Science.gov

Sample records for ag-cu alloy fillers

  1. Solubility and Dissolution Rate of Ni Base Alloy to Molten Ag-Cu-Pd Brazing Filler

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Watanabe, Yuki; Suzumura, Akio; Yamazaki, Takahisa

    During the brazing process of the rocket engine’s nozzle skirt assembly made from Fe-Ni based super alloy pipes with Pd based brazing filler, the erosion corrosion pits were sometimes engraved on those pipes’ surface. The corrosion is considered to be assisted by the dynamic flow of the molten brazing filler. In order to estimate the amount of erosion corrosion and to prevent it, the solubility and the dissolution rate of Ni to the molten Ag-Cu-Pd brazing filler are measured experimentally. The Ni crucible poured with the Ag-Cu-Pd brazing filler was heated up to 1320K and quenched after the various keeping time. The microstructure of the solidified brazing filler part’s cross sections was observed, and the amount of the dissolved Ni was estimated using the image processing technique. The solubility was about 5.53mass%and the initial dissolution rate was 6.28 × 10-3mass%/s. Using these data, more elaborate dynamic flow simulation will be able to conduct.

  2. Phase Evolution in the Pd-Ag-CuO Air Braze Filler Metal Alloy System

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2006-08-01

    Palladium was added as a ternary component to a series of copper oxide-silver alloys in an effort to increase the use temperature of these materials for potential ceramic air brazing applications. Phase equilibria in the ternary Pd-Ag-CuO system were investigated via differential scanning calorimetry (DSC) and a series of quenching experiments. Presented here are the latest findings on this system and a construction of the corresponding ternary phase diagram for low-to-moderate additions of palladium. The analysis included samples with higher palladium additions than were studied in the past, as well as an analysis of the composition-temperature trends in the Ag-CuO miscibility gap with palladium addition. It was found that the addition of palladium increases the solidus and liquidus and caused three phase zones to appear as expected by the phase rule. Furthermore, the palladium additions cause the miscibility gap boundary extending from the former binary eutectic to shift to lower silver-to-copper ratios.

  3. Corrosion of Ti-STS dissimilar joints brazed by a Ag interlayer and Ag-Cu-(Pd) alloy fillers

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Park, J. J.; Lee, G. J.; Lee, J. G.; Kim, D. W.; Lim, C. H.; Rhee, C. K.; Lee, Y. B.; Lee, J. K.; Hong, S. J.

    2011-02-01

    Corrosion behavior of dissimilar brazed joints between titanium Gr. 2 (Ti) and S31254 stainless steel (STS) was investigated. For the study, a Ag interlayer and two Ag-base eutectic alloys, 72Ag-28Cu and 66.2Ag-25.8Cu-8Pd (wt.%), were introduced as a diffusion control layer and fillers, respectively, between the base materials. The joints commonly had a layered structure of Ti(base)/TiAg/Ag solid solution/STS(base), but the one brazed by the Ag-Cu-Pd filler was slightly alloyed with the noble Pd elements over the Ag-rich solid solution region. A series of corrosion test experiments in a sea water revealed that a corrosion of TiAg layer and a stress-induced cracking at the TiAg/Ag solid solution interface were dominant due to a galvanic attack, but notably the Ti-STS dissimilar joint's resistance to corrosion was significantly improved by alloying the Pd in the joint. The corrosion behavior of such dissimilar metal joints was discussed based on galvanic corrosion effect.

  4. Au-Ag-Cu nano-alloys: tailoring of permittivity

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-04-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.

  5. Au-Ag-Cu nano-alloys: tailoring of permittivity

    PubMed Central

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  6. Au-Ag-Cu nano-alloys: tailoring of permittivity.

    PubMed

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  7. Brazed joints of CBN grains and AISI 1045 steel with AgCuTi-TiC mixed powder as filler materials

    NASA Astrophysics Data System (ADS)

    Ding, Wen-Feng; Xu, Jiu-Hua; Chen, Zhen-Zhen; Su, Hong-Hua; Fu, Yu-Can

    2011-12-01

    The brazing process of cubic boron nitride (CBN) grains and AISI 1045 steel with AgCuTi-TiC mixed powder as a filler material was carried out. The joining strength and the interfacial microstructure were investigated. The experimental results indicate that the spreading of the molten filler material on AISI 1045 steel is decreased with the increase of TiC content. A good interface is formed between the TiC particulates and AgCuTi alloy through the wetting behavior. In the case of AgCuTi+16wt% TiC, the strength of the brazed steel-to-steel joints reached the highest value of 95 MPa dependent upon the reinforcement effect of TiC particles within the filler layer. Brazing resultants of TiB2, TiB, and TiN are produced at the interface of the CBN grains and the AgCuTi-TiC filler layer by virtue of the interdiffusion of B, N, and Ti atoms.

  8. Active Brazing of C/C Composite to Copper by AgCuTi Filler Metal

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiang; Xia, Lihong; Zhang, Fuqin; He, Lianlong

    2016-05-01

    Brazing between the carbon-fiber-reinforced carbon composite (C/C composite) and copper has gained increasing interest because of its important application in thermal management systems in nuclear fusion reactors and in the aerospace industry. In order to examine the "interfacial shape effect" on the mechanical properties of the joint, straight and conical interfacial configurations were designed and machined on the surface of C/C composites before joining to copper using an Ag-68.8Cu-4.5Ti (wt pct) alloy. The microstructure and interfacial microchemistry of C/C composite/AgCuTi/Cu brazed joints were comprehensively investigated by using high-resolution transmission electron microscopy. The results indicate that the joint region of both straight and conical joints can be described as a bilayer. Reaction products of Cu3Ti3O and γ-TiO were formed near the copper side in a conical interface joint, while no reaction products were found in the straight case. The effect of Ag on the interfacial reaction was discussed, and the formation mechanism of the joints during brazing was proposed. On the basis of the detailed microstructure presented, the mechanical performance of the brazed joints was discussed in terms of reaction and morphology across the joint.

  9. Novel PdAgCu ternary alloy: Hydrogen permeation and surface properties

    NASA Astrophysics Data System (ADS)

    Tarditi, Ana M.; Braun, Fernando; Cornaglia, Laura M.

    2011-05-01

    Dense PdAgCu ternary alloy composite membranes were synthesized by the sequential electroless plating of Pd, Ag and Cu on top of both disk and tubular porous stainless steel substrates. X-ray diffraction and scanning electron microscopy were employed to study the structure and morphology of the tested samples. The hydrogen permeation performance of these membranes was investigated over a 350-450 °C temperature range and a trans-membrane pressure up to 100 kPa. After annealing at 500 °C in hydrogen stream followed by permeation experiments, the alloy layer presented a FCC crystalline phase with a bulk concentration of 68% Pd, 7% Ag and 25% Cu as revealed by EDS. The PdAgCu tubular membrane was found to be stable during more than 300 h on hydrogen stream. The permeabilities of the PdAgCu ternary alloy samples were higher than the permeabilities of the PdCu alloy membranes with a FCC phase. The co-segregation of silver and copper to the membrane surface was observed after hydrogen permeation experiments at high temperature as determined by XPS.

  10. Preparation and optical properties of silica@Ag Cu alloy core-shell composite colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhui; Liu, Huaiyong; Wang, Zhenlin; Ming, Naiben

    2007-04-01

    The silica@Ag-Cu alloy core-shell composite colloids have been successfully synthesized by an electroless plating approach to explore the possibility of modifying the plasmon resonance at the nanoshell surface by varying the metal nanoshell composition for the first time. The surface plasmon resonance of the composite colloids increases in intensity and shifts towards longer, then shorter wavelengths as the Cu/Ag ratio in the alloy shell is increased. The variations in intensity of the surface plasmon resonance with the Cu/Ag ratio obviously affect the Raman bands of the silica colloid core. The report here may supply a new technique to effectively modify the surface plasmon resonance.

  11. The Effects of Adding Elements of Zinc and Magnesium on Ag-Cu Eutectic Alloy for Warming Acupuncture

    PubMed Central

    Park, Il Song; Kim, Keun Sik; Lee, Min Ho

    2013-01-01

    The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition. PMID:24078827

  12. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.

    PubMed

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-19

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO₂.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. PMID:25757694

  13. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-01

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For

  14. BRAZING OF POROUS ALUMINA TO MONOLITHIC ALUMINA WITH Ag-CuO and Ag-V2O5 ALLOYS

    SciTech Connect

    Lamb, M. C.; Camardello, Sam J.; Meier, Alan; Weil, K. Scott; Hardy, John S.

    2005-01-31

    The feasibility of joining porous alumina (Al{sub 2}O{sub 3}) bodies to monolithic Al{sub 2}O{sub 3} using Ag-CuO and Ag-V{sub 2}O{sub 5} alloys via reactive air brazing (RAB) was examined for a nanoporous filter application. Brazing for these systems is complicated by the conflicting requirements of satisfactory wetting to fill the braze gap, while minimizing the infiltration of the porous body. By varying the firing time, temperature, and initial powder size, porous bodies with a range of pore microstructures were fabricated. The wettability was evaluated via sessile drop testing on monolithic substrates and porous body infiltration. Porous Al{sub 2}O{sub 3}/monolithic Al{sub 2}O{sub 3} brazed samples were fabricated, and the microstructures were evaluated. Both systems exhibited satisfactory wetting for brazing, but two unique types of brazing behavior were observed. In the Ag-CuO system, the braze alloy infiltrated a short distance into the porous body. For these systems, the microstructures indicated satisfactory filling of the brazed gap and a sound joint regardless of the processing conditions. The Ag-V{sub 2}O{sub 5} alloys brazed joints exhibited a strong dependence on the amount of V{sub 2}O{sub 5} available. For Ag-V{sub 2}O{sub 5} alloys with large V{sub 2}O{sub 5} additions, the braze alloy aggressively infiltrated the porous body and significantly depleted the Ag from the braze region resulting in poor bonding and large gaps within the joint. With small additions of V{sub 2}O{sub 5}, the Ag infiltrated the porous body until the V{sub 2}O{sub 5} was exhausted and the Ag remaining at the braze interlayer bonded with the Al{sub 2}O{sub 3}. Based on these results, the Ag-CuO alloys have the best potential for brazing porous Al{sub 2}O{sub 3} to monolithic Al{sub 2}O{sub 3}.

  15. Setting and flexural properties of metal-resin composite using Ag-Cu particles as filler and chemical accelerator.

    PubMed

    Soma, Hiroko; Miyagawa, Yukio; Ogura, Hideo

    2003-12-01

    A metal-resin composite material was experimentally prepared by mixing a powder consisting of Ag-Cu particles and BPO with a paste consisting of UDMA-based monomer and 4-META in the absence of tertiary amine. The working time and setting time were mainly affected by the amounts of 4-META, BPO and metal particles, most of them fulfilling the requirements for working time and setting time specified in ISO 4049:2000 in the present experimental conditions. The flexural strength ranged from 49.6 MPa to 77.8 MPa, and the highest value was obtained when the 4-META concentration was high and metal particle content was low. The flexural modulus of elasticity, ranging from 6.7 GPa to 11.9 GPa, significantly increased as the 4-META concentration and metal particle content increased. Based on its mechanical properties, this metal-resin composite in which metal particles are involved in the polymerization initiation system has the potential to be used as a dental restorative material. PMID:15005231

  16. Characterization of the (Ag,Cu)(In,Ga)Se2 thin film alloy system for solar cells

    NASA Astrophysics Data System (ADS)

    Boyle, Jonathan

    Energy is the underlying factor to human economic activity, and more energy is projected to be needed in the near future and photovoltaics provide a means to supply that energy. Results presented in this dissertation detail material properties of the (Ag,Cu)(In,Ga)Se2 thin film alloy system for use as a solar cell material. Structural and optical properties were determined via X-ray diffraction and UV/Vis/NIR spectrophotometry, respectively. Structural data was analyzed using JADE 2010 software and optical data was analyzed via two different methods. Results of Ag substitution into Cu(In,Ga)Se2 alloy were reconciled with the Jaffe-Wei-Zunger (JWZ) theoretical model, which relates structural and chemical properties of Cu-based ternary chalcopyrite alloys to their optical properties. Dominant phase of the alloy system was identified as chalcopyrite I-42d, Space group 122, with minor secondary phases and order defect phases. No chalcopyrite-chalcopyrite miscibility gap was present in the alloy compositional space, counter to prior literature on bulk polycrystalline materials and thermodynamic calculations performed here, indicating that Ag was successfully substituted into the chalcopyrite lattice. Lattice constant results were consistent with JWZ model, where a O lattice constant closely follows Vegard's rule, cO lattice constant changes at different rates than aO does with composition, and anion displacement is affected by cation radii. Optical results showed bandgap widening with Ag and Ga substitution across the full compositional space, with bowing parameters shown overall to be invariant with cation substitution, counter to expectations. (Ag+Cu)/(In+Ga) ratio effect on bandgap for a limited set of samples is consistent with p-d hybridization effects from JWZ model.

  17. Structural and optical properties of (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin film alloys

    SciTech Connect

    Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.; McCandless, B. E.

    2014-06-14

    The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu + Ag)/(In + Ga) ratio. Films deposited at 550 °C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a{sub o} lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, and Zunger. However, the refined c{sub o} lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.

  18. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag-Cu eutectic and Cu interlayer

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Xiaohong, Li; Jinbao, Hou; Qiang, Sun; Fuli, Zhang

    2012-10-01

    The interfacial microstructures and mechanical properties of the joints formed by active cement added brazing in vacuum of Cf/SiC composite to Invar alloy, using Ag-Cu eutectic alloy and pure copper foil as braze alloy and interlayer respectively, were investigated. CuTi, Cu4Ti3, Fe2Ti and the reaction layer of TiC and Si were the predominant components at the joint interface. The maximum shear strength of the joint was 77 MPa for brazing at 850 °C for 15 min. The results show that active cement added brazing in vacuum using Ag-Cu eutectic alloy and Cu interlayer can be used successfully for joining Cf/SiC composites to Invar alloy.

  19. Effect of Ag addition on the thermal characteristics and structural evolution of Ag-Cu-Ni ternary alloy nanoclusters: Atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Subbaraman, Ram; Sankaranarayanan, Subramanian K. R. S.

    2011-08-01

    Atomic-scale compositional variation in Ag contents across Ag-Cu-Ni alloy upon being subjected to repeated annealing cycles is shown to result in significant differences in the structure and the thermal stability of ternary alloy nanoclusters. Molecular dynamics (MD) simulations employing quantum Sutton-Chen potentials were used to investigate the effect of Ag addition on the thermal characteristics of Ag-Cu-Ni ternary alloy nanoclusters of 4-nm diameter. The initial configurations were generated using Monte Carlo simulations and comprise surface-segregated structures with the lowest surface energy component, Ag, occupying low coordination sites such as corners, edges, and faces. A compositional oscillation between the Cu and Ni atoms was observed for layers beneath the surface which transitions into a bulk alloy composition at the core. We find that the Cu-Ni binary alloys on being subjected to annealing schedules demonstrated an increase in thermal stability, as indicated by the increase in melting points. The annealed configurations of the Ag-Cu-Ni ternary alloy, on the other hand, showed a nonmonotonic behavior. For Ag compositions less than 20%, we observe an initial increase in melting point followed by a decrease in the third cycle. For higher Ag compositions (>20%), we observe a decrease in melting point with annealing; the rate of decrease is strongly correlated to the Ag composition in the alloy. Cu-Ni nanoclusters having 50% Cu showed a transition from an initial icosahedral to a cuboctahedron-like structure whereas Ag-rich Ag-Cu-Ni ternary alloys showed a transition from icosahedral to an amorphous structure. Compositional analysis based on radial distribution functions and density profiles indicate that these transitions were dependent on the distribution of the alloying elements in the nanocluster. Calculated root-mean-square displacements and diffusion coefficients indicate that the rate of mixing of Ag increases with Ag content in the Ag-Cu

  20. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  1. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  2. THE ELECTRONIC STRUCTURE OF AG/CU(100) SURFACE ALLOYS STUDIES BY AUGER-PHOTOELECTRON COINCIDENCE SPECTROSCOPY.

    SciTech Connect

    ARENA,D.A.; BARTYNSKI,R.A.; HULBERT,S.L.

    2001-10-08

    We have measured the Ag and Pd M{sub 5}VV Auger spectrum in coincidence with Ag and Pd 4d{sub 5/2} photoelectrons for the Ag/Cu(100) and Pd/Cu(100) systems, respectively, as a function of admetal coverage. These systems form surface alloys (i.e. random substitutional alloys in the first atomic layer) for impurity concentrations in the 0.1 monolayer range. For these systems, the centroid of the impurity 4d levels is expected to shift away from the Fermi level by {approx}1 eV [Ruban et al., Journal of Molecular Catalysis. A 115 (1997) 421], an effect that should be easily seen in coincidence core-valence-valence Auger spectra. We find that the impurity Auger spectra of both systems shift in a manner that is consistent with d-band moving away from EF. However, the shift for Pd is considerably smaller than expected, and a shift almost absent for Ag. The disagreement between theory and experiment is most likely caused by the neglect of lattice relaxations in the calculations.

  3. Novel PdAgCu ternary alloy as promising materials for hydrogen separation membranes: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Tarditi, Ana M.; Cornaglia, Laura M.

    2011-01-01

    The use of the sequential electroless plating method allowed us to obtain the PdAgCu ternary alloy on top of dense stainless steel (SS) 316 L disks. The XRD analysis indicated that initially the nucleation of the two phases of the alloy (FCC and BCC) takes place, but the FCC/BCC ratio increases with the annealing time at 500 °C in H 2 stream. After 162 h, the film contained only the FCC phase, which presents promising properties to be applied in the synthesis of hydrogen selective membranes. SEM cross-section results showed that a dense, continuous, defect-free film was deposited on top of the SS support, and the EDS data indicated that no significant gradient was present on the thickness of the film. XPS and LEIS allowed us to determine that Cu and Ag surface segregation takes place after annealing up to 500 °C/5 days. In the top-most surface layer, Ag enrichment takes place as determined by ARXPS experiments which can be the result of the lower surface tension of Ag compared to that of Cu and Pd. Increasing the annealing temperature results in an increase of the Ag surface segregation while the Cu concentration in the top-most surface layer decreases.

  4. Comparison of Extensive Thermal Cycling Effects on Microstructure Development in Micro-alloyed Sn-Ag-Cu Solder Joints

    SciTech Connect

    Anderson, Iver E.; Boesenberg, Adam; Harringa, Joel; Riegner, David; Steinmetz, Andrew; Hillman, David

    2011-09-28

    Pb-free solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic have promise for widespread adoption across assembly conditions and operating environments, but enhanced microstructural control is needed. Micro-alloying with elements such as Zn was demonstrated for promoting a preferred solidification path and joint microstructure earlier in simple (Cu/Cu) solder joints studies for different cooling rates. This beneficial behavior now has been verified in reworked ball grid array (BGA) joints, using dissimilar SAC305 (Sn-3.0Ag-0.5Cu, wt.%) solder paste. After industrial assembly, BGA components joined with Sn-3.5Ag-0.74Cu-0.21Zn solder were tested in thermal cycling (-55 C/+125 C) along with baseline SAC305 BGA joints beyond 3000 cycles with continuous failure monitoring. Weibull analysis of the results demonstrated that BGA components joined with SAC + Zn/SAC305 have less joint integrity than SAC305 joints, but their lifetime is sufficient for severe applications in consumer, defense, and avionics electronic product field environments. Failure analysis of the BGA joints revealed that cracking did not deviate from the typical top area (BGA component side) of each joint, in spite of different Ag3Sn blade content. Thus, SAC + Zn solder has not shown any advantage over SAC305 solder in these thermal cycling trials, but other characteristics of SAC + Zn solder may make it more attractive for use across the full range of harsh conditions of avionics or defense applications.

  5. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    SciTech Connect

    Singh, Manish Kumar; Mandal, R. K.; Manda, Premkumar; Singh, A. K.

    2015-10-15

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  6. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    NASA Astrophysics Data System (ADS)

    Singh, Manish Kumar; Manda, Premkumar; Singh, A. K.; Mandal, R. K.

    2015-10-01

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ˜9 atom per cent; 8 atom per cent and Ag ˜ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  7. Development of Sn-Ag-Cu-X Solders for Electronic Assembly by Micro-Alloying with Al

    SciTech Connect

    Boesenberg, Adam; Anderson, Iver; Harringa, Joel

    2012-03-10

    Of Pb-free solder choices, an array of solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic (T eut = 217°C) composition have emerged with potential for broad use, including ball grid array (BGA) joints that cool slowly. This work investigated minor substitutional additions of Al (<0.25 wt.%) to Sn-3.5Ag-0.95Cu (SAC3595) solders to promote more consistent solder joint microstructures and to avoid deleterious product phases, e.g., Ag3Sn “blades,” for BGA cooling rates, since such Al additions to SAC had already demonstrated excellent thermal aging stability. Consistent with past work, blade formation was suppressed for increased Al content (>0.05Al), but the suppression effect faded for >0.20Al. Undercooling suppression did not correlate specifically with blade suppression since it became significant at 0.10Al and increased continuously with greater Al to 0.25Al. Surprisingly, an intermediate range of Al content (0.10 wt.% to 0.20 wt.% Al) promoted formation of significant populations of 2-μm to 5-μm faceted Cu-Al particles, identified as Cu33Al17, that clustered at the top of the solder joint matrix and exhibited extraordinary hardness. Clustering of Cu33Al17 was attributed to its buoyancy, from a lower density than Sn liquid, and its early position in the nucleation sequence within the solder matrix, permitting unrestricted migration to the top interface. Joint microstructures and implications for the full nucleation sequence for these SAC + Al solder joints are discussed, along with possible benefits from the clustered particles for improved thermal cycling resistance.

  8. Ternary eutectic growth of Ag-Cu-Sb alloy within ultrasonic field

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hong, Zhenyu; Wei, Bingbo

    2007-08-01

    The liquid to solid transformation of ternary Ag42.4Cu21.6Sb36 eutectic alloy was accomplished in an ultrasonic field with a frequency of 35 kHz, and the growth mechanism of this ternary eutectic was examined. Theoretical calculations predict that the sound intensity in the liquid phase at the solidification interface increases gradually as the interface moves up from the sample bottom to its top. The growth mode of ( ɛ + θ + Sb) ternary eutectic exhibits a transition of “divorced eutectic—mixture of anomalous and regular structures—regular eutectic” along the sample axis due to the inhomogeneity of sound field distribution. In the top zone with the highest sound intensity, the cavitation effect promotes the three eutectic phases to nucleate independently, while the acoustic streaming efficiently suppresses the coupled growth of eutectic phases. In the meantime, the ultrasonic field accelerates the solute transportation at the solid-liquid interface, which reduces the solute solubility of eutectic phases.

  9. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  10. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    NASA Astrophysics Data System (ADS)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  11. Microstructure and mechanical properties of joints in sintered SiC fiber-bonded ceramics brazed with Ag Cu Ti alloy

    SciTech Connect

    Singh, Mrityunjay; Asthana, Rajiv; Ishikawa, Toshihiro; Matsunaga, Tadashi; Lin, Hua-Tay

    2012-01-01

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohexs) has been carried out using a Ti-containing Ag Cu active braze alloy (Cusil-ABAs). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 1C and 750 1C, respectively. The fracture at the higher temperature occurred at the interface between the reactionformed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to m-FEA simulation results.

  12. Microstructure and Mechanical Properties of Joints in Sintered SiC Fiber-Bonded Ceramics Brazed with Ag-Cu-Ti Alloy

    SciTech Connect

    Singh, Mrityunjay; Matsunaga, Tadashi; Lin, Hua-Tay; Asthana, Rajiv; Ishikawa, Toshihiro

    2012-01-01

    Active metal brazing of a new high thermal conductivity sintered SiC-polycrystalline fiber-bonded ceramic (SA-Tyrannohex{reg_sign}) has been carried out using a Ti-containing Ag-Cu active braze alloy (Cusil-ABA{reg_sign}). The brazed composite joints were characterized using scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS). The results show that this material can be successfully joined using judiciously selected off-the shelf active braze alloys to yield metallurgically sound joints possessing high integrity. Uniform and continuous joints were obtained irrespective of differences in the fiber orientation in the substrate material. Detailed interfacial microanalysis showed that the titanium reacts with C and Si to form TiC layer and a Ti-Si compound, respectively. Furthermore, the evaluation of shear strength of the joints was also conducted at ambient and elevated temperatures in air using the single-lap offset (SLO) shear test. The perpendicular-type SA-Tyrannohex joints exhibited apparent shear strengths of about 42 MPa and 25 MPa at 650 C and 750 C, respectively. The fracture at the higher temperature occurred at the interface between the reaction-formed TiC layer and braze. This might be caused by generation of stress intensity when a shear stress was applied, according to {mu}-FEA simulation results.

  13. Dose and Ion Current Density Dependence of the Topography Formed on the Surface of Ag/Cu Two-Phase Alloys Sputtered by 600 eV Ar

    NASA Astrophysics Data System (ADS)

    Pierson, K. W.; Hawes, C. D.; Krueger, T. D.; Stupak, J.

    1997-03-01

    The polished surface of a Ag/Cu (60/40 % atomic) alloy sample held at room temperature was bombarded by varying doses of normally incident 600 eV argon ions at 1.0 mA/cm^2. Fluences were varied from 7x10^16 to 7x10^19 ions/cm^2. The changes that occurred in the surface topography progressed through various stages. First, for fluences less than 10^18 ions/cm^2, selective sputtering of the higher yield Ag grains caused them to become recessed. Between 10^18 ions/cm^2 and 10^19 ions/cm^2 a transition occurs, conical features (seed cones) develop only on the surface of the Ag grains. The dense large aspect ratio cones decrease the sputtering yield of the Ag grains with the result that they now become raised above the Cu grains. At fluences greater than 10^19 ions/cm^2 the entire surface of the sample becomes densely covered with large aspect ration cones. The transition from selective sputtering to seed cone formation implies a threshold for surface coverage of "seed" atoms in order for cone formation to begin. Increasing the ion current density and holding the fluence constant greatly accelerated the transition to a densely cone covered surface.

  14. The Effect of Braze Interlayer Thickness on the Mechanical Strength of Alumina Brazed with Ag-CuO Braze Alloys

    SciTech Connect

    Erskine, Kevin M.; Meier, Alan; Joshi, Vineet V.; Pilgrim, Steven M.

    2014-12-01

    The effect of braze interlayer thickness on the strength of alumina brazed with silver-copper oxide reactive air braze (RAB) alloys was evaluated using a four point bend test configuration. The brazed samples had an average fracture strength of 180 MPa or approximately 60 percent of the average monolithic alumina strength. The joint strength values obtained exceeded the yield strength and ultimate tensile strength of the silver interlayer indicating strong ceramic to metal adhesion and the development of a triaxial stress state in the braze interlayer. The average fracture strength was relatively constant (190 ± 60 MPa) in the thickness range of 0.030 mm to 0.230 mm for all test conditions. The braze fracture strength then decreased down to 100 ± 30 MPa as the braze thickness increased from 0.230 mm to 0.430 mm indicating a loss of triaxial constraint with increasing interlayer thickness. In addition, four different fracture modes were observed.

  15. Reduced-Temperature Transient-Liquid-Phase Bonding of AluminaUsing a Ag-Cu-Based Brazing Alloy

    SciTech Connect

    Hong, Sung Moo; Glaeser, Andreas M.

    2005-12-19

    The mechanical properties and microstructural evolution ofmetal-ceramic bonds produced using a transient liquid phase (TLP) aredescribed. Alumina (Al2O3) was joined at 500 degrees C, 600 degrees C,and 700 degrees C using a multilayer In/Cusil-ABA (R) (commercialcopper-silver eutectic brazing alloy)/In interlayer. The introduction ofthin In cladding layers allows the system to bond at much lowertemperatures than those typically used for brazing with Cusil-ABA (R),thereby protecting temperature-sensitive components. After chemicalhomogenization, the interlayers retain an operating temperature rangesimilar to that of the brazed joints. TLP bonds made at 500 degrees C,600 degrees C, and 700 degrees C with holding times ranging from as lowas 1.5 h to 24 h had average fracture strengths above 220 MPa. Theeffects of bonding temperature and time on fracture strength aredescribed. Preliminary analysis of the interlayers shows that the Ag-Inor Cu-In intermetallic phases do not form. Considerations unique tosystems with two-phase core layers are discussed. Experiments usingsingle-crystal sapphire indicate rapid formation of a reaction layer at700 degrees C, suggesting the possibility of making strong bonds usinglower temperatures and/or shorter processing times.

  16. Comparison of Sn-Ag-Cu Solder Alloy Intermetallic Compound Growth Under Different Thermal Excursions for Fine-Pitch Flip-Chip Assemblies

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Liu, Xi; Chow, Justin; Wu, Yi Ping; Sitaraman, Suresh K.

    2013-08-01

    The intermetallic compound (IMC) evolution in Cu pad/Sn-Ag-Cu solder interface and Sn-Ag-Cu solder/Ni pad interface was investigated using thermal shock experiments with 100- μm-pitch flip-chip assemblies. The experiments show that low standoff height of solder joints and high thermomechanical stress play a great role in the interfacial IMC microstructure evolution under thermal shock, and strong cross-reaction of pad metallurgies is evident in the intermetallic growth. Furthermore, by comparing the IMC growth during thermal aging and thermal shock, it was found that thermal shock accelerates IMC growth and that kinetic models based on thermal aging experiments underpredict IMC growth in thermal shock experiments. Therefore, new diffusion kinetic parameters were determined for the growth of (Cu,Ni)6Sn5 using thermal shock experiments, and the Cu diffusion coefficient through the IMC layer was calculated to be 0.2028 μm2/h under thermal shock. Finite-element models also show that the solder stresses are higher under thermal shock, which could explain why the IMC growth is faster and greater under thermal shock cycling as opposed to thermal aging.

  17. Microstructural Development and Mechanical Properties for Reactive Air Brazing of ZTA to Ni Alloys using Ag-CuO Braze Alloys

    SciTech Connect

    Prevost, Erica; DeMarco, A.Joseph; MacMichael, Beth; Joshi, Vineet V.; Meier, Alan; Hoffman, John W.; Walker, William J.

    2014-12-01

    Reactive air brazing (RAB) is a potential joining technique to join metal alloys to ceramics for a variety of applications. In the current study, nickel (Ni) alloys were heat treated to form an oxide layer prior to RAB joining to zirconia toughened alumina (ZTA). The Ni alloys evaluated were Nicrofer 6025 HT, Inconel 600, Inconel 693, Haynes 214 and Inconel 601. The ZTA studied had compositions of 0 to 15 wt% zirconia and 0 to 14 wt% glass. Four point-bend tests were performed to evaluate the joint strength of ZTA/ZTA and ZTA/nickel alloys brazed with Ag-2wt% CuO braze alloys. It was determined that the joint strength is not a function of the ZTA composition, but that the strength is a strong function of the chemistry and microstructure of the oxide layer formed on the nickel alloy. It was determined that an increase in the aluminum content of the Ni alloy resulted in an increase of the thickness of alumina in the oxide layer and was directly proportional to the bond strength with the exception of Inconel 601 which exhibited relatively high joint strengths even though it had a relatively low aluminum content.

  18. The effect of weldability of alloy JBK-75 with various filler metal wire additions

    SciTech Connect

    Taylor, C.L.

    1991-04-01

    The purpose of this study was to investigate the compositional factors that affect the weldability of alloy JBK-75. This study was accomplished by using a variety of different commercial filler materials to systematically evaluate the weldability in the compositional range surrounding alloy JBK-75. The experimental design included varestraint testing, scanning electron microscopy, and phase diagram analysis. The varestraint testing demonstrated that the weldability of alloy JBK-75 could be improved with the use of other commercially available filler metals. The best improvement to weldability of alloy JBK-75 was with type 308L stainless steel and Hastelloy W filler metals. Adequate improvement to the weldability of alloy JBK-75 was obtained when utilizing types 309L and 310 stainless steel filler metals. Alloy 320LR, alloy 650 (NiCrFe-1), Incoloy 901, and Inconel 92 (NiCrFe-6) filler metals only marginally improved the weldability of alloy JBK-75. 59 refs., 27 figs., 24 tabs.

  19. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    SciTech Connect

    Kikel, J.M.; Parker, D.M.

    1998-06-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC.

  20. Microstructural evolution of a lead-free solder alloy Sn-Bi-Ag-Cu prepared by mechanical alloying during thermal shock and aging

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Wu, C. M. L.; Lai, J. K. L.; Chan, Y. C.

    2000-08-01

    In a previous study, a lead-free solder, Sn-6Bi-2Ag-0.5Cu, was developed by mechanical alloying. The alloy shows great potential as a lead-free solder system. In the present work, the microstructural evolution during thermal shock and aging was examined. In the as-soldered joints small bismuth (1 µm to 2 µm) and Ag3Sn (1 µm) particles were finely dispersed in a nearly pure tin matrix with a small amount of η-Cu6Sn5 phase in the bulk of solder. During thermal shock and aging microstructural evolution occurred with Cu-Sn intermetallic compound (IMC) layer growth at interface, bismuth phase coarsening and Ag3Sn phase coarsening. The microstructure of the solder appeared to be stable at high temperature. The shear strength of the present solder joint is higher than that of Sn-37Pb and Sn-3.5Ag solders. Shear failure occurred Cu-Sn IMC layer-solder interface and in the bulk of solder.

  1. Morphology and electrochemical behavior of Ag-Cu nanoparticle-doped amalgams.

    PubMed

    Chung, Kwok-Hung; Hsiao, Li-Yin; Lin, Yu-Sheng; Duh, Jenq-Gong

    2008-05-01

    The aim of this study was to introduce Ag-Cu phase nanopowder as an additive to improve the corrosion behavior of dental amalgams. A novel Ag-Cu nanopowder was synthesized by the precipitation method. An amalgam alloy powder (World-Cap) was added and mixed with 5 wt.% and 10 wt.% of Ag-Cu nanopowders, respectively, to form experimental amalgam alloy powders. The original alloy powder was used as a control. Alloy powders were examined using X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy and electron probe microanalysis. Amalgam disk specimens of metallurgically prepared were tested in 0.9% NaCl solution using electrochemical methods. The changes in the corrosion potential and anodic polarization characteristics were determined. Corrosion potential data were analyzed statistically (n=3, analysis of variance, Tukey's test, p<0.05). The diameters of lamellar structure Ag-Cu nanoparticles were measured to be approximately 30 nm. The composition of the Ag-Cu nanoparticles determined by TEM-energy-dispersive spectroscopy was 56.28 at.% Ag-43.72 at.% Cu. A light-shaded phase was found mixing with dark Cu-Sn reaction particles in the reaction zones of Ag-Cu nanoparticle-doped amalgams. The Ag-Cu nanoparticle-doped amalgams exhibited zero current potentials more positive than the control (p<0.05) and no current peak was observed at -325mV that related to Ag-Hg phase and Cu6Sn5 phase in anodic polarization curves. The results indicated that the corrosion resistance of high-copper single-composition amalgam could be improved by Ag-Cu nanoparticle-doping. PMID:18321799

  2. Isothermal Ageing of SnAgCu Solder Alloys: Three-Dimensional Morphometry Analysis of Microstructural Evolution and Its Effects on Mechanical Response

    NASA Astrophysics Data System (ADS)

    Maleki, Milad; Cugnoni, Joë; Botsis, John

    2014-04-01

    Due to the high homologous temperature and fast cooling rates, the microstructures of SnAgCu (SAC) solders are in a meta-stable state in most applications, which is the cause of significant microstructural evolution and continuous variation in the mechanical behavior of the joints during service. The link between microstructures evolution and deformation behavior of Sn-4.0Ag-0.5Cu solder during isothermal ageing is investigated. The evolution of the microstructures in SAC solders are visualized at different scales in 3D by using a combination of synchrotron x-ray and focused ion beam/scanning electron microscopy tomography techniques at different states of ageing. The results show that, although the grain structure, morphology of dendrites, and overall volume fraction of intermetallics remain almost constant during ageing, considerable coarsening occurs in the Ag3Sn and Cu6Sn5 phases to lower the interfacial energy. The change in the morphometrics of sub-micron intermetallics is quantified by 3D statistical analyses and the kinetic of coarsening is discussed. The mechanical behavior of SAC solders is experimentally measured and shows a continuous reduction in the yield resistance of solder during ageing. For comparison, the mechanical properties and grain structure of β-tin are evaluated at different annealing conditions. Finally, the strengthening effect due to the intermetallics at different ageing states is evaluated by comparing the deformation behaviors of SAC solder and β-tin with similar grain size and composition. The relationship between the morphology and the strengthening effect due to intermetallics particles is discussed and the causes for the strength degradation in SAC solder during ageing are identified.

  3. Microstructure and Performance of Kovar/Alumina Joints Made with Silver-Copper Base Active Metal Braze Alloys

    SciTech Connect

    STEPHENS, JOHN J.; VIANCO,PAUL T.; HLAVA,PAUL F.; WALKER,CHARLES A.

    1999-12-15

    Poor hermeticity performance was observed for Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3} ceramic-ceramic joints having a Kovar{trademark} alloy interlayer. The active Ag-Cu-Ti filler metal was used to braze the substrates together. The Ti active element was scavenged from the filler metal by the formation of a (Fe, Ni, Co){sub x}Ti phase (x= 2-3) that prevented development of a continuous Ti{sub x}O{sub y} layer at the filler metal/Al{sub 2}O{sub 3} interface. Altering the process parameters did not circumvent the scavenging of Ti. Molybdenum barrier layers 1000, 2500, or 5000 {angstrom} thick on the Kovar{trademark} surfaces successfully allowed Ti{sub x}O{sub y} formation at the filler metal/Al{sub 2}O{sub 3} interface and hermetic joints. The problems with the Ag-Cu-Ti filler metal for Kovar{trademark}/Al{sub 2}O{sub 3} braze joints led to the evaluation of a Ag-Cu-Zr filler metal. The Zr (active element) in Ag-Cu-Zr filler metal was not susceptible to the scavenging problem.

  4. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  5. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  6. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  7. Brazeability of a 3003 Aluminum alloy with Al-Si-Cu-based filler metals

    NASA Astrophysics Data System (ADS)

    Tsao, L. C.; Weng, W. P.; Cheng, M. D.; Tsao, C. W.; Chuang, T. H.

    2002-08-01

    Al-Si-Cu-based filler metals have been used successfully for brazing 6061 aluminum alloy as reported in the authors’ previous studies. For application in heat exchangers during manufacturing, the brazeability of 3003 aluminum alloy with these filler metals is herein further evaluated. Experimental results show that even at such a low temperature as 550 °C, the 3003 alloys can be brazed with the Al-Si-Cu fillers and display bonding strengths that are higher than 77 MPa as well. An optimized 3003 joint is attained in the brazements with the innovative Al-7Si-20Cu-2Sn-1Mg filler metal at 575 °C for 30 min, which reveals a bonding strength capping the 3003 Al matrix.

  8. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    NASA Astrophysics Data System (ADS)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  9. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Bjorkman, Gerry; McCool, Carolyn (Technical Monitor)

    2000-01-01

    A viewgraph presentation outlines NASA Marshall Space Flight Center, Lockheed Martin Michoud Space Systems, and McCook Metals' development an aluminum-copper weld filler wire for fusion welding 2195 aluminum lithium. The aluminum-copper based weld filler wire has been identified as B218, which is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The Super Lightweight External Tank for the NASA Space Shuttle Program consists of 2195 welded with 4043 aluminum-silicon weld filler wire. The B218 filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties. An initial characterization of the B218 weld filler wire was performed consisting of initial weld and repair weld evaluation comparing B218 and 4043. The testing involved room temperature and cryogenic tensile testing along with fracture toughness testing. B218 weld filler wire proved to produce enhanced initial and repair weld tensile and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding 2195 and other aluminum lithium alloys over 4043.

  10. Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Khatibi, Golta; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2016-08-01

    Although considerable research has been dedicated to the synthesis and characterization of lead-free nanoparticle solder alloys, only very little has been reported on the reliability of the respective joints. In fact, the merit of nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature has always been challenged when compared with conventional solder joints, especially in terms of inferior solderability due to the oxide shell commonly present on the nanoparticles, as well as due to compatibility problems with common fluxing agents. Correspondingly, in the current study, Sn-Ag-Cu (SAC) nanoparticle alloys were combined with a proper fluxing vehicle to produce prototype nanosolder pastes. The reliability of the solder joints was successively investigated by means of electron microscopy and mechanical tests. As a result, the optimized condition for employing nanoparticles as a competent nanopaste and a novel procedure for surface treatment of the SAC nanoparticles to diminish the oxide shell prior to soldering are being proposed.

  11. Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Khatibi, Golta; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2016-05-01

    Although considerable research has been dedicated to the synthesis and characterization of lead-free nanoparticle solder alloys, only very little has been reported on the reliability of the respective joints. In fact, the merit of nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature has always been challenged when compared with conventional solder joints, especially in terms of inferior solderability due to the oxide shell commonly present on the nanoparticles, as well as due to compatibility problems with common fluxing agents. Correspondingly, in the current study, Sn-Ag-Cu (SAC) nanoparticle alloys were combined with a proper fluxing vehicle to produce prototype nanosolder pastes. The reliability of the solder joints was successively investigated by means of electron microscopy and mechanical tests. As a result, the optimized condition for employing nanoparticles as a competent nanopaste and a novel procedure for surface treatment of the SAC nanoparticles to diminish the oxide shell prior to soldering are being proposed.

  12. Basic principles of creating a new generation of high- temperature brazing filler alloys

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Suchkov, A. N.

    2016-04-01

    The development of new materials is based on the formation of a structural-phase state providing the desired properties by selecting the base and the complex of alloying elements. The development of amorphous filler alloys for a high-temperature brazing has its own features that are due to the limited life cycle and the production method of brazing filler alloys. The work presents a cycle of analytical and experimental materials science investigations including justification of the composition of a new amorphous filler alloy for brazing the products from zirconium alloys at the temperature of no more than 800 °C and at the unbrazing temperature of permanent joints of more than 1200 °C. The experimental alloys have been used for manufacture of amorphous ribbons by rapid quenching, of which the certification has been made by X-ray investigations and a differential-thermal analysis. These ribbons were used to obtain permanent joints from the spacer grid cells (made from the alloy Zr-1% Nb) of fuel assemblies of the thermal nuclear reactor VVER-440. The brazed samples in the form of a pair of cells have been exposed to corrosion tests in autoclaves in superheated water at a temperature of 350 °C, a pressure of 160 MPa and duration of up to 6,000 h. They have been also exposed to destructive tests using a tensile machine. The experimental results obtained have made it possible to propose and patent a brazing filler alloy of the following composition: Zr-5.5Fe-(2.5-3.5)Be-1Nb-(5-8)Cu-2Sn-0.4Cr-(0.5-1.0)Ge. Its melting point is 780 °C and the recommended brazing temperature is 800°C.

  13. The Reliability of Microalloyed Sn-Ag-Cu Solder Interconnections Under Cyclic Thermal and Mechanical Shock Loading

    NASA Astrophysics Data System (ADS)

    Mattila, Toni T.; Hokka, Jussi; Paulasto-Kröckel, Mervi

    2014-11-01

    In this study, the performance of three microalloyed Sn-Ag-Cu solder interconnection compositions (Sn-3.1Ag-0.52Cu, Sn-3.0Ag-0.52Cu-0.24Bi, and Sn-1.1Ag-0.52Cu-0.1Ni) was compared under mechanical shock loading (JESD22-B111 standard) and cyclic thermal loading (40 ± 125°C, 42 min cycle) conditions. In the drop tests, the component boards with the low-silver nickel-containing composition (Sn-Ag-Cu-Ni) showed the highest average number of drops-to-failure, while those with the bismuth-containing alloy (Sn-Ag-Cu-Bi) showed the lowest. Results of the thermal cycling tests showed that boards with Sn-Ag-Cu-Bi interconnections performed the best, while those with Sn-Ag-Cu-Ni performed the worst. Sn-Ag-Cu was placed in the middle in both tests. In this paper, we demonstrate that solder strength is an essential reliability factor and that higher strength can be beneficial for thermal cycling reliability but detrimental to drop reliability. We discuss these findings from the perspective of the microstructures and mechanical properties of the three solder interconnection compositions and, based on a comprehensive literature review, investigate how the differences in the solder compositions influence the mechanical properties of the interconnections and discuss how the differences are reflected in the failure mechanisms under both loading conditions.

  14. Mechanical, structural and thermal properties of Ag-Cu and ZnO reinforced polylactide nanocomposite films.

    PubMed

    Ahmed, Jasim; Arfat, Yasir Ali; Castro-Aguirre, Edgar; Auras, Rafael

    2016-05-01

    Plasticized polylactic acid (PLA) based nanocomposite films were prepared by incorporating polyethylene glycol (PEG) and two selected nanoparticles (NPs) [silver-copper (Ag-Cu) alloy (<100 nm) and zinc oxide (ZnO) (<50 and <100 nm)] through solvent casting method. Incorporation of Ag-Cu alloy into the PLA/PEG matrix increased the glass transition temperature (Tg) significantly. The crystallinity of the nanocomposites (NCs) was significantly influenced by NP incorporation as evidenced from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The PLA nanocomposite reinforced with NPs exhibited much higher tensile strength than that of PLA/PEG blend. Melt rheology of NCs exhibited a shear-thinning behavior. The mechanical property drastically reduced with a loading of NPs, which is associated with degradation of PLA. SEM micrographs exhibited that both Ag-Cu alloy and ZnO NPs were dispersed well in the PLA film matrix. PMID:26893045

  15. High temperature silver-palladium-copper oxide air braze filler metal

    NASA Astrophysics Data System (ADS)

    Darsell, Jens Tommy

    The Ag-CuO system is currently being investigated as the basis for an air braze filler metal alloy to be used in SOFC components. The system is of interest because unlike most braze alloys, it is capable of wetting a variety of ceramic materials while being applied in an air. This thesis work examined modification of Ag-CuO filler metal system by alloying with palladium to increase the use temperature of the resulting air braze alloy. Thermal analysis was performed to track changes in the solidus and liquidus temperatures for these alloys and determine equilibrium phase present as a function of temperature and composition. Sessile drop experiments were performed to investigate the effect of palladium addition on braze wetability. The influence of copper-oxide and palladium contents on brazed joint strength was characterized by a combination of four-point bend testing and fractography. From combined thermal analysis and quenched data it was found that both the liquidus and solidus increase with increasing palladium content, and the silver-rich miscibility gap boundary could be shifted by the addition of palladium. This was employed as a tool to study the effects of two-liquid phase formation on wetting behavior. In addition, a mass loss likely attributable to silver volatilization is observed in the Pd-modified filler metals when heated over ˜1100°C. As volatilization should be avoided, the ternary alloys should be limited to 15mol% Pd. It was found by sessile drop wetting experiments that there is a definitive change in wetting behavior that corresponds directly to the miscibility gap boundary for the Pd-Ag-CuO system. The first order transition tracks with changes in the miscibility gap boundary that can be induced by increasing palladium content. This is the first experimental evidence of critical point wetting behavior reported for a metal-oxide system and further confirms that critical point wetting theory is universal. Four-point bend testing and

  16. Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy

    SciTech Connect

    Jalilvand, V.; Omidvar, H.; Shakeri, H.R.; Rahimipour, M.R.

    2013-01-15

    IN-738LC nickel-based superalloy was joined by transient liquid phase diffusion bonding using AMS 4777 filler alloy. The bonding process was carried out at 1050 Degree-Sign C under vacuum atmosphere for various hold times. Microstructures of the joints were studied by optical and scanning electron microscopy. Continuous centerline eutectic phases, characterized as nickel-rich boride, chromium-rich boride and nickel-rich silicide were observed at the bonds with incomplete isothermal solidification. In addition to the centerline eutectic products, precipitation of boron-rich particles was observed in the diffusion affected zone. The results showed that, as the bonding time was increased to 75 min, the width of the eutectic zone was completely removed and the joint was isothermally solidified. Homogenization of isothermally solidified joints at 1120 Degree-Sign C for 300 min resulted in the elimination of intermetallic phases formed at the diffusion affected zone and the formation of significant {gamma} Prime precipitates in the joint region. - Highlights: Black-Right-Pointing-Pointer TLP bonding of IN-738LC superalloy was performed using AMS 4777 filler alloy. Black-Right-Pointing-Pointer Insufficient diffusion time resulted in the formation of eutectic product. Black-Right-Pointing-Pointer Precipitation of B-rich particles was observed within the DAZ. Black-Right-Pointing-Pointer The extent of isothermal solidification increased with increasing holding time. Black-Right-Pointing-Pointer Homogenizing of joints resulted in the dissolution of DAZ intermetallics.

  17. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  18. Effect of mechanical milling on Ni-TiH{sub 2} powder alloy filler metal for brazing TiAl intermetallic alloy: The microstructure and joint's properties

    SciTech Connect

    He Peng Liu Duo; Shang Erjing; Wang Ming

    2009-01-15

    A TiH{sub 2}-50 wt.% Ni powder alloy was mechanically milled in an argon gas atmosphere using milling times up to 480 min. A TiAl intermetallic alloy was joined by vacuum furnace brazing using the TiH{sub 2}-50 wt.% Ni powder alloy as the filler metal. The effect of mechanical milling on the microstructure and shear strength of the brazed joints was investigated. The results showed that the grains of TiH{sub 2}-50 wt.% Ni powder alloy were refined and the fusion temperature decreased after milling. A sound brazing seam was obtained when the sample was brazed at 1140 deg. C for 15 min using filler metal powder milled for 120 min. The interfacial zones of the specimens brazed with the milled filler powder were thinner and the shear strength of the joint was increased compared to specimens brazed with non-milled filler powder. A sample brazed at 1180 deg. C for 15 min using TiH{sub 2}-50 wt.% Ni powder alloy milled for 120 min exhibited the highest shear strength at both room and elevated temperatures.

  19. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  20. EFFECT OF CHEMISTRY VARIATIONS IN PLATE AND WELD FILLER METAL ON THE CORROSION PERFORMANCE OF NI-CR-MO ALLOYS

    SciTech Connect

    D.V. Fix

    2006-02-07

    The ASTM standard B 575 provides the requirements for the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo) alloys such as Alloy 22 (N06022) and Alloy 686 (N06686). The compositions of each element are given in a range. For example, the content of Mo is specified from 12.5 to 14.5 weight percent for Alloy 22 and from 15.0 to 17.0 weight percent for Alloy 686. It was important to determine how the corrosion rate of welded plates of Alloy 22 using Alloy 686 weld filler metal would change if heats of these alloys were prepared using several variations in the composition of the elements even though still in the range specified in B 575. All the material used in this report were especially prepared at Allegheny Ludlum Co. Seven heats of plate were welded with seven heats of wire. Immersion corrosion tests were conducted in a boiling solution of sulfuric acid plus ferric sulfate (ASTM G 28 A) using both as-welded (ASW) coupons and solution heat-treated (SHT) coupons. Results show that the corrosion rate was not affected by the chemistry of the materials in the range of the standards.

  1. Heat-induced spinodal decomposition of Ag-Cu nanoparticles.

    PubMed

    Sopoušek, Jiří; Zobač, Ondřej; Buršík, Jiří; Roupcová, Pavla; Vykoukal, Vít; Brož, Pavel; Pinkas, Jiří; Vřešt'ál, Jan

    2015-11-14

    Solvothermal synthesis was used for Ag-Cu nanoparticle (NP) preparation from metallo-organic precursors. The detailed NP characterization was performed to obtain information about nanoparticle microstructure and both phase and chemical compositions. The resulting nanoparticles exhibited chemical composition inside a FCC_Ag + FCC_Cu two-phase region. The microstructure study was performed by various methods of electron microscopy including high-resolution transmission electron microscopy (HRTEM) at an atomic scale. The HRTEM and X-ray diffraction studies showed that the prepared nanoparticles form the face centred cubic (FCC) crystal lattice where the silver atoms are randomly mixed with copper. The CALPHAD approach was used for predicting the phase diagram of the Ag-Cu system in both macro- and nano-scales. The predicted spinodal decomposition of the metastable Ag-Cu nanoparticles was experimentally induced by heating on an X-ray powder diffractometer (HT XRD). The nucleation of the Cu-rich phase was detected and its growth was studied. Changes in the Ag-rich phase were observed in situ by X-ray diffraction under vacuum. The heat treatment was conducted at different maximum temperatures up to 450 °C and the resulting particle product was analysed. The experiments were complemented by differential scanning calorimetry (DSC) measurements up to liquidus temperature. The start temperatures of the spinodal phase transformation and particle aggregation were evaluated. PMID:25929324

  2. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    NASA Technical Reports Server (NTRS)

    Russell, C.

    2001-01-01

    The objective of this research was to assess the B218 weld filler wire for Super Lightweight External Tank production, which could improve current production welding and repair productivity. We took the following approaches: (1) Perform a repair weld quick look evaluation between 4043/B218 and B218/B218 weld filler wire combinations and evaluation tensile properties for planished and unplanished conditions; and (2) Perform repair weld evaluation on structural simulation panel using 4043-B218 and B218/B218 weld filler wire combinations and evaluation tensile and simulated service fracture properties for planished and unplanished conditions.

  3. Some possible filler alloys with low vapor pressures for refractory-metal brazing

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1973-01-01

    A compilation of eutectics and melting-point minima for binary combinations of metals having vapor pressures below 10 to the minus 10th power torr at 1500 degrees K and .00005 torr at 2000 degree K is presented. These compositions and others near them on their phase diagrams are potential special brazing fillers for refractory metals. Some possible problems and advantages for fusion bonds of such mixtures are indicated. Evaluations of brazing fillers containing refractory metals are reported.

  4. Composite weld rod corrects individual filler weaknesses

    NASA Technical Reports Server (NTRS)

    Grimaldo, S.

    1967-01-01

    Composite filler wire welds together an assembly made from components of Rene 41 nickel base alloy. Using equal parts of Rene 41 and Hastelloy W weld wire in the filler reduces the cracking and weaknesses of the individual parent metals.

  5. Effect of Board Thickness on Sn-Ag-Cu Joint Interconnect Mechanical Shock Performance

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Xie, Weidong

    2014-12-01

    The mechanical stability of solder joints with Sn-Ag-Cu alloy joints on various board thicknesses was investigated with a high G level shock environment. A test vehicle with three different board thicknesses was used for board drop shock performance tests. These vehicles have three different strain and shock level condition couples per board, and are used to identify the joint stability and failure modes based on the board responses. The results revealed that joint stability is sensitive to board thickness. The board drop shock test showed that the first failure location shifts from the corner location near the standoff to the center with increased board thickness due to the shock wave response. From analysis of the thickness variation and failure cycle number, the strain rate during the pulse strain cycle is the dominant factor, which defines the life cycle number per board thickness, and not the maximum strain value. The failure location shift and the shock performance differentiation are discussed from the perspective of maximum principal strain, cycle frequency and strain rate per cycle.

  6. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    SciTech Connect

    Ganjeh, E.; Sarkhosh, H.; Bajgholi, M.E.; Khorsand, H.; Ghaffari, M.

    2012-09-15

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni and Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for brazing Ti

  7. Surface modification of oleylamine-capped Ag-Cu nanoparticles to fabricate low-temperature-sinterable Ag-Cu nanoink.

    PubMed

    Kim, Na Rae; Lee, Yung Jong; Lee, Changsoo; Koo, Jahyun; Lee, Hyuck Mo

    2016-08-26

    By treating oleylamine (OA)-capped Ag-Cu nanoparticles with tetramethylammonium hydroxide (TMAH), we obtained metal nanoparticles that are suspended in polar solvents and sinterable at low temperatures. The simple process with ultra sonication enables synthesis of monodispersed and high purity nanoparticles in an organic base, where the resulting nanoparticles are dispersible in polar solvents such as ethanol and isopropyl alcohol. To investigate the surface characteristics, we conducted Fourier-transform infrared and zeta-potential analyses. After thermal sintering at 200 °C, which is approximately 150 °C lower than the thermal decomposition temperature of OA, an electrically conductive thin film was obtained. Electrical resistivity measurements of the TMAH-treated ink demonstrate that surface modified nanoparticles have a low resistivity of 13.7 × 10(-6) Ω cm. These results confirm the prospects of using low-temperature sinterable nanoparticles as the electrode layer for flexible printed electronics without damaging other stacked polymer layers. PMID:27454465

  8. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    SciTech Connect

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H.; Antusek, Andrej; Parlinska-Wojtan, Magdalena; Bissig, Vinzenz

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  9. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    NASA Astrophysics Data System (ADS)

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-04-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. The catalytic layer has maximum power density of 67 mW cm-2 and an acceptable cell voltage at 0.863 V when current densities increased up to 100 mA cm-2 in the Ag50Cu50-based primary zinc-air battery. The resulting rechargeable zinc-air battery exhibits low charge-discharge voltage polarization of 1.1 V at 20 mAcm-2 and high durability over 100 cycles in natural air.

  10. Rapidly solidified Ag-Cu eutectics: A comparative study using drop-tube and melt fluxing techniques

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Mullis, A. M.; Cochrane, R. F.

    2016-03-01

    A comparative study of rapid solidification of Ag-Cu eutectic alloy processed via melt fluxing and drop-tube techniques is presented. A computational model is used to estimate the cooling rate and undercooling of the free fall droplets as this cannot be determined directly. SEM micrographs show that both materials consist of lamellar and anomalous eutectic structures. However, below the critical undercooling the morphologies of each are different in respect of the distribution and volume of anomalous eutectic. The anomalous eutectic in flux- undercooled samples preferentially forms at cell boundaries around the lamellar eutectic in the cell body. In drop-tube processed samples it tends to distribute randomly inside the droplets and at much smaller volume fractions. That the formation of the anomalous eutectic can, at least in part, be suppressed in the drop-tube is strongly suggestive that the formation of anomalous eutectic occurs via remelting process, which is suppressed by rapid cooling during solidification.

  11. Interplay between structural symmetry and magnetism in Ag-Cu

    NASA Astrophysics Data System (ADS)

    Yen, Tsung-Wen; Lai, S. K.

    2016-01-01

    We present first-principles theoretical calculations of the magnetic properties of bimetallic clusters Ag-Cu. The calculations proceeded by combining a previously developed state-of-the-art optimization algorithm (P.J. Hsu, S.K. Lai, J. Chem. Phys. 124 (2006) 0447110) with an empirical potential and applied this numerical scheme to determine first the lowest energy structures of pure clusters Ag38 and Cu38, and also their different atomic compositions AgnCu38-n for n=1,2,…,37. Then, we carried out the Kohn-Sham spin unrestricted density functional theory calculations on the optimized atomic structures obtained in the preceding step. Given the minimized structures from the first step as input configurations, the results of these re-optimized structures by full density functional theory calculations yield more refined electronic and atomic structures. A thorough comparison of the structural differences between these two sets of atomic geometries, one from using an empirical potential in which the electronic degrees of freedom were included approximately and another from subsequent minimization using the spin unrestricted density functional theory, sheds light on how the electronic charges disperse near atoms in clusters AgnCu38-n, and hence the distributions of electronic spin and charge densities at re-optimized sites of the cluster. These data of the electronic dispersion and the ionic configuration give clue to the mystery of the unexpected net magnetic moments which were found in some of the clusters AgnCu38-n at n=1-4, 24 as well as the two pure clusters. Possible origins for this unanticipated magnetism were explained in the context of the point group theory in much the same idea as the Clemenger-Nilsson model applied to simple metal clusters except that we draw particular attention to the atomic topologies and stress the bearing that they have on valence electrons in inducing them to disperse and occupy different molecular orbital energy levels.

  12. Development of filler metals for welding of iron aluminide alloys. Final report

    SciTech Connect

    Goodwin, G.M.; Scott, J.L.

    1995-06-29

    Attempts were made to develop a coating formulation for shielded metal arc (SMA) welding electrodes for iron aluminide alloys. Core wires of various compositions were produced by aspiration casting at ORNL and coating formulation development was conducted by Devasco, Inc. It was found that, except for weld deposit compositions containing less than 10 weight % aluminum, all weld deposits exhibited extensive cold cracking and/or porosity. It was concluded that current coating formulation technology limits successful iron aluminide deposits to less than 10 weight % aluminum.

  13. Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

    SciTech Connect

    Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

    2009-06-08

    The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only control samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and η = 13.0%.

  14. The Apparent Contact Angle and Wetted Area of Active Alloys on Silicon Carbide as a Function of the Temperature and the Surface Roughness: A Multivariate Approach

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Pfeiffer, Jan; Wojarski, Lukas

    2015-08-01

    Despite the broad field of applications for active filler alloys for brazing ceramics, as well as intense research work on the wetting and spreading behavior of these alloys on ceramic surfaces within the last decades, the manufactured joints still exhibit significant variations in their properties due to the high sensitivity of the alloys to changing brazing conditions. This increases the need for investigations of the wetting and spreading behavior of filler alloys with regard to the dominating influences combined with their interdependencies, instead of solely focusing on single parameter investigations. In this regard, measurements of the wetting angle and area were conducted at solidified AgCuTi and CuSnTi alloys on SiC substrates. Based on these measurements, a regression model was generated, illustrating the influence of the brazing temperature, the roughness of the faying surfaces, the furnace atmosphere, and their interdependencies on the wetting and spreading behavior of the filler alloys. It was revealed that the behavior of the melts was significantly influenced by the varied brazing parameters, as well as by their interdependencies. This result was also predicted by the developed model and showed a high accuracy.

  15. Laser Weldability of High-Strength Al-Zn Alloys and Its Improvement by the Use of an Appropriate Filler Material

    NASA Astrophysics Data System (ADS)

    Enz, Josephin; Riekehr, Stefan; Ventzke, Volker; Huber, Norbert; Kashaev, Nikolai

    2016-06-01

    Heat-treatable Al-Zn alloys are promising candidates for use as structural lightweight materials in automotive and aircraft applications. This is mainly due to their high strength-to-density ratio in comparison to conventionally employed Al alloys. Laser beam welding is an efficient method for producing joints with high weld quality and has been established in the industry for many years. However, it is well known that aluminum alloys with a high Zn content or, more precisely, with a high (Zn + Mg + Cu) content are difficult to fusion weld due to the formation of porosity and hot cracks. The present study concerns the laser weldability of these hard-to-weld Al-Zn alloys. In order to improve weldability, it was first necessary to understand the reasons for weldability problems and to identify crucial influencing factors. Based on this knowledge, it was finally possible to develop an appropriate approach. For this purpose, vanadium was selected as additional filler material. Vanadium exhibits favorable thermophysical properties and, thereby, can improve the weldability of Al-Zn alloys. The effectiveness of the approach was verified by its application to several Al-Zn alloys with differing amounts of (Zn + Mg + Cu).

  16. Laser Weldability of High-Strength Al-Zn Alloys and Its Improvement by the Use of an Appropriate Filler Material

    NASA Astrophysics Data System (ADS)

    Enz, Josephin; Riekehr, Stefan; Ventzke, Volker; Huber, Norbert; Kashaev, Nikolai

    2016-04-01

    Heat-treatable Al-Zn alloys are promising candidates for use as structural lightweight materials in automotive and aircraft applications. This is mainly due to their high strength-to-density ratio in comparison to conventionally employed Al alloys. Laser beam welding is an efficient method for producing joints with high weld quality and has been established in the industry for many years. However, it is well known that aluminum alloys with a high Zn content or, more precisely, with a high (Zn + Mg + Cu) content are difficult to fusion weld due to the formation of porosity and hot cracks. The present study concerns the laser weldability of these hard-to-weld Al-Zn alloys. In order to improve weldability, it was first necessary to understand the reasons for weldability problems and to identify crucial influencing factors. Based on this knowledge, it was finally possible to develop an appropriate approach. For this purpose, vanadium was selected as additional filler material. Vanadium exhibits favorable thermophysical properties and, thereby, can improve the weldability of Al-Zn alloys. The effectiveness of the approach was verified by its application to several Al-Zn alloys with differing amounts of (Zn + Mg + Cu).

  17. Wrinkle Fillers

    MedlinePlus

    ... appear weeks, months or years after injection. Allergy testing is required for particular types of filler materials, such as those taken from animals (e.g., cows, rooster combs). The following risks ...

  18. Atomic-scale investigation of interface-facilitated deformation twinning in severely deformed Ag-Cu nanolamellar composites

    SciTech Connect

    An, X. H. E-mail: xiaozhou.liao@sydenye.edu.au; Cao, Y.; Liao, X. Z. E-mail: xiaozhou.liao@sydenye.edu.au; Zhu, S. M.; Nie, J. F.; Kawasaki, M.; Ringer, S. P.; Langdon, T. G.; Zhu, Y. T.

    2015-07-06

    We report an atomic-scale investigation of interface-facilitated deformation twinning behaviour in Ag-Cu nanolamellar composites. Profuse twinning activities in Ag supply partial dislocations to directly transmit across the Ag-Cu lamellar interface that promotes deformation twinning in the neighbouring Cu lamellae although the interface is severely deformed. The trans-interface twin bands change the local structure at the interface. Our analysis suggests that the orientation relationship and interfacial structure between neighbouring Ag-Cu lamellae play a crucial role in such special interface-facilitated twinning behaviour.

  19. The effect of palladium additions on the solidus/liquidus temperatures and wetting properties of Ag-CuO based air brazes

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2007-01-01

    A new ceramic brazing technique referred to as reactive air brazing (RAB) has recently been developed for potential applications in high temperature devices such as gas concentrators, solid oxide fuel cells, gas turbines, and combustion engines. At present, the technique utilizing a silver-copper oxide system is of great interest. The maximum operating temperature of this system is limited by its eutectic temperature of ~945°C, although in practice the operating temperature will need to be lower. An obvious strategy that can be employed to increase the maximum operating temperature of the braze material is to add a higher melting noble alloying element. In this paper, we report the effects of palladium addition on the melting characteristics of the Ag-CuO system and on the wetting properties of the resulting braze with respect to alumina. It was found that the addition of Pd will cause an increase in the melting temperature of the Ag-CuO braze but possibly at a sacrifice of wetting properties depending on composition.

  20. Brazing ZrO{sub 2} ceramic to Ti–6Al–4V alloy using NiCrSiB amorphous filler foil: Interfacial microstructure and joint properties

    SciTech Connect

    Cao, J.; Song, X.G.; Li, C.; Zhao, L.Y.; Feng, J.C.

    2013-07-15

    Reliable brazing of ZrO{sub 2} ceramic and Ti–6Al–4V alloy was achieved using NiCrSiB amorphous filler foil. The interfacial microstructure of ZrO{sub 2}/Ti–6Al–4V joints was characterized by scanning electron microscope, energy dispersive spectrometer and micro-focused X-ray diffractometer. The effects of brazing temperature on the interfacial microstructure and joining properties of brazed joints were investigated in detail. Active Ti of Ti–6Al–4V alloy dissolved into molten filler metal and reacted with ZrO{sub 2} ceramic to form a continuous TiO reaction layer, which played an important role in brazing. Various reaction phases including Ti{sub 2}Ni, Ti{sub 5}Si{sub 3} and β-Ti were formed in brazed joints. With an increasing of brazing temperature, the TiO layer thickened gradually while the Ti{sub 2}Ni amount reduced. Shear test indicated that brazed joints tend to fracture at the interface between ZrO{sub 2} ceramic and brazing seam or Ti{sub 2}Ni intermetallic layer. The maximum average shear strength reached 284.6 MPa when brazed at 1025 °C for 10 min. - Graphical Abstract: Interfacial microstructure of ZrO{sub 2}/TC4 joint brazed using NiCrSiB amorphous filler foil was: ZrO{sub 2}/TiO/Ti{sub 2}Ni + β-Ti + Ti{sub 5}Si{sub 3}/β-Ti/Widmanstätten structure/TC4. - Highlights: • Brazing of ZrO{sub 2} ceramic and Ti-6Al-4V alloy was achieved. • Interfacial microstructure was TiO/Ti{sub 2}Ni + β + Ti{sub 5}Si{sub 3}/β/Widmanstätten structure. • The formation of TiO produced the darkening effect of ZrO{sub 2} ceramic. • The highest joining strength of 284.6MPa was obtained.

  1. Nanostructured YbAgCu4 for potentially cryogenic thermoelectric cooling.

    PubMed

    Koirala, Machhindra; Wang, Hui; Pokharel, Mani; Lan, Yucheng; Guo, Chuanfei; Opeil, Cyril; Ren, Zhifeng

    2014-09-10

    We have studied the thermoelectric properties of nanostructured YbAgCu4 materials. A high power factor of ∼131 μW cm(-1) K(-2) has been obtained at 22 K for nanostructured samples prepared by ball milling the arc melted ingot into nanopowder and hot pressing the nanopowder. The implementation of nanostructuring method decreased the thermal conductivity at 42 K by 30-50% through boundary scattering comparing with the previously reported value of polycrystalline YbAgCu4. A peak dimensionless thermoelectric figure-of-merit, ZT, of 0.11 has been achieved at 42 K, which may find potential applications for cryogenic cooling below 77 K. The nanostructuring approach can be extended to other heavy Fermion materials to achieve high power factor and low thermal conductivity and ultimately higher ZT. PMID:25079115

  2. Preparation of Ag/Cu Janus nanowires: Electrodeposition in track-etched polymer templates

    NASA Astrophysics Data System (ADS)

    Zhu, X. R.; Wang, C. M.; Fu, Q. B.; Jiao, Z.; Wang, W. D.; Qin, G. Y.; Xue, J. M.

    2015-08-01

    Bimetal (Janus) nanowire has been widely used as a promising nanoscale motor. In this paper we present a highly controllable method to fabricate Ag/Cu Janus nanowires using track-etched polymer templates. Ag/Cu Janus nanowires with uniform size and stabilized structure have been successfully fabricated by electrodepositing Ag nanowires, and subsequently Cu nanowires in track-etched polymer templates. The pore size of nanopores prepared by this template is uniform and continuously controlled, so aperture of achieved nanowires are uniform and can be regulated. This polymer template can dissolve inorganic solvents that do not react with the nanowires, making it is easy to release the nanowires into solution. The nanopore shape in the track-etched templates is adjustable (e.g. conical), nanowires with more special shapes could be fabricated. Thus, these features make this simple and inexpensive method very suitable for the preparation of Janus nanowire.

  3. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery.

    PubMed

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-01-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. The catalytic layer has maximum power density of 67 mW cm(-2) and an acceptable cell voltage at 0.863 V when current densities increased up to 100 mA cm(-2) in the Ag50Cu50-based primary zinc-air battery. The resulting rechargeable zinc-air battery exhibits low charge-discharge voltage polarization of 1.1 V at 20 mAcm(-2) and high durability over 100 cycles in natural air. PMID:25977668

  4. Size Control and Characterization of Sn-Ag-Cu Lead-Free Nanosolders by a Chemical Reduction Process

    NASA Astrophysics Data System (ADS)

    Yung, K. C.; Law, C. M. T.; Lee, C. P.; Cheung, B.; Yue, T. M.

    2012-02-01

    Sn-3.0Ag-0.5Cu nanosolders were synthesized via a chemical reduction method. Polyvinyl pyrrolidone (PVP) and sodium borohydride (NaBH4) were employed as surfactant and reducing agent, respectively. Ultraviolet-visible (UV-visible) absorption and x-ray diffraction patterns revealed that alloying had successfully taken place during the reduction process. Different amounts of PVP and NaBH4 additions influenced the nanosolder particle size. Under varying reaction temperatures and pH values, various ranges of nanosolder size were obtained. Optimized nanosolders were studied by differential scanning calorimetry to investigate the depression of the melting temperature, and were analyzed by transmission electron microscopy to measure actual particle sizes. The dependence of the particle size on the melting temperature was observed. The melting point was depressed to 204.4°C when the average diameter of the nanosolders was 20 nm. Although SnO2 was formed on the nanosolders, it could be cleaned by citric acid. These low-melting-temperature Sn-Ag-Cu nanosolders are candidates for use in lead-free interconnect applications.

  5. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    NASA Astrophysics Data System (ADS)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  6. Effect of Synthesis Techniques on Crystallization and Optical Properties of Ag-Cu Bimetallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Ziye; Qin, Fen; Huang, Po-Shun; Nettleship, Ian; Lee, Jung-Kun

    2016-04-01

    Silver (Ag)-copper (Cu) bimetallic nanoparticles (NPs) were synthesized by the reduction of silver nitrate and copper (II) acetate monohydrate using ethylene glycol in a microwave (MW) heating system with controlled reaction times ranging from 5 min to 30 min. The molar ratio Ag/Cu was varied from 1:1 to 1:3. The effect of reaction conditions on the bimetallic NPs structures and compositions were characterized by x-ray photoelectron spectroscopy, x-ray diffraction and transmission electron microscopy. The average particle size was approximately 150 nm. The surface plasmon resonance (SPR) of Ag-Cu bimetallic NPs was investigated by monitoring the SPR band peak behavior via UV/Vis spectrophotometry. The resonance peak positions and peak widths varied due to the different structures of the bimetallic NPs created under the synthesis conditions. In the MW heating method, the reduction of Cu was increased and Cu was inhomogeneously deposited over the Ag cores. As the composition of Cu becoming higher in the Ag-Cu bimetallic NPs, the absorption between 400 nm to 600 nm was greatly enhanced.

  7. Experimental determination of TRIP-parameter K for mild- and high-strength low-alloy steels and a super martensitic filler material.

    PubMed

    Neubert, Sebastian; Pittner, Andreas; Rethmeier, Michael

    2016-01-01

    A combined experimental numerical approach is applied to determine the transformation induced plasticity (TRIP)-parameter K for different strength low-alloy steels of grade S355J2+N and S960QL as well as the super martensitic filler CN13-4-IG containing 13 wt% chromium and 4 wt% nickel. The thermo-physical analyses were conducted using a Gleeble (®) 3500 facility. The thermal histories of the specimens to be tested were extracted from corresponding simulations of a real gas metal arc weldment. In contrast to common TRIP-experiments which are based on complex specimens a simple flat specimen was utilized together with an engineering evaluation method. The evaluation method was validated with literature values for the TRIP-parameter. It could be shown that the proposed approach enables a correct description of the TRIP behavior. PMID:27386237

  8. Structure and some magnetic properties of thin films prepared from Fe{sub 73.5}M{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} (M:Ag,Cu,Pd,Pt) alloys

    SciTech Connect

    Goscianska, I.; Ratajczak, H.; Sovak, P.; Konc, M.; Matta, P.

    1994-03-01

    Thin films of Fe-(M-Nb)-Si-B alloys have been prepared by flash evaporation method. Thermal treatment has been used which should lead to generation of {alpha}-FeSi ultrafine phase. Structural observations showed that the process of film crystallization depends rather on the initial state of the as-deposited films than on the sort of the alloy (M). Either amorphous or crystalline structure was observed in the as-deposited samples which crystallized upon annealing in two different ways. A large amount of the ultrafine phase crystallized in the film which was amorphous when as-deposited and subsequently annealed to optimum conditions. However, a fully homogeneous {alpha}-FeSi ultrafine structure throughout the studied films has never been obtained. Magnetic saturation induction and extraordinary Hall coefficient have been determined by Hall effect measurement.

  9. On the correlation between phonon spectra and surface segregation features in Ag-Cu-Ni ternary nanoalloys

    NASA Astrophysics Data System (ADS)

    Subbaraman, Ram; Sankaranarayanan, Subramanian K. R. S.

    2011-08-01

    Atomic scale characterization of chemical ordering, compositional distribution and microstructure is of tremendous importance for applications such as catalysis which is primarily dominated by processes occurring at surface and is strongly influenced by the subsurface layers. Phonon spectra obtained from molecular dynamics simulations of single metals as well as their bimetallic and ternary alloy nanoclusters can be used to obtain new insights into the atomic scale distribution in the nanoclusters, their microstructure and dynamical properties. Monte-Carlo (MC) simulations are used to obtain the minimum energy configurations of various Ag-Cu-Ni ternary alloys in which the Ag content is systematically varied from 0 to 50%Ag while keeping the relative composition of Cu and Ni constant. Detailed compositional analyses of the final MC configurations are carried out. The generated microstructure comprised of surface segregated structures in which Ag atoms occupy low coordination sites such as corners, edges and faces. As the Ag content in the ternary alloy is increased, the surface sites get increasingly occupied with the lowest coordination sites being populated first. The Cu and Ni compositions in the interior of the cluster show compositional oscillation. The final alloy microstructure is dictated by the competition between the various entropic and energetic factors. Our analysis of the phonon density of states identifies various surface (low frequency) and bulk (high frequency) modes which is determined by their location in the nanocluster and the local environment. Systematic trends in the observed peak intensities and frequency shifts at the low and high frequency ends of the spectrum for the various alloy compositions are explained on the basis of bond-lengths, local coordination, extent of alloying, and neighboring elemental environment. We find that the characteristic microstructural features observed at the atomic scale are strongly correlated to the

  10. Microstructure and Mechanical Properties of Dissimilar Welded Ti3Al/Ni-Based Superalloy Joint Using a Ni-Cu Filler Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Qing; Xiong, Hua-Ping; Guo, Shao-Qing; Sun, Bing-Bing; Chen, Bo; Tang, Si-Yi

    2015-02-01

    Dissimilar welding of a Ti3Al-based alloy and a Ni-based superalloy (Inconel 718) was successfully carried out using gas tungsten arc welding technology in this study. With a Ni-Cu alloy as filler material, sound joints have been obtained. The microstructure evolution along the cross section of the dissimilar joint has been revealed based on the results of scanning electron microscopy and X-ray energy dispersive spectroscopy as well as X-ray diffractometer. It is found that the weld/Ti3Al interface is composed of Ti2AlNb matrix dissolved with Ni and Cu, Al(Cu, Ni)2Ti, (Cu, Ni)2Ti, (Nb, Ti) solid solution, and so on. The weld and In718/weld interface mainly consist of (Cu, Ni) solid solutions. The weld exhibits higher microhardness than the two base materials. The average room-temperature tensile strength of the joints reaches 242 MPa and up to 73.6 pct of the value can be maintained at 873 K (600 °C). The brittle intermetallic phase of Ti2AlNb matrix dissolved with Ni and Cu at the weld/Ti3Al interface is the weak link of the joint.

  11. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal...

  12. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal...

  13. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal...

  14. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal...

  15. 46 CFR 56.75-5 - Filler metal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Filler metal. 56.75-5 Section 56.75-5 Shipping COAST... Brazing § 56.75-5 Filler metal. (a) The filler metal used in brazing must be a nonferrous metal or alloy having a melting point above 1,000 °F. and below that of the metal being joined. The filler metal...

  16. Chemical elements diffusion in the stainless steel components brazed with Cu-Ag alloy

    NASA Astrophysics Data System (ADS)

    Voiculescu, I.; Geanta, V.; Vasile, I. M.; Binchiciu, E. F.; Winestoock, R.

    2016-06-01

    The paper presents the study of diffusion of chemical elements through a brazing joint, between two thin components (0.5mm) made of stainless steel 304. An experimental brazing filler material has been used for brazing stainless steel component and then the diffusion phenomenon has been studied, in terms of chemical element displacement from the brazed separation interface. The filler material is in the form of a metal rod coated with ceramic slurry mixture of minerals, containing precursors and metallic powders, which can contribute to the formation of deposit brazed. In determining the distance of diffusion of chemical elements, on both sides of the fusion line, were performed measurements of the chemical composition using electron microscopy SEM and EDX spectrometry. Metallographic analysis of cross sections was performed with the aim of highlight the microstructural characteristics of brazed joints, for estimate the wetting capacity, adherence of filler metal and highlight any imperfections. Analyzes performed showed the penetration of alloying elements from the solder (Ag, Cu, Zn and Sn) towards the base material (stainless steel), over distances up to 60 microns.

  17. The Effect of TiO2 on the Wetting Behavior of Silver-copper Oxide Braze Filler Metals

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong Y.; Hardy, John S.; Darsell, Jens T.

    2006-03-01

    A series of silver-copper oxide ceramic brazing alloys was compositionally modified by doping with small amounts of titania. Subsequent contact angle measurements indicate that concentrations as low as 0.5 mol% TiO2 can significantly enhance wettability over a wide range of binary Ag-CuOx compositions.

  18. Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Ren, Feng; Shen, Shaohua; Fu, Yanming; Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong

    2015-03-01

    Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu2O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu2O/ZnO photoelectrode comparing to that of the Cu2O film. The high performance of the Ag/Cu2O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

  19. AgCuVO4 : A quasi-one-dimensional S=(1)/(2) chain compound

    NASA Astrophysics Data System (ADS)

    Möller, A.; Schmitt, M.; Schnelle, W.; Förster, T.; Rosner, H.

    2009-09-01

    We present a joint experimental and computational study of the recently synthesized spin 1/2 system silver-copper-orthovanadate AgCuVO4 [A. Möller and J. Jainski, Z. Anorg. Allg. Chem. 634, 1669 (2008)] exhibiting chains of trans corner-sharing [CuO4] plaquettes. The static magnetic susceptibility and specific heat measurements of AgCuVO4 can be described to a good approximation by the Bonner-Fisher spin-chain model with Jintra≈330K . Evidence for a Néel-type of order at ˜2.5K is obtained from the specific heat and corroborated by ESR studies. To independently obtain a microscopically based magnetic model, density functional electronic structure calculations were performed. In good agreement with the experimental data, we find pronounced one-dimensional magnetic exchange along the corner-sharing chains with small interchain couplings. The difference between the experimentally observed and the calculated ordering temperature can be assigned to a sizable interchain frustration derived from the calculations.

  20. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-04-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  1. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  2. Characterization of Binary Ag-Cu Ion Mixtures in Zeolites: Their Reduction Products and Stability to Air Oxidation

    SciTech Connect

    Fiddy, Steven; Petranovskii, Vitalii; Ogden, Steve; Iznaga, Inocente Rodriguez

    2007-02-02

    A series of Ag+-Cu2+ binary mixtures with different Ag/Cu ratios were supported on mordenite with different Si/Al ratios and were subsequently reduced under hydrogen in the temperature range 323K - 473K. Ag and Cu K-edge X-ray Absorption Spectroscopy (XAS) was conducted on these systems in-situ to monitor the reduction species formed and the kinetics of their reduction. In-situ XANES clearly demonstrates that the formation of silver particles is severely impeded by the addition of copper and that the copper is converted from Cu(II) to Cu(I) during reduction and completely reverts back to Cu(II) during cooling. There are no indications at any stage of the formation of bimetallic Ag-Cu clusters. Interestingly, the Ag/Cu ratio appears to have no influence of the reduction kinetics and reduction products formed with only the highest Si/Al ratio (MR = 128) investigated during this study having an influence on the reduction and stability to air oxidation.

  3. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Galea, Antony; Vernieres, Jerome; Benelmekki, Maria; Diaz, Rosa E.; Sowwan, Mukhles

    2016-05-01

    In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a ``glass-float'' (ukidama) structure.In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two

  4. Atomic Mobilities in the Ag-Cu-Sn Face-Centered Cubic Lattice

    NASA Astrophysics Data System (ADS)

    Gierlotka, W.; Chen, Y. H.; Haque, M. A.; Rahman, M. A.

    2012-12-01

    Knowledge of atomic mobilities is necessary to predict the evolution of microstructure. The theoretical description of atomic mobilities is connected to the chemical potentials of the components in a given phase. A new thermodynamic description of the quaternary Ag-Cu-In-Sn system was recently published, and it is clear that a new description of the mobilities is also necessary. Based on the available literature and using Dictra software, optimization of the mobility parameters of silver, copper, and tin in the face-centered cubic phase was carried out. The results were compared with relevant data from literature as well as with our own experimental results. Good agreement between calculations and experiment was obtained.

  5. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles.

    PubMed

    Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Galea, Antony; Vernieres, Jerome; Benelmekki, Maria; Diaz, Rosa E; Sowwan, Mukhles

    2016-05-14

    In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a "glass-float" (ukidama) structure. PMID:27119383

  6. Interfacial Analysis of (La0.6Sr0.4)(Co0.2Fe0.8)O3-δ Substrates Wetted by Ag-CuO

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong Y.; Hardy, John S.

    2005-05-01

    Recently a new method of brazing has been developed to hermetically seal high-temperature, solid-state electrochemical devices, such as as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors. Based on a two-phase liquid composed of silver and copper oxide, brazing is conducted directly in air without the need of an inert cover gas or the use of surface reactive fluxes. A key issue in the development of this joining technique is understanding the effect of braze composition on wetting behavior. In the present paper we consider the wetting behaviors of two candidate braze filler materials, Ag-CuO and Ag-CuO-TiO2, on a protoypical mixed ionic/electronic conducting oxide substrate, lanthanum strontium cobalt ferrite [(La0.6Sr0.4)(Co0.2Fe0.8)O3-δ]. It was found that additions of CuO to silver exhibit a tremendous effect on both the wettability and joint strength characteristics of the subsequent braze relative to polycrystalline alumina substrates. The effect is particularly significant at low CuO content, with substantial improvements in wetting observed in the 1 – 8 mol% range. The corresponding strength of the brazed polycrystalline alumina joints appears to be maximized at a copper oxide content of 8 mol%, with a maximum room temperature flexural strength approaching that of monolithic alumina. While further increases in oxide content lead to improved wetting on polycrystalline alumina, the effect on joint strength is deleterious. It appears that the formation of a continuous brittle copper-based oxide layer along the interface between the braze and alumina faying surface is responsible for the poor mechanical behavior observed in joints fabricated with higher CuO content brazes.

  7. Synthesis and characterization of Ag@Cu nano/microstructure ordered arrays as SERS-active substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Pinhua; Cui, Guangliang; Xiao, Chuanhai; Zhang, Mingzhe; Chen, Li; Shi, Changmin

    2016-06-01

    We fabricated an Ag decorated Cu (Ag@Cu) nano/microstructure ordered array by facile template-free 2D electrodeposition combined with a galvanic reduction method for SERS applications. The Cu nano/microstructure ordered arrays were first synthesized by a 2D electrodeposition method, then Ag nanocubes were decorated on the arrays by galvanic reduction without any capping agent. The pollution-free surface and edge-to-face heterostructure of Ag nanocubes and Cu nano/microstructure arrays provide the powerful field-enhancements for SERS performance. The results verified that the Ag@Cu nano/microstructure ordered arrays have excellent activity for 4-Mercaptopyridine, and the sensitivity limit is as low as 10‑8 M. Therefore, this facile route provides a useful platform for the fabrication of a SERS substrate based on nano/microstructure ordered arrays.

  8. Mechanical Properties and Electrochemical Corrosion Behavior of Al/Sn-9Zn- xAg/Cu Joints

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Huang, Y. Z.; Ma, H. T.; Zhao, J.

    2011-03-01

    The effect of Ag content on the wetting behavior of Sn-9Zn- xAg on aluminum and copper substrates during soldering, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn- xAg/Cu solder joints, were investigated in the present work. Tiny Zn and coarsened dendritic AgZn3 regions were distributed in the Sn matrix in the bulk Sn-9Zn- xAg solders, and the amount of Zn decreased while that of AgZn3 increased with increasing Ag content. The wettability of Sn-9Zn-1.5Ag solder on Cu substrate was better than those of the other Sn-9Zn- xAg solders but worse than that of Sn-9Zn solder. The wettability of Sn-9Zn-1.5Ag on the Al substrate was also better than those of the other Sn-9Zn- xAg solders, and even better than that of Sn-9Zn solder. The Al/Sn-9Zn/Cu joint had the highest shear strength, and the shear strength of the Al/Sn-9Zn- xAg/Cu ( x = 0 wt.% to 3 wt.%) joints gradually decreased with increasing Ag content. The corrosion resistance of the Sn-9Zn- xAg solders in Al/Sn-9Zn- xAg/Cu joints in 5% NaCl solution was improved compared with that of Sn-9Zn. The corrosion potential of Sn-9Zn- xAg solders continuously increased with increasing Ag content from 0 wt.% to 2 wt.% but then decreased for Sn-9Zn-3Ag. The addition of Ag resulted in the formation of the AgZn3 phase and in a reduction of the amount of the eutectic Zn phase in the solder matrix; therefore, the corrosion resistance of the Al/Sn-9Zn- xAg/Cu joints was improved.

  9. One-Step Solvothermal Method to Prepare Ag/Cu2O Composite With Enhanced Photocatalytic Properties.

    PubMed

    Deng, Xiaolong; Wang, Chenggang; Zhou, E; Huang, Jinzhao; Shao, Minghui; Wei, Xianqi; Liu, Xiaojing; Ding, Meng; Xu, Xijin

    2016-12-01

    Ag/Cu2O microstructures with diverse morphologies have been successfully synthesized with different initial reagents of silver nitrate (AgNO3) by a facile one-step solvothermal method. Their structural and morphological characteristics were carefully investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the experimental results showed that the morphologies transformed from microcubes for pure Cu2O to microspheres with rough surfaces for Ag/Cu2O. The photocatalytic activities were evaluated by measuring the degradation of methyl orange (MO) aqueous solution under visible light irradiation. The photocatalytic efficiencies of MO firstly increased to a maximum and then decreased with the increased amount of AgNO3. The experimental results revealed that the photocatalytic activities were significantly influenced by the amount of AgNO3 during the preparation process. The possible reasons for the enhanced photocatalytic activities of the as-prepared Ag/Cu2O composites were discussed. PMID:26781287

  10. Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2011-09-01

    Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.

  11. Influence of High- G Mechanical Shock and Thermal Cycling on Localized Recrystallization in Sn-Ag-Cu Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Kim, Choong-Un; Bieler, Thomas R.

    2014-01-01

    The impact of isothermal aging and recrystallized grain structure distribution on mechanical shock and thermal cycling performance of solder joints with 1% and 3% silver content Sn-Ag-Cu interconnects were investigated. Localized recrystallized grain structure distributions were analyzed to identify correlations between the microstructure evolution and shock performance. The results reveal that the shock tolerance depends on the amount of shock energy that can be absorbed during each shock cycle, which depends on microstructural features. Based on the recrystallized grain distribution, additional isothermal aging in 1% silver Sn-Ag-Cu interconnects shows improved shock performance, whereas degraded shock performance was observed in 3% Sn-Ag-Cu interconnects. Using the same grain boundary distribution analysis on thermally cycled samples, relationships between the particle size distribution, localized recrystallized grain structure development, shock, and thermomechanical performance were identified: finer particle spacing is beneficial for thermal cycling as it resists grain boundary generation, while conversely, wider particle spacing facilitates recrystallization and grain boundary mobility that allows Sn to absorb shock energy.

  12. One-Step Solvothermal Method to Prepare Ag/Cu2O Composite With Enhanced Photocatalytic Properties

    NASA Astrophysics Data System (ADS)

    Deng, Xiaolong; Wang, Chenggang; Zhou, E.; Huang, Jinzhao; Shao, Minghui; Wei, Xianqi; Liu, Xiaojing; Ding, Meng; Xu, Xijin

    2016-01-01

    Ag/Cu2O microstructures with diverse morphologies have been successfully synthesized with different initial reagents of silver nitrate (AgNO3) by a facile one-step solvothermal method. Their structural and morphological characteristics were carefully investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the experimental results showed that the morphologies transformed from microcubes for pure Cu2O to microspheres with rough surfaces for Ag/Cu2O. The photocatalytic activities were evaluated by measuring the degradation of methyl orange (MO) aqueous solution under visible light irradiation. The photocatalytic efficiencies of MO firstly increased to a maximum and then decreased with the increased amount of AgNO3. The experimental results revealed that the photocatalytic activities were significantly influenced by the amount of AgNO3 during the preparation process. The possible reasons for the enhanced photocatalytic activities of the as-prepared Ag/Cu2O composites were discussed.

  13. Electronic structure and conductivity of nanocomposite metal (Au,Ag,Cu,Mo)-containing amorphous carbon films

    SciTech Connect

    Endrino, Jose L.; Horwat, David; Gago, Raul; Andersson, Joakim; Liu, Y.S.; Guo, Jinghua; Anders, Andre

    2008-05-14

    In this work, we study the influence of the incorporation of different metals (Me = Au, Ag, Cu, Mo) on the electronic structure of amorphous carbon (a-C:Me) films. The films were produced at room temperature using a novel pulsed dual-cathode arc deposition technique. Compositional analysis was performed with secondary neutral mass spectroscopy whereas X-ray diffraction was used to identify the formation of metal nanoclusters in the carbon matrix. The metal content incorporated in the nanocomposite films induces a drastic increase in the conductivity, in parallel with a decrease in the band gap corrected from Urbach energy. The electronic structure as a function of the Me content has been monitored by x-ray absorption near edge structure (XANES) at the C K-edge. XANES showed that the C host matrix has a dominant graphitic character and that it is not affected significantly by the incorporation of metal impurities, except for the case of Mo, where the modifications in the lineshape spectra indicated the formation of a carbide phase. Subtle modifications of the spectral lineshape are discussed in terms of nanocomposite formation.

  14. Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints

    SciTech Connect

    Jung, Yong; Yu, Jin

    2014-02-28

    Effects of electric current flow on the Kirkendall void formation at solder joints were investigated using Sn-3.5Ag/Cu joints specially designed to have localized nucleation of Kirkendall voids at the Cu{sub 3}Sn/Cu interface. Under the current density of 1 × 10{sup 4} A/cm{sup 2}, kinetics of Kirkendall void growth and intermetallic compound thickening were affected by the electromigration (EM), and both showed the polarity effect. Cu{sub 6}Sn{sub 5} showed a strong susceptibility to the polarity effect, while Cu{sub 3}Sn did not. The electromigration force induced additional tensile (or compressive) stress at the cathode (or anode), which accelerated (or decelerated) the void growth. From the measurements of the fraction of void at the Cu{sub 3}Sn/Cu interface on SEM micrographs and analysis of the kinetics of void growth, the magnitude of the local stress induced by EM was estimated to be 9 MPa at the anode and −7 MPa at the cathode.

  15. Graphene-like Networks in the lattice of Ag, Cu and Al metals

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Ge, Xiaoxiao; Isaacs, Romaine; Jaim, Hm Iftekar; Wuttig, Manfred; Rashkeev, Sergey; Kuklja, Maija; Hu, Lianbing; Covetics Team Team

    Graphene-like networks form in the lattice of metals such as silver, copper and aluminum via an electrocharging assisted process. In this process a high current of >80A is applied to the liquid metal containing particles of activated carbon. The resulting material is called M covetic (M =Al, Ag Cu). We have previously reported that this process gives rise to carbon nanostructures with sp2 bonding embedded in the lattice of the metal. The carbon bonds to the metal as evidenced by Raman scattering and first principles simulation of the phonon density of states. With this process we have observed that graphene nanoribbons form along preferential crystalline directions and form 3D epitaxial structures with Al and Ag hosts. Bulk Cu covetic was used to deposit films by e-beam deposition and PLD. The PLD films contain higher C content and show higher transmittance (~90%) and resistance to oxidation than pure copper films of the same thickness. We compare the electrical and mechanical properties of covetics containing C in the 0 to 10 wt % and the transmittance of Cu covetic films compared to pure Cu films of the same thickness. Supported by ONR Grant N000141410042

  16. Dermal fillers: an update.

    PubMed

    Ballin, Annelyse Cristine; Brandt, Fredric S; Cazzaniga, Alex

    2015-08-01

    Injection of dermal fillers is the second most frequent nonsurgical cosmetic procedure performed in the USA. Dermal fillers are an option in the treatment of volume deficiency, scars, and rhytides; facial sculpting; facial contouring; and augmentation of specific anatomical sites such as the lips. The number of injectable dermal fillers available on the market increases yearly. Dermatologists and cosmetic surgeons should regularly review treatment options to provide patients with safe and effective filler options. This paper extensively reviews the properties of the available fillers, such as their rheology, longevity, and adverse effects, and how these properties affect the choice of filler agent for a particular patient or a particular site. Also, trends in dermal filler injections are discussed. PMID:26081021

  17. An approximate formula for recalescence in binary eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1993-01-01

    In alloys, solidification takes place along various paths which may be ascertained via phase diagrams; while there would be no single formula applicable to all alloys, an approximate formula for a specific solidification path would be useful in estimating the fraction of the solid formed during recalescence. A formulation is here presented of recalescence in binary eutectic alloys. This formula is applied to Ag-Cu alloys which are of interest in containerless solidification, due to their formation of supersaturated solutions.

  18. Quantitative analysis of tin alloy combined with artificial neural network prediction

    SciTech Connect

    Oh, Seong Y.; Yueh, Fang-Yu; Singh, Jagdish P.

    2010-05-01

    Laser-induced breakdown spectroscopy was applied to quantitative analysis of three impurities in Sn alloy. The impurities analysis was based on the internal standard method using the Sn I 333.062-nm line as the reference line to achieve the best reproducible results. Minor-element concentrations (Ag, Cu, Pb) in the alloy were comparatively evaluated by artificial neural networks (ANNs) and calibration curves. ANN was found to effectively predict elemental concentrations with a trend of nonlinear growth due to self-absorption. The limits of detection for Ag, Cu, and Pb in Sn alloy were determined to be 29, 197, and 213 ppm, respectively.

  19. Initial Investigation of Cryogenic Wind Tunnel Model Filler Materials

    NASA Technical Reports Server (NTRS)

    Firth, G. C.

    1985-01-01

    Filler materials are used for surface flaws, instrumentation grooves, and fastener holes in wind tunnel models. More stringent surface quality requirements and the more demanding test environment encountered by cryogenic wind tunnels eliminate filler materials such as polyester resins, plaster, and waxes used on conventional wind tunnel models. To provide a material data base for cryogenic models, various filler materials are investigated. Surface quality requirements and test temperature extremes require matching of coefficients of thermal expansion or interfacing materials. Microstrain versus temperature curves are generated for several candidate filler materials for comparison with cryogenically acceptable materials. Matches have been achieved for aluminum alloys and austenitic steels. Simulated model surfaces are filled with candidate filler materials to determine finishing characteristics, adhesion and stability when subjected to cryogenic cycling. Filler material systems are identified which meet requirements for usage with aluminum model components.

  20. High-temperature behaviour of average structure and vibrational density of states in the ternary superionic compound AgCuSe

    NASA Astrophysics Data System (ADS)

    Trots, D. M.; Skomorokhov, A. N.; Knapp, M.; Fuess, H.

    2006-06-01

    Results of simultaneous thermal analysis (STA), synchrotron powder diffraction (in the range 300-973 K) and inelastic neutron scattering (at 285 and 505 K) on non-superionic β- and superionic α-AgCuSe are reported. The sample is stable in argon on heating. The volume change at the superionic phase transition is about 5%. A model for the average structure of α-AgCuSe is proposed. No anomalies in the temperature dependence of the parameters of the average structure were revealed. Ionic conductivity in α-AgCuSe can originate from cation jumps in “skewed” <100 > directions between nearest-neighbour tetrahedral sites via the peripheries of the octahedral cavities. A correlation between the temperature dependence of the cation redistribution in α-AgCuSe and the temperature dependence of the ionic conductivity is supposed. Various contributions (anharmonic effects, time-average static disorder and phonon-phonon scattering) to the widths of individual phonons upon temperature increase lead to pronounced changes in the neutron-weighted densities of states of β- and α-AgCuSe and accompany the superionic phase transition as well.

  1. Polyurethane Filler for Electroplating

    NASA Technical Reports Server (NTRS)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  2. Efficient enhancement of hydrogen production by Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrochemical cell

    SciTech Connect

    Liu, Ying; Ren, Feng Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong; Shen, Shaohua; Fu, Yanming

    2015-03-23

    Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu{sub 2}O/ZnO photoelectrode comparing to that of the Cu{sub 2}O film. The high performance of the Ag/Cu{sub 2}O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

  3. Investigation on NOx adsorption in [M‧]-MAPO-5 (M = Si, Ti; M‧ = Ag, Cu) by density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Liu, Jiexiang; Zhang, Xiaoguang

    2013-01-01

    NO, N2O and NO2 adsorption in [M‧]-MAPO-5 (M = Si, Ti; M‧ = Ag, Cu) models of the modified aluminophosphate molecular sieves was investigated by density functional theory (DFT) method. The equilibrium structural parameters and adsorption energies were obtained and compared. The structural parameters of NO and NO2 in the adsorbed state had a distinct change than that of N2O compared to their free gas state. [M‧]-MAPO-5 was more effective for the activation of NOx molecule compared to [M‧]-AlMOR (M‧ = Ag, Cu) models of the modified mordenite in our previous studies. The adsorption energies data indicated that adsorption strength of NOx followed the decreasing order of NO2 > NO > N2O. And adsorption complexes in η1-N mode were much stabler than that in η1-O mode, which was similar to that in [M‧]-AlMOR. [Cu]-MAPO-5 had a much stronger adsorption for NOx than [Ag]-MAPO-5. And [M‧]-SiMOR had a little stronger adsorption for NOx than [M‧]-TiMOR. Furthermore, the resistance capabilities of [M‧]-MAPO-5 to SO2, H2O and O2 were studied and analyzed. The interaction mechanism of NOx adsorption in [M‧]-MAPO-5 was also discussed by natural bond orbital (NBO) analysis, which was in reasonable agreement with the adsorption interaction strengths.

  4. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag(+), Cu(2+) and Fe(3+) from industrial effluents.

    PubMed

    Liu, Peng; Borrell, Pere Ferrer; Božič, Mojca; Kokol, Vanja; Oksman, Kristiina; Mathew, Aji P

    2015-08-30

    The potential of nanoscaled cellulose and enzymatically phosphorylated derivatives as bio-adsorbents to remove metal ions (Ag(+), Cu(2+) and Fe(3+)) from model water and industrial effluents is demonstrated. Introduction of phosphate groups onto nanocelluloses significantly improved the metal sorption velocity and sorption capacity. The removal efficiency was considered to be driven by the high surface area of these nanomaterials as well as the nature and density of functional groups on the nanocellulose surface. Generally, in the solutions containing only single types of metal ions, the metal ion selectivity was in the order Ag(+)>Cu(2+)>Fe(3+), while in the case of mixtures of ions, the order changed to Ag(+)>Fe(3+)>Cu(2+), irrespective of the surface functionality of the nanocellulose. In the case of industrial effluent from the mirror making industry, 99% removal of Cu(2+) and Fe(3+) by phosphorylated nanocellulose was observed. The study showed that phosphorylated nanocelluloses are highly efficient biomaterials for scavenging multiple metal ions, simultaneously, from industrial effluents. PMID:25867590

  5. Development of a new Pb-free solder: Sn-Ag-Cu

    SciTech Connect

    Miller, C.M.

    1995-02-10

    With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217{degrees}C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

  6. Optoelectronic characterization of wide-bandgap (AgCu)(InGa)Se 2 thin-film polycrystalline solar cells including the role of the intrinsic zinc oxide layer

    NASA Astrophysics Data System (ADS)

    Obahiagbon, Uwadiae

    Experiments and simulations were conducted to vary the thickness and the sheet resistance of the high resistance (HR) ZnO layer in polycrystalline thin film (AgCu)(GaIn)Se2 (ACIGS) solar cells. The effect of varying these parameters on the electric field distribution, depletion width and hence capacitance were studied by SCAPS simulation. Devices were then fabricated and characterized by a number of optoelectronic techniques. Thin film CIGS has received a lot of attention, for its use as an absorber layer for thin film solar cells. However, the addition of Silver (Ag) to the CIGS alloy system increases the band gap as indicated from optical transmission measurements and thus higher open circuit voltage (Voc) could be obtained. Furthermore, addition of Ag lowers the melting temperature of the alloy and it is expected that this lowers the defect densities in the absorber and thus leads to higher performance. Transient photocapacitance analysis on ACIGS devices shows sharper band edge indicating lower disorder than CIGS. Presently there is a lack of fundamental knowledge relating film characteristics to device properties and performance. This is due to the fact that some features in the present solar cell structure have been optimized empirically. The goal of this research effort was to develop a fundamental and detailed understanding of the device operation as well as the loss mechanism(s) limiting these devices. Recombination mechanisms in finished ACIGS solar cell devices was studied using advanced admittance techniques (AS, DLCP, CV) to identify electronically active defect state(s) and to study their impact on electronic properties and device performance. Analysis of various optoelectronic measurements of ACIGS solar cells provided useful feedback regarding the impact on device performance of the HR ZnO layer. It was found that thickness between 10-100 nm had negligible impact on performance but reducing the thickness to 0 nm resulted in huge variability in all

  7. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol.

    PubMed

    Zhang, Xuhong; Wang, Longlu; Liu, Chengbin; Ding, Yangbin; Zhang, Shuqu; Zeng, Yunxiong; Liu, Yutang; Luo, Shenglian

    2016-08-01

    The optimized geometrical configuration of muitiple active materials into hierarchical nanoarchitecture is essential for the creation of photocatalytic degradation system that can mimic natural photosynthesis. A bamboo-like architecture, CuO nanosheets and Ag nanoparticles co-decorated TiO2 nanotube arrays (Ag/CuO/TiO2), was fabricated by using simple solution-immersion and electrodeposition process. Under simulated solar light irradiation, the 2,4-dinitrophenol (2,4-DNP) photocatalytic degradation rate over Ag/CuO/TiO2 was about 2.0, 1.5 and 1.2 times that over TiO2 nanotubes, CuO/TiO2 and Ag/TiO2, respectively. The enhanced photocatalytic activity of ternary Ag/CuO/TiO2 photocatalyst was ascribed to improved light absorption, reduced carrier recombination and more exposed active sites. Moreover, the excellent stability and reliability of the Ag/CuO/TiO2 photocatalyst demonstrated a promising application for organic pollutant removal from water. PMID:27107324

  8. TiO2-modified Ag-CuO Reactive Air Brazes for Improved Wettability on Mixed Ionic/Electronic Conductors

    SciTech Connect

    Hardy, John S.; Weil, K. Scott; Kim, Jin Yong Y.; Thomsen, Ed C.; Darsell, Jens T.

    2005-03-01

    Mixed ionic/electronic conducting perovskite oxides such as lanthanum strontium cobalt ferrite (LSCF) are strong candidates for potential use in a number of electrochemical devices, including gas separation membranes and solid oxide fuel cells (SOFC). Underlying the excitement over the these novel ceramics is the engineering challenge of effectively incorporating them into practical devices. Taking full advantage of the unique properties of advanced ceramics such as mixed conducting oxides depends in large part on being able to develop reliable joining techniques. Earlier studies have indicated that Ag-CuO reactive air braze (RAB) compositions are effective in joining to LSCF. Meanwhile, it has been found that small additions of as little as 0.5 mol% titanium oxide to Ag-CuO RAB compositions cause a dramatic increase in the wettability of RAB on many oxide ceramic surfaces. Therefore the wettabilty of Ag-CuO-TiO2 brazes on LSCF substrates will be examined and the flexural strength, microstructure, and conductivity of joints in LSCF made using Ag-CuO-TiO2 brazes will be discussed. Long-term aging effects on conductivity and microstructure will also be presented.

  9. Mirroring the dynamic magnetic behavior of magnetostrictive Co/(Ag,Cu,Ta) multilayers grown onto rigid and flexible substrates

    NASA Astrophysics Data System (ADS)

    Agra, K.; Gomes, R. R.; Della Pace, R. D.; Dorneles, L. S.; Bohn, F.; Corrêa, M. A.

    2015-11-01

    We investigate the magnetoimpedance effect in a wide frequency range in magnetostrictive Co/(Ag,Cu,Ta) multilayers grown onto rigid and flexible substrates. We observe a direct correlation between structural and quasi-static magnetic properties and the magnetoimpedance effect, since they are directly dependent on the nature of the spacer material. Moreover, we verify that all these properties are insensitive to the kind of employed substrate. We compare the magnetoimpedance results measured for multilayers in rigid and flexible substrates and discuss them in terms of different mechanisms that govern the impedances changes, magnetic anisotropy, structural character, and of numerical calculation results found in the literature. The fact that magnetostrictive multilayers can be reproduced in distinct kinds of substrates corresponds to an important advance for their applicability. The results place multilayers grown onto flexible substrates as attractive candidates for application as probe element in the development of MI-based sensor devices.

  10. DEVELOPMENT OF A HIGH-TEMPERATURE CERAMIC BRAZE: ANALYSIS OF PHASE EQUILIBRIA IN THE Pd-Ag-CuOx SYSTEM

    SciTech Connect

    Weil, K. Scott; Darsell, Jens T.

    2006-01-18

    This paper describes the effects of small palladium additions on the phase equilibria in the Ag-CuOx system. Below a concentration of 5 mol%, palladium was found to increase the temperature of the eutectic reaction present in the pseudobinary system, but have little effect on a higher temperature monotectic reaction. However once enough palladium was added to increase the pseudoternary solidus temperature to that of the lower boundary for this three-phase field (~970°C), the lower boundary begins to increase in temperature as well. The addition of palladium also causes the original eutectic point to move to lower silver concentrations, which also causes a convergence of the two new three-phase fields, CuOx + L1 + L2 and CuOx + α + L1. This suggests that with higher palladium concentrations, a peritectic reaction, α + L1 + L2 → CuOx, may eventually be observed in the system.

  11. Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise Associated with Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)

    2016-01-01

    A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.

  12. Collagen and injectable fillers.

    PubMed

    Cheng, Jacqueline T; Perkins, Stephen W; Hamilton, Mark M

    2002-02-01

    Soft tissue augmentation of facial rhytids, scars, and deformities is a frequently performed office procedure. This article reviews the available biologic (collagen, Dermalogen, Autologen, Isolagen, autologous fat, Fibrel, hyaluronic acid derivatives, particulate fascia lata, micronized Alloderm) and alloplastic (silicone, Bioplastique, and Artecoll) soft tissue injectable fillers. PMID:11781208

  13. Toward a mechanistic understanding of the damage evolution of SnAgCu solder joints in accelerated thermal cycling test

    NASA Astrophysics Data System (ADS)

    Mahin Shirazi, Sam

    Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates

  14. Alleviating coking in ethanol steam reforming by co-loading binary oxides Ni-M (M=Ag, Cu, Mn) on peony-like ceria

    NASA Astrophysics Data System (ADS)

    Xian, C. N.; Li, J. G.; Li, H.; Chen, L. Q.; Sun, J.; Lee, J. S.

    2011-06-01

    Previously, hydrothermally prepared mesoporous peony-like ceria (PCO) material was shown to exhibit superior catalytic properties for CO oxidation and ethanol reforming. Ni supported PCO had been shown to have high activity for ethanol steam reforming at low temperature. In this work, Ag, Cu and Mn is co-loaded with Ni on PCO catalysts by impregnation method. The catalysts were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and a combined thermogravimetry, differential scanning calorimetry, and mass spectrometry (TG-DSC-MS). It was found that all the catalysts gave 100% ethanol conversion above ca. 300°C and exhibited similar H2 yield. It is found that the severe coking problem for the Ni-loaded PCO catalyst was alleviated significantly if Ag, Cu or Mn is co-loaded. Among them, the addition of Mn is the most effective in reducing carbon formation.

  15. Activity of calcined Ag,Cu,Au/TiO2 catalysts in the dehydrogenation/dehydration of ethanol

    NASA Astrophysics Data System (ADS)

    Mai, Do Tkhyui; Pylinina, A. I.; Mikhailenko, I. I.

    2015-07-01

    The catalytic activity of the anatase TiO2 and M z+/TiO2 with supported ions M z+ = Ag+, Cu2+, Au3+ in vapor phase conversions of ethanol is investigated at temperatures of 100-400°C. It is shown that the yields of acetaldehyde and ethylene decline for the most active catalyst Cu2+/TiO2 but increase for TiO2 and Ag/TiO2. The drop in the activation energy of the dehydrogenation reaction over calcined samples is linearly correlated with the one in the reduction potential of M z+ to Cu+, Au+, Ag0 and the ionic radius of M z+ in the crystal. The energies of activation for ethylene formation change in the series TiO2 > Au3+ > Cu2+ >Ag+ and TiO2 ≈ Cu2+ ≈ Ag+ > Au3+ for the calcined samples. The rate of pyridine adsorption, considered as an indicator of the activity of acid sites, is a linear function of ion charge + z = 1, 2, 3, and slows by two-thirds after calcination.

  16. In vitro chemical and biological effects of Ag, Cu and Cu + Zn adjunction in 46S6 bioactive glasses

    NASA Astrophysics Data System (ADS)

    Bunetel, L.; Wers, E.; Novella, A.; Bodin, A.; Pellen-Mussi, P.; Oudadesse, H.

    2015-09-01

    Three bioactive glasses belonging to the system SiO2-CaO- Na2O-P2O5 elaborated by conventional melt-quenching techniques were doped with silver, copper and copper + zinc. They were characterized using the usual physical methods. Human osteoblast cells Saos-2 and human endothelial cells EAhy926 were used for viability assays and to assess the metallic ions, self toxicity. Human monocyte cells THP-1 were used to measure interleukins IL1β and IL6 release. Glass chemical structures did not vary much on introduction of metal ions. A layer of hydroxyapatite was observed on every glass after 30 days of SBF immersion. A proliferative action was seen on Saos-2 after 24 h of incubation, EAhy926 growth was not affected. For both cell lines, a moderate cytotoxicity was found after 72 h. Dose-dependent toxic effects of Ag, Cu and Zn ions were observed on Saos-2 and EAhy926 cells. Measured CD50 of silver against these two cell lines were 8 to 20 fold lower than copper and zinc’s. Except undoped control glass, all doped glasses tested showed anti-inflammatory properties by preventing IL1β and IL6 excretion by differentiated THP-1. In conclusion, strictly monitored adjunction of metal ions to bioglasses ensures good anti-inflammatory properties without altering their biocompatibility.

  17. High Temperature Long-Term Stability of an (Al-Ag-Cu) Three-in-One Multicell

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Gyoo; Yang, Inseok; Joung, Wukchul

    2016-01-01

    In order to investigate the long-term stability of an (Al-Ag-Cu) three-in-one multicell, it was heat-treated at 1100° C, in which all metal samples were in molten state, for 1000 h. Its thermal behavior was tested using a Pt/Pd thermocouple by inducing freezes during the heat treatment. The amount by which the plateau temperature dropped after the 1000 h heat treatment were 1.62° C, 2.07° C, and 0.66° C for Al, Ag, and Cu, respectively. These degradations were suspected to be caused by self-contaminations, and to prove this, impurity concentrations in each sample of the multicell were examined. The amount of temperature dropped after the 1000 h heat treatment showed similar values to the prediction based on the impurity-induced temperature changes, and it was concluded that each cell was self-contaminated by the metallic elements from the other cells. Ag and Cu were found to be main species causing the observed degradations.

  18. What's new in fillers?

    PubMed

    Brown, Lance H; Frank, Paul J

    2003-06-01

    This article is an in-depth review of various materials and products that have been used for the augmentation of soft tissue in the past, and covers several new products, methods, and techniques that may provide new options for dermatologists who use fillers in their practice. Pros and cons of each are discussed, along with mechanisms of action, dosages, approved and off-label uses, as well as a look ahead at some prospective technology. PMID:12848108

  19. Facial Filler Complications.

    PubMed

    Woodward, Julie; Khan, Tanya; Martin, John

    2015-11-01

    The use of facial fillers has greatly expanded over the past several years. Along with increased use comes a rise in documented complications, ranging from poor cosmetic result to nodules, granulomas, necrosis, and blindness. Awareness of the potential types of complications and options for management, in addition to the underlying facial anatomy, are imperative to delivering the best patient care. This article defines the complications and how to treat them and provides suggestions to avoid serious adverse outcomes. PMID:26505541

  20. More About Brazing Or Welding NiAl Without Filler

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Kalinowski, Joseph M.

    1996-01-01

    Two reports present additional information about two processes for joining, brazing, or welding workpieces made of nickel aluminide alloys, without use of filler metal. Joining processes involve uniform heating in vacuum-controlled furnace. Eliminates internal thermal gradients in workpieces joined and greatly reduces tendency toward cracking.

  1. Semipermanent and permanent injectable fillers.

    PubMed

    Jones, Derek H

    2009-10-01

    Today, an impressive array of injectable dermal fillers for facial soft-tissue augmentation is available in the United States. These agents, most of which were introduced in the last half decade, represent a variety of semipermanent and permanent fillers across several categories. Physicians can choose between semipermanent fillers, such as hyaluronic acid derivatives (HA), calcium hydroxylapatite (CaHA), and poly-L-lactic acid (PLA), and longer-lasting, so-called "permanent fillers," such as polymethyl methacrylate microspheres (PMMA), highly purified forms of liquid silicone, and hydrogel polymers. PMID:19850193

  2. Synthetic Fillers for Facial Rejuvenation.

    PubMed

    Lee, Johnson C; Lorenc, Z Paul

    2016-07-01

    Soft tissue filler procedures have increased dramatically in popularity in the United States. Synthetic fillers such as calcium hydroxyapatite (CaHA), polymethyl methacrylate (PMMA), and poly-l-lactic acid (PLLA), and silicone provide initial volume replacement but have an additional biostimulatory effect to supplement facial volumization. Indications include human immunodeficiency virus lipoatrophy and nasolabial folds for CaHA and PLLA and atrophic acne scars for PMMA. Most clinical use of these synthetic fillers is in an off-label fashion. Beyond the proper choice of a synthetic filler, careful consideration of dilution, injection method, and postprocedural care allows for successful and consistent results. PMID:27363763

  3. Measurement of electron capture from e+-e- pair production by 0.956 GeV/u U92+ on Au, Ag, Cu, and Mylar targets

    NASA Astrophysics Data System (ADS)

    Belkacem, A.; Gould, Harvey; Feinberg, B.; Bossingham, R.; Meyerhof, W. E.

    1993-12-01

    We describe the first experimental observation of electron capture from electron-positron pair production in relativistic heavy ion collisions. We have used a novel new spectrometer to make the measurement of the cross section for a 0.956 GeV/u U92+ beam produced at the BEVALAC facility at LBL on Au, Ag, Cu, and Mylar targets. We also measured the energy and angular distribution of the positrons for the Au target. The total cross section for a Au target is measured to be 2.19 (0.25) barns for capture from pair production and 3.30 (0.65) barns for pair production without capture.

  4. Accelerated Bonding of Magnesium and Aluminum with a CuNi/Ag/CuNi Sandwich Interlayer by Plasma-Activated Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Rao, Mei; Li, Leijun; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2016-02-01

    Plasma-activated sintering (PAS) has been applied, for the first time, to join magnesium and aluminum using a CuNi/Ag/CuNi sandwich structural interlayer. A cleaning effect and high efficient plasma heating mode in PAS have contributed to forming a strong interfacial diffusion bond under low temperature 673 K (400 °C) and short dwell time (0.6 ks). The designed interlayer provides a diffusion barrier effect and an enhanced physical contact between the interfaces. Strong bonding has been achieved without forming the brittle Mg-Al intermetallics.

  5. Reliability of Sn/Pb and lead-free (SnAgCu) solders of surface mounted miniaturized passive components for extreme temperature (-185°C to +125°C) space missions

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2011-02-01

    Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.

  6. Reliability of Sn/Pb and Lead-Free (SnAgCu) Solders of Surface Mounted Miniaturized Passive Components for Extreme Temperature (-185 C to +125 C) Space Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2011-01-01

    Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability or future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185oC to +125oC) covers military specifications (-55oC to +100oC), extreme old Martian (-120oC to +115oC), asteroid Nereus (-180oC to +25oC) and JUNO (-150oC to +120oC) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185oC to +125oC) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.

  7. Midface volumization with injectable fillers.

    PubMed

    Tan, Marietta; Kontis, Theda C

    2015-05-01

    The aging midface has long been overlooked in cosmetic surgery. Our understanding of facial aging in terms of 3 dimensions has placed increased importance on volume restoration. Although an "off-label" indication for most fillers in this facial region, volumization of the midface with injectable fillers is usually a safe and straightforward procedure technically. Injectors, nevertheless, need to have an excellent understanding of facial anatomy and the characteristics of the injected products should problems arise. PMID:25921573

  8. Atomic structure and thermophysical properties of molten silver-copper oxide air braze alloys

    NASA Astrophysics Data System (ADS)

    Hardy, John Steven

    The Ag-CuOx materials system is the basis for a family of filler alloys used in a recently developed ceramic-metal joining technique referred to as air brazing, which is a brazing process that can be carried out in ambient air rather than under the vacuum or inert to reducing gas conditions required for conventional brazing methods. This research was conducted to elucidate the atomic coordination and selected thermophysical properties of these materials as a function of temperature when they are in the salient liquid state in air, since this is when the critical steps of wetting and spreading occur in the joining process. A series of alloys was selected spanning the entire length of the phase diagram including the pure end members, Ag and CuOx; alloys that form the two constituent single phase liquids; and alloys for which the two liquid phases coexist in the miscibility gap of the phase diagram. The oxygen content of the liquid alloys in air was measured using thermogravimetry. The oxidative weight gain of 99.999% pure metallic precursors was measured while simultaneously accounting for the concurrent silver volatility using a method that was developed in the course of the study. The surface tension and mass density were measured using the maximum bubble pressure method. The number density was calculated based on the information gained from the oxygen content and mass density measurements. For compositions that were amenable to laser heating, containerless high energy x-ray scattering measurements of the liquid atomic coordination were performed using a synchrotron beamline, an aerodynamic levitator, and laser heating. For the remaining compositions x-ray scattering measurements were performed in a beamline-compatible furnace. The two liquid phases that form in this materials system have distinct atomic coordinations characterized by an average of nearly two-fold coordinated ionic metal-oxygen pairs in the CuOx-rich liquid and nearly eight-fold coordinated atomic

  9. Molecular-dynamics calculations of thermodynamic properties of metastable alloys

    SciTech Connect

    Mazzone, G.; Rosato, V.; Pintore, M.; Delogu, F.; Demontis, P.; Suffritti, G.B.

    1997-01-01

    In order to improve our current understanding of the microscopic structure of metastable alloys of immiscible elements such as Ag-Cu and Co-Cu, the Helmholtz free energy of several microstructures based on an fcc unit cell has been calculated and compared with that of a reference state. The microstructures considered for the free energy calculations at fixed volume are (1) a structure formed by alternating layers of fixed thickness of metal 1 and metal 2 separated by coherent interfaces; (2) an atomically disordered solid solution; (3) a structure comprising a random distribution of elemental cubic grains separated by coherent interfaces. Numerical results show that the Helmholtz free energy of structure (3) decreases with increasing grain size and that its value calculated for a sufficiently large grain size approaches the free energy of structure (1). Further molecular-dynamics simulations for the Ag-Cu system have allowed the calculation of the enthalpy at the equilibrium volume of several microstructures including some of those listed above. A comparison of the calculated values of the enthalpy with the heat release observed experimentally allows the advancement of an hypothesis concerning the reaction path and the structure of the equiatomic Ag-Cu alloy obtained by ball milling.

  10. Use of thermodynamic data to calculate surface tension and viscosity of Sn-based soldering alloy systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong Ho; Lee, Dong Nyung

    2001-09-01

    A thermodynamic database for the Pb-free soldering alloy systems, which include Sn, Ag, Cu, Bi, and In, has been made using the CALPHAD method. The resulting thermodynamic properties of the Sn-based binary alloy systems were used to determine the surface tensions and viscosities. The surface tensions were calculated using Butler’s monolayer model and the viscosities by Hirai’s and Seetharaman’s models. Butler’s model was also used to determine the surface active element. The results for binary systems were extended to the Sn-based ternary systems (Sn-Ag-Cu, Sn-Ag-Bi). The surface tensions of commercial eutectic Sn-Pb and Sn-Pb-Ag solder alloys were measured by the sessile drop method. The measured values and other researchers’ results were compared with the calculated data.

  11. Monetary alloys in Iron Age Armorica (Finistère, France): The singular case of the Osismi tribe

    NASA Astrophysics Data System (ADS)

    Guerra, M. F.; Abollivier, Ph.

    2016-06-01

    The analysis by PIXE and PAA of 64 coins struck in Iron Age Armorica by the Osismi tribe revealed the use of a different system from the usual Celtic Gaul tri-metallic system. The gold-based alloy (Au-Ag-Cu) firstly issued is debased over time to become a silver-based alloy (Ag-Cu-Sn). Based on the analytical data, two chronological phases were defined and dates of issuing could be ascribed to the coin-types. The presence of Sn and Sb in the alloys and the low contents of Pb were used in the attribution of 9 specimens of unknown origin to the Osismi monetary system. Considerations on the mints supplies could also be provided.

  12. Development of a supramolecular ensemble of an AIEE active hexaphenylbenzene derivative and Ag@Cu2O core-shell NPs: an efficient photocatalytic system for C-H activation.

    PubMed

    Chopra, Radhika; Kumar, Manoj; Bhalla, Vandana

    2016-08-01

    A supramolecular ensemble having Ag@Cu2O core-shell nanoparticles stabilized by aggregates of a hexaphenylbenzene derivative has been developed which exhibits excellent photocatalytic efficiency in reactions involving preparation of imidazole and benzimidazole derivatives via C-H activation. PMID:27464360

  13. Influence of Cyclic Strain-Hardening Exponent on Fatigue Ductility Exponent for a Sn-Ag-Cu Micro-Solder Joint

    NASA Astrophysics Data System (ADS)

    Kanda, Yoshihiko; Kariya, Yoshiharu; Oto, Yuji

    2012-03-01

    The fatigue ductility exponent in the Coffin-Manson law for a Sn-Ag-Cu micro-solder joint was investigated in terms of the cyclic strain-hardening property and the inelastic strain energy in fracture for isothermal fatigue. The fatigue ductility exponent was found to increase with temperature and holding time under strain at high temperature. This exponent is closely related to the cyclic strain-hardening exponent, which displays the opposite behavior in that it decreases with increasing temperature and with coarsening of intermetallic compound particles while holding under strain at high temperature. This result differs from the creep damage mechanism (grain boundary fracture), which is a primary reason for the significant reduction in fatigue life for all strain ranges for large-size specimens.

  14. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions

    NASA Astrophysics Data System (ADS)

    Tan, Ai Ting; Tan, Ai Wen; Yusof, Farazila

    2015-06-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn-Ag-Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.

  15. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review.

    PubMed

    Bondarenko, Olesja; Juganson, Katre; Ivask, Angela; Kasemets, Kaja; Mortimer, Monika; Kahru, Anne

    2013-07-01

    Nanoparticles (NPs) of copper oxide (CuO), zinc oxide (ZnO) and especially nanosilver are intentionally used to fight the undesirable growth of bacteria, fungi and algae. Release of these NPs from consumer and household products into waste streams and further into the environment may, however, pose threat to the 'non-target' organisms, such as natural microbes and aquatic organisms. This review summarizes the recent research on (eco)toxicity of silver (Ag), CuO and ZnO NPs. Organism-wise it focuses on key test species used for the analysis of ecotoxicological hazard. For comparison, the toxic effects of studied NPs toward mammalian cells in vitro were addressed. Altogether 317 L(E)C50 or minimal inhibitory concentrations (MIC) values were obtained for algae, crustaceans, fish, bacteria, yeast, nematodes, protozoa and mammalian cell lines. As a rule, crustaceans, algae and fish proved most sensitive to the studied NPs. The median L(E)C50 values of Ag NPs, CuO NPs and ZnO NPs (mg/L) were 0.01, 2.1 and 2.3 for crustaceans; 0.36, 2.8 and 0.08 for algae; and 1.36, 100 and 3.0 for fish, respectively. Surprisingly, the NPs were less toxic to bacteria than to aquatic organisms: the median MIC values for bacteria were 7.1, 200 and 500 mg/L for Ag, CuO and ZnO NPs, respectively. In comparison, the respective median L(E)C50 values for mammalian cells were 11.3, 25 and 43 mg/L. Thus, the toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed. PMID:23728526

  16. Saturation phenomenon of Ce and Ti in the modification of Al-Zn-Si filler metal

    NASA Astrophysics Data System (ADS)

    Yang, Jin-long; Xue, Song-bai; Dai, Wei; Xue, Peng

    2015-02-01

    Cerium and titanium were added to an Al-42Zn-6.5Si brazing alloy, and the subsequent microstructures of the brazing alloy and the 6061 Al alloy brazing seam were investigated. The microstructures of filler metals and brazed joints were characterized by scanning electron microscopy and X-ray energy dispersion spectrometry. A new Ce-Ti phase formed around the silicon phase in the modified filler metal and this saturation phenomenon was analyzed. Interestingly, following brazing of the 6061 alloy, there is no evidence of the Ce-Ti phase in the brazing seam. Because of the mutual solubility of the brazing alloy and base metal, the quantity of the solvent increases, and the solute Ce and Ti atoms assume an undersaturated state.

  17. Use of Fillers in Rhinoplasty.

    PubMed

    Moon, Hyoung Jin

    2016-01-01

    Surgical rhinoplasty is the one of the most common cosmetic procedures in Asians. But there are limitations, such as down time, high cost, and a steep learning curve. Most complications are implant related. A safer and less invasive procedure is rhinoplasty using fillers. Good knowledge of the nasal anatomy is essential for rhinoplasty using fillers. Knowledge of nerves, blood supply, and injection plane allows avoiding complications. There are several planes in the nose. The deep fatty layer is recommended for injection, because it is wide and loose and there are less important neurovascular structures. Botulinum toxin also can be used for noninvasive rhinoplasty. PMID:26616716

  18. Microstructural behavior of iron and bismuth added Sn-1Ag-Cu solder under elevated temperature aging

    NASA Astrophysics Data System (ADS)

    Ali, Bakhtiar; Sabri, Mohd Faizul Mohd; Jauhari, Iswadi

    2016-07-01

    An extensive study was done to investigate the microstructural behavior of iron (Fe) and bismuth (Bi) added Sn-1Ag-0.5Cu (SAC105) under severe thermal aging conditions. The isothermal aging was done at 200 °C for 100 h, 200 h, and 300 h. Optical microscopy with cross-polarized light revealed that the grain size significantly reduces with Fe/Bi addition to the base alloy SAC105 and remains literally the same after thermal aging. The micrographs of field emission scanning electron microscopy (FESEM) with backscattered electron detector and their further analysis via imageJ software indicated that Fe/Bi added SAC105 showed a significant reduction in the IMCs size (Ag3Sn and Cu6Sn5), especially the Cu6Sn5 IMCs, as well as β-Sn matrix and a refinement in the microstructure, which is due to the presence of Bi in the alloys. Moreover, their microstructure remains much more stable under severe thermal aging conditions, which is because of the presence of both Fe and Bi in the alloy. The microstructural behavior suggests that Fe/Bi modified SAC105 would have much improved reliability under severe thermal environments. These modified alloys also have relatively low melting temperature and low cost.

  19. 7 CFR 58.914 - Fillers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... evaporated milk fillers having brass parts may be approved if free from corroded surfaces and kept in good... Standards for Plastic, and Rubber and Rubber-Like Materials. Fillers shall be designed so that they in...

  20. Fillers: Contraindications, Side Effects and Precautions

    PubMed Central

    Lafaille, Philippe; Benedetto, Anthony

    2010-01-01

    Fillers are generally considered safe. However side effects may happen and hence a practicing dermatologist need to be aware of such side effects, contraindicatons and precaution to be adopted while using fillers. PMID:20606987

  1. Silica Fillers for elastomer Reinforement

    SciTech Connect

    Kohls, D.J.; Schaefer, D.W.

    2012-09-10

    This article summarizes recent work on the structure of precipitated silica used in the reinforcement of elastomers. Silica has a unique morphology, consisting of multiple structural levels that can be controlled through processing. The ability to control and characterize the multiple structures of precipitated silica is an example of morphological engineering for reinforcement applications. In this summary of some recent research efforts using precipitated silica, small-angle scattering techniques are described and their usefulness for determining the morphology of silica in terms of primary particles, aggregates, and agglomerates are discussed. The structure of several different precipitated silica powders is shown as well as the mechanical properties of elastomers reinforced with these silica particles. The study of the mechanical properties of filled elastomer systems is a challenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward rule of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fillers like silica and carbon black on the reinforcement of elastomers. In general, the structure-property relationships developed for filled elastomers have evolved into the following major areas: Filler structure, hydrodynamic reinforcement, and interactions between fillers and elastomers.

  2. Dry bin filler for apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A unique dry bin filler for apples using a sequenced tray was developed to reduce bruising in packing operations. Research and commercial trials in West Virginia, Pennsylvania, and Washington State demonstrated the ability to fill bins evenly and with low damage. Cultivars with different bruising su...

  3. Silica Fillers for elastomer Reinforement

    SciTech Connect

    Kohls, D.J.; Schaefer, D.W.

    2009-08-26

    This article summarizes recent work on the structure of precipitated silica used in the reinforcement of elastomers. Silica has a unique morphology, consisting of multiple structural levels that can be controlled through processing. The ability to control and characterize the multiple structures of precipitated silica is an example of morphological engineering for reinforcement applications. In this summary of some recent research efforts using precipitated silica, small-angle scattering techniques are described and their usefulness for determining the morphology of silica in terms of primary particles, aggregates, and agglomerates are discussed. The structure of several different precipitated silica powders is shown as well as the mechanical properties of elastomers reinforced with these silica particles. The study of the mechanical properties of filled elastomer systems is a challenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward rule of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fillers like silica and carbon black on the reinforcement of elastomers. In general, the structure-property relationships developed for filled elastomers have evolved into the following major areas: Filler structure, hydrodynamic reinforcement, and interactions between fillers and elastomers.

  4. Aluminum alloy welding and stress-corrosion testing. Final report

    SciTech Connect

    Gates, W.G.; Jimenez, E.

    1981-04-01

    The weldability, strength, and corrosion resistance of four 5XXX aluminum alloys electron beam welded to 6061-T6 aluminum alloy without a filler metal were evaluated. Adding filler metal raises weld energy requirements and makes the process more difficult to control. In this study, instead of using a filler metal, a high-magnesium 5XXX alloy was welded to the 6061 alloy. The four 5XXX alloys used (5456-H321, 5052-H34, 5086-H323, and 5083-H32) were selected for their high magnesium content which reduces weld crack sensitivity.

  5. Fillers in dermatology: from past to present.

    PubMed

    Chacon, Anna H

    2015-11-01

    Injectable fillers were introduced in dermatology as a method for reconstructing facial deformities and restoring the aging face. Although fillers have become a popular option among cosmetic patients, clinical experience has shown that fillers must be used with caution, as complications can occur. This article provides a brief review of the history of filler agents currently available for soft tissue augmentation. Although no single filler is ideal for all patients, indications, and situations, residents should be aware of the properties and characteristics that make each product unique. PMID:26682563

  6. The histological aspects of fillers complications.

    PubMed

    Zimmermann, Ute S; Clerici, Thierry J

    2004-12-01

    The histological aspects of resorbable heterologous fillers (bovine collagen, acid hyaluronique), autologous fillers (lipofilling, dermis-fat graft), biodegradable fillers (New-Fill), and permanent fillers (silicone, Artecoll, Evolution, Aquamid, DermaLive, DermaDeep, Bioplastique, Paraffin) are described. This article relates the morphological aspect of these materials, the normal tissue reaction after injection, and its chronological evolution as the morphological aspects from the different side effects, more frequently observed for the permanent fillers. They mainly consist of granulomatous reactions which may appear long after injection. PMID:15745233

  7. Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Pil; Chen, Dongchang; Li, Xiaxi; Yoo, Seungmin; Bottomley, Lawrence A.; El-Sayed, Mostafa A.; Park, Soojin; Liu, Meilin

    2013-11-01

    Surface-enhanced Raman scattering (SERS) is ideally suited for probing and mapping surface species and incipient phases on fuel cell electrodes because of its high sensitivity and surface-selectivity, potentially offering insights into the mechanisms of chemical and energy transformation processes. In particular, bimetal nanostructures of coinage metals (Au, Ag, and Cu) have attracted much attention as SERS-active agents due to their distinctive electromagnetic field enhancements originated from surface plasmon resonance. Here we report excellent SERS-active, raspberry-like nanostructures composed of a silver (Ag) nanoparticle core decorated with smaller copper (Cu) nanoparticles, which displayed enhanced and broadened UV-Vis absorption spectra. These unique Ag@Cu raspberry nanostructures enable us to use blue, green, and red light as the excitation laser source for surface-enhanced Raman spectroscopy (SERS) with a large enhancement factor (EF). A highly reliable SERS effect was demonstrated using Rhodamine 6G (R6G) molecules and a thin film of gadolinium doped ceria.Surface-enhanced Raman scattering (SERS) is ideally suited for probing and mapping surface species and incipient phases on fuel cell electrodes because of its high sensitivity and surface-selectivity, potentially offering insights into the mechanisms of chemical and energy transformation processes. In particular, bimetal nanostructures of coinage metals (Au, Ag, and Cu) have attracted much attention as SERS-active agents due to their distinctive electromagnetic field enhancements originated from surface plasmon resonance. Here we report excellent SERS-active, raspberry-like nanostructures composed of a silver (Ag) nanoparticle core decorated with smaller copper (Cu) nanoparticles, which displayed enhanced and broadened UV-Vis absorption spectra. These unique Ag@Cu raspberry nanostructures enable us to use blue, green, and red light as the excitation laser source for surface-enhanced Raman spectroscopy

  8. Improved Wetting of Mixed Ionic/Electronic Conductors Used in Electrochemical Devices with Ternary Reactive Air Braze Filler Metals

    SciTech Connect

    Hardy, John S; Kim, Jin Yong Y; Thomsen, Ed C; Weil, K Scott

    2007-01-19

    This paper reports on the wetting behavior, reactivity, and long-term electrical conductance of a series of ternary filler metals being considered for brazing lanthanum strontium cobalt ferrite (LSCF) based oxygen separation membranes. Mixed ionic/electronic conducting perovskite oxides such as LSCF and various doped barium cerates are currently being considered for use in high-temperature electrochemical devices such as oxygen and hydrogen concentrators and solid oxide fuel cells. However to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. Furthermore, if the proposed joining technique were to yield a hermetic ceramic-to-metal junction that was also electrically conductive, it would additionally benefit the device by allowing current to be drawn from or carried to the electrochemically active mixed conducting oxide component without requiring an separate current collector. A newly developed brazing technique known as air brazing is one such method of joining. In its present form, air brazing uses a silver-copper oxide based filler metal that can be melted directly in air to form a compliant joint that is electrically conductive. Recently, it has been shown that the addition of titania can enhance the wetting behavior of Ag-CuO filler metals on alumina. Here the effect of this wetting agent on the surface wettability, long-term electrical resistance at 750°C, and reactivity with La0.6Sr0.4Co0.2Fe0.8O3- (LSCF-6428 or LSCF) substrates is discussed.

  9. Preparation and Properties of a Novel Al-Si-Ge-Zn Filler Metal for Brazing Aluminum

    NASA Astrophysics Data System (ADS)

    Niu, Zhiwei; Huang, Jihua; Yang, Hao; Chen, Shuhai; Zhao, Xingke

    2015-06-01

    The study is concerned with developing a filler metal with low melting temperature and good processability for brazing aluminum and its alloys. For this purpose, a novel Al-Si-Ge-Zn alloy was prepared according to Al-Si-Ge and Al-Si-Zn ternary phase diagrams. The melting characteristics, microstructures, wettability, and processing property of the alloy were investigated. The results showed that the melting temperature range of the novel filler metal was 505.2-545.1 °C, and the temperature interval between the solidus and the liquidus was 39.9 °C. Compared with a common Al-Si-Ge alloy, it had smaller and better dispersed β-GeSi solid solution precipitates, and the Zn-rich phases distributed on the boundary of the β-GeSi precipitates. The novel filler metal has good processability and good wettability with Al. There was one obvious transition layer with a thin α-Al solid solution between the filler metal and base metal, which is favorable to improve the strength of brazing joint.

  10. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-01

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA®, and on zirconia/stainless steel couples joined using this filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation behavior of the brazed joint.

  11. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    SciTech Connect

    Weil, K. Scott; Rice, Joseph P.

    2005-06-30

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA, and on zirconia and stainless steel joining couples prepared using this braze filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation resistance of the brazed joint.

  12. Soy-based fillers for thermoset composites

    NASA Astrophysics Data System (ADS)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  13. Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO{sub 2} Sol-Gel films

    SciTech Connect

    Kiran, P. Prem; Shivakiran Bhaktha, B.N.; Rao, D. Narayana; De, Goutam

    2004-12-01

    The nonlinear optical properties and the role of the surface-plasmon resonance (SPR) on optical limiting (OL) properties of Ag-Cu nanoclusters co-doped in SiO{sub 2} matrix prepared using the sol-gel technique with a Cu/Ag molar ratio of 1, 2 and 3, respectively, are presented. The studies were made using the second harmonic of high-power nanosecond and picosecond Nd:YAG lasers. These films show a self-defocusing nonlinearity with both nanosecond and picosecond pulses and a good nonlinear absorption behavior with the nanosecond pulse excitation. The nonlinear refractive index decreased with decreasing particle size, whereas the nonlinear absorption increased with an increase in Cu concentration. The observed nonlinear absorption is explained by taking into account the cumulative effect of both the intraband and interband mechanisms. The excitation near the SPR of Cu resulted in an enhanced OL behavior with increasing Cu concentration. No such concentration dependence is observed when the excitation is near the SPR of Ag, however, the limiting threshold is reduced approximately 10-17 times. Excitation at wavelengths far below the SPR of Ag and Cu has not shown any OL behavior. The major contribution toward OL is observed to be from the interband absorption and from a possible energy transfer within the higher unoccupied states of Cu and Ag. Although nonlinear scattering is observed at higher intensities, its contribution is found to be much less than that of the nonlinear absorption assisted by an energy transfer.

  14. Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts. A review and some new data from Colorado California and Pennsylvania

    USGS Publications Warehouse

    Foord, Eugene E.; Shawe, Daniel R.

    1989-01-01

    Galena, associated with Pb-Bi-Ag sulfosalts and simple sulfides, contains varied amounts of Ag and Bi in the Dandy vein system, Idarado mine, Ouray, Colorado; the Jackass mine, Darwin District, California; and the Leadville district, Colorado. Silver- and bismuth-bearing galena associated with minor amounts of pyrite, chalcopyrite and sphalerite occur at the Pequea mine, Lancaster County, Pennsylvania. Ag and Bi contents in the Dandy suite of galena range from about 1.4 to 3.4 and 2.5 to 6.5 wt.% respectively, and are comparable or lower in galena from the other localities. Exsolved matildite is present in galena from the Dandy, Jackass and Leadville localities. The presence in significant amounts of both Ag and Bi in a Pb-rich sulfide system is necessary for formation of PbSss (galena solid-solution). If Ag (especially) and Bi (to a lesser extent) are absent, the galena formed will be essentially pure PbS. Some minor Sb may substitute for Bi. Compositional data for all of the galena samples are in agreement with a previously proposed linear relationship between a and Ag-Bi(Sb) content. Matildite and seven additional Pb-Bi-Ag-Cu sulfosalts have been identified from the Dandy vein system, based on electron-microprobe analyses and some X-ray powder-diffraction data.

  15. Fillers: What's Here and What's Ahead.

    PubMed

    Solish, Nowell

    2016-06-01

    Soft tissue augmentation products (or fillers) are used for the correction of age-related changes in areas of the face. The most common filler material is hyaluronic acid, which is synthetically cross-linked. These materials are generally safe, but some side effects do occur. New fillers are expected to be approved in the United States in the near future. Semin Cutan Med Surg 35(supp6):S117-119. PMID:27537207

  16. Review of non-FDA-approved fillers.

    PubMed

    Ellis, David A F; Segall, Lorne

    2007-05-01

    The number of commercially available injectable soft tissue fillers has increased dramatically worldwide over the past decade. In the United States, a variety of temporary non-collagen-based fillers have been approved. However, no permanent soft tissue injectable fillers are currently approved by the US Food and Drug Administration. This article discusses some of the more popular soft tissue fillers, such as Restylane Fine Line, Restylane SQ, Perlane, Artecoll, Dermalive, Dermadeep, Bioalcamid, Bioplastique, Evolution, Outline, Argiform, and Aquamid, which are all available outside of the United States. PMID:17544940

  17. Current Concepts in Filler Injection.

    PubMed

    Moradi, Amir; Watson, Jeffrey

    2015-11-01

    When evaluating the face in thirds, the upper face, midface, and lower face, one may assume the lateral the temple, midface, and lateral mandible as the pillars of these subdivisions. Many of our facial aesthetic procedures address these regions, including the lateral brow lift, midface lift, and lateral face lift. As the use of facial fillers has advanced, more emphasis is placed on the correction of the temples, midlateral face, and lateral jaw line. This article is dedicated to these facial aesthetic pillars. PMID:26505545

  18. In situ heating transmission electron microscopy observation of nanoeutectic lamellar structure in Sn-Ag-Cu alloy on Au under-bump metallization.

    PubMed

    Seo, Jong-Hyun; Yoon, Sang-Won; Kim, Kyou-Hyun; Chang, Hye-Jung; Lee, Kon-Bae; Seong, Tae-Yeon; Fleury, Eric; Ahn, Jae-Pyoung

    2013-08-01

    We investigated the microstructural evolution of Sn(96.4)Ag(2.8)Cu(0.8) solder through in situ heating transmission electron microscopy observations. As-soldered bump consisted of seven layers, containing the nanoeutectic lamella structure of AuSn and Au₅Sn phases, and the polygonal grains of AuSn₂ and AuSn₄, on Au-plated Cu bond pads. Here, we found that there are two nanoeutectic lamellar layers with lamella spacing of 40 and 250 nm. By in situ heating above 140°C, the nanoeutectic lamella of AuSn and Au₅Sn was decomposed with structural degradation by sphering and coarsening processes of the lamellar interface. At the third layer neighboring to the lamella layer, on the other hand, Au₅Sn particles with a zig-zag shape in AuSn matrix became spherical and were finally dissipated in order to minimize the interface energy between two phases. In the other layers except both lamella layers, polycrystal grains of AuSn₂ and AuSn₄ grew by normal grain growth during in situ heating. The high interface energy of nanoeutectic lamella and polygonal nanograins, which are formed by rapid solidification, acted as a principal driving force on the microstructural change during the in situ heating. PMID:23920173

  19. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires.

    PubMed

    Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S

    2014-09-01

    In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. PMID:24981209

  20. Development of brazing process for W-EUROFER joints using Cu-based fillers

    NASA Astrophysics Data System (ADS)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  1. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  2. A comparative computational study on hydrogen adsorption on the Ag(+), Cu(+), Mg(2+), Cd(2+), and Zn(2+) cationic sites in zeolites.

    PubMed

    Kozyra, Paweł; Piskorz, Witold

    2016-05-14

    In this article the interaction between H2 and Ag(+), Cu(+), Mg(2+), Cd(2+), and Zn(2+) cations in cluster models of several sizes has been studied computationally. Depending on the changes imposed by the adsorption process on the H2 molecule the activation can vary in a wide range - from only slight weakening of the H-H bond to complete dissociation of the H2 molecule. The NOCV (Natural Orbitals for Chemical Valence) analysis allowed for decomposition of the electron density distortion into contributions easier for interpretation. Three essential factors have been identified (i-iii). In the case of bare cations the main contribution is a donation from σH2 to the cation (i). When a zeolite framework surrounding the cation is introduced, it hinders σ-donation and enhances π-backdonation from the cation to the antibonding orbital of the molecule (ii). For Cu(i) and Ag(i) sites π-backdonation becomes dominant, while for Mg(ii), Cd(ii), and Zn(ii) cations, the σ-donation, albeit diminished, still remains a dominant contribution. Calculations showed that the localization and coordination of Zn(ii) have crucial influence on its interaction with H2. We identified a Zn(2+) position at which the H2 molecule dissociates - here the interaction between H2 and oxygen framework (iii) plays a crucial role. Based on the calculations the mechanism of H2 transformation has been proposed. Upon heterolytic dissociation of H2 the Zn(0) moiety and two OH groups can be formed. Eventually, in two elementary steps, the H2 molecule can be restored. In this case, the ability of the site to activate/dissociate hydrogen is caused by the low coordination number of the zinc cation and the geometry of the site which allows positively charged H2 to interact with framework oxygen what enhances the formation of OH and Z-O-(ZnH)(+) groups. PMID:27092373

  3. Study of the effects of MeV Ag, Cu, Au, and Sn implantation on the optical properties of LiNbO3

    NASA Technical Reports Server (NTRS)

    Williams, E. K.; Ila, D.; Sarkisov, S.; Curley, M.; Poker, D. B.; Hensley, D. K.; Borel, C.

    1998-01-01

    The authors present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Ag was implanted at 1.5 MeV to fluences of 2 to 17 x 17(exp 16)/sq cm at room temperature. Au and Cu were implanted to fluences of 5 to 20 x 10(exp 16)/sq cm at an energy of 2.0 MeV. Sn was implanted to a fluence of 1.6 x 10(exp 17)/sq cm at 160 kV. Optical absorption spectrometry indicated an absorption peak for the Au implanted samples after heat treatment at 1,000 C at approx. 620 nm. The Ag implanted samples absorption peaks shifted from approx. 450 nm before heat treatment to 550 nm after 500 C for 1h. Heat treatment at 800 C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500 C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not change appreciably in size with heat treatment. The Au clusters increased from 3 to 9 nm diameter upon heat treatment at 1000 C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices were carried out using the Z-scan method with a tunable dye laser pumped by a frequency doubled mode-locked Nd:YAG laser. The dye laser had a 4.5 ps pulse duration time and 76 MHz pulse repetition rate (575 nm).

  4. 7 CFR 58.514 - Container fillers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Container fillers. 58.514 Section 58.514 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....514 Container fillers. Shall comply with the 3-A Sanitary Standards for Equipment for Packaging...

  5. Filler functionality in edible solid foams.

    PubMed

    van der Sman, R G M

    2016-05-01

    We review the functionality of particulate ingredients in edible brittle foams, such as expanded starchy snacks. In food science and industry there is not a complete awareness of the full functionality of these filler ingredients, which can be fibers, proteins, starch granules and whole grains. But, we show that much can be learned about that from the field of synthetic polymeric foams with (nano)fillers. For edible brittle foams the enhancement of mechanical strength by filler ingredients is less relevant compared to the additional functionalities such as 1) the promotion of bubble nucleation and 2) cell opening-which are much more relevant for the snack texture. The survey of particulate ingredients added to snack formulations shows that they cannot be viewed as inert fillers, because of their strong hygroscopic properties. Hence, these fillers will compete with starch for water, and that will modify the glass transition and boiling point, which are important factors for snack expansion. Filler properties can be modified via extrusion, but it is better if that processing step is decoupled from the subsequent processing steps as mixing and expansion. Several filler ingredients are also added because of their nutritional value, but can have adverse effect on snack expansion. These adverse effects can be reduced if the increase of nutritional value is decoupled from other filler functionality via compartmentalization using micropellets. PMID:27067462

  6. Wind-Resistant Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Bellavia, J.; Quigley, I. A.; Callahan, T. S.

    1982-01-01

    Filler developed for gaps between insulating tiles on Space Shuttle finds application in industries that use tiles for thermal or environmental protection. Filler consists of tight-fitting ceramic tubes and fibrous alumina. Combination resists high wind loads while providing requisite heat protection. Quartz-thread stitching holds envelope together.

  7. Dermal Fillers: Tips to Achieve Successful Outcomes

    PubMed Central

    Vedamurthy, Maya; Vedamurthy, Amar

    2008-01-01

    Fillers have become a common aesthetic treatment for several cosmetic problems. Several types of fillers are available from different sources and of different longevities. It is important that the treating physician be aware of the different techniques of administration and their possible side effects. This article reviews the available literature on the subject. PMID:20300346

  8. Adverse effects of fillers and their histopathology.

    PubMed

    Haneke, Eckart

    2014-12-01

    Injectable fillers nowadays represent a pillar in facial rejuvenation and make a significant contribution to the success of the treatment. Despite their obvious benefits, a wide range of possible complications such as immediate, late, delayed, temporary, or irreversible adverse effects have to be respected. Differentiating the various filler materials, these effects are assigned to histopathology findings and currently available treatment options. PMID:25536126

  9. Intumescent-ablator coatings using endothermic fillers

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R. (Inventor)

    1978-01-01

    An intumescent-ablator coating composition which contains the ammonium salt of 1,4-nitroaniline-2-sulfonic acid or 4,4 dinitrosul fanilide, a polymeric binder system and about 5 to 30% weight of an endothermic filler is reported. The filler has a decomposition temperature about or within the exothermic region of the intumescent agent.

  10. Emerging permanent filler technologies: focus on Aquamid.

    PubMed

    Yamauchi, Paul S

    2014-01-01

    A plethora of soft tissue fillers have been developed within the past decade to correct the cutaneous changes that occur with photoaging. Such fillers, whether nonpermanent, semipermanent, or permanent, are widely used to fill undesired facial rhytides. In addition, fillers are employed to correct atrophy of the face as well as other parts of the body such as the dorsum of the hands through volumization and contouring. The extensive long-term safety outcomes reported with fillers and the ease with which they are administered make them an ideal choice to correct rhytides and to contour the face. However, as with any cosmetic procedure, in order to ensure high patient satisfaction and a safe outcome, proper training in injection techniques, the choice of the proper candidate, and awareness of potential adverse events are essential. This review article focuses on the permanent filler, Aquamid, which is composed of polyacrylamide hydrogel. PMID:25336982

  11. Emerging permanent filler technologies: focus on Aquamid

    PubMed Central

    Yamauchi, Paul S

    2014-01-01

    A plethora of soft tissue fillers have been developed within the past decade to correct the cutaneous changes that occur with photoaging. Such fillers, whether nonpermanent, semipermanent, or permanent, are widely used to fill undesired facial rhytides. In addition, fillers are employed to correct atrophy of the face as well as other parts of the body such as the dorsum of the hands through volumization and contouring. The extensive long-term safety outcomes reported with fillers and the ease with which they are administered make them an ideal choice to correct rhytides and to contour the face. However, as with any cosmetic procedure, in order to ensure high patient satisfaction and a safe outcome, proper training in injection techniques, the choice of the proper candidate, and awareness of potential adverse events are essential. This review article focuses on the permanent filler, Aquamid, which is composed of polyacrylamide hydrogel. PMID:25336982

  12. Development of sputtered techniques for thrust chambers, task 1. [evaluation of filler materials for regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Schmid, T. E.; Hecht, R. J.

    1974-01-01

    Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials.

  13. Bidirectional threshold switching in engineered multilayer (Cu{sub 2}O/Ag:Cu{sub 2}O/Cu{sub 2}O) stack for cross-point selector application

    SciTech Connect

    Song, Jeonghwan; Prakash, Amit; Lee, Daeseok; Woo, Jiyong; Cha, Euijun; Lee, Sangheon; Hwang, Hyunsang

    2015-09-14

    In this study, we achieved bidirectional threshold switching (TS) for selector applications in a Ag-Cu{sub 2}O-based programmable-metallization-cell device by engineering the stack wherein Ag was intentionally incorporated in the oxide (Cu{sub 2}O) layer by a simple approach comprising co-sputtering and subsequent optimized annealing. The distribution of the Ag was directly confirmed by transmission electron microscopy and energy dispersive spectroscopy line profiling. The observed TS occurred because of the spontaneous self-rupturing of the unstable Ag filament that formed in the oxide layer.

  14. An overview of permanent and semipermanent fillers.

    PubMed

    Broder, Kevin W; Cohen, Steven R

    2006-09-01

    The demand for safe, effective, long-lasting, biocompatible dermal filler materials is increasing. Many products that include synthetic polymers and autologous tissue have emerged that attempt to meet these criteria. An overview of injectable permanent fillers, including ArteFill, Aquamid, and silicone, and semipermanent fillers, including Radiesse, Sculptra, and autologous fat, is presented. A discussion of their composition, histologic characteristics, antigenicity, U.S. Food and Drug Administration approval status, indications for use, efficacy, injection technique, and adverse effects is provided. PMID:16936539

  15. Cosmetic Fillers: Perspectives on the Industry.

    PubMed

    Basta, Steven L

    2015-11-01

    The cosmetic filler industry has evolved substantially over the last 30 years. The market is characterized by multiple fillers and a competitive dynamic among major aesthetics companies. Marketing in the United States and Europe has been different owing to regulatory constraints. Differences have led to more rapid growth in the European market. The US market has evolved owing to growth of major companies with multiple product portfolios and leverage in consumer promotion and aesthetics office marketing owing to scale. The evolution of the filler market will include new materials, injection techniques, and facilitation devices, and new areas of injection. PMID:26505538

  16. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  17. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  18. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, Michael L.; Goodwin, Gene M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  19. Epoxy coatings over latex block fillers

    SciTech Connect

    Vincent, L.D.

    1997-12-01

    Failures of polymerized epoxy coatings applied over latex/acrylic block fillers continue to plague owners of commercial buildings, particularly those with high architectural content such as condominiums, high rise offices, etc. Water treatment facilities in paper mills are especially prone to this problem. The types of failures include delamination of the topcoats, blisters in both the block fillers and the topcoats and disintegration of the block filler itself. While the problem is well known, the approach to a solution is not. A study of several coatings manufacturer`s Product Data Sheets shows a wide variance in the recommendations for what are purportedly generically equivalent block fillers. While one manufacturer might take an essentially architectural approach, another will take a heavy-duty industrial approach. To the specifying architect or engineer who has little training in the complexities of protective coating systems, this presents a dilemma. Who does he believe? What does he specify? To whom can he turn for independent advice?

  20. Mechanical properties of ethylene-octene copolymer (EOC) - lignocellulosic fillers biocomposites in dependence to filler content

    NASA Astrophysics Data System (ADS)

    Zykova, Anna; Pantyukhov, Petr; Popov, Anatoly

    2016-05-01

    The mechanical properties of biocomposites based on ethylene-octene copolymer were studied. The aim of present work was to investigate the mechanical properties of composites based on ethylene-octene copolymer (EOC) in dependence to type of the filler, filler content and trade mark of EOC. Addition of fillers (wood flour or seed flax straw) decreases elongation at break and decreases unsignificantly tensile strenght of examined copolymers. Particles of filler increase the toughness of polymer chain, which leads to decline of elongation at break. Biocomposites with wood flour had higher tensile strength and elongation at break than the composites with flax straw.

  1. The potpourri approach to hyaluronic acid filler injections.

    PubMed

    Lim, Adrian C

    2010-02-01

    There is an ever-expanding range of hyaluronic acid fillers with varying physical characteristics available to cosmetic dermatologists. These fillers are commercially packaged in syringes of approximately 1 mL (range 0.5-2 mL) volume. Filler injectors are currently qualitatively and quantitatively restricted to fillers packaged in ready-to-go syringes. Patients often present for pan-facial rejuvenation requiring varying amounts of fillers as well as more than one type/subtype of filler for optimum correction. The potpourri approach allows access to a range of prepared hyaluronic acid filler subtypes that can be used on the same patient in the one session. The potpourri method centres on the use of multiple 31-gauge insulin syringes prepared with a range of different hyaluronic acid filler products that are ready for use. This increases flexibility with filler selection and has the potential to provide better filler-to-tissue match for patients. PMID:20148852

  2. New Manufacturing Method for Paper filler and Fiber Material

    SciTech Connect

    Doelle, Klaus

    2011-11-22

    The study compares commercial available filler products with a new developed “Hybrid Fiber Filler Composite Material” and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12” pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.

  3. Fillers for the improvement in acne scars

    PubMed Central

    Wollina, Uwe; Goldman, Alberto

    2015-01-01

    Acne is a common inflammatory disease. Scarring is an unwanted end point of acne. Both atrophic and hypertrophic scar types occur. Soft-tissue augmentation aims to improve atrophic scars. In this review, we will focus on the use of dermal fillers for acne scar improvement. Therefore, various filler types are characterized, and available data on their use in acne scar improvement are analyzed. PMID:26491364

  4. Initial investigation of cryogenic wind tunnel model filler materials

    NASA Technical Reports Server (NTRS)

    Rush, H. F.; Firth, G. C.

    1985-01-01

    Various filler materials are being investigated for applicability to cryogenic wind tunnel models. The filler materials will be used to fill surface grooves, holes and flaws. The severe test environment of cryogenic models precludes usage of filler materials used on conventional wind tunnel models. Coefficients of thermal expansion, finishing characteristics, adhesion and stability of several candidate filler materials were examined. Promising filler materials are identified.

  5. Comparative modular analysis of two complex sulfosalt structures: sterryite, Cu(Ag,Cu)3Pb19(Sb,As)22(As-As)S56, and parasterryite, Ag4Pb20(Sb,As)24S58.

    PubMed

    Moëlo, Yves; Guillot-Deudon, Catherine; Evain, Michel; Orlandi, Paolo; Biagioni, Cristian

    2012-10-01

    The crystal structures of two very close, but distinct complex minerals of the lead sulfosalt group have been solved: sterryite, Cu(Ag,Cu)(3)Pb(19)(Sb,As)(22)(As-As)S(56), and parasterryite, Ag(4)Pb(20)(Sb,As)(24)S(58). They are analyzed and compared according to modular analysis. The fundamental building block is a complex column centred on a Pb(6)S(12) triangular prismatic core, with two additional long and short arms. The main chemical and topological differences relate to the short arm, which induces a relative a/4 shift (~2 Å along the elongation parameter) of the constitutive rod layers, as illustrated by distinct cell settings within the same space group (P2(1)/n and P2(1)/c, respectively). Selection of the shortest (i.e. strongest) (Sb,As)-S bonds permitted to enhance the polymeric organization of (Sb,As) atoms with triangular pyramidal coordination. These two quasi-homeotypic structures are expanded derivatives of owyheeite, Ag(3)Pb(10)Sb(11)S(28). The hierarchy of organization levels from zero- to three-dimensional entities is subordinated to building operators, which appear as the driving force for the construction of such complex structures. Minor cations (Ag, Cu) or the As-As pair in sterryite secure the final locking, which favours the formation of one or the other compound. PMID:22992793

  6. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect

    Liu Fei; Zhang Zhaodong; Liu Liming

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  7. Effect of Filler Metals on the Weldability and Mechanical Properties of Multi-pass PCGTA Weldments of AISI 316L

    NASA Astrophysics Data System (ADS)

    Devendranath Ramkumar, K.; Maruthi Mohan Reddy, P.; Raja Arjun, B.; Choudhary, Ayush; Srivastava, Anubhav; Arivazhagan, N.

    2015-04-01

    The influence of filler metals on the microstructure, mechanical properties, and corrosion behavior of AISI 316L welds was investigated. Pulsed current gas tungsten arc welding was employed to join the AISI 316L plates using two different fillers ER2553 and ERNiCr-3. Microstructures studies showed the presence of different forms of austenite on employing ER2553 filler and formation of migrated grain boundaries at the weld zone while using ERNiCr-3 filler. Tensile studies corroborated that the tensile strength was greater for the weldments employing ER2553 filler. Charpy V-notch studies ascertained that the impact toughness was greater for ER2553 weldments as compared to the parent metal. Potentiodynamic polarization curves clearly inferred that the weld zone of ER2553 exhibited better corrosion resistance among the various coupons tested. It was concluded from the study that ER2553 exhibited better mechanical and corrosion properties and could be adopted to achieve optimal properties compared to over-alloyed filler.

  8. Filler augmentation, safe or unsafe: A case series of severe complications of fillers

    PubMed Central

    Omranifard, Mahmood; Taheri, Soheila

    2011-01-01

    BACKGROUND: The growing interest in filler injection requires a more comprehensive knowledge about the complications of this procedure. METHODS: A total of 5 cases with debilitating chronic complications following filler injection referred to Al-Zahra hospital, Isfahan are presented in this report. RESULTS: The outcome of treatment for two of the cases was satisfactory. In one case the treatment led to failure. A case committed suicide, the remaining case had received vitamin E injection which caused severe necrosis and scaring. CONCLUSIONS: All fillers are considered foreign bodies and may provoke the immune system to varying degrees. Most complications are, however, caused by the technique of injection not the filler itself. Experience of physicians along with adequate knowledge about fillers and their complications can definitely guarantee a better outcome. PMID:22973374

  9. Wetting and Mechanical Performance of Zirconia Brazed with Silver/Copper Oxide and Silver/Vanadium Oxide Alloys

    SciTech Connect

    Sinnamon, Kathleen E.; Meier, Alan; Joshi, Vineet V.

    2014-12-01

    The wetting behavior and mechanical strength of silver/copper oxide and silver/vanadium oxide braze alloys were investigated for both magnesia-stabilized and yttria-stabilized (Mg-PSZ and Y-TZP) transformation toughened zirconia substrates. The temperatures investigated were 1000 to 1100°C, with oxide additions of 1 to 10 weight percent V2O5 or CuO, and hold times of 0.9 to 3.6 ks. Increasing either the isothermal hold temperature or time had a distinctly negative effect on the joint strength. The maximum strengths for both braze alloys were obtained for 5 wt. % oxide additions at 1050°C with a hold time of 0.9 ks. The Mg-PSZ/Ag-CuO system exhibited a average fracture strength of 255 MPa (45% of the reported monolithic strength), and the Y-TZP/Ag-CuO system had an average fracture strength of 540 MPa (30% of the reported monolithic strength). The fracture strengths were lower for the Ag-V2O5 braze alloys, with fracture strengths of approximately 180 MPa (30% of the monolithic strength) for Mg-PSZ versus approximately 160 MPa (10% of the monolithic strength) for Y-TZP. No interfacial products were observed in low magnification SEM analysis for the brazing alloys containing V2O5 additions, while there were interfacial products present for brazes prepared with CuO additions in the braze alloy.

  10. Dissimilar joint characteristics of SiC and WC-Co alloy by laser brazing

    NASA Astrophysics Data System (ADS)

    Nagatsuka, K.; Sechi, Y.; Nakata, K.

    2012-08-01

    SiC and WC-Co alloys were joined by laser brazing with an active braze metal. The braze metal based on eutectic Ag-Cu alloy with additional Ti as an active element ranging from 0 to 2.8 mass% was sandwiched by the SiC block and WC-Co alloy plate. The brazing was carried out by selective laser beam irradiation on the WC-Co alloy plate. The content of Ti in the braze metal was required to exceed 0.6 mass% in order to form a brazed joint with a measurable shear strength. The shear strength increased with increasing Ti content up to 2.3 mass%Ti and decreased with a higher content.

  11. Temporal fossa defects: techniques for injecting hyaluronic acid filler and complications after hyaluronic acid filler injection.

    PubMed

    Juhász, Margit Lai Wun; Marmur, Ellen S

    2015-09-01

    Facial changes with aging include thinning of the epidermis, loss of skin elasticity, atrophy of muscle, and subcutaneous fat and bony changes, all which result in a loss of volume. As temporal bones become more concave, and the temporalis atrophies and the temporal fat pad decreases, volume loss leads to an undesirable, gaunt appearance. By altering the temporal fossa and upper face with hyaluronic acid filler, those whose specialty is injecting filler can achieve a balanced and more youthful facial structure. Many techniques have been described to inject filler into the fossa including a "fanned" pattern of injections, highly diluted filler injection, and the method we describe using a three-injection approach. Complications of filler in the temporal fossa include bruising, tenderness, swelling, Tyndall effect, overcorrection, and chewing discomfort. Although rare, more serious complications include infection, foreign body granuloma, intravascular necrosis, and blindness due to embolization into the ophthalmic artery. Using reversible hyaluronic acid fillers, hyaluronidase can be used to relieve any discomfort felt by the patient. Injectors must be aware of the complications that may occur and provide treatment readily to avoid morbidities associated with filler injection into this sensitive area. PMID:26311237

  12. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2014-03-28

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity.

  13. High-Temperature Insulating Gap Filler

    NASA Technical Reports Server (NTRS)

    Toombs, Gordon R.; Oyoung, Kevin K.; Stevens, Everett G.

    1991-01-01

    New inorganic, ceramic filler for gaps between refractory ceramic tiles offers high resistance to heat and erosion. Consists of ceramic-fiber fabric precoated with silica and further coated with silica containing small amount of silicon carbide powder to increase thermal emittance. Developed as replacement for organic filler used on thermal-protection system of Space Shuttle. Promises to serve for many missions and to reduce cost and delay of refurbishing aerospace craft. Used as sealing material in furnaces or as heat shield for sensitive components in automobiles, aircraft, and home appliances.

  14. Understanding, Avoiding, and Managing Severe Filler Complications.

    PubMed

    Rzany, Berthold; DeLorenzi, Claudio

    2015-11-01

    Any injectable filler may elicit moderate-to-severe adverse events, ranging from nodules to abscesses to vascular occlusion. Fortunately, severe adverse events are uncommon for the majority of fillers currently on the market. Because these are rare events, it is difficult to identify the relevant risk factors and to design the most efficacious treatment strategies. Poor aesthetic outcomes are far more common than severe adverse events. These in contrast should be easily avoidable by ensuring that colleagues receive proper training and follow best practices. PMID:26441099

  15. Thermal pretreatment of silica composite filler materials

    PubMed Central

    Wan, Quan; Ramsey, Christopher

    2010-01-01

    Three different silica filler materials were thermally treated in order to effect dehydration, dehydroxylation, and rehydroxylation. Samples were characterized by thermogravimetry (TG), pycnometry, elemental analysis, and scanning electron microscopy (SEM). For all fillers, our results indicate incremental removal of silanol groups at higher heating temperatures and irreversible dehydroxylation at over 673 K. To remove the organic content and maintain adequate silanol density for subsequent silanization on Stöber-type silica, we suggest heating at 673 K followed by overnight boiling in water. PMID:20445821

  16. Characterization of Continuous and Discontinuous Precipitation Phases in Pd-Rich Precious Metal Alloys

    NASA Astrophysics Data System (ADS)

    Susan, Donald F.; Ghanbari, Zahra; Kotula, Paul G.; Michael, Joseph R.; Rodriguez, Mark A.

    2014-08-01

    Aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray diffraction (XRD), electron backscatter diffraction, and electron probe microanalysis were applied to characterize continuous and discontinuous phase formation in precious metal alloys used in electrical contacts. The Pd-rich Paliney® (®Paliney is tradename of Deringer-Ney Inc., Bloomfield, CT) alloys contain Pd, Ag, Cu, Au, Pt (and Zn or Ni). With aging at 755 K (482 °C), nanometer-scale chemistry modulation was observed indicating spinodal decomposition. An ordered body-centered tetragonal (bct) structure was also observed with AC-STEM after the 755 K (482 °C) aging treatment and another phase, tentatively identified as β-Cu3Pd4Zn, was found by microscopy and XRD after prolonged holds at higher temperatures. During slow cooling or isothermal holds at high temperature [755 K to 973 K (482 °C to 700 °C)], a two-phase lamellar structure develops along grain boundaries by discontinuous precipitation. XRD and AC-STEM showed that the lamellar structure was comprised of Ag-rich and Cu-rich fcc phases ( α 1 and α 2). The phases are discussed in relation to a pseudo-ternary diagram based on Ag-Cu-Pd, which provides a simplified representation of the discontinuous phase compositions in the multi-component alloy system.

  17. Electrical properties of thin-film structures formed by pulsed laser deposition of Au, Ag, Cu, Pd, Pt, W, Zr metals on n-6H-SiC crystal

    SciTech Connect

    Romanov, R. I.; Zuev, V. V.; Fominskii, V. Yu. Demin, M. V.; Grigoriev, V. V.

    2010-09-15

    Diode structures with ideality factors of 1.28-2.14 and potential barriers from 0.58 to 0.62 eV on the semiconductor side were formed by pulsed laser deposition of Au, Ag, Cu, Pd, Pt, W, and Zr metal films on n-6H-SiC crystal without epitaxial layer preparation. A high density of surface acceptor and donor states was formed at the metal-semiconductor interface during deposition of the laser-induced atomic flux, which violated the correlation between the potential barrier height and metal work function. The barrier heights determined from characteristic currents and capacitance measurements were in quite good agreement. For the used low-resistance semiconductor and contact elements, the sizes of majority carrier (electron) depletion regions were determined as 26-60 nm.

  18. DFT study of Hg adsorption on M-substituted Pd(1 1 1) and PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Jiancheng; Yu, Huafeng; Geng, Lu; Liu, Jianwen; Han, Lina; Chang, Liping; Feng, Gang; Ling, Lixia

    2015-11-01

    The adsorption of Hgn (n = 1-3) on the Au-, Ag-, Cu-substituted Pd(1 1 1) surfaces as well as the PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces has been investigated using spin-polarized density functional theory calculations. It is found that M-substituted Pd(1 1 1) surfaces show as good Hg adsorption capacity as the perfect Pd(1 1 1) at low Hg coverage, while the Hg adsorption capacity is only slightly weakened at high Hg coverage. On the basis of stepwise adsorption energies analysis, it is concluded that M-substituted Pd(1 1 1) surfaces can contribute to the binding of Hg atom on the surfaces at high Hg coverage. The electronic properties of the second metal atoms are the main factor contributes to the Hg adsorption capacity. Gas phase Pd2 shows better Hg adsorption capacity than Pd2/γ-Al2O3, while PdM/γ-Al2O3 can adsorb Hg more efficiently than bare PdM clusters. It suggests that the γ-Al2O3 support can enhance the activity of PdM for Hg adsorption and reduces the activity of Pd2. It is also found that Pd is the main active composition responsible for the interaction of mercury with the surface for PdM/γ-Al2O3 sorbent. Taking Hg adsorption capacity and economic costs into account, Cu addition is a comparatively good candidate for Hg capture.

  19. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  20. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  1. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  2. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  3. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 23.973 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.973 Fuel tank filler connection. (a) Each fuel tank filler connection must be marked as prescribed...

  4. 14 CFR 27.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 27.973 Section... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection. (a) Each fuel tank filler connection must prevent the entrance of fuel into any part of...

  5. 14 CFR 25.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 25.973 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler connection. Each fuel tank filler connection must prevent the entrance of fuel into any part of the...

  6. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists of... groups. U.S. grades Grade names, minimum specifications, and tolerances Y1 Fine Quality Farm Filler....

  7. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists of... groups. U.S. grades Grade names, minimum specifications, and tolerances Y1 Fine Quality Farm Filler....

  8. 46 CFR 57.02-5 - Filler metals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Filler metals. 57.02-5 Section 57.02-5 Shipping COAST... Requirements § 57.02-5 Filler metals. (a) Except as provided for in paragraph (b) of this section, when filler metal is used in a welded fabrication that is required to meet the requirements of this part the...

  9. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 23.973 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.973 Fuel tank filler connection. (a) Each fuel tank filler connection must be marked as prescribed...

  10. Update on hyaluronic acid fillers for facial rejuvenation.

    PubMed

    Mansouri, Yasaman; Goldenberg, Gary

    2015-08-01

    Injectable soft tissue filler procedures are becoming increasingly important for rejuvenating the aging face. The variety of available dermal fillers is increasing, and an understanding of their individual characteristics allows optimal outcomes. We provide an overview of the dermal fillers that were approved by the US Food and Drug Administration over the last 5 years. PMID:26367746

  11. 7 CFR 58.914 - Fillers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Fillers. 58.914 Section 58.914 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE...

  12. 7 CFR 58.710 - Fillers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Fillers. 58.710 Section 58.710 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE...

  13. High Temperature Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Wang, D. S.

    1983-01-01

    Gaps between ceramic tiles filled with ceramic-coated fabric that withstands temperatures as high as 2,000 degrees F (1,300 degrees C). Reusable high-temperature gap filler is made of fabric coated with ceramic slurry and bonded in place with room-temperature-vulcanized adhesive. Procedure used in kilns and furnaces.

  14. 7 CFR 58.914 - Fillers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Fillers. 58.914 Section 58.914 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE...

  15. 7 CFR 58.710 - Fillers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Fillers. 58.710 Section 58.710 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE...

  16. Biofilms: Their Role in Dermal Fillers

    PubMed Central

    Sadashivaiah, Anitha B; Mysore, Venkataram

    2010-01-01

    Fillers are commonly used in several aesthetic indications. Though considered safe, several side effects have been reported. The role of biofilms in the causation of some of these side effects has been elucidated only recently and this article presents a short review of the subject. PMID:20606988

  17. Nickel-chromium-silicon brazing filler metal

    DOEpatents

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  18. 7 CFR 30.14 - Cigar filler.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Cigar filler. 30.14 Section 30.14 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of...

  19. 7 CFR 30.14 - Cigar filler.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Cigar filler. 30.14 Section 30.14 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of...

  20. 7 CFR 30.14 - Cigar filler.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Cigar filler. 30.14 Section 30.14 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of...

  1. Process for recovering filler from polymer

    DOEpatents

    Smith, Maurice L.; Smith, Robert M.

    1978-01-01

    This disclosure relates to a process for recovering filler material from a polymeric matrix by reacting the matrix at an elevated temperature in a gas atmosphere with a controlled oxidizing potential and thereafter separating and cleaning the residue from the reaction mixture.

  2. Welding of gamma titanium aluminide alloys

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1998-01-01

    An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  3. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system

    NASA Astrophysics Data System (ADS)

    Ha, Sung Min; Kwon, O. Hwan; Gyeong Oh, Yu; Kim, Yong Seok; Lee, Sung-Goo; Won, Jong Chan; Cho, Kwang Soo; Gak Kim, Byoung; Yoo, Youngjae

    2015-12-01

    We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K)-1, which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis-Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally.

  4. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. PMID:23948441

  5. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  6. Imaging features of midface injectable fillers and associated complications.

    PubMed

    Ginat, D T; Schatz, C J

    2013-08-01

    Injectable fillers are increasingly used for midface augmentation, which can be performed for facial rejuvenation and treatment of HIV facial lipoatrophy. A variety of temporary and permanent filler agents has been developed, including calcium hydroxylapatite, collagen, liquid silicone, polytetrafluoroethylene, hyaluronic acid, poly-l-lactic acid, and polyacrylamide gel. Facial fillers are sometimes encountered on radiologic imaging incidentally and should not be mistaken for pathology. Alternatively, patients with facial fillers may undergo imaging specifically to evaluate associated complications, such as infection, overfilling, migration, foreign-body reaction, and scarring. Therefore, it is important to be familiar with the imaging appearances of the various filler materials and their complications. PMID:22837310

  7. Chemical interaction of polyethylene matrix with vegetable fillers in biocomposites

    NASA Astrophysics Data System (ADS)

    Pantyukhov, Petr; Monakhova, Tatiana; Popov, Anatoly; Zykova, Anna

    2016-05-01

    The paper studies the diffusion of low molecular weight components from vegetable fillers into polyethylene matrix during the preparation of biocomposites. In order to identify the diffusible substances a model experiment used where the hexadecane acted as a model of polyethylene. It was determined that polyphenolic compounds and chlorophyll penetrate from vegetable fillers to hexadecane to the maximum extent. There was found a correlation between the amount of polyphenolic compounds diffusible from the fillers to hexadecane and thermal oxidation kinetics of real biocomposites based on polyethylene and vegetable fillers. Thus, it has been assumed the diffusion of polyphenols and chlorophyll from vegetable fillers into polyethylene matrix during the preparation of biocomposites.

  8. Impact of Cooling Rate-Induced Recrystallization on High G Mechanical Shock and Thermal Cycling in Sn-Ag-Cu Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Bieler, Thomas R.; Kim, Choong-Un

    2016-01-01

    The mechanical stability and thermo-mechanical fatigue performance of solder joints with low silver content Sn-1.0Ag-0.5Cu (wt.%) (SAC105) alloy based on different cooling rates are investigated in high G level shock environment and thermal cycling conditions. The cooling rate-controlled samples ranging from 1°C/min to 75°C/min cooling rate, not only show differences in microstructure, where a fine poly-granular microstructure develops in the case of fast cooling versus normal cooling, but also show various shock performances based on the microstructure changes. The fast cooling rate improves the high G shock performance by over 90% compared to the normal cooled SAC105 alloy air-cooling environment commonly used after assembly reflow. The microstructure effect on thermal cycling performance is also discussed, which is analyzed based on the Sn grain orientation, interconnect stability, and solder joint bulk microstructure.

  9. Injectable fillers for facial soft tissue enhancement.

    PubMed

    Sclafani, A P; Romo, T

    2000-01-01

    Soft tissue augmentation materials have been advocated for correction of post-surgical or post-traumatic facial defects, as well as for age-related folds and wrinkles. While autogenous tissues may be the safest option, they require a second operative site. Animal-derived or synthetic materials have been advocated since the late 19th century, and have waxed and waned in popularity. In recent years, we have gained a better understanding of the physical events that occur when material is placed within or below the skin. With this knowledge, we stand at the threshold of a new era, where soft tissue fillers can be designed and customized to suit the individual patient. This article will review the major materials that have been or are now advocated for use as soft tissue fillers, and will detail their relative strengths and weaknesses in order to give the clinician a better perspective when considering a material for soft tissue augmentation. PMID:11802343

  10. Hyaluronic Acid Fillers: Science and Clinical Uses.

    PubMed

    Gutowski, Karol A

    2016-07-01

    Hyaluronic acid soft tissue fillers include a range of products (Juvederm Ultra, Juvederm Ultra Plus, Voluma, Restylane Silk, Restylane, Restylane Lyft, and Belotero Balance) that are used commonly for facial rejuvenation and enhancement of facial features. Although these products are similar in many ways, they are not interchangeable and have unique characteristics that need to be considered. Injection sites and techniques for facial rejuvenation are discussed. PMID:27363762

  11. Bio-inspired Fillers for Mechanical Enhancement

    NASA Astrophysics Data System (ADS)

    Korley, Lashanda

    2012-02-01

    An examination of natural materials has offered a new perspective on the development of multi-functional materials with enhanced mechanical properties. One important lesson from nature is the utilization of composite structures to impart improved mechanical behavior and enhanced functionality using nanofillers. A relatively unexplored expansion of this bio-inspired, nanoscale filler approach to high performance materials is the incorporation of responsive, multi-functional reinforcing elements in polymeric composites with the goal of combining superior mechanical behavior that can be tuned with additional functionality, such as sensing and bioactivity. One approach is the use of self-assembling small molecules that form uniform, one-dimensional nanostructures as an emerging class of filler components. Another pathway toward mechanical enhancement is the incorporation of stimuli-responsive and high-modulus electrospun nanofibers. We have probed the utilization of high-aspect ratio, self-assembled small molecules and responsive electrospun nanofibers as all-organic nanofillers to achieve significant modulus changes within elastomeric matrices. The influence of matrix-filler interactions and the role of hierarchical organization in these nature-inspired composites will be discussed. Potential applications in barrier technology and drug delivery have also been explored.

  12. Advances and Refinement in Hyaluronic Acid Facial Fillers.

    PubMed

    Costa, Christopher R; Kordestani, Reza; Small, Kevin H; Rohrich, Rod J

    2016-08-01

    Fillers temporarily augment deflated or ptotic facial compartments to restore a youthful appearance. Hyaluronic acids predominate the fillers market because of their focal volumization, duration of effect, low incidence of adverse reactions, and reversibility. Being able to properly perform these in-office procedures will ensure safety for patients and provide aesthetically optimal results. This communication provides the senior author's (R.J.R.) stepwise approach to facial aging and deflation with soft-tissue injectable fillers. PMID:27465184

  13. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  14. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  15. Ag/CuO nanoparticles prepared from a novel trinuclear compound [Cu(Imdz)4(Ag(CN)2)2] (Imdz = imidazole) by a pyrolysis display excellent antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Adhikary, Jaydeep; Das, Balaram; Chatterjee, Sourav; Dash, Sandeep Kumar; Chattopadhyay, Sourav; Roy, Somenath; Chen, Jeng-Wei; Chattopadhyay, Tanmay

    2016-06-01

    One copper and two silver containing one hetero tri-nuclear precursor compound [Cu(Imdz)4(Ag(CN)2)2] (1) (Imdz = Imidazole) has been synthesized and characterized by single crystal X-ray diffraction. Simple pyrolysis of the complex at 550 °C for 4 h afforded Ag/CuO nanoparticles (NPs). The synthesized nanoparticles were characterized by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), X-ray powder diffraction (XRPD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photo electron spectroscopy (XPS). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been employed as model microbial species to study the anti-microbial activity of the synthesized NPs. The NPs showed potent anti-microbial activity evidenced from the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values. Very high level of cell uptake and then generation of reactive oxygen species (ROS) are the origin of such strong antimicrobial activity for the NPs. However, the cytotoxicity level of the NPs towards normal human cell is very low.

  16. [Injectable fillers: adverse reactions and their management].

    PubMed

    Rzany, B; Bachmann, F; Nast, A

    2013-02-01

    Injectable fillers are one of the corner stones of aesthetic medicine. In general they are safe to use. However, adverse reactions may occur. These reactions may be acute, subacute or delayed, e.g. after decades. It is important to know these reactions and to be prepared so that they can be adequately treated, in view of the clinical symptoms, the injected material and if applicable other diseases/treatments that might trigger these reactions. Last but not least, all reactions should be reported either to specialized registries or regulatory agencies. Only then we are able to learn more about these reactions and their best possible treatment. PMID:23407758

  17. Enhanced hydrogenation and reduced lattice distortion in size selected Pd-Ag and Pd-Cu alloy nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.; Khan, S. A.

    2013-10-21

    Important correlation between valence band spectra and hydrogenation properties in Pd alloy nanoparticles is established by studying the properties of size selected and monocrystalline Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles. The X-ray photoelectron spectroscopy and elastic recoil detection analysis show that size induced Pd4d centroid shift is related to enhanced hydrogenation with H/Pd ratio of 0.57 and 0.49 in Pd-Ag and Pd-Cu nanoparticles in comparison to reported bulk values of 0.2 and 0.1, respectively. Pd-alloy nanoparticles show lower hydrogen induced lattice distortion. The reduced distortion and higher hydrogen reactivity of Pd-alloy nanoparticles is important for numerous hydrogen related applications.

  18. Dissimilar laser brazing of h-BN and WC-Co alloy in Ar atmosphere without evacuation process

    NASA Astrophysics Data System (ADS)

    Sechi, Y.; Nagatsuka, K.; Nakata, K.

    2012-08-01

    Laser brazing with Ti as an active element in Ag-Cu alloy braze metal has been successfully applied to dissimilar joining of h-BN and WC-Co alloy in Ar (99.999% purity) gas flow atmosphere without any evacuation process. Good wettability of the braze metal with h-BN and WC-Co alloy were confirmed by the observation and structural analysis of the interface by electron probe micro-analysis and scanning acoustic microscopy. The oxidation of titanium was not observed and this showed that the laser brazing with titanium as an active element in braze metal could be performed even in an Ar gas flow atmosphere without an evacuation process using a high-vacuum furnace.

  19. Effect of filler content and size on properties of composites.

    PubMed

    Li, Y; Swartz, M L; Phillips, R W; Moore, B K; Roberts, T A

    1985-12-01

    Two series of dental composites, along with the unfilled resin matrix, were examined to determine the effects of filler level and size on selected properties. Both series were prepared by incorporating a silanated barium borosilicate filler into a visible-light-activated polyphenylene polymethacrylate resin matrix. One series had a filler particle size of 2 microns, with filler levels of 20, 40, 45, 50, and 53% (vol). The second series contained a 15-microns filler in amounts of 20, 40, 50, 60, and 65% (vol). Tests conducted included: depth of cure as evaluated by hardness, water sorption, compressive strength, stress-strain behavior under slow compression, toothbrush abrasion, and wear by hydroxyapatite. Analysis of the data indicated that increased filler levels resulted in increased hardness, compressive strength and stiffness, and decreased water sorption. Also, there was a slight trend toward improved depth of cure. Incorporation of the 2-microns filler decreased the abrasion resistance of the resins to toothbrushing as compared with the unfilled resin, while addition of the 15-microns filler improved resistance. All filled resins exhibited a significant improvement in resistance to wear by hydroxyapatite as compared with the unfilled resin. There was a trend for increased wear with increased filler level. The particle size of the filler appeared to have a moderate influence on the properties. When compared with 15-microns filled resins of the same filler levels, the 2-micron filled series appeared to have inferior properties in terms of depth of cure, compressive strength, water sorption, and resistance to toothbrush abrasion. Properties which were less affected by particle size were hardness, stiffness, and wear resistance to hydroxyapatite. PMID:3001160

  20. Laser welding aluminum without filler metal using continuous wave and pulsed Nd:YAG lasers

    SciTech Connect

    Bransch, H.N.

    1994-12-31

    A problem with automotive aluminum tubing applications, particularly for air conditioning heat exchanger assemblies, is terminating the tube reliably and inexpensively. An alternative to upsetting and mchining threads to the tube end is welding a nut (made from a stronger, easily machinable alloy such as Al 5456 or Al 6061) to lengths of tubing (made from a softer alloy such as Al 3003). Laser welding was investigated in order to reduce heat input and increase process speeds copared to brazing or gas metal arc welding (GMAW). Nd:YAG lasers were selected as beam source because of better absorptivity of the wavelength compared to CO{sub 2} lasers and simplified tooling with fiber optic beam delivery. It wa determined that a pulsed Nd:YAG laser produced 1.0 mm penetration at 0.3 m/min with 400 W average power, and 1.0 mm penetration at 0.75 m/min with 1000 W average power, however, an Al 4047 filler metal was required to eliminate solidification cracking. A 1900 W CW laser could weld the Al 3003 tube to the Al 5456 nut without filler metal, however, there was insufficient penetration (0.25 mm) to meet the mechanical and hermeticity requirements. To enhance penetration, but still reduce the tendency for hot cracking, the 1900 W average power beam was sine wave modulated from 400 W to 3600 W at 250 Hz and usd to weld the Al 3003 directly to the Al 5456. These parameters produced 1.2 mm penetration at 1.2 m/min without significant cracking and without using a filler metal. In addition, the welds passed all hermeticity and tensile strength tests. This combination of materials, joint design, and laser parameters produced tube assemblies that passed a leak check (300 psi nitrogen in 60{degrees}C water for 1 min) and tensile (tube breakage 100 mm from the joint, 5.2 kN tensile strength).

  1. Evaluating Waste Charcoal as Potential Rubber Composite Filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, charcoal in the form of pyrolyzed agricultural products was evaluated as potential carbon-based filler for rubber composites made with carboxylated styrene-butadiene lat...

  2. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists...

  3. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists...

  4. 7 CFR 29.6129 - Farm Filler (Y Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Farm Filler (Y Group). 29.6129 Section 29.6129 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6129 Farm Filler (Y Group). This group consists...

  5. Charcoal byproducts as potential styrene-butadiene rubber composte filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, various renewable charcoals in the form of pyrolyzed agricultural byproducts were evaluted as potential carbon-based filler for rubber composites made with carboxylated s...

  6. Fillers as Signals: Evidence from a Question-Answering Paradigm

    ERIC Educational Resources Information Center

    Walker, Esther J.; Risko, Evan F.; Kingstone, Alan

    2014-01-01

    The present study examined the influence of a human or computer "partner" on the production of fillers ("um" and "uh") during a question and answer task. Experiment 1 investigated whether or not responding to a human partner as opposed to a computer partner results in a higher rate of filler production. Participants…

  7. Use of nut shells as fillers in polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three nutshell fillers including walnut, almond and pistachio nutshell were added to PLA. All the physical properties of samples deteriorated relative to PLA. When subjected to heat pre-treatment, although the physical properties of PLA-filler samples still deteriorated, the extent of deteriorat...

  8. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  9. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  10. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  11. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  12. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  13. Aluminum oxide filler prevents obstructions in tubing during welding

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1966-01-01

    Granular aluminum oxide is used as filler in serpentine tubing while welding the tubing to a flat surface. The filler eliminates obstructions in the tubes formed by molten weld nuggets and is porous enough to allow gases to escape from the welding area.

  14. Filler Wire Development for 2195 Aluminum-Lithium

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cho, Alex; Russell, Carolyn; Zimmerman, Frank

    1998-01-01

    The presentation outline summarizes activities supporting the development of filler wire for 215 aluminum-lithium. The specific objective of the research was to identify an Al-Cu based filler wire chemistry which reduces weld susceptibility in 2195 Aluminum-Lithium welds and repairs welds along with providing adequate mechanical properties. This report is in viewgraph form.

  15. Slot-Filler Categories as Memory Organizers for Young Children.

    ERIC Educational Resources Information Center

    Lucariello, Joan; Nelson, Katherine

    1985-01-01

    Two experiments tested the hypothesis that scripts (event schemas) provide a basis for categorical structures in semantic memory. Significantly better memory and organization were achieved on slot-filler lists than on either taxonomic or complementary lists, suggesting that slot-filler categories are more available in preschoolers' semantic…

  16. Managing Complications of Fillers: Rare and Not-So-Rare.

    PubMed

    Haneke, Eckart

    2015-01-01

    Fillers belong to the most frequently used beautifying products. They are generally well tolerated, but any one of them may occasionally produce adverse side effects. Adverse effects usually last as long as the filler is in the skin, which means that short-lived fillers have short-term side effects and permanent fillers may induce life-long adverse effects. The main goal is to prevent them, however, this is not always possible. Utmost care has to be given to the prevention of infections and the injection technique has to be perfect. Treatment of adverse effects is often with hyaluronidase or steroid injections and in some cases together with 5-fluorouracil plus allopurinol orally. Histological examination of biopsy specimens often helps to identify the responsible filler allowing a specific treatment to be adapted. PMID:26865784

  17. Managing Complications of Fillers: Rare and Not-So-Rare

    PubMed Central

    Haneke, Eckart

    2015-01-01

    Fillers belong to the most frequently used beautifying products. They are generally well tolerated, but any one of them may occasionally produce adverse side effects. Adverse effects usually last as long as the filler is in the skin, which means that short-lived fillers have short-term side effects and permanent fillers may induce life-long adverse effects. The main goal is to prevent them, however, this is not always possible. Utmost care has to be given to the prevention of infections and the injection technique has to be perfect. Treatment of adverse effects is often with hyaluronidase or steroid injections and in some cases together with 5-fluorouracil plus allopurinol orally. Histological examination of biopsy specimens often helps to identify the responsible filler allowing a specific treatment to be adapted. PMID:26865784

  18. Microvascular complications associated with injection of cosmetic facelift dermal fillers

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Prendes, Mark; Chang, Shu-Hong; Wang, Ruikang K.

    2015-02-01

    Minimally-invasive cosmetic surgeries such as injection of subdermal fillers have become very popular in the past decade. Although rare, some complications may follow injections such as tissue necrosis and even blindness. There exist two hypothesis regarding source of these complications both of which include microvasculature. The first hypothesis is that fillers in between the tissue structures and compress microvasculature that causes blockage of tissue neutrition and oxygen exchange in the tissue. In another theory, it is hypothesized that fillers move inside major arteries and block the arteries/veins. In this paper, we study these hypotheses using optical coherence tomography and optical microangiography technologies with different hyaluronic-acid fillers in a mouse ear model. Based on our observations, the fillers eventually block arteries/veins if injected directly into them that eventually causes tissue necrosis.

  19. Filler/ Polycarbosilane Systems as CMC Matrix Precursors

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1998-01-01

    Pyrolytic conversion of polymeric precursors to ceramics is accompanied by loss of volatiles and large volume changes. Infiltration of a low viscosity polymer into a fiber preform will fill small spaces within fiber tows by capillary forces, but create large matrix cracks within large, intertow areas. One approach to minimizing shrinkage and reducing the number of required infiltration cycles is to use particulate fillers. In this study, Starfire allylhydridopolycarbosilane (AHPCS) was blended with a silicon carbide powder, with and without dispersant, using shear mixing. The polymer and polymer/particle interactions were characterized using nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and rheometry. Polymer/particulate slurries and suspensions were used to infiltrate a figidized preform of an eight ply five harness satin CG Nicalon fiber having a dual layer BN/SiC interface coating, and the resulting composites characterized by optical and scanning electron microscopy.

  20. Evaluation of advanced austenitic alloys relative to alloy design criteria for steam service

    SciTech Connect

    Swindeman, R.W.; Maziasz, P.J.

    1991-06-01

    The results are summarized for a task within a six-year activity to evaluate advanced austenitic alloys for heat recovery systems. Commercial, near-commercial, and development alloys were evaluated relative to criteria for metallurgical stability, fabricability, weldability, mechanical properties, and corrosion in fireside and steamside environments. Alloys that were given special attention in the study were 800HT{reg sign}, NF709{reg sign}, HR3C{reg sign}, and a group of 20/25% chromium-30% nickel-iron alloys identified as HT- UPS (high-temperature, ultrafine-precipitation strengthened) alloys. Excellent metallurgical stability and creep strength were observed in the NF709 and HR3C steels that contained niobium and nitrogen. One group of HT-UPS alloys was strengthened by solution treating to temperatures above 1150{degrees}C and subsequent cold or warm working. Test data to beyond 35,000 h were collected. The ability to clad some of the alloys for improved fireside corrosion resistance was demonstrated. Weldability of the alloys was a concern. Hot cracking and heat-affected-zone (HAZ) liquation cracking were potential problems in the HR3C stainless steel and HT-UPS alloys, and the use of dissimilar metal filler wire was required. By the reduction of phosphorous content and selection of either a nickel-base filler metal or alloy 556 filler metal, weldments were produced with minimum HAZ cracking. The major issues related to the development of the advanced alloys were identified and methods to resolve the issues suggested. 56 refs., 19 figs., 8 tabs.

  1. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  2. Wear of nanofilled dental composites at varying filler concentrations.

    PubMed

    Lawson, Nathaniel C; Burgess, John O

    2015-02-01

    The aim of this study is to examine the effects of nanofiller concentration on the mechanisms of wear of a dental composite. Nanofilled composites were fabricated with a bisphenol A glycidyl methacrylate polymer and 40 nm SiO2 filler particles at three filler loads (25, 50, and 65 wt %). The elastic modulus, flexural strength, and hardness of the composites and the unfilled resin were measured. The materials (n = 8) were tested in the modified wear testing device at 50,000, 100,000, and 200,000 cycles with 20N force at 1 Hz. A 33% glycerine lubricant and stainless steel antagonist were used. The worn composite and antagonist surfaces were analyzed with noncontact profilometry and SEM. The volumetric wear data indicated that there are significant differences between filler concentrations and cycles (p < 0.05). A trend was noted that increasing filler content beyond 25% decreased the wear resistance of the composites. Increasing filler content increased hardness and modulus and increased flexural strength up to 50% fill. SEM evaluation of the worn specimens indicated that the resin and 25% filled materials exhibited cracking and failed by fatigue and the 50 and 65% filled materials exhibited microcutting and failed by abrasive wear. Based on the results of this study, composite manufacturers are recommended to use a filler concentration between 25 and 50% when using nanosized filler particles. PMID:24909664

  3. Properties of microfilled composite resins as influenced by filler content.

    PubMed

    St Germain, H; Swartz, M L; Phillips, R W; Moore, B K; Roberts, T A

    1985-02-01

    Two series of composite resins were prepared with a light-cured urethane dimethacrylate matrix to which varying amounts of two types of silanated silica particles were added. One series contained volume fractions ranging from 15.8 to 28.8% silica particles of 20 nm in diameter (Type I filler) and the other series volume fractions of from 24 to 49.4% of an agglomerated silica particle of 40 nm in diameter (Type II filler). Tests were conducted to determine the effect of filler level on: depth of cure as determined by hardness measurements; color stability in both UV light and water; water sorption with time; hardness; compressive strength; strain behavior in slow compression; and resistance to toothbrush abrasion and wear by hydroxyapatite. Analysis of the data obtained for these two microfilled series indicate that increased filler levels result in trends for increased depth of cure, color stability, hardness, compressive strength, and stiffness, while water sorption and resistance to both toothbrush abrasion and wear by hydroxyapatite were reduced. These trends were more pronounced for the Type II filler series than for the Type I filler series. However, there was a greater differential in filler levels within the Type II series than within the Type I series. PMID:2982935

  4. In vitro wear of composite with varied cure, filler level, and filler treatment.

    PubMed

    Condon, J R; Ferracane, J L

    1997-07-01

    For the clinical wear of composite filing materials to be reduced, compositional factors such as degree of cure, filler level, and silanation level should be optimized. An oral-wear-stimulating machine was used to explore the effects of these factors on abrasion and attrition wear as well as on opposing enamel wear. The composites were made from Sr glass (1-2 micron avg) and a 50/50 Bis-GMA/TEGDMA resin. Series I (A-D, E) were light-cured (Triad II) for 9, 12, 25, and 40 sec/side to produce degree of cure (DC) as measured by FTIR of 56, 60, 61, and 63%, respectively. E received an additional heat cure (120 degrees C for 10 min) to reach a DC of 66%. Series II (D, F-I) were filled to 62, 53, 48, 37, and 28 vol%, respectively. In series III (D, J-M), the portion of fillers treated with a silane coupler (MPS) was 100, 80, 60, 40, and 20%, respectively. Samples were cycled 50,000 times against an enamel antagonist in a poppy seed/PMMA slurry in the oral wear simulator to produce abrasion (load = 20 N) and attrition (load = 70 N) simultaneously. Wear depth (micron: n = 5) was measured by profilometry. Results for each series were analysed by ANOVA/Turkey's (p < or = 0.05). The wear depths did reflect cure values, though only the abrasion difference for E < A was significant. Greater wear was correlated with lower filler levels (r2 = 0.88; p < 0.05), significantly increasing below 48 vol% (G). Wear increased linearly as the percent of silane-treated fillers was reduced (r2 = 0.99; p < 0.05). Abrasion and attrition did not differ significantly for any composite. Wear of the opposing enamel was largely unchanged by these factors. Compositional factors including degree of cure, filler level, and silanation directly affected the wear resistance of dental composites evaluated in an oral wear simulator. PMID:9207774

  5. Copper-phosphorus alloys offer advantages in brazing copper

    SciTech Connect

    Rupert, W.D.

    1996-05-01

    Copper-phosphorus brazing alloys are used extensively for joining copper, especially refrigeration and air-conditioning copper tubing and electrical conductors. What is the effect of phosphorus when alloyed with copper? The following are some of the major effects: (1) It lowers the melt temperature of copper (a temperature depressant). (2) It increases the fluidity of the copper when in the liquid state. (3) It acts as a deoxidant or a fluxing agent with copper. (4) It lowers the ductility of copper (embrittles). There is a misconception that silver improves the ductility of the copper-phosphorus alloys. In reality, silver added to copper acts in a similar manner as phosphorus. The addition of silver to copper lowers the melt temperature (temperature depressant) and decreases the ductility. Fortunately, the rate and amount at which silver lowers copper ductility is significantly less than that of phosphorus. Therefore, taking advantage of the temperature depressant property of silver, a Ag-Cu-P alloy can be selected at approximately the same melt temperature as a Cu-P alloy, but at a lower phosphorus content. The lowering of the phosphorus content actually makes the alloy more ductile, not the silver addition. A major advantage of the copper-phosphorus alloys is the self-fluxing characteristic when joining copper to copper. They may also be used with the addition of a paste flux on brass, bronze, and specialized applications on silver, tungsten and molybdenum. Whether it is selection of the proper BCuP alloy or troubleshooting an existing problem, the suggested approach is a review of the desired phosphorus content in the liquid metal and how it is being altered during application. In torch brazing, a slight change in the oxygen-fuel ratio can affect the joint quality or leak tightness.

  6. The filler powders laser welding of ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Liang, Shenyong; Lei, Yucheng; Zhu, Qiang

    2015-01-01

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y-M-O and TiC), submicron particles (Y-M-O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  7. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  8. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  9. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  10. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect

    Liu, Fei; Wang, Hongyang; Liu, Liming

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  11. Dielectric properties of inorganic fillers filled epoxy thin film

    SciTech Connect

    Norshamira, A. Mariatti, M.

    2015-07-22

    The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe{sub 2}O{sub 3}) and Titanium Dioxide (TiO{sub 2}) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types of fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.

  12. Hyaluronic acid filler injections with a 31-gauge insulin syringe.

    PubMed

    Lim, Adrian C

    2010-02-01

    Hyaluronic acid gel is a commonly used skin/soft tissue filler in cosmetic dermatology. Hyaluronic acid fillers are packaged in proprietary luer-lock syringes that can be injected via a 30-gauge, 27-gauge or larger diameter needle depending on the consistency of the gel. A method of decanting proprietary hyaluronic acid fillers into multiple 31-gauge insulin syringes for injection is described. The use of a 31-gauge insulin syringe for filler injections can potentially enhance the injection process through more accurate product delivery and placement. This has the potential to produce a more balanced and symmetrical outcome for patients. Additional benefits include less injection pain, less bleeding/bruising and higher levels of patient satisfaction. PMID:20148851

  13. Polyacrylamide soft tissue filler nodule mimicking a mucoepidermoid carcinoma.

    PubMed

    Karagozoglu, K H; van der Waal, I

    2008-06-01

    A 39-year-old woman is described in whom histopathologic examination of a nodule of the cheek mucosa was suggestive of a mucoepidermoid carcinoma. Only after the availability of a wider surgical specimen was a distinct foreign body reaction to polyacrylamide soft tissue filler observed. On inquiry, the patient admitted to having this filler injected into her nasolabial folds 3 years previously. PMID:18313268

  14. Legal ramifications of off-label filler use.

    PubMed

    Goldberg, David J

    2006-01-01

    Dermal fillers are often used in an off-label manner. Most off-label use is not only legal, but represents an appropriate physician standard of care. This chapter will first explore what is and what is not considered off-label. Then the chapter will explore manufacturer promotion of off-label use of both drugs and devices. Finally, the legal ramifications of off-label dermal filler use will be discussed. PMID:16784518

  15. Natural Rubber-Filler Interactions: What Are the Parameters?

    PubMed

    Chan, Alan Jenkin; Steenkeste, Karine; Canette, Alexis; Eloy, Marie; Brosson, Damien; Gaboriaud, Fabien; Fontaine-Aupart, Marie-Pierre

    2015-11-17

    Reinforcement of a polymer matrix through the incorporation of nanoparticles (fillers) is a common industrial practice that greatly enhances the mechanical properties of the composite material. The origin of such mechanical reinforcement has been linked to the interaction between the polymer and filler as well as the homogeneous dispersion of the filler within the polymer matrix. In natural rubber (NR) technology, knowledge of the conditions necessary to achieve more efficient NR-filler interactions is improving continuously. This study explores the important physicochemical parameters required to achieve NR-filler interactions under dilute aqueous conditions by varying both the properties of the filler (size, composition, surface activity, concentration) and the aqueous solution (ionic strength, ion valency). By combining fluorescence and electron microscopy methods, we show that NR and silica interact only in the presence of ions and that heteroaggregation is favored more than homoaggregation of silica-silica or NR-NR. The interaction kinetics increases with the ion valence, whereas the morphology of the heteroaggregates depends on the size of silica and the volume percent ratio (dry silica/dry NR). We observe dendritic structures using silica with a diameter (d) of 100 nm at a ∼20-50 vol % ratio, whereas we obtain raspberry-like structures using silica with d = 30 nm particles. We observe that in liquid the interaction is controlled by the hydrophilic bioshell, in contrast to dried conditions, where hydrophobic polymer dominates the interaction of NR with the fillers. A good correlation between the nanoscopic aggregation behavior and the macroscopic aggregation dynamics of the particles was observed. These results provide insight into improving the reinforcement of a polymer matrix using NR-filler films. PMID:26488560

  16. Identification and Complications of Cosmetic Fillers: Sonography First.

    PubMed

    Wortsman, Ximena

    2015-07-01

    Cosmetic fillers are frequently used these days for enhancing beauty and to treat wrinkles or sagging skin. However, information on the history of injections may be difficult to obtain, and there is a growing number of reports on complications with these agents. In contrast to other imaging techniques, sonography has been successfully used for detecting and identifying common types of cosmetic fillers and has become the first-line imaging modality to deal with these exogenous components. PMID:26112618

  17. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Sheppard, C. H.

    1981-01-01

    The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.

  18. Hyaluronic acid gel fillers in the management of facial aging

    PubMed Central

    Brandt, Fredric S; Cazzaniga, Alex

    2008-01-01

    Time affects facial aging by producing cellular and anatomical changes resulting in the consequential loss of soft tissue volume. With the advent of new technologies, the physician has the opportunity of addressing these changes with the utilization of dermal fillers. Hyaluronic acid (HA) dermal fillers are the most popular, non-permanent injectable materials available to physicians today for the correction of soft tissue defects of the face. This material provides an effective, non invasive, non surgical alternative for correction of the contour defects of the face due to its enormous ability to bind water and easiness of implantation. HA dermal fillers are safe and effective. The baby-boomer generation, and their desire of turning back the clock while enjoying an active lifestyle, has expanded the popularity of these fillers. In the US, there are currently eight HA dermal fillers approved for commercialization by the Food and Drug Administration (FDA). This article reviews the innate properties of FDA-approved HA fillers and provides an insight on future HA products and their utilization for the management of the aging face. PMID:18488885

  19. Thermally activated retainer means utilizing shape memory alloy

    NASA Technical Reports Server (NTRS)

    Grimaldi, Margaret E. (Inventor); Hartz, Leslie S. (Inventor)

    1993-01-01

    A retainer member suitable for retaining a gap filler placed in gaps between adjacent tile members is presented. One edge of the retainer member may be attached to the gap filler and another edge may be provided with a plurality of tab members which in an intermediate position do not interfere with placement or removal of the gap filler between tile members. The retainer member may be fabricated from a shape memory alloy which when heated to a specified memory temperature will thermally activate the tab members to predetermined memory positions engaging the tile members to retain the gap filler in the gap. This invention has particular application to the thermal tiles on space vehicles such as the Space Shuttle Orbiter.

  20. INCOLOY alloy 803, a cost effective alloy for high temperature service

    SciTech Connect

    Ganesan, P.; Plyburn, J.A.; Tassen, C.S.

    1995-12-31

    INCOLOY alloy 800 was the first of the 800 series of alloys invented by Inco Alloys International in the 1940`s. Because of its excellent oxidation and carburization resistance as well as high temperature creep strength, alloy 800 found uses for many applications such as heat treating hardware, petrochemical processing, home appliances, food processing, industrial heating, super-heater and re-heater tubing and soon became the workhorse material for the chemical processing industries. Alloy 803 has superior resistance to oxidation and carburization without sacrificing mechanical properties. In this paper the history of alloy 800 with introductions of alloys 800H and 800HT and the differences in properties and chemical compositions among them will be described. The development of alloy 803 for petrochemical applications is also covered. The performance of alloy 803 in cyclic oxidation, carburization and sulfidation tests will be presented and compared with several alloys including alloy HPM. The mechanical properties of alloy 803 including room temperature and high temperature tensile data and stress rupture and creep strengths up to 1,093 C (2,000 F) will be presented. The choice of available filler metals and welding electrodes to join alloy 803, using gas metal arc welding and shielded metal arc welding processes, will also be presented.

  1. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production.

    PubMed

    Li, Ting; Fan, Jun; Chen, Wensen; Shu, Jiayan; Qian, Xueren; Wei, Haifeng; Wang, Qingwen; Shen, Jing

    2016-09-20

    The sustainable, efficient use of renewable bio-based additives in the production of various materials fits well into the concept of sustainability. Here, the concept of coaggregation of mineral filler particles and starch granules for improving filler-fiber interaction in paper-based cellulosic networks is presented. Coaggregation of precipitated calcium carbonate filler particles and uncooked, unmodified corn starch granules by cationic polyacrylamide (a cationic high molecular weight polymer flocculant) in combination with bentonite (an anionic microparticle) prior to addition to cellulosic fiber slurry delivered enhanced filler bondability with cellulosic fibers. For instance, under the conditions studied, preaggregation resulted in an increase in filler bondability factor from 9.24 to 15.21 at starch dosage of 1% (on the basis of the dry weight of papermaking stock). The swelling and gelatinization of the starch granules in starch-filler preaggregates or hybrids enabled the "bridging" of the gaps in cellulosic networks, leading to structural consolidation and strength enhancement. PMID:27261726

  2. Does filler surface chemistry impact filler dispersion, polymer dynamics and conductivity in nanofilled solid polymer electrolytes?

    NASA Astrophysics Data System (ADS)

    Ganapatibhotla, Lalitha; Maranas, Janna

    2012-02-01

    We study the impact of nanofiller surface chemistry on filler dispersion, polymer dynamics and ionic conductivity in acidic α-Al2O3 filled PEO+LiClO4 solid polymer electrolytes (SPEs).SPEs are the key to light-weight and high energy density rechargeable Li ion batteries but suffer from low room temperature ionic conductivity. Addition of ceramic nanofillers improves conductivity of SPEs and their surface chemistry influences extent of conductivity enhancement. The ionic conductivity of acidic α-Al2O3 filled SPE is enhanced for salt concentrations at and below eutectic, while neutral γ-Al2O3 filler enhances conductivity only at eutectic composition. Li ion motion is coupled to segmental mobility of polymer and we study how this is affected by addition of α-Al2O3 using quasi-elastic neutron scattering. Aggregation extent of nanoparticles in SPE matrix, a less explored factor in filled SPEs, can affect segmental mobility of polymer. This can vary with surface chemistry of particles and we quantify this using small angle neutron scattering. All measurements are performed as a function of Li concentration, nanoparticle loading and temperature.

  3. Efficient determination of alloy ground-state structures

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Shitara, Kazuki; Tanaka, Isao

    2014-11-01

    We propose an efficient approach to accurately finding the ground-state structures in alloys based on the cluster expansion method. In this approach, a small number of candidate ground-state structures are obtained without any information regarding the energy. To generate the candidates, we employ the convex hull constructed from the correlation functions of all possible structures by using an efficient algorithm. This approach is applicable to not only simple lattices, but also complex lattices. First, we evaluate the convex hulls for binary alloys with four types of simple lattice. Then we discuss the structures on the vertices. To examine the accuracy of this approach, we perform a set of density functional theory calculations and the cluster expansion for the Ag-Au alloy and compare the formation energies of the vertex structures with those of all possible structures. As applications, the ground-state structures of the intermetallic compounds CuAu, CuAg, CuPd, AuAg, AuPd, AgPd, MoTa, MoW, and TaW are similarly evaluated. Finally, the energy distribution is obtained for different cation arrangements in the MgAl2O4 spinel, for which long-range interactions are essential for the accurate description of its energetics.

  4. Effect of fillers on the dielectric properties of polymers

    SciTech Connect

    Frost, N.E.; McGrath, P.B.; Burns, C.W.

    1996-12-31

    The effect on the permittivity of two different base materials was investigated with two types of fillers. Several theories were investigated to determine which most closely predicted the permittivity of the composites. The fillers utilized were a low permittivity material, alumina, and a high permittivity compound, barium titanate. The base materials investigated were epoxy and silicon rubber. It was found that the permittivity of the alumina filled composite was most closely predicted by the formulae which considered the permittivity of the filler in the calculation, i.e., the Log Law, Rayleigh`s formula, and Effective Medium Theory. The permittivity of the barium titanate filled materials were most closely predicted by the percolative theories, i.e., Bruggeman`s formula and the Effective Medium Theory, as these materials were demonstrating percolative tendencies. The effect of the base material selection on the loss tangent of the filled material was also investigated. It was found that the epoxy samples exhibited little change in the loss tangent over the range of filler levels tested, whereas the silicon rubber samples showed increasing loss tangent with increasing filler level for both the alumina and barium titanate filled samples.

  5. Solidification behavior of austenitic stainless steel filler metals

    SciTech Connect

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + ..gamma.. ..-->.. ..gamma.. + delta, and for type 310 stainless steel filler metal, L ..-->.. L + ..gamma.. ..-->.. ..gamma... In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions.

  6. An investigation of tendon sheathing filler migration into concrete

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1998-03-01

    During some of the inspections at nuclear power plants with prestressed concrete containments, it was observed that the containments has experienced leakage of the tendon sheathing filler (i.e., streaks). The objective of this activity was to provide an indication of the extent of tendon sheathing filler leakage into the concrete and its affects on concrete properties. Literature was reviewed and concrete core samples were obtained from the Trojan Nuclear Plant and tested. The literature primarily addressed effects of crude or lubricating oils that are known to cause concrete damage. However, these materials have significantly different characteristics relative to the materials used as tendon sheathing fillers. Examination and testing of the concrete cores indicated that the appearance of tendon sheathing filler on the concrete surface was due to leakage from the conduits and its subsequent migration through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks and there was no perceptible movement into the concrete. Results of compressive strength testing indicated that the concrete quality was consistent in the containment and that the strength had increased over 40% in 25.4 years relative to the average compressive strength at 28-days age.

  7. Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics.

    PubMed

    Nugroho, Ferry A A; Iandolo, Beniamino; Wagner, Jakob B; Langhammer, Christoph

    2016-02-23

    Mixing different elements at the nanoscale to obtain alloy nanostructures with fine-tuned physical and chemical properties offers appealing opportunities for nanotechnology and nanoscience. However, despite widespread successful application of alloy nanoparticles made by colloidal synthesis in heterogeneous catalysis, nanoalloy systems have been used very rarely in solid-state devices and nanoplasmonics-related applications. One reason is that such applications require integration in arrays on a surface with compelling demands on nanoparticle arrangement, uniformity in surface coverage, and optimization of the surface density. These cannot be fulfilled even using state-of-the-art self-assembly strategies of colloids. As a solution, we present here a generic bottom-up nanolithography-compatible fabrication approach for large-area arrays of alloy nanoparticles on surfaces. To illustrate the concept, we focus on Au-based binary and ternary alloy systems with Ag, Cu, and Pd, due to their high relevance for nanoplasmonics and complete miscibility, and characterize their optical properties. Moreover, as an example for the relevance of the obtained materials for integration in devices, we demonstrate the superior and hysteresis-free plasmonic hydrogen-sensing performance of the AuPd alloy nanoparticle system. PMID:26828308

  8. Effect of ZrO2 Nanoparticles on the Microstructure of Al-Si-Cu Filler for Low-Temperature Al Brazing Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung-Hwan; Jung, Do-Hyun; Jung, Jae-Pil

    2016-01-01

    In this study, the effect of ZrO2 nanoparticles on Al-12Si-20Cu alloy has been studied as a filler metal for aluminum brazing. The microstructural and thermal characterizations are performed using X-ray diffraction (XRD), scanning electron microscope (SEM), and differential thermal analysis (DTA). The intermetallic compound (IMC) phases are identified by the energy-dispersive spectroscopy analysis coupled with the SEM. The filler spreading test is performed according to JIS-Z-3197 standard. XRD and SEM analyses confirm the presence of Si particles, the CuAl2 ( θ) intermetallic, and the eutectic structures of Al-Si, Al-Cu, and Al-Si-Cu in the Al matrix in the monolithic and composite samples. It is observed that when the ZrO2 is added in the alloy, the CuAl2 IMCs and Si particles are found to be dispersed uniformly in the Al matrix up to 0.05 wt pct ZrO2. DTA results show that the liquidus temperature of Al-12Si-20Cu filler metal is dropped from ~806.78 K to 804.6 K (533.78 °C to 531.6 °C) with a lowering of 2 K (2 °C) in liquidus temperature, when the amount of ZrO2 is increased up to 0.05 wt pct. It is also shown that the presence of ZrO2 nanoparticles in the filler metal has no deleterious effect on wettability up to 0.05 wt pct of ZrO2. The ultimate tensile strength and elongation percentage are also found to improve with the addition of ZrO2 nanoparticles in the Al-12Si-20Cu alloy.

  9. Nanocarbon filler particles in polymer matrix - Nanosized dielectric probe

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vitaliy G.; Polschikov, Sergey V.; Nedorezova, Polina M.; Klyamkina, Alla N.; Aladyshev, Alexander M.

    2014-05-01

    Composite materials of polypropylene, graphene nanoplatelets (GNP) or fullerene C60 were synthesized by in situ polymerization. GNP particles consist of 3 - 5 graphene layers and have aspect ratio 40. In composites with pristine GNP particles their aspect ratio is 110, whereas ultrasonic processing reduces it to 40 - 50. This change of aspect ratio of filler particles and their aggregates results in different properties of composites with pristine and sonicated GNP. Percolation threshold for composites with pristine GNP is 0.25% vol. In composites with sonicated GNP it is 2-3% vol. This is due to reduction in the size of filler particles aggregates and more uniform distribution of particles in polymer matrix after ultrasonic treatment. The presence of nanocarbon filler (GNP or fullerene) makes α-transition, associated with the glass transition of the amorphous phase of polypropylene, clearly resolved. Its intensity increases with the concentration of nanofiller, which acts as a dielectric probe.

  10. Facial volume augmentation in 2014: overview of different filler options.

    PubMed

    Luebberding, Stefanie; Alexiades-Armenakas, Macrene

    2013-12-01

    Volume loss is considered to be one of the major contributors to facial aging. Therefore, the restoration of facial volume and contour changes has become an important treatment approach in aesthetic dermatology in recent years. In October 2013 the FDA approved for the first time ever an injectable dermal filler for the augmentation of age-related volume loss. This low-molecular-weight (LMW) 20 mg/ml hyaluronic acid (HA) filler competes on the market with poly-L-lactic acid (PLLA) and calcium hydroxylapatite (CaHA), that have been used off-label for many years to restore age-related volume loss. The safety profile and efficacy of all three injectables has been intensively evaluated in innumerous clinical studies. However, each volume filler has its benefits and disadvantages, including usage, method of action and duration of effect that are reviewed in this article. PMID:24301234

  11. Mycobacterium chelonae Facial Infections Following Injection of Dermal Filler

    PubMed Central

    Rodriguez, Jan M.; Xie, Yingda L.; Winthrop, Kevin L.; Schafer, Sean; Sehdev, Paul; Solomon, Joel; Jensen, Bette; Toney, Nadege C.; Lewis, Paul F.

    2015-01-01

    A cluster of 3 facial Mycobacterium chelonae infections occurred after cosmetic dermal filler injections at a plastic surgery clinic. Pulsed-field gel electrophoresis showed that M chelonae isolated from the clinic tap water were identical to the patient wound isolates. Review of injection procedures identified application of nonsterile ice to the skin prior to injection as a possible source of M chelonae. Surveys of regional laboratories and a national plastic surgery listserv identified no other cases related to the injection of this brand of dermal filler. This is the first report of cutaneous M chelonae infections following the injection of dermal fillers. It adds to a growing body of literature on postinjection M chelonae infections and reinforces the importance of optimal skin disinfection steps prior to percutaneous procedures. PMID:23335647

  12. Effect of filler size on wear resistance of resin cement.

    PubMed

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test. PMID:14530920

  13. Dermal Filler Injection: A Novel Approach for Limiting Infarct Expansion

    PubMed Central

    Ryan, Liam P.; Matsuzaki, Kanji; Noma, Mio; Jackson, Benjamin M.; Eperjesi, Thomas J.; Plappert, Theodore J.; St. John-Sutton, Martin G.; Gorman, Joseph H.; Gorman, Robert C.

    2011-01-01

    Background Early infarct expansion after coronary occlusion compromises contractile function in perfused myocardial regions and promotes adverse long-term left ventricular (LV) remodeling. We hypothesized that injection of a tissue-expanding dermal filler material into a myocardial infarction (MI) would attenuate infarct expansion and limit LV remodeling. Methods Fifteen sheep were subjected to an anteroapical MI involving approximately 20% of the LV followed by the injection of 1.3 mL of a calcium hydroxyapatite–based dermal filler into the infarct. Real-time three-dimensional echocardiography was performed at baseline, 30 minutes after MI, and 15 minutes after injection to assess infarct expansion. Sixteen additional sheep were subjected to the same infarction and followed echocardiographically and hemodynamically for 4 weeks after MI to assess chronic remodeling. Eight animals had injection with dermal filler as described above immediately after MI, and 8 animals were injected with an equal amount of saline solution. Results All animals exhibited infarct expansion soon after coronary occlusion. The regional ejection fraction of the apex became negative after infarction, consistent with systolic dyskinesia. Injection of the dermal filler converted the apical wall motion from dyskinetic to akinetic and resulted immediately in significant decreases in global, regional, and segmental LV volumes. Chronically, relative to saline control, dermal filler injection significantly reduced LV end-systolic volume (62.2 ± 3.6 mL versus 44.5 ± 3.9 mL; p < 0.05) and improved global ejection fraction (0.295 ± 0.016 versus 0.373 ± 0.017; p < 0.05) at 4 weeks after infarction. Conclusions Injection of an acellular dermal filler into an MI immediately after coronary occlusion reduces early infarct expansion and limits chronic LV remodeling. PMID:19101288

  14. Lower Face: Clinical Anatomy and Regional Approaches with Injectable Fillers.

    PubMed

    Braz, André; Humphrey, Shannon; Weinkle, Susan; Yee, G Jackie; Remington, B Kent; Lorenc, Z Paul; Yoelin, Steve; Waldorf, Heidi A; Azizzadeh, Babak; Butterwick, Kimberly J; de Maio, Mauricio; Sadick, Neil; Trevidic, Patrick; Criollo-Lamilla, Gisella; Garcia, Philippe

    2015-11-01

    The use of injectable fillers enables facial sculpting through treatment of volume depletion and modeling of facial contours. Injectable fillers are among the most frequently performed minimally invasive cosmetic procedures.However, treatment of the lower third of the face can be challenging and requires expertise in facial anatomy. In this article, the authors provide a comprehensive review of the anatomy of the lower third of the face, highlighting danger zones. In addition, the authors describe their preferred approach and detailed technique used in the treatment of each specific area, namely the jawline, prejowl sulcus, melomental folds, and lips. PMID:26441104

  15. Volume correction in the aging hand: role of dermal fillers.

    PubMed

    Rivkin, Alexander Z

    2016-01-01

    The hands, just like the face, are highly visible parts of the body. They age at a similar rate and demonstrate comparable changes with time, sun damage, and smoking. Loss of volume in the hands exposes underlying tendons, veins, and bony prominences. Rejuvenation of the hands with dermal fillers is a procedure with high patient satisfaction and relatively low risk for complications. This study will review relevant anatomy, injection technique, clinical safety, and efficacy of dermal filler volumization of the aging hand. PMID:27621659

  16. Injectable Filler Techniques for Facial Rejuvenation, Volumization, and Augmentation.

    PubMed

    Bass, Lawrence S

    2015-11-01

    Multiple fillers are available: various hyaluronic acid products, calcium hydroxylapatite, and a few others that are biocompatible with good duration and a variety of mechanical properties allowing intradermal, subdermal, and supraperiosteal injection. Facial features can be reshaped with great control using these fillers. Aging changes, including facial volume loss, can be well-corrected. These treatments have become a mainstay of rejuvenation in the early facial aging patient. Injection technique is critical to obtaining excellent results. Threading, fanning, cross-hatching, bleb, and pillar techniques must be mastered. Technical execution can only measure up to, but not exceed, the quality of the aesthetic analysis. PMID:26505544

  17. Volume correction in the aging hand: role of dermal fillers

    PubMed Central

    Rivkin, Alexander Z

    2016-01-01

    The hands, just like the face, are highly visible parts of the body. They age at a similar rate and demonstrate comparable changes with time, sun damage, and smoking. Loss of volume in the hands exposes underlying tendons, veins, and bony prominences. Rejuvenation of the hands with dermal fillers is a procedure with high patient satisfaction and relatively low risk for complications. This study will review relevant anatomy, injection technique, clinical safety, and efficacy of dermal filler volumization of the aging hand. PMID:27621659

  18. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  19. Welding low thermal expansion alloys for aircraft composite tooling

    SciTech Connect

    Otte, W.H.; O`Donnell, D.B.; Kiser, S.D.; Cox, C.W.

    1996-07-01

    To save weight in commercial aircraft and help military jets evade radar detection, aircraft designers specify the use of composite materials. These new designs have resulted in the use of low-expansion materials for aircraft composite tooling because they keep their dimensions during curing. However, the Fe-Ni low-expansion alloys have long presented problems during welding. When matching composition filler metals were used to match the coefficient of thermal expansion (CTE), cracking problems occurred. Filler metal compositional changes to eliminate cracking disturbed the CTE match of the weld with the base metal. A recently developed welding consumable appears to eliminate those problems. With the development of this new filler metal, high-quality crack-free welds can now be obtained with high deposition rates. Since there is a more closely-matched CTE, weldments and tools should provide longer service because of minimal effects from thermal fatigue. There have been reports of vacuum leaks in tools using the Mn-Ti filler metal, which could be directly attributable to the mismatching CTE. Using Nilo filler metal CF36 eliminates weld hot-cracking problems and provides good thermal fatigue resistance due to its excellent CTE match with the base metal, Nilo alloy 36.

  20. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions.

    PubMed

    Huang, Xiujie; Shen, Jing; Qian, Xueren

    2013-10-15

    To mitigate the negative effect of filler addition on paper strength and improve filler retention, filler modification with hydrogen bonding polymers (e.g., starch) or their composites is an interesting research topic. Differing from previous reports, the concept related to the deposition of starch/oleic acid complexes on precipitated calcium carbonate (PCC) with the aid of calcium ions was demonstrated. The introduction of calcium ions resulted in effective starch deposition. As a result of filler modification, filler retention and the tensile strength of the filled paper were simultaneously improved essentially due to the aggregation of PCC particles in filler modification process as well as improved filler bondability. The concept demonstrated in this brief study may provide an alternative approach to filler bondability enhancement for improved papermaking performances. PMID:23987430

  1. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    PubMed

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper. PMID:26572417

  2. Influence of the concentration and disperity of the filler on the creep of polymer composite

    SciTech Connect

    Aniskevich, K.; Khristova, Yu.

    1995-09-01

    The aim of this work is to study the effect of the concentration and dispersity of particles of filler on the creep of polymer composite. As an example, we study a polyester resin with a cement filler.

  3. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  4. Studies of localized corrosion in welded aluminum alloys by the scanning reference electrode technique

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Nunes, A. C.

    1995-01-01

    Localized corrosion in welded samples of 2219-T87 Al alloy (2319 filler), 2090 Al-Li alloy (4043 and 2319 fillers), and 2195 Al-Li alloy (4043 and 2319 fillers) has been investigated using the relatively new scanning reference electrode technique. The weld beads are cathodic in all cases, leading to reduced anode/cathode ratios. A reduction in anode/cathode ratio leads to an increase in the corrosion rates of the welded metals, in agreement with results obtained in previous electrochemical and stress corrosion studies involving the overall corrosion rates of welded samples. The cathodic weld beads are bordered on both sides by strong anodic regions, with high propensity for corrosion.

  5. Fillers used in papermaking. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning organic and inorganic fillers used in paper products and their effect on the properties and manufacture of paper. The citations examine a variety of fillers, including natural calcium carbonate, bentonite, polymeric fillers, titanium dioxide, calcium carbonate, calcium silicate, barium sulphate, agalite, talc, clay, kaolin, limestone, mica, and ash. Filler effects on thermal strength, coloring, acidity, surface coatings, porosity, production efficiency, absorption, opacity, printability, and deposit control are presented. Also discussed are the microanalysis of fillers, recovery of fillers from wastes, availability of filler and pigment raw materials, and the determination of filler content in paper products. (Contains 250 citations and includes a subject term index and title list.)

  6. Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Bowles, K. J.

    1980-01-01

    A variety of matrix fillers were tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide lime glass, lead glass, and aluminum. Boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composites containing no filler.

  7. Use of hyaluronic acid fillers for the treatment of the aging face

    PubMed Central

    Gold, Michael H

    2007-01-01

    Hyaluronic acid fillers have become popular soft tissue filler augmentation agents over the past several years. They have helped revolutionize the filler market with a number of new products available for use for our patients. The purpose of this manuscript is to review the characteristics of the HA fillers and to review each of the current products currently available for use in the US. PMID:18044187

  8. OPTIMIZING THE FRACTIONATION OF SOY PROTEIN ISOLATE FOR USE AS A BIOMATERIAL FILLER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly all rubber used today utilizes filler materials for strength and various other application-specific properties. The most common filler on the market today is carbon black, which is produced by the burning of petroleum. Using renewable biomaterials as fillers would reduce dependence on petro...

  9. Slot-Filler and Conventional Category Organisation in Young Korean Children.

    ERIC Educational Resources Information Center

    Yu, Younoak; Nelson, Katherine

    1993-01-01

    In two experiments, five year olds produced more instances in slot-filler categories than taxonomic categories, and eight year olds produced more instances in taxonomic categories than slot-filler categories; for five year olds, slot-filler categories led to superior recall and shorter response latencies than did taxonomic categories. (BB)

  10. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    SciTech Connect

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  11. Internal Filler-Wire Feed For Arc Welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Dyer, Gerald E.

    1990-01-01

    Tungsten electrode for gas/tungsten arc welding contains lengthwise channel for feeding filler wire to weld joint. Channel makes it unnecessary to feed wire through guides outside electrode, conserving valuable space near weld and protects wire from deformation by contact with other parts in vicinity of weld. Helpful in robotic or automatic welding.

  12. Photosensitive filler minimizes internal stresses in epoxy resins

    NASA Technical Reports Server (NTRS)

    Dillon, J. N.

    1967-01-01

    Photosensitive filler is added to curable epoxy resins to minimize stress from internal shrinkage during curing or polymerization. Cinnamic acid resins and cinnamal ketones may be added in the amount of 1 to 3 percent by weight of the resin mixture.

  13. Gap Filler Induced Transition on the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Barnhardt, Michael D.; Tang, Chun Y.; Sozer, Emre; Candler, Graham

    2012-01-01

    Detached Eddy Simulations have been performed to investigate the effects of high-fidelity turbulence modeling on roughness-induced transition to turbulence during Mars entry. Chemically reacting flow solutions will be obtained for a gap filler of Mars Science Laboratory at the peak heating condition.

  14. Automatic reel controls filler wire in welding machines

    NASA Technical Reports Server (NTRS)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  15. Impact of fillers on dissolution kinetic of fenofibrate dry foams.

    PubMed

    Lenz, Elisabeth; Sprunk, Angela; Kleinebudde, Peter; Page, Susanne

    2015-01-01

    Dry foam technology reveals the opportunity to improve the dissolution behavior of poorly soluble drugs tending to agglomeration due to micronization. In this study, the impact of fillers on the manufacturability, the properties of dry foams and granules as well as the dissolution kinetics of dry foam tablets was investigated using fenofibrate as a model compound. Different maltodextrins and dried glucose syrups, a maltodextrin-phosphatidylcholine complex, isomalt and a 1:1 mixture of mannitol/glucose syrup were used as filler. Within the group of maltodextrins and glucose syrups, the influences of dextrose equivalent (DE), particle morphology and botanical source of starch were investigated. Comparable macroscopic foam structures were obtained with maltodextrins and glucose syrups whereas different foam morphologies were obtained for the other fillers tested. Regarding the maltodextrins and glucose syrups, different physicochemical and particle properties had a minor impact on granule characteristics and tablet dissolution. Using the maltodextrin-phosphatidylcholine complex resulted in a low specific surface area of the granules and a slow tablet dissolution caused by a slow disintegration. In contrast, a high specific surface area and a fast release were obtained with isomalt and glucose syrup/mannitol mixture indicating that high soluble low molecular weight fillers enable the development of fast dissolving dry foam tablets. PMID:24901031

  16. Inflammatory granuloma caused by injectable soft tissue filler (Artecoll)

    PubMed Central

    Lee, Sang-Chang; Kim, Jong-Bae; Chin, Byung-Rho; Kim, Jin-Wook

    2013-01-01

    Artecoll (Artes Medical Inc., San Diego, CA, USA) has recently been developed as a permanent synthetic cosmetic filler. We experienced an inflammatory granuloma resulting from a previous injection of Artecoll at the upper lip, which was regarded as a rare side effect of this filler. A 50-year-old female patient complained of swelling, dull pain, and heat in the right upper nasolabial fold area, which had started one week before her visit to Kyungpook National University Hospital. The patient received topical steroid therapy at a local clinic, which was not effective. At the injection site, a hard nodule was palpated and erythema was observed with mild tenderness. Antibiotic treatment and subsequent incision and drainage did not result in complete cure of the facial swelling, and the facial swelling and pain persisted. Computed tomography showed a lesion approximately 1-cm in size without clear boundaries and relatively increased nodular thickening. Finally, a subdermal lesion was removed via an intraoral vestibular approach. The lesion was diagnosed as inflammatory granuloma by a permanent biopsy. The patient had healed at two months after the filler injection. Although the soft tissue filler is widely used for cosmetic purposes, there is potential for complication, such as the inflammatory granuloma should be considered before treatment. PMID:24471042

  17. New Manufacturing Method for Paper Filler and Fiber Material

    SciTech Connect

    Doelle, Klaus

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually

  18. Market opportunities for fly ash fillers in North America

    SciTech Connect

    Eckert, C.; Harris, T.; Gledhill, J. )

    1990-11-01

    Direct Acid Leaching (DAL) processed fly ash is derived from treating raw and beneficiated coal fly ash with hydrochloric acid. The DAL process allows for the production of fly ash with greater chemical purity and consistency than raw fly ash alone. In addition, DAL fly ash is similar to various minerals used in a wide range of applications that require filler minerals. This project investigates the feasibility of using three grades of DAL fly ash ranging from 10 microns to 30 microns in diameter as an alternative filler material to mineral fillers. Six major applications in North America, requiring large volumes of filler minerals were investigated by region including: (1) asphalt roofing shingles (2) carpet backing (3) joint compound and wallboard (4) industrial coatings (5) plastics (6) vinyl flooring. It is determined that calcium carbonate was the primary mineral filler DAL fly ash would be competing with in the applications investigated. Calcium carbonate is used in all applications investigated. The application which demonstrated the greatest potential for using DAL fly ash is asphalt shingles. Asphalt shingles were the largest calcium carbonate consuming application identified, consuming 4.8 million tons in 1988, and is the least sensitive to the dark color of the DAL fly ash. Although the DAL fly ash typically has a smaller particle size, in comparison to calcium carbonate, the asphalt shingle manufacturers felt it would be a good substitute. Other promising applications for DAL fly ash were industrial coatings and plastics where the calcium carbonate particle size requirements of 3 to 6 microns very closely matches the particle size of the DAL fly ash considered in this project. 17 figs., 36 tabs.

  19. New Manufacturing Method for Paper Filler and Fiber Material

    SciTech Connect

    Doelle, Klaus

    2011-06-26

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections and it is important to understand the effect that different types of calcium carbonates have on the paper properties made of 100% eucalyptus pulp. The current study is focused on selecting the most suitable market available calcium carbonate for the production of uncoated Eucalyptus digital printing paper, targeting a potential filler increase of 5% above the currently used filler content. We made hand sheets using 13 different varieties of widely used calcium carbonates [Nine samples of PCC (two rhombic and seven scalenohedral, covering a wide particle size range from 1.2 {micro}m to 2.9 {micro}m), and four samples of GCC (three anionic and one cationic, with a particle size range from 0.7 {micro}m to 1.5 {micro}m)] available in the market followed by a 12” pilot plant paper machine run. The detailed analysis on the main structural, optical and strength properties of the hand sheets found that the most suitable calcium carbonate for uncoated Eucalyptus digital printing paper production is scalenohedral PCC, with a particle size of 1.9 {micro}m for its positive effects on thickness, stiffness, brightness and opacity of paper.

  20. Friction stir welding process to repair voids in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  1. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    NASA Technical Reports Server (NTRS)

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  2. Perpendicular Strut Injection of Hyaluronic Acid Filler for Deep Wrinkles

    PubMed Central

    Mashiko, Takanobu; Kinoshita, Kahori; Kanayama, Koji; Feng, Jingwei

    2015-01-01

    Summary: Although various injection techniques of hyaluronic acid (HA) filler for facial rejuvenation have been developed, correction of deep wrinkles/grooves, such as the nasolabial fold (NLF), with intradermal or subdermal injections remains difficult. We tested the intradermal HA injection method to place multiple HA struts by (1) inserting a small needle perpendicularly to the wrinkle and (2) injecting HA as intradermal struts with the skin fully stretched by the practitioner’s fingers. The results of both NLFs in 10 patients suggest that this technique improves NLFs and maintain the effects more consistently than conventional techniques, although the effects of both methods were almost lost after 6 months. Selective and/or combined application of this technique may enhance the current approach to facial rejuvenation with dermal fillers. PMID:26893992

  3. Perpendicular Strut Injection of Hyaluronic Acid Filler for Deep Wrinkles.

    PubMed

    Mashiko, Takanobu; Kinoshita, Kahori; Kanayama, Koji; Feng, Jingwei; Yoshimura, Kotaro

    2015-11-01

    Although various injection techniques of hyaluronic acid (HA) filler for facial rejuvenation have been developed, correction of deep wrinkles/grooves, such as the nasolabial fold (NLF), with intradermal or subdermal injections remains difficult. We tested the intradermal HA injection method to place multiple HA struts by (1) inserting a small needle perpendicularly to the wrinkle and (2) injecting HA as intradermal struts with the skin fully stretched by the practitioner's fingers. The results of both NLFs in 10 patients suggest that this technique improves NLFs and maintain the effects more consistently than conventional techniques, although the effects of both methods were almost lost after 6 months. Selective and/or combined application of this technique may enhance the current approach to facial rejuvenation with dermal fillers. PMID:26893992

  4. Complications of facial fillers: resource implications for NHS hospitals

    PubMed Central

    Hachach-Haram, Nadine; Gregori, Marco; Kirkpatrick, Niall; Young, Richard; Collier, Jonathan

    2013-01-01

    Facial rejuvenation seeks to reverse the negative sequelae of multiple factors but most importantly of genetic predisposition, sun damage and smoking. With the advent of the so-called ‘non-surgical’ techniques, and perhaps fuelled by these austere times, volumetric facial augmentation using dermal fillers has soared in popularity among both patients and practitioners. However, legislation has yet to keep pace with the change in clinical practices leaving patients poorly informed and with no protection against unscrupulous suppliers and unregulated practitioners. When things go wrong, patients often turn to the National Health Service (NHS) to rectify both the acute and chronic sequelae resulting in potentially difficult ethical and resource implications. Here, we report one of an increasing number of cases presenting to our NHS craniofacial service with acute filler-related complications. PMID:23362071

  5. Filler segmentation of SEM paper images based on mathematical morphology.

    PubMed

    Ait Kbir, M; Benslimane, Rachid; Princi, Elisabetta; Vicini, Silvia; Pedemonte, Enrico

    2007-07-01

    Recent developments in microscopy and image processing have made digital measurements on high-resolution images of fibrous materials possible. This helps to gain a better understanding of the structure and other properties of the material at micro level. In this paper SEM image segmentation based on mathematical morphology is proposed. In fact, paper models images (Whatman, Murillo, Watercolor, Newsprint paper) selected in the context of the Euro Mediterranean PaperTech Project have different distributions of fibers and fillers, caused by the presence of SiAl and CaCO3 particles. It is a microscopy challenge to make filler particles in the sheet distinguishable from the other components of the paper surface. This objectif is reached here by using switable strutural elements and mathematical morphology operators. PMID:17867540

  6. Laser Transmission Welding of CFRTP Using Filler Material

    NASA Astrophysics Data System (ADS)

    Berger, Stefan; Schmidt, Michael

    In the automotive industry the increasing environmental awareness is reflected through consistent lightweight construction. Especially the use of carbon fiber reinforced thermoplastics (CFRTP) plays an increasingly important role. Accordingto the material substitution, the demand for adequate joining technologies is growing. Therefore, laser transmission welding with filler material provides a way to combine two opaque joining partners by using process specific advantages of the laser transmission welding process. After introducing the new processing variant and the used experimental setup, this paper investigates the process itselfand conditions for a stable process. The influence of the used process parameters on weld quality and process stability is characterized by tensile shear tests. The successfully performed joining of PA 6 CF 42 organic sheets using natural PA 6 as filler material underlines the potential of the described joining method for lightweight design and other industrial applications.

  7. Polymer Filler Aging and Failure Studied by Lateral Force Microscopy

    SciTech Connect

    Ratto, T; Saab, A P

    2009-05-27

    In the present work, we study, via force microscopy, the basic physical interactions of a single bead of silica filler with a PDMS matrix both before and after exposure to gamma radiation. Our goal was to confirm our results from last year, and to explore force microscopy as a means of obtaining particle-scale polymer/filler interactions suitable for use as empirical inputs to a computational model consisting of an ensemble of silica beads embedded in a PDMS matrix. Through careful calibration of a conventional atomic force microscope, we obtained both normal and lateral force data that was fitted to yield adhesion, surface shear modulus, and friction of a 1 {micro}m silica bead in contact with PDMS layers of various thickness. Comparison of these terms before and after gamma exposure indicated that initially, radiation exposure lead to softening of the PDMS, but eventually resulted in stiffening. Simultaneously, adhesion between the polymer and silica decreased. This could indicate a serious failure path for filled PDMS exposed to radiation, whereby stiffening of the bulk polymer leads to loss of compressive elastic behavior, while a decrease in polymer filler adhesion results in an increased likelihood of stress failure under load. In addition to further testing of radiation damaged polymers, we also performed FEA modeling of silica beads in a silicone matrix using the shear modulus and adhesion values isolated from the force microscopy experiments as model inputs. The resulting simulation indicated that as a polymer stiffens due to impinging radiation, it also undergoes weakening of adhesion to the filler. The implication is that radiation induces a compound failure mode in filled polymer systems.

  8. Injectable carboxymethylcellulose hydrogels for soft tissue filler applications.

    PubMed

    Varma, Devika M; Gold, Gittel T; Taub, Peter J; Nicoll, Steven B

    2014-12-01

    Disease, trauma and aging all lead to deficits in soft tissue. As a result, there is a need to develop materials that safely and effectively restore areas of deficiency. While autogenous fat is the current gold standard, hyaluronic acid (HA) fillers are commonly used. However, the animal and bacterial origin of HA-based materials can induce adverse reactions in patients. With the aim of developing a safer and more affordable alternative, this study characterized the properties of a plant-derived, injectable carboxymethylcellulose (CMC) soft tissue filler. Specifically, methacrylated CMC was synthesized and crosslinked to form stable hydrogels at varying macromer concentrations (2-4% w/v) using an ammonium persulfate and ascorbic acid redox initiation system. The equilibrium Young's modulus was shown to vary with macromer concentration (ranging from ∼2 to 9.25kPa), comparable to values of native soft tissue and current surgical fillers. The swelling properties were similarly affected by macromer concentration, with 4% gels exhibiting the lowest swelling ratio and mesh size, and highest crosslinking density. Rheological analysis was performed to determine gelation onset and completion, and was measured to be within the ISO standard for injectable materials. In addition, hydrolytic degradation of these gels was sensitive to macromer concentration, while selective removal using enzymatic treatment was also demonstrated. Moreover, favorable cytocompatibility of the CMC hydrogels was exhibited by co-culture with human dermal fibroblasts. Taken together, these findings demonstrate the tunability of redox-crosslinked CMC hydrogels by varying fabrication parameters, making them a versatile platform for soft tissue filler applications. PMID:25152355

  9. Long-term complications associated with permanent dermal fillers.

    PubMed

    Kunjur, Jayanth; Witherow, Helen

    2013-12-01

    We report a case series of patients with serious long-term complications associated with the injection of permanent dermal fillers. Although such complications are relatively rare, the consequences are potentially life-long, and the psychological and medical effects can often have a profound impact on the patient. The continued routine offering of these treatments will require doctors to communicate effectively with patients about the nature of the complications and the probability of risk compared with alternative treatments. PMID:23962591

  10. The Aging Face: Global Approach With Fillers and Neuromodulators.

    PubMed

    Solish, Nowell

    2016-06-01

    The goal of treating the aging face is to restore facial balance and modify shadows. A facial evaluation should focus on areas of volume loss and opportunities to use neuromodulators (eg, botulinum toxin A) and the use of fillers. A thorough understanding of facial anatomy, including muscles, nerves, bone, and fat pads, is essential for effective and safe treatment. Semin Cutan Med Surg 35(supp6):S120-S121. PMID:27537350

  11. A concept for improved fire-safety through coated fillers

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1977-01-01

    A possible method is examined for obtaining a high value of thermal conductivity before ignition and a low value after ignition in standard composite materials. The idea is to coat fiberglass, alumina trihydrate, and similar fillers with specially selected chemicals prior to using polymer resins. The amount of the coat constitutes typically less than 5% of the material's total weight. The experimental results obtained are consistent with the basic concept.

  12. Nanostructures and dynamics of macromolecules bound to attractive filler surfaces

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Barkley, Deborah; Jiang, Naisheng; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Satija, Sushil; Taniguchi, Takashi

    We report in-situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in a good solvent. The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. Intriguingly, the results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ~ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. This two-layer formation on the filler surface is similar to that reported for polymer chains adsorbed on planar substrates from melts. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called ``breathing mode'' and is generalized with the thickness of the swollen BPL. Furthermore, we will discuss how the breathing collective dynamics is affected by the presence of polymer chains in a matrix solution. We acknowledge the financial support from NSF Grant No. CMMI-1332499.

  13. NANOSCALE BOEHMITE FILLER FOR CORROSION AND WEAR RESISTANT POLYPHENYLENESULFIDE COATINGS.

    SciTech Connect

    SUGAMA,T.

    2003-06-26

    The authors evaluated the usefulness of nanoscale boehmite crystals as a filler for anti-wear and anti-corrosion polyphenylenesulfide (PPS) coatings exposed to a very harsh, 300 C corrosive geothermal environment. The boehmite fillers dispersed uniformly into the PPS coating, conferring two advanced properties: First, they reduced markedly the rate of blasting wear; second, they increased the PPS's glass transition temperature and thermal decomposition temperature. The wear rate of PPS surfaces was reduced three times when 5wt% boehmite was incorporated into the PPS. During exposure for 15 days at 300 C, the PPS underwent hydrothermal oxidation, leading to the substitution of sulfide linkages by the sulfite linkages. However, such molecular alteration did not significantly diminish the ability of the coating to protect carbon steel against corrosion. In fact, PPS coating filled with boehmite of {le} 5wt% adequately mitigated its corrosion in brine at 300 C. One concern in using this filler was that it absorbs brine. Thus, adding an excess amount of boehmite was detrimental to achieving the maximum protection afforded by the coatings.

  14. Evaluation of rice husk ash as filler in tread compounds

    SciTech Connect

    Fernandes, M. R. S.; Furtado, C. R. G. E-mail: ana.furtado.sousa@gmail.com; Sousa, A. M. F. de E-mail: ana.furtado.sousa@gmail.com

    2014-05-15

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)

  15. Evaluation of rice husk ash as filler in tread compounds

    NASA Astrophysics Data System (ADS)

    Fernandes, M. R. S.; Furtado, C. R. G.; de Sousa, A. M. F.

    2014-05-01

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety).

  16. Electrically insulating thermal nano-oils using 2D fillers.

    PubMed

    Taha-Tijerina, Jaime; Narayanan, Tharangattu N; Gao, Guanhui; Rohde, Matthew; Tsentalovich, Dmitri A; Pasquali, Matteo; Ajayan, Pulickel M

    2012-02-28

    Different nanoscale fillers have been used to create composite fluids for applications such as thermal management. The ever increasing thermal loads in applications now require advanced operational fluids, for example, high thermal conductivity dielectric oils in transformers. These oils require excellent filler dispersion, high thermal conduction, but also electrical insulation. Such thermal oils that conform to this thermal/electrical requirement, and yet remain in highly suspended stable state, have not yet been synthesized. We report here the synthesis and characterization of stable high thermal conductivity Newtonian nanofluids using exfoliated layers of hexagonal boron nitride in oil without compromising its electrically insulating property. Two-dimensional nanosheets of hexagonal boron nitride are liquid exfoliated in isopropyl alcohol and redispersed in mineral oil, used as standard transformer oil, forming stable nanosuspensions with high shelf life. A high electrical resistivity, even higher than that of the base oil, is maintained for the nano-oil containing small weight fraction of the filler (0.01 wt %), whereas the thermal conductivity was enhanced. The low dissipation factor and high pour point for this nano-oil suggests several applications in thermal management. PMID:22268368

  17. Lymphedema fat graft: an ideal filler for facial rejuvenation.

    PubMed

    Nicoli, Fabio; Chilgar, Ram M; Sapountzis, Stamatis; Lazzeri, Davide; Sze Wei, Matthew Yeo; Ciudad, Pedro; Nicoli, Marzia; Lim, Seong Yoon; Chen, Pei-Yu; Constantinides, Joannis; Chen, Hung-Chi

    2014-09-01

    Lymphedema is a chronic disorder characterized by lymph stasis in the subcutaneous tissue. Lymphatic fluid contains several components including hyaluronic acid and has many important properties. Over the past few years, significant research has been performed to identify an ideal tissue to implant as a filler. Because of its unique composition, fat harvested from the lymphedema tissue is an interesting topic for investigation and has significant potential for application as a filler, particularly in facial rejuvenation. Over a 36-month period, we treated and assessed 8 patients with lymphedematous limbs who concurrently underwent facial rejuvenation with lymphedema fat (LF). We conducted a pre- and post-operative satisfaction questionnaire survey and a histological assessment of the harvested LF fat. The overall mean general appearance score at an average of 6 months after the procedure was 7.2±0.5, demonstrating great improvement. Patients reported significant improvement in their skin texture with a reading of 8.5±0.7 and an improvement in their self-esteem. This study demonstrates that LF as an ideal autologous injectable filler is clinically applicable and easily available in patients with lymphedema. We recommend the further study and clinical use of this tissue as it exhibits important properties and qualities for future applications and research. PMID:25276654

  18. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers.

    PubMed

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-14

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10,000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm(-2). The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices. PMID:24434798

  19. Analysis-Driven Design Optimization of a SMA-Based Slat-Cove Filler for Aeroacoustic Noise Reduction

    NASA Technical Reports Server (NTRS)

    Scholten, William; Hartl, Darren; Turner, Travis

    2013-01-01

    Airframe noise is a significant component of environmental noise in the vicinity of airports. The noise associated with the leading-edge slat of typical transport aircraft is a prominent source of airframe noise. Previous work suggests that a slat-cove filler (SCF) may be an effective noise treatment. Hence, development and optimization of a practical slat-cove-filler structure is a priority. The objectives of this work are to optimize the design of a functioning SCF which incorporates superelastic shape memory alloy (SMA) materials as flexures that permit the deformations involved in the configuration change. The goal of the optimization is to minimize the actuation force needed to retract the slat-SCF assembly while satisfying constraints on the maximum SMA stress and on the SCF deflection under static aerodynamic pressure loads, while also satisfying the condition that the SCF self-deploy during slat extension. A finite element analysis model based on a physical bench-top model is created in Abaqus such that automated iterative analysis of the design could be performed. In order to achieve an optimized design, several design variables associated with the current SCF configuration are considered, such as the thicknesses of SMA flexures and the dimensions of various components, SMA and conventional. Designs of experiment (DOE) are performed to investigate structural response to an aerodynamic pressure load and to slat retraction and deployment. DOE results are then used to inform the optimization process, which determines a design minimizing actuator forces while satisfying the required constraints.

  20. Performance assessment of the (Trans)Varestraint tests for determining solidification cracking susceptibility when using welding processes with filler metal

    NASA Astrophysics Data System (ADS)

    Leal Mendes da Silva, Celina; Scotti, Américo

    2004-11-01

    This work is aimed at verifying if the Varestraint and Transvarestraint tests are adequate to assess solidification cracking susceptibility in welding of aluminium when a process with filler metal is employed. The main goal was to compare the performance of a reasonably new process (double pulsed GMAW) for welding aluminium alloys. Both tests and three cracking quantification criteria were analysed and compared to determine which was the most robust and reliable. The results showed that the most adequate ones were the Transvarestraint test and the maximum cracking length criterion. Some steps must be taken so as to guarantee reliability of the results if a small number of experiments are expected. The application of this methodology in comparison between a conventional pulsed GMAW and a double pulsed GMAW still showed that the latter reduces cracking susceptibility, appearing as an alternative solution for this critical phenomenon in aluminium welding.

  1. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  2. Effect of presilanization filler decontamination on aesthetics and degradation resistance of resin composites.

    PubMed

    Yoshida, Yasuhiro; Shirai, Kenichi; Shintani, Hideaki; Okazaki, Masayuki; Suzuki, Kazuomi; Van Meerbeek, Bart

    2002-12-01

    Filler-matrix coupling determines, to a large extent, the mechanical strength and clinical longevity of dental composites. The aim of this study was to examine how far a methodology to decontaminate filler prior to silanization may improve aesthetic performance in addition to physico-mechanical properties such as degradation resistance. It was reported that filler particles are surrounded and wrapped by a film that consists of multiple layers of silane molecules. X-ray photoelectron spectroscopy, however, revealed that silanization of filler particles largely depended upon siloxane bridge (Si-O-Si) formation between the silica surface and the silane molecule rather than on intermolecular bonding between adjacent silane molecules. In this study, we showed that filler decontamination resulted in a higher translucency, thereby providing a better aesthetic potential. In addition, experimental composites produced following presilanization decontamination of filler revealed a higher Vickers hardness value and a diametral tensile strength that was resistant to degradation by thermo-cycling. PMID:12608427

  3. New fillers under consideration: what is the future of injectable aesthetics?

    PubMed

    Rivkin, Alexander

    2009-05-01

    The past 5 years in the United States have seen an explosion in the popularity of noninvasive aesthetic procedures. Not only have fillers and Botox turned out to be fantastically reliable and effective aesthetic tools, but also they have vastly expanded the accessibility of cosmetic procedures. Our cosmetic filler options are growing quickly as more and more fillers are coming before the U.S. Food and Drug Administration (FDA), seeking entry into the lucrative U.S. market. This article outlines the approval process that foreign fillers go through in their home countries and gives an idea of the fillers that are currently under consideration by the FDA. As our armamentarium of injectable fillers grows, it will be essential to know each product's strengths and weaknesses so that we can provide our patients with the best possible aesthetic results. PMID:19415580

  4. Brazing of copper to stainless steel with a low-silver-content brazing filler metal

    NASA Astrophysics Data System (ADS)

    Fukikoshi, Tatsuya; Watanabe, Yūki; Miyazawa, Yasuyuki; Kanasaki, Fumio

    2014-08-01

    The brazing of copper to stainless steel (SUS304 JIS) was performed using a low- silver-content brazing filler metal, Ag-50Cu, under an Ar gas atmosphere with a conventional furnace, owing to the potential economic benefits of using low-silver-content filler metals. The brazeability of the low-silver-content brazing filler metal to copper and SUS304 was investigated. A good joint was obtained, and a drastic dissolution reaction occurred at the copper side. Molten BAg8 penetrated along the crystal grain boundary of the copper base metal when BAg8 was used as the filler metal. This was caused by the dissolution of Ni from the stainless steel into the molten filler metal. Ag-50Cu, which was investigated in this work, can be used instead of BAg8 filler metal.

  5. An Overview of Vascular Adverse Events Associated With Facial Soft Tissue Fillers: Recognition, Prevention, and Treatment.

    PubMed

    Ferneini, Elie M; Ferneini, Antoine M

    2016-08-01

    Minimally invasive facial cosmetic surgery procedures have seen an exponential increase in numbers over the past decade. The most commonly performed procedures are neuromodulator and soft tissue filler procedures. Although soft tissue fillers have a high safety and predictability profile, these procedures recently have been associated with serious and dire adverse events. This article will discuss some of the vascular complications associated with facial soft tissue fillers. Management and prevention of these adverse events also will be discussed. PMID:27067061

  6. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    SciTech Connect

    Panin, S. V.; Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R.; Suan, T. Nguen

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  7. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys. PMID:17620189

  8. Stress-Strain Relation of Tire Rubber Consist of Entangled Polymers, Fillers and Crosslink

    NASA Astrophysics Data System (ADS)

    Hagita, Katsumi; Bito, Y.; Minagawa, Y.; Omiya, M.; Morita, H.; Doi, M.; Takano, H.

    2009-03-01

    We presented a preliminary result of large scale coarse-grained Molecular Dynamics simulation of filled polymer melts with Sulfur-crosslink under an uni-axial deformation by using the Kremer-Grest Model. The size of simulation box under periodic boundary conditions (PBC) is set to about 66nm to consider length of entangled polymer chains, size and structure of fillers, and non-uniform distribution of crosslink. We put 640 polymer chains of 1024 particles and 32 fillers into the PBC box. Each filler consists of 1280 particles of the C1280 fullerene structure. A repulsive force from the center of the filler is applied to the particles. Here, the particles of the fillers are chosen to be the same as the particles of the polymers and the diameter of the filler is about 15nm. The distribution of the fillers used in this simulation is provided by the result of 2d pattern RMC analysis for 2D-USAXS experiments at SPring-8. Sulfur crosslink are randomly distributed in the system. It is found that stress-strain curves estimated by applying a certain uni-axial deformation to the system in simulations are in good agreement with those in experiments. It is successful to show difference on the S-S curve between existence / absence of fillers and qualitative dependence of attractive force between polymer and filler.

  9. Suspect filler similarity in eyewitness lineups: a literature review and a novel methodology.

    PubMed

    Fitzgerald, Ryan J; Oriet, Chris; Price, Heather L

    2015-02-01

    Eyewitness lineups typically contain a suspect (guilty or innocent) and fillers (known innocents). The degree to which fillers should resemble the suspect is a complex issue that has yet to be resolved. Previously, researchers have voiced concern that eyewitnesses would be unable to identify their target from a lineup containing highly similar fillers; however, our literature review suggests highly similar fillers have only rarely been shown to have this effect. To further examine the effect of highly similar fillers on lineup responses, we used morphing software to create fillers of moderately high and very high similarity to the suspect. When the culprit was in the lineup, a higher correct identification rate was observed in moderately high similarity lineups than in very high similarity lineups. When the culprit was absent, similarity did not yield a significant effect on innocent suspect misidentification rates. However, the correct rejection rate in the moderately high similarity lineup was 20% higher than in the very high similarity lineup. When choosing rates were controlled by calculating identification probabilities for only those who made a selection from the lineup, culprit identification rates as well as innocent suspect misidentification rates were significantly higher in the moderately high similarity lineup than in the very high similarity lineup. Thus, very high similarity fillers yielded costs and benefits. Although our research suggests that selecting the most similar fillers available may adversely affect correct identification rates, we recommend additional research using fillers obtained from police databases to corroborate our findings. PMID:24955851

  10. Avoiding Malar Edema During Midface/Cheek Augmentation with Dermal Fillers

    PubMed Central

    2011-01-01

    As dermal fillers have evolved, volume restoration and contour enhancement have become the objective of advanced injectors. The value of injections of dermal fillers into the midface is well documented in the literature. However, the midface, particularly the infraorbital hollow, is the facial area most prone to adverse events from filler treatment. Malar edema is a particularly significant and long-lasting untoward event that is frequently reported. This article reviews the anatomic basis for malar edema, relates it to filler injection technique, and presents the author's preferred method of injection to help ensure avoidance of this adverse event. PMID:22191006

  11. Preparation and Characterization of N-Halamine-based Antimicrobial Fillers

    PubMed Central

    Padmanabhuni, Revathi V.; Luo, Jie; Cao, Zhengbing; Sun, Yuyu

    2012-01-01

    The purpose of this study was to demonstrate that the surface of CaCO3 fillers could be coated with an N-halamine based fatty acid to make the filler surface organophilic and accomplish antibacterial activity simultaneously, rendering the resulting polymer-filler composites antimicrobial. Thus, a new bi-functional compound, 4, 4 -Dimethyl hydantoin-undecanoic acid (DMH-UA), was synthesized by treating the potassium salt of dimethyl hydantoin (DMH) with 11-bromoundecanoic acid (BUA). Upon chlorination treatment with diluted bleach, DMH-UA was transformed into 3-chloro-4, 4-dimethyl hydantoin- undecanoic acid (Cl-DMH-UA). Alternatively, DMH-UA could be coated onto the surface of CaCO3 to obtain the corresponding calcium salt, 4, 4-dimethyl hydantoin-undecanoic acid-calcium carbonate (DMH-UA-CaCO3). In the presence of diluted chlorine bleach, the coated DMH-UA on the surface of CaCO3 was transformed into Cl-DMH-UA, leading to the formation of Cl-DMH-UA-CaCO3. The reactions were characterized with FT-IR, NMR, UV, DSC and SEM analyses. Both Cl-DMH-UA and Cl-DMH-UA-CaCO3 were used as antimicrobial additives for cellulose acetate (CA). The antimicrobial efficacy of the resulting samples was evaluated against both Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria). It was found that with the same additive content, CA samples with Cl-DMH-UA-CaCO3 and Cl-DMH-UA had very similar antimicrobial and biofilm-controlling activity, but the former released less active chlorine into the surrounding environment than the latter. PMID:22942559

  12. Filler Wire Development for 2195 Aluminum-Lithium. Pt. 2

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Cho, Alex

    1998-01-01

    The objective of the research was to determine the susceptibility of submitted welded 2195 plate in an AI (Alternate Immersion) environment. Forty-day AI exposure was completed on 8 welded 2195 stress corrosion samples. No stress corrosion cracking (SCC) was found on any of the samples tested. All 8 samples experienced exfoliation corrosion attack in the heat-affected zone (HAZ) adjacent to the weld. All samples were examined metallographically and showed varying degrees of intergranular corrosion (IG). The filler metal on all samples showed moderate to heavy pitting.

  13. Epoxy composites based on inexpensive tire waste filler

    NASA Astrophysics Data System (ADS)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-05-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young's modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  14. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  15. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  16. Whisker-reinforced bioactive composites containing calcium phosphate cement fillers: effects of filler ratio and surface treatments on mechanical properties.

    PubMed

    Xu, H H; Quinn, J B

    2001-11-01

    Calcium phosphate cement (CPC) sets to form microporous solid hydroxyapatite with excellent osteoconductivity, but its brittleness and low strength prohibit use in stress-bearing locations. The aim of this study was to incorporate prehardened CPC particles and ceramic whiskers in a resin matrix to improve the strength and fracture resistance, and to investigate the effects of key microstructural variables on composite mechanical properties. Two types of whiskers were used: silicon nitride, and silicon carbide. The whiskers were surface-treated by fusing with silica and by silanization. The CPC particle fillers were either silanized or not silanized. Seven mass ratios of whisker-silica/CPC were mixed: 0:1 (no whisker-silica), 1:5, 1:2, 1:1, 2:1, 5:1, and 1:0 (no CPC). Each powder was blended with a bisphenol-a-glycidyl methacrylate-based resin to harden in 2 x 2 x 25 mm molds by two-part chemical curing. The specimens were tested in three-point flexure to measure strength, work-of-fracture (toughness), and elastic modulus. Two-way analysis of variance was used to analyze the data, and scanning electron microscopy was used to examine specimen fracture surfaces. The whisker-silica/CPC ratio had significant effects on composite properties (p < 0.001). When this ratio was increased from 0:1 to 1:0, the strength was increased by about three times, work-of-fracture by five times, and modulus by two times. Whisker surface treatments and CPC filler silanization also had significant effects (p < 0.001) on composite properties. Scanning electron microscopy revealed rough fracture surfaces for the whisker composites with steps and whisker pullout. Resin remnants were observed on the surfaces of the pulled-out whiskers, indicating strong whisker-matrix bonding. In conclusion, incorporating highly osteoconductive CPC fillers and ceramic whiskers yielded composites with substantially improved mechanical properties compared with composites filled with CPC particles without

  17. Facial Rejuvenation with Fillers: The Dual Plane Technique

    PubMed Central

    Salti, Giovanni; Rauso, Raffaele

    2015-01-01

    Background: Facial aging is characterized by skin changes, sagging and volume loss. Volume is frequently addressed with reabsorbable fillers like hyaluronic acid gels. Materials and Methods: From an anatomical point of view, the deep and superficial fat compartments evolve differently with aging in a rather predictable manner. Volume can therefore be restored following a technique based on restoring first the deep volumes and there after the superficial volumes. We called this strategy “dual plane”. A series of 147 consecutive patients have been treated with fillers using the dual plane technique in the last five years. Results: An average of 4.25 session per patient has been carried out for a total of 625 treatment sessions. The average total amount of products used has been 12 ml per patient with an average amount per session of 3.75 ml. We had few and limited adverse events with this technique. Conclusion: The dual plane technique is an injection technique based on anatomical logics. Different types of products can be used according to the plane of injection and their rheology in order to obtain a natural result and few side effects. PMID:26644734

  18. Thermal Conductivity of Polymer/Nano-filler Blends

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Delozier, Donovan M.; Working, Dennis C.; Connell, John W.; Smith, Joseph G.; Sun, Y. P.; Lin, Y.

    2006-01-01

    To improve the thermal conductivity of an ethylene vinyl acetate copolymer, Elvax 260 was compounded with three carbon based nano-fillers. Multiwalled carbon nanotubes (MWCNT), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. In an attempt to improve compatibility between the Elvax and nanofillers, MWCNTs and EGs were modified through non covalent and covalent attachment of alkyl groups. Ribbons were extruded to form samples in which the nanofillers were aligned, and samples were also fabricated by compression molding in which the nano-fillers were randomly oriented. The thermal properties were evaluated by DSC and TGA, and mechanical properties of the aligned samples were determined by tensile testing. The degree of dispersion and alignment of the nanoparticles were investigated using high-resolution scanning electron microscopy. Thermal conductivity measurements were performed using a Nanoflash technique. The thermal conductivity of the samples was measured in both the direction of alignment as well as perpendicular to that direction. The results of this study will be presented.

  19. Patient factors influencing dermal filler complications: prevention, assessment, and treatment

    PubMed Central

    De Boulle, Koenraad; Heydenrych, Izolda

    2015-01-01

    While rare, complications do occur with the esthetic use of dermal fillers. Careful attention to patient factors and technique can do much to avoid these complications, and a well-informed practitioner can mitigate problems when they do occur. Since cosmetic surgery is usually an elective process, requested by the patient, clinical trials are complex to organize and run. For this reason, an international group of practicing physicians in the field of esthetics came together to share knowledge and to try and produce some informed guidance for their colleagues, considering the literature and also pooling their own extensive clinical experience. This manuscript aims to summarize the crucial aspects of patient selection, including absolute contraindications as well as situations that warrant caution, and also covers important considerations for the pre- and posttreatment periods as well as during the procedure itself. Guidance is given on both immediate and long-term management of adverse reactions. The majority of complications are related to accepting patients inappropriate for treatment or issues of sterility, placement, volume, and injection technique. It is clear that esthetic practitioners need an in-depth knowledge of all aspects of treatment with dermal fillers to achieve optimal outcomes for their patients. PMID:25926750

  20. Laves phase in alloy 718 fusion zone — microscopic and calorimetric studies

    SciTech Connect

    Manikandan, S.G.K.; Sivakumar, D.; Prasad Rao, K.; Kamaraj, M.

    2015-02-15

    Microstructural characterization of alloy 718 fusion zone welded with both solid solution and age hardenable filler metal has been done. The microsegregation and the aging response were studied by employing three levels of weld cooling rate. Gas Tungsten Arc welding process was used. The fusion zone of solid solution filler metal has been responding to the aging treatment due to the weld process conditions and weld metal chemistry. However the weld metal composition was modified due to the higher molybdenum (Mo) content in solid solution filler metal. The effect of this modification on the phase reaction temperatures was studied and the same was compared with the conventional filler metal. - Graphical abstract: Display Omitted - Highlights: • Interdendritic segregation has been controlled by weld cooling rate. • Laves phase formation has been studied with cooling rate and weld metal chemistry. • Aging response with solid solution filler metal has been demonstrated. • Reduction in Laves phase and alloying element segregation has been confirmed. • Reaction temperatures were found modified because of Mo addition.

  1. Trends in wetting behavior for Ag–CuO braze alloys on Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) at elevated temperatures in air

    SciTech Connect

    Joshi, Vineet V.; Meier, Alan; Darsell, Jens; Weil, K. Scott; Bowden, Mark

    2013-06-21

    Ba0.5Sr0.5Co0.80.2O(3-δ)(BSCF) is a potential oxygen separation membrane material for advanced coal based power plants. For this application, BSCF must be joined to a metal. In the current study, Ag-CuO, a reactive air brazing (RAB) alloy was evaluated for brazing BSCF. In-situ contact angle tests were performed on BSCF using Ag-CuO binary mixtures at 950 and 1000°C and the interfacial microstructures were evaluated. Wetting contact angles (θ< 90°) were obtained at short times at 950°C and the contact angles remained constant at 1000°C for 1, 2 and 8 mol% CuO contents. Microstructural analysis revealed the dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundary. The formation of a thick interfacial reaction product layer and ridging at the sessile drop triple point indicate that the reaction kinetics are very rapid and that it will require careful process control to obtain the desired thin but continuous interfacial product layer.

  2. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Wheat Starch Co-filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  3. Influence of silane treatment and filler fraction on thermal expansion of composite resins.

    PubMed

    Söderholm, K J

    1984-11-01

    The coefficient of thermal expansion of experimental composite materials containing either silane-treated or untreated fillers in a triethylene glycol dimethacrylate (TEGDMA) matrix was investigated. The results show that an inverse linear relationship existed between volume fraction filler and coefficient of thermal expansion. No differences were seen between silane-treated and untreated composites, while it was found that repeated heating (aging) caused the thermal expansion to decrease for all material combinations. Reduction in the coefficient of thermal expansion with increased filler fraction of unbonded filler indicates that the polymerization shrinkage of the matrix induces hoop stresses around the fillers. By use of a simplified theoretical model (Appendix), these stresses could be estimated. These estimates revealed that the induced stresses were remarkably high, and that increased filler fraction increased the tensile stress level surrounding the filler particles. Since these tensile stresses could facilitate crazing and crack growth in the matrix, these estimates may explain why filled resins containing low fractions of microfilled particles seem to possess remarkably good clinical wear resistance when compared with composites containing higher filler concentrations, at least during the first years in service. PMID:6389635

  4. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Starch Co-filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  5. Up Close and Personal: A Case Study of the Development of Three English Fillers

    ERIC Educational Resources Information Center

    Feldman, Andrea; Menn, Lise

    2003-01-01

    As Peters (2001) has suggested, the young child's use of fillers seems to indicate awareness of distributionally-defined slots in which some as yet unidentified material belongs. One may view a filler as an emergent transitional form; as a slot that serves as an underspecified lexical entry for the accumulation of phonological and functional…

  6. On the Composition of Bimetallic Near-Surface Alloys in the Presence of Oxygen and Carbon Monoxide

    SciTech Connect

    Herron, Jeffrey A.; Mavrikakis, Manos

    2014-07-05

    Periodic, self-consistent density functional theory calculations (GGA-PW91) are used to examine surface segregation in close-packed bimetallic Pt-overlayer alloy surfaces (Pt*/M, M = Au, Ag, Cu, Pd, Ir, Rh, Os, Ru, and Re) in different environments. In particular, we find that the thermodynamically stable surface termination in these Pt*/M alloys can be inverted from Pt-terminated in vacuum to M-terminated under exposure to oxygen (for an M that is more oxophillic than Pt). Interestingly, in many of these alloys, Pt is not driven into the bulk, rather it remains in the first subsurface layer where it enhances oxygen binding through a ligand interaction with the surface metal atoms. On the other hand, exposure to CO provides a much milder driving force for the surface composition inversion. To quantify segregation under catalytically relevant conditions, we constructed approximate phase diagrams for the PtRu system as a function of O2 and CO chemical potential (temperature, pressure). The results show that the surface termination inverts with many orders of magnitude higher CO pressure than with O2.

  7. Lower eyelid swelling as a late complication of Bio-Alcamid filler into the malar area

    PubMed Central

    Alsuhaibani, Adel H.; Alfawaz, Nawaf

    2010-01-01

    Purpose To report the late complications associated with permanent filler injections into the malar area for rejuvenation. Methods A retrospective case series of three patients who presented with lower eyelid swelling several years following injection of polyalkylimide (Bio-Alcamid) into the malar area. Results All patients presented with lower eyelid swelling which developed as a result of spontaneous migration of filler to the lower eyelid. Iatrogenic migration of the filler from the lower eyelid following a trial to remove resulted in an abscess formation which further complicated the removal. Conclusions Lower eyelid swelling may be one of the late complications associated with the permanent fillers into the malar area. An attempt at removal of filler by aspiration or bimanual expression may result in late migration of the product and the development of eyelid swelling. PMID:23960905

  8. Starch/rosin complexes for improving the interaction of mineral filler particles with cellulosic fibers.

    PubMed

    Huang, Xiujie; Qian, Xueren; Li, Jinsong; Lou, Shuang; Shen, Jing

    2015-03-01

    On the basis of inclusion complex formation of starch with small guest molecules, the concept of filler modification for papermaking by calcium-ion-induced deposition of starch/rosin complexes in the presence of filer particles was demonstrated. The rosin amount of 3% (on the basis of the dry weight of starch) induced effective starch deposition. Due to the cellulose-bondable nature of starch/rosin complexes, filler modification resulted in improved interaction of precipitated calcium carbonate particles with cellulosic fibers, leading to reduced negative impact of filler addition on paper strength. The efficiency of alkyl ketene dimer emulsion as an internal sizing agent for cellulosic paper was also improved as a result of filler modification. The concept demonstrated in this study may provide a useful alternative to the improvement of the use of mineral fillers in the paper industry. PMID:25498611

  9. Neocollagenesis in human tissue injected with a polycaprolactone-based dermal filler.

    PubMed

    Kim, Jongseo Antonio; Van Abel, Daan

    2015-04-01

    A novel dermal filler containing polycaprolactone (PCL) has been introduced into the aesthetic market. A recently published study has shown that the PCL-based dermal filler induces neocollagenesis, a process associated with improvement in appearance of the skin, in rabbit tissue. In this pilot study, we investigated whether the PCL-based dermal filler induces neocollagenesis in human tissue by histological analysis. Two patients who were enrolled in the study, and were willing to undergo temple lifting surgery, were injected intra-dermally with the PCL-based dermal filler. Thirteen months post-injection, biopsies were obtained for subsequent histological analysis. Histological analysis of tissue obtained from the biopsies (13 months post-injection) revealed that the PCL-based dermal filler shows collagen formation around the PCL particles and, therefore, supports similar findings previously shown in rabbit tissue. In conclusion, PCL particles are maintained in their original state 13 months post-injection. PMID:25260139

  10. Filler frontier: what's new and heading West to the US market.

    PubMed

    Palm, Melanie D

    2014-12-01

    The amount of fillers approved by the United States Food and Drug Administration (FDA) for use in facial volume augmentation is diminutive in comparison to filler products employed worldwide. In the near future, several new hyaluronic acid filler products will be available to the United States market. Already approved fillers include Belotero Balance for fine lines, Juvéderm Voluma XC for midfacial volume loss replacement, and Restylane Silk for perioral lines and lip augmentation. Volbella, currently under FDA evaluation, will be used for fine-line correction and lip augmentation. The physiochemical properties, best practices, clinical uses, and side effects of these fillers are discussed. Additionally, evolving techniques such as the use of blunt-tipped microcannulas are explained. PMID:25830247

  11. Influence of carbon fillers on the thermal conductivity of Poly (methyl methacrylate)/carbon composites

    NASA Astrophysics Data System (ADS)

    Chawla, Komal; Chauhan, Alok P. S.

    2016-04-01

    In the present research on carbon polymer composites, the effects of variation of the concentration of conductive fillers on the thermal conductivity of the resultant composite were studied. Carbon powders in the form of Carbon Fibers (CF) (200µm), Carbon Black (CB) (30-100 nm) and Graphite (75-100µm) were being considered as conductive fillers in the Poly (methyl methacrylate) (PMMA) matrix. Nielsen model was found to be the best proposed model that incorporated geometric configuration comprising of both the orientation and shape of fillers. It was established that the calculated values of thermal conductivity of PMMA composites with single fillers of CF were higher than those of CB followed by Graphite. Furthermore, a visible synergy was observed between the combinations of these fillers such as Graphite and CF, Graphite and CB, CF and CB, as well as CB and CF.

  12. Effect of filler alignment on percolation in polymer nanocomposites using tunneling-percolation model

    NASA Astrophysics Data System (ADS)

    Kale, Sohan; Sabet, Fereshteh A.; Jasiuk, Iwona; Ostoja-Starzewski, Martin

    2016-07-01

    In this study, we examine the effect of filler alignment on percolation behavior of polymer nanocomposites using Monte Carlo simulations of monodisperse prolate and oblate hard-core soft-shell ellipsoids representing carbon nanotubes and graphene nanoplatelets, respectively. The percolation threshold is observed to increase with increasing extent of alignment as expected. For a highly aligned system of rod-like fillers, the simulation results are shown to be in good agreement with the second virial approximation based predictions. However, for a highly aligned system of disk-like fillers, the second virial approximation based results are observed to significantly deviate from the simulations, even for higher aspect ratios. The effect of filler alignment on anisotropy in percolation behavior is also studied by predicting the percolation threshold along different directions. The anisotropy in percolation threshold is found to vanish even for highly aligned systems of fillers with increasing system size.

  13. The Hyaluronic Acid Fillers: Current Understanding of the Tissue Device Interface.

    PubMed

    Greene, Jacqueline J; Sidle, Douglas M

    2015-11-01

    The article is a detailed update regarding cosmetic injectable fillers, specifically focusing on hyaluronic acid fillers. Hyaluronic acid-injectable fillers are used extensively for soft tissue volumizing and contouring. Many different hyaluronic acid-injectable fillers are available on the market and differ in terms of hyaluronic acid concentration, particle size, cross-linking density, requisite needle size, duration, stiffness, hydration, presence of lidocaine, type of cross-linking technology, and cost. Hyaluronic acid is a natural component of many soft tissues, is identical across species minimizing immunogenicity has been linked to wound healing and skin regeneration, and is currently actively being studied for tissue engineering purposes. The biomechanical and biochemical effects of HA on the local microenvironment of the injected site are key to its success as a soft tissue filler. Knowledge of the tissue-device interface will help guide the facial practitioner and lead to optimal outcomes for patients. PMID:26505539

  14. Evaluation of Polymer-Filler Interaction Characteristics by Force Microscopy

    SciTech Connect

    Ratto, T; Saab, A

    2007-04-23

    Silicone polymers are frequently used as cushions and inserts between load bearing parts. In this capacity, they must act to position their associated parts and distribute mechanical force as appropriate. One type of failure is specific to silicones that are filled with high surface area particulates for purposes of tailoring the polymer compressive properties. Additives such as fumed silicon oxide are presumed to have a high degree of surface interaction with the polymer matrix, thus causing the polymer to stiffen and to display greater dimensional stability as a function of temperature. However, it has been observed that the compressive behavior of these materials is not always invariant over long times. There is evidence that suggests changes in humidity and temperature can irreversibly alter the silicone-filler interaction, thereby changing the overall characteristics of parts made from such materials. As before, changes in compressive or shear stability can have serious effects on the ability of these materials to effectively position precision parts or distribute high mechanical loads. We approach the analysis of the filled systems by creating controlled layers of silicone polymers attached to silicon oxide substrates. Straight chain vinyl-silicone polymers identical to those used in the formulation of pads for stockpile systems are chemically appended to a substrate surface, and cross-linked to form a three dimensional network. This type of structure serves as a model of silicone polymer coating a silicon oxide filler particle. We study these model systems first by using Atomic Force Microscopy (AFM) to image the samples with nanometer resolution, and then by measuring the forces of interactions between single model silica filler particles and polymer-coated surfaces. We use normal longitudinal force AFM to measure adhesion, and a relatively newly developed technique, lateral force AFM, to determine the frictional forces between the silica particles and the

  15. Incology alloy 908 data handbook

    SciTech Connect

    Toma, L.S.; Steeves, M.M.; Reed, R.P.

    1994-03-01

    This handbook is a compilation of all available properties of Incoloy alloy 908 as of March, 1994. Data included in this paper cover mechanical, elastic, thermal and magnetic characteristics. The mechanical properties include tensile, fracture toughness, fatigue, and stress-rupture for both the base metal and related weld filler metals. Elastic properties listed are Young`s, shear and bulk moduli and Poisson`s ratio. Thermal expansion, thermal conductivity and specific heat and magnetization are also reported. Data presented are summarized in the main body and presented in detail in the supplements. Areas of ongoing research are briefly described, and topics for future research are suggested. The data have been compiled to assist in the design of large-scale superconducting magnets for fusion reactors.

  16. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2016-08-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  17. Mechanical properties of heterophase polymer blends of cryogenically fractured soy flour composite filler and poly(styrene-butadiene)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reinforcement effect of cryogenically fractured soy Flour composite filler in soft polymer was investigated in this study. Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dis...

  18. Synthesis and Characterization of Novel Chromium-Free Nickel Alloy Electrode Materials

    NASA Astrophysics Data System (ADS)

    Nataraj, J. R.; Krishna, M.; Murthy, H. N. Narasimha; Prasad, C. S.; Bhanukiran, V. T.; Sharma, S. C.

    2013-07-01

    The synthesis of two Cr-free nickel-based alloys designated as 1S with 6.5 pct Mn and 2H without Mn of compositions varying between 40 to 43.5Ni, 20Mo, 22 to 25Fe, 10Cu, 6.5 to 0Mn, 1Ti, and 0.5Al (wt pct) as filler materials for TIG welding application was performed. New filler materials were developed to reduce carcinogenic hexavalent chromium (Cr6+) fumes generated during the welding of 300 series austenitic stainless steel. The Cr-free nickel alloys were characterized for microstructure and mechanical properties. The developed alloys showed good microstructure stability in as-cast and solution-treated conditions. A material properties simulation software JMatPro predicted that 2H alloy has 2 wt pct more γ (solid solution) phase than in 1S but has 2.2 wt pct less γ' (strengthening precipitates) phase than in 1S alloy. The tensile strength of 1S alloy was about 2.2 pct more than 2H. The solution treatment of both alloys decreased the hardness, tensile and yield strengths by about 21 pct but ductility improved by about 17 pct. Fracture studies of both alloys showed the ductile mode of failure.

  19. Foreign body reaction due to skin filler: a case report.

    PubMed

    Kawamura, Juliana Y; Domaneschi, Carina; Migliari, Dante A; Sousa, Suzana Orsini Machado de

    2006-04-01

    Aquamid represents a new generation of soft-tissue fillers for aesthetic facial correction and reconstruction due to its reduced quantity of particles (2.5% of polyacrylamide) and high concentration of water (97.5%). It is a biocompatible, atoxic, homogeneous, and stable product. Additionally, it has good viscosity and elasticity, and it is very simple to use. Although reported in less than 1% of the cases, adverse effects such as pain, swelling, and erythema may occur, which may be the result of inappropriate injection procedure. This article reports the first case of an intraoral foreign body reaction resulting from Aquamid application in the nasolabial fold. Possible causes for this reaction, the chemical composition of the product, and the histopathologic aspects are discussed. PMID:16545711

  20. Development of Filler Structure in Colloidal Silica-Polymer Nanocomposites

    SciTech Connect

    Meth, Jeffrey S; Zane, Stephen G; Chi, Changzai; Londono, J David; Wood, Barbara A; Cotts, Patricia; Keating, Mimi; Guise, William; Weigand, Steven

    2012-02-07

    The realization of the full potential for polymeric nanocomposites to manifest their entitled property improvements relies, for some properties, on the ability to achieve maximum particle-matrix interfacial area. Well-dispersed nanocomposites incorporating colloidal silica as the filler can be realized in both polystyrene and poly(methyl methacrylate) matrices by exploiting the charge stabilized nature of silica in nonaqueous solvents which act as Bronsted bases. We demonstrate that dispersions of colloidal silica in dimethylformamide are charge stabilized, regardless of organosilyl surface functionalization. When formulated with polymer solutions, the charge stabilized structure is maintained during drying until the charged double layer collapses. Although particles are free to diffuse and cluster after this neutralization, increased matrix viscosity retards the kinetics. We demonstrate how high molecular weight polymers assist in immobilizing the structure of the silica to produce well-dispersed composites. The glass transition temperatures of these composites do not vary, even at loadings up to 50 vol %.

  1. ANALYSIS OF MPC ACCESS REQUIREMENTS FOR ADDITION OF FILLER MATERIALS

    SciTech Connect

    W. Wallin

    1996-09-03

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Ref. 5.1) from WAST Design (formerly MRSMPC Design). The request is to provide: Specific MPC access requirements for the addition of filler materials at the MGDS (i.e., location and size of access required). The objective of this analysis is to provide a response to the foregoing request. The purpose of this analysis is to provide a documented record of the basis for the response. The response is stated in Section 8 herein. The response is based upon requirements from an MGDS perspective.

  2. Development of Pyrrone structural forms for honeycomb filler

    NASA Technical Reports Server (NTRS)

    Kimmel, B. G.

    1973-01-01

    The development of techniques for the preparation of Pyrrone structural foams for use as honeycomb filler is described. The feasibility of preparing foams from polymers formed by the condensation of 3,3'-diaminobenzidine (DAB), or 3,3',4,4'-tetraaminobenzophenone (TABP), with 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) was investigated. Initially, most of the effort was devoted to preparing Pyrrone prepolymers with improved and more reproducible foaming properties for making chemically blown foams. When it became apparent that very high curing shrinkages would not allow the use of unfilled Pyrrone prepolymers in a foam-in-place process, emphasis was shifted from chemically blown foams to syntactic foams. Syntactic foam formulations containing hollow carbon microspheres were developed. Syntactic foams made from selected formulations were found to have very low coefficients of thermal expansion. A technique was developed for the emplacement of Pyrrone syntactic foam formulations in honeycomb core structures.

  3. Epoxy composites based on inexpensive tire waste filler

    SciTech Connect

    Ahmetli, Gulnare Gungor, Ahmet Kocaman, Suheyla

    2014-05-15

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young’s modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  4. Appropriate calcinating conditions from gangue to cable filler

    SciTech Connect

    Gao, F.; Zhang, J.Y.; Zhang, B.J.

    1997-12-31

    A large amount of gangue is mined together with coal, discarded, and piled up day after day. By the mineral analysis, it is known that the majority content of the gangue in the North China`s coal mine is kaolinite, usually more than 90 wt.%. A kind of gangue, arising from Shanxi province, China, was calcined under different heating procedures, and the electrical resistivity and whiteness of the calcined products were measured in this study. It is clear that this kind of gangue can serve as a cable filler after the appropriate calcination. By detailed analysis of the TG/TDA curves, four steps, reflecting the changes in structural nature, were noted. The appropriate conditions, including calcination temperature and soaking time, were also recommended.

  5. Wh-filler-gap dependency formation guides reflexive antecedent search

    PubMed Central

    Frazier, Michael; Ackerman, Lauren; Baumann, Peter; Potter, David; Yoshida, Masaya

    2015-01-01

    Prior studies on online sentence processing have shown that the parser can resolve non-local dependencies rapidly and accurately. This study investigates the interaction between the processing of two such non-local dependencies: wh-filler-gap dependencies (WhFGD) and reflexive-antecedent dependencies. We show that reflexive-antecedent dependency resolution is sensitive to the presence of a WhFGD, and argue that the filler-gap dependency established by WhFGD resolution is selected online as the antecedent of a reflexive dependency. We investigate the processing of constructions like (1), where two NPs might be possible antecedents for the reflexive, namely which cowgirl and Mary. Even though Mary is linearly closer to the reflexive, the only grammatically licit antecedent for the reflexive is the more distant wh-NP, which cowgirl. (1). Which cowgirl did Mary expect to have injured herself due to negligence? Four eye-tracking text-reading experiments were conducted on examples like (1), differing in whether the embedded clause was non-finite (1 and 3) or finite (2 and 4), and in whether the tail of the wh-dependency intervened between the reflexive and its closest overt antecedent (1 and 2) or the wh-dependency was associated with a position earlier in the sentence (3 and 4). The results of Experiments 1 and 2 indicate the parser accesses the result of WhFGD formation during reflexive antecedent search. The resolution of a wh-dependency alters the representation that reflexive antecedent search operates over, allowing the grammatical but linearly distant antecedent to be accessed rapidly. In the absence of a long-distance WhFGD (Experiments 3 and 4), wh-NPs were not found to impact reading times of the reflexive, indicating that the parser's ability to select distant wh-NPs as reflexive antecedents crucially involves syntactic structure. PMID:26500579

  6. Influence of filler selection on twin screw foam granulation.

    PubMed

    Rocca, K E; Weatherley, S; Sheskey, P J; Thompson, M R

    2015-01-01

    The influence of filler selection in wet granulation was studied for the novel case where the binder is delivered as an unstable, semi-rigid aqueous foam to an extrusion process. The work primarily examined the impact of differing concentrations of microcrystalline cellulose (Avicel PH® 101) in a formulation with spray-dried α-lactose monohydrate (Flowlac® 100) in regards to wetting and granule nucleation for this relatively new technique known as continuous foam granulation. Foam stability was varied within the work to change its drainage and coarsening behavior atop these powder excipients, by use of different foamable binding agents (METHOCEL™ F4 PLV and METHOCEL™ Premium VLV) as well as by adjusting the foam quality. A static bed penetration test was first used to study the foam behavior in wetting these powders without the processing constraints of an extruder which limit possible liquid-to-solids ratios as well as introduce shear which may complicate interpretation of the mechanism. The test found that the penetration time to saturate these powders decreased as their water absorption capacity increased which in turn decreased the size of the formed nuclei. Differences in the stability of the foamed binder had minimal influence on these attributes of wetting despite its high spread-to-soak behavior. The size of granules produced by extrusion similarly demonstrated sensitivity to the increasing water absorption capacity of the filler and little dependency on foam properties. The different liquid-to-solids ratios required to granulate these different formulations inside the extruder highlighted an evolving concept of powder lubricity for continuous foam granulation. PMID:24111830

  7. Evaluation of pitting corrosion resistance of high-alloyed stainless steels welds for FGD plants in Korea

    SciTech Connect

    Baek, K.K.; Sung, H.J.; Im, C.S.; Hong, I.P.; Kim, D.K.

    1998-12-31

    For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively. For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.

  8. Midfacial rejuvenation by hyaluronic acid fillers and subcutaneous adipose tissue--a new concept.

    PubMed

    Wollina, Uwe

    2015-04-01

    In midface rejuvenation, hyaluronic acid (HA) fillers are commonly used as a versatile tool to improve appearance and to correct V-deformities and loss of volume. The induction of collagen as a major constituent of extracellular matrix (ECM) has been considered to be a basic effect of the rejuvenation procedure. Although commonly described as "dermal" soft fillers, histologic studies localized HA filler in the subcutaneous adipose tissue. Deep injection whenever possible lead to prolonged efficacy. Since volumizing HA filler induce mechanical stress not only to fibroblasts but adipocytes and deep injection itself causes minor trauma in the subcutaneous adipose tissue we suggest that the activation of adipose tissue-derived mesenchymal stem cells (ADMSC) is responsible for the observed clinical effects. We present a concept of filler action that discusses interactions of HA with adipocytes, ECM fiber network and ADMSC. Such a concept can explain the prolonged efficacy of deep midfacial filler placement and offers a new understanding to tailor HA fillers in the future. PMID:25665858

  9. Effect of fillers on key characteristics of sludge thermophilic anaerobic digestion.

    PubMed

    Shao, Liming; Xu, Yuanshun; Wang, Tianfeng; Lü, Fan; He, Pinjing

    2015-10-01

    In anaerobic digestion (AD) of sludge, AD efficiency and digested sludge (DS) dewaterability are critical factors. In this study, polyester non-woven fabric fillers were integrated into a sludge digester. The effect of such fillers on digestion was investigated in thermophilic temperature range in semi-continuous mode. Methane production of filler system and control reactor were significantly different (P < 0.05, paired t-test). At hydraulic retention times of 18 days and 12 days, the corresponding methane yields from filler system were 140% and 161%, respectively, of the yields from control digester without filler. Improvement of DS dewaterability was uncertain during 110 days of operation. While after a longer period of digestion, filler system resulted in a lower normalized capillary suction time of DS (76.5 ± 21.6 s L/g total suspended solids) than control reactor (118.7 ± 32.9 s L/g total suspended solids). The results showed that the filler could improve thermophilic AD performance, except at too short hydraulic retention times. PMID:26151853

  10. Effect of Geopolymer filler in Glass Reinforced Epoxy (GRE) Pipe for Piping Application: Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Firdaus Abu Hashim, Mohammad; Bakri Abdullah, Mohd Mustafa Al; Mohd Ruzaidi Ghazali, Che; Hussin, Kamarudin; Binhussain, Mohammed

    2016-06-01

    The present work is aimed to carry out the effect of geopolymer material which is fly ash as filler in the glass reinforced epoxy pipe on the micro structure of fly ash geopolymer, compression properties, and bulk density using the filament winding method. Conventional glass reinforced epoxy pipes has its own disadvantages such as high corrosion resistance at acidic environment and low strength which can be replaced by the composite pipes. Geopolymer is a type of amorphous alumino-silicate and can be synthesized by geopolymerization process. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentage geopolymer filler which is fly ash with 4 Molarity were prepared. Morphology of the raw material fly ash and fly ash based-geopolymer surface was characterized using scanning electron microscopy. It was found that the additions of fly ash at the beginning with 10 wt% are showing higher compressive strength than glass reinforced epoxy pipe without fly ash geopolymer filler. The compressive test of these series of samples was determined using Instron Universal Testing under compression mode. It was found that compressive strength for samples fly ash based-geopolymer filler are higher as compared to glass reinforced epoxy pipe without geopolymer filler. However, the compressive strength of glass reinforced epoxy pipe with fly ash geopolymer filler continues to decline when added to 20 wt% - 40 wt% of geopolymer filler loading. The results showed that the mixing of geopolymer materials in epoxy system can be obtained in this study.

  11. Whisker-reinforced dental core buildup composites: effect of filler level on mechanical properties.

    PubMed

    Xu, H H; Smith, D T; Schumacher, G E; Eichmiller, F C

    2000-12-15

    The strength and toughness of dental core buildup composites in large stress-bearing restorations need to be improved to reduce the incidence of fracture due to stresses from chewing and clenching. The aims of the present study were to develop novel core buildup composites reinforced with ceramic whiskers, to examine the effect of filler level, and to investigate the reinforcement mechanisms. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whisker surface for improved retention in the matrix. Filler level was varied from 0 to 70%. Flexural strength, compressive strength, and fracture toughness of the composites were measured. A nano-indentation system was used to measure elastic modulus and hardness. Scanning electron microscopy (SEM) was used to examine the fracture surfaces of specimens. Whisker filler level had significant effects on composite properties. The flexural strength in MPa (mean +/- SD; n = 6) increased from (95+/-15) for the unfilled resin to (193+/- 8) for the composite with 50% filler level, then slightly decreased to (176+/-12) at 70% filler level. The compressive strength increased from (149+/-33) for the unfilled resin to (282+/-48) at 10% filler level, and remained equivalent from 10 to 70% filler level. Both the modulus and hardness increased monotonically with filler level. In conclusion, silica particle-fused ceramic single-crystalline whiskers significantly reinforced dental core buildup composites. The reinforcement mechanisms appeared to be crack deflection and bridging by the whiskers. Whisker filler level had significant effects on the flexural strength, compressive strength, elastic modulus, and hardness of composites. PMID:11033564

  12. Use of Aquamid as a filler for facial rejuvenation in orientals.

    PubMed

    Yagi, Yoichi; Kato, Kentaro; Murakami, Daisuke; Misaki, Kojiro; Ota, Mitsuya; Kataoka, Jiro; Yukawa, Naoki

    2009-10-01

    We used Aquamid as a filler for facial augmentation and rejuvenation in Orientals. This article introduces the injection techniques, effects, adequate dosage and complications of this filler, especially about rejuvenation of nasolabial fold and nasojugal groove. From December 2002 to June 2007, 5676 patients were treated in our clinic group. Complications were relatively minimal (0.082%) in comparison to other fillers and long-term effects were revealed. This is the first report concerning Aquamid use in facial rejuvenation of the Orientals. PMID:19303835

  13. Treatment of glabella skin necrosis following injection of hyaluronic acid filler using platelet-rich plasma.

    PubMed

    Kang, Boo Kyoung; Kang, In Jung; Jeong, Ki Heon; Shin, Min Kyung

    2016-01-01

    Hyaluronic acid (HA) fillers have been widely used for soft-tissue augmentation. However, there can be various complications following HA filler injection. Skin necrosis is rare but one of the most disastrous side effects that, if not treated promptly and effectively, can result in permanent and potentially disfiguring scarring. Thus, early proper management is important. Herein we report a patient who experienced tissue necrosis of the glabellar area after receiving filler injections that was successfully treated using platelet-rich plasma and provide full follow-up clinical photographs. PMID:26052808

  14. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  15. Nonideal contact in a composite shell structure with a deformable filler

    SciTech Connect

    Bedzir, A.A.; Shatskii, I.P.; Shopa, V.M.

    1995-11-01

    In [8], a model was proposed for investigating the frictional contact accompanying the compression of a deformable filler in an elastic cylindrical shell. The elastic equilibrium of coaxial continuous cylindrical shells and a deformable filler was considered in [5], taking account of the friction at the contact surfaces. In the present work, the stress-strain state and pliability of a shell system consisting of two coaxial cylindrical shells, one slotted and one continuous, that are separated by elastic filler is investigated in conditions of frictional contact. The model developed here serves as the basis for calculating the slotted elastic elements of drill shock absorbers.

  16. Characterization of the polymer-filler interface in (gamma)-irradiated silica-reinforced polysiloxane composites

    SciTech Connect

    Chien, A T; Balazs, B; LeMay, J

    2000-04-03

    The changes in hydrogen bonding at the interface of silica-reinforced polysiloxane composites due to aging in gamma radiation environments were examined in this study. Solvent swelling was utilized to determine the individual contributions of the matrix polymer and polymer-filler interactions to the overall crosslink density. The results show how the polymer-filler hydrogen bonding dominates the overall crosslink density of the material. Air irradiated samples displayed decreased hydrogen bonding at the polymer-filler interface, while vacuum irradiation revealed the opposite effect.

  17. Micro/nano-scale investigation on tin alloys and tin dioxide nanowires

    NASA Astrophysics Data System (ADS)

    Sun, Yong

    Tin (Sn) and its alloys have been at people's service since 3000 BC when bronze (alloy of tin and copper) was produced in large scale. They have unique properties and find applications in various engineering fields. Correspondingly, there is abundant information waiting to be clarified surrounding these Sn-related materials. As the key element used for solder alloys, the properties of Sn alloys have been of great interest to the electronic packaging community. At the same time, the intriguing phenomenon of spontaneous Sn whisker growth from Sn / Sn-alloy thin films have bothered, yet also inspired materials scientists for over 60 years. The most commonly seen Sn-containing compound, SnO 2, is in high demand as well due to its exceptional electronic and chemical properties. In addition, nanostructures of SnO2 are intensively studied for their potential applications as solid-state sensors, transparent conducting materials, lithium-ion batteries, high-efficiency solar cell and recently, supercapacitors. The objective of this proposed research is to explore the amazing properties of Sn and Sn-alloys from several different perspectives. Firstly, ever since the banish of lead in solder alloys, lead-free alloys such as Sn-Ag-Cu (SAC) has been put under the spotlight. We intend to use our expertise in nanomechanics to give an in-depth and thorough investigation on a popular SAC387 alloy. The mechanical properties of each phase and the local deformation mechanisms have been considered. Secondly, the Sn whisker growth phenomenon is to be re-visited. With the aid of digital image correlation (DIC) techniques, it was found that magnitude of the strain gradient plays an important role in whisker growth. Moreover, DIC helps to visualize the dynamic growth process in which the alteration of strain field has been identified to cause growth of subsequent whiskers. Last but not least, the performance of SnO2 nanowires is to be evaluated in several aspects including mechanical

  18. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  19. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  20. Cytotoxicity of Resin Composites Containing Bioactive Glass Fillers

    PubMed Central

    Salehi, Satin; Gwinner, Fernanda; Mitchell, John C; Pfeifer, Carmem; Ferracane, Jack L

    2015-01-01

    Objective To determine the in vitro cytotoxicity of dental composites containing bioactive glass fillers. Methods Dental composites (50:50 Bis-GMA/TEGDMA resin: 72.5wt% filler, 67.5%Sr-glass and 5% OX50) containing different concentrations (0, 5, 10 and 15 wt %) of two sol-gel bioactive glasses, BAG65 (65 mole% SiO2, 31 mole% CaO, 4 mole% P2O5) and BAG62 (3 mole% F added) were evaluated for cytotoxicity using Alamar Blue assay. First, composite extracts were obtained from 7 day incubations of composite in cell culture medium at 37° C. Undifferentiated pulp cells (OD-21) were exposed to dilutions of the original extracts for 3, 5, and 7 days. Then freshly cured composite disks were incubated with OD-21 cells (n=5) for 2 days. Subsequently, fresh composite disks were incubated in culture medium at 37°C for 7 days, and then the extracted disks were incubated with OD-21 cells for 2 days. Finally, fresh composites disks were light cured for 3, 5, and 20 seconds and incubated with OD-21 cells (n=5) for 1, 3, 5, and 7 days. To verify that the three different curing modes produced different levels of degree of conversion (DC), the DC of each composite was determined by FTIR. Groups (n=5) were compared with ANOVA/Tukey’s (α≤0.05). Results Extracts from all composites significantly reduced cell viability until a dilution of 1:8 or lower, where the extract became equal to the control. All freshly-cured composites showed significantly reduced cell viability at two days. However, no reduction in cell viability was observed for any composite that had been previously soaked in media before exposure to the cells. Composites with reduced DC (3 s vs. 20 s cure), as verified by FTIR, showed significantly reduced cell viability. Significance The results show that the composites, independent of composition, had equivalent potency in terms of reducing the viability of the cells in culture. Soaking the composites for 7 days before exposing them to the cells suggested that the

  1. Stability Enhancement of Polymeric Sensing Films Using Fillers

    NASA Technical Reports Server (NTRS)

    Lin, Brian; Shevade, Abhijit; Ryan, Margaret Amy; Kisor, Adam; Yen, Shiao-Pin; Manatt, Kenneth; Homer, Margie; Fleurial, Jean-Pierre

    2006-01-01

    Experiments have shown the stability enhancement of polymeric sensing films on mixing the polymer with colloidal filler particles (submicron-sized) of carbon black, silver, titanium dioxide, and fumed silicon dioxide. The polymer films are candidates for potential use as sensing media in micro/nano chemical sensor devices. The need for stability enhancement of polymer sensing films arises because such films have been found to exhibit unpredictable changes in sensing activity over time, which could result in a possible failure of the sensor device. The changes in the physical properties of a polymer sensing film caused by the sorption of a target molecule can be measured by any of several established transduction techniques: electrochemical, optical, calorimetric, or piezoelectric, for example. The transduction technique used in the current polymer stability experiments is based on piezoelectric principles using a quartz-crystal microbalance (QCM). The surface of the QCM is coated with the polymer, and the mass uptake by the polymer film causes a change in the oscillating frequency of the quartz crystal. The polymer used for the current study is ethyl cellulose. The polymer/ polymer composite solutions were prepared in 1,3 dioxolane solvent. The filler concentration was fixed at 10 weight percent for the composites. The polymer or polymer composite solutions were cast on the quartz crystal having a fundamental frequency of about 6 MHz. The coated crystal was subjected to a multistage drying process to remove all measurable traces of the solvent. In each experiment, the frequency of oscillation was measured while the QCM was exposed to clean, dry, flowing air for about 30 minutes, then to air containing a known concentration of isopropanol for about 30 minutes, then again to clean dry air for about 30 minutes, and so forth. This cycle of measurements for varying isopropanol concentrations was repeated at intervals for several months. The figure depicts some of the

  2. Elastomer coated filler and composites thereof comprising at least 60% by weight of a hydrated filler and an elastomer containing an acid substituent

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Ingham, J. D.; Reilly, W. W. (Inventor)

    1983-01-01

    The impact resistance of flame retardant composites, especially thermoplastic molding: compounds containing over 60% hydrated mineral filler such as Al(OH)3 or Mg(OH)2 as improved by coating the filler with 1 to 20% of an elastomer. The composite will fail by crazing or shearing rather than by brittle fracture. A well bonded elastomeric interphase resulted by utilizing acidic substituted resins such as ethyl-hexyl acrylate-acrylic acid copolymers which bond to and are cross-linked by the basic filler particles. Further improvement in impact resistance was provided by incorporating 1 to 10% of a resin fiber reinforcement such as polyvinyl alcohol fibers that decompose to yield at least 30% water when heated to decomposition temperature.

  3. Foreign Body Granulomas after the Use of Dermal Fillers: Pathophysiology, Clinical Appearance, Histologic Features, and Treatment

    PubMed Central

    Lee, Jeong Min

    2015-01-01

    A foreign body granuloma is a non-allergic chronic inflammatory reaction that is mainly composed of multinucleated giant cells. Foreign body granulomas may occur after the administration of any dermal filler. Factors such as the volume of the injection, impurities present in the fillers, and the physical properties of fillers affect granuloma formation. The formation of granulomas involves five phases: protein adsorption, macrophage adhesion, macrophage fusion, and crosstalk. The clinical and pathologic features of granulomas vary depending on the type of filler that causes them. Foreign body granulomas can be treated effectively with intralesional corticosteroid injections. Surgical excisions of granulomas tend to be incomplete because granulomas have ill-defined borders and moreover, surgical excisions may leave scars and deformities. PMID:25798398

  4. A comparative study of the thermal interface materials with graphene and boron nitride fillers

    NASA Astrophysics Data System (ADS)

    Kargar, F.; Salgado, R.; Legedza, S.; Renteria, J.; Balandin, A. A.

    2014-09-01

    We report the results of an experimental study that compares the performance of graphene and boron nitride flakes as fillers in the thermal interface materials. The thickness of both fillers varied from a single atomic plane to about a hundred. The measurements have been conducted using a standard TIM tester. Our results show that the addition of a small fraction of graphene (f=4 wt%) to a commercial thermal interface material increases the resulting apparent thermal conductivity substantially stronger than the addition of boron nitride. The obtained data suggest that graphene and fewlayer graphene flakes couple better to the matrix materials than the boron nitride fillers. A combination of both fillers can be used to increase the thermal conductivity while controlling the electrical conduction.

  5. Provskite Structure Based Filler Impregnated Pvdf—Hfp Micro Composites For Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Vickraman, P.; Pandiraj, A.

    2011-07-01

    Lithium BETI (Lithium bis (perfluoroethanesulfonyl) imide) (guest species) based PVDF-HFP(host matrix) Polymer NanoComposites (PNC) films by loading barium titanate (BaTiO3) as a filler, in ascending proportions with the plasticizer (mixture of EC+DMC) while keeping host and guest content as constants, has been investigated by employing AC impedance, Thermal, and XRD. The ionic conductivity measurements on these PNC show that 2.5% BaTiO3 loaded PNC showed mitigation in magnitude of the conductivity compared to that of 0 wt% loaded PNC but thereafter increase in conductivity is noted with increase in filler content upto 7.5 wt%. The higher conductivity is observed for 7.5 % filler loaded membrane. The XRD study identifies suppression of polymer phase associated with (200) plane. The thermal profile registers the endothermic changes associated with polymer host indicating varying heat of fusion ΔHm with filler increase.

  6. Adjustable high emittance gap filler. [reentry shielding for space shuttle vehicles

    NASA Technical Reports Server (NTRS)

    Leiser, D. B.; Stewart, D. A.; Smith, M.; Estrella, C. A.; Goldstein, H. E. (Inventor)

    1981-01-01

    A flexible, adjustable refractory filler is disclosed for filling gaps between ceramic tiles forming the heat shield of a space shuttle vehicle, to protect its aluminum skin during atmospheric reentry. The easily installed and replaced filler consists essentially of a strip of ceramic cloth coated, at least along both its longitudinal edges with a room temperature vulcanizable silicone rubber compound with a high emittance colored pigment. The filler may have one or more layers as the gap width requires. Preferred materials are basket weave aluminoborosilicate cloth, and a rubber compounded with silicon tetraboride as the emittance agent and finely divided borosilicate glass containing about 7.5% B2O3 as high temperature binder. The filler cloth strip or tape is cut to proper width and length, inserted into the gap, and fastened with previously applied drops of silicone rubber adhesive.

  7. Novel encapsulation technique for incorporation of high permittivity fillers into silicone elastomers

    NASA Astrophysics Data System (ADS)

    Mazurek, Piotr; Hvilsted, Søren; Skov, Anne L.

    2014-03-01

    The research on soft elastomers with high dielectric permittivity for the use as dielectric electroactive polymers (DEAP) has grown substantially within the last decade. The approaches to enhance the dielectric permittivity can be categorized into three main classes: 1) Mixing or blending in high permittivity fillers, 2) Grafting of high permittivity molecules onto the polymer backbone in the elastomer, and 3) Encapsulation of high permittivity fillers. The approach investigated here is a new type of encapsulation which does not interfere with the mechanical properties to the same content as for the traditionally applied thermoplastic encapsulation. The properties of the elastomers are investigated as function of the filler content and type. The dielectric permittivity, dielectric loss, conductivity, storage modulus as well as viscous loss are compared to elastomers with the same amounts of high permittivity fillers blended into the elastomer, and it is found that the encapsulation provides a technique to enhance some of these properties.

  8. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    NASA Astrophysics Data System (ADS)

    N, Mohamed Shahid U.; Deshpande, Abhijit P.; Lakshmana Rao, C.

    2015-09-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation.

  9. Microstructure and anodic polarization behavior of experimental Ag-18Cu-15Pd-12Au alloy in aqueous sulfide solution.

    PubMed

    Endo, Kazuhiko; Ohno, Hiroki; Asakura, Shukuji

    2003-05-01

    The anodic corrosion behavior of an experimental Ag-15Pd-18Cu-12Au alloy in 0.1% Na(2)S solution in relation to its microstructure was investigated using potentiodynamic and potentiostatic polarization techniques with analyses of corrosion products by X-ray diffractometry, Auger electron spectroscopy, and X-ray photoelectron spectroscopy. The role of Pd in improvement of the corrosion resistance was also investigated. In the potential/current density curve, three distinct current peaks, at -520 mV (peak I), -425 mV (peak II) and -175 mV (peak III), were observed. The Ag-rich alpha(2) matrix with coarse Cu and Pd-rich lamellae was the most corrosion-susceptible region, and this region was preferentially corroded at peak I with the formation of granular deposits of Ag(2)S. A small amount of Ag-Cu mixed sulfide deposited on the Cu and Pd-rich coarse particles and dissolution of Ag as AgO(-) might have occurred in parallel with Ag(2)S formation at peak II. Enrichment of Pd on the alloy surface occurred at peak III due to preferential dissolution of Ag and Cu. A high level of corrosion resistance was attained with the formation of a thin Pd-rich sulfide film, which enhanced the passivity of the alloy in an alkaline sulfide solution. It was found that passivity is an important phenomenon not only for base metal alloys but also for noble metal alloys to maintain high levels of resistance to corrosion and tarnishing in sulfide environments. PMID:15348446

  10. Investigation of mineral filler effects on the aging process of asphalt mastics

    NASA Astrophysics Data System (ADS)

    Moraes, Raquel

    Aging of asphalt binders is induced by chemical and/or physicochemical changes during production of pavement and throughout its service life. Although binder aging in pavement always occurs while binder is in contact with aggregates and mineral filler, in most laboratory aging studies, and in current specifications, asphalt binders are individually aged without accounting for aggregate induced interactions. Past research has had conflicting findings, attributing both mitigating and/or catalytic effects to the presence of mineral filler in asphalt binder with regards to oxidative aging. Thus, in the present study it was hypothesized that evaluation of asphalt oxidative aging without regard to interactive effect of the presence of mineral filler is inadequate as a specification tool. Effects of mineral fillers on oxidative aging of asphalt is investigated by means of accelerated aging of mastics (asphalt and fillers) in Pressure Aging Vessel (PAV). Testing matrix included aging evaluation of mastics containing different fillers content, mineralogy, and surface area. Results showed that low-temperature behavior of aged mastic can be modified by controlling filler concentration and type. Fillers acts as an agent adsorbing heavy fractions of asphalt binder, therefore reducing stiffness and changing glass-transition temperature. Also, during oxidative aging of asphalt binders and mastics, both diffusion and adsorption mechanisms play a role in the rate of aging of asphaltic material. A method to characterize the behavior of mastics with aging was also developed by monitoring the mastics |G*| aging index (ratio of complex modulus before and after aging). Gel Permeation Chromatography (GPC) testing results supported mentioned findings regarding |G*| changes, as the presence of mineral filler appears to decelerate the rate of production of larger molecular size oxidation products in the binder phase of mastics. Implication of the findings is that change in molecular size

  11. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  12. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  13. Surface Treated Natural Fibres as Filler in Biocomposites

    NASA Astrophysics Data System (ADS)

    Schwarzova, I.; Stevulova, N.; Singovszka, E.; Terpakova, E.

    2015-11-01

    Biocomposites based on natural fibres as organic filler have been studied for several years because traditional building materials such as concrete are increasingly being replaced by advanced composite materials. Natural fibres are a potential replacement of glass fibres in composite materials. Inherent advantages such as low density, biodegradability and comparable specific mechanical properties make natural fibres an attractive option. However, limitations such as poor thermal stability, moisture absorption and poor compatibility with matrix are challenges that need to be resolved. The primary objective of this research was to study the effect of surface treatment on properties of hemp hurds like a natural lignocellulosic material and composites made thereof. Industrial hemp fibre is the one of the most suitable fibres for use in composite materials because of its good specific properties, as well as it being biologically degradable and CO2 neutral. Improving interfacial bonding between fibres and matrix is an important factor in using hemp fibres as reinforcement in composites. In order to improve interfacial bonding, modifications can be made to the hemp fibres to remove non- cellulosic compounds, separate hemp fibres from their bundles, and modify the fibre surface. This paper contains the comparison of FTIR spectra caused by combination of physical and chemical treatment of hemp material with unmodified sample. Modification of hemp hurds was carried out by NaOH solution and by ultrasonic treatment (deionized water and NaOH solution were used as the cleaning mediums).

  14. [What's new in aesthetic dermatology: filler and laser treatments].

    PubMed

    Beylot, C

    2009-05-01

    In esthetic dermatology, filling and laser treatments are two essential techniques. Several recent studies on calcium hydroxyapatite in filling treatments and facial volumetry, in esthetics, but also in HIV patients, have been published. It was also tested in accentuated melomental folds where it is superior to hyaluronic acid. In aging of the skin of the dorsal aspect of the hands, hyaluronic acid provides slightly better results than collagen. Filler rhinoplasty can correct minor deformations of the nose. Lipofilling is advantageous for linear scleroderma of the face, at least in the forehead region, and adipocyte stem cells may be a future solution for facial aging or lipoatrophy. The risk of local and/or general sarcoid reactions related to interferon in patients having undergone filling injections has been reported. In the field of laser treatment, fractionated photothermolysis has motivated much more research and seem particularly valuable in treating acne scars, aging of the dorsal aspect of the hands, and, more anecdotally, in colloid milium and pearly penile papules. Laser is also useful in preventing surgical scars where a mini-diode can also be used. For axillary hyperhidrosis, subdermic Nd-YAG laser competes with botulinum toxin, with longer-lasting results. Solutions are appearing for treatment of red or white striae cutis distensae. Intense pulsed light is the reference technique for poikiloderma of Civatte, and seems effective, with new devices, for melasma. However, inappropriately used by nonphysicians, IPL can cause serious ocular accidents; one case of uveitis has been reported. PMID:19576483

  15. Dermal fillers in aesthetics: an overview of adverse events and treatment approaches

    PubMed Central

    Funt, David; Pavicic, Tatjana

    2013-01-01

    Background The ever-expanding range of dermal filler products for aesthetic soft tissue augmentation is of benefit for patients and physicians, but as indications and the number of procedures performed increase, the number of complications will likely also increase. Objective To describe potential adverse events associated with dermal fillers and to provide structured and clear guidance on their treatment and avoidance. Methods Reports of dermal filler complications in the medical literature were reviewed and, based on the publications retrieved and the authors’ extensive experience, recommendations for avoiding and managing complications are provided. Results Different dermal fillers have widely varying properties, associated risks, and injection requirements. All dermal fillers have the potential to cause complications. Most are related to volume and technique, though some are associated with the material itself. The majority of adverse reactions are mild and transient, such as bruising and trauma-related edema. Serious adverse events are rare, and most are avoidable with proper planning and technique. Conclusion For optimum outcomes, aesthetic physicians should have a detailed understanding of facial anatomy; the individual characteristics of available fillers; their indications, contraindications, benefits, and drawbacks; and ways to prevent and avoid potential complications. PMID:24363560

  16. Effects of filler modification and structuring on dielectric enhancement of silicone rubber composites

    NASA Astrophysics Data System (ADS)

    Javadi, Sara; Razzaghi-Kashani, Mehdi

    2013-04-01

    Preferred structuring of filler particles in a polymer matrix by using dielectrophoretic assembly process can enhance anisotropic dielectric properties. For this purpose, precipitated silica (SiO2) was structured in silicone rubber using an alternating electric field. This filler structure was stabilized by vulcanizing rubber during electric field application. Filler particle orientation and resulted anisotropy was verified by equilibrium swelling. Structuring filler in the rubber matrix led to increased dielectric permittivity and loss in the thickness direction. Filler surface modification by (vinyl-tris-(2- diethoxy/methoxy) silane) improved structure formation and anisotropic properties. It was shown that applying silane modifier and orientation of silica particles by dielectrophoretic assembly process increased dielectric permittivity of silicone rubber in the thickness direction while dielectric loss had either minor changes or increased less than permittivity in this direction. Although elastic modulus of composite, which was measured by dynamic-mechanical analysis, increased to some extent, enhancement in dielectric permittivity was much higher. This introduced the structured composite as a potential for dielectric elastomeric actuator with higher efficiency than the original silicone rubber with no filler addition.

  17. Diffusivity and Transient Localization of Filler Particles in Polymer Melts and Crosslinked Systems

    NASA Astrophysics Data System (ADS)

    Dell, Zachary E.; Schweizer, Kenneth S.

    2013-03-01

    Building on recent progress in describing the microscopic equilibrium structure of polymer nanocomposites (PRISM theory), as well as the naïve mode coupling and nonlinear Langevin equation approaches for predicting localization and activated barrier hopping, we have initiated the study of dynamical phenomena in nanocomposites at finite filler loading. A colloidal suspension perspective is adopted whereby the polymer dynamics are assumed to remain unperturbed by fillers. Both entangled polymer melts and crosslinked systems are studied. The long time behavior of a tagged nanoparticle (localization and diffusivity) is calculated for various melt (tube diameter, polymer radius of gyration) and nanoparticle (filler size and volume fraction, polymer-filler attraction strength) parameters. For transiently localized particles, a dynamic free energy is constructed and employed to compute the nanoparticle localization length, mean barrier hopping time, and self-diffusion constant. The influence of filler-filler interactions on the Stokes-Einstein violation phenomenon in entangled melts is established. In addition, the influence of nanocomposite statistical structure (e.g., in the depletion, steric stabilization, or bridging regimes) on slow dynamics and localization is investigated.

  18. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  19. Nanoparticle fillers obtained from wood processing wastes for reinforcing of paper

    NASA Astrophysics Data System (ADS)

    Laka, Marianna; Vikele, Laura; Rozenberga, Linda; Janceva, Sarmite

    2016-05-01

    Paper sheets were produced from bleached kraft pulp, and office and newsprint waste paper. Nanoparticles from black alder bark, grey alder bark and pine bark as well as birch sawdust were obtained for using them as reinforcing fillers in paper. Non-extracted bark and that extracted in biorefinery were used. For producing nanoparticles, the materials were destructed using the thermocatalytic destruction method and then dispersed in water medium in a ball mill. At a sufficient concentration, gel-like dispersions were obtained, which contained nanoparticles with the size ~300 nm. The dispersions were introduced in paper furnish in different amounts. It has been established that all the nanoparticle fillers increase the tensile index and burst index in dry and wet states. The nanoparticle fillers from extracted bark increase the mechanical indices to a higher extent. At 20% filler content, tensile index in a dry state increases in the case of non-extracted grey alder bark, black alder bark and pine bark by 28, 30 and 15%, and in the case of extracted ones - by 44, 40 and 30%, respectively; the burst index increases by 78, 19 and 4%, and 91, 25 and 14%, respectively. The nanoparticle filler from birch sawdust increases the tensile strength in a dry state by 9% and burst index by 20%. The obtained nanoparticle fillers slightly improve also the water resistance of paper.

  20. Sensing and actuating capabilities of a shape memory polymer composite integrated with hybrid filler

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Yu, Kai; Liu, Yanju; Leng, Jinsong

    2010-06-01

    In this paper, hybrid fillers, including carbon black (CB) and chopped short carbon fibers (SCF), are integrated into a styrene-based shape memory polymer (SMP) with sensing and actuating capabilities. The hybrid filler is expected to transform insulating SMP into conducting. Static mechanical properties of the SMP composites containing various filler concentrations of hybrid filler reinforcement are studied first, and it is theoretically and experimentally confirmed that the mechanical properties are significantly improved by a factor of filler content of SCF. The excellent electrical properties of this novel type of SMP composite are determined by a four-point-probe method. As a consequence, the sensing properties of SMP composite filled with 5 wt% CB and 2 wt% SCF are characterized by functions of temperature and strain. These two experimental results both aid the use of SMP composites as sensors that respond to changes in temperature or mechanical loads. On the other hand, the actuating capability of SMP composites is also validated and demonstrated. The dynamic mechanical analysis result reveals that the output strength of SMP composites is improved with an increase in filler content of SCF. The actuating capability of SMP composites is subsequently demonstrated in a series of photographs.

  1. Effects of filler wire feed on the efficiency of laser welding

    NASA Astrophysics Data System (ADS)

    Salminen, Antti S.

    2003-03-01

    The range of laser welding applications is widening from applications in car manufacturing to normal machine building. Laser welding has suffered from the tight demands for component and joint manufacture. This investigation studies the effect of various welding and filler wire feed variables on the weld quality and efficiency of the laser welding process. Welding was found to be possible with several parameter combinations and the width of air gap used was 1 mm, when the material thickness was 6 mm. The utilization of filler wire feed introduces some new parameters to the laser welding process. There is a noticeable effect from the wire feed position and feed angle on the welding process. The variations, like lack of penetration, of weld quality, was caused by inaccurate positioning of filler wire and can be compensated by the adjustment of the filler wire feed rate and the energy input to some extent. The efficiency of laser welding with filler wire is equal to that of autogenous welding, but the overall energy input must be increased according to the air gap volume. Filler wire feed provides the process with less stringent demands, but requires additional energy input to the workpiece.

  2. Electrically conductive epoxy nanocomposites with expanded graphite/carbon nanotube hybrid fillers prepared by direct hybridization.

    PubMed

    Yu, Lan; Kang, Hyokyung; Lim, Yun-Soo; Lee, Churl Seung; Shin, Kwonwoo; Park, Ji Sun; Han, Jong Hun

    2014-12-01

    Carbon nanotubes (CNTs) are generally used to promote the electrical conductivity of the polymer nanocomposites. However, in spite of their superior properties, CNT's high cost has limited their commercial application, so far. Thus, the development of hybrid carbon nanomaterials (CNMs) composed of CNTs and cheaper CNMs such as carbon fibers (CFs), expanded graphites (EGs), and graphene nanoplatelets (GNPs) is important in terms of reducing the cost of CNT-based fillers. In this study, we prepared EG/CNT hybrid fillers via direct CNT synthesis on the EG support using modified combustion method and thermal chemical vapor deposition (CVD) method, and investigated the electrical conductivity of the expoxy nanocomposite with EG/CNT hybrid fillers. The epoxy nanocomposites with EG/CNT hybrid fillers at 20 wt% filler loading showed 260% and 170% electrical conductivity enhancement in comparison with the EG and the simply mixed EG and CNT fillers, respectively. Our approach provides various applications including electromagnetic interference (EMI) shielding materials, thermal interface materials (TIMs), and reinforced nanocomposites. PMID:25971025

  3. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater

    PubMed Central

    Yang, Ruihong; ZHU, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-01-01

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na2SO4 additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography–mass spectrometry (GC–MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet–visible spectroscopy (UV–VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency. PMID:27136574

  4. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater.

    PubMed

    Yang, Ruihong; Zhu, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-01-01

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na₂SO₄ additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography-mass spectrometry (GC-MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet-visible spectroscopy (UV-VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency. PMID:27136574

  5. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-05-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  6. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-04-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  7. Low vapor pressure braze alloys for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1976-01-01

    The evaluation of cesium diode electrode materials called for braze fillers with very low vapor pressures and a wide range of melting points. Binary alloys of low vapor pressure refractory metals were chosen to fill this need. These alloys of Th, Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W have reported melting point minima or eutectics from 1,510 K to above 3,000 K. Preliminary data are compiled on the use of several of these braze alloys. Melting points and surface wetting on a Ta base are given. Results of brazing Ir, LaB6, Nb, Re, W, and Zr-22 wt % ZrO2 materials into Ta and Nb-1% Zr bases are presented. Current braze usage is summarized.

  8. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  9. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  10. Percutaneous Vertebroplasty Using Fresh Frozen Allogeneic Bone Chips as Filler

    PubMed Central

    Lee, Song; Kim, Dae Geun; Shin, Won Sik

    2014-01-01

    Background Vertebroplasty is not free from cement related complications. If an allograft is used as a filler, most of them can be averted. Methods Forty consecutive cases of osteoporotic vertebral fracture were divided into two groups by self-selection. The study and the control groups underwent vertebroplasty with fresh frozen allogeneic bone chips and bone cement, respectively. Clinical results were assessed at preoperation, postoperative day 1 and months 3, 6, and 12 by 10-grade visual analog scale (VAS), and radiological results were assessed at the same time by vertebral kyphotic angle (VKA) and local kyphotic angle (LKA). The results were compared within and between the groups. Survival function was analyzed. The criteria of an event were clinical or radiological deterioration versus pre-index surgery state. Results VAS was improved in the study group from 8.4 ± 0.8 to 5.2 ± 1.4, 6.4 ± 1.2, 5.5 ± 2.7, and 3.7 ± 1.4 at postoperative day 1 and months 3, 6, and 12, respectively, and in the control group from 8.4 ± 1.2 to 3.2 ± 1.1, 3.2 ± 1.7, 3.2 ± 2.7, and 2.5 ± 1.7, respectively (within group, p < 0.001; between groups, p < 0.001). VKA was improved in the study group from 18.9° ± 8.0° to 15.2° ± 6.1° (p = 0.046) and in the control group from 14.7° ± 5.2° to 10.3° ± 4.7° (p < 0.001) at postoperative day 1. LKA was not improved in the study group but was improved in the control group from 16.8° ± 11.7° to 14.3° ± 9.6° (p = 0.015). Correction angle was 2.7° ± 4.6°, -7.9° ± 5.3°, -7.2° ± 5.2°, and -7.4° ± 6.3° at postoperative day 1 and months 3, 6, and 12, respectively, in the study group and 4.3° ± 3.7°, 0.7° ± 3.6°, 0.7° ± 4.2°, and 0.1° ± 4.4°, respectively, in the control group. Correction loss was significant in both groups (p < 0.001) and more serious in the study group (p < 0.001). The 6-month survival rate was 16.7% in the study group and 64.3% in the control group (p = 0.003; odds ratio, 5

  11. Laser micro welding of copper and aluminium using filler materials

    NASA Astrophysics Data System (ADS)

    Esser, Gerd; Mys, Ihor; Schmidt, Michael H.

    2004-10-01

    The most evident trend in electronics production is towards miniaturization. Regarding the materials involved, another trend can be observed: intelligent combinations of different materials. One example is the combination of copper and aluminium. Copper is the material of choice for electronic packaging applications due to its superior electrical and thermal conductivity. On the other hand, aluminium offers technical and economical advantages with respect to cost and component weight -- still providing thermal and electrical properties acceptable for numerous applications. Especially for high volume products, the best solution often seems to be a combination of both materials. This fact raises the question of joining copper and aluminium. With respect to miniaturization laser micro welding is a very promising joining technique. Unfortunately, the metallurgical incompatibility of copper and aluminium easily results in the formation of brittle intermetallic phases and segregations during laser welding, thus generating an unacceptable quality of the joints. This paper presents investigations on enhancing the quality during laser micro welding of copper and aluminium for applications in electronics production. In order to eliminate the formation of brittle intermetallic phases, the addition of a filter material in form of a foil has been investigated. It can be shown that the addition of pure metals such as nickel and especially silver significantly reduces the occurrence of brittle phases in the joining area and therefore leads to an increase in welding quality. The proper control of the volume fractions of copper, aluminium and filler material in the melting zone helps to avoid materials segregation and reduces residual stress, consequently leading to a reduction of crack affinity and a stabilization of the mechanical and electrical properties.

  12. Double-sided fiber laser beam welding process of T-joints for aluminum aircraft fuselage panels: Filler wire melting behavior, process stability, and their effects on porosity defects

    NASA Astrophysics Data System (ADS)

    Tao, Wang; Yang, Zhibin; Chen, Yanbin; Li, Liqun; Jiang, Zhenguo; Zhang, Yunlong

    2013-11-01

    Aluminum alloy T-joints for aircraft fuselage panels were fabricated by double-sided fiber laser beam welding with filler wire, and the influence of the wire feeding posture on the welding process stability was investigated. A CMOS high speed video system was used to observe the wire melting behavior and the weld pool dynamics in real time during the welding process by using a bandpass red laser with an emission wavelength of 808 nm as backlight source to illuminate the welding zone. The weld porosity defects were analyzed by X-ray radiography. The effects of wire feeding posture on the wire melting behavior, process stability, and porosity defects were investigated. The experimental results indicated that three distinct filler material transfer modes were identified under different wire feeding positions: liquid bridge transfer mode, droplet transfer mode, and spreading transfer mode. The liquid bridge transfer mode could guarantee a stable welding process, and result in the lowest porosity. Compared with wire feeding in the leading direction, the process was not stable and porosity increased when wire feeding in the trailing direction. Increased in the wire feeding angle was disadvantage for pores to escape from the weld molten pool, meanwhile, it made the welding process window smaller due to increasing the centering precision requirement for adjusting the filler wire.

  13. Microwave properties of polymer composites containing combinations of micro- and nano-sized magnetic fillers.

    PubMed

    Kolev, Svetoslav; Koutzarova, Tatyana; Yanev, Andrey; Ghelev, Chavdar; Nedkov, Ivan

    2008-02-01

    We investigated the microwave absorbing properties of composite bulk samples with nanostructured and micron-sized fillers. As magnetic fillers we used magnetite powder (Fe3O4 with low magnetocrystalline anisotropy) and strontium hexaferrite (SrFe12O9 with high magnetocrystalline anisotropy). The dielectric matrix consisted of silicone rubber. The average particle size was 30 nm for the magnetite powder and 6 micro/m for the strontium hexaferrite powder. The micron-sized SrFe12O19 powder was prepared using a solid-state reaction. We investigated the influence of the filler concentration and the filler ratio (Fe3O4/SrFe12O19) in the polymer matrix on the microwave absorption in a large frequency range (1 / 18 GHz). The results obtained showed that the highly anisotropic particles become centers of clusterification and the small magnetite particles form magnetic balls with different diameter depending on the concentration. The effect of adding micron-sized SrFe12O19 to the nanosized Fe3O4 filler in composites absorbing structures has to do with the ferromagnetic resonance (FMR) shifting to the higher frequencies due to the changes in the ferrite filler's properties induced by the presence of a magnetic material with high magnetocrystalline anisotropy. The two-component filler possesses new values of the saturation magnetization and of the anisotropy constant, differing from those of both SrFe12O1919 and Fe3O4, which leads to a rise in the effective anisotropy field. The results demonstrate the possibility to vary the composite's absorption characteristics in a controlled manner by way of introducing a second magnetic material. PMID:18464386

  14. Tracking and Increasing Viability of Topically Injected Fibroblasts Suspended in Hyaluronic Acid Filler.

    PubMed

    You, Hi-Jin; Namgoong, Sik; Rhee, Sung-Mi; Han, Seung-Kyu

    2016-03-01

    A new injectable tissue-engineered soft tissue consisting of a mixture of hyaluronic acid (HA) filler and cultured human fibroblasts have been developed by the authors. To establish this method as a standard treatment, a further study was required to determine whether the injected fibroblasts could stay at the injected place or move to other sites. In addition, effective strategies were needed to increase viability of the injected fibroblasts. The purpose of this study was to track the injected fibroblasts and to determine the effect of adding prostaglandin E1 (PGE1) or vitamin C on the viability of fibroblasts.Human fibroblasts labeled with fluorescence dye were suspended in HA filler and injected into 4 sites on the back of nude mice. The injected bioimplants consisted of one of the 4 followings: HA filler without cells (HA group), fibroblasts suspended in HA filler (HA + FB group), PGE1-supplemented fibroblasts in HA filler (HA + FB + PGE1 group), and vitamin C-supplemented fibroblasts in HA filler (HA + FB + VC group). At 4 weeks after injection, locations and intensities of the fluorescence signals were evaluated using a live imaging system.The fluorescence signals of the fibroblast-containing groups were visible only at the injected sites without dispersing to other sites. The HA +FB + PGE1 group showed a significantly higher fluorescence signal than the HA + FB and the HA + FB +VC groups (P < 0.05, each). There was no statistical difference between the HA + FB and HA + FB +VC groups (P = 0.69).The results of the current study collectively suggest that injected fibroblasts suspended in HA filler stay at the injected place without moving to other sites. In addition, PGE1 treatment may increase the remaining rhodamine B isothiocynanate dye at the injected site of the human dermal fibroblasts. PMID:26854786

  15. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  16. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  17. Approach by Nano- and Micro-filler Mixture toward Epoxy-based Nanocomposites as Industrial Insulating Materials

    NASA Astrophysics Data System (ADS)

    Imai, Takahiro; Sawa, Fumio; Ozaki, Tamon; Shimizu, Toshio; Kuge, Shin-Ichi; Kozako, Masahiro; Tanaka, Toshikatsu

    The main contribution of this paper is to show the realizability of epoxy-based nanocomposites as industrial insulating materials. The nano- and micro-filler mixture was invented to boost the nanocomposite in industrial insulating materials. Nano- and micro-filler mixture composites were newly made by dispersing a few weight-percentages of nano-filler and approximately 60 weight-percentages of micro-silica fillers in epoxy resin. Two kinds of nano-filler were used, such as layered silicate and silica. Experimental results demonstrated that the approach by nano- and micro-filler mixture enables the nanocomposite to have not only superior insulation properties but also the same low thermal expansion in comparison with the conventional filled epoxy (approximately 60 weight-percentages of micro-silica loading). Moreover, the nano-silica and micro-filler mixture composite has the desired properties of resin viscosity and curing reaction whereas the layered silicate and micro-filler composite has higher resin viscosity and faster curing reaction than those of the conventional filled epoxy due to modifier ions of layered silicates. Consequently, the nano-silica and micro-filler mixture composite is presently the closest to the epoxy-based nanocomposite as an industiral insulation material.

  18. Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite.

    PubMed

    Lung, Christie Ying Kei; Sarfraz, Zenab; Habib, Amir; Khan, Abdul Samad; Matinlinna, Jukka Pekka

    2016-02-01

    To evaluate the physical and mechanical properties of an experimental bis-GMA-based resin composite incorporated with non-silanized and silanized nano-hydroxyapatite (nHAP) fillers. Experimental bis-GMA based resin composites samples which were reinforced with nHAP fillers were prepared. Filler particles were surface treated with a silane coupling agent. Five test groups were prepared: 1. Unfilled, 2. Reinforced with 10wt% and 30wt% non-silanized nHAP fillers, and 3. Reinforced with 10wt% and 30wt% silanized nHAP fillers. The samples were subjected to tests in dry condition and in deionized water, aged at 37°C for 30 days. Prepared silanized and non-silanized nHAP were analyzed with Fourier Transform Infrared (FTIR) Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The micro-hardness and water sorption were evaluated. Data were analyzed by one-way ANOVA (p<0.05). The samples were characterized by FTIR Spectroscopy, Thermogravimetric Analysis and Differential Scanning Calorimetry. The surface morphology of sample surfaces was examined by Scanning Electron Microscope (SEM). The results showed that the water sorption for nHAP fillers reinforced resins was significantly lower than unfilled resins. Surface hardness for resins reinforced with silane treated fillers was superior to unfilled and untreated fillers resins. The resin matrix loaded with 30wt% silanized-nHAP fillers would improve the physical and mechanical properties of a bis-GMA based resin. PMID:26479428

  19. Using explosion-clad plates of alloy 625 in flue gas desulfurization plates

    SciTech Connect

    Kirchheiner, R.; Hoffmann, T.; Hofmann, F.

    1987-01-01

    Various concepts may be used to line large vessels with high quality corrosion resistant plates. Explosive cladding with alloy 625 on mild steel base plates is one method that is currently used for FGD adsorption towers in the Federal Republic of Germany. Cladding technology, i.e. welding, is very critical for this method, and both the weld filler metals and process parameters and the processes themselves have to be precisely matched.

  20. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid)

    PubMed Central

    Liu, Xingxun; Wang, Tongxin; Chow, Laurence C.; Yang, Mingshu; Mitchell, James W.

    2015-01-01

    Addition of filler to polylactic acid (PLA) may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA) on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline) have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC), scanning electron microscope (SEM), instron tensile tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA. PMID:25717339

  1. A systematic review of filler agents for aesthetic treatment of HIV facial lipoatrophy (FLA).

    PubMed

    Jagdeo, Jared; Ho, Derek; Lo, Alex; Carruthers, Alastair

    2015-12-01

    HIV facial lipoatrophy (FLA) is characterized by facial volume loss. HIV FLA affects the facial contours of the cheeks, temples, and orbits, and is associated with social stigma. Although new highly active antiretroviral therapy medications are associated with less severe FLA, the prevalence of HIV FLA among treated individuals exceeds 50%. The goal of our systematic review is to examine published clinical studies involving the use of filler agents for aesthetic treatment of HIV FLA and to provide evidence-based recommendations based on published efficacy and safety data. A systematic review of the published literature was performed on July 1, 2015, on filler agents for aesthetic treatment of HIV FLA. Based on published studies, poly-L-lactic acid is the only filler agent with grade of recommendation: B. Other reviewed filler agents received grade of recommendation: C or D. Poly-L-lactic acid may be best for treatment over temples and cheeks, whereas calcium hydroxylapatite, with a Food and Drug Administration indication of subdermal implantation, may be best used deeply over bone for focal enhancement. Additional long-term randomized controlled trials are necessary to elucidate the advantages and disadvantages of fillers that have different biophysical properties, in conjunction with cost-effectiveness analysis, for treatment of HIV FLA. PMID:26481056

  2. Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking

    SciTech Connect

    Sinha, A.S.K.

    2008-09-15

    This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

  3. Experimental Study of Filler Insertion Effect on Mean Thermal Contact Conductance

    NASA Astrophysics Data System (ADS)

    Tomimura, Toshio

    A series of experiments have been performed to investigate the filler insertion effect on the temperature drop at the wavy contact interface ΔT and the mean thermal contact conductance hm, f. Representative behavior of ΔT against the mean nominal contact pressure pm is clarified, and the effect of an interval of time on ΔT is shown for the silicone filler with thickness δfo=2mm. The silicone elastomer is proved effective to increase hm, f despite its low thermal conductivity. Further, it is shown that hm, f of 0.5mm thick silicone filler becomes two to three times higher than that of bare contact under the unloading process. However, it is also shown that hm, f decreases with increasing δfo, therefore filler insertion with improper thickness results in a reverse effect on increase in hm, f. As for metallic filler insertion using an aluminum or a copper foil, only a little improvement in hm, f is obtained in spite of its high thermal conductivity.

  4. Filler features and their effects on wear and degree of conversion of particulate dental resin composites.

    PubMed

    Turssi, C P; Ferracane, J L; Vogel, K

    2005-08-01

    Based on the incomplete understanding on how filler features influence the wear resistance and monomer conversion of resin composites, this study sought to evaluate whether materials containing different shapes and combinations of size of filler particles would perform similarly in terms of three-body abrasion and degree of conversion. Twelve experimental monomodal, bimodal or trimodal composites containing either spherical or irregular shaped fillers ranging from 100 to 1500 nm were examined. Wear testings were conducted in the OHSU wear machine (n = 6) and quantified after 10(5) cycles using a profilometer. Degree of conversion (DC) was measured by FTIR spectrometry at the surface of the composites (n = 6). Data sets were analyzed using one-way Anova and Tukey's test at a significance level of 0.05. Filler size and geometry was found to have a significant effect on wear resistance and DC of composites. At specific sizes and combinations, the presence of small filler particles, either spherical or irregular, may aid in enhancing the wear resistance of composites, without compromising the percentage of reacted carbon double bonds. PMID:15769527

  5. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers

    NASA Astrophysics Data System (ADS)

    Seyedin, Shayan; Razal, Joselito M.; Innis, Peter C.; Wallace, Gordon G.

    2016-03-01

    Electrically conductive elastomeric fibres prepared using a wet-spinning process are promising materials for intelligent textiles, in particular as a strain sensing component of the fabric. However, these fibres, when reinforced with conducting fillers, typically result in a compromise between mechanical and electrical properties and, ultimately, in the strain sensing functionality. Here we investigate the wet-spinning of polyurethane (PU) fibres with a range of conducting fillers such as carbon black (CB), single-walled carbon nanotubes (SWCNTs), and chemically converted graphene. We show that the electrical and mechanical properties of the composite fibres were strongly dependent on the aspect ratio of the filler and the interaction between the filler and the elastomer. The high aspect ratio SWCNT filler resulted in fibres with the highest electrical properties and reinforcement, while the fibres produced from the low aspect ratio CB had the highest stretchability. Furthermore, PU/SWCNT fibres presented the largest sensing range (up to 60% applied strain) and the most consistent and stable cyclic sensing behaviour. This work provides an understanding of the important factors that influence the production of conductive elastomer fibres by wet-spinning, which can be woven or knitted into textiles for the development of wearable strain sensors.

  6. Key importance of compression properties in the biophysical characteristics of hyaluronic acid soft-tissue fillers.

    PubMed

    Gavard Molliard, Samuel; Albert, Séverine; Mondon, Karine

    2016-08-01

    Hyaluronic acid (HA) soft-tissue fillers are the most popular degradable injectable products used for correcting skin depressions and restoring facial volume loss. From a rheological perspective, HA fillers are commonly characterised through their viscoelastic properties under shear-stress. However, despite the continuous mechanical pressure that the skin applies on the fillers, compression properties in static and dynamic modes are rarely considered. In this article, three different rheological tests (shear-stress test and compression tests in static and dynamic mode) were carried out on nine CE-marked cross-linked HA fillers. Corresponding shear-stress (G', tanδ) and compression (E', tanδc, normal force FN) parameters were measured. We show here that the tested products behave differently under shear-stress and under compression even though they are used for the same indications. G' showed the expected influence on the tissue volumising capacity, and the same influence was also observed for the compression parameters E'. In conclusion, HA soft-tissue fillers exhibit widely different biophysical characteristics and many variables contribute to their overall performance. The elastic modulus G' is not the only critical parameter to consider amongst the rheological properties: the compression parameters E' and FN also provide key information, which should be taken into account for a better prediction of clinical outcomes, especially for predicting the volumising capacity and probably the ability to stimulate collagen production by fibroblasts. PMID:27093589

  7. Effect of treated filler loading on the photopolymerization inhibition and shrinkage of a dimethacrylate matrix.

    PubMed

    Nunes, T G; Pereira, S G; Kalachandra, S

    2008-05-01

    This study shows how treated filler loading influences the photopolymerization of a dimethacrylate comonomer mixture, regarding, in particular, shrinkage and inhibition under atmospheric oxygen, present in oral environment. Bis-GMA/TEGDMA (75/25 wt.%) resins were loaded with hybrid filler (Ba aluminosilicate glass and pyrogenic silica), treated with gamma-methacryloxy(propyl)trimethoxysilane, at 0-50 wt.% and light cured over a total of 30 s (45 mW/cm2). Degree of double-bond conversion (DC), obtained using FTIR, decreased with filler content. 1H MAS spectra (293-340 K) and STRAFI images (293 K) were obtained as a function of irradiation time and filler concentration. 1H signals of unreacted methacrylate groups were more intense for higher loaded resins and resonances from -CH2SiO2(OH) (T2) and -CH2SiO3- (T3) units, also observed by 29Si NMR, were resolved and suggest the presence of T2-resin bonds. 1D images show a reduction on polymerization contraction and reaction inhibition at the composite resin surface with filler loading. 2D resin images present a highly mobile surface layer, hence with lower DC. PMID:17914626

  8. Inflammatory nodules following soft tissue filler use: a review of causative agents, pathology and treatment options.

    PubMed

    Ledon, Jennifer A; Savas, Jessica A; Yang, Steven; Franca, Katlein; Camacho, Ivan; Nouri, Keyvan

    2013-10-01

    Nodule development is a common complication following the use of fillers for soft tissue augmentation and is commonly categorized as inflammatory or non-inflammatory in nature. Inflammatory nodules may appear anywhere from days to years after treatment, whereas non-inflammatory nodules are typically seen immediately following implantation and are usually secondary to improper placement of the filler. Although inflammatory nodules are more common with permanent fillers such as silicone, inflammatory nodule development following administration of temporary fillers such as hyaluronic acid and collagen has also been reported. Treated many times with corticosteroids due to their anti-inflammatory properties, inflammatory nodules may be secondary to infection or biofilm formation, warranting the use of alternative agents. Appropriate and prompt diagnosis is important in avoiding delay of treatment or long-term complications for the patient. This paper addresses the etiology, development, and studied treatment options available for inflammatory nodules secondary to each of the major classes of fillers. With this knowledge, practitioners may expeditiously recognize and manage this common side effect and thus maximize functional and aesthetic benefit. PMID:24037757

  9. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  10. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  11. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers

    NASA Astrophysics Data System (ADS)

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-01

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  12. Influence of carbon fillers nature on the structural and morphological properties of polyurethane-based composites

    NASA Astrophysics Data System (ADS)

    Melentyev, S. V.; Malinovskaya, T. D.; Pavlov, S. V.

    2016-01-01

    The present paper is devoted to studying structural and morphological properties of the resistive composite materials based on the polyurethane binder. The paper shows the influence of nature, size, shape, concentration of conductive carbon fillers (channel black K-163, graphite element GE-3, colloidal-graphite preparation C-1) and the method of their introduction into the binder to form the electrical conductivity of composites. Experimentally it was found out that a homogeneous composite structure reaches dispersive mixing filler and binder within 120 min. The analysis of the morphological pattern surfaces and chipping resistance materials has demonstrated that composites with colloidal-graphite preparation C-1 are more unimodal with the same concentrations of the investigated fillers.

  13. Polyurethane foam with multi walled carbon nanotubes/magnesium hybrid filler

    NASA Astrophysics Data System (ADS)

    Adnan, Sinar Arzuria; Zainuddin, Firuz; Zaidi, Nur Hidayah Ahmad; Akil, Hazizan Md.; Ahmad, Sahrim

    2016-07-01

    The purpose of this paper is to investigate the effect of multiwalled carbon nanotubes (MWCNTs)/magnesium (Mg) hybrid filler in polyurethane (PU) foams with different weight percentages (0.5 wt.% to 3.0 wt.%). The PU/MWCNTs/Mg foam composites were formed by reaction of based palm oil polyol (POP) with methylene diphenyl diisocyanate (MDI) with ratio 1:1.1 by weight. The foam properties were evaluated in density, morphology and compressive strength. The addition of 2.5 wt.% hybrid filler showed the higher density in 59.72 kg/m3 and thus contribute to the highest compressive strength at 1.76 MPa. The morphology show cell in closed structure and addition hybrid filler showed uneven structure.

  14. Evaluation of different conductive nanostructured particles as filler in smart piezoresistive composites

    PubMed Central

    2012-01-01

    This work presents a comparison between three piezoresistive composite materials based on nanostructured conductive fillers in a polydimethylsiloxane insulating elastomeric matrix for sensing applications. Without any mechanical deformation upon an applied bias, the prepared composites present an insulating electric behavior, while, when subjected to mechanical load, the electric resistance is reduced exponentially. Three different metal fillers were tested: commercial nickel and copper spiky-particles and synthesized highly-pointed gold nanostars. These particles were chosen because of their high electrical conductivity and especially for the presence of nanosized sharp tips on their surface. These features generate an enhancement of the local electric field increasing the tunneling probability between the particles. Different figures of merit concerning the morphology of the fillers were evaluated and correlated with the corresponding functional response of the composite. PMID:22721506

  15. Thermo Sensitivity of Polysiloxane/Silica Nanocomposites Affected by the Structure of Polymer-Filler Interface.

    PubMed

    Zhang, Qian; Zhou, Yufeng; Yu, Fengmei; Song, Lixian; Sun, Sumin; Lu, Zhongyuan; Lu, Ai

    2016-03-01

    In this work thermo sensitivity was investigated with the bound rubber theory and thermoelasticity theory of the polymer-filler interface interaction between Polymethylvinylsiloxane (PMVS) and nanofillers (fumed and precipitated silica with the primary particle size of 10 nanometres). Bound rubber (the transition phase between PMVS and silica) content was measured by sol-gel analysis and swelling experiments. Results showed that the amount of bound rubber increases steadily with the increases of filler content. But the increasing rate suddenly decreased at certain silica content (between 40 and 50 phr of precipitated silica and between 30 and 40 phr of fumed silica, respectively), which was constant with the thermoelaticity experiment results. The temperature coefficients in low strain uniaxial extension are found to present sudden changing at the same silica content. This observation shows that thermo sensitivity is closely connected with the structure of polymer-filler interface. PMID:27455698

  16. Optical characterization of one dental composite resin using bovine enamel as reinforcing filler

    NASA Astrophysics Data System (ADS)

    Tribioli, J. T.; Jacomassi, D.; Rastelli, A. N. S.; Pratavieira, S.; Bagnato, V. S.; Kurachi, C.

    2012-01-01

    The use of composite resins for restorative procedure in anterior and posterior cavities is highly common in Dentistry due to its mechanical and aesthetic properties that are compatible with the remaining dental structure. Thus, the aim of this study was to evaluate the optical characterization of one dental composite resin using bovine enamel as reinforcing filler. The same organic matrix of the commercially available resins was used for this experimental resin. The reinforcing filler was obtained after the gridding of bovine enamel fragments and a superficial treatment was performed to allow the adhesion of the filler particles with the organic matrix. Different optical images as fluorescence and reflectance were performed to compare the experimental composite with the human teeth. The present experimental resin shows similar optical properties compared with human teeth.

  17. Effects of PMMA and Cross-Linked Dextran Filler for Soft Tissue Augmentation in Rats

    PubMed Central

    Huh, Jung-Bo; Kim, Joo-Hyun; Kim, Soyun; Lee, So-Hyoun; Shim, Kyung Mi; Kim, Se Eun; Kang, Seong Soo; Jeong, Chang-Mo

    2015-01-01

    This study was conducted for evaluation of the ability to maintain efficacy and biocompatibility of cross-linked dextran in hydroxypropyl methylcellulose (DiHM) and cross-linked dextran mixed with PMMA in hydroxypropyl methylcellulose (PDiHM), compared with hyaluronic acid (HA) filler. Saline and HA solution was administered in the negative and positive control groups, and DiHM and PDiHM were administered in the test groups (n = 10 in each group). The site of cranial subcutaneous injection was the mid-point of the interpupillary line, and the site of intraoral submucosal injection was the ridge crest 2 mm below the cervical line of the mandibular left incisor. Before and immediately after filler injection, intraoral photos and lateral cephalometric radiographs were taken for analysis and comparison of the effect of the filler on the injection sites. The filler injected areas were converted into sequential size changes (%) of the baseline. Histomorphologic examination was performed after 12 weeks. The smallest value in the filler injected area was observed during the experimental period in the normal saline group (p < 0.001), which was almost absorbed at 4 weeks (7.19% ± 12.72%). The HA group exhibited a steady decrease in sequential size and showed a lower value than the DiHM and PDiHM groups (saline < HA < DHiM, PDHiM, p < 0.001). DiHM and PDiHM tended to increase for the first 4 weeks and later decreased until 12 weeks. In this study on DiHM and PDiHM, there was no histological abnormality in cranial skin and oral mucosa. DiHM and PDiHM filler materials with injection system provide an excellent alternative surgical method for use in oral and craniofacial fields. PMID:26633376

  18. The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites

    PubMed Central

    Mortazavi, Vajihesadat; Atai, Mohammad; Fathi, Mohammadhossein; Keshavarzi, Solmaz; Khalighinejad, Navid; Badrian, Hamid

    2012-01-01

    Background: Flexural strength of prosthesis made with dental composite resin materials plays an important role in their survival. The aim of this study was investigating the effect of nanoclay fillers and Poly (methyl methacrylate)-grafted (PMMA-grafted) nanoclay fillers loading on the flexural strength of fiber-reinforced composites (FRCs). Materials and Methods: Standard FRC bars (2 × 2 × 25 mm) for flexural strength testing were prepared with E-glass fibers and a synthetic resin loaded with different quantities of unmodified nanoclay and PMMA-grafted nanoclay filler particles (0% as control group, 0.2%, 0.5%, 1%, 2%, 5%). Flexural strength and flexural modulus were determined. The data were analyzed using 2-way, 1-way ANOVA and post hoc Tukey's test (α = 0.05). The fracture surfaces were evaluated by Scanning Electron Microscopy. Results: For groups with the same concentration of nanoparticles, PMMA-grafted filler-loaded group showed significantly higher flexural strength, except for 0.2% wt. For groups that contain PMMA-grafted nanoclay fillers, the 2% wt had the highest flexural strength value with significant difference to other subgroups. 1% wt and 2% wt showed significantly higher values compared to control (P < 0.05). None of the unmodified nanoclay particles loaded group represented statistically higher values of flexural strength compared to control group (P > 0.05). Flexural modulus of 2%, 5% wt PMMA-grafted and 0.5%, 1%, 2%, 5% wt unmodified nanoclay particles-loaded subgroups decreased significantly compared to control group (P < 0.05). Conclusions: PMMA-grafted nanoclay filler loading may enhance the flexural strength of FRCs. Addition of unmodified nanoparticles cannot significantly improve the flexural strength of FRCs. Addition of both unmodified and PMMA-grafted nanoclay particles in some concentrations decreased the flexural modulus. PMID:23087731

  19. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  20. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Study of Thermodynamics of Liquid Noble-Metals Alloys Through a Pseudopotential Theory

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2010-09-01

    The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.

  1. The Surgical Lips Deformity Corrected with Hyaluronic Fillers: A Case Report

    PubMed Central

    Stolic, Dragan; Jankovic, Maja; Draskovic, Marija; Georgiev, Slobodan; Stolic, Marina

    2015-01-01

    BACKGROUND: Hyaluronic filler is a sterile, biodegradable, viscoelastic, isotonic, transparent injectable gel implant which was approved by Food and Drug Administration (FDA) 1996. It is used for face reconstruction and modelling. CASE PRESENTATION: We report the case of a 40-year-old Serbian woman who presented after surgery of cleft lip, primary and secondary palate. We performed a biphasic therapy; in the first stage in the zone semimucosis lips is initially carried incision scar tissue. The second stage is placed hyaluronan implant. CONCLUSION: This case illustrates that, although hyaluronic fillers used mainly for correction of healthy tissue can be successfully used in the treatment of postoperative scars.

  2. Enhanced mechanical and thermal properties of CNT/HDPE nanocomposite using MMT as secondary filler

    NASA Astrophysics Data System (ADS)

    Ali Mohsin, M. E.; Arsad, Agus; Fouad, H.; Jawaid, M.; Alothman, Othman Y.

    2014-05-01

    This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and XRD properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites.

  3. Facial Granulomas Secondary to Injection of Semi-Permanent Cosmetic Dermal Filler Containing Acrylic Hydrogel Particles

    PubMed Central

    Sachdev, Mukta; Anantheswar, YN; Ashok, BC; Hameed, Sunaina; Pai, Sanjay A

    2010-01-01

    Various reports of long-term complications with semi-permanent fillers, appearing several years after injections have created some concern about their long-term safety profile. We report a case of foreign body granuloma secondary to dermal filler containing a copolymer of the acrylic hydrogel particles, hydroxyethylmethacrylate and ethylmethacrylate, occurring 2 years after the injection. The foreign body granulomas could not be treated satisfactorily with intralesional steroids, and the patient required a surgical excision of her granulomas. The physical and psychological consequences to such patients can be quite devastating. PMID:21430829

  4. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber.

    PubMed

    Chronska, K; Przepiorkowska, A

    2008-03-01

    Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates. PMID:17629616

  5. Biomechanical characteristics of polymeric UHMWPE composites with hybrid matrix and dispersed fillers

    NASA Astrophysics Data System (ADS)

    Panin, Sergey; Kornienko, Lyudmila; Shilko, Sergey; Thuc, Nguyen Xuan; Korchagin, Mikhail; Chaikina, Marina

    2015-11-01

    In order to develop artificial joint implants some biomechanical properties of composites with UHMWPE and hybrid (polymer-polymeric) "UHMWPE+PTFE" matrix with dispersed fillers were studied. A comparative analysis of the effectiveness of adding hydroxyapatite micron- and nanopowders as a biocompatible filler was carried out. It was shown that under dry sliding friction the wear rate of nanocomposites with the hybrid matrix is lower as compared with composites with the non-hybrid one. Mechanical activation of components further enhances the durability of nano- and microcomposites to almost double it without any significant reduction in the strength characteristics.

  6. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  7. Rheological properties of styrene-butadiene rubber filled with electron beam modified surface treated dual phase fillers

    NASA Astrophysics Data System (ADS)

    Shanmugharaj, A. M.; Bhowmick, Anil K.

    2004-01-01

    The rheological properties of styrene-butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s -1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.

  8. Discontinuous Development in the Acquisition of Filler-Gap Dependencies: Evidence from 15- and 20-Month-Olds

    ERIC Educational Resources Information Center

    Gagliardi, Annie; Mease, Tara M.; Lidz, Jeffrey

    2016-01-01

    This article investigates infant comprehension of filler-gap dependencies. Three experiments probe 15- and 20-month-olds' comprehension of two filler-gap dependencies: "wh"-questions and relative clauses. Experiment 1 shows that both age groups appear to comprehend "wh"-questions. Experiment 2 shows that only the younger…

  9. Utilizing Matrix-Filler Interactions in the Design of Stimuli-Responsive, Mechanically-Adaptive Electrospun Composites

    NASA Astrophysics Data System (ADS)

    Wanasekara, Nandula; Stone, David; Wnek, Gary; Korley, Lashanda

    2013-03-01

    A new class of all-organic, stimuli-responsive and mechanically-adaptive electrospun nanocomposites, which have the ability to alter their stiffness upon hydration, were developed. These materials were fabricated by incorporating an electrospun mat of poly(vinyl alcohol) (PVA) as the filler in a polymeric matrix consisting of either poly(vinyl acetate) (PVAc) or ethylene oxide-epicholorohydrin copolymer (EO-EPI). The incorporation of high stiffness, high aspect ratio PVA filler mat significantly enhanced the tensile storage modulus of EO-EPI based composites, while modulus enhancement was only noticed above the glass transition for PVAc-based composites. Composite materials based on a rubbery EO-EPI host polymer and PVA filler exhibit an irreversible reduction by a factor of 12 of the tensile modulus upon hydration. In contrast, composites comprised of PVAc show a reversible reduction of modulus by a factor of 280 upon water uptake. The mechanical morphing of the electrospun composites is the result of the filler crystallinity, and matrix-filler interactions facilitated by the surface hydroxyl groups of the PVA filler. The choice of polymer matrix and electrospun nanofiber fillers allow control of matrix-filler interactions in a new series of all-organic composites to achieve desired stimuli-responsiveness and mechanical-adaptability upon exposure to various stimuli.

  10. Evaluating corn starch and corn stover biochar as renewable filler in carboxylated styrene-butadiene rubber composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn starch, corn flour, and corn stover biochar were evaluated as potential renewable substitutes for carbon black as filler in rubber composites using carboxylated styrene-butadiene as the rubber matrix. Previous work has shown that starch-based fillers have very good reinforcement properties at t...

  11. "Uh," "Um," and Autism: Filler Disfluencies as Pragmatic Markers in Adolescents with Optimal Outcomes from Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Irvine, Christina A.; Eigsti, Inge-Marie; Fein, Deborah A.

    2016-01-01

    Filler disfluencies--"uh" and "um"--are thought to serve distinct discourse functions. We examined fillers in spontaneous speech by youth with autism spectrum disorder (ASD), who struggle with pragmatic language, and by youth with ASD who have achieved an "optimal outcome" (OO), as well as in peers with typical…

  12. Effect of strain rate on mechanical properties of melt-processed soy flour composite filler and styrene-butadiene blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dispersion of soy flour with styrene-butadiene rubber latex, dried, and cryogenically ground into powders. Upon crosslinking, th...

  13. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  14. Mechanical Property and Corrosion Resistance Evaluations of Ti-6Al-7Nb Alloy Brazed with Bulk Metallic Glasses

    SciTech Connect

    Miura, E.; Kato, H.; Ogata, Toshiaki; Nishiyama, Nobuyuki; Specht, Eliot D; Shiraishi, Takanobu; Inoue, A.; Hisatsune, K.

    2007-01-01

    Exploitation of metallic glass as new brazing filler for Ti-based biomedical alloy was attempted. Ti-6Al-7Nb was used as a brazed material, and candidates of bulk metallic glass brazing filler were Cu60Hf25Ti15, Mg65Cu25Gd10, Zr55Cu30Al10Ni5 and Pd40Cu30P20Ni10. Convergence infrared-ray brazing was conducted for brazing Ti-6Al-7Nb/metallic glass in Ar atmosphere. After brazing, hardness measurement, X-ray tomography, cross-sectional observation, artificial saliva immersion test and tensile test were performed to evaluate brazability, mechanical property and corrosion resistance of the obtained brazing joints. The results of brazing using these metallic glass fillers show that all the metallic glasses were brazable to Ti-6Al-7Nb except for Mg65Cu25Gd10. Mg65Cu25Gd10, Cu60Hf25Ti15 and their joints collapsed rapidly during immersion test. Zr55Cu30Al10Ni5 joint was the best in terms of degradation resistance; however, tensile strength was inferior to the conventional one. Pd40Cu30Ni10P20 filler and Zr55Cu30Al10Ni5 filler and their joints did not show any collapse or tarnish during the immersion test. Pd40Cu30Ni10P20 joint showed the excellent properties in terms of both corrosion resistance and tensile strength, which were superior to a joint brazed using Ti-15Cu-25Ni conventional filler. X-ray tomograph indicates that fracture tends to occur in the vicinity of the brazing interface after tensile test. The brazed metallic glass fillers were fully crystallized, excluding Pd40Cu30Ni10P20 filler. Pd40Cu30Ni10P20 brazed filler contained mapleleaf like primary dendrite, peritectoid and a few microns interfacial reaction layer in glassy matrix. The results indicated that Pd40Cu30Ni10P20 is promising brazing filler for dental or biomaterial devices.

  15. Effect of La2O3 Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung Hwan; Jung, Jae Pil

    2016-06-01

    The Al-11Si-20Cu brazing alloy and its ex situ composite with the content ranging from 0.01 to 0.05 wt.% of La2O3 are produced by electromagnetic induction-cum-casting route. The brazeability of the alloy and composite samples are tested using the spreading technique according to JIS Z-3197 standard. The mechanical properties such as filler microhardness, tensile shear strength, and elongation of the brazed joints are evaluated in the as-brazed condition. It is reported that incorporation of an optimal amount of 0.05 wt.% of hard La2O3 nanoparticles in the Al-Si-Cu matrix inhibits the growth of the large CuAl2 intermetallic compounds (IMCs) and Si particles. As a consequence, the composite filler brazeability, microhardness, joint tensile shear strength, and elongation are improved significantly compared to those of monolithic Al-11Si-20Cu alloy.

  16. Development of a nitride dispersion strengthened (NDS) metallic alloy for high-temperature recuperators. Final report, 1 October 1982-30 September 1984

    SciTech Connect

    Kindlimann, L.E.

    1985-06-01

    The objective of this program was to demonstrate the feasibility of using nitride dispersion-strengthened (NDS) stainless steel in fabricating a recuperator for advanced gas turbine engines. Test results showed an alloy--designated NDS 300--to have tensile properties comparable to those of Inconel 625 at temperatures up to 1650 F, and at higher temperatures the properties of the NDS alloy exceeded those of the Inconel 625. However, creep test results showed a three-fold improvement in strength of NDS 300 over Inconel 625 at temperatures above 1500 F. The NDS material demonstrated adequate formability and joinability by brazing with a filler metal of nominal composition Ni-19Cr-10Si (J8100). The same filler metal proved to be a good coating for high-temperature oxidation resistance. Tests on specimens prepared to a typical plate-fin recuperator configuration confirmed the strength of the brazing alloy and demonstrated the marked superiority of the NDS material over Inconel 625.

  17. POLY(LACTIC ACID) GREEN COMPOSITES USING OILSEED COPRODUCTS AS FILLERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(lactic acid), PLA, is a biodegradable polymer made from renewable resources with similar mechanical properties to polypropylene. PLA is more expensive than petroleum-based plastics, and the use of low-cost fillers as extenders is desirable. Agricultural co-products of the alternative oilseed ...

  18. Recycled rubber, aggregate, and filler in asphalt paving mixtures. Transportation research record

    SciTech Connect

    1996-12-31

    ;Contents(Partial): Evaluation Systems for Crumb Rubber Modified Binders and Mixtures; Hot Mix Asphalt Rubber Applications in Virginia; Evaluation of Pyrolized Carbon Black from Scrap Tires as Additive in Hot Mix Asphalt; Use of Scrap Tire Chips in Asphaltic Membrane; Effects of Mineral Fillers on Properties of Stone Matrix Asphalt Mixtures; and Quantitative Analysis of Aggregate Based on Hough Transform.

  19. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  20. Mechanical, thermal, and moisture properties of plastics with bean as filler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments on polymers using beans as fillers are reported herein. We are looking for desirable mechanical, thermal and moisture properties at economical costs. Poly(lactic acid) (PLA) is studied as the polymeric matrix because it is available and biodegradable. Although the physical properties are...