in stoichiometric solubility and other physical and chemical properties. Group I consists of solids of mainly metamorphic and hydrothermal origin, synthetic calcites prepared at high temperatures and pressures, and synthetic solids prepared at low temperature and very low calcite supersaturations () from artificial sea water or NaClMgCl2CaCl2solutions. Group I solids are essentially binary s of CaCO2 and MgCO2, and are thought to be relatively free of structural defects. Group II solid-solutions are of either biogenic origin or are synthetic magnesian calcites and protodolomites (0–20 and ∼ 45 mole percent MgCO3) prepared at high calcite supersaturations () from NaClNa2SO4MgCl2CaCl2 or NaClMgCl2CaCl2 solutions. Group II solid-solutions are treated as massively defective solids. The defects include substitution foreign ions (Na+ and SO42−) in the magnesian calcite lattice (point defects) and dislocations (~2 · 109 cm−2). Within each group, the excess free energy of mixing, GE, is described by the mixing model , where x is the mole fraction of the end-member Ca0.5Mg0.5CO3 in the solid-solution. The values of A0and A1 for Group I and II solids were evaluated at 25°C. The equilibrium constants of all the solids are closely described by the equation ln , where KC and KD are the equilibrium constants of calcite and Ca0.5Mg0.5CO3. Group I magnesian calcites were modeled as sub-regular solid-solutions between calcite and dolomite, and between calcite and “disordered dolomite”. Both models yield almost identical equilibrium constants for these magnesian calcites. The Group II magnesian calcites were modeled as sub-regular solid-solutions between defective calcite and

  6. AgS2O6CF3: the first trifluoromethylsulfonylsulfate(VI).

    PubMed

    Malinowski, Przemysław J; Derzsi, Mariana; Grochala, Wojciech

    2013-08-07

    We describe the synthetic route towards a novel class of salts, trifluoromethylsulfonylsulfates, as exemplified by the silver(I) derivative (AgS2O6CF3). Formation proceeds via direct reaction between a triflate precursor, AgSO3CF3, and SO3. The title compound crystallizes in the P2(1)/c unit cell with a = 5.15746(14) Å, b = 25.8563(9) Å, c = 5.53970(14) Å and β = 101.1749(19)°. The structure is layered with the puckered [AgS2O6] 2D sheets; the terminal CF3 groups are separated by the van der Waals gap, as seen also for related metal triflates. The compound is very fragile thermally and it decomposes endothermally to AgSO3CF3 with concomitant evolution of SO3 even at 65 °C or upon grinding in an agate mortar; thus it may serve as a solid store of--otherwise volatile and corrosive--SO3. The IR and Raman spectra of AgS2O6CF3 have been tentatively assigned based on similarities to those of related Ag2S2O7 and AgSO3CF3 and phonon calculations. Synthesis and properties of KS2O6CF3 are also briefly described.

  7. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.

    PubMed

    Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub

    2016-01-13

    Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.

  8. A study on the probability of twin plane formation during the nucleation of AgBr and AgCl crystals in the aqueous gelatin solution

    NASA Astrophysics Data System (ADS)

    Ohzeki, Katsuhisa; Hosoya, Yoichi

    2007-07-01

    A study was made on the probability of twin plane formation during the nucleation of AgBr and AgCl crystals. The growth condition was controlled to keep the number of the nuclei, neither decreasing owing to their dissolution, nor increasing owing to the formation of a new nucleus during the growth process. Under the condition, the nuclei were grown to have {1 1 1} faces on their surfaces by controlling pAg in a reaction solution and by use of growth modifier in case of AgCl crystal formation. The number of twin planes in each crystal was judged according to a conventional way on the basis of its morphology. The dependence of the number of twin planes per crystal on the probability of twin plain formation was in accordance with Poisson distribution, indicating the random formation of a twin plane on the {1 1 1} faces of a nucleus. The result that the ratio of number of AgCl crystals with parallel twin planes to all the multiply twinned crystals was about 10% supports the random formation of a twin plane and suggests that the twin plane formation took place on {1 1 1} surfaces at the possible eight corner of a nucleus. On the other hand, the ratio of the number of AgBr crystals with parallel twin planes to all the multiply twinned crystals was more than 50%. The result was explained by the anisotropic growth of a singly twinned nucleus according to the higher growth rate of {1 0 0} surfaces than that of {1 1 1} surfaces.

  9. Dissolution of aragonite-strontianite solid solutions in nonstoichiometric Sr (HCO3)2-Ca (HCO3)2-CO2-H2O solutions

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.; Glynn, P.D.; Blum, A.E.

    1992-01-01

    Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25??C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 A?? on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25

  10. Evidence of significant covalent bonding in Au(CN)(2)(-).

    PubMed

    Wang, Xue-Bin; Wang, Yi-Lei; Yang, Jie; Xing, Xiao-Peng; Li, Jun; Wang, Lai-Sheng

    2009-11-18

    The Au(CN)(2)(-) ion is the most stable Au compound known for centuries, yet a detailed understanding of its chemical bonding is still lacking. Here we report direct experimental evidence of significant covalent bonding character in the Au-C bonds in Au(CN)(2)(-) using photoelectron spectroscopy and comparisons with its lighter congeners, Ag(CN)(2)(-) and Cu(CN)(2)(-). Vibrational progressions in the Au-C stretching mode were observed for all detachment transitions for Au(CN)(2)(-), in contrast to the atomic-like transitions for Cu(CN)(2)(-), revealing the Au-C covalent bonding character. In addition, rich electronic structural information was obtained for Au(CN)(2)(-) by employing 118 nm detachment photons. Density functional theory and high-level ab initio calculations were carried out to understand the photoelectron spectra and obtain insight into the nature of the chemical bonding in the M(CN)(2)(-) complexes. Significant covalent character in the Au-C bonding due to the strong relativistic effects was revealed in Au(CN)(2)(-), consistent with its high stability.

  11. Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yimin A.; Li, Liang; Li, Zheng

    Operando characterization of gas solid reactions at the atomic scale is of great importance for determining the mechanism of catalysis. This is especially true in the study of heterostructures because of structural correlation between the different parts. However, such experiments are challenging and have rarely been accomplished. In this work, atomic scale redox dynamics of Ag/AgCl heterostructures have been studied using in situ environmental transmission electron microscopy (ETEM) in combination with density function theory (DFT) calculations. The reduction of Ag/AgCl to Ag is likely a result of the formation of Cl vacancies while Ag+ ions accept electrons. The oxidation processmore » of Ag/AgCl has been observed: rather than direct replacement of Cl by O, the Ag/AgCl nanocatalyst was first reduced to Ag, and then Ag was oxidized to different phases of silver oxide under different O-2 partial pressures. Ag2O formed at low O-2 partial pressure, whereas AgO formed at atmospheric pressure. By combining in situ ETEM observation and DFT calculations, this structural evolution is characterized in a distinct nanoscale environment.« less

  12. Tuning the ground state of the Kondo lattice in UT Bi2 (T = Ag, Au) single crystals

    NASA Astrophysics Data System (ADS)

    Rosa, Priscila; Luo, Yongkang; Pagliuso, Pascoal; Bauer, Eric; Thompson, Joe; Fisk, Zachary

    2015-03-01

    Motivated by the interesting magnetic anisotropy found in the Ce-based heavy fermion family Ce TX2 (T = transition metal, X = pnictogen), here we study the novel U-based parent compounds U TBi2 (T = Ag, Au) by combining magnetization, electrical resistivity, and heat-capacity measurements. The single crystals, synthesized by the self-flux method, also crystallize in the tetragonal HfCuSi2-type structure (space group P4/nmm). Interestingly, although UAgBi2 is a low- γ antiferromagnet below TN = 181 K, UAuBi2 is a moderately heavy uniaxial ferromagnet below Tc = 22 K. Nevertheless, both compounds display the easy-magnetization direction along the c-axis and a large magnetocrystalline anisotropy. Our results point out to an incoherent Kondo behaviour in the paramagnetic state and an intricate competition between crystal field effects and two anisotropic exchange interactions, which lead to the remarkable difference in the observed ground states.

  13. Ice nucleation efficiency of AgI: review and new insights

    NASA Astrophysics Data System (ADS)

    Marcolli, Claudia; Nagare, Baban; Welti, André; Lohmann, Ulrike

    2016-07-01

    AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI-AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times.

  14. Highly reflective Ag-Cu alloy-based ohmic contact on p-type GaN using Ru overlayer.

    PubMed

    Son, Jun Ho; Jung, Gwan Ho; Lee, Jong-Lam

    2008-12-15

    We report on a metallization scheme of high reflectance, low resistance, and smooth surface morphology ohmic contact on p-type GaN. Ag-Cu alloy/Ru contact showed low contact resistivity as low as 6.2 x 10(-6) Ohms cm(2) and high reflectance of 91% at 460 nm after annealing at 400 degrees C in air ambient. The oxidation annealing promoted the out-diffusion of Ga atoms to dissolve in an Ag-Cu layer with the formation of an Ag-Ga solid solution, lowering the contact resistivity. The Ru overlayer acts as a diffusion barrier for excessive oxygen incorporation during oxidation annealing, resulting in high reflectance, good thermal stability, and smooth surface quality of the contact.

  15. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    PubMed

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.

  16. Thin films of Ag–Au nanoparticles dispersed in TiO2: influence of composition and microstructure on the LSPR and SERS responses

    NASA Astrophysics Data System (ADS)

    Borges, Joel; Ferreira, Catarina G.; Fernandes, João P. C.; Rodrigues, Marco S.; Proença, Manuela; Apreutesei, Mihai; Alves, Eduardo; Barradas, Nuno P.; Moura, Cacilda; Vaz, Filipe

    2018-05-01

    Thin films containing monometallic (Ag,Au) and bimetallic (Ag–Au) noble nanoparticles were dispersed in TiO2, using reactive magnetron sputtering and post-deposition thermal annealing. The influence of metal concentration and thermal annealing in the (micro)structural evolution of the films was studied, and its correlation with the localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) behaviours was evaluated. The Ag/TiO2 films presented columnar to granular microstructures, developing Ag clusters at the surface for higher annealing temperatures. In some cases, the films presented dendrite-type fractal geometry, which led to an almost flat broadband optical response. The Au/TiO2 system revealed denser microstructures, with Au nanoparticles dispersed in the matrix, whose size increased with annealing temperature. This microstructure led to the appearance of LSPR bands, although some Au segregation to the surface hindered this effect for higher concentrations. The structural results of the Ag–Au/TiO2 system suggested the formation of bimetallic Ag–Au nanoparticles, which presence was supported by the appearance of a single narrow LSPR band. In addition, the Raman spectra of Rhodamine-6G demonstrated the viability of these systems for SERS applications, with some indication that the Ag/TiO2 system might be preferential, contrasting to the notorious behaviour of the bimetallic system in terms of LSPR response.

  17. Evolution of silver/gold triangular nanoframes from prismatic silver/gold core/shell nanostructures and their SERS properties

    NASA Astrophysics Data System (ADS)

    Parthiban, P.; Sakar, M.; Balakumar, S.

    2013-02-01

    We report the evolution of Ag/Au triangular nanoframes from nano core/shell of Ag/Au and their surface enhanced Raman scattering (SERS) properties. The Ag/Au prismatic core/shell nanostructures were synthesized using chemical reduction method. It was observed that, on the addition of excess gold chloride (HAuCl4) solution, the morphology of nano core/shell was changed to alloy like triangular nanoframes. Accordingly, a shift was found towards higher wavelengths in the UV-Visible absorption peaks of Ag/Au nanoframes compare to Ag/Au nano core/shell. Consequently, the SERS effect of these Ag/Au anisotropic nanostructures were studied on methylene blue. The Ag/Au alloy like prismatic nanoframes showed improved SERS effect than that of prismatic core/shell nanostructures. The experimental findings were revealed that the improved SERS effect could be resulted from the enhanced surface plasmon resonance (SPR) due to the alloy like construction of Ag/Au system.

  18. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Cheng, Guang; Tay, See Leng

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  19. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE PAGES

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; ...

    2017-08-10

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  20. Solid-solution aqueous-solution equilibria: thermodynamic theory and representation

    USGS Publications Warehouse

    Glynn, P.D.; Reardon, E.J.

    1990-01-01

    Thorstenson and Plummer's (1977) "stoichiometric saturation' model is reviewed, and a general relation between stoichiometric saturation Kss constants and excess free energies of mixing is derived for a binary solid-solution B1-xCxA: GE = RT[ln Kss - xln(xKCA) - (l-x)ln((l-x)KBA)]. This equation allows a suitable excess free energy function, such as Guggenheim's (1937) sub-regular function, to be fitted from experimentally determined Kss constants. Solid-phase free energies and component activity-coefficients can then be determined from one or two fitted parameters and from the endmember solubility products KBA and KCA. A general form of Lippmann's (1977,1980) "solutus equation is derived from an examination of Lippmann's (1977,1980) "total solubility product' model. Lippmann's ??II or "total solubility product' variable is used to represent graphically not only thermodynamic equilibrium states and primary saturation states but also stoichiometric saturation and pure phase saturation states. -from Authors

  1. Corrosion behavior and microstructures of experimental Ti-Au alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Okabe, Toru

    2004-06-01

    Anodic polarization was performed in 0.9% NaCl and 1% lactic acid solutions to characterize the relationship between the corrosion behavior and microstructures of cast Ti-Au (5-40%) alloys. An abrupt increase in the current density occurred at approximately 0.6 V vs. SCE for the 30% and 40% Au alloys in the 0.9% NaCl solution. The microstructures after corrosion testing indicated that this breakdown may have been caused by the preferential dissolution of the Ti3Au. However, the potential for preferential dissolution was higher than the breakdown potential of stainless steel or Co-Cr alloy, which meant that the corrosion resistance of the Ti-Au alloys was superior. In 1% lactic acid solution, the corrosion resistance of the Ti-Au alloys was excellent, with no breakdown at any composition. In the present test solutions, the Ti-Au alloys up to 20% Au had good corrosion resistance comparable to that for pure titanium.

  2. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  3. ZrB 2-HfB 2 solid solutions as electrode materials for hydrogen reaction in acidic and basic solutions

    DOE PAGES

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    2016-11-09

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  4. A novel conductance glucose biosensor in ultra-low ionic strength solution triggered by the oxidation of Ag nanoparticles.

    PubMed

    Song, Yonghai; Chen, Jingyi; Liu, Hongyu; Li, Ping; Li, Hongbo; Wang, Li

    2015-09-03

    A simple, sensitive and effective method to detect glucose in ultra-low ionic strength solution containing citrate-capped silver nanoparticles (CCAgNPs) was developed by monitoring the change of solution conductance. Glucose was catalyzed into gluconic acid firstly by glucose oxidase in an O2-saturated solution accompanied by the reduction of O2 into hydrogen peroxide (H2O2). Then, CCAgNPs was oxidized by H2O2 into Ag(+) and the capping regent of citrate was released at the same time. All these resulted Ag(+), gluconic acid and the released citrate would contribute to the increase of solution ionic strength together, leading to a detectable increase of solution conductance. And a novel conductance glucose biosensor was developed with a routine linear range of 0.06-4.0 mM and a suitable detection limit of 18.0 μM. The novel glucose biosensor was further applied in energy drink sample and proven to be suitable for practical system with low ionic strength. The proposed conductance biosensor achieved a significant breakthrough of glucose detection in ultra-low ionic strength media. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fabrication and stability investigation of ultra-thin transparent and flexible Cu-Ag-Au tri-layer film on PET

    NASA Astrophysics Data System (ADS)

    Prakasarao, Ch Surya; D'souza, Slavia Deeksha; Hazarika, Pratim; Karthiselva N., S.; Ramesh Babu, R.; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul

    2018-04-01

    The need for transparent conducting electrodes with high transmittance, low sheet resistance and flexibility to replace Indium Tin Oxide is ever growing. We have deposited and studied the performance of ultra-thin Cu-Ag-Au tri-layer films over a flexible poly-ethylene terephthalate substrate. Scotch tape test showed good adhesion of the metallic film. Transmittance of the tri-layer was around 40 % in visible region. Optical profiler measurements were done to study the surface features. The XRD pattern revealed that film was amorphous. Sheet resistance measured by four probe technique was around 7.7 Ohm/Δ and was stable up to 423 K. The transport parameters by Hall effect showed high conductivity and carrier concentration with a mobility of 5.58 cm2/Vs. Tests performed in an indigenously designed bending unit indicated the films to be stable both mechanically and electrically even after 50,000 bending cycles.

  6. Multifunctional Au NPs-polydopamine-polyvinylidene fluoride membrane chips as probe for enrichment and rapid detection of organic contaminants.

    PubMed

    Wang, Saihua; Niu, Hongyun; Cai, Yaqi; Cao, Dong

    2018-05-01

    High-throughput and rapid detection of hazardous compounds in complicated samples is essential for the solution of environmental problems. We have prepared a "pH-paper-like" chip which can rapidly "indicate" the occurrence of organic contaminants just through dipping the chip in water samples for short time followed by fast analysis with surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). The chips are composed of polyvinylidene fluoride membrane (PVDFM), polydopamine (PDA) film and Au nanoparticles (Au NPs), which are layer-by-layer assembled according to the adhesion, self-polymerization and reduction property of dopamine. In the Au NPs loaded polydopamine-polyvinylidene fluoride membrane (Au NPs-PDA-PVDFM) chips, PVDFM combined with PDA film are responsible for the enrichment of organic analyte through hydrophobic interactions and π-π stacking; Au NPs serve as effective SALDI matrix for the rapid detection of target analyte. After dipping into water solution for minutes, the Au-PDA-PVDFM chips with enriched organic analytes can be detected directly with SALDI-TOF MS. The good solid-phase extraction performance of the PDA-PVDFM components, remarkable matrix effect of the loaded AuNPs, and sensitivity of the SALDI-TOF MS technique ensure excellent sensitivity and reproducibility for the quantification of trace levels of organic contaminants in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Biosorption behavior and mechanism of lead (II) from aqueous solution by aerobic granules (AG) and bacterial alginate (BA)

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Li, Yu

    2012-12-01

    Lead (Pb) and its compounds are common pollutants in industrial wastewaters. To develop appropriate Pb2+ treatment technologies, aerobic granules (AG) and bacterial alginates (BA) were studied as alternative biosorbents to remove Pb2+ from aqueous solutions. The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb2+ biosorption. In this paper, the Pb2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH, contact time, and initial Pb2+ concentration. The results showed that biosorption of Pb2+ by AG and BA occurred within 60min at the initial Pb2+ concentrations (0-150 mg L-1). The actual saturated Pb2+ biosorption capability of AG was 101.97 mg g-1 (dry weight of aerobic granular biomass). When the initial pH was 5, the biosorption capability of AG and BA was highest at the initial Pb2+ concentrations (0-20mg L-1). During the process of Pb2+ biosorption, K+, Ca2+, and Mg2+ were released. The Ion Chromatography (IC) and Fourier Transform Infrared Spectroscopy (FTIR) further highlighted the main role of ion exchange between Ca2+ and Pb2+ and sequestration of Pb2+ with carboxyl (-COO-) of AG and BA. This analogical analysis verifies that BA is responsible for biosorption of Pb2+ by AG. At the same optimal pH, AG cultivated with different carbon source has different Pb2+ biosorption capacity. The Pb2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.

  8. RHIC Au beam in Run 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S. Y.

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014more » is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.« less

  9. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria.

    PubMed

    Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.

  10. Comparison of Ti/Pd/Ag, Pd/Ti/Pd/Ag and Pd/Ge/Ti/Pd/Ag contacts to n-type GaAs for electronic devices handling high current densities

    NASA Astrophysics Data System (ADS)

    Huo, Pengyun; Galiana, Beatriz; Rey-Stolle, Ignacio

    2017-04-01

    In the quest for metal contacts for electronic devices handling high current densities, we report the results of Pd/Ti/Pd/Ag and Pd/Ge/Ti/Pd/Ag contacts to n-GaAs and compare them to Ti/Pd/Ag and AuGe/Ni/Au. These metal systems have been designed with the goal of producing an electrical contact with (a) low metal-semiconductor specific contact resistance, (b) very high sheet conductance, (c) good bondability, (d) long-term durability and (e) cost-effectiveness. The structure of the contacts consists of an interfacial layer (either Pd or Pd/Ge) intended to produce a low metal-semiconductor specific contact resistance; a diffusion barrier (Ti/Pd) and a thick top layer of Ag to provide the desired high sheet conductance, limited cost and good bondability. The results show that both systems can achieve very low metal resistivity (ρ M ˜ 2 × 10-6 Ω cm), reaching values close to that of pure bulk silver. This fact is attributed to the Ti/Pd bilayer acting as an efficient diffusion barrier, and thus the metal sheet resistance can be controlled by the thickness of the deposited silver layer. Moreover, the use of Pd as interfacial layer produces contacts with moderate specific contact resistance (ρ C ˜ 10-4 Ω cm2) whilst the use of Pd/Ge decreases the specific contact resistance to ρ C ˜ 1.5 × 10-7 Ω cm2, as a result of the formation of a Pd4(GaAs, Ge2) compound at the GaAs interface.

  11. Concentration Dependent Physical Properties of Ge1-xSnx Solid Solution

    NASA Astrophysics Data System (ADS)

    Jivani, A. R.; Jani, A. R.

    2011-12-01

    Our own proposed potential is used to investigate few physical properties like total energy, bulk modulus, pressure derivative of bulk modulus, elastic constants, pressure derivative of elastic constants, Poisson's ratio and Young's modulus of Ge1-xSnx solid solution with x is atomic concentration of α-Sn. The potential combines linear plus quadratic types of electron-ion interaction. First time screening function proposed by Sarkar et al is used to investigate the properties of the Ge-Sn solid solution system.

  12. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys.

    PubMed

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2006-07-01

    This study investigated the effect of alloying titanium with gold, silver, or copper on the elastic properties of the alloys. A series of binary titanium alloys was made with four concentrations of gold, silver, or copper (5, 10, 20, and 30 mass%) in an argon-arc melting furnace. The Young's moduli and Poisson's ratios of the alloy castings were determined with an ultrasonic-pulse method. The density of each alloy was previously measured by the Archimedes' principle. Results were analyzed using one-way ANOVA and the Scheffé's test. The densities of Ti-Au, Ti-Ag, and Ti-Cu alloys monotonically increased as the concentration of alloying elements increased. As the concentration of gold or silver increased to 20%, the Young's modulus significantly decreased, followed by a subsequent increase in value. As the concentration of copper increased, the Young's modulus monotonically increased. The Young's moduli of all the Ti-Cu alloys were significantly higher than that of the titanium. The density of all the experimental alloys was virtually independent of the alloy phases, while the Young's moduli and Poisson's ratios of the alloys were dependent. The addition of gold or silver slightly reduced the Young's modulus of the titanium when the alloy phase was single alpha. The increase in the Young's modulus of the Ti-Cu alloys is probably due to the precipitation of intermetallic compound Ti2Cu. Copper turned out to be a moderate stiffener that gains a Young's modulus of titanium up to 20% at the copper concentration of 30 mass%.

  13. Electrical response from nanocomposite PDMS-Ag NPs generated by in situ laser ablation in solution

    NASA Astrophysics Data System (ADS)

    Kalyva, Maria; Kumar, Susmit; Brescia, Rosaria; Petroni, Simona; La Tegola, Carola; Bertoni, Giovanni; De Vittorio, Massimo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-01

    Laser ablation technique is employed in order to generate polydimethylsiloxane (PDMS)/Ag NPs in situ, starting from a silver target in a solution of PDMS prepolymer and toluene. The produced surfactant-free nanoparticles are characterized by high resolution transmission electron microscopy (HRTEM) and scanning TEM-high angle annular dark field (STEM-HAADF) imaging modes, showing the majority of them to be of the order of 4 nm in diameter with a small percentage of larger Ag-AgCl multidomain NPs, embedded into a PDMS matrix. Low concentrations of carbon onion-like nanoparticles or larger fibers are also formed in the toluene-PDMS prepolymer solution. In accordance with this, UV-vis spectra shows no peak from silver NPs; their small size and their coverage by the PDMS matrix suppresses the signal of surface plasmon absorption. Inductively coupled plasma measurements reveal that the concentration of silver in the polymer is characteristically low, ˜0.001% by weight. The electrical properties of the PDMS nanocomposite films are modified, with current versus voltage (I-V) measurements showing a low current of up to a few tenths of a pA at 5 V. The surface resistivity of the films is found to be up to ˜1010 Ω/sq. Under pressure (e.g. stress) applied by a dynamic mechanical analyzer (DMA), the I-V measurements demonstrate the current decreasing during the elastic deformation, and increasing during the plastic deformation.

  14. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth

    NASA Astrophysics Data System (ADS)

    Lu, Haiming; Meng, Xiangkang

    2015-06-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.

  15. Ultrafast excited-state relaxation of a binuclear Ag(i) phosphine complex in gas phase and solution.

    PubMed

    Kruppa, S V; Bäppler, F; Klopper, W; Walg, S P; Thiel, W R; Diller, R; Riehn, C

    2017-08-30

    The binuclear complex [Ag 2 (dcpm) 2 ](PF 6 ) 2 (dcpm = bis(dicyclohexylphosphino)methane) exhibits a structure with a close silver-silver contact mediated by the bridging ligand and thus a weak argentophilic interaction. Upon electronic excitation this cooperative effect is strongly increased and determines the optical and luminescence properties of the compound. We have studied here the ultrafast electronic dynamics in parallel in gas phase by transient photodissociation and in solution by transient absorption. In particular, we report the diverse photofragmentation pathways of isolated [Ag 2 (dcpm) 2 ] 2+ in an ion trap and its gas phase UV photodissociation spectrum. By pump-probe fragmentation action spectroscopy (λ ex = 260 nm) in the gas phase, we have obtained fragment-specific transients which exhibit a common ultrafast multiexponential decay. This is fitted to four time constants (0.6/5.8/100/>1000 ps), highlighting complex intrinsic photophysical processes. Remarkably, multiexponential dynamics (0.9/8.5/73/604 ps) are as well found for the relaxation dynamics in acetonitrile solution. Ab initio calculations at the level of approximate coupled-cluster singles-doubles (CC2) theory of ground and electronically excited states of the reduced model system [Ag 2 (dmpm) 2 ] 2+ (dmpm = bis(dimethylphosphino)methane) indicate a shortening of the Ag-Ag distance upon excitation by 0.3-0.4 Å. In C 2 geometry two close-lying singlet states S 1 ( 1 MC(dσ*-pπ), 1 B, 4.13 eV) and S 2 ( 1 MC(dσ*-pσ), 1 A, 4.45 eV) are found. The nearly dark S 1 state has not been reported so far. The excitation of the S 2 state carries a large oscillator strength for the calculated vertical transition (266 nm). Two related triplets are calculated at T 1 (3.87 eV) and T 2 (3.90 eV). From these findings we suggest possible relaxation pathways with the two short time constants ascribed to ISC/IVR and propose from the obtained similar values in gas phase that the fast solution dynamics

  16. Indentation-induced solid-state dewetting of thin Au(Fe) films

    NASA Astrophysics Data System (ADS)

    Kosinova, Anna; Schwaiger, Ruth; Klinger, Leonid; Rabkin, Eugen

    2017-07-01

    We studied the effect of local plastic deformation on the thermal stability and solid-state dewetting of thin homogeneous Au(Fe) films deposited on sapphire substrates. The films with ordered square arrays of indents produced by nanoindentation were annealed at the temperature of 700 °C in a forming gas atmosphere. The behavior of the film in the region of shallow indents (reaching a depth up to one half of the film thickness) was very different from the one in the region of deep indents (with depths greater than one half of the film thickness). In the first case, the grain growth in indented and unperturbed regions of the film proceeded quite similarly, and nearly complete healing of the indents was observed. In the latter case, a recrystallization process in the vicinity of the indents resulted in the formation of small new grains with misorientation angles that were not present in the as-deposited film. The thermal grooving along the corresponding new high-energy grain boundaries caused an increase of the depth of the indents and the formation of the dewetting holes. The morphology of these holes and their size were different compared to the holes formed randomly in the unperturbed regions of the same films. In particular, the interaction between the individual indents of an array led to the preferential formation of holes at the periphery of the arrays. These findings shed a new light on the process of nucleation of the solid-state dewetting in thin films.

  17. Potential of Zero Charge and Its Temperature Derivative for Au(111) Electrode|Alkanethiol SAM|1.0 M Aqueous Electrolyte Solution Interfaces: Impact of Electrolyte Solution Ionic Strength and Its Effect on the Structure of the Modified Electrode|Electrolyte Solution Interface

    DOE PAGES

    Smalley, John F.

    2017-04-06

    In this study, we demonstrate how small and rapid temperature perturbations (produced by the indirect laser-induced temperature jump (ILIT) technique) of solid metal electrode|electrolyte solution interfaces may be used to determine the potential of zero (total) charge (E pzc) and its temperature derivativemore » $$\\left(\\frac{dEpzc}{dT}\\right)$$ of Au(111) electrode surfaces modified by alkanethiol self-assembled monolayers in contact with high ionic strength (i.e., 1.0 M) aqueous electrolyte solutions. The E pzc’s measured for two different types of SAMs (made from either HS(CH 2) n-1CH 3 (5 ≤ n ≤ 12, E pzc = -(0.99 ± 0.12) V vs SSCE) or HS(CH 2) nOH (3 ≤ n ≤ 16, E pzc = (0.46 ± 0.22) V vs SSCE)) are considerably different than those measured previously at much lower electrolyte solution ionic strengths. For mixed monolayers made from both HS(CH 2) n-1CH 3 and HS(CH 2) nFc (where Fc refers to ferrocene), the difference in Epzc decreases as a function of the surface concentration of the Fc moiety (i.e., [Fc]), and it completely disappears at a surprisingly small [Fc] (~4.0 × 10 –11 mol cm –2). These observations for the Au(111)|hydrophobic (neat and mixed) SAM|aqueous electrolyte solution interfaces, along with the surface potentials (g Sml(dip)) evaluated for the contacting electrolyte solution surfaces of these interfaces, are consistent with a structure for the water molecule components of these surfaces where there is a net orientation of the dipoles of these molecules. Accordingly, the negative (oxygen) ends of these molecules point toward the SAM surface. The positive values of g Sml(dip) evaluated for hydrophilic SAM (e.g., made from HS(CH 2) nOH)|aqueous electrolyte solution interfaces) also indicate that the structure of these interfaces is similar to that of the hydrophobic interfaces. However, g Sml(dip) decreases with increasing ionic strength for the hydrophilic interfaces, while it increases with increasing ionic strength for

  18. Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O -D2O solutions

    NASA Astrophysics Data System (ADS)

    Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.

    2015-10-01

    We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .

  19. Thermodynamics of concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Michael C.; Zhang, C.; Gao, P.

    This study reviews the three main approaches for predicting the formation of concentrated solid solution alloys (CSSA) and for modeling their thermodynamic properties, in particular, utilizing the methodologies of empirical thermo-physical parameters, CALPHAD method, and first-principles calculations combined with hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulations. In order to speed up CSSA development, a variety of empirical parameters based on Hume-Rothery rules have been developed. Herein, these parameters have been systematically and critically evaluated for their efficiency in predicting solid solution formation. The phase stability of representative CSSA systems is then illustrated from the perspectives of phase diagrams and nucleation drivingmore » force plots of the σ phase using CALPHAD method. The temperature-dependent total entropies of the FCC, BCC, HCP, and σ phases in equimolar compositions of various systems are presented next, followed by the thermodynamic properties of mixing of the BCC phase in Al-containing and Ti-containing refractory metal systems. First-principles calculations on model FCC, BCC and HCP CSSA reveal the presence of both positive and negative vibrational entropies of mixing, while the calculated electronic entropies of mixing are negligible. Temperature dependent configurational entropy is determined from the atomic structures obtained from MC/MD simulations. Current status and challenges in using these methodologies as they pertain to thermodynamic property analysis and CSSA design are discussed.« less

  20. Thermodynamics of concentrated solid solution alloys

    DOE PAGES

    Gao, Michael C.; Zhang, C.; Gao, P.; ...

    2017-10-12

    This study reviews the three main approaches for predicting the formation of concentrated solid solution alloys (CSSA) and for modeling their thermodynamic properties, in particular, utilizing the methodologies of empirical thermo-physical parameters, CALPHAD method, and first-principles calculations combined with hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulations. In order to speed up CSSA development, a variety of empirical parameters based on Hume-Rothery rules have been developed. Herein, these parameters have been systematically and critically evaluated for their efficiency in predicting solid solution formation. The phase stability of representative CSSA systems is then illustrated from the perspectives of phase diagrams and nucleation drivingmore » force plots of the σ phase using CALPHAD method. The temperature-dependent total entropies of the FCC, BCC, HCP, and σ phases in equimolar compositions of various systems are presented next, followed by the thermodynamic properties of mixing of the BCC phase in Al-containing and Ti-containing refractory metal systems. First-principles calculations on model FCC, BCC and HCP CSSA reveal the presence of both positive and negative vibrational entropies of mixing, while the calculated electronic entropies of mixing are negligible. Temperature dependent configurational entropy is determined from the atomic structures obtained from MC/MD simulations. Current status and challenges in using these methodologies as they pertain to thermodynamic property analysis and CSSA design are discussed.« less

  1. Solid-state, ambient-operation thermally activated delayed fluorescence from flexible, non-toxic gold-nanocluster thin films: towards the development of biocompatible light-emitting devices

    NASA Astrophysics Data System (ADS)

    Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.

    2016-08-01

    Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.

  2. Anomalous property of Ag(BO2)2 hyperhalogen: does spin-orbit coupling matter?

    PubMed

    Chen, Hui; Kong, Xiang-Yu; Zheng, Weijun; Yao, Jiannian; Kandalam, Anil K; Jena, Puru

    2013-10-07

    Hyperhalogens were recently identified as a new class of highly electronagative species which are composed of metals and superhalogens. In this work, high-level theoretical calculations and photoelectron spectroscopy experiments are systematically conducted to investigate a series of coinage-metal-containing hyperhalogen anions, Cu(BO(2))(2)(-), Ag(BO(2))(2)(-), and Au(BO(2))(2)(-). The vertical electron detachment energy (VDE) of Ag(BO(2))(2)(-) is anomalously higher than those of Au(BO(2))(2)(-) and Cu(BO(2))(2)(-). In quantitative agreement with the experiment, high-level ab initio calculations reveal that spin-orbit coupling (SOC) lowers the VDE of Au(BO(2))(2)(-) significantly. The sizable magnitude of about 0.5 eV of SOC effect on the VDE of Au(BO(2))(2)(-) demonstrates that SOC plays an important role in the electronic structure of gold hyperhalogens. This study represents a new paradigm for relativistic electronic structure calculations for the one-electron-removal process of ionic Au(I)L(2) complexes, which is characterized by a substantial SOC effect. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Autonomous Repair Mechanism of Creep Damage in Fe-Au and Fe-Au-B-N Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Kwakernaak, C.; Tichelaar, F. D.; Sloof, W. G.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2015-12-01

    The autonomous repair mechanism of creep cavitation during high-temperature deformation has been investigated in Fe-Au and Fe-Au-B-N alloys. Combined electron-microscopy techniques and atom probe tomography reveal how the improved creep properties result from Au precipitation within the creep cavities, preferentially formed on grain boundaries oriented perpendicular to the applied stress. The selective precipitation of Au atoms at the free creep cavity surface results in pore filling, and thereby, autonomous repair of the creep damage. The large difference in atomic size between the Au and Fe strongly hampers the nucleation of precipitates in the matrix. As a result, the matrix acts as a reservoir for the supersaturated solute until damage occurs. Grain boundaries and dislocations are found to act as fast transport routes for solute gold from the matrix to the creep cavities. The mechanism responsible for the self-healing can be characterized by a simple model for cavity growth and cavity filling.

  4. Au-nanoparticles grafted on plasma treated PE

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Řezanka, P.; Slepička, P.; Kolská, Z.; Kasálková, N.; Hubáček, T.; Siegel, J.

    2010-03-01

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  5. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process.

    PubMed

    Sanyal, Udishnu; Jagirdar, Balaji R

    2012-12-03

    A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

  6. Solution-Processed Ag Nanowires + PEDOT:PSS Hybrid Electrode for Cu(In,Ga)Se₂ Thin-Film Solar Cells.

    PubMed

    Shin, Donghyeop; Kim, Taegeon; Ahn, Byung Tae; Han, Seung Min

    2015-06-24

    To reduce the cost of the Cu(In,Ga)Se2 (CIGS) solar cells while maximizing the efficiency, we report the use of an Ag nanowires (NWs) + poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid transparent electrode, which was deposited using all-solution-processed, low-cost, scalable methods. This is the first demonstration of an Ag NWs + PSS transparent electrode applied to CIGS solar cells. The spin-coated 10-nm-thick PSS conducting polymer layer in our hybrid electrode functioned as a filler of empty space of an electrostatically sprayed Ag NW network. Coating of PSS on the Ag NW network resulted in an increase in the short-circuit current from 15.4 to 26.5 mA/cm(2), but the open-circuit voltage and shunt resistance still needed to be improved. The limited open-circuit voltage was found to be due to interfacial recombination that is due to the ineffective hole-blocking ability of the CdS film. To suppress the interfacial recombination between Ag NWs and the CdS film, a Zn(S,O,OH) film was introduced as a hole-blocking layer between the CdS film and Ag NW network. The open-circuit voltage of the cell sharply improved from 0.35 to 0.6 V, which resulted in the best cell efficiency of 11.6%.

  7. Stabilization of a supersaturated solution of mefenamic acid from a solid dispersion with EUDRAGIT(®) EPO.

    PubMed

    Kojima, Taro; Higashi, Kenjirou; Suzuki, Toyofumi; Tomono, Kazuo; Moribe, Kunikazu; Yamamoto, Keiji

    2012-10-01

    The stabilization mechanism of a supersaturated solution of mefenamic acid (MFA) from a solid dispersion with EUDRAGIT(®) EPO (EPO) was investigated. The solid dispersions were prepared by cryogenic grinding method. Powder X-ray diffractometry, in vitro dissolution test, in vivo oral absorption study, infrared spectroscopy, and solid- and solution-state NMR spectroscopies were used to characterize the solid dispersions. Dissolution tests in acetate buffer (pH 5.5) revealed that solid dispersion showed > 200-fold higher concentration of MFA. Supersaturated solution was stable over 1 month and exhibited improved oral bioavailability of MFA in rats, with a 7.8-fold higher area under the plasma concentration-versus-time curve. Solid-state (1)H spin-lattice relaxation time (T(1)) measurement showed that MFA was almost monomolecularly dispersed in the EPO polymer matrix. Intermolecular interaction between MFA and EPO was indicated by solid-state infrared and (13)C-T(1) measurements. Solution-state (1)H-NMR measurement demonstrated that MFA existed in monomolecular state in supersaturated solution. (1)H-T(1) and difference nuclear Overhauser effect measurements indicated that cross relaxation occurred between MFA and EPO due to the small distance between them. The formation and high stability of the supersaturated solution were attributable to the specifically formed intermolecular interactions between MFA and EPO.

  8. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    PubMed

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2016-01-14

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.

  9. On the Precipitation in an Ag-Containing Mg-Gd-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhu, Yuman; Rong, Wei; Wu, Yujuan; Peng, Liming; Nie, Jian-Feng; Birbilis, Nick

    2018-02-01

    The evolution of precipitates in a high-strength Mg-2.4Gd-0.4Ag-0.1Zr (at. pct) alloy was investigated using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The precipitation of Mg-2.4Gd-0.4Ag-0.1Zr includes β- and γ-type precipitates, the latter involving a hitherto unreported precipitation sequence that is the focus of the present study. The β-type precipitation sequence is described as follows: supersaturated solid solution (S.S.S.S.) → ordered solute clusters → zigzag GP zones → β' → βF' → β 1 → β. Compared with the precipitation sequence of the Mg-Gd system, the proposed β-type precipitation sequence includes ordered solute clusters, zigzag GP zones, and βF' , but excludes β″. The strain field around the coarsened β' phase is supposed to stimulate the formation of the β^'F phase. Furthermore, the βF' phase provides preferential nucleation site for the β 1 phase. The γ-type precipitation sequence is proposed as follows: S.S.S.S. → basal GP zones → γ''' → γ″ → γ. The crystal structures, morphologies, and orientations of the basal GP zone, γ''', γ″, γ phases were comprehensively examined and established herein. The results are described in the context of other, but similar, alloy systems. A holistic description of the precipitate evolution in Ag-containing Mg-Gd alloys is discussed and rationalized.

  10. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed A.; Bakr, Eman A.; El-Attar, Heba G.

    2018-01-01

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17 nm for Pt@Ag and 8.8 nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes.

  11. Construction of an all-solid-state artificial Z-scheme system consisting of Bi2WO6/Au/CdS nanostructure for photocatalytic CO2 reduction into renewable hydrocarbon fuel.

    PubMed

    Wang, Meng; Han, Qiutong; Li, Liang; Tang, Lanqin; Li, Haijin; Zhou, Yong; Zou, Zhigang

    2017-07-07

    An all-solid-state Bi 2 WO 6 /Au/CdS Z-scheme system was constructed for the photocatalytic reduction of CO 2 into methane in the presence of water vapor. This Z-scheme consists of ultrathin Bi 2 WO 6 nanoplates and CdS nanoparticles as photocatalysts, and a Au nanoparticle as a solid electron mediator offering a high speed charge transfer channel and leading to more efficient spatial separation of electron-hole pairs. The photo-generated electrons from the conduction band (CB) of Bi 2 WO 6 transfer to the Au, and then release to the valence band (VB) of CdS to recombine with the holes of CdS. It allows the electrons remaining in the CB of CdS and holes in the VB of Bi 2 WO 6 to possess strong reduction and oxidation powers, respectively, leading the Bi 2 WO 6 /Au/CdS to exhibit high photocatalytic reduction of CO 2 , relative to bare Bi 2 WO 6 , Bi 2 WO 6 /Au, and Bi 2 WO 6 /CdS. The depressed hole density on CdS also enhances the stability of the CdS against photocorrosion.

  12. Chitosan-induced Au/Ag nanoalloy dispersed in IL and application in fabricating an ultrasensitive glucose biosensor based on luminol-H₂O₂-Cu²⁺/IL chemiluminescence system.

    PubMed

    Chaichi, M J; Alijanpour, S O

    2014-11-01

    A novel glucose biosensor based on the chemiluminescence (CL) detection of enzymatically generated hydrogen peroxide (H₂O₂) was constructed by one covalent immobilization of glucose oxidase (GOD) in glutaraldehyde-functionalized glass cell. In following, chitosan-induced Au/Ag nanoparticles dispersed in ion liquid (IL) were synthesised and immobilized on it. Herein, chitosan molecules acted as both the reducing and stabilizing agent for the preparation of NPs and also, as a coupling agent GOD and Au/Ag alloy NPs. In addition to catalyze luminol CL reaction, these NPs offered excellent catalytic activity toward hydrogen peroxide generation in enzymatic reaction between GOD and glucose. The used IL in fabrication of biosensor increased its stability. Also, IL alongside Cu(2+) accelerated enzymatic and CL reaction kinetic, and decreased luminol CL reaction optimum pH to 7.5 which would enable sensitive and precision determination of glucose. Under optimum condition, linear response range of glucose was found to be 1.0 × 10(-6)-7.5 × 10(-3)M, and detection limit was 4.0 × 10(-7)M. The CL biosensor exhibited good storage stability, i.e., 90% of its initial response was retained after 2 months storage at pH 7.0. The present CL biosensor has been applied satisfactory to analysis of glucose in real serum and urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. STAR Au + Au Fixed Target Results

    NASA Astrophysics Data System (ADS)

    Meehan, Kathryn; STAR Collaboration

    2015-10-01

    The RHIC Beam Energy Scan (BES) program was proposed to look for the turn-off of signatures of the quark gluon plasma (QGP), search for a possible QCD critical point, and study the nature of the phase transition between hadronic and partonic matter. The results from the NA49 experiment at CERN have been used to claim that the onset of deconfinement occurs at a collision energy around a center-of-mass energy of 7 GeV, the low end of the BES range. Data from lower energies are needed to test if this onset occurs. The goal of the STAR Fixed-Target Program is to extend the collision energy range in BES II with the same detector to energies that are likely below the onset of deconfinement. Currently, STAR has inserted a gold target into the beam pipe and conducted test runs at center-of-mass energies 3.9 and 4.5 GeV. Tests have been done with both Au and Al beams. First physics results from a Coulomb analysis of Au + Au fixed-target collisions, which are found to be consistent with previous experiments, will be presented. These results demonstrate that STAR has good particle identification capabilities in this novel detector setup. Furthermore, the Coulomb potential, which is sensitive to the Z of the projectile and degree of baryonic stopping, will be compared with published results from the AGS. This material is based upon work supported by the National Science Foundation under Grant No. 1068833.

  14. Approximate analytical solution for induction heating of solid cylinders

    DOE PAGES

    Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...

    2015-10-20

    An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less

  15. Plasmons in N-doped graphene nanostructures tuned by Au/Ag films: a time-dependent density functional theory study.

    PubMed

    Shu, Xiaoqin; Cheng, Xinlu; Zhang, Hong

    2018-04-18

    The energy resonance point of the prominent peak of the absorption spectrum of nitrogen-doped graphene is in the ultraviolet region. This limits its application as a co-catalyst in renewable hydrogen evolution through photocatalytic water splitting in the visible light region. It is well known that noble metal films show active absorption in the visible region due to the existence of the unique feature known as surface plasmon resonance. Here we report tunable plasmons in nitrogen-doped graphene nanostructures using noble metal (Au/Ag) films. The energy resonance point of the prominent peak of the composite nanostructure is altered by changing the separation space of two-layered nanostructures. We found the strength of the absorption spectrum of the composite nanostructure is much stronger than the isolated N-doped graphene monolayer. When the separation space is decreased, the prominent peak of the absorption spectrum is red-shifted to the visible light region. Moreover, currents of several microamperes exist above the surface of the N-doped graphene and Au film composite nanostructure. In addition, the field enhancement exceeds 1000 when an impulse excitation polarized in the armchair-edge direction (X-axis) when the separation space is decreased to 3 Å and is close to 100 when an impulse excitation polarized in the zigzag-edge direction (Y-axis). The N-doped graphene and noble metal film composite nanostructure is a good candidate material as a co-catalyst in renewable hydrogen production by photocatalytic water splitting in the visible light region.

  16. Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins

    PubMed Central

    Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi

    2013-01-01

    In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578

  17. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution.

    PubMed

    Salem, Mohamed A; Bakr, Eman A; El-Attar, Heba G

    2018-01-05

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17nm for Pt@Ag and 8.8nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH 4 ) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH 4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes. Copyright © 2017. Published by Elsevier B.V.

  18. Heteroassembled gold nanoparticles with sandwich-immunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg).

    PubMed

    Kim, Jinwoon; Oh, Seo Yeong; Shukla, Shruti; Hong, Seok Bok; Heo, Nam Su; Bajpai, Vivek K; Chun, Hyang Sook; Jo, Cheon-Ho; Choi, Bong Gill; Huh, Yun Suk; Han, Young-Kyu

    2018-06-01

    This study aimed to develop a more sensitive method for the detection of hepatitis B surface antigen (HBsAg) using heteroassembled gold nanoparticles (AuNPs). A single layered localized surface plasmon resonance (LSPR) chip format was developed with antigen-antibody reaction-based detection symmetry using AuNPs, which detected HBsAg at 10 pg/mL. To further improve the detection limit, a modified detection format was fabricated by fixing a secondary antibody (to form a heteroassembled sandwich format) to the AuNP monolayer, which enhanced the detection sensitivity by about 100 times. The developed heteroassembled AuNPs sandwich-immunoassay LSPR chip format was able to detect as little as 100 fg/mL of HBsAg within 10-15 min. In addition, the heteroassembled AuNPs sandwich-immunoassay LSPR chip format did not show any non-specific binding to other tested antigens, including alpha fetoprotein (AFP), C-reactive protein (CRP), and prostate-specific antigen (PSA). These findings confirm that the proposed detection strategy of heteroassembled AuNPs sandwich-immunoassay LSPR chip format may provide a new platform for early diagnosis of various human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Run 16 Tandem gold performance in the injectors and possible improvement with AGS type 6:3:1 bunch merge in the Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeno, Keith

    2016-10-21

    During Run 16 the Tandem was used as the Gold pre-injector for a brief time so that RHIC could continue running while EBIS was down for repairs. Given the time constraints, the setup was largely derived from the EBIS Au setup. The EBIS Au setup used a 4:2:1 bunch merge in the Booster and a 12:6:2 bunch merge in the AGS.1 This note will describe the Tandem Au setup and compare it to that used for EBIS Au. The bunch merge in the Booster for Tandem Au did not work well, and it seems likely that the performance would’ve beenmore » significantly better if it did. An AGS type 6:3:1 merge in the Booster is described which might improve matters.2 Somewhat speculative estimates for the AGS bunch intensity and emittance, if that merge were successful in reducing the Booster extraction emittance to EBIS Au levels, are also given for several potential setups. Using 6 Booster loads from the Tandem, the AGS bunch intensity at extraction reached about 2.5e9 ions with a longitudinal emittance (ε) of about 0.59 eV·s/n.3 Using 12 Booster loads from EBIS, the peak bunch intensity and ε was about 3.1e9 ions and 0.75 eV·s/n, respectively. A 6.4 sec supercycle was used for both at the time, but the Tandem Au supercycle (barring any potential issues with Tandem) could probably have been reduced to about 4.6 sec.« less

  20. 2D all-solid state fabric supercapacitor fabricated via an all solution process for use in smart textiles

    NASA Astrophysics Data System (ADS)

    Jang, Yunseok; Jo, Jeongdai; Woo, Kyoohee; Lee, Seung-Hyun; Kwon, Sin; Kim, Kwang-Young; Kang, Dongwoo

    2017-05-01

    We propose a method to fabricate a supercapacitor for smart textiles using silver (Ag) nanoparticle (NP) ink, simple spray patterning systems, and intense pulsed light (IPL) sintering systems. The Ag NP current collectors provided as high conductivity as the metal current collectors. The spray patterning technique is useful for fabricating supercapacitors because it is simple, fast, and cheap. IPL systems reduced the sintering temperature of Ag NPs and prevented thermal damage to the textiles during the Ag NP sintering process. The two-dimensional (2D) all-solid state fabric supercapacitor with an interdigitated configuration, developed here, exhibited a specific capacitance of 25.7 F/g and an energy density of 1.5 Wh/kg at a power density of 64.3 W/kg. These results support the utility of our proposed method in the development of energy textiles.

  1. Degradation of blue and red inks by Ag/AgCl photocatalyst under UV light irradiation

    NASA Astrophysics Data System (ADS)

    Daupor, Hasan; Chenea, Asmat

    2017-08-01

    Objective of this research, cubic Ag/AgCl photocatalysts with an average particle size of 500 nm has been successfully synthesized via a modified precipitation reaction between ZrCl4 and AgNO3. Method for analysis, the crystal structure of the product was characterized by X-ray powder diffraction (XRD). The morphology and composition were studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-vis diffuse-reflection spectra (DRS) and so on. The result showed that the optical absorption spectrum exhibited strong absorption in the visible region around 500-600 nm due to surface plasmon resonance (SPR) of metallic silver nanoparticles. SEM micrographs showed that the obtained Ag/AgCl had cubic morphology and appeared on the porous surface as the cubic cage morphology. As a result, this porous surface also positively affected the photocatalytic reaction. The photocatalytic activity of the obtained product was evaluated by the photodegradation of blue and red ink solutions under UV light irradiation, and it was interestingly, discovered that AgCl could degrade 0.25% and 0.10% in 7 hours for blue and red inks solution respectively, Which were higher than of commercial AgCl. The result suggested that the morphology of Ag/AgCl strongly affected their photocatalytic activities. O2-, OH- reaction. radicals and Cl° atom are main species during photocatalytic reaction.

  2. Effect of varying Ga content in ZnO:GaN solid solution synthesized by solution combustion technique for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Janani, R.; Baskar, K.; Gupta, Bhavana; Singh, Shubra

    2017-05-01

    ZnO:GaN (oxy)nitride solid solution has been established as the most efficient non-oxide photocatalyst for water splitting under visible irradiation with one step photoexcitation and also boasts a band gap tunability from 2.8 eV to 2.5 eV[1]. The solid solution of GaN in ZnO is formed by the intersubstitution of few of Zn/O ions by Ga/N ions, and this results in the introduction of new defect levels above the valence band which narrows the effective band gap enabling activity under visible region of spectra. In this work, we report the synthesis of ZnO:GaN solid solution by a solution combustion technique where metal nitrates and urea are used as precursors. The Zn/Ga ratio was varied from 16 to 1 in the precursors. The as synthesized samples were characterized as phase pure by X-ray diffraction, where the wurtzite structure was retained up to Zn/Ga ratio of 5. The Diffuse reflectance spectroscopy studies revealed that as the Ga content in the solid solution increases there is a reduction in band gap, from 2.9 eV to 2.4 eV. The reduced band gap of the samples facilitates its photocatalytic activity under visible region of the spectra as evaluated by photoelectrochemical measurements.

  3. Reducing Strength Prevailing at Root Surface of Plants Promotes Reduction of Ag+ and Generation of Ag0/Ag2O Nanoparticles Exogenously in Aqueous Phase

    PubMed Central

    Pardha-Saradhi, Peddisetty; Yamal, Gupta; Peddisetty, Tanuj; Sharmila, Peddisetty; Nagar, Shilpi; Singh, Jyoti; Nagarajan, Rajamani; Rao, Kottapalli S.

    2014-01-01

    Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP) to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs) from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5–50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag0, which generate Ag0/Ag2O-NPs. Findings presented in this manuscript put forth a novel, simple

  4. Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction

    DOE PAGES

    Xie, Miao; Mohammadi, Reza; Turner, Christopher L.; ...

    2015-07-29

    In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  5. Ion mobility and transport properties of bismuth fluoride-containing solid solutions with tysonite-type structure

    NASA Astrophysics Data System (ADS)

    Kavun, V. Ya.; Uvarov, N. F.; Slobodyuk, A. B.; Merkulov, E. B.; Polyantsev, M. M.

    2018-07-01

    The ion mobility and conductivity of solid solutions with tysonite-type structure obtained by doping bismuth trifluoride with lead (II) fluoride, and zirconium and bismuth oxides have been studied using 19F NMR, X-ray diffraction analysis, and impedance spectroscopy. The types of ionic motions in the fluoride sublattice of the synthesized solid solutions in the temperature range 150-450 K have been determined and the energy of their activation has been estimated. Due to high ionic conductivity, above 10-2 S/cm at 570 K, these solid solutions can be considered as superionic conductors.

  6. Near-Infrared Ag2S Quantum Dots-Based DNA Logic Gate Platform for miRNA Diagnostics.

    PubMed

    Miao, Peng; Tang, Yuguo; Wang, Bidou; Meng, Fanyu

    2016-08-02

    Dysregulation of miRNA expression is correlated with the development and progression of many diseases. These miRNAs are regarded as promising biomarkers. However, it is challenging to measure these low abundant molecules without employing time-consuming radioactive labeling or complex amplification strategies. Here, we present a DNA logic gate platform for miRNA diagnostics with fluorescence outputs from near-infrared (NIR) Ag2S quantum dots (QDs). Carefully designed toehold exchange-mediated strand displacements with different miRNA inputs occur on a solid-state interface, which control QDs release from solid-state interface to solution, responding to multiplex information on initial miRNAs. Excellent fluorescence emission properties of NIR Ag2S QDs certify the great prospect for amplification-free and sensitive miRNA assay. We demonstrate the potential of this platform by achieving femtomolar level miRNA analysis and the versatility of a series of logic circuits computation.

  7. Effect of Ag and Pb Addition on Microstructural and Mechanical Properties of SAC 105 Solders

    NASA Astrophysics Data System (ADS)

    Molnar, Aliz; Janovszky, Dora; Kardos, Ibolya; Molnar, Istvan; Gacsi, Zoltan

    2015-10-01

    Melting and crystallization processes of lead-free and lead-contaminated alloys in near-equilibrium state were investigated. In addition, the effect of silver content up to 4 wt.% on the microstructure of Sn-Ag-Cu alloys was studied. The volume fraction of β-Sn decreased by half owing to 4 wt.% Ag content. Furthermore, contamination by lead strongly influences the properties of the solidified microstructure. The Pb grains appear as a result of two processes when the Pb content is equal to 0.5 wt.% or higher: Pb phase solidifies in the quaternary eutectic at 176°C, and Pb grains precipitate from the primary β-Sn solid solution grain during a solid state reaction. The freezing range enlarges to 51°C due to 2 wt.% Pb content owing to quaternary eutectic. Above 1 wt.% Pb content, the mechanical properties also improve due to grains of quaternary eutectic Pb and precipitated Pb grains with a size <1 μm.

  8. Solid-state dewetting of single- and bilayer Au-W thin films: Unraveling the role of individual layer thickness, stacking sequence and oxidation on morphology evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Franz, A.; Theska, F.

    2016-03-15

    Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO{sub 2} evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO{sub 3}) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to themore » presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO{sub 3} is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO{sub 3} nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.« less

  9. Lateral spreading of Au contacts on InP

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1990-01-01

    The contact spreading phenomenon observed when small area Au contacts on InP are annealed at temperatures above about 400 C was investigated. It was found that the rapid lateral expansion of the contact metallization which consumes large quantities of InP during growth is closely related to the third stage in the series of solid state reactions that occur between InP and Au, i.e., to the Au3In-to-Au9In4 transition. Detailed descriptions are presented of both the spreading process and the Au3In-to-Au9In4 transition along with arguments that the two processes are manifestations of the same basic phenomenon.

  10. Multishell Au/Ag/SiO 2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes

    DOE PAGES

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier; ...

    2015-04-07

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less

  11. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.

    PubMed

    Kobayashi, Hirokazu; Kusada, Kohei; Kitagawa, Hiroshi

    2015-06-16

    Currently 118 known elements are represented in the periodic table. Of these 118 elements, only about 80 elements are stable, nonradioactive, and widely available for our society. From the viewpoint of the "elements strategy", we need to make full use of the 80 elements to bring out their latent ability and create innovative materials. Furthermore, there is a strong demand that the use of rare or toxic elements be reduced or replaced while their important properties are retained. Advanced science and technology could create higher-performance materials even while replacing or reducing minor or harmful elements through the combination of more abundant elements. The properties of elements are correlated directly with their electronic states. In a solid, the magnitude of the density of states (DOS) at the Fermi level affects the physical and chemical properties. In the present age, more attention has been paid to improving the properties of materials by means of alloying elements. In particular, the solid-solution-type alloy is advantageous because the properties can be continuously controlled by tuning the compositions and/or combinations of the constituent elements. However, the majority of bulk alloys are of the phase-separated type under ambient conditions, where constituent elements are immiscible with each other. To overcome the challenge of the bulk-phase metallurgical aspects, we have focused on the nanosize effect and developed methods involving "nonequilibrium synthesis" or "a process of hydrogen absorption/desorption". We propose a new concept of "density-of-states engineering" for the design of materials having the most desirable and suitable properties by means of "interelement fusion". In this Account, we describe novel solid-solution alloys of Pd-Pt, Ag-Rh, and Pd-Ru systems in which the constituent elements are immiscible in the bulk state. The homogeneous solid-solution alloys of Pd and Pt were created from Pd core/Pt shell nanoparticles using a

  12. Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning

    USDA-ARS?s Scientific Manuscript database

    Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers were prepared by atmospheric plasma treatment and electrospinning. Atmospheric helium plasma treatment was first used to reduce the silver nitrate precursor in pre-electrospinning solutions into metallic silver nanoparticles, foll...

  13. Solute redistribution in dendritic solidification with diffusion in the solid

    NASA Technical Reports Server (NTRS)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  14. Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids.

    PubMed

    Singh, Amol; Li, Xiangyang; Protasenko, Vladimir; Galantai, Gabor; Kuno, Masaru; Xing, Huili Grace; Jena, Debdeep

    2007-10-01

    Polarization-sensitive photodetectors are demonstrated using solution-synthesized CdSe nanowire (NW) solids. Photocurrent action spectra taken with a tunable white light source match the solution linear absorption spectra of the NWs, showing that the NW network is responsible for the device photoconductivity. Temperature-dependent transport measurements reveal that carriers responsible for the dark current through the nanowire solids are thermally excited across CdSe band gap. The NWs are aligned using dielectrophoresis between prepatterned electrodes using conventional optical photolithography. The photocurrent through the NW solid is found to be polarization-sensitive, consistent with complementary absorption (emission) measurements of both single wires and their ensembles. The range of solution-processed semiconducting NW materials, their facile synthesis, ease of device fabrication, and compatibility with a variety of substrates make them attractive for potential nanoscale polarization-sensitive photodetectors.

  15. Multiferroic properties in NdFeO3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.

  16. Overview and analysis of the 2016 Gold Run in the Booster and AGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeno, K.

    2016-09-16

    Run 16 differed from preceding Au runs in that during most of it a 12:6:2 merge was employed in the AGS instead of an 8:4:2 merge. This was done to provide higher bunch intensities for RHIC. Since the approach to providing higher bunch intensities is, and has been, to merge more Booster bunches of the same intensity into one final bunch, detailing the longitudinal aspects of this setup seems quite relevant. So, aside from providing an overview of the Au portion of Run 16, this note also contains a series of emittance measurements in the Booster and AGS. Comparisons ofmore » these to similar measurements in previous runs are also made in hopes of gaining a better understanding of what factors contribute to the emittance of a bunch at AGS extraction. The note also tries to provide some context in which to understand the various merge schemes and describes a potential 8 to 1 type merge.« less

  17. Solution and solid trinitrotoluene (TNT) photochemistry: persistence of TNT-like ultraviolet (UV) resonance Raman bands.

    PubMed

    Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A

    2014-01-01

    We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.

  18. Solid-State Synthesized Nanostructured Au Dendritic Aggregates Towards Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gentile, A.; Ruffino, F.; D'Andrea, C.; Gucciardi, P. G.; Reitano, R.; Grimaldi, M. G.

    2016-06-01

    Micrometric Au structures, presenting a dendritic nano-structure, have been fabricated on a Si-based substrate. The fabrication method involves the deposition of a thin Au film on the substrate and a high-temperature annealing (1100°C) using fast heating and cooling ramps. The thermal process produces the growth, from the substrate, of Si micro-pillars whose top surfaces, covered by a crystalline Au layer, present a nanodendritic morphology. In addition to the micro-pillars, the sample surface presents a complex structural and chemical composition including Si3N4 regions due to the silicon-nitrogen intermixing during the heating stage. By studying the kinetic processes at the Au-Si interface during the thermal treatment, we describe the stages involved in the micro-pillars growth, in the dendritic morphology development, and in the Au atoms entrapment at the top of the dendritic surfaces. Finally, we present the analyses of the optical and surface enhanced Raman scattering properties of the Au dendritic aggregates. We show, in particular, that: (1) the Au dendrites aggregates act as effective scattering elements for the electromagnetic radiation in the infrared spectral region; and (2) the higher surface area due to the branched dendritic structure is responsible for the improvement in the sensitivity of the surface enhanced Raman scattering activity.

  19. MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eve J.; Chiang, Eugene; Ormel, Chris W., E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu, E-mail: ormel@berkeley.edu

    Close-in super-Earths having radii 1-4 R {sub ⊕} may possess hydrogen atmospheres comprising a few percent by mass of their rocky cores. We determine the conditions under which such atmospheres can be accreted by cores from their parent circumstellar disks. Accretion from the nebula is problematic because it is too efficient: we find that 10 M {sub ⊕} cores embedded in solar metallicity disks tend to undergo runaway gas accretion and explode into Jupiters, irrespective of orbital location. The threat of runaway is especially dire at ∼0.1 AU, where solids may coagulate on timescales orders of magnitude shorter than gas clearingmore » times; thus nascent atmospheres on close-in orbits are unlikely to be supported against collapse by planetesimal accretion. The time to runaway accretion is well approximated by the cooling time of the atmosphere's innermost convective zone, whose extent is controlled by where H{sub 2} dissociates. Insofar as the temperatures characterizing H{sub 2} dissociation are universal, timescales for core instability tend not to vary with orbital distance—and to be alarmingly short for 10 M {sub ⊕} cores. Nevertheless, in the thicket of parameter space, we identify two scenarios, not mutually exclusive, that can reproduce the preponderance of percent-by-mass atmospheres for super-Earths at ∼0.1 AU, while still ensuring the formation of Jupiters at ≳ 1 AU. Scenario (a): planets form in disks with dust-to-gas ratios that range from ∼20× solar at 0.1 AU to ∼2× solar at 5 AU. Scenario (b): the final assembly of super-Earth cores from mergers of proto-cores—a process that completes quickly at ∼0.1 AU once begun—is delayed by gas dynamical friction until just before disk gas dissipates completely. Both scenarios predict that the occurrence rate for super-Earths versus orbital distance, and the corresponding rate for Jupiters, should trend in opposite directions, as the former population is transformed into the latter

  20. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.

    PubMed

    Sutter, Eli A; Sutter, Peter W

    2014-12-03

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(-)aq generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(-)aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(-)aq] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution.