Sample records for agbr loaded tio2

  1. Construction of AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets photoelectrode and its enhanced visible light driven photocatalytic and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyong; Zhang, Huixuan; Guo, Ruonan; Cheng, Xiuwen; Cheng, Qingfeng

    2018-05-01

    In the study, AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets (AgBr-Ti3+/TiO2 NRs/NSs) photoelectrode with enhanced visible light driven photocatalytic (PC) and photoelectrochemical (PECH) performance has been successfully fabricated by hydrothermal reaction, followed by sodium borohydride reduction and then successive ionic layer adsorption and reaction (SILAR) treatment. Afterwards, series of characterizations were conducted to study the physicochemical properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Results indicated that AgBr nano-cakes with sizes varying from 110 to 180 nm were uniformly decorated on the surface of Ti3+/TiO2 NRs/NSs to form AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Moreover, PC activity of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode was measured by degradation of methylene blue (MB). It was found that AgBr-Ti3+/TiO2 NRs/NSs photoelectrode exhibited higher PC activity (98.7%) than that of other samples within 150 min visible light illumination, owing to the enhancement of visible light harvesting and effective separation of photoproduced charges. Thus, AgBr nano-cakes and Ti3+ exerted a huge influence on the PC and PECH properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Furthermore, the possible enhanced visible light driven PC mechanism of AgBr-Ti3+/TiO2 NRs/NSs was proposed and confirmed.

  2. Constructing inverse V-type TiO2-based photocatalyst via bio-template approach to enhance the photosynthetic water oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Zhou, Han; Ding, Jian; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2015-08-01

    Bio-template approach was employed to construct inverse V-type TiO2-based photocatalyst with well distributed AgBr in TiO2 matrix by making dead Troides Helena wings with inverse V-type scales as the template. A cross-linked titanium precursor with homogenous hydrolytic rate, good liquidity, and low viscosity was employed to facilitate a perfect duplication of the template and the dispersion of AgBr based on appropriate pretreatment of the template by alkali and acid. The as-synthesized inverse V-type TiO2/AgBr can be turned into inverse V-type TiO2/Ag0 from AgBr photolysis during photocatalysis to achieve in situ deposition of Ag0 in TiO2 matrix, by this approach, to avoid the deformation of surface microstructure inherited from the template. The result showed that the cooperation of perfect inverse V-type structure and the well distributed TiO2/Ag0 microstructures can efficiently boost the photosynthetic water oxidation compared to non-inverse V-type TiO2/Ag0 and TiO2/Ag0 without using template. The anti-reflection function of inverse V-type structure and the plasmatic effect of Ag0 might be able to account for the enhanced photon capture and efficient photoelectric conversion.

  3. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    PubMed

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  4. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  5. Physical properties of glasses in the Ag2GeS3-AgBr system

    NASA Astrophysics Data System (ADS)

    Moroz, M. V.; Demchenko, P. Yu.; Prokhorenko, S. V.; Moroz, V. M.

    2013-08-01

    Glasses have been prepared by quenching melts in the Ag2GeS3-AgBr system in a range of 0-53 mol % AgBr. The concentration dependences of density, microhardness, glass transition temperatures, and crystallization of alloys have been established. The conductivity of glasses has been investigated by the dc probe method in a range of 240-420 K. The models of the drift motion of silver and halogen ions have been proposed.

  6. Synthesis of nanosize MCM-41 loaded with TiO 2 and study of its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sadjadi, M. S.; Farhadyar, N.; Zare, K.

    2009-07-01

    In recent years, nanosized mesoporous materials have received significant attention due to their impact in different processes. Several diverse applications of these materials, e.g. high density magnetic recording, magnetic fluids, magnetic refrigeration as well as in photocatalysis, solar cells, photosensors, have triggered considerable research activities in the area of nanotechnology. In this work, nanosize MCM-41 was synthesized and loaded then with TiO 2 using tetra butoxy titanium (TBT). As prepared TiO 2 loaded materials was investigated by using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR). The photocatalytic activity of the prepared TiO 2 loaded MCM-41 was finally evaluated by the degradation of methyl orange under irradiation of UV light. The result showed that TiO 2 loaded on nanosize MCM-41 has higher photocatalytic activity than that of TiO 2.

  7. Mesoporous TiO2 implants for loading high dosage of antibacterial agent

    NASA Astrophysics Data System (ADS)

    Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun

    2014-06-01

    We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.

  8. COMMUNICATION: Drug loading of nanoporous TiO2 films

    NASA Astrophysics Data System (ADS)

    Ayon, Arturo A.; Cantu, Michael; Chava, Kalpana; Mauli Agrawal, C.; Feldman, Marc D.; Johnson, Dave; Patel, Devang; Marton, Denes; Shi, Emily

    2006-12-01

    The loading of therapeutic amounts of drug on a nanoporous TiO2 surface is described. This novel drug-loading scheme on a biocompatible surface, when employed on medical implants, will benefit patients who require the deployment of drug-eluting implants. Anticoagulants, analgesics and antibiotics can be considered on the associated implants for drug delivery during the time of maximal pain or risk for patients undergoing orthopedic procedures. Therefore, this scheme will maximize the chances of patient recovery.

  9. Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites.

    PubMed

    Ahmad, Amirah; Razali, Mohd Hasmizam; Mamat, Mazidah; Mehamod, Faizatul Shimal Binti; Anuar Mat Amin, Khairul

    2017-02-01

    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO 2 . Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO 2 nanoparticles onto functionalized-CNTs loaded TiO 2 , with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO 2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO 2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO 2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    PubMed

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications.

  11. TiO2/SiO2 porous composite thin films: Role of TiO2 areal loading and modification with gold nanospheres on the photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Levchuk, Irina; Sillanpää, Mika; Guillard, Chantal; Gregori, Damia; Chateau, Denis; Parola, Stephane

    2016-10-01

    The aim of the work was to study photocatalytic activity of composite TiO2/Au/SiO2 thin films. Coatings were prepared using sol-gel technique. Physicochemical parameters of coatings were characterized using UV-vis spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, tactile measurements, goniometry and diffuse reflectance measurements. The photocatalytic activity of the films was tested in batch mode using aqueous solution of formic acid. Changes of formic acid concentration were determined by means of high pressure liquid chromatography (HPLC). Increase of initial degradation rate of formic acid was detected for TiO2/Au/SiO2 films with gold nanoparticle's load 0.5 wt.% and 1.25 wt.%. However, deeper insights using more detailed characterization of these coatings demonstrated that the improvement of the photocatalytic activity is more probably attributed to an increase in the areal loading of TiO2.

  12. A new method of preparation of AgBr/TiO2 composites and investigation of their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xing, Yangyang; Li, Rui; Li, Qiuye; Yang, Jianjun

    2012-12-01

    Silver bromide/titanium dioxide composites were first prepared using titanic acid nanobelts (TAN) as the TiO2 source. First, TAN reacted with AgNO3 to prepare Ag-incorporated TAN by the ion-exchange method, and then AgBr/TAN was obtained after adding NaBr. Finally, AgBr/TAN was transformed to AgBr/TiO2 composites by calcination. The post-treated calcination would not only convert TAN to TiO2 (H2Ti2O4(OH)22H2O + 2TiO2), but also increase the effective contact between AgBr and TiO2, further to improve the separation of photo-generated electron-holes. The advantage of this preparation method is the small particle size (ca. 10-20 nm) and well dispersion of AgBr on the surface of TiO2, and close contact between AgBr and TiO2. The effect of the different calcination temperature on the morphology, structure, and properties of AgBr/TiO2 composites was investigated in detail. The AgBr/TiO2 composites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), and ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS). Comparing with pure TAN, AgBr, and AgBr/P25 mixture, the AgBr/TiO2 composites exhibited enhanced photocatalytic activity in decomposition of methyl orange (MO) under visible light irradiation.

  13. Study on physicochemical properties of functionalized-MWNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Amirah; Razali, Mohd Hasmizam; Amin, Khairul Anuar Mat

    2017-09-01

    One of the exciting developments in science today is the design and synthesis of carbon nanotubes (CNTs) that possess novel properties and not exhibited by other individual organic and inorganic materials. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO2. Mesoporous Ni-MCM41 catalyst is first synthesized by hydrothermal method using sodium metasilicate as silica source and cetyltrimethylammonium bromide (CTABr) as a template. Results of Raman spectroscopy confirm that the synthesized carbon nanotubes are multi-walled. The type IV nitrogen adsorption-desorption isotherm and narrow pore size distribution proved that the functionalized-MWNTs loaded TiO2 is in mesopore range. Field Emission Scanning Electron Microscopy reveals that good dispersions of TiO2 nanoparticles onto functionalized-MWNTs with hair-like structure in between 3-8 nm. BET results indicate that functionalized-MWNTs loaded TiO2 possessed high surface area thus has considerable potential as an adsorbent and photocatalyst in environmental applications.

  14. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    PubMed

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  15. Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets

    NASA Astrophysics Data System (ADS)

    Gao, Bifen; Yuan, Xia; Lu, Penghui; Lin, Bizhou; Chen, Yilin

    2015-12-01

    CdS-loaded TiO2 microspheres with highly exposed (001) facets were prepared by hydrothermal treatment of a TiF4-HCl-H2O mixed solution followed by a chemical bath deposition of CdS onto TiO2 microspheres. The crystal structure, surficial micro-structure and photo-absorption property of the samples were characterized by XRD, FE-SEM, TEM and UV-vis diffuse reflectance spectroscopy, etc. The as-prepared samples exhibited superior visible-light-driven photocatalytic H2-production activity from lactic acid aqueous solution in comparison with CdS-sensitized TiO2 nanoparticles, whose surface was dominated by (101) facets. Photoelectrochemical measurement confirmed that (001) facet is beneficial for the transfer of photo-generated electron from CdS to TiO2 microsphere, which led to the unexpected high photocatalytic activity of CdS-loaded TiO2 microspheres.

  16. Preparation of Pd-loaded La-doped TiO2 nanotubes and investigation of their photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Wang, Xiaodong; Yang, Jianjun

    2013-11-01

    Orthorhombic titanic acid nanotubes (TAN) have large BET surface area and small-diameter one-dimensional nanotubular morphology, so they can work as a good supporter and a precursor of TiO2. However, in our former research, we found that calcination of TAN to anatase TiO2 would destroy the nanotubular structure and decrease the BET surface area sharply. In this work, we utilized the pillar effect of the foreign nanoparticles (La2O3) to keep the nanotubular morphology of TiO2, and obtained the anatase TiO2 nanotubes with large BET surface area. For improving the photocatalytic activity, Pd nanoparticles were loaded as the electron traps on the surface of La-doped TiO2 by photo-deposition method. The photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, diffuse reflectance spectra, and N2 adsorption-desorption isotherms measurement. Their photocatalytic activities were evaluated by the removal of propylene under visible light irradiation ( λ ≥ 420 nm). The results showed that the photocatalytic activity of Pd-loaded La-doped TiO2 nanotubes improved effectively compared with that of La-doped TiO2 and pure TiO2.

  17. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  18. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    NASA Astrophysics Data System (ADS)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  19. Quantum-chemical prediction of the effects of Ni-loading on the hydrogenation and water-splitting efficiency of TiO2 nanoparticles with an experimental test

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Kuo; Chuang, Chung-Ching; Raghunath, Putikam; Srinivasadesikan, V.; Wang, T. T.; Lin, M. C.

    2017-01-01

    The effects of Ni-loading on TiO2 nanoparticles can pronouncedly reduce the barriers for dissociation of H2 from 48 kcal/mol on the pure TiO2 to as low as 1-3 kcal/mol on the loaded samples facilitating the hydrogenation of NPs. Preliminary data of our test indicate that the hydrogenation of Ni-loaded TiO2 NPs results in a significant UV-visible absorption extending well beyond 750 nm with an increase in water splitting efficiency by as much as 67 times over those of pure and hydrogenated TiO2 NPs without Ni-loading under our mild hydrogenation condition using 800 Torr of H2 at 300 °C for 3 h.

  20. [AgBr colloids prepared by electrolysis and their SERS activity research].

    PubMed

    Si, Min-Zhen; Fang, Yan; Dong, Gang; Zhang, Peng-Xiang

    2008-01-01

    Ivory-white AgBr colloids were prepared by means of electrolysis. Two silver rods 1.0 cm in diameter and 10.0 cm long were respectively used as the negative and positive electrodes, the aqueous solution of hexadecyl trimethyl ammonium bromide was used as the electrolyte, and a 7 V direct current was applied on the silver rods for three hours. The obtained AgBr colloids were characterized by UV-Vis spectroscopy, transmission electron microscopy, and SERS using a 514. 5 nm laser line on Renishaw 2000 Raman spectrometer. These particles are about nanometer size and their shapes are as spherical or elliptic, with a slight degree of particle aggregation. The UV-Vis spectra exhibit a large plasmon resonance band at about 292.5 nm, similar to that reported in the literature. The AgBr colloids were very stable at room temperature for months. In order to test if these AgBr colloids can be used for SERS research, methyl orange, Sudan red and pyridine were used. It was found that AgBr colloids have SERS activity to these three molicules. For methyl orange, the intense Raman peaks are at 1 123, 1 146, 1 392, 1 448 and 1 594 cm(-1); for Sudan red, the intense Raman peaks are at 1 141, 1 179, 1 433 and 1 590 cm(-1); and for pyridine, the intense Raman peaks are at 1 003, 1 034 and 1 121 cm(-1). It is noticeable that SERS of methyl orange was observed on AgBr colloids, but not on the gray and yellow silver colloids prepared by traditional means. The possible reason was explained. One major advantage of this means is the absence of the spectral interference such as citrate, BH4- arising from reaction products of the colloids formation process. On AgBr colloids, one can get some molecular SERS impossible to get on the gray and yellow silver colloids.

  1. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-05-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  2. Dielectric characterization of TiO2, Al2O3 - Nanoparticle loaded epoxy resin

    NASA Astrophysics Data System (ADS)

    Thakor, S. G.; Rana, V. A.; Vankar, H. P.

    2018-05-01

    In present work, the dielectric properties of two different nanoparticle loaded Bisphenol A-epoxy resin were carried out at room temperature. Sample of the neat epoxy resin and nanoparticle loaded epoxy resin in the form of disc were prepared of different weight fraction (i.e 0.5 wt%,0.7 wt%,1 wt%,1.5 wt%,1.7 wt%,2 wt%). TiO2 and Al2O3 nanoparticles were taken as filler in the epoxy resin. Complex permittivity of the prepared samples was measured using Agilent E4980A precision LCR meter in frequency range of 103 Hz to 106 Hz. The dependency of dielectric behavior on type and concentration of nanoparticle in considered frequency range are discussed in detail.

  3. First principles study of the Ag nanoclusters adsorption effect on the photocatalytic properties of AgBr(1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Chi, Yuhua; Zhao, Lianming; Li, Xue; Zhu, Houyu; Guo, Wenyue

    2018-05-01

    The electronic structures and photocatalytic performance of Agn/AgBr(1 1 0)(n = 7-13) are studied using density functional theory (DFT). The adsorption of Agn (n = 7-13) nanoclusters on AgBr(1 1 0) surface induces a new metal-induced gap band (MIGB) located between the valence band (VB) and the conduction band (CB), the variety of the electronic characters of AgBr(1 1 0) favor the visible and infrared light absorption, which improves the sunlight utilization. The dominant localization of the photo-excited electrons on the Agn clusters of Agn/AgBr(1 1 0)(n = 7-13) facilitates the oxidation-reduction reactions occurring on the surface and also effectively reduces the photolysis of AgBr under the sunlight irradiation. The overpotentials of the CB and VB edges indicate that photocatalytic conversion of CO2 with H2O to methanol is possible on AgBr(1 1 0) deposited with the Agn nanoclusters, which has been realized experimentally (An et al., 2012). The substantial strengthening of visible and infrared light absorption and the free energy profiles for the conversion of CO2 with H2O to methanol indicate that Ag13/AgBr(1 1 0) surface can be expected to be the excellent photocatalysts.

  4. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.

    PubMed

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-01-01

    The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500 °C for 5 min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83 eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20 mg/L 2-CP within 8 h with the addition of 0.01% H2O2 under 100 W visible light irradiation. The photo-degradation efficiency of 2-CP (10 mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Production of renewable fuels by the photohydrogenation of CO2: effect of the Cu species loaded onto TiO2 photocatalysts.

    PubMed

    Chen, Bo-Ren; Nguyen, Van-Huy; Wu, Jeffrey C S; Martin, Reli; Kočí, Kamila

    2016-02-14

    The efficient gas phase photocatalytic hydrogenation of CO2 into a desirable renewable fuel was achieved using a Cu-loaded TiO2 photocatalyst system. Enhancing the amount of Ti(3+) relative to Ti(4+) in a Cu-loaded TiO2 photocatalyst provided an excellent opportunity to promote the photohydrogenation of CO2. The coexistence of Cu and Cu(+) species during the photoreaction was shown to efficiently enhance the photocatalytic activity by prolonging the lifetime of the electrons. To achieve the best photoactivity, the Cu species must be maintained at an appropriately low concentration (≤1 wt%). The highest CH4 yield obtained was 28.72 μmol g(-1). This approach opens a feasible route not only to store hydrogen by converting it into a desirable renewable fuel, but also to reduce the amount of the greenhouse gas CO2 in the atmosphere.

  6. A research on shape-controllable synthesis of Ag3PO4/AgBr and its degradation of ciprofloxacin.

    PubMed

    Chen, Jingran; Yang, Xingyu; Zhu, Chenyu; Xie, Xin; Lin, Cuiping; Zhao, Yalei; Yan, Qishe

    2018-03-01

    Antibiotic ciprofloxacin is one of the commonly used broad spectrum fluoroquinolone human and veterinary drugs. Because of the overuse of human beings, the presence of ciprofloxacin has been detected in a variety of environmental matrices. To solve this problem, a facile, environmentally-friendly Ag 3 PO 4 /AgBr composite photocatalyst was synthesized by a simple precipitation method at room temperature in the presence of cetyltrimethyl ammonium bromide (CTAB). CTAB was served as surfactant and the source of bromide ions. The as-prepared Ag 3 PO 4 /AgBr microspheres were characterized by means of powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The results revealed that the Ag 3 PO 4 /AgBr sample (synthesized with CTAB, 0.8 g) exhibited the highest photocatalytic activity to the photodegradation rate of 96.36%. Moreover, mechanism detection experiment indicated that h + was the major active species in the degradation process. So the enhanced photocatalytic activity of Ag 3 PO 4 /AgBr composites is attributed to its excellent separation of photogenerated electron-hole pairs through Ag 3 PO 4 /AgBr heterojunction. Also, Ag 3 PO 4 /AgBr heterojunction has a lower band gap compared to pure Ag 3 PO 4 and pure AgBr, so higher efficiency of light harvesting is equipped.

  7. Improving the visible light photocatalytic activity of mesoporous TiO2 via the synergetic effects of B doping and Ag loading

    NASA Astrophysics Data System (ADS)

    Tian, Baozhu; Shao, Zhimang; Ma, Yunfei; Zhang, Jinlong; Chen, Feng

    2011-11-01

    B-doped together with Ag-loaded mesoporous TiO2 (Ag/B-TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B-TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B-TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B-TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.

  8. Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C3N4-AgBr.

    PubMed

    Deng, Jun; Liang, Jialiang; Li, Mian; Tong, Meiping

    2017-04-01

    g-C 3 N 4 -AgBr was synthesized by depositing AgBr nanoparticles onto g-C 3 N 4 . Scanning electron microscopy (SEM), Transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra were employed to characterize the as-synthesized photocatalysts. The disinfection activities towards representative Gram-negative strain E. coli and Gram-positive strain S. aureus were examined under visible light irradiation. Complete inactivation of 3×10 6 CFU/mL viable cell density was reached in 60min for E. coli and 150min for S. aureus, respectively. Ag + released from the photocatalysts did not contribute to the photocatalytic disinfection process. Direct contact of g-C 3 N 4 -AgBr composites and bacterial cells, as well as the presence of O 2 was indispensable for the cell inactivation. Photo-generated holes, surface bounded OH, and indirect generation of intracellular active species played important roles in disinfection process of g-C 3 N 4 -AgBr under visible light irradiation. The disruption of outside structure of cells as well as inner cell injury led to the inactivation. High pH condition led to increasing the cell disinfection due to the generation of surface bounded OH. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sol-gel TiO2 films as NO2 gas sensors

    NASA Astrophysics Data System (ADS)

    Georgieva, V.; Gadjanova, V.; Grechnikov, A.; Donkov, N.; Sendova-Vassileva, M.; Stefanov, P.; Kirilov, R.

    2014-05-01

    TiO2 films were prepared by a sol-gel technique with commercial TiO2 powder as a source material (P25 Degussa AG). After a special treatment, printing paste was prepared. The TiO2 layers were formed by means of drop-coating on Si-control wafers and on the Au-electrodes of quartz resonators. The surface morphology of the films was examined by scanning electron microscopy (SEM). Their structure was studied by Raman spectroscopy and the surface composition was determined by X-ray photoelectron spectroscopy (XPS). The layers had a grain-like surface morphology and consisted mainly of anatase TiO2 phase. The sensitivity of the TiO2 films to NO2 was assessed by the quartz crystal microbalance (QCM) technique. To this end, the films were deposited on both sides of a 16-MHz QCM. The sensing characteristic of the TiO2-QCM structure was investigated by measuring the resonant frequency shift (ΔF) of the QCM due to the mass loading caused by NO2 adsorption. The Sauerbrey equation was applied to establish the correlation between the QCM frequency changes measured after exposure to different NO2 concentrations and the mass-loading of the QCM. The experiments were carried out in a dynamic mode on a special laboratory setup with complete control of the process parameters. The TiO2 films were tested in the NO2 concentration interval from 10 ppm to 5000 ppm. It was found that a TiO2 loading of the QCM by 5.76 kHz corresponded to a system sensitive to NO2 concentrations above 250 ppm. On the basis of the frequency-time characteristics (FTCs) measured, AF at different NO2 concentrations was defined, the adsorption/desorption cycles were studied and the response and recovery times were estimated. The results obtained show that the process is reversible in the NO2 interval investigated. The results further suggested that TiO2 films prepared by a sol-gel method on a QCM can be used as a sensor element for NO2 detection.

  10. An efficient visible-light photocatalyst prepared by modifying AgBr particles with a small amount of activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Desong, E-mail: dswang06@126.com; Zhao, Mangmang; Luo, Qingzhi

    2016-04-15

    Highlights: • An efficient visible-light photocatalyst was prepared by modifying AgBr particles. • A small amount of activated carbon was used to modify AgBr particles. • The modified AgBr exhibited improved visible-light photocatalytic performances. - Abstract: An efficient visible-light photocatalyst was successfully prepared by modifying AgBr particles with a small amount of activated carbon (AC) via a simple chemical precipitation approach. The AC/AgBr composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis diffuse reflection spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy. The photocatalytic performances of the AC/AgBr composite were investigated by evaluating photodegradation of methyl orange (MO)more » and phenol under visible light irradiation, and the effects of the AC content in the composite, concentrations of AC/AgBr composite and MO, carrier scavengers on MO photodegradation rate were systematically investigated. The results indicated that the modification of AC can hardly change the crystalline and crystal size of AgBr particles, while significantly improve their specific surface areas, visible-light absorption and separation efficiency of photogenerated electron–hole pairs. Compared with pure AgBr, the AC/AgBr composite exhibited drastically enhanced visible-light photocatalytic activity and stability. The photogenerated electrons and holes, hydroxyl radicals are responsible to the photodegradation of organic pollutants, and the photogenerated holes are the main active species. On the basis of the results and the properties of AC and AgBr, the visible-light photocatalytic mechanism of the AC/AgBr composite was discussed.« less

  11. [Preparation and Photocatalytic Properties of Supported TiO2 Photocatalytic Material].

    PubMed

    Guo, Yu; Jin, Yu-jia; Wu, Hong-mei; Li, Dong-xin

    2015-06-01

    Titanium dioxide (TiO2) supported on spherical alumina substrate was prepared by using sol-gel method combined with dip-coating process. The surface morphology and structure of the synthesized samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) pattern. The results show that the morphology of the supported TiO2 composite material was obviously different from that of the original support. It reveals a layer formed by anatase TiO2 nanoparticles of 10-20 nm was deposited on the alumina substrate. Energy dispersive X-ray spectroscopy (EDX) analyses on the spherical alumina substrate and the resulting TiO2 composite catalyst were performed to determine the TiO2 loading content in the samples. It indicates that the TiO2 loading content on alumina substrate could be effectively increased by increasing the times of dip-coating alumina support in TiO2 sol. When dip-coating times increased to 5, the TiO2 loading content increased from 3.8 Wt. % to 15.7 Wt. %. In addition, the photocatalytic performances of the supported TiO2 materials prepared by different dip-coating times have been investigated by degrading methylene blue. It was found that the surface morphology of the supported TiO2 material was not only improved, but also the photocatalytic activity could be promoted significantly by increasing the dip-coating times. When the alumina substrate was dip-coated in TiO2 sol from 1 to 4 times, the degradation rate of methylene blue increased from 40% to 83.1%. However, after dip-coating the alumina support in TiO2 sol for 5 times, the degradation of methylene blue was only up to 85.6%. This indicates that the photocatalytic activity increased slowly when the TiO2 content in the supported catalyst was up to some extent. It is attributed to the continuous dip-coating resulted in less opportunities and weak intensity of illumination for the TiO2 nano-particles that under lower layer. The photocatalytic activity was relatively stable

  12. One-Step Formation of WO3-Loaded TiO2 Nanotubes Composite Film for High Photocatalytic Performance

    PubMed Central

    Lee, Wai Hong; Lai, Chin Wei; Abd Hamid, Sharifah Bee

    2015-01-01

    High aspect ratio of WO3-loaded TiO2 nanotube arrays have been successfully synthesized using the electrochemical anodization method in an ethylene glycol electrolyte containing 0.5 wt% ammonium fluoride in a range of applied voltage of 10–40 V for 30 min. The novelty of this research works in the one-step formation of WO3-loaded TiO2 nanotube arrays composite film by using tungsten as the cathode material instead of the conventionally used platinum electrode. As compared with platinum, tungsten metal has lower stability, forming dissolved ions (W6+) in the electrolyte. The W6+ ions then move towards the titanium foil and form a coherent deposit on titanium foil. By controlling the oxidation rate and chemical dissolution rate of TiO2 during the electrochemical anodization, the nanotubular structure of TiO2 film could be achieved. In the present study, nanotube arrays were characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the results obtained, nanotube arrays with average pore diameter of up to 74 nm and length of 1.6 µm were produced. EDAX confirmed the presence of tungsten element within the nanotube arrays which varied in content from 1.06 at% to 3.29 at%. The photocatalytic activity of the nanotube arrays was then investigated using methyl orange degradation under TUV 96W UV-B Germicidal light irradiation. The nanotube with the highest aspect ratio, geometric surface area factor and at% of tungsten exhibited the highest photocatalytic activity due to more photo-induced electron-hole pairs generated by the larger surface area and because WO3 improves charge separation, reduces charge carrier recombination and increases charge carrier lifetime via accumulation of electrons and holes in the two different metal oxide semiconductor components.

  13. Surface Properties and Catalytic Performance of Activated Carbon Fibers Supported TiO2 Photocatalyst

    NASA Astrophysics Data System (ADS)

    Yang, Huifen; Fu, Pingfeng

    Activated carbon fibers supported TiO2 photocatalyst (TiO2/ACF) in felt-form was successfully prepared with a dip-coating process using organic silicon modified acrylate copolymer as a binder followed by calcination at 500°C in a stream of Ar gas. The photocatalyst was characterized by SEM, XRD, XPS, FTIR, and BET surface area. Most of carbon fibers were coated with uniformly distributed TiO2 clusters of nearly 100 nm. The loaded TiO2 layer was particulate for the organic binder in the compact film was carbonized. According to XPS and FTIR analysis, amorphous silica in carbon grains was synthesized after carbonizing organic silicon groups, and the Ti-O-Si bond was formed between the interface of loaded TiO2 and silica. Additionally, the space between adjacent carbon fibers still remained unfilled after TiO2 coating, into which both UV light and polluted solutions could penetrate to form a three-dimensional environment for photocatalytic reactions. While loaded TiO2 amount increased to 456 mg TiO2/1 g ACF, the TiO2/ACF catalyst showed its highest photocatalytic activity, and this activity only dropped about 10% after 12 successive runs, exhibiting its high fixing stability of coated TiO2.

  14. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    NASA Astrophysics Data System (ADS)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-06-01

    TiO2-diatomite photocatalysts were prepared by sol-gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption-desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO2, the anatase-to-rutile phase transition temperature of TiO2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H3PO4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si-O-Ti bond, increase the binding strength between TiO2 and diatomite, restrain crystal growth of loaded TiO2, and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO2-diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO2-diatomite pretreated by phosphoric acid.

  15. Photo degradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites.

    PubMed

    Zhang, Lili; Lv, Fujian; Zhang, Weiguang; Li, Rongqing; Zhong, Hui; Zhao, Yijiang; Zhang, Yu; Wang, Xin

    2009-11-15

    Photocatalytic removal of methyl orange under ultraviolet radiation has been studied using attapulgite (ATT) composites, which were synthesized by depositing SnO(2)-TiO(2) hybrid oxides on the surface of ATT to form a composite photocatalyst (denoted ATT-SnO(2)-TiO(2)) using an in situ sol-gel technique. Results showed that SnO(2)-TiO(2) nanocomposite particles with average size of about 10nm were loaded successfully on to the surface of ATT fibers and were widely dispersed. Correspondingly, the photocatalytic activity of ATT was improved significantly by loading SnO(2)-TiO(2). The photoactivity of the composite photocatalyst decreased in the sequence ATT-SnO(2)-TiO(2)>ATT-SnO(2)>ATT-TiO(2)>ATT. In order to achieve the best photocatalyst, the molar ratio of SnO(2) and TiO(2) in the ATT-SnO(2)-TiO(2) composites was adjusted to give a series with proportions r=n(Ti)/(n(Ti)+n(Sn))=0.0, 0.25, 0.33, 0.50, 0.67, 0.75, 0.80, 0.82, 0.86, 1.0. Results indicated that the proportion of SnO(2) and TiO(2) had a critical effect on the photocatalytic activity, which increased as the content of TiO(2) increased to r0.82. The highest degradation rate of methyl orange was 99% within 30 min obtained by using ATT-SnO(2)-TiO(2) with r=0.82. The repeated use of the composite photocatalyst was also confirmed.

  16. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric.

    PubMed

    Wang, Haiqiang; Wu, Zhongbiao; Zhao, Weirong; Guan, Baohong

    2007-01-01

    TiO2 loading on woven glass fabric is applied to treat nitrogen oxides (NOx) by photocatalytic oxidation (PCO). In this paper, the PCO behavior of NO at high concentrations was studied by PCO of NOx at source levels (20-168 ppm). The PCO efficiency reached 27% in this experiment, while the inlet NOx concentration was 168 ppm (147 ppm NO). The dependency of the reaction rate on several key influencing factors (relative humidity, space time, inlet concentration, oxygen percentage) was also studied. The results illustrate that the resulting hydroxyl radical and active oxide play an important role in the oxidation of NOx. The reactions are limited by the thermodynamic equilibrium after ca. 15s space time. A possible explanation for the catalyst deactivation is the accumulation of nitric acid and nitrous acid on the TiO2 surface during the PCO of NOx. However, the photocatalytic activity can be recovered with a simple heat treatment. The results from the study of the effect of the inlet concentration were described with the Langmuir-Hinshelwood model.

  17. Synthesis and characterizations of spherical hollow composed of AgI nanoparticle using AgBr as the precursor

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Zhou, Kui

    2011-01-01

    Hollow spheres of AgI with an average radius of 100-200 nm have been prepared by a simple reaction between AgBr suspension and KI in the presence of gelatin. Gelatin played a decisive role as an inhibitor of the direct attack of I- ions to AgBr surfaces and coagulation of the growing AgI in producing the spherical AgI particles. The products were characterized by X-ray powder diffraction, transmission electron microscopy, UV-vis absorption spectroscopy and X-ray photoelectron spectra techniques. The band gaps are estimated to be 2.95 eV according to the results of optical measurements of the hollow spheres of AgI.

  18. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition

    PubMed Central

    Zhang, Xiaochen; Zhang, Zhiyuan; Shen, Gang; Zhao, Jun

    2016-01-01

    To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2) significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs. PMID:26869786

  19. Measurement of mass stopping power of chitosan polymer loaded with TiO2 for relativistic electron interaction

    NASA Astrophysics Data System (ADS)

    Babu, S. Ramesh; Badiger, N. M.; Karidurgannavar, M. Y.; Varghese, Jolly. G.

    2018-04-01

    The Mass Stopping Power (MSP) of relativistic electrons in chitosan loaded with TiO2 of different proportions has been measured by recording the spectrum of internal conversion electrons. The internal conversion electrons of energies 614 keV from Cs137, 942 keV and 1016 keV from Bi207 source are allowed to pass through chitosan-TiO2 alloy and transmitted electrons are detected with a Si (Li) detector coupled to an 8 K multichannel analyzer. By knowing the energies of incident electrons and transmitted electrons, the energy loss and the MSP are determined. Thus measured MSP values of the alloys are compared with the values calculated using Braggs additivity rule. The disagreement between theory and experiment is found to increases with increasing TiO2 concentration in chitosan, indicating the influence of chemical environment in the properties of such polymeric membrane.

  20. Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan.

    PubMed

    Mohan, L; Anandan, C; Rajendran, N

    2016-12-01

    TiO 2 nanotubes formed by anodic oxidation of Ti-6Al-7Nb were loaded with quercetin (TNTQ) and chitosan was coated on the top of the quercetin (TNTQC) to various thicknesses. Field emission scanning electron microscopy (FESEM), 3D and 2D analyses were used to characterize the samples. The drug release studies of TNTQ and TNTQC were studied in Hanks' solution for 192h. The studies showed that the native oxide on the sample is substituted by self assembled nanotube arrays by anodisation. FESEM images of chitosan-loaded TNT samples showed that filling of chitosan takes place in inter-tubular space and pores. Drug release studies revealed that the release of drug into the local environment during that duration was constant. The local concentration of the drug can be controlled and tuned by controlling the thickness of the chitosan (0.6, 1 and 3μm) to fit into an optimal therapeutic window in order to treat postoperative infections, inflammation and for quick healing with better osseointegration of the titanium implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Low frequency ultrasound (42 kHz) assisted degradation of Acid Blue 113 in the presence of visible light driven rare earth nanoclusters loaded TiO2 nanophotocatalysts.

    PubMed

    Sathishkumar, Panneerselvam; Mangalaraja, Ramalinga Viswanathan; Rozas, Oscar; Mansilla, Héctor D; Gracia-Pinilla, M A; Anandan, Sambandam

    2014-09-01

    An attempt has been made to render the visible light driven photocatalytic activity to the TiO2 nanocatalysts by loading 1 wt% of rare earth (RE) nanoclusters (Gd(3+), Nd(3+) and Y(3+)) using a low frequency (42 kHz) producing commercial sonicator. The STEM-HAADF analysis confirms that the RE nanoclusters were residing at the surface of the TiO2. Transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses confirm that the loading of RE nanoclusters cannot make any significant changes in the crystal structure of TiO2. However, the optical properties of the resulted nanocatalysts were significantly modified and the nanocatalysts were employed to study the sonocatalytic, photocatalytic and sonophotocatalytic decolorization as well as mineralization of Acid Blue 113 (AB113). Among the experimented nanocatalysts maximum degradation of AB113 was achieved in the presence Y(3+)-TiO2 nanocatalysts. The decolorization of AB113 in the presence and absence of Y(3+) loaded TiO2 ensues the following order sonolysis

  2. Modelling studies for photocatalytic degradation of organic dyes using TiO2 nanofibers.

    PubMed

    Singh, Narendra; Rana, Mohit Singh; Gupta, Raju Kumar

    2017-09-05

    In this work, modelling of the photocatalytic degradation of para-nitrophenol (PNP) using synthesized electrospun TiO 2 nanofibers under UV light illumination is reported. A dynamic model was developed in order to understand the behaviour of operating parameters, i.e. light intensity and catalyst loading on the photocatalytic activity. This model was simulated and analysed for both TiO 2 solid nanofibers and TiO 2 hollow nanofibers, applied as photocatalysts in the Langmuir-Hinshelwood kinetic framework. The entire photocatalytic degradation rate follows pseudo-first-order kinetics. The simulated results obtained from the developed model are in good agreement with the experimental results. At a catalyst loading of 1.0 mg mL -1 , better respective degradation rates were achieved at UV light irradiance of 4 mW cm -2 , for both the TiO 2 solid and hollow nanofibers. However, it was also observed that TiO 2 hollow nanofibers have a higher adsorption rate than that of TiO 2 solid nanofibers resulting in a higher photocatalytic degradation rate of PNP.

  3. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    NASA Astrophysics Data System (ADS)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  4. TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation.

    PubMed

    Zhang, Junying; Zhu, Hailing; Zheng, Shukai; Pan, Feng; Wang, Tianmin

    2009-10-01

    Coupling a narrow-band-gap semiconductor with TiO(2) is an effective method to produce photocatalysts that work under UV-vis light irradiation. Usually photocatalytic coupled-semiconductors exist mainly as powders, and photocatalytic activity is only favored when a small loading amount of narrow-band-gap semiconductor is used. Here we propose a heavy-loading photocatalyst configuration in which 51% of the surface of the TiO(2) film is covered by a Cu(2)O microgrid. The coupled system shows higher photocatalytic activity under solar light irradiation than TiO(2) and Cu(2)O films. This improved performance is due to the efficient charge transfer between the two phases and the similar opportunity each has to be exposed to irradiation and adsorbates.

  5. Photocatalytic degradation of diclofenac using TiO2-SnO2 mixed oxide catalysts.

    PubMed

    Mugunthan, E; Saidutta, M B; Jagadeeshbabu, P E

    2017-12-26

    The complex nature of diclofenac limits its biological degradation, posing a serious threat to aquatic organisms. Our present work aims to eliminate diclofenac from wastewater through photocatalytic degradation using TiO 2 -SnO 2 mixed-oxide catalysts under various operating conditions such as catalyst loading, initial diclofenac concentration and initial pH. Different molar ratios of Ti-Sn (1:1, 5:1, 10:1, 20:1 and 30:1) were prepared by the hydrothermal method and were characterized. The results indicated that addition of Sn in small quantity enhances the catalytic activity of TiO 2 . Energy Band gap of the TiO 2 -SnO 2 catalysts was found to increase with an increase in Tin content. TiO 2 -SnO 2 catalyst with a molar ratio of 20:1 was found to be the most effective when compared to other catalysts. The results suggested that initial drug concentration of 20 mg/L, catalyst loading of 0.8 g/L and pH 5 were the optimum operating conditions for complete degradation of diclofenac. Also, the TiO 2 -SnO 2 catalyst was effective in complete mineralization of diclofenac with a maximum total organic carbon removal of 90% achieved under ultraviolet irradiation. The repeatability and stability results showed that the TiO 2 -SnO 2 catalyst exhibited an excellent repeatability and better stability over the repeated reaction cycles. The photocatalytic degradation of diclofenac resulted in several photoproducts, which were identified through LC-MS.

  6. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar

    2016-12-01

    Photocatalytic CO2 reduction by H2O and/or H2 reductant to selective fuels over Cu-promoted In2O3/TiO2 photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption, UV-vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO2, oxidized as Cu2+ and In3+, promoted efficient separation of photo-generated electron/hole pairs (e-/h+). The results indicate that the reduction rate of CO2 by H2O to CH4 approached to 181 μmol g-1 h-1 using 0.5% Cu-3% In2O3/TiO2 catalyst, a 1.53 fold higher than the production rate over the 3% In2O3/TiO2 and 5 times the amount produced over the pure TiO2. In addition, Cu was found to promote efficient production of CH3OH and yield rate reached to 68 μmol g-1 h-1 over 1% Cu-3% In2O3/TiO2 catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H2 reductant was less favorable for CH4 production, yet a significant amount of CH4 and CH3OH were obtained using a mixture of H2O/H2 reductant. Therefore, Cu-loaded In2O3/TiO2 catalyst has shown to be capable for methanol production, whereas product selectivity was greatly depending on the amount of Cu-loading and the type of reductant. A photocatalytic reaction mechanism was proposed to understand the experimental results over the Cu-loaded In2O3/TiO2 catalyst.

  7. Characterization, Cytotoxicity, and Genotoxicity of TiO2 and Folate-Coupled Chitosan Nanoparticles Loading Polyprenol-Based Nanoemulsion.

    PubMed

    Tao, Ran; Wang, Chengzhang; Zhang, Changwei; Li, WenJun; Zhou, Hao; Chen, Hongxia; Ye, Jianzhong

    2018-07-01

    The structure and bioactivity of Ginkgo biloba leaves polyprenol (GBP) are similar to that of dolichol which widely exists in human and mammalian organs. GBP possesses potential pharmacological activities against cancer. This study involved oil-in-water type nanoemulsion (NE) loading GBP was prepared by dissolving polyprenol in nanoemulsion of sodium tripolyphosphate (TPP)/TiO 2 solution, Triton X-100, and 1-octanol by inversed-phase emulsification (EIP) and ultrasonic emulsification (UE) method. Folic acid (FA)-coupled chitosan (CS) nanoparticles (NPs), GBP-FA-CS-NPs and GBP-TiO 2 -FA-CS-NPs, were fabricated by ionic cross-linking of positively charged FA-CS conjugates and negatively charged nanoemulsion with TPP/TiO 2 . And characterizations of them were investigated by TEM, SEM, FTIR, particle size, and zeta potential. The cytotoxic and genotoxic effects of GBP-TiO 2 -FA-CS-NP treatment were higher than GBP-NE, GBP-FA-CS-NPs, TiO 2 -NE, GBP-TiO 2 -NE, TiO 2 -FA-CS-NPs, and GBP-TiO 2 -FA-CS-NP treatment at the same tested concentrations in HepG2 cells. GBP-TiO 2 -FA-CS-NPs at low TiO 2 concentration (from 1 to 2.5 μg/ml) showed good inhibition capacity on HepG2 cells and low cytotoxic and genotoxic effects on HL-7702 cells. The possible mechanism of cytotoxicity on GBP-TiO 2 -FA-CS-NPs against HepG2 cells is by preventing excessive intracellular Ca 2+ into extracellular spaces via inhibiting Ca 2+ -ATPase and Ca 2+ /Mg 2+ -ATPase.

  8. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei

    2006-02-01

    We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.

  9. Synthesis of TiO2-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2016-04-01

    P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m2 g-1) than that of Co0.85Se nanofilms (55.17 m2 g-1) and TiO2 nanoparticles (19.49 m2 g-1). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction.

  10. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation

    NASA Astrophysics Data System (ADS)

    Ragupathy, S.; Raghu, K.; Prabu, P.

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models.

  11. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation.

    PubMed

    Ragupathy, S; Raghu, K; Prabu, P

    2015-03-05

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Probing properties of the interfacial perimeter sites in TiO x /Au/SiO 2 with 2-propanol decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yi Y.; Kung, Harold H.

    The decomposition of 2-propanol was studied over SiO2, SiO2 with an overlayer of TiO2 (Ti/SiO2), Au/SiO2, and Au/SiO2 with an overlayer of TiO2 (Ti/[Au/SiO2]) at 170–190 °C. There was no reaction on SiO2. Propene was the only product on Ti/SiO2, and its rate of formation increased proportionally with the Ti content. Acetone was the major product (selectivity 65–99%) on all Au-containing catalysts. Its rate of formation also increased with Ti loading. In addition, small amounts of propene were also formed on Ti/[Au/SiO2] the rate of which increased with Ti loading. Characterization of the catalysts with N2 adsorption, STEM, DR-UV-vis spectroscopy,more » XPS, XANES and EXAFS suggested that the Ti formed an amorphous TiO2 overlayer on the catalyst. At high Ti loadings (4–5 wt.%), there were patches of thick porous TiO2 layer, and some microdomains of crystalline TiO2 could be detected. Au was present as 1–3 nm nanoparticles on all catalysts, before and after used in reaction. Only Lewis acid sites were detected based on results from pyridine adsorption, and their quantities increased with Ti loading. Based on the comparison of reaction rates, the dependence of the kinetics on 2-propanol partial pressure, the apparent activation energies, and the effect of co-feeding O2 among different catalysts, it was concluded that propene was formed on the TiO2 overlayer, acetone was formed primarily at the Au-TiO2 interfacial perimeter sites, and α-C-H bond breaking preceding acetone formation was more facile on Au at the interfacial site than other surface Au atoms. Implication of these results to the selective acetone formation in the oxidation of propane in the presence of a O2/H2 mixture was discussed.« less

  13. Effect of Catalyst Loading on Photocatalytic Degradation of Phenol by Using N, S Co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Yunus, N. N.; Hamzah, F.; So'aib, M. S.; Krishnan, J.

    2017-06-01

    The study on the effect of catalyst loading of photocatalytic degradation of phenol by using N, S co-doped TiO2 was investigated. The precursor of titania was Titanium (IV) isopropoxide (TTIP), while the sources of Nitrogen and Sulfur were ammonium nitrate and thiourea respectively. The photocatalyst were prepared by using dopant concentration at 1% of both Nitrogen and Sulphur that were prepared via sol-gel method. The photocatalyst were tested by different catalyst loading which were 1 g/L, 2g/L and 3 g/L. The gel obtained from the mixing process was dried and calcined at 600°C. The performance of the photocatalyst were tested by using phenol as a model pollutant. The mixture of photocatalyst and pollutant was left under visible light for five hours for irradiation time. The experiment showed that catalyst loading of 3 g/L able to fully degrade phenol while 1 g/L and 2 g/L of photocatalyst degraded phenol at 69.9% and 96.2% respectively.

  14. A study on the preparation of floating photocatalyst supported by hollow TiO2 and its performance

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; He, Bin; Kong, Xiang Z.

    2015-02-01

    This research used hollow glass microspheres (HGMS) as carrier and polystyrene (PSt) as template. PSt was loaded on HGMS surface through the modification by silane coupler. Next, amorphous titanium dioxide (TiO2) produced through tetrabutyl titanate (TBT) hydrolysis precipitated on PSt surface, forming HGMS/PSt/TiO2 particles. Lastly, using the calcinations method, this research obtained anatase TiO2, eliminated PSt, and ultimately acquired composite particles with hollow TiO2 loaded on HGMS surface (HGMSHT). SEM results presented that hollow TiO2 was compact on HGMS surface and a multilayer network structure was formed. The specific surface area of HGMSHT particles was 26 m2/g, which was much larger than that of HGMS/TiO2 (HGMST) composite particles (5.6 m2/g) through direct TBT hydrolysis. Results of catalytic degradation experiment with Rhodamine B and phenol under UV light and sunlight demonstrated that due to larger TiO2 load capacity and specific surface area, the catalytic activity of HGMSHT composite particles was significantly more desirable than that of HGMST, and the catalyst presented satisfactory stability.

  15. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

    PubMed

    Mali, S S; Desai, S K; Dalavi, D S; Betty, C A; Bhosale, P N; Patil, P S

    2011-10-01

    Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  16. Friction and wear behaviour of plasma sprayed Cr2O3-TiO2 coating

    NASA Astrophysics Data System (ADS)

    Bagde, Pranay; Sapate, S. G.; Khatirkar, R. K.; Vashishtha, Nitesh; Tailor, Satish

    2018-02-01

    Cr2O3-25TiO2 coating was deposited by atmospheric plasma spray (APS) coating technique. Effect of load (5-30 N) and sliding velocity (0.25, 0.75 m s-1) on friction coefficient and abrasive wear behaviour of the Cr2O3-25TiO2 coating was studied. Mechanical and microstructural characterization of the Cr2O3-25TiO2 coating was carried out. With an increase in sliding velocity, abrasive wear rate and friction coefficient (COF) decreased while wear rate and friction coefficient showed an increasing trend with the load. The worn out surfaces were analyzed by SEM, EDS and XRD. At lower sliding velocity, XRD analysis revealed peaks of Ti2O3, Ti3O5, CrO2 and CrO3. In addition, peak of Ti4O7 was also detected at higher sliding velocity and at 30 N load. At higher sliding velocity medium to severe tribo oxidation was observed. XPS analysis of worn surfaces at both the sliding velocities, showed surface film of oxides of titanium and chromium along with Cr(OH)3. Magneli phase titanium oxides with sub stoichiometric composition, along with surface films of chromium oxides and hydroxides altered the friction and wear behaviour of the coating. The decrease in friction coefficient with an increase in sliding velocity was attributed to tribo oxides and tribochemical reaction films having lower shear strength with good lubricating properties. The mechanism of material removal involved plastic deformation at lower load whereas inter-granular and trans-granular fracture, delamination cracking and splat fracture was observed with an increase load from 10 N to 30 N.

  17. Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Xu, Y. N.; Liu, M. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.

    2015-10-01

    Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load-displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed.

  18. The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide

    NASA Astrophysics Data System (ADS)

    Mao, Dongsen; Lu, Guanzhong

    2007-02-01

    The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO 2-ZrO 2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO 2-ZrO 2 into a crystalline ZrTiO 4 compound, while a larger amount of boria (⩾8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO 4 units delay, while a build-up of trigonal BO 3 promote, the crystallization of amorphous TiO 2-ZrO 2 to form ZrTiO 4 crystals.

  19. Optical density and photonic efficiency of silica-supported TiO2 photocatalysts.

    PubMed

    Marugán, J; Hufschmidt, D; Sagawe, G; Selzer, V; Bahnemann, D

    2006-02-01

    Over the last years, many research groups have developed supported TiO2-based materials in order to improve the engineering applications of photocatalytic technologies. However, not many attempts have been made to evaluate the optical behavior of these materials. This work focuses on the study of the photonic efficiencies of silica-supported TiO2 photocatalysts following the photodegradation of dichloroacetic acid (DCA) as model compound. Catalysts with different types of silica support and titania loadings were tested and their activity was found to be in correlation with the results of the clusters size distribution of the TiO2 nanocrystals. The photonic efficiency of the supported photocatalysts depends extremely on the optical density of the solid suspensions. Influence of the textural properties of the support and the titania loading on the optical density as well as on the photonic efficiency of the materials are discussed. The dependence of the absorption of radiation by the suspension on the catalyst concentration is also analyzed.

  20. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    NASA Astrophysics Data System (ADS)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  1. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    NASA Astrophysics Data System (ADS)

    Pathak, Pawan

    sensitized photoanode using the one pot method. Finally, the charge transportation effect of carbon allotropes has been studied. For this we assembled TiO2 conductive carbon chalcogenide nanocomposite system. Surface and elemental characterization using electron microscopy, EDX (energy dispersive x-ray) and x-ray diffraction pattern, provide the insights into the assembly of the nanostructure. Optical absorbance, Photo chronometry, Linear sweep voltammetry, and electrochemical impedance analysis have been used to provide opto-electronic performance of the material. We have studied the loading effect of various carbon allotropes, [fullerene (C 60), reduced graphene oxide (RGO), carbon nanotubes (CNTs), and graphene quantum dots (GQDs)], loading effect of chalcogenide, and effect of nitrogen doping on the carbon allotropes to optimize the performance of the heterostructure. This dissertation is expected to impact the materials synthesis strategies and assemble the nanostructures used in composite electrode driven applications in the area of photo electrochemistry, PV, solar-fuels, and other associated topics of energy storage and sensing.

  2. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    PubMed

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly

  3. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    PubMed

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  4. Photoreduction of CO2 on TiO2/SrTiO3 Heterojunction Network Film

    NASA Astrophysics Data System (ADS)

    Bi, Yongsheng; Zong, Lanlan; Li, Chen; Li, Qiuye; Yang, Jianjun

    2015-08-01

    Nanotube titanic acid (NTA) network film has a porous structure and large BET surface area, which lead them to possessing high utilization of the incident light and strong adsorption ability. We used NTA as the precursor to fabricate a TiO2/ SrTiO3 heterojunction film by the hydrothermal method. In the process of the reaction, part of NTA reacted with SrCl2 to form SrTiO3 nanocubes, and the remainder dehydrated to transform to the rutile TiO2. The ratio of TiO2 and SrTiO3 varied with the hydrothermal reaction time. SEM and TEM images indicated that SrTiO3 nanocubes dispersed uniformly on TiO2 film, and the particle size and crystallinity of SrTiO3 nanocubes increased with the reaction time prolonging. The TiO2/SrTiO3 heterojunction obtained by 1 h showed the best activity for CO2 photoreduction, where the mole ratio of TiO2 and SrTiO3 was 4:1. And the photo-conversion efficiency of CO2 to CH4 improved remarkably after the foreign electron traps of Pt and Pd nanoparticles were loaded. The highest photocatalytic production rate of CH4 reached 20.83 ppm/h cm2. In addition, the selectivity of photoreduction product of CO2 was also increased apparently when Pd acted as the cocatalyst on TiO2/SrTiO3 heterojunction film.

  5. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-03-01

    The fabrication method and characterization results of a TiO2-TiO2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO2 crystallites embedded in a matrix of nanometric TiO2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant.

  6. Influence of Au and TiO2 structures on hydrogen dissociation over TiO2/Au(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, I.; Mantoku, H.; Furukawa, T.; Takahashi, A.; Fujitani, T.

    2012-11-01

    We performed H2-D2 exchange reactions over TiOx/Au(100) and compared the observed reaction kinetics with those reported for TiOx/Au(111) in order to clarify the influence of the Au and TiO2 structures on dissociation of H2 molecules. Low energy electron diffraction observations showed that the TiO2 produced on Au(100) was disordered, in contrast to the comparatively ordered TiO2 structure formed on Au(111). The activation energies and the turnover frequencies for HD formation over TiO2/Au(100) agreed well with those for TiO2/Au(111), clearly indicating that the hydrogen dissociation sites created over TiO2/Au(100) were the perimeter interface between stoichiometric TiO2 and Au, as was previously concluded for TiO2/Au(111). We concluded that the creation of active sites for hydrogen dissociation was independent of the Au and TiO2 structures consisting perimeter interface, and that local bonds that formed between Au and O atoms of stoichiometric TiO2 were essential for the creation of active sites.

  7. Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film.

    PubMed

    Yao, Yanyan; Ohko, Yoshihisa; Sekiguchi, Yuki; Fujishima, Akira; Kubota, Yoshinobu

    2008-05-01

    Ag/titanium dioxide (TiO(2))-coated silicon catheters were easily fabricated with Ag nanoparticles deposition on both the inside wall and the outside wall of TiO(2)-coated catheters by TiO(2) photocatalysis. This is an application of the silicon catheters coated with TiO(2), which possess a self-sterilizing and self-cleaning property combining with UV light illumination (Ohko et al., J Biomed Mater Res: Appl Biomater 2001;58:97). Ag/TiO(2)-coated silicon catheters exhibited a strong bactericidal effect even in the dark. When the 2-5 x 10(5) of colony-forming units of Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus were respectively applied to the surface of the Ag/TiO(2) catheters, which were loaded with approximately 15 nmol cm(-2) of Ag, 99% effective sterilization occurred in a very short time: 20 min for E. coli, 60 min for P. aeruginosa, and 90 min for S. aureus. Additionally, the Ag/TiO(2)-coated catheters possessed a strong self-cleaning property. Using UV illumination, the photocatalytic decomposition rate of methylene blue dye representing the self-cleaning capability, on an Ag/TiO(2) catheter which was loaded with 2 nmol cm(-2) of Ag, was approximately 1.2 times higher (at maximum) than that on TiO(2) coating alone. Furthermore, the Ag nanoparticles can be pre-eminently and uniformly deposited onto the TiO(2) coating, and the amount of Ag was easily controllable from a few nanomoles per square centimeter to approximately 70 nmol cm(-2) by changing the UV illumination time for TiO(2) photocatalysis. This type of catheter shows a great promise in lowering the incidence of catheter-related bacterial infections. Copyright 2007 Wiley Periodicals, Inc.

  8. Photochemically deposited nano-Ag/sol-gel TiO2-In2O3 mixed oxide mesoporous-assembled nanocrystals for photocatalytic dye degradation.

    PubMed

    Sreethawong, Thammanoon; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2014-05-01

    This work focused on the improvement of the photocatalytic activity for Congo Red (CR) azo dye degradation of mesoporous-assembled 0.95 TiO2-0.05 In2O3 mixed oxide photocatalyst (with a TiO2-to-In2O3 molar ratio of 0.95:0.05) by loading with Ag nanoparticles. The mesoporous-assembled 0.95TiO2-0.05In2O3 mixed oxide photocatalyst was synthesized by a hydrolytic sol-gel method with the aid of a structure-directing surfactant, prior to loading with various Ag contents (0.5-2 wt.%) by a photochemical deposition method. The optimum Ag loading content was found to be 1.5 wt.%, exhibiting a great increase in photocatalytic CR dye degradation activity. The 1.5 wt.% Ag-loaded 0.95TiO2-0.05In2O3 mixed oxide photocatalyst was further applied for the CR dye degradation in the presence of water hardness. Different types (Ca2+ and Ca2+ -Mg2+ mixture) and concentrations (200 and 500 mg/l) of water hardness were investigated. The results showed that the water hardness reduced the photocatalytic CR dye degradation activity, particularly for the extremely hard water with 500 mg/l of Ca2+ -Mg2+ mixture. The adjustment of initial solution pH of the CR dye-containing hard water to an appropriate value was found to improve the photocatalytic CR dye degradation activity under the identical reaction conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. An innovative ultrasound, Fe(2+) and TiO(2) photoassisted process for bisphenol A mineralization.

    PubMed

    Torres-Palma, Ricardo A; Nieto, Jessica I; Combet, Evelyne; Pétrier, Christian; Pulgarin, Cesar

    2010-04-01

    This paper explores the degradation of a model pollutant, bisphenol A, by an advanced oxidation process that combines sonolysis, Fe(2+), and TiO(2) in a photoassisted process. Experiments were done under saturated oxygen conditions. The effect of different Fe(2+) (0.56 and 5.6 mg/L) and TiO(2) (10 and 50 mg/L) concentrations was investigated on both the elimination and mineralization of the pollutant. A pronounced synergistic effect that led to the complete and rapid elimination of dissolved organic carbon (DOC) was observed even at low catalyst loadings. In this system, almost a complete removal of DOC (93%) was observed after 4 h using 10 and 5.6 mg/L of TiO(2) and Fe(2+), respectively, whereas at the same time, only 5, 6, and 22% of DOC was removed by an individual process alone (TiO(2) photocatalysis, ultrasound, and photo-Fenton, respectively). In this system, ultrasound has the principal role of eliminating the initial substrate and providing hydrogen peroxide for the photocatalytic systems, while photo-Fenton and TiO(2) photocatalysis are mainly responsible for the transformation of the intermediates in CO(2) and H(2)O. The role of H(2)O(2) generated from the sonochemical process is also discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems.

    PubMed

    Sharma, Mangalampalli V Phanikrishna; Durgakumari, Valluri; Subrahmanyam, Machiraju

    2008-12-30

    The photocatalytic degradation and mineralization of isoproturon herbicide was investigated in aqueous solution containing TiO2 over H-mordenite (H-MOR) photocatalysts under solar light. The catalysts are characterized by X-ray diffraction (XRD), UV-Vis diffused reflectance spectra (UV-Vis DRS), Fourier transform-infra red spectra (FT-IR) and scanning electron microscopy (SEM) techniques. The effect of TiO2, H-MOR support and different wt% of TiO2 over the support on the photocatalytic degradation and influence of parameters such as TiO2 loading, catalyst amount, pH and initial concentration of isoproturon on degradation are evaluated. 15wt% TiO2/H-MOR composite is found to be optimum. The degradation reaction follows pseudo-first order kinetics and is discussed in terms of Langmuir-Hinshelwood (L-H) kinetic model. The extent of isoproturon mineralization studied with chemical oxygen demand (COD) and total organic carbon (TOC) measurements and approximately 80% mineralization occurred in 5h. A plausible mechanism is proposed based on the intermediates identified by liquid chromatography-mass spectroscopy (LC-MS).

  11. Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Peng, Shuai; Bao, Yuwen; Wang, Yu; Lei, Binglong; Wang, Zhuo; Huang, Zhongbing; Gao, Yun

    2018-02-01

    In recent years, production of H2 through photocatalytic water splitting has attracted considerable attention in the chemistry and material fields. In this work, TiO2 based heterojunction photocatalyst, which is consisted of rutile nanorods and anatase nanoparticles, is systematically studied by controlling the HCl concentration in hydrothermal process. With the help of loaded Pt, an interesting two-peak feature ("M" shape) is observed in the HCl-dependent H2 production efficiency. The peak values are 54.3 mmol h-1 g-1 and 74.4 mmol h-1 g-1, corresponding to 83.9% and 12% anatase phase, respectively. A detailed analysis based on the microstructure and photoluminescence (PL) spectra indicate that the "M" shape feature is directly linked to the HCl-controlled interface area. Moreover, an unexpected zero interface area is revealed at an intermediate HCl concentration. In terms of homogeneous and heterogeneous nucleations, an interface growth mechanism is proposed to clarify its HCl-sensitive character. This work provides a route to enhance the photocatalytic activity in TiO2 based photocatalyst via increasing the interface area.

  12. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    PubMed

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  13. A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles

    NASA Astrophysics Data System (ADS)

    Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng

    2018-03-01

    As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.

  14. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Nemaga, Abirdu Woreka; Mallet, Jeremy; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2018-07-01

    The development of high energy density Li-ion batteries requires to look for electrode materials with high capacity while keeping their stability upon cycling. In this study, amorphous silicon (a-Si) thin film deposited on self-organized TiO2 nanotubes is investigated as negative electrode for Li-ion batteries. Nanostructured composite negative electrodes were fabricated by a two-step cost effective electrochemical process. Firstly, self-organized TiO2 nanotube arrays were synthesised by anodizing of Ti foil. Subsequently, thanks to the use of room temperature ionic liquid, conformal Si layer was electrodeposited on the TiO2 nanotubes to achieve the synthesis of nanostructured a-Si/TiO2 nanotube composite negative electrodes. The influence of the Si loading as well as the crystallinity of the TiO2 nanotubes have been studied in terms of capacity and cyclic stability. For an optimized a-Si loading, it is shown that the amorphous state for the TiO2 nanotubes enables to get stable lithiation and delithiation with a total areal charge capacity of about 0.32 mA h cm-2 with improved capacity retention of about 84% after 50 cycles, while a-Si on crystalline TiO2 nanotubes shows poor cyclic stability independently from the Si loading.

  15. Visible Light-Driven H 2 Production over Highly Dispersed Ruthenia on Rutile TiO 2 Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen-Phan, Thuy-Duong; Luo, Si; Vovchok, Dimitriy

    2016-01-04

    The immobilization of miniscule quantities of RuO 2 (~0.1%) onto one-dimensional (1D) TiO 2 nanorods (NRs) allows H 2 evolution from water under visible light irradiation. Rod-like rutile TiO 2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO 2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO 2(110) grown as 1D nanowires on rutile TiO 2(110), which occurs only at extremely low loads of RuO 2, leads to the formation of a heterointerface that efficientlymore » adsorbs visible light. The surface defects, band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers« less

  16. Visible Light-Driven H 2 Production over Highly Dispersed Ruthenia on Rutile TiO 2 Nanorods

    DOE PAGES

    Nguyen-Phan, Thuy-Duong; Luo, Si; Vovchok, Dimitriy; ...

    2015-12-02

    The immobilization of miniscule quantities of RuO 2 (~0.1%) onto one-dimensional (1D) TiO 2 nanorods (NRs) allows H 2 evolution from water under visible light irradiation. In addition, rod-like rutile TiO 2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO 2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO 2(110) grown as 1D nanowires on rutile TiO 2(110), which occurs only at extremely low loads of RuO 2, leads to the formation of a heterointerfacemore » that efficiently adsorbs visible light. The surface defects, band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers.« less

  17. TiO2 used as photocatalyst for rhodamine B degradation under solar radiation

    NASA Astrophysics Data System (ADS)

    Ariyanti, Dessy; Maillot, Mathilde; Gao, Wei

    2017-07-01

    Transition metal oxide photocatalysis is a relatively new method representing advanced oxidation process to be applied in industrial wastewater treatment especially for degradation of organic pollutants. We investigate TiO2 as a photocatalyst for the photocatalytic degradation of Rhodamine B (RhB) under simulated sunlight. Various parameters and their effectiveness have been studied. The effects of processing parameters including catalyst loading and feed concentration were investigated; and the degradation pathway was proposed based on the UHPLC-MS analysis. The result showed that a higher kinetic rate can be obtained by employing low catalyst loading and feed concentration, i.e., 0.5 g/L of TiO2 loading and 5 ppm of RhB concentration, respectively. For this particular system, the optimum degradation rate (k) can achieve 0.297/min. The effectiveness of solar light-TiO2 system for RhB degradation shows this method can be used for wastewater treatment.

  18. Sol-gel preparation of self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective coating for solar glass

    NASA Astrophysics Data System (ADS)

    Lin, Wensheng; Zheng, Jiaxian; Yan, Lianghong; Zhang, Xinxiang

    2018-03-01

    Self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective (AR) coating is prepared by sol-gel process. SiO2 sol is prepared by using tetraethyl orthosilicate (TEOS) as precursor and ammonia as catalyst, while TiO2 sol was prepared by using tetrabutyl orthotitanate (TBOT) as precursor and hydrochloric acid as catalyst. The effect of TiO2 content on refractive index, abrasion-resistance and photo-catalytic activity of SiO2-TiO2 hybrid thin films or powders is systematically investigated. It is found that the refractive index of SiO2-TiO2 hybrid thin films increases gradually from 1.18 to 1.53 as the weight ratio of TiO2 to SiO2 increased from 0 to 1.0. The SiO2-TiO2 hybrid thin film and powder possesses good abrasion-resistance and photo-catalytic activity, respectively, as the weight ratio of TiO2 to SiO2 is 0.4. The degradation degree of Rhodamine B by SiO2-TiO2 hybrid powder is 88.3%. Finally, SiO2-TiO2/SiO2-TiO2 double-layer AR coating with high transmittance, abrasion-resistance and self-cleaning property is realized.

  19. Preparation of 13X from Waste Quartz and Photocatalytic Reaction of Methyl Orange on TiO2/ZSM-5, 13X and Y-Zeolite.

    PubMed

    Wang, Jia-Jie; Jing, You-Hai; Ouyang, Tong; Chang, Chang-Tang

    2015-08-01

    TiO2 photocatalytic reactions not only remove a variety of organic pollutants via complete mineralization, but also destroy the bacterial cell wall and cell membrane, thus playing an important bactericidal role. However, the post-filtration procedures to separate nanometer-levels of TiO2 and the gradual inactivity of photocatalyst during continuous use are defects that limit its application. In this case, we propose loading TiO2 on zeolite for easy separation and 13X is considered as a promising one. In our study, 13X-zeolite was prepared by a hydrothermal method and the source of Si was extracted from waste quartz sand. For comparison, commercial zeolite with different microporous and mesoporous diameters (ZSM-5 and Y-zeolites) were also used as TiO2 supports. The pore size of the three kinds of zeolites are as follows: Y-zeolite > 13X > ZSM-5. Different TiO2 loading content over ZSM-5, 13X and Y-zeolite were prepared by the sol-gel method. XRD, FTIR, BET, UV-vis, TGA and SEM were used for investigation of material characteristics. In addition, the efficiencies of mineralization and photodegradation were studied in this paper. The effects of the loading ratio of TiO2 over zeolites, initial pH, and concentration on photocatalytic performance are investigated. The relationship between best loading content of TiO2 and pore size of the zeolite was studied. The possible roles of the ZSM-5, 13X-zeolites and Y-zeolites support on the reactions and the possible mechanisms of effects were also explored. The best loading content of TiO2 over ZSM-5, 13X and Y-zeolite was found to be 50 wt%, 12.5 wt% and 7 wt%, respectively. The optimum pH condition is 3 with TiO2 over ZSM-5, 13X-zeolites and Y-zeolites. The results showed that the degradation and mineralization efficiency of 12.5 wt%GT13X (TiO2 over 13X) after 90 min irradiation reached 57.9% and 22.0%, which was better than that of 7 wt%GTYZ (TiO2 over Y-zeolites) while much lower than that of 50 wt%GTZ (TiO2 over ZSM-5

  20. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    PubMed

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  1. Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies.

    PubMed

    Parida, Kulamani; Mishra, Krushna Gopal; Dash, Suresh Kumar

    2012-11-30

    This paper deals with the immobilization of various weight percentage of TiO(2) on mesoporous MCM-41, characterization of the materials by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier Transform Infrared (FTIR) analysis, UV-vis diffuse reflectance spectroscopy (DRS) and evaluation of the adsorption capacity toward Cr(VI) removal. It is found that the MCM-41 structure retained after loading of TiO(2) but the surface area and pore diameter decreased due to pore blockage. Adsorption of Cr(VI) from aqueous state was investigated on TiO(2)-MCM-41 by changing various parameters such as pH, metal ion concentration, and the temperature. When TiO(2) loading was more than 20 wt.%, the adsorption activity (25)TiO(2)-MCM-41 reduced significantly due to considerable decrease in the surface area. It is also observed that TiO(2) and neat MCM-41 exhibits very less Cr(VI) adsorption compared to TiO(2)-MCM-41. The adsorption of Cr(VI) onto (20)TiO(2)-MCM-41 at pH~5.5 and temperature 323 K was 91% at 100mg/L Cr(VI) metal ion concentration in 80 min. The experimental data fitted well to Langmuir and Freundlich isotherms. The adsorption of Cr(VI) on TiO(2)-MCM-41 followed a second order kinetics with higher values of intra-particle diffusion rate. Thermodynamic parameters suggested that the adsorption process is endothermic in nature and desorption studies indicated a chemisorption mode. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    PubMed

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  3. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    PubMed

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  4. Synergistic effects of TiO2 and Cu2O in UV/TiO2/zeolite-based systems on photodegradation of bisphenol A.

    PubMed

    Kuo, Chao-Yin; Wu, Chung-Hsin; Lin, Han-Yu

    2014-08-01

    In this study, TiO2/zeolite (TZ)-based composite was utilized to degrade bisphenol A (BPA) under ultraviolet (UV) irradiation. The effects of the TiO2 and Cu2O doses in TZ and Cu2O/TiO2/zeolite (CTZ) on the rate of BPA removal were identified, respectively. The surface area of TZ declined as the TiO2 loading increased. The photodegradation rate (k) of BPA in the TZ and CTZ systems fitted pseudo-first-order kinetics. Under UV (365 nm) irradiation, the k values of TiO2 (20%)/zeolite (80%), TiO2 (40%)/zeolite (60%), TiO2 (60%)/zeolite (40%), and TiO2 (80%)/zeolite (20%) were 0.51, 0.55, 0.97, and 0.91 h-1, respectively. In the UV (365nm)/TiO2 (60%)/zeolite (40%) system, the k values of CTZ with 1%, 5%, 10%, 20%, and 30% Cu2O added were 1.50, 1.04, 1.15, 1.88, and 0.47h-1, respectively. The photocatalytic activity of TZ was enhanced by adding Cu2O. The optimal dosage of TiO2 in the TZ system was 60% and that of Cu20 in the CTZ system was 20%. p-Hydroxybenzaldehyde (p-HBA), p-hydroxyacetophenone (p-HAP), p-hydroxybenzoic acid (p-HBA acid) and hydroquinone (HQ) were intermediates ofBPA photodegradation in the UV/TZ system and the rates of degradation followed the order HQ > p - HBA acid > BPA > p - HAP > p - HBA.

  5. Photocatalytic quartz fiber felts with carbon-connected TiO2 nanoparticles for capillarity-driven continuous-flow water treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Su, Xiaowen; Gao, Wenqiang; Wang, Fulei; Liu, Zhihe; Zhan, Jie; Liu, Baishan; Wang, Ruosong; Liu, Hong; Sang, Yuanhua

    2018-06-01

    Immobility of photocatalysts on substrates is a vital factor for the practical application of photocatalysis in polluted water/air treatment. In this study, TiO2 homogenously loaded quartz fiber felt was prepared by assembling of carboxyl-contained organic molecules functionalized TiO2 nanoparticles on the surface of amino group-modified quartz fiber by electrostatic adsorption between them and followed by an anneal process. The immobilization of TiO2 nanoparticles overcomes one main obstacle of the photocatalysts recycling in photocatalysis application. In addition, a plasma treatment endowed the hybrid photocatalyst a high hydrophilic property. Due to the homogeneous distribution of TiO2, charge carriers' separation by carbon, and full contact between water and the photocatalyst derived from the high hydrophilia, the TiO2/quartz fiber felt shows excellent photocatalytic performance. Based on the stable loading and the capillarity effect of the contacted fibers photocatalyst, a demo capillarity-driven continuous-flow water treatment photocatalysis reactor was designed and built up. The TiO2 nanoparticle/quartz fiber hybrid photocatalyst can disposal organic contaminants in actual industrial waste water from a dyeing factory in the continuous-flow reactor. The chemical oxygen demand (COD) of the industrial waste water was decreased from 104 to 45 mg/L, overcoming the problem of deep water treatment which is difficult to solve by other methods. This study provides a new photocatalyst and reaction mode for the continuous-flow photocatalysis application.

  6. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    PubMed Central

    Huyen, Duong Ngoc; Tung, Nguyen Trong; Thien, Nguyen Duc; Thanh, Le Hai

    2011-01-01

    A nanocomposite of titanium dioxide (TiO2) and polyaniline (PANi) was synthesized by in-situ chemical polymerization using aniline (ANi) monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules. PMID:22319389

  7. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  8. Highly sensitive biofunctionalized mesoporous electrospun TiO(2) nanofiber based interface for biosensing.

    PubMed

    Mondal, Kunal; Ali, Md Azahar; Agrawal, Ved V; Malhotra, Bansi D; Sharma, Ashutosh

    2014-02-26

    The surface modified and aligned mesoporous anatase titania nanofiber mats (TiO2-NF) have been fabricated by electrospinning for esterified cholesterol detection by electrochemical technique. The electrospinning and porosity of mesoporous TiO2-NF were controlled by use of polyvinylpyrrolidone (PVP) as a sacrificial carrier polymer in the titanium isopropoxide precursor. The mesoporous TiO2-NF of diameters ranging from 30 to 60 nm were obtained by calcination at 470 °C and partially aligned on a rotating drum collector. The functional groups such as -COOH, -CHO etc. were introduced on TiO2-NF surface via oxygen plasma treatment making the surface hydrophilic. Cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) were covalently immobilized on the plasma treated surface of NF (cTiO2-NF) via N-ethyl-N0-(3-dimethylaminopropyl carbodiimide) and N-hydroxysuccinimide (EDC-NHS) chemistry. The high mesoporosity (∼61%) of the fibrous film allowed enhanced loading of the enzyme molecules in the TiO2-NF mat. The ChEt-ChOx/cTiO2-NF-based bioelectrode was used to detect esterified cholesterol using electrochemical technique. The high aspect ratio, surface area of aligned TiO2-NF showed excellent voltammetric and catalytic response resulting in improved detection limit (0.49 mM). The results of response studies of this biosensor show excellent sensitivity (181.6 μA/mg dL(-1)/cm(2)) and rapid detection (20 s). This proposed strategy of biomolecule detection is thus a promising platform for the development of miniaturized device for biosensing applications.

  9. MoS 2/TiO 2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, L.; Yang, Z.; Marcus, K.

    In this study, we report a nonmetal plasmonic MoS2@TiO2 heterostructure for highly efficient photocatalytic H2 generation. Large area laminated Z-scheme MoS2 in conjunction with TiO2 nanocavity arrays are achieved via carefully controlled anodization, physical vapor deposition, and chemical vapor deposition processes. Broad spectral response ranging from ultraviolet (UV)-visible (vis) to near-infrared (NIR) wavelengths and finite element frequency-domain simulation suggest that this MoS2@TiO2 heterostructured photocatalyst possesses an enhanced activity for H+ reduction. A high H2 yield rate of 580 mmol h-1 g-1 is achieved using a low catalyst loading mass of 10.2 μg. The spatially uniform heterostructure, correlated to plasmon-resonance throughmore » conformal coating MoS2 that effectively regulated charge transfer pathways, is proven to be vitally important for the unique solar energy harvesting and photocatalytic H2 production. As an innovative exploration, our study demonstrates that the photocatalytic activities of nonmetal, earth-abundant materials can be enhanced with plasmonic effects, which may serve as an excellent catalytic agent for solar energy conversion to chemical fuel. Periodically patterned MoS 2/TiO 2heterostructures were rationally designed as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution.« less

  10. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants.

    PubMed

    Zarrin, Saviz; Heshmatpour, Felora

    2018-06-05

    In this study, highly active titanium dioxide modified by niobium oxide (Nb 2 O 5 ), polymer (PANI) and reduced graphene oxide (RGO) were successfully prepared. The morphology, structure, surface area and light absorption properties of the present nanocomposites for removal of methylene blue (MB) and methyl orange (MO) were investigated and compared with those of TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. The characterization techniques such as XRD, FT-IR, UV-vis, SEM, EDX, BET and TEM were employed in order to identify the nanocomposites. Also, photocatalytic properties of TiO 2 /Nb 2 O 5 /PANI and TiO 2 /Nb 2 O 5 /RGO nanocomposites under visible light irradiation were studied. In this way, the obtained results were compared to each other and also compared to TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. In this context, the chemical oxygen demand (COD) removal follows the photodegradation in observed performance. The results indicate that reduced TiO 2 /Nb 2 O 5 nanocomposite is effectively modified by graphene oxide to give TiO 2 /Nb 2 O 5 /RGO composite. The TiO 2 /Nb 2 O 5 /RGO exhibits significantly higher photocatalytic activity in degradation of organic dyes under visible light rather than that of TiO 2 /Nb 2 O 5 /PANI, TiO 2 /Nb 2 O 5 and pure TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Fabrication of Li2TiO3 pebbles using PVA-boric acid reaction for solid breeding materials

    NASA Astrophysics Data System (ADS)

    Park, Yi-Hyun; Cho, Seungyon; Ahn, Mu-Young

    2014-12-01

    Lithium metatitanate (Li2TiO3) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li2TiO3 pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li2TiO3 green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li2TiO3 green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li2TiO3 pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.

  12. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis.

    PubMed

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-02-26

    This study developed a facile approach for preparing Ti(3+) self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti(3+) doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti(3+) in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.

  13. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-02-01

    This study developed a facile approach for preparing Ti3+ self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti3+ doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti3+ in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.

  14. Study of concentration-dependent cobalt ion doping of TiO2 and TiO(2-x)Nx at the nanoscale.

    PubMed

    Gole, James L; Prokes, Sharka M; Glembocki, O J; Wang, Junwei; Qiu, Xiaofeng; Burda, Clemens

    2010-07-01

    Experiments with a porous sol-gel generated TiO(2) nanocolloid and its corresponding oxynitride TiO(2-x)N(x) are carried out to evaluate those transformations which accompany additional doping with transition metals. In this study, doping with cobalt (Co(ii)) ions is evaluated using a combination of core level and VB-photoelectron and optical spectroscopy, complementing data obtained from Raman spectroscopy. Raman spectroscopy suggests that cobalt doping of porous sol-gel generated anatase TiO(2) and nitridated TiO(2-x)N(x) introduces a spinel-like structure into the TiO(2) and TiO(2-x)N(x) lattices. TEM and XPS data complemented by valence band-photoelectron spectra demonstrate that metallic cobalt clusters are not formed even at high doping levels. As evidenced by Raman spectroscopy, the creation of a spinel-like structure is commensurate with the room temperature conversion of the oxide and its oxynitride from the anatase to the rutile form. The onset of this kinetically driven process correlates with the formation of spinel sites within the TiO(2) and TiO(2-x)N(x) particles. Despite their visible light absorption, the photocatalytic activity of these cobalt seeded systems is diminished relative to the oxynitride TiO(2-x)N(x).

  15. The Effects of Anchor Groups on (1) TiO2-Catalyzed Photooxidation and (2) Linker-Assisted Assembly on TiO2

    NASA Astrophysics Data System (ADS)

    Anderson, Ian Mark

    Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented

  16. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: A comparative study of photo catalysis on acid red 88

    NASA Astrophysics Data System (ADS)

    Balachandran, K.; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P.

    2014-07-01

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m2/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4 h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  17. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus.

    PubMed

    Zan, Ling; Fa, Wenjun; Peng, Tianyou; Gong, Zhen-Kui

    2007-02-01

    The photocatalysis effect of nanometer TiO2 particles and TiO2-coated ceramic plate on Hepatitis B virus surface antigen (HBsAg) was investigated. The ELISA (enzyme-linked immunosorbent assay) standard method was used to assess the efficiency of TiO2 material to destroy the HBsAg. The research has shown that the suspension of TiO2 (0.5g/L) can destroy most of the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.6mW/cm(2) at 365nm wavelength, or under the sunlight irradiation for a few hours. TiO2-coated ceramic plates can also destroy the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.05mW/cm(2) at 365nm wavelength or under the room daylight for a few hours.

  18. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88.

    PubMed

    Balachandran, K; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P

    2014-07-15

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m(2)/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Highly stable CuO incorporated TiO(2) catalyst for photo-catalytic hydrogen production from H(2)O.

    PubMed

    Bandara, J; Udawatta, C P K; Rajapakse, C S K

    2005-11-01

    A CuO incorporated TiO(2) catalyst was found to be an active photo-catalyst for the reduction of H(2)O under sacrificial conditions. The catalytic activity originates from the photogeneration of excited electrons in the conduction bands of both TiO(2) and CuO resulting in a build-up of excess electrons in the conduction band of CuO. Consequently, the accumulation of excess electrons in CuO causes a negative shift in the Fermi level of CuO. The efficient inter-particle charge transfer leads to a higher catalytic activity and the formation of highly reduced states of TiO(2)/CuO, which are stable even under oxygen saturated condition. Negative shift in the Fermi level of CuO of the catalyst TiO(2)/CuO gains the required over-voltage necessary for efficient water reduction reaction. The function of CuO is to help the charge separation and to act as a water reduction site. The amount of CuO and crystalline structure were found to be crucial for the catalytic activity and the optimum CuO loading was ca. approximately 5-10%(w/w).

  20. Effect of TiO2 dispersion on mechanical properties of epoxy polymer

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Singh, Samarjit; Kohli, Raunak; Jain, Anuj; Kumar, Abhishek

    2016-05-01

    This study is focused to assess reinforcing effects of TiO2 particles on the mechanical properties of epoxy resins, particularly with regards to fracture and toughening mechanisms. An experimental study has been carried out on series of composites containing varying amount of micro size titanium dioxide (TiO2) up to 8 wt.%. The particles were dispersed via mixing with mechanical stirrer at 1000 rpm for 2 hours to ensure a well-dispersed phase of the particles. The epoxy resin with the dispersed particle has been cured with hardener at 40 °C for 16 hours. Test reveals improvement in up to 4 wt.% of the particles and decrease in the mechanical properties beyond 4 wt. %. This may be attributed to the significant increase in clustering and settlement of the particles during long curing time. The tensile strength increases by 32 % and fracture toughness (K1C) by 44.95 % and the fracture energy (G1C) by 150.29 % with particle loading of 4 wt. % TiO2.

  1. Enhanced TiO2 Photocatalytic Processing of Organic Wastes for Green Space Exploration

    NASA Technical Reports Server (NTRS)

    Udom, I.; Goswami, D. Y.; Ram, M. K.; Stefanakos, E. K.; Heep, A. F.; Kulis, M. J.; McNatt, J. S.; Jaworske, D. A.; Jones, C. A.

    2013-01-01

    The effect of transition metal co-catalysts on the photocatalytic properties of TiO2 was investigated. Ruthenium (Ru), palladium, platinum, copper, silver, and gold, were loaded onto TiO2 powders (anatase and mixed-phase P25) and screened for the decomposition of rhodamine B (RhB) under broad-band irradiation. The morphology and estimated chemical composition of photocatalysts were determined by scanning electron microscopy and energy dispersive spectroscopy, respectively. Brunhauer, Emmett and Teller (BET) analysis measured mass-specific surface area(s). X-ray diffraction analysis was performed to confirm the identity of titania phase(s) present. The BET surface area of anatase TiO2/Ru 1% (9.2 sq m/gm) was one of the highest measured of all photocatalysts prepared in our laboratory. Photolyses conducted under air-saturated and nitrogen-saturated conditions revealed photodegradation efficiencies of 85 and 2 percent, respectively, after 60 min compared to 58 percent with no catalyst. The cause of low photocatalytic activity under an inert atmosphere is discussed. TiO2/Ru 1% showed a superior photocatalytic activity relative to P25-TiO2 under broad-band irradiation. A potential deployment of photocatalytic technologies on a mission could be a reactor with modest enhancement in solar intensity brought about by a trough-style reactor, with reactants and catalyst flowing along the axis of the trough and therefore being illuminated for a controlled duration based on the flow rate.

  2. Performance of Bi2O3/TiO2 prepared by sol-gel on p-Cresol degradation under solar and visible light.

    PubMed

    Vigil-Castillo, Héctor H; Hernández-Ramírez, Aracely; Guzmán-Mar, Jorge L; Ramos-Delgado, Norma A; Villanueva-Rodríguez, Minerva

    2018-05-21

    Photocatalytic degradation of p-Cresol was evaluated using the mixed oxide Bi 2 O 3 /TiO 2 (containing 2 and 20% wt. Bi 2 O 3 referred as TB2 and TB20) and was compared with bare TiO 2 under simulated solar radiation. Materials were prepared by the classic sol-gel method. All solids exhibited the anatase phase by X-ray diffraction (XRD) and Raman spectroscopy. The synthesized materials presented lower crystallite size and Eg value, and also higher surface area as Bi 2 O 3 amount was increased. Bi content was quantified showing near to 70% of theoretical values in TB2 and TB20. Bi 2 O 3 incorporation also was demonstrated by X-ray photoelectron spectroscopy (XPS). Characterization of mixed oxides suggests a homogeneous distribution of Bi 2 O 3 on TiO 2 surface. Photocatalytic tests were carried out using a catalyst loading of 1 g L -1 under simulated solar light and visible light. The incorporation of Bi 2 O 3 in TiO 2 improved the photocatalytic properties of the synthesized materials obtaining better results with TB20 than the unmodified TiO 2 under both radiation sources.

  3. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Sun, Zhiming; Hu, Zhibo; Yan, Yang; Zheng, Shuilin

    2014-09-01

    TiO2/purified diatomite composite materials were prepared through a modified hydrolysis-deposition method under low temperature using titanium tetrachloride as precursor combined with a calcination crystallization process. The microstructure and crystalline phases of the obtained composites prepared under different preparation conditions were characterized by high resolution scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The photocatalytic performance of TiO2/purified diatomite composites was evaluated by Rhodamine B as the target pollutant under UV irradiation, and the optimum preparation conditions of composites were obtained. The TiO2 crystal form in composites prepared under optimum conditions was anatase, the grain size of which was 34.12 nm. The relationships between structure and property of composite materials were analyzed and discussed. It is indicated that the TiO2 nanoparticles uniformly dispersed on the surface of diatoms, and the photocatalytic performance of the composite materials was mainly determined by the dispersity and grain size of loaded TiO2 nanoparticles.

  4. Sonophotocatalytic degradation of dye C.I. Acid Orange 7 by TiO2 and Ag nanoparticles immobilized on corona pretreated polypropylene non-woven fabric.

    PubMed

    Marković, Darka; Šaponjić, Zoran; Radoičić, Marija; Radetić, Tamara; Vodnik, Vesna; Potkonjak, Branislav; Radetić, Maja

    2015-05-01

    This study discusses the possibility of using corona pre-treated polypropylene (PP) non-woven fabric as a support for immobilization of colloidal TiO2 and Ag nanoparticles in order to remove dye C.I. Acid Orange 7 from aqueous solution. Dye removal efficiency by sonocatalysis, photocatalysis and sonophotocatalysis was evaluated on corona pre-treated fabric loaded with TiO2 nanoparticles, corona pre-treated fabric double loaded with TiO2 nanoparticles and corona pre-treated fabrics loaded with TiO2 nanoparticles before and after deposition of Ag nanoparticles. In addition, the stability of PP non-woven fabric during these processes was investigated. The substrates were characterized by SEM, EDX and AAS analyses. The change of the dye concentration was evaluated by UV-VIS spectrophotometry. Unlike sonocatalysis and photocatalysis, complete dye removal from both solution and non-woven fabric was obtained already after 240-270 min of sonophotocatalysis. Corona pre-treated PP non-woven fabric loaded with Ag nanoparticles prior to deposition of TiO2 nanoparticles provided excellent degradation efficiency and superior reusability. Sonophotocatalytic degradation of dye in the presence of all investigated samples was the most prominent in acidic conditions. Although this nanocomposite system ensured fast discoloration of dye solution, TOC values of water measured after sonophotocatalysis were not satisfactory because of PP degradation. Therefore, it is suggested to include TOC evaluation in each case study where different supports for TiO2 nanoparticles are used since these nanoparticles may guarantee the dye removal from solution but the stability of support could be problematic causing even more serious environmental impact. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Pure rotational spectra of TiO and TiO2 in VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Kamiński, T.; Gottlieb, C. A.; Menten, K. M.; Patel, N. A.; Young, K. H.; Brünken, S.; Müller, H. S. P.; McCarthy, M. C.; Winters, J. M.; Decin, L.

    2013-03-01

    We report the first detection of pure rotational transitions of TiO and TiO2 at (sub-)millimeter wavelengths towards the red supergiant VY CMa. A rotational temperature, Trot, of about 250 K was derived for TiO2. Although Trot was not well constrained for TiO, it is likely somewhat higher than that of TiO2. The detection of the Ti oxides confirms that they are formed in the circumstellar envelopes of cool oxygen-rich stars and may be the "seeds" of inorganic-dust formation, but alternative explanations for our observation of TiO and TiO2 in the cooler regions of the envelope cannot be ruled out at this time. The observations suggest that a significant fraction of the oxides is not converted to dust, but instead remains in the gas phase throughout the outflow. Based on observations carried out with the Submillimeter Array and IRAM Plateau de Bure Interferometer.Plateau de Bure data (FITS file) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A113

  6. Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light.

    PubMed

    Phanikrishna Sharma, M V; Durga Kumari, V; Subrahmanyam, M

    2008-06-01

    The present investigation covers immobilization of TiO2 using a simple solid state dispersion technique over mesoporous Al-MCM-41 support for the treatment of isoproturon herbicide. Catalysts are characterized by XRD, X-ray photo electron spectroscopy (XPS), surface area, UV-Vis diffused reflectance spectra (DRS), SEM and TEM. A detailed photocatalytic degradation study of isoproturon under solar light in aqueous suspensions is reported. The 10 wt% TiO2/Al-MCM-41 composite system found to be optimum with high degradation activity. The reaction follows pseudo-first order kinetics. The parameters like TiO2 loading over Al-MCM-41, amount of catalyst, concentration of substrate, pH effect, durability of the catalyst, activity comparison of TiO2 and Al-MCM-41 supported system are studied. The mineralization of isoproturon is monitored by TOC. Based on the degradation products detected through LC-MS, a plausible degradation mechanism is proposed. The data indicates that TiO2/Al-MCM-41 composite system is an effective photocatalyst for treatment of isoproturon in contaminated water.

  7. Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet.

    PubMed

    Yu, Shan; Zhong, Yun-Qian; Yu, Bao-Quan; Cai, Shi-Yi; Wu, Li-Zhu; Zhou, Ying

    2016-07-27

    Hydrogen evolution through photocatalysis is promising with respect to the environmental problems and challenges of energy shortage that we encounter today. In this paper, we have combined graphene quantum dots (GQDs) and {001} faceted anatase TiO2 (with an exposed percentage of 65-75%) together for effective photocatalytic hydrogen evolution. A series of characterizations including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and UV-visible absorption spectroscopy have been carried out to study the structure of the as-prepared GQDs/{001}TiO2 composite. It turns out that GQDs could be effectively decorated on {001}TiO2 sheet without changing its intrinsic structure. With an optimum loading amount of GQDs (0.5 wt% to {001}TiO2), GQDs/{001}TiO2 exhibits a hydrogen evolution efficiency 8 times higher than that of bare {001}TiO2, which is a significantly more obvious improvement than many other photocatalytic systems relevant to GQDs and TiO2 hybrids. In addition, GQDs/{001}TiO2 could stand long-term photocatalytic experiments. Photocurrent tests show that such an improvement of the photocatalytic efficiency over GQDs/{001}TiO2 may originate from a higher charge separation efficiency. The present study could offer reference for the construction of photocatalytic hydrogen evolution systems with low cost and long term stability.

  8. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    NASA Astrophysics Data System (ADS)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  9. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    PubMed

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts

    PubMed Central

    Jedsukontorn, Trin; Saito, Nagahiro; Hunsom, Mali

    2018-01-01

    In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2 photocatalysts (Au3M3/TiO2), where M is bismuth (Bi), platinum (Pt) or palladium (Pd) at 3 wt. %. The Aux/TiO2 photocatalysts exhibited a stronger visible light absorption than the parent TiO2 due to the localized surface plasmon resonance effect. Increasing the Au content from 1 wt. % to 7 wt. % led to increased visible light absorption due to the increasing presence of defective structures that were capable of enhancing the photocatalytic activity of the as-prepared catalyst. The addition of Pt and Pd coupled with the Au3/TiO2 to form Au3M3/TiO2 improved the photocatalytic activity of the Au3/TiO2 photocatalyst by maximizing their light-absorption property. The Au3/TiO2, Au3Pt3/TiO2 and Au3Pd3/TiO2 photocatalysts promoted the formation of glyceraldehyde from glycerol as the principle product, while Au3Bi3/TiO2 facilitated glycolaldehyde formation as the major product. Among all the prepared photocatalysts, Au3Pd3/TiO2 exhibited the highest photocatalytic activity with a 98.75% glycerol conversion at 24 h of reaction time. PMID:29690645

  11. TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton

    PubMed Central

    Miller, Robert J.; Bennett, Samuel; Keller, Arturo A.; Pease, Scott; Lenihan, Hunter S.

    2012-01-01

    Nanoparticulate titanium dioxide (TiO2) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO2. Because TiO2 generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO2 has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO2 is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO2 have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO2 toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO2 on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO2 concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO2, and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive. PMID:22276179

  12. Pt-Enhanced Mesoporous Ti3+/TiO2 with Rapid Bulk to Surface Electron Transfer for Photocatalytic Hydrogen Evolution.

    PubMed

    Lian, Zichao; Wang, Wenchao; Li, Guisheng; Tian, Fenghui; Schanze, Kirk S; Li, Hexing

    2017-05-24

    Pt-doped mesoporous Ti 3+ self-doped TiO 2 (Pt-Ti 3+ /TiO 2 ) is in situ synthesized via an ionothermal route, by treating metallic Ti in an ionic liquid containing LiOAc, HOAc, and a H 2 PtCl 6 aqueous solution under mild ionothermal conditions. Such Ti 3+ -enriched environment, as well as oxygen vacancies, is proven to be effective for allowing the in situ reduction of Pt 4+ ions uniformly located in the framework of the TiO 2 bulk. The photocatalytic H 2 evolution of Pt-Ti 3+ /TiO 2 is significantly higher than that of the photoreduced Pt loaded on the original TiO 2 and commercial P25. Such greatly enhanced activity is due to the various valence states of Pt (Pt n+ , n = 0, 2, or 3), forming Pt-O bonds embedded in the framework of TiO 2 and ultrafine Pt metal nanoparticles on the surface of TiO 2 . Such Pt n+ -O bonds could act as the bridges for facilitating the photogenerated electron transfer from the bulk to the surface of TiO 2 with a higher electron carrier density (3.11 × 10 20 cm -3 ), about 2.5 times that (1.25 × 10 20 cm -3 ) of the photoreduced Pt-Ti 3+ /TiO 2 sample. Thus, more photogenerated electrons could reach the Pt metal for reducing protons to H 2 .

  13. Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Yazi; Sun, Dan; Askari, Sadegh; Patel, Jenish; Macias-Montero, Manuel; Mitra, Somak; Zhang, Richao; Lin, Wen-Feng; Mariotti, Davide; Maguire, Paul

    2015-10-01

    A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding.

  14. In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Luo, Wei; Mo, Yanping; Yu, Huogen; Cheng, Bei

    2018-02-01

    Cocatalyst modification of photocatalysts is an important strategy to enhance the photocatalytic performance by promoting effective separation of photoinduced electron-hole pairs and providing abundant active sites. In this study, a facile in situ photodeposition method was developed to prepare amorphous CoSx-modified TiO2 photocatalysts. It was found that amorphous CoSx nanoparticles were solidly loaded on the TiO2 surface, resulting in a greatly improved photocatalytic H2-evolution performance. When the amount of amorphous CoSx was 10 wt%, the hydrogen evolution rate of the CoSx/TiO2 reached 119.7 μmol h-1, which was almost 16.7 times that of the pure TiO2. According to the above experimental results, a reasonable mechanism of improved photocatalytic performance is proposed for the CoSx/TiO2 photocatalysts, namely, the photogenerated electrons of TiO2 can rapidly transfer to amorphous CoSx nanoparticles due to the solid contact between them, and then amorphous CoSx can provide plenty of sulfur active sites to rapidly adsorb protons from solution to produce hydrogen by the photogenerated electrons. Considering the facile synthesis method, the present cheap and highly efficient amorphous CoSx-modified TiO2 photocatalysts would have great potential for practical use in photocatalytic H2 production.

  15. Growth of TiO2 nanofibers on FTO substrates and their application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suryana, R.; Rahmawati, L. R.; Triyana, K.

    2016-11-01

    Growth of TiO2 nanofibers on fluorine-doped tin oxide (FTO) substrates have been performed using electrospinning method. Homogenous TiO2 solution as nanofibers material was prepared with titanium tetraisopropoxide (TTIP), ethanol, acetic acid and polyvinyl pyrrolidone (PVP) which was stirred for 24 h. TiO2 solution was loaded into the syringe pump. Electrospun voltage was operated under 15 kV with optimum distance between syringe tip and collector was 15 cm. FTO substrates were attached on the collector surface. Electrospinning coating time was varied at 15 min, 30 min, 45 min, and 60 min. Then TiO2 nanofibers layer was annealed at temperature of 450° C for 3 h. X-ray diffraction spectrum of TiO2 nanofibers showed major anatase peaks at 25.3°, 48.0° and 37.8° correlating crystal orientation of (101), (200), and (004), respectively while only one rutile peak at 27.5°(110). TiO2 nanofibers diameter was measured using atomic force microscopy (AFM). TiO2 nanofibers have diameter in range of 100-1000 nm. The obtained-TiO2 nanofibers were applied in dye-sensitized solar cell (DSSC) with beta-carotene as dye, carbon as catalyst, and I-/I3- redox couple as electrolyte. DSSC performance was analyzed from I-V characterization. Growth of TiO2 nanofibers at electrospinning time for 45 min has highest efficiency that is 0.016%. It is considered that TiO2 nanofibers at electrospinning time for 45 min can produce optimum thickness so that it is speculated many dyes adsorb on the nanofiber surfaces and many electrons diffuse toward the electrodes.

  16. One-step formation of TiO2 hollow spheres via a facile microwave-assisted process for photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Mohamad Alosfur, Firas K.; Ridha, Noor J.; Hafizuddin Haji Jumali, Mohammad; Radiman, S.

    2018-04-01

    Mesoporous TiO2 hollow spherical nanostructures with high surface areas were successfully prepared using a microwave method. The prepared hollow spheres had a size range between 200 and 500 nm. The spheres consisted of numerous smaller TiO2 nanoparticles with an average diameter of 8 nm. The particles had an essentially mesoporous structure, with a pore size in the range of 2-50 nm. The results confirmed that the synthesised of anatase TiO2 nanoparticles with specific surface area approximately 172.3 m2 g-1. The effect of ultraviolet and visible light irradiation and catalyst dosage on the TiO2 photocatalytic activity was studied by measuring the degradation rate of methylene blue. The maximum dye degradation performances with low catalyst loading (30 mg) were 99% and 63.4% using the same duration of ultraviolet and visible light irradiation, respectively (120 min).

  17. Size-Selective Synthesis and Stabilization of Small Silver Nanoparticles on TiO 2 Partially Masked by SiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Zhenyu; Eaton, Todd R.; Gallagher, James R.

    Controlling metal nanoparticle size is one of the principle challenges in developing new supported catalysts. Typical methods where a metal salt is deposited and reduced can result in a polydisperse mixture of metal nanoparticles, especially at higher loading. Polydispersity can exacerbate the already significant challenge of controlling sintering at high temperatures, which decreases catalytic surface area. Here, we demonstrate the size-selective photoreduction of Ag nanoparticles on TiO2 whose surface has been partially masked with a thin SiO2 layer. To synthesize this layered oxide material, TiO2 particles are grafted with tert-butylcalix[4]arene molecular templates (~2 nm in diameter) at surface densities ofmore » 0.05–0.17 templates.nm–2, overcoated with ~2 nm of SiO2 through repeated condensation cycles of limiting amounts of tetraethoxysilane (TEOS), and the templates are removed oxidatively. Ag photodeposition results in uniform nanoparticle diameters ≤ 3.5 nm (by transmission electron microscopy (TEM)) on the partially masked TiO2, whereas Ag nanoparticles deposited on the unmodified TiO2 are larger and more polydisperse (4.7 ± 2.7 nm by TEM). Furthermore, Ag nanoparticles on the partially masked TiO2 do not sinter after heating at 450 °C for 3 h, while nanoparticles on the control surfaces sinter and grow by at least 30%, as is typical. Overall, this new synthesis approach controls metal nanoparticle dispersion and enhances thermal stability, and this facile synthesis procedure is generalizable to other TiO2-supported nanoparticles and sizes and may find use in the synthesis of new catalytic materials.« less

  18. Hetero-Orientation Epitaxial Growth of TiO2 Splats on Polycrystalline TiO2 Substrate

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun

    2018-05-01

    In the present study, the effect of titania (TiO2) substrate grain size and orientation on the epitaxial growth of TiO2 splat was investigated. Interestingly, the splat presented comparable grain size with that of substrate, indicating the hereditary feature of grain size. In addition, hetero- and homo-orientation epitaxial growth was observed at deposition temperatures below 400 °C and above 500 °C, respectively. The preferential growth of high-energy (001) face was also observed at low deposition temperatures (≤ 400 °C), which was found to result from dynamic nonequilibrium effect during the thermal spray deposition. Moreover, thermal spray deposition paves the way for a new approach to prepare high-energy (001) facets of TiO2 crystals.

  19. Composite TiO2/clays materials for photocatalytic NOx oxidation

    NASA Astrophysics Data System (ADS)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.

    2014-11-01

    TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.

  20. Investigation of energy band alignments and interfacial properties of rutile NMO2/TiO2 (NM = Ru, Rh, Os, and Ir) by first-principles calculations.

    PubMed

    Yang, Chen; Zhao, Zong-Yan

    2017-11-08

    In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO 2 surface, a transition layer of noble metal oxides is often formed between the TiO 2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO 2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO 2 , and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures demonstrate band dividing, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO 2 /TiO 2 hetero-structures show upward band bending. Conversely, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures present a relatively strong infrared light absorption, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO 2 . These findings will provide useful information

  1. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers.

    PubMed

    Lin, Lu; Wang, Huiyao; Jiang, Wenbin; Mkaouar, Ahmed Radhi; Xu, Pei

    2017-07-05

    Incorporating reduced graphene oxide (rGO) or Fe 3+ ions in TiO 2 photocatalyst could enhance photocatalytic degradation of organic contaminants in aqueous solutions. This study characterized the photocatalytic activities of TiO 2 -Fe and TiO 2 -rGO nanocomposites immobilized on optical fibers synthesized by polymer assisted hydrothermal deposition method. The photocatalysts presented a mixture phase of anatase and rutile in the TiO 2 -rGO and TiO 2 -Fe nanocomposites. Doping Fe into TiO 2 particles (2.40eV) could reduce more band gap energy than incorporating rGO (2.85eV), thereby enhancing utilization efficiency of visible light. Incorporating Fe and rGO in TiO 2 decreased significantly the intensity of TiO 2 photoluminescence signals and enhanced the separation rate of photo-induced charge carriers. Photocatalytic performance of the synthesized nanocomposites was measured by the degradation of three pharmaceuticals under UV and visible light irradiation, including carbamazepine, ibuprofen, and sulfamethoxazole. TiO 2 -rGO exhibited higher photocatalytic activity for the degradation of pharmaceuticals under UV irradiation, while TiO 2 -Fe demonstrated more suitable for visible light oxidation. The results suggested that the enhanced photocatalytic performance of TiO 2 -rGO could be attributed to reduced recombination rate of photoexcited electrons-hole pairs, but for TiO 2 -Fe nanocomposite, narrower band gap would contribute to increased photocatalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells

    PubMed Central

    Park, Jung Tae; Chi, Won Seok; Kim, Sang Jin; Lee, Daeyeon; Kim, Jong Hak

    2014-01-01

    Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM as templates. To generate high and low index films, the refractive index of om-TiO2 film was tuned by controlling the grafting ratio of PVC-g-POEM via atomic transfer radical polymerization (ATRP). A polymerized ionic liquid (PIL)-based DSSC fabricated with a 1.2-μm-thick om-TiO2 BS-based photoanode exhibited an efficiency of 4.3%, which is much higher than that of conventional DSSCs with a nanocrystalline TiO2 layer (nc-TiO2 layer) (1.7%). A PIL-based DSSC with a heterostructured photoanode consisting of 400-nm-thick organized mesoporous TiO2 interfacial (om-TiO2 IF) layer, 7-μm-thick nc-TiO2, and 1.2-μm-thick om-TiO2 BS as the bottom, middle and top layers, respectively, exhibited an excellent efficiency of 7.5%, which is much higher than that of nanocrystaline TiO2 photoanode (3.5%). PMID:24980936

  3. Exchange of TiO2 nanoparticles between streams and streambeds.

    PubMed

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  4. Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution.

    PubMed

    Gomez, Silvina; Marchena, Candelaria Leal; Pizzio, Luis; Pierella, Liliana

    2013-08-15

    The TiO2/HZSM-11 materials were synthesized using titanium isopropoxide as a TiO2 precursor and HZSM-11 a medium pore size zeolite with high thermal and chemical resistance as support. The amount of titanium isopropoxide was varied in order to obtain TiO2 concentrations of 3, 10, 20, 30 and 50 wt% in the final material. They were characterized by a series of complementary techniques: X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (DRS), transmittance Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The surface area of the TiO2/HZSM-11 samples decreased with the increment of TiO2 loading. As result of the increment of the calcination temperature from 450 to 800°C an increase in the size of the anatase crystals was observed. However, the X-ray diffraction patterns of the solids only presented the characteristic peaks of the anatase phase. The catalytic activity of the materials in the photodegradation of Dichlorvos (DDVP) depended on the TiO2 amount the thermal treatment temperature. The sample containing 30% TiO2 calcined at 450°C showed the best catalytic performance and it can be reused without noticeable activity loss during at least four cycles. The catalytic performance was similar to that of the P25 Degussa used as a reference but its separation, recovery and reuse was easier. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. MoSe2 modified TiO2 nanotube arrays with superior photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Zhu, Haifeng; Yu, Lianqing; He, Jiandong; Huang, Chengxing

    2018-04-01

    TiO2 nanotube arrays (TNTs) are first prepared by anodization Ti foils in ethylene glycol electrolyte. Then, MoSe2 deposites electrochemically on TNTs. The as-synthesized MoSe2/TiO2 composite has a much higher photocurrent density of 1.07 mA cm‑2 at 0 V than pure TNTs of 0.38 mA cm‑2, which suggests that the MoSe2/TiO2 composite film has optimum photoelectrocatalysis properties. The electron transport resistances of the MoSe2/TiO2 decreases to half of pure TiO2, at 295.6 ohm/cm2. Both photocurrent-time and Mott-Schottky plots indicate MoSe2 a p-type semiconductor characteristics. MoSe2/TiO2 composite can achieve a maximum 5 orders of magnitude enhancement in carrier density (4.650 × 1027 cm‑3) than that of pure TiO2 arrays. It can be attributed to p-n heterojunction formed between MoSe2 and TiO2, and the composite can be potentially applied in photoelectrochemical, photocatalysis fields.

  6. Nitric Oxide Reduction to Ammonia by TiO 2 Electrons in Colloid Solution via Consecutive One-Electron Transfer Steps

    DOE PAGES

    Goldstein, Sara; Behar, David; Rajh, Tijana; ...

    2015-03-02

    The reaction mechanism of nitric oxide (NO) reduction by excess electrons on TiO 2 nanoparticles (e TiO2–) has been studied under anaerobic conditions. TiO 2 was loaded with 10–130 electrons per particle using γ-irradiation of acidic TiO 2 colloid solutions containing 2-propanol. The study is based on time-resolved kinetics and reactants and products analysis. The reduction of NO by e TiO2– is interpreted in terms of competition between a reaction path leading to formation of NH 3 and a path leading to N 2O and N 2. The proposed mechanism involves consecutive one-electron transfers of NO, and its reduction intermediatesmore » HNO, NH 2O•, and NH 2OH. The results show that e TiO2– does not reduce N 2O and N 2. Second-order rate constants of e TiO2– reactions with NO (740 ± 30 M –1 s –1) and NH 2OH (270 ± 30 M –1 s –1) have been determined employing the rapid-mixing stopped-flow technique and that with HNO (>1.3 × 10 6 M –1 s –1) was derived from fitting the kinetic traces to the suggested reaction mechanism, which is discussed in detail.« less

  7. Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability.

    PubMed

    Thurn, Kenneth T; Paunesku, Tatjana; Wu, Aiguo; Brown, Eric M B; Lai, Barry; Vogt, Stefan; Maser, Jörg; Aslam, Mohammed; Dravid, Vinayak; Bergan, Raymond; Woloschak, Gayle E

    2009-06-01

    Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.

  8. Charge transfer between biogenic jarosite derived Fe3+and TiO2 enhances visible light photocatalytic activity of TiO2.

    PubMed

    Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor

    2017-04-01

    In this work, we have shown that mining waste derived Fe 3+ can be used to enhance the photocatalytic activity of TiO 2 . This will allow us to harness a waste product from the mines, and utilize it to enhance TiO 2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO 2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO 2 /jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO 2 , biogenic jarosite and mechanically mixed sample of jarosite and TiO 2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO 2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO 2 and jarosite derived Fe 3+ as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments. Copyright © 2016. Published by Elsevier B.V.

  9. Properties of TiO2 thin films and a study of the TiO2-GaAs interface

    NASA Technical Reports Server (NTRS)

    Chen, C. Y.; Littlejohn, M. A.

    1977-01-01

    Titanium dioxide (TiO2) films prepared by chemical vapor deposition were investigated in this study for the purpose of the application in the GaAs metal-insulator-semiconductor field-effect transistor. The degree of crystallization increases with the deposition temperature. The current-voltage study, utilizing an Al-TiO2-Al MIM structure, reveals that the d-c conduction through the TiO2 film is dominated by the bulk-limited Poole-Frenkel emission mechanism. The dependence of the resistivity of the TiO2 films on the deposition environment is also shown. The results of the capacitance-voltage study indicate that an inversion layer in an n-type substrate can be achieved in the MIS capacitor if the TiO2 films are deposited at a temperature higher than 275 C. A process of low temperature deposition followed by the pattern definition and a higher temperature annealing is suggested for device fabrications. A model, based on the assumption that the surface state densities are continuously distributed in energy within the forbidden band gap, is proposed to interpret the lack of an inversion layer in the Al-TiO2-GaAs MIS structure with the TiO2 films deposited at 200 C.

  10. Surface functionalization of TiO2 nanotubes with minocycline and its in vitro biological effects on Schwann cells.

    PubMed

    A, Lan; Xu, Wenzhou; Zhao, Jinghui; Li, Chunyan; Qi, Manlin; Li, Xue; Wang, Lin; Zhou, Yanmin

    2018-06-20

    Minocycline has been widely used in central nervous system disease. However, the effect of minocycline on the repairing of nerve fibers around dental implants had not been previously investigated. The aim of the present study was to evaluate the possibility of using minocycline for the repairing of nerve fibers around dental implants by investigating the effect of minocycline on the proliferation of Schwann cells and secretion of neurotrophic factors nerve growth factor and glial cell line-derived neurotrophic factor in vitro. TiO 2 nanotubes were fabricated on the surface of pure titanium via anodization at the voltage of 20, 30, 40 and 50 V. The nanotubes structure were characterized by scanning electron microscopy and examined with an optical contact angle. Then drug loading capability and release behavior were detected in vitro. The TiO 2 nanotubes loaded with different concentration of minocycline were used to produce conditioned media with which to treat the Schwann cells. A cell counting kit-8 assay and cell viability were both selected to study the proliferative effect of the specimens on Schwann cell. Reverse transcription-quantitative PCR and western blot analyses were used to detect the related gene/protein expression of Schwann cells. The results showed that the diameter of TiO 2 nanotubes at different voltage varied from 100 to 200 nm. The results of optical contact angle and releasing profile showed the nanotubes fabricated at the voltage of 30 V met the needs of the carrier of minocycline. In addition, the TiO 2 nanotubes loaded with the concentration of 20 μg/mL minocycline increased Schwann cells proliferation and secretion of neurotrophic factors in vitro. The results suggested that the surface functionalization of TiO 2 nanotubes with minocycline was a promising candidate biomaterial for the peripheral nerve regeneration around dental implants and has potential to be applied in improving the osseoperception of dental implant.

  11. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites.

    PubMed

    Ramoraswi, Nteseng O; Ndungu, Patrick G

    2015-12-01

    Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m(2)/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.

  12. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ramoraswi, Nteseng O.; Ndungu, Patrick G.

    2015-10-01

    Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m2/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.

  13. The presence of Ti(II) centers in doped nanoscale TiO2 and TiO2-xNx

    NASA Astrophysics Data System (ADS)

    Mikulas, Tanya; Fang, Zongtang; Gole, James L.; White, Mark G.; Dixon, David A.

    2012-06-01

    Unusual trends are observed in the Ti (2s, 2p) XPS spectra of Fe(II) doped TiO2 and TiO2-xNx. The binding energy of Ti (2s, 2p) initially decreases with increasing Fe(II) concentration, as expected, but increases at higher Fe(II) doping levels. Density functional theory is used to analyze the results. The observed VB-XPS and core level XPS spectra are consistent with the facile charge transfer sequence Ti(IV) + Fe(II) → Ti(III) + Fe(III) followed by Ti(III) + Fe(II) → Ti(II) + Fe(III). The formed Ti(II) sites may be relevant to nanoparticle catalysis on TiO2 surfaces.

  14. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tay, See Leng; Gao, Wei

    2014-01-01

    Copper (Cu) containing coatings can provide sustainable protection against microbial contamination. However, metallic Cu coatings have not been widely used due to the relatively high cost, poor corrosion resistance, and low compatibility with non-metal substrates. Titanium dioxide (TiO2) possesses antibacterial functions by its photocatalytic properties which can destroy bacteria or suppress their reproduction. TiO2 also has the function of improving the mechanical properties through particle dispersion strengthening. We have recently developed an innovative polymer based coating system containing fine particles of Cu and TiO2 nanoparticles. These polymer based coatings simultaneously display excellent antimicrobial and good mechanical properties. The results showed that the addition of TiO2 has improved the antimicrobial property under sunlight, which provides extended applications in outdoor environment. The elimination of 106 bacterial by contacting the coatings without TiO2 needs 5 h, while contacting with the Cu/TiO2- 1 wt.% TiO2 took only 2 h to kill the same amount of bacteria. The coatings also presented enhanced hardness and wear resistance after adding TiO2. The width of wear track decreased from 270 μm of the Cu-polymer coating to 206 μm of Cu/TiO2-polymer coatings with 10 wt.% TiO2. Synchrotron Infrared Microscopy was used to in-situ and in-vivo study the bacteria killing process at the molecular level. The real-time chemical images of bacterial activities showed that the bacterial cell membranes were damaged by the Cu and TiO2 containing coatings

  15. Density functional theory study on the metal-support interaction between a Au9 cluster and an anatase TiO2(001) surface.

    PubMed

    Jiang, Zong-You; Zhao, Zong-Yan

    2017-08-23

    Noble metals supported on TiO 2 surfaces have shown extraordinary photocatalytic properties in many important processes such as hydrogenation, water splitting, degradation of hazards, and so on. Using density functional theory calculations, this work has systematically investigated the microstructure and electronic structure of three different Au 9 isomers loaded on anatase TiO 2 (001) surface. The calculated results show that the interaction between the Au 9 cluster and the TiO 2 support is closely related to the adsorption site and the stability of the Au 9 cluster in the gas phase. The adsorption energy of the 2D configuration is larger than that of the 3D configuration of the Au 9 cluster, owing to the stronger interactions between more adsorption sites. The stable adsorption site for Au 9 clusters deposited on the anatase TiO 2 (001) surface tends to be the O 2c -O 2c hollow site. The presentation of the MIGS of the Au 9 cluster, the disappearance of surface states of the TiO 2 (001) surface, and the shifting of the Fermi level from the top of the valence band to the bottom of the conduction band suggest strong interactions between the Au 9 clusters and the TiO 2 (001) surface. Importantly, the electron transfer from the Au 9 clusters to the TiO 2 support occurs mainly through Au-O 2c interactions, which are mainly localized at the contact layer of the Au 9 clusters. These conclusions are useful to understand various physical and chemical properties of noble metal clusters loaded onto an oxide surface, and helpful to design novel metal/semiconductor functional composite materials and devices.

  16. Influence of the surface chemistry on TiO2 - TiO2 nanocontact forces as measured by an UHV-AFM

    NASA Astrophysics Data System (ADS)

    Kunze, Christian; Giner, Ignacio; Torun, Boray; Grundmeier, Guido

    2014-03-01

    Particle-wall contact forces between a TiO2 film coated AFM tip and TiO2(1 1 0) single crystal surfaces were analyzed by means of UHV-AFM. As a reference system an octadecylphosphonic acid monolayer covered TiO2(1 1 0) surface was studied. The defect chemistry of the TiO2 substrate was modified by Ar ion bombardment, water dosing at 3 × 10-6 Pa and an annealing step at 473 K which resulted in a varying density of Ti(III) states. The observed contact forces are correlated to the surface defect density and are discussed in terms of the change in the electronic structure and its influence on the Hamaker constant.

  17. In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation.

    PubMed

    Zhang, Yong-Gang; Ma, Li-Li; Li, Jia-Lin; Yu, Ying

    2007-09-01

    TiO2/Cu2O composite is prepared by a simple electrochemical method and coated on glass matrix through a spraying method. The obtained composite is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of TiO2/Cu2O composite films with different ratio of TiO2 and Cu2O on photodegradation of the dye methylene blue under visible light is investigated in detail. It is found that the photocatalytic activity of TiO2/Cu2O composite film with the presence of FeSO4 and EDTA is much higher than that for the similar system with only TiO2 and Cu2O film respectively. Without the presence of FeSO4 and EDTA, there is no degradation for methylene blue. The exploration of the optimized parameters for the degradation of methylene blue by using TiO2/Cu2O composite film as catalyst under visible light was also carried out. The most significant factor is the amount of Ti02 in the composite, and the second significant factor is the concentration of FeSO4. During the degradation of methylene blue under visible light, TiO2/Cu2O composite film generates H202, and Fenton regent is formed with Fe2+ and EDTA, which is detected in this study. The mechanism for the great improvement of photocatalytic activity of TiO2/Cu2O composite film under visible light is proposed by the valence band theory. Electrons excitated from TiO2/Cu2O composite under visible light are transferred from the conduction band of Cu2O to that of Ti02. The formed intermediate state of Ti 3+ ion is observed by X-ray photoelectron spectroscopy (XPS) on the TiO/Cu2O composite film. Additionally, the accumulated electrons in the conduction band of TiO2 are transferred to oxygen on the TiO2 surface for the formation of O2- or O2(2-), which combines with H+ to form H2O2. The evolved H202 with FeSO4 and EDTA forms Fenton reagentto degrade methylene blue. Compared to the traditional Fenton reagent, this new kind of in situ Fenton reagent generated from TiO2/Cu2O composite film does not need to

  18. A TiO2 abundance map for the northern maria

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Saunders, R. S.; Matson, D. L.; Mosher, J. A.

    1977-01-01

    A map of TiO2 abundance for most of the northern maria is presented. The telescopic data base used is the 0.38/0.56-micron ratio mosaic from Johnson et at. (1977). The titanium content has been estimated using the correlation established by Charette et al. (1974). The combination of observational, processing, and calibration errors indicates that the TiO2 map is accurate to + or - 2% (wt% TiO2) for high TiO2 content (more than 5%) and + or - 1% for low values of TiO2. Analysis of the lunar sample and telescopic data suggests strongly that the spectral parameter mapped is sensitive primarily to TiO2 abundance in the range 3-9% and does not correlate directly with iron content. It is suggested, however, that for the low TiO2 mare regions (less than 2-3% TiO2) there may be a relation between the spectral ratio and iron content and that some of the reddest mare areas in the Imbrium region may have low iron contents as well as low titanium abundances.

  19. Hybrid TiO2/ZnO and TiO2/Al plasmon impregnated ZnO nanocomposite photoanodes for DSSCs: synthesis and characterisation

    NASA Astrophysics Data System (ADS)

    Pugazhendhi, K.; D’Almeida, Steven; Naveen Kumar, P.; Sahaya Selva Mary, J.; Tenkyong, Tenzin; Sharmila, D. J.; J, Madhavan; Merline Shyla, J.

    2018-04-01

    The proposed work reports the synthesis and characterisation of novel and hybrid nanocomposites TiO2/ZnO and TiO2/Al plasmon impregnated ZnO, prepared using sol-gel method. X-Ray Diffraction analysis confirmed the crystalline nature of the nanocomposites with high degree of purity and the crystallite size was found to be 22 nm (TiO2/ZnO) and 21 nm (TiO2/Al-ZnO) using Scherrer’s formula. The surface chemistry, elemental compositions and purity were investigated and established using Energy Dispersive X-ray Analysis. The specific surface area of TiO2/ZnO was observed to be 23 m2 g‑1 whereas on comparison, a slight decrease was observed in the case of TiO2/Al-ZnO to 19 m2 g‑1 from Brunauer–Emmett–Teller analysis and in addition, both the samples were identified to be mesoporous in nature. The vibrational assignments were observed using Fourier Transform Infra-Red spectroscopy and results confirmed the existence of TiO2, ZnO and Al groups. The electrical response of the nanocomposites to the incident radiation with applied electric field was examined using Field Dependent Dark and Photo conductivity studies. The observed measurements revealed that the photocurrent values are greater than the dark currents which confirmed the photoconductive nature of the nanocomposites. While both the prepared nanocomposites qualify as good candidates for usage as efficient photoanodes for DSSCs, TiO2/Al-ZnO indicates a slight edge over the other.

  20. Researches on Tie Rod Ends Lubricated by Grease with TiO2 and ZrO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wozniak, Marek; Siczek, Krzysztof; Kubiak, Przemysław; Jozwiak, Piotr; Siczek, Krystian

    2018-05-01

    The nanoparticles of some materials can be used successfully to improve tribological properties through decreasing both wear and friction borne out of contact between the contact surfaces of elements in different devices, particularly vehicles. Nanoparticles of TiO2 and ZrO2 were chosen as additives to the lithium grease lubricating the contact surfaces in tie rod ends. The object of study was the steel ball – the component of the tie rod end – mating with the polymer insert and lubricated with the pure lithium grease or containing the addition of pure TiO2, pure ZrO2 nanoparticles, with a 1%wt. Studies on friction were carried out using the tester allowing cyclical rotational motion and different loading of contact. Wear was investigated by driving a car, whose tie rod ends were analysed, on a fixed ‘eight’-shape track and with a fixed velocity pattern. The aim of the study was to obtain the values and waveforms of friction moment and wear versus cycles, loading and composition of lubricating grease. The waveforms of friction coefficient were obtained using the FEM model of the analysed contact zone. Based on the obtained waveforms, recommendations for the composition of additives for lithium grease were made.

  1. Novel ternary g-C3N4/Ag3VO4/AgBr nanocomposites with excellent visible-light-driven photocatalytic performance for environmental applications

    NASA Astrophysics Data System (ADS)

    Barzegar, Javid; Habibi-Yangjeh, Aziz; Akhundi, Anise; Vadivel, S.

    2018-04-01

    Novel visible-light-induced photocatalysts were fabricated by integration of Ag3VO4 and AgBr semiconductors with graphitic carbon nitride (g-C3N4) through a facile refluxing method. The fabricated photocatalysts were extensively characterized by XRD, EDX, SEM, TEM, FT-IR, UV-vis DRS, BET, TGA, and PL instruments. The photocatalytic performance of these samples was studied by degradations of three dye contaminants under visible-light exposure. Among the ternary photocatalysts, the g-C3N4/Ag3VO4/AgBr (10%) nanocomposite displayed the maximum activity for RhB degradation with rate constant of 1366.6 × 10-4 min-1, which is 116, 7.23, and 38.5 times as high as those of the g-C3N4, g-C3N4/AgBr (10%), and g-C3N4/Ag3VO4 (30%) photocatalysts, respectively. The effects of synthesis time and calcination temperature were also investigated and discussed. Furthermore, according to the trapping experiments, it was found that superoxide anion radicals were the predominant reactive species in this system. Finally, the ternary photocatalyst displayed superlative activity in removal of the contaminants under visible-light exposure, displaying great potential of this ternary photocatalyst for environmental remediation, because of a facile synthesis route and outstanding photocatalytic performance.

  2. SnO2/TiO2 bilayer thin films exhibiting superhydrophilic properties

    NASA Astrophysics Data System (ADS)

    Talinungsang, Nibedita Paul; Purkayastha, Debarun Dhar

    2017-05-01

    Nanostructured thin films of TiO2, SnO2, and SnO2/TiO2 have been deposited by sol-gel method. The films are characterized by X-ray diffraction, wettability and optical properties. In the present work, we have achieved a way of converting hydrophilic to super-hydrophilic state by incorporating TiO2 buffer layer in between substrate and SnO2 film, which has its utility in anti-fogging surfaces. The decrease in contact angle of water over SnO2/TiO2 bilayer is attributed to the increase in roughness of the film as well as surface energy of the substrate.

  3. Hydrogenated TiO2 nanotube arrays for supercapacitors.

    PubMed

    Lu, Xihong; Wang, Gongming; Zhai, Teng; Yu, Minghao; Gan, Jiayong; Tong, Yexiang; Li, Yat

    2012-03-14

    We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors. © 2012 American Chemical Society

  4. Groundwater Arsenic Adsorption on Granular TiO2: Integrating Atomic Structure, Filtration, and Health Impact.

    PubMed

    Hu, Shan; Shi, Qiantao; Jing, Chuanyong

    2015-08-18

    A pressing challenge in arsenic (As) adsorptive filtration is to decipher how the As atomic surface structure obtained in the laboratory can be used to accurately predict the field filtration cycle. The motivation of this study was therefore to integrate molecular level As adsorption mechanisms and capacities to predict effluent As from granular TiO2 columns in the field as well as its health impacts. Approximately 2,955 bed volumes of groundwater with an average of 542 μg/L As were filtered before the effluent As concentration exceeded 10 μg/L, corresponding to an adsorption capacity of 1.53 mg As/g TiO2. After regeneration, the TiO2 column could treat 2,563 bed volumes of groundwater, resulting in an As load of 1.36 mg/g TiO2. Column filtration and EXAFS results showed that among coexisting ions present in groundwater, only Ca(2+), Si(OH)4, and HCO3(-) would interfere with As adsorption. The compound effects of coexisting ions and molecular level structural information were incorporated in the PHREEQC program to satisfactorily predict the As breakthrough curves. The total urinary As concentration from four volunteers of local residences, ranging from 972 to 2,080 μg/L before groundwater treatment, decreased to the range 31.7-73.3 μg/L at the end of the experimental cycle (15-33 days).

  5. Interactions of aqueous NOM with nanoscale TiO2: implications for ceramic membrane filtration-ozonation hybrid process.

    PubMed

    Kim, Jeonghwan; Shan, Wenqian; Davies, Simon H R; Baumann, Melissa J; Masten, Susan J; Tarabara, Volodymyr V

    2009-07-15

    The combined effect of pH and calcium on the interactions of nonozonated and ozonated natural organic matter (NOM) with nanoscale TiO2 was investigated. The approach included characterization of TiO2 nanoparticles and NOM, extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) modeling of NOM-TiO2 and NOM-NOM interactions, batch study on the NOM adsorption onto TiO2 surface, and bench-scale study on the treatment of NOM-containing feed waters using a hybrid process that combines ozonation and ultrafiltration with a 5 kDa ceramic (TiO2 surface) membrane. It was demonstrated that depending on pH and TiO2 loading, the adsorption of NOM species is controlled by either the availability of divalent cations or by preozonation of NOM. XDLVO surface energy analysis predicts NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short-range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of electrostatic forces was relatively insignificant. Ozonation increased the surface energy of NOM, contributing to the hydrophilic repulsion component of the NOM-NOM and NOM-TiO2 interactions. In the calcium-controlled regime, neither NOM-TiO2 nor NOM-NOM interaction controlled adsorption. Non-XDLVO interactions such as intermolecular bridging by calcium were hypothesized to be responsible for the observed adsorption behavior. Adsorption data proved to be highly predictive of the permeate flux performance.

  6. In-situ preparation of hierarchical flower-like TiO2/carbon nanostructures as fillers for polymer composites with enhanced dielectric properties

    PubMed Central

    Xu, Nuoxin; Zhang, Qilong; Yang, Hui; Xia, Yuting; Jiang, Yongchang

    2017-01-01

    Novel three-dimensional hierarchical flower-like TiO2/carbon (TiO2/C) nanostructures were in-situ synthesized via a solvothermal method involving calcination of organic precursor under inert atmosphere. The composite films comprised of P (VDF-HFP) and as-prepared hierarchical flower-like TiO2/C were fabricated by a solution casting and hot-pressing approach. The results reveal that loading the fillers with a small amount of carbon is an effective way to improve the dielectric constant and suppress the dielectric loss. In addition, TiO2/C particles with higher carbon contents exhibit superiority in promoting the dielectric constants of composites when compared with their noncarbon counterparts. For instance, the highest dielectric constant (330.6) of the TiO2/C composites is 10 times over that of noncarbon-TiO2-filled ones at the same filler volume fraction, and 32 times over that of pristine P (VDF-HFP). The enhancement in the dielectric constant can be attributed to the formation of a large network, which is composed of local micro-capacitors with carbon particles as electrodes and TiO2 as the dielectric in between. PMID:28262766

  7. Thermoelectric Properties of Self Assembled TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  8. Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles.

    PubMed

    Ninomiya, Kazuaki; Ogino, Chiaki; Oshima, Shuhei; Sonoke, Shiro; Kuroda, Shun-ichi; Shimizu, Nobuaki

    2012-05-01

    Our previous study suggested new sonodynamic therapy for cancer cells based on the delivery of titanium dioxide (TiO(2)) nanoparticles (NPs) modified with a protein specifically recognizing target cells and subsequent generation of hydroxyl radicals from TiO(2) NPs activated by external ultrasound irradiation (called TiO(2)/US treatment). The present study first examined the uptake behavior of TiO(2) NPs modified with pre-S1/S2 (model protein-recognizing hepatocytes) by HepG2 cells for 24h. It took 6h for sufficient uptake of the TiO(2) NPs by the cells. Next, the effect of the TiO(2)/US treatment on HepG2 cell growth was examined for 96 h after the 1 MHz ultrasound was irradiated (0.1 W/cm(2), 30s) to the cells which incorporated the TiO(2) NPs. Apoptosis was observed at 6h after the TiO(2)/US treatment. Although no apparent cell-injury was observed until 24h after the treatment, the viable cell concentration had deteriorated to 46% of the control at 96 h. Finally, the TiO(2)/US treatment was applied to a mouse xenograft model. The pre-S1/S2-immobilized TiO(2) (0.1mg) was directly injected into tumors, followed by 1 MHz ultrasound irradiation at 1.0 W/cm(2) for 60s. As a result of the treatment repeated five times within 13 days, tumor growth could be hampered up to 28 days compared with the control conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Thermoelectric Properties of Self Assemble TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 (mu)W/m sq K at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  10. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    PubMed

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.

  11. SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses.

    PubMed

    Tsugita, Misato; Morimoto, Nobuyuki; Nakayama, Masafumi

    2017-04-11

    Silicon dioxide (SiO 2 ) nanoparticles (NPs) and titanium dioxide (TiO 2 ) NPs are the most widely used inorganic nanomaterials. Although the individual toxicities of SiO 2 and TiO 2 NPs have been extensively studied, the combined toxicity of these NPs is much less understood. In this study, we observed unexpected and drastic activation of the caspase-1 inflammasome and production of IL-1β in mouse bone marrow-derived macrophages stimulated simultaneously with SiO 2 and TiO 2 NPs at concentrations at which these NPs individually do not cause macrophage activation. Consistent with this, marked lung inflammation was observed in mice treated intratracheally with both SiO 2 and TiO 2 NPs. In macrophages, SiO 2 NPs localized in lysosomes and TiO 2 NPs did not; while only TiO 2 NPs produced ROS, suggesting that these NPs induce distinct cellular damage leading to caspase-1 inflammasome activation. Intriguingly, dynamic light scattering measurements revealed that, although individual SiO 2 and TiO 2 NPs immediately aggregated to be micrometer size, the mixture of these NPs formed a stable and relatively monodisperse complex with a size of ~250 nm in the presence of divalent cations. Taken together, these results suggest that SiO 2 and TiO 2 NPs synergistically induce macrophage inflammatory responses and subsequent lung inflammation. Thus, we propose that it is important to assess the synergistic toxicity of various combinations of nanomaterials.

  12. Synthesis of nanodimensional TiO2 thin films.

    PubMed

    Thakurdesai, Madhavi; Mohanty, T; John, J; Rao, T K Gundu; Raychaudhuri, Pratap; Bhattacharyya, V; Kanjilal, D

    2008-08-01

    Nanodimensional TiO2 has wide application in the field of photocatalysis, photovoltaic and photochromic devices. In present investigation TiO2 thin films deposited by pulsed laser deposition method are irradiated by 100 MeV Ag ion beam to achieve growth of nanophases. The nanostructure evolution is characterized by atomic force microscopy (AFM). The phases of TiO2 formed after irradiation are identified by glancing angle X-ray diffraction and Raman spectroscopy. The particle radius estimated by AFM varies from 10-13 nm. Anatase phase of TiO2 is formed after irradiation. The blue shift observed in UV-VIS absorption spectra indicates the nanostructure formation. The shape and size of nanoparticles formed due to high electronic excitation depend upon thickness of the film.

  13. Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants.

    PubMed

    Belver, C; Bedia, J; Rodriguez, J J

    2017-01-15

    Solar light-active Zr-doped TiO 2 nanoparticles were successfully immobilized on delaminated clay materials by a one-step sol-gel route. Fixing the amount of TiO 2 at 65wt.%, this work studies the influence of Zr loading (up to 2%) on the photocatalytic activity of the resulting Zr-doped TiO 2 /clay materials. The structural characterization demonstrates that all samples were formed by a delaminated clay with nanostructured anatase assembled on its surface. The Zr dopant was successfully incorporated into the anatase lattice, resulting in a slight deformation of the anatase crystal and the reduction of the band gap. These materials exhibit high surface area with a disordered mesoporous structure formed by TiO 2 particles (15-20nm) supported on a delaminated clay. They were tested in the solar photodegradation of antipyrine, usually used as an analgesic drug and selected as an example of emerging pollutant. High degradation rates have been obtained at low antipyrine concentrations and high solar irradiation intensities with the Zr-doped TiO 2 /clay catalyst, more effective than the undoped one. This work demonstrates the potential application of the synthesis method for preparing novel and efficient solar-light photocatalysts based on metal-doped anatase and a delaminated clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    NASA Astrophysics Data System (ADS)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  15. Efficient and rapid degradation of Congo red dye with TiO2 based nano-photocatalysts

    NASA Astrophysics Data System (ADS)

    Narayan, Himanshu; Alemu, Hailemichael

    2017-04-01

    Degradation of Congo red (CR) dye with TiO2 based nano-photocatalyst (NPC) loaded with Nd3+ and Er3+ ions is reported. The chemical route of synthesis through co-precipitation/hydrolysis (CPH) was employed to produce NPCs with general composition TiO2[R2O3]x, {x = 0.1, 0.2; R □ Nd, Er} and particle size within 12 - 16 nm. Photocatalytic degradation under visible light was measured in terms of the percent degradation of CR in 180 min ({C}180\\prime), time taken to degrade to half of the initial CR concentration (t1/2) and apparent rate constant (kobs). For both doping types, values of {C}180\\prime close to 100% were obtained with x = 0.2 NPCs, indicating complete removal of the dye. For the same NPCs, very high values of kobs were found; 2.91 × 10-2 min-1 and 2.36 × 10-2 min-1, for Nd3+ and Er3+ loaded NPCs, respectively, suggesting very rapid degradation. Other NPCs with x = 0.1, also showed reasonably good and fast degradation of CR. The observations may be attributed to the small particle size of the NPCs. Moreover, from the DRS results it is observed that the addition of Nd3+ and Er3+ ions apparently introduces intermediate energy levels within the band gap of TiO2. Such new levels seem to support photocatalysis because they act as electron traps leading to effective suppression of the undesired e-/h+ recombination. To some meaningful extent they also facilitate the absorption of visible irradiations required in the process.

  16. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis.

    PubMed

    Yang, Liming; Yu, Liya E; Ray, Madhumita B

    2008-07-01

    In this study, photo/photocatalytic oxidation of common analgesic and antipyretic drug, paracetamol (acetaminophen), was investigated to determine the optimal operating conditions for degradation in water. UVA (365 nm) radiation alone degraded negligible amount of paracetamol, whereas paracetamol concentration decreased substantially under an irradiation of UVC (254 nm) with marginal changes in total organic carbon (TOC). In the presence of TiO2, much faster photodegradation of paracetamol and effective mineralization occurred; more than 95% of 2.0mM paracetamol was degraded within 80 min. The degradation rate constant decreased with an increase in the initial concentration of paracetamol, while it increased with light intensity and oxygen concentration. The degradation rate also increased with TiO2 loading until a concentration of 0.8 g L(-1). The degradation rate slowly increased between pH 3.5 and 9.5, but significantly decreased with increasing pH between 9.5 and 11.0. Based on the experimental data, a kinetic equation describing paracetamol photocatalytic degradation with various process parameters is obtained.

  17. TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment.

    PubMed

    Kovacic, Marin; Kusic, Hrvoje; Fanetti, Mattia; Stangar, Urska Lavrencic; Valant, Matjaz; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2017-08-01

    The study is aimed at evaluating TiO 2 -SnS 2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO 2 -SnS 2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO 2 and SnS 2 ) within the immobilization step. The as-prepared TiO 2 -SnS 2 composites and their sole components (TiO 2 or SnS 2 ) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO 2 -SnS 2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO 2 -SnS 2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO 2 -SnS 2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO 2 -SnS 2 composites showed higher activity at neutral pH.

  18. Oriented epitaxial TiO2 nanowires for water splitting

    NASA Astrophysics Data System (ADS)

    Hou, Wenting; Cortez, Pablo; Wuhrer, Richard; Macartney, Sam; Bozhilov, Krassimir N.; Liu, Rong; Sheppard, Leigh R.; Kisailus, David

    2017-06-01

    Highly oriented epitaxial rutile titanium dioxide (TiO2) nanowire arrays have been hydrothermally grown on polycrystalline TiO2 templates with their orientation dependent on the underlying TiO2 grain. Both the diameter and areal density of the nanowires were tuned by controlling the precursor concentration, and the template surface energy and roughness. Nanowire tip sharpness was influenced by precursor solubility and diffusivity. A new secondary ion mass spectrometer technique has been developed to install additional nucleation sites in single crystal TiO2 templates and the effect on nanowire growth was probed. Using the acquired TiO2 nanowire synthesis knowhow, an assortment of nanowire arrays were installed upon the surface of undoped TiO2 photo-electrodes and assessed for their photo-electrochemical water splitting performance. The key result obtained was that the presence of short and dispersed nanowire arrays significantly improved the photocurrent when the illumination intensity was increased from 100 to 200 mW cm-2. This is attributed to the alignment of the homoepitaxially grown nanowires to the [001] direction, which provides the fastest charge transport in TiO2 and an improved pathway for photo-holes to find water molecules and undertake oxidation. This result lays a foundation for achieving efficient water splitting under conditions of concentrated solar illumination.

  19. Photodegradation of Orange II by mesoporous TiO2.

    PubMed

    Kuang, Liyuan; Zhao, Yaping; Liu, Lu

    2011-09-01

    Mesoporous TiO(2) microspheres were prepared by a hydrothermal reaction and are characterized in this paper. Decoloration and mineralization during photodegradation of Orange II by mesoporous TiO(2) at different pH values, formation of sulfate, relative luminosity to luminous bacteria and recycling experiments of the catalyst were studied. The FTIR results further suggested that the novel mesoporous TiO(2) can not only decolor and mineralize dyes completely but also can be effectively reused several times. On the basis of the research, mesoporous TiO(2) would be a promising photocatalyst for practical use.

  20. Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Bo; Yang, Yue; Chen, Li-Hua; Wang, Yun; Huang, Shao-Zhuan; Tao, Jia-Wei; Ma, Xiao-Ting; Hasan, Tawfique; Li, Yu; Xu, Yan; Su, Bao-Lian

    2016-05-01

    Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500, obtained by calcination at 500 °C in nitrogen, contains an anatase TiO2-C heterostructure with a specific surface area of 66.5 m2 g-1. When evaluated as an anode material at 0.5 C, TiO2/C-500 exhibits a high and reversible lithium storage capacity of 188 mA h g-1, an excellent initial capacity of 283 mA h g-1, a long cycle life with a 94% coulombic efficiency preserved after 200 cycles, and a very low charge transfer resistance. The superior electrochemical performance of TiO2/C-500 is attributed to the synergistic effect of high electrical conductivity, anatase TiO2-C heterostructure, mesopore-macropore network and robust scaffolding architecture. The current material strategy affords a general approach for the design of complex inorganic nanocomposites with structural stability, and tunable and interconnected hierarchical porosity that may lead to the next generation of electrochemical supercapacitors with high energy efficiency and superior power density.Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500

  1. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs.

    PubMed

    Elmaslmane, A R; Watkins, M B; McKenna, K P

    2018-06-21

    We present a computationally efficient and predictive methodology for modeling the formation and properties of electron and hole polarons in solids. Through a nonempirical and self-consistent optimization of the fraction of Hartree-Fock exchange (α) in a hybrid functional, we ensure the generalized Koopmans' condition is satisfied and self-interaction error is minimized. The approach is applied to model polaron formation in known stable and metastable phases of TiO 2 including anatase, rutile, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B). Electron polarons are predicted to form in rutile, TiO 2 (H), and TiO 2 (R) (with trapping energies ranging from -0.02 eV to -0.35 eV). In rutile the electron localizes on a single Ti ion, whereas in TiO 2 (H) and TiO 2 (R) the electron is distributed across two neighboring Ti sites. Hole polarons are predicted to form in anatase, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B) (with trapping energies ranging from -0.16 eV to -0.52 eV). In anatase, brookite, and TiO 2 (B) holes localize on a single O ion, whereas in TiO 2 (H) and TiO 2 (R) holes can also be distributed across two O sites. We find that the optimized α has a degree of transferability across the phases, with α = 0.115 describing all phases well. We also note the approach yields accurate band gaps, with anatase, rutile, and brookite within six percent of experimental values. We conclude our study with a comparison of the alignment of polaron charge transition levels across the different phases. Since the approach we describe is only two to three times more expensive than a standard density functional theory calculation, it is ideally suited to model charge trapping at complex defects (such as surfaces and interfaces) in a range of materials relevant for technological applications but previously inaccessible to predictive modeling.

  2. Evaluation of solar photocatalysis using TiO2 slurry in the inactivation of Cryptosporidium parvum oocysts in water.

    PubMed

    Abeledo-Lameiro, María Jesús; Ares-Mazás, Elvira; Gómez-Couso, Hipólito

    2016-10-01

    Cryptosporidium is a genus of enteric protozoan parasites of medical and veterinary importance, whose oocysts have been reported to occur in different types of water worldwide, offering a great resistant to the water treatment processes. Heterogeneous solar photocatalysis using titanium dioxide (TiO2) slurry was evaluated on inactivation of Cryptosporidium parvum oocysts in water. Suspensions of TiO2 (0, 63, 100 and 200mg/L) in distilled water (DW) or simulated municipal wastewater treatment plant (MWTP) effluent spiked with C. parvum oocysts were exposed to simulated solar radiation. The use of TiO2 slurry at concentrations of 100 and 200mg/L in DW yielded a high level of oocyst inactivation after 5h of exposure (4.16±2.35% and 15.03±4.54%, respectively, vs 99.33±0.58%, initial value), representing a good improvement relative to the results obtained in the samples exposed without TiO2 (51.06±9.35%). However, in the assays carried out using simulated MWTP effluent, addition of the photocatalyst did not offer better results. Examination of the samples under bright field and epifluorescence microscopy revealed the existence of aggregates comprising TiO2 particles and parasitic forms, which size increased as the concentration of catalyst and the exposure time increased, while the intensity of fluorescence of the oocyst walls decreased. After photocatalytic disinfection process, the recovery of TiO2 slurry by sedimentation provided a substantial reduction in the parasitic load in treated water samples (57.81±1.10% and 82.10±2.64% for 200mg/L of TiO2 in DW and in simulated MWTP effluent, respectively). Although further studies are need to optimize TiO2 photocatalytic disinfection against Cryptosporidium, the results obtained in the present study show the effectiveness of solar photocatalysis using TiO2 slurry in the inactivation of C. parvum oocysts in distilled water. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. High pressure synthesis of amorphous TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Jing; Liu, Bingbing

    2015-09-01

    Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ˜20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B0 = 158 GPa) of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  4. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.

  5. Controllable Synthesis of TiO2@Fe2O3 Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes

    PubMed Central

    Zhong, Yan; Ma, Yifan; Guo, Qiubo; Liu, Jiaqi; Wang, Yadong; Yang, Mei; Xia, Hui

    2017-01-01

    Highlighted by the safe operation and stable performances, titanium oxides (TiO2) are deemed as promising candidates for next generation lithium-ion batteries (LIBs). However, the pervasively low capacity is casting shadow on desirable electrochemical behaviors and obscuring their practical applications. In this work, we reported a unique template-assisted and two-step atomic layer deposition (ALD) method to achieve TiO2@Fe2O3 core-shell nanotube arrays with hollow interior and double-wall coating. The as-prepared architecture combines both merits of the high specific capacity of Fe2O3 and structural stability of TiO2 backbone. Owing to the nanotubular structural advantages integrating facile strain relaxation as well as rapid ion and electron transport, the TiO2@Fe2O3 nanotube arrays with a high mass loading of Fe2O3 attained desirable capacity of ~520 mA h g−1, exhibiting both good rate capability under uprated current density of 10 A g−1 and especially enhanced cycle stability (~450 mA h g−1 after 600 cycles), outclassing most reported TiO2@metal oxide composites. The results not only provide a new avenue for hybrid core-shell nanotube formation, but also offer an insight for rational design of advanced electrode materials for LIBs. PMID:28098237

  6. Improved photoelectrical performance of graphene supported highly crystallized anatase TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Sun, Qiong; Zhao, Mei; Li, Yang; Liu, Qiuhong; Dong, Lifeng

    2015-08-01

    In this study, titanium oxysulfate (TiOSO4) and graphene were used as titanium source and supporter, respectively, to synthesize anatase TiO2-graphene (TiO2-G) composite. Crystal structure, morphology, and composition of TiO2-G were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, and thermogravimetric analysis. Both TiO2-G and blank TiO2 powders exhibit spindle-shaped structure with the long axis along [001]. Compared to unsupported TiO2, TiO2 nanoparticles uniformly formed on graphene surface. When fabricated into dye-sensitized solar cells, photoelectrical conversion efficiency of TiO2-G (2.3 %) was much higher than that of blank TiO2 (0.89 %) prepared at the same conditions. Moreover, high sintering temperature enhanced photoelectrical performance of the composite. When the temperature was increased from 450 to 600 °C, the efficiency was improved from 1.5 to 2.6 %. The findings above demonstrate that TiO2-G has great potential for applications in dye-sensitized solar cells.

  7. The double peaks and symmetric path phenomena in the catalytic activity of Pd/Al2O3-TiO2 catalysts with different TiO2 contents

    NASA Astrophysics Data System (ADS)

    Zhang, Shen; Guo, Yuyu; Li, Xingying; Wu, Xu; Li, Zhe

    2018-06-01

    Physicochemical properties of Pd/Al2O3-TiO2 catalysts with different amounts of TiO2 contents were investigated by XRD, nitrogen adsorption-desorption, FTIR, NH3-TPD, H2-TPR and XPS techniques. Catalysts of different compositions were tested in the ethanol oxidation reaction to study the effects of TiO2 contents. Double peaks and symmetric path phenomena were observed at certain temperatures with the increase in TiO2 contents. The symmetric peak phenomena and the diverse activity fluctuations have been ascribed to the controlling factors such as temperature and compositions. With the increase in TiO2 content, the surface area, adsorbed oxygen contents and surface acid quantity decreased gradually. The large surface area and adsorbed oxygen contents were conducive to the performance, while increased acid amounts were not beneficial for ethanol oxidation. At 150 and 175 °C, Pd/AT(X1

  8. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Mao, Dongsen; Guo, Xiaoming; Yu, Jun

    2015-05-01

    The influence of TiO2, ZrO2, and TiO2-ZrO2 mixed oxide on the catalytic performance of CuO-ZnO catalyst in the methanol synthesis from CO2 hydrogenation was studied. The catalysts were prepared by oxalate co-precipitation method and characterized by TGA, N2 adsorption, XRD, reactive N2O adsorption, XPS, H2-TPR, H2-TPD, and CO2-TPD techniques. Characterization results reveal that all the additives improve the CuO dispersion in the catalyst body and increase the Cu surface area and adsorption capacities of CO2 and H2. The results of catalytic test reveal that the additives increase both the CO2 conversion and methanol selectivity, and TiO2-ZrO2 mixed oxide is more effective than single components of TiO2 or ZrO2. Moreover, the activity of methanol synthesis is correlated directly with CO2 adsorption capacity over the catalysts.

  9. Synergetic Effect of Ultrasound, the Heterogeneous Fenton Reaction and Photocatalysis by TiO2 Loaded on Nickel Foam on the Degradation of Pollutants

    PubMed Central

    Qiu, Shan; Xu, Shanwen; Li, Guangming; Yang, Jixian

    2016-01-01

    The synergistic effect of ultrasound, the heterogeneous Fenton reaction and photocatalysis was studied using a nickel foam (NF)-supporting TiO2 system and rhodamine B (RhB) as a target. The NF-supporting TiO2 system was prepared by depositing TiO2 on the skeleton of NF repeatedly and then calcining it. To optimize the conditions and parameters, the catalytic activity was tested in four systems (ultrasound alone (US), nickel foam (NF), US/NF and NF/US/H2O2). The optimal conditions were fixed at 0.1 g/mL NF, initial 5.00 mg/L RhB, 300 W ultrasonic power, pH = 3 and 5.00 mg/L H2O2. The effects of the dissolution of nickel from NF and quenching of the Fenton reaction were studied on degradation efficiency. When the heterogeneous Fenton reaction is combined with TiO2-photocatalysis, the pollutant removal efficiency is enhanced significantly. Through this synergistic effect, 22% and 80% acetochlor was degraded within 10 min and 80 min, respectively. PMID:28773580

  10. Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction.

    PubMed

    Billo, Tadesse; Fu, Fang-Yu; Raghunath, Putikam; Shown, Indrajit; Chen, Wei-Fu; Lien, Hsiang-Ting; Shen, Tzu-Hsien; Lee, Jyh-Fu; Chan, Ting-Shan; Huang, Kuo-You; Wu, Chih-I; Lin, M C; Hwang, Jih-Shang; Lee, Chih-Hao; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-01

    One of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO 2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO 2 (Ni/TiO 2[Vo] ) with built-in dual active sites for selective photocatalytic CO 2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO 2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO 2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO 2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    EPA Science Inventory

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  12. Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation.

    PubMed

    Ahmed, M A; Abou-Gamra, Z M; Medien, H A A; Hamza, M A

    2017-11-01

    As known, porphyrins have central role in photosynthesis, biological oxidation and reduction and oxygen transport beside to their intensive color which qualify them to be good photosensitizers. Herein, tetra (4-carboxyphenyl) porphyrin (TCPP) was prepared by a simple one-pot synthesis to use as a visible antenna for TiO 2 nanoparticles that were prepared via a simple template-free sol-gel method. Various loading percentages of TCPP (0.05-1%) were incorporated on the surface of TiO 2 as photosensitizer for photocatalytic degradation of Rhodamine B (Rh B) dye as a primary cationic pollutant model. Among them, 0.1% TCPP-TiO 2 was the most reactive sample. It was found that the photoactivity of 0.1% TCPP-TiO 2 sample (0.5g/L) was approximately 1.5 times greater than that of pure TiO 2 (0.5g/L) toward the degradation of Rh B (1×10 -5 M) under UV-A irradiation. Transient fluorescence decay measurements showed that the life time of TiO 2 excited state has doubled after anchoring TCPP, thus the probability of electron-hole recombination has decreased. The samples were characterized by XRD, HR-TEM, DRS and N 2 adsorption-desorption isotherms. The XRD patterns confirmed the successful preparation of TiO 2 nanoparticles with average crystalline size of 25.7nm. Also, XRD patterns suggested the presence of mixed phase TiO 2 nanoparticles of 77% anatase and 23% rutile. DRS showed that the characteristic peaks of TCPP covered the whole visible range 400-700nm. HR-TEM images showed the spheroids shape of TiO 2 nanoparticles and confirmed the presence of anatase and rutile phases as suggested from XRD data. The different parameters affecting the photodegradation of Rh B dye such as catalyst dose, dye concentration and pH were studied to obtain the optimum conditions. Almost complete degradation of Rh B was obtained which confirmed by HPLC and TOC measurements. The effect of scavengers was studied to indicate the most active species. TCPP-TiO 2 gave a good response toward the

  13. Characterization of the thin layer photocatalysts TiO2 and V2O5- and Fe2O3- doped TiO2 prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si; Nguyen, Tri

    2013-09-01

    The catalysts TiO2 and TiO2 doped with Fe and V were prepared using the sol-gel method. TiO2-modified samples were obtained in the form of a thick film on pyrex glass sticks and tubes and were used as catalysts in the gas phase photo-oxidation of p-xylene. The physico-chemical characteristics of the catalysts were determined using the methods of Brunauer-Emmett-Teller adsorption, x-ray diffraction, and infrared, ultraviolet and visible and Raman spectroscopies. The experimental results show that the introduction of V did not expand the region of light absorption, but slightly reduced the size of the TiO2 particles, and reduced the number of OH-groups, which should decrease the photocatalytic activity and efficiency of the obtained catalysts compared to those of pure TiO2. The Fe-doped TiO2 samples, in contrast, are characterized by an extension of the spectrum of photon absorption to the visible region with wavenumbers λ up to 464 nm and the values of their band gap energy decreased to lower quantities (up to 2.67 eV), therefore they should have higher catalytic activity and conversion efficiency of p-xylene in the visible region than the original sample. For these catalysts, a combined utilization of radiation by ultraviolet (λ = 365 nm) and visible (λ = 470 nm) light increased the activity and the yield in p-xylene conversion by a factor of around 2-3, as well as making these quantities more stable in comparison with those of TiO2-P25 Degussa.

  14. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  15. SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe

    Here, we report forsythia-like TiO 2-decorated SnO 2 nanowires on fluorine-doped SnO 2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO 2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl 4 solution, leaf-shaped rutile TiO 2 was grown onto the surface of the nanowires. The TiO 2 decoration increases the short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO 2 nanoshell between the TiO 2 leaves and the SnO 2 nanowire, due to preventing charge recombination at the nanowire/electrolytemore » interface.« less

  16. SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion

    DOE PAGES

    Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe; ...

    2017-05-17

    Here, we report forsythia-like TiO 2-decorated SnO 2 nanowires on fluorine-doped SnO 2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO 2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl 4 solution, leaf-shaped rutile TiO 2 was grown onto the surface of the nanowires. The TiO 2 decoration increases the short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO 2 nanoshell between the TiO 2 leaves and the SnO 2 nanowire, due to preventing charge recombination at the nanowire/electrolytemore » interface.« less

  17. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  18. Fast and Simple Microwave Synthesis of TiO2/Au Nanoparticles for Gas-Phase Photocatalytic Hydrogen Generation.

    PubMed

    May-Masnou, Anna; Soler, Lluís; Torras, Miquel; Salles, Pol; Llorca, Jordi; Roig, Anna

    2018-01-01

    The fabrication of small anatase titanium dioxide (TiO 2 ) nanoparticles (NPs) attached to larger anisotropic gold (Au) morphologies by a very fast and simple two-step microwave-assisted synthesis is presented. The TiO 2 /Au NPs are synthesized using polyvinylpyrrolidone (PVP) as reducing, capping and stabilizing agent through a polyol approach. To optimize the contact between the titania and the gold and facilitate electron transfer, the PVP is removed by calcination at mild temperatures. The nanocatalysts activity is then evaluated in the photocatalytic production of hydrogen from water/ethanol mixtures in gas-phase at ambient temperature. A maximum value of 5.3 mmol·[Formula: see text]h -1 (7.4 mmol·[Formula: see text]h -1 ) of hydrogen is recorded for the system with larger gold particles at an optimum calcination temperature of 450°C. Herein we demonstrate that TiO 2 -based photocatalysts with high Au loading and large Au particle size (≈50 nm) NPs have photocatalytic activity.

  19. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    NASA Astrophysics Data System (ADS)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  20. Nanoparticle size and combined toxicity of TiO2 and DSLS (surfactant) contribute to lysosomal responses in digestive cells of mussels exposed to TiO2 nanoparticles.

    PubMed

    Jimeno-Romero, A; Oron, M; Cajaraville, M P; Soto, M; Marigómez, I

    2016-10-01

    The aim of this investigation was to understand the bioaccumulation, cell and tissue distribution and biological effects of disodium laureth sulfosuccinate (DSLS)-stabilised TiO2 nanoparticles (NPs) in marine mussels, Mytilus galloprovincialis. Mussels were exposed in vivo to 0.1, 1 and 10 mg Ti/L either as TiO2 NPs (60 and 180 nm) or bulk TiO2, as well as to DSLS alone. A significant Ti accumulation was observed in mussels exposed to TiO2 NPs, which were localised in endosomes, lysosomes and residual bodies of digestive cells, and in the lumen of digestive tubules, as demonstrated by ultrastructural observations and electron probe X-ray microanalysis. TiO2 NPs of 60 nm were internalised within digestive cell lysosomes to a higher extent than TiO2 NPs of 180 nm, as confirmed by the quantification of black silver deposits after autometallography. The latter were localised mainly forming large aggregates in the lumen of the gut. Consequently, lysosomal membrane stability (LMS) was significantly reduced upon exposure to both TiO2 NPs although more markedly after exposure to TiO2-60 NPs. Exposure to bulk TiO2 and to DSLS also affected the stability of the lysosomal membrane. Thus, effects on the lysosomal membrane depended on the nanoparticle size and on the combined biological effects of TiO2 and DSLS.

  1. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts.

    PubMed

    Wang, Xinchen; Yu, Jimmy C; Chen, Yilin; Wu, Ling; Fu, Xianzhi

    2006-04-01

    Mesoporous nanocrystalline TiO2-xNx and TiO2-xNx/ZrO2 visible-light photocatalysts have been prepared by a sol-gel method. The photocatalysts were characterized by XRD, N2 adsorption-desorption, TEM, XPS, UV/Vis, and IR spectroscopy. The photocatalytic activity of the samples was evaluated by the decomposition of ethylene in air under visible light (lambda > 450 nm) illumination. Results revealed that nitrogen was doped into the lattice of TiO2 by the thermal treatment of NH3-adsorbed TiO2 hydrous gels, converting the TiO2 into a visible-light responsive catalyst. The introduction of ZrO2 into TiO2-xNx considerably inhibits the undesirable crystal growth during calcination. Consequently, the ZrO2-modified TiO2-xNx displays higher porosity, higher specific surface area, and an improved thermal stability over the corresponding unmodified TiO2-xNx samples.

  2. Instability of Hydrogenated TiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depthmore » (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  3. Enhancing of Osseointegration with Propolis-Loaded TiO2 Nanotubes in Rat Mandible for Dental Implants

    PubMed Central

    Somsanith, Nithideth; Jang, Young-Seok; Lee, Young-Hee; Yi, Ho-Keun; Kim, Kyoung-A; Bae, Tae-Sung; Lee, Min-Ho

    2018-01-01

    TiO2 nanotubes (TNT) formation is beneficial for improving bone cell–material interaction and drug delivery for Ti dental implants. Among the natural drugs to be installed in TNT, selected propolis has antibacterial and anti-inflammatory properties. It is a resinous natural product which is collected by the honeybees from the various types of plants with their salivary enzymes. This study concludes that TNT loaded with a propolis (PL-TNT-Ti) dental implant has the ability to improve osseointegration. The propolis particles were embedded within the TNT or adhered to the top. In a cytotoxicity test using osteoblast, PL-TNT-Ti group exhibited an increased cell proliferation and differentiation. A Sprague Dawley rat mandibular model was used to evaluate the osseointegration and bone bonding of TNT or PL-TNT-Ti. From the µ-CT and hematoxylin and eosin (HE) histological results after implantation at 1 and 4 weeks to rat mandibular, an increase in the extent of new bone formation and mineral density around the PL-TNT-Ti implant was confirmed. The Masson’s trichrome staining showed the expression of well-formed collagenous for bone formation on the PL-TNT-Ti. Immunohistochemistry staining indicate that bone morphogenetic proteins (BMP-2 and BMP-7) around the PL-TNT-Ti increased the expression of collagen fibers and of osteogenic differentiation whereas the expression of inflammatory cytokine such as interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) is decreased. PMID:29301269

  4. Understanding the effect of annealing temperature on crystalline structure, morphology, and photocatalytic activity of silver-loaded TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Viet, Pham Van; Phuong Trang, Duong Dao; Phat, Bui Dai; Hieu, Le Van; Thi, Cao Minh

    2018-05-01

    In this study, we classified the effect of the annealing temperature on silver-loaded TiO2 nanotubes (Ag/TNTs). X-ray diffraction results demonstrate that TNTs have a tendency of phase transformation owing to silver nanoparticles (Ag NPs). The Brunauer-Emmett-Teller method indicates that Ag/TNTs is a mesopore material and the surface area of Ag/TNTs decreases when the annealing temperature increases. This research concluded that the TNT structure begins to break at high annealing temperatures (>400 °C) and is completely broken at 500 °C. The average diameter of the Ag NPs in Ag/TNTs increases linearly with the annealing temperature. In addition, this study clearly explained the oxidation state transformation of Ag in Ag/TNTs under the impact of the annealing temperature, therein, the Ag0 state is transferred completely to Ag+ at 400 °C, and some Ag+ is oxidized to form Ag2+. The Ag/TNTs and Ag/TNTs annealed at 300 °C provided the good methylene blue photodegradation ability for 150 min under sunlight condition.

  5. Preparation and photocatalytic properties of nanometer-sized magnetic TiO2/SiO2/CoFe2O4 composites.

    PubMed

    Li, Hansheng; Zhang, Yaping; Wu, Qin; Wang, Xitao; Liu, Changhao

    2011-11-01

    Magnetic TiO2/SiO2/CoFe2O4 nanoparticles (TiO2/SCFs) were prepared by a sol-gel process in a reverse microemulsion combined with solvent-thermal technique. TiO2/SCFs were characterized by Fourier transform infrared spectrometry, thermogravimetric analysis-differential scanning calorimetry, X-ray diffraction, Raman spectrometry, TEM, BET specific surface area measurement, and magnetic analysis. Structure analyses indicated that TiO2/SCFs presented a core-shell structure with TiO2 uniformly coating on SiO2/CoFe2O4 nanomagnets (SCFs) and typical ferromagnetic hysteresis. TiO2/SCFs showed larger specific surface area and better photocatalytic activities than TiO2 and TiO2/CoFe2O4 photocatalysts prepared by the same method. The doping interaction between TiO2 and CoFe2O4 reduced thanks to the inert SiO2 mesosphere.

  6. Tunable growth of TiO2 nanostructures on Ti substrates

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Wang, Jingpeng; Thomas, Dan F.; Chen, Aicheng

    2005-10-01

    A simple and facile method is described to directly synthesize TiO2 nanostructures on titanium substrates by oxidizing Ti foil using small organic molecules as the oxygen source. The effect of reaction temperature and oxygen source on the formation of the TiO2 nanostructures has been studied using scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy and water contact angle measurement. Polycrystalline grains are formed when pure oxygen and formic acid are used as the oxygen source; elongated micro-crystals are produced when water vapour is used as the oxygen source; oriented and aligned TiO2 nanorod arrays are synthesized when ethanol, acetaldehyde or acetone are used as the oxygen source. The growth mechanism of the TiO2 nanostructures is discussed. The diffusion of Ti atoms to the oxide/gas interface via the network of the grain boundaries of the thin oxide layer is the determining factor for the formation of well-aligned TiO2 nanorod arrays. The wetting properties of the TiO2 nanostructured surfaces formed are dictated by their structure, varying from a hydrophilic surface to a strongly hydrophobic surface as the surface structure changes from polycrystalline grains to well-aligned nanorod arrays. This tunable growth of TiO2 nanostructures is desirable for promising applications of TiO2 nanostructures in the development of optical devices, sensors, photo-catalysts and self-cleaning coatings.

  7. Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust.

    PubMed

    Wang, Tong; Shen, Dongya; Xu, Tao; Jiang, Ruiling

    2017-05-15

    To improve the photocatalytic degradation properties of titanium dioxide (TiO 2 ) used as raw materials for purifying automobile exhaust (AE), the vanadium (V)-doped TiO 2 samples were prepared. The photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were evaluated under ultraviolet (UV) and visible light irradiation, respectively. Results indicated that the photocatalytic activity of V-doped TiO 2 to AE was higher than that of pure TiO 2 , and the optimal V dopant content of TiO 2 was 1.0% under UV light irradiation. The degradation efficiencies of V-doped TiO 2 to NOx and HC were higher than those to CO 2 and CO in AE because of the reversible reaction between CO 2 and CO. In addition, it was found that the photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were also increased under visible light irradiation. The V-doped TiO 2 also showed higher degradation efficiencies to NOx and HC than those to CO 2 and CO under visible light irradiation. The V doped TiO 2 presented higher photocatalytic activity to CO 2 than that to CO, but the reversible reaction between CO and CO 2 was not found under visible light irradiation. The photocatalytic reactions of pure and V-doped TiO 2 samples to each component in AE followed the first order kinetic pathway under the two light irradiations. It is concluded that the V doping is a feasible method to improve the photocatalytic degradation properties of TiO 2 to AE for air purification, developing a sustainable environmental purification technology based on TiO 2 materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Wenwu; Zhang, Huanyu; Wang, Hui-gang; Zhang, Mei; Guo, Min

    2017-11-01

    Ti-mesh supported TiO2 nanowire arrays (NWAs)/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles (UC-EY-TiO2 NPs) composite structured photoanodes for fully flexible dye sensitized solar cells (DSSCs) were firstly constructed via a hydrothermal and spin coating process. UV-vis-NIR absorption spectra of the TiO2 NWAs/UC-EY-TiO2 NPs composites exhibited strong absorption around near infrared (NIR) 980 nm. The composites excited by 980 nm NIR laser could emit upconversion fluorescence at 489, 526, 549 and 658 nm, which expanded the spectral response range and sunlight capturing capability of formed flexible DSSCs. Moreover, the TiO2 NWAs/UC-EY-TiO2 NPs was coated with an Nb2O5 thin layer to further suppress electron recombination losses. The complete flexible DSSCs based on Nb2O5 coated TiO2 NWAs/2.0 mol% Er3+-1.0 mol% Yb3+ codoped TiO2 NPs photoanode and Pt/ITO-PEN counter electrode exhibited an enhanced photon to current conversion efficiency of 8.10%, a 68% improvement compared to TiO2 NWAs/undoped TiO2 NPs based DSSCs (4.82%).

  9. Protein Corona Prevents TiO2 Phototoxicity.

    PubMed

    Garvas, Maja; Testen, Anze; Umek, Polona; Gloter, Alexandre; Koklic, Tilen; Strancar, Janez

    2015-01-01

    TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles' surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes' surface. These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired - as for efficient photodynamic cancer therapy.

  10. Protein Corona Prevents TiO2 Phototoxicity

    PubMed Central

    Garvas, Maja; Testen, Anze; Umek, Polona; Gloter, Alexandre; Koklic, Tilen; Strancar, Janez

    2015-01-01

    Background & Aim TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Methods & Results Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles’ surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes’ surface. Conclusion These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired – as for efficient photodynamic cancer therapy. PMID:26083725

  11. Elementary photocatalytic chemistry on TiO2 surfaces.

    PubMed

    Guo, Qing; Zhou, Chuanyao; Ma, Zhibo; Ren, Zefeng; Fan, Hongjun; Yang, Xueming

    2016-07-07

    Photocatalytic hydrogen production and pollutant degradation provided both great opportunities and challenges in the field of sustainable energy and environmental science. Over the past few decades, we have witnessed fast growing interest and efforts in developing new photocatalysts, improving catalytic efficiency and exploring the reaction mechanism at the atomic and molecular levels. Owing to its relatively high efficiency, nontoxicity, low cost and high stability, TiO2 becomes one of the most extensively investigated metal oxides in semiconductor photocatalysis. Fundamental studies on well characterized single crystals using ultrahigh vacuum based surface science techniques could provide key microscopic insight into the underlying mechanism of photocatalysis. In this review, we have summarized recent progress in the photocatalytic chemistry of hydrogen, water, oxygen, carbon monoxide, alcohols, aldehydes, ketones and carboxylic acids on TiO2 surfaces. We focused this review mainly on the rutile TiO2(110) surface, but some results on the rutile TiO2(011), anatase TiO2(101) and (001) surfaces are also discussed. These studies provided fundamental insights into surface photocatalysis as well as stimulated new investigations in this exciting field. At the end of this review, we have discussed how these studies can help us to develop new photocatalysis models.

  12. Apatite-forming PEEK with TiO2 surface layer coating.

    PubMed

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2015-01-01

    Polyetheretherketone (PEEK) is widely used in orthopedic implants, such as spinal fusion devices, because of its moderate elastic modulus, as well as relatively high mechanical strength. However, it does not bond to living bone, and hence it needs autograft to be fixed to the bone. In this study, we attempted to add bone-bonding properties to PEEK by coating with TiO2 synthesized by the sol-gel process. When a TiO2 sol solution consisting of titanium isopropoxide, water, ethanol, and nitric acid was deposited on a PEEK substrate without any pretreatment, the formed TiO2 gel layer was easily peeled off after subsequent treatments. However, when the same solution was deposited on PEEK that was preliminarily subjected to UV or O2 plasma treatment, the deposited TiO2 gel layer strongly adhered to the substrate even after subsequent treatments. The strong adhesion was attributed to the interaction among the C-O, C=O, and O-C=O groups on the PEEK owing to the UV or O2 plasma treatment and the Ti-O bond of the TiO2 gel. Apatite did not form on the as-formed TiO2 gel layer in a simulated body fluid (SBF) even within 3 days; however, apatite formed after soaking in 0.1 M HCl solution at 80 °C for 24 h. This apatite formation was attributed to positive surface charge of the TiO2 gel layer induced by the acid treatment. The PEEK with the TiO2 gel layer coating formed by the proposed process is expected to bond to living bone, because a positively charged titanium oxide which facilitates the formation of apatite in SBF within a short period is known to bond to living bone.

  13. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    PubMed

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Preparation of TiO2/(TiO2-V2O5)/polypyrrole nanocomposites and a study on catalytic activities of the hybrid materials under UV/Visible light and in the dark

    NASA Astrophysics Data System (ADS)

    Piewnuan, C.; Wootthikanokkhan, J.; Ngaotrakanwiwat, P.; Meeyoo, V.; Chiarakorn, S.

    2014-11-01

    Hybrid metal oxides/polymer nanocomposites, namely TiO2/(TiO2-V2O5)/polypyrrole (PPy), were synthesized via in situ polymerization. Structures of the products were characterized by SEM-EDX, XRD, and FTIR techniques. The light absorbance and band gap energy values of the materials were evaluated by UV/Visible spectroscopy. The catalytic activity of the materials was determined from a degradation of methylene blue. It was found that, regardless of the polymerization time, the absorbance of TiO2/(TiO2-V2O5)/PPy was greater than those of TiO2/PPy and the neat TiO2, respectively. This was in accordance with the decrease in the band gap energy of the materials. The catalytic activity of TiO2/(TiO2-V2O5) was also observed in the dark. After polymerization, the catalytic activity of nanocomposite under UV/Visible light and in the dark was compromised. The above effects are discussed in the light of the energy storage ability of V2O5 and capability of the polymer in acting as a binder for the system.

  15. Symbiotic organism search algorithm for simulation of J- V characteristics and optimizing internal parameters of DSSC developed using electrospun TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Vinoth, S.; Kanimozhi, G.; Kumar, Harish; Srinadhu, E. S.; Satyanarayana, N.

    2017-12-01

    In the present investigation, the recently developed, simple, robust, and powerful metaheuristic symbiotic organism search (SOS) algorithm was used for simulation of J- V characteristics and optimizing the internal parameters of the dye-sensitized solar cells (DSSCs) fabricated using electrospun 1-D mesoporous TiO2 nanofibers as photoanode. The efficiency ( η = 5.80 %) of the DSSC made up of TiO2 nanofibers as photoanode is found to be ˜ 21.59% higher compared to the efficiency ( η = 4.77 %) of the DSSC made up of TiO2 nanoparticles as photoanode. The observed high efficiency can be attributed to high dye loading as well as high electron transport in the mesoporous 1-D TiO2 nanofibers. Further, the validity and advantage of SOS algorithm are verified by simulating J- V characteristics of DSSC with Lambert-W function.

  16. Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites

    NASA Astrophysics Data System (ADS)

    El-Bery, Haitham M.; Matsushita, Yoshihisa; Abdel-moneim, Ahmed

    2017-11-01

    A facile one-step synthesis approach of M/TiO2/RGO (M = Au or Pt) ternary composite by hydrothermal treatment for hydrogen generation via water-splitting was investigated. Photocurrent response measurements revealed that TiO2 (P25) nanoparticles anchored on the reduced graphene oxide (RGO) surface exhibited a p-n heterojunction interface by changing the photocurrent direction with the applied bias from reverse to forward potential. H2 evolution rate of TiO2/RGO (5 wt.%) composite was substantially enhanced by 12-fold in comparison to bare TiO2 under simulated solar light irradiation. Cyclic volatmmetry measurements manifested, that the optimized 0.3 wt.% of platinum metal loaded on TiO2/RGO composite was the most active catalytic reduction sites for hydrogen generation reaction with an initial hydrogen rate of 670 μmol h-1. This study sheds the light on the tunable semiconductor type of TiO2/RGO composite fabricated by solution mixing pathway and its merits to improve the photocatalytic activity.

  17. TiO2--a prototypical memristive material.

    PubMed

    Szot, K; Rogala, M; Speier, W; Klusek, Z; Besmehn, A; Waser, R

    2011-06-24

    Redox-based memristive switching has been observed in many binary transition metal oxides and related compounds. Since, on the one hand, many recent reports utilize TiO(2) for their studies of the memristive phenomenon and, on the other hand, there is a long history of the electronic structure and the crystallographic structure of TiO(2) under the impact of reduction and oxidation processes, we selected this material as a prototypical material to provide deeper insight into the mechanisms behind memristive switching. In part I, we briefly outline the results of the historical and recent studies of electroforming and resistive switching of TiO(2)-based cells. We describe the (tiny) stoichiometrical range for TiO(2 - x) as a homogeneous compound, the aggregation of point defects (oxygen vacancies) into extended defects, and the formation of the various Magnéli phases. Furthermore, we discuss the driving forces for these solid-state reactions from the thermodynamical point of view. In part II, we provide new experimental details about the hierarchical transformation of TiO(2) single crystals into Magnéli phases, and vice versa, under the influence of chemical, electrical and thermal gradients, on the basis of the macroscopic and nanoscopic measurements. Those include thermogravimetry, high-temperature x-ray diffraction (XRD), high-temperature conductivity measurements, as well as low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and LC-AFM (atomic force microscope equipped with a conducting tip) studies. Conclusions are drawn concerning the relevant parameters that need to be controlled in order to tailor the memristive properties.

  18. Antibacterial activity of DLC films containing TiO2 nanoparticles.

    PubMed

    Marciano, F R; Lima-Oliveira, D A; Da-Silva, N S; Diniz, A V; Corat, E J; Trava-Airoldi, V J

    2009-12-01

    Diamond-like carbon (DLC) films have been the focus of extensive research in recent years due to their potential applications as surface coatings on biomedical devices. Titanium dioxide (TiO2) in the anatase crystalline form is a strong bactericidal agent when exposed to near-UV light. In this work we investigate the bactericidal activity of DLC films containing TiO2 nanoparticles. The films were grown on 316L stainless-steel substrates from a dispersion of TiO2 in hexane using plasma-enhanced chemical vapor deposition. The composition, bonding structure, surface energy, stress, and surface roughness of these films were also evaluated. The antibacterial tests were performed against Escherichia coli (E. coli) and the results were compared to the bacterial adhesion force to the studied surfaces. The presence of TiO2 in DLC bulk was confirmed by Raman spectroscopy. As TiO2 content increased, I(D)/I(G) ratio, hydrogen content, and roughness also increased; the films became more hydrophilic, with higher surface free energy and the interfacial energy of bacteria adhesion decreased. Experimental results show that TiO2 increased DLC bactericidal activity. Pure DLC films were thermodynamically unfavorable to bacterial adhesion. However, the chemical interaction between the E. coli and the studied films increased for the films with higher TiO2 concentration. As TiO2 bactericidal activity starts its action by oxidative damage to the bacteria wall, a decrease in the interfacial energy of bacteria adhesion causes an increase in the chemical interaction between E. coli and the films, which is an additional factor for the increasing bactericidal activity. From these results, DLC with TiO2 nanoparticles can be useful for producing coatings with antibacterial properties.

  19. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    PubMed

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. Copyright © 2013. Published by Elsevier Ltd.

  20. Fast diffusion of silver in TiO2 nanotube arrays

    PubMed Central

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui

    2016-01-01

    Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630

  1. Single-walled carbon nanotube-facilitated dispersion of particulate TiO2 on ZrO2 ceramic membrane filters.

    PubMed

    Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M

    2008-07-15

    We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.

  2. Decomposition of banten ilmenite by caustic fusion process for TiO2 photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Aristanti, Y.; Supriyatna, Y. I.; Masduki, N. P.; Soepriyanto, S.

    2018-01-01

    Decomposition of Banten ilmenite by caustic fusion process for TiO2 photocatalytic applications has been done. Caustic fusion process using NaOH to obtain sodium titanate compound which is soluble in sulfuric acid (H2SO4) to produces TiOSO4 as a precursor. Synthesis of TiO2 from TiOSO4 precursors by variations of pH hydrolysis are 1.0 (TiO2 A), 1.5 (TiO2 B) and 2.0 (TiO2 C). XRD pattern identified TiO2 structures crystals are anatase phase and traces α-Fe2O3 as an impurity. Presence of Fe2O3 as an impurities give positive effect on TiO2 photocatalytic activity that is to narrower the band gap energy thus facilitates of electrons excitation from valence band to conduction band and enlarge the specific surface area thus reaction between Rhodamin B solution and TiO2 surface can be faster. TiO2 A, TiO2 B and TiO2 C was compared to TiO2 M (commercial TiO2) in Rhodamin B solution for the photocatalytic activity where the maximum TiO2 degradation efficiency was obtained at TiO2 C 80.0 % while TiO2 M 59.8 %.

  3. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    PubMed

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  4. Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Cho, Hyung-Joon; Hwang, Poong-Gok; Jung, Dongwoon

    2011-12-01

    TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2-xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2-xNx in spite of the structural difference.

  5. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm-2 (~548 F g-1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  6. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors.

    PubMed

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-04

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm(-2) (~548 F g(-1)) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  7. Heterogeneous nanocrystals assembled TiO2/SnO2/C composite for improved lithium storage

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Mao, Yuning; Zhang, Xuzhen; Yang, Li

    2018-07-01

    Using stable TiO2 and flexible carbon as double-functional structure protector of nanostructural SnO2 to fabricate TiO2/SnO2/C composites is widely considered as a favorable strategy for improving the lithium storage performance of SnO2 anodes. But, it is still a challenge to obtain a satisfying TiO2/SnO2/C composite. Herein, an interesting porous nanostructure of TiO2/SnO2/C nanosphere composite assembled by TiO2 and SnO2 nanocrystals with an outer carbon coating has been fabricated by a well-designed approach. Thanks to the perfectly combined action of porous spherical nanostructure, TiO2 and SnO2 nanocrystals and carbon coating, the as-prepared composite obtains excellent structure stability and improved electrochemcial properties. When used as a promising anode for lithium-ion batteres, it exhibits outstanding lithium storage performance, delivering a high capacity of 687.2 mAh g-1 after even 400 cycles.

  8. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.

    PubMed

    Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He

    2018-03-26

    An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Engineering of highly ordered TiO2 nanopore arrays by anodization

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  10. Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors.

    PubMed

    Chen, Xueyuan; Luo, Wenqin

    2010-03-01

    Trivalent rare-earth (RE3+) ion-doped TiO2 nanophosphors belong to one kind of novel optical materials and have attracted increasing attention. The luminescence properties of different RE3+ ions in various TiO2 nanomaterials have been reviewed. Much attention is paid to our recent progresses on the luminescence properties of RE3+ (RE = Eu, Er, Sm, Nd) ions in anatase TiO2 nanoparticles prepared by a sol-gel-solvothermal method. Using Eu3+ as a sensitive optical probe, three significantly different luminescence centers of Eu3+ in TiO2 nanoparticles were detected by means of site-selective spectroscopy at 10 K. Based on the crystal-field (CF) splitting of Eu3+ at each site, C2v and D2 symmetries were proposed for Eu3+ incorporated at two lattice sites. A structural model for the formation of multiple sites was proposed based on the optical behaviors of Eu3+ at different sites. Similar multi-site luminescence was observed in Sm(3+)- or Nd(3+)-doped TiO2 nanoparticles. In Eu(3+)-doped TiO2 nanoparticles, only weak energy transfer from the TiO2 host to the Eu3+ ions was observed at 10 K due to the mismatch of energy between the TiO2 band-gap and the Eu3+ excited states. On the contrary, efficient host-sensitized luminescences were realized in Sm(3+)- or Nd(3+)-doped anatase TiO2 nanoparticles due to the match of energy between TiO2 band-gap and the Sm3+ and Nd3+ excited states. The excitation spectra of both Sm(3+)- and Nd(3+)-doped samples exhibit a dominant broad peak centered at approximately 340 nm, which is associated with the band-gap of TiO2, indicating that sensitized emission is much more efficient than direct excitation of the Sm3+ and Nd3+ ions. Single lattice site emission of Er3+ in TiO2 nanocrystals can be achieved by modifying the experimental conditions. Upon excitation by a Ti: sapphire laser at 978 nm, intense green upconverted luminescence was observed. The characteristic emission of Er3+ ions was obtained both in the ultraviolet-visible (UV-vis) and

  11. In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2-graphene with enhanced photocatalytic activity.

    PubMed

    Jiang, Baojiang; Tian, Chungui; Zhou, Wei; Wang, Jianqiang; Xie, Ying; Pan, Qingjiang; Ren, Zhiyu; Dong, Youzhen; Fu, Dan; Han, Jiale; Fu, Honggang

    2011-07-18

    We present a facile route for the preparation of TiO(2)-graphene composites by in situ growth of TiO(2) in the interlayer of inexpensive expanded graphite (EG) under solvothermal conditions. A vacuum-assisted technique combined with the use of a surfactant (cetyltrimethylammonium bromide) plays a key role in the fabrication of such composites. Firstly, the vacuum environment promotes full infusion of the initial solution containing Ti(OBu)(4) and the surfactant into the interlayers of EG. Subsequently, numerous TiO(2) nanoparticles uniformly grow in situ in the interlayers with the help of the surfactant, which facilitates the exfoliation of EG under the solvothermal conditions in ethanol, eventually forming TiO(2)-graphene composites. The as-prepared samples have been characterized by Raman and FTIR spectroscopies, SEM, TEM, AFM, and thermogravimetic analysis. It is shown that a large number of TiO(2) nanoparticles homogeneously cover the surface of high-quality graphene sheets. The graphene exhibits a multi-layered structure (5-7 layers). Notably, the TiO(2)-graphene composite (only 30 wt % of which is TiO(2)) synthesized by subsequent thermal treatment at high temperature under nitrogen shows high photocatalytic activity in the degradation of phenol under visible and UV lights in comparison with bare Degussa P25. The enhanced photocatalytic performance is attributed to increased charge separation, improved light absorbance and light absorption width, and high adsorptivity for pollutants. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Relationship between nano/micro structure and physical properties of TiO2-sodium caseinate composite films.

    PubMed

    Montes-de-Oca-Ávalos, Juan Manuel; Altamura, Davide; Candal, Roberto Jorge; Scattarella, Francesco; Siliqi, Dritan; Giannini, Cinzia; Herrera, María Lidia

    2018-03-01

    Films obtained by casting, starting from conventional emulsions (CE), nanoemulsions (NE) or their gels, which led to different structures, with the aim of explore the relationship between structure and physical properties, were prepared. Sodium caseinate was used as the matrix, glycerol as plasticizer, glucono-delta-lactone as acidulant to form the gels, and TiO 2 nanoparticles as reinforcement to improve physical behavior. Structural characterization was performed by SAXS and WAXS (Small and Wide Angle X-ray Scattering, respectively), combined with confocal and scanning electron microscopy. The results demonstrate that the incorporation of the lipid phase does not notably modify the mechanical properties of the films compared to solution films. Films from NE were more stable against oil release than those from CE. Incorporation of TiO 2 improved mechanical properties as measured by dynamical mechanical analysis (DMA) and uniaxial tensile tests. TiO 2 macroscopic spatial distribution homogeneity and the nanostructure character of NE films were confirmed by mapping the q-dependent scattering intensity in scanning SAXS experiments. SAXS microscopies indicated a higher intrinsic homogeneity of NE films compared to CE films, independently of the TiO 2 load. NE-films containing structures with smaller and more homogeneously distributed building blocks showed greater potential for food applications than the films prepared from sodium caseinate solutions, which are the best known films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fabrication of SnO2-TiO2 core-shell nanopillar-array films for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Cheng, Hsyi-En; Lin, Chun-Yuan; Hsu, Ching-Ming

    2017-02-01

    Immobilized or deposited thin film TiO2 photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO2 can be effectively improved by the SnO2-TiO2 core-shell nanopillar-array structure which combines the benefits of SnO2/TiO2 heterojunction and high reaction surface area. The SnO2-TiO2 core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO2 film was 45% improved by introducing a SnO2 film between TiO2 and ITO glass substrate and was 300% improved by using the SnO2-TiO2 core-shell nanopillar-array structure. The 45% improvement by the SnO2 interlayer is attributed to the SnO2/TiO2 heterojunction which separates the photogenerated electron-hole pairs in TiO2 for MB degradation, and the high photocatalytic activity of the SnO2-TiO2 core-shell nanopillar-array films is attributed to the three dimensional SnO2/TiO2 heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.

  14. Multifrequency electron paramagnetic resonance and electron-nuclear double-resonance studies of photo-hole processes in AgBr and AgCl emulsion grains

    NASA Astrophysics Data System (ADS)

    Eachus, R. S.; Pawlik, Th D.; Baetzold, R. C.

    2000-10-01

    By using a combination of multifrequency EPR spectroscopy, ENDOR spectroscopy and calculations of structure and energy, the reactivities of photo-generated holes in microcrystalline AgBr and AgCl dispersions (photographic emulsions) have been followed in detail. Progress has been facilitated by the use of both gelatin and polyvinyl alcohol (PVA) as peptizers. The initial trapped hole centres produced by band-gap excitation have been identified. In AgBr, this species is [(Br4)3-.V], a neutral complex formed from hole trapping by the four nearest neighbours of a surface Ag+ vacancy (=V). [(Br4)3-.V] reacts with gelatin to produce a transient organic radical at the grain's surface. It does not, however, react with PVA. The formation of the oxidized gelatin radical might involve atomic bromine as an intermediate. In AgCl, the well-known self-trapped hole centre (AgCl6)4- is the initial hole species. The hole diffuses by an electron exchange process until it is trapped by a silver ion on the grain's surface or within its penultimate layer of lattice ions. It is subsequently released from this Ag2+ site to be retrapped at a centre containing four equivalent Cl- ions. The precise identity of this defect has yet to be determined, but its decay also results in the oxidation of gelatin.

  15. Improvement of Ultrasonic Disinfection Power Using TiO2 Photocatalyst

    NASA Astrophysics Data System (ADS)

    Dadjour, Mahmoud Farshbaf; Ogino, Chiaki; Matsumura, Susumu; Nakamura, Shinichi; Shimizu, Nobuaki

    2005-03-01

    The disinfection power of an ultrasonic system was enhanced using TiO2-photocatalyst in the irradiating solutions. Cultures of Legionella were used in the irradiation system with and without TiO2. A significant decrease in the concentration of viable cells was observed during irradiation in the presence of TiO2. The rate of cell killing was higher in the presence of TiO2 than it was with Al2O3, and was proportional to the amount of TiO2 used in the irradiating samples. There was no significant effect of cell concentration on the rate of cell killing in the range of 103 to 107 CFU/ml. Addition of OH radical scavengers such as glutathione, ascorbic acid and histidine to the irradiating solutions reduced the rate of disinfection, thus indicating the primary role of OH radicals in this process.

  16. Heterogeneous Ag-TiO2-SiO2 composite materials as novel catalytic systems for selective epoxidation of cyclohexene by H2O2

    PubMed Central

    Wang, Xin; Xue, Jianyue; Wang, Xinyun; Liu, Xiaoheng

    2017-01-01

    TiO2-SiO2 composites were synthesized using cetyl trimethyl ammonium bromide (CTAB) as the structure directing template. Self-assembly hexadecyltrimethyl- ammonium bromide TiO2-SiO2/(CTAB) were soaked into silver nitrate (AgNO3) aqueous solution. The Ag-TiO2-SiO2(Ag-TS) composite were prepared via a precipitation of AgBr in soaking process and its decomposition at calcination stage. Structural characterization of the materials was carried out by various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption and ultraviolet visible spectroscopy (UV-Vis). Characterization results revealed that Ag particles were incorporated into hierarchical TiO2-SiO2 without significantly affecting the structures of the supports. Further heating-treatment at 723 K was more favorable for enhancing the stability of the Ag-TS composite. The cyclohexene oxide was the major product in the epoxidation using H2O2 as the oxidant over the Ag-TS catalysts. Besides, the optimum catalytic activity and stability of Ag-TS catalysts were obtained under operational conditions of calcined at 723 K for 2 h, reaction time of 120 min, reaction temperature of 353 K, catalyst amount of 80 mg, aqueous H2O2 (30 wt.%) as oxidant and chloroform as solvent. High catalytic activity with conversion rate up to 99.2% of cyclohexene oxide could be obtainable in water-bathing. The catalyst was found to be stable and could be reused three times without significant loss of catalytic activity under the optimized reaction conditions. PMID:28493879

  17. Enhanced photocatalytic activity towards degradation and H2 evolution over one dimensional TiO2@MWCNTs heterojunction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Cao, Shuang; Wu, Zhijiao; Zhao, Suling; Piao, Lingyu

    2017-04-01

    With the distinct electronic and optical properties, multiwall carbon nanotubes (MWCNTs) are identified as an outstanding catalyst support, which can effectively improve the performance of the TiO2 photocatalysts. Herein, the unique one dimensional TiO2@MWCNTs nanocomposites have been prepared by a facile hydrothermal method. The TiO2 coating layers are extremely uniform and the thickness is adjustable for different nanocomposites. XPS measurements confirm that intimate electronic interactions are existed between MWCNTs and TiO2 via interfacial Tisbnd Osbnd C bond and the photoluminescence intensity of the TiO2@MWCNTs nanocomposites are effectively quenched compared with pure TiO2, suggesting the fast electron transfer rates. The thickness of TiO2 coating layers of the TiO2@MWCNTs nanocomposites plays a significant role in the photocatalytic degradation of organic pollutants, such as methylene blue (MB) and Rhodamine B (RhB), and photocatalytic H2 evolution from water. Due to the formation of one dimensional heterojunction of TiO2@MWCNTs nanocomposites and the positive synergistic effect between TiO2 and carbon nanotubes, it is found that the photocatalytic activity of the system is significantly improved.

  18. Fast and simple microwave synthesis of TiO2/Au nanoparticles for gas-phase photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    May-Masnou, Anna; Soler, Lluís; Torras, Miquel; Salles, Pol; Llorca, Jordi; Roig, Anna

    2018-04-01

    The fabrication of small anatase titanium dioxide (TiO2) nanoparticles (NPs) attached to larger anisotropic gold (Au) morphologies by a very fast and simple two-step microwave-assisted synthesis is presented. The TiO2/Au NPs are synthesized using polyvinylpyrrolidone (PVP) as reducing, capping and stabilizing agent through a polyol approach. To optimize the contact between the titania and the gold and facilitate electron transfer, the PVP is removed by calcination at mild temperatures. The nanocatalysts activity is then evaluated in the photocatalytic production of hydrogen from water/ethanol mixtures in gas-phase at ambient temperature. A maximum value of 5.3 mmol·gcat-1·h-1 (7.4 mmol·gTiO2-1·h-1) of hydrogen is recorded for the system with larger gold particles at an optimum calcination temperature of 450 °C. Herein we demonstrate that TiO2-based photocatalysts with high Au loading and large Au particle size (≈ 50 nm) NPs have photocatalytic activity.

  19. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  20. Influence of N2 annealing on TiO2 tubes structure and its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoxiang; Pan, Zhanchang; Yu, Ke; Xiao, Jun; Wu, Shoukun; Li, Jinghong; Chen, Chun; Lin, Yingsheng; Hu, Guanghui; Xu, Yanbin

    2018-02-01

    In this work, the TiO2 tubes (TBs) were prepared by solvothermal method. The morphology and phase structure of TiO2 TBs is significantly affected by N2 annealing temperature. XRD was used to characterize the phase structure of the as-prepared samples. The morphology and surface areas were characterized by SEM and N2 adsorption-desorption, which show that the tubes were assembled with about 100-nm nanosheets and small ball particles under 400 and 600 °C N2 annealing; when temperature reached 800 °C, the surface of tubes appeared a lot of collapse and many large holes. In addition, the surface areas of 400 °C TiO2, 600 °C TiO2, and 800 °C TiO2 TBs were significantly affected by N2 annealing. Most importantly, the UV-vis and electrochemical tests demonstrate 600 °C TiO2 TBs exhibit higher absorption intensity and photocurrent; thus, it possess on better photocatalytic activity. Therefore, the photocatalytic performance for TiO2 TBs is significantly co-affected by surface area and mix-phase. [Figure not available: see fulltext.

  1. Degradation product analysis from the photocatalytic oxidation/reduction of 2,4-dichlorophenol in the presence of mesoporous silica encapsulated TiO2 particles and TiO2 dispersions (presentation)

    EPA Science Inventory

    Thin films of Degussa P-25 TiO2 encapsulated in an SBA-15 mesoporous silica matrix were prepared. The TiO2/SBA-15 thin film structure was verified using transmission electron microscopy (TEM) and small angle X-ray diffraction (XRD). During irradiation with 350 nm light, the TiO...

  2. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    PubMed Central

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-01-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm−2 (~548 F g−1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors. PMID:26531072

  3. Synthesis and Characterization of Photocatalytic TiO 2 -ZnFe 2 O 4 Nanoparticles

    DOE PAGES

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    A new coprecipimore » tation/hydrolysis synthesis route is used to create a TiO 2 -ZnFe 2 O 4 nanocomposite that is directed towards extending the photoresponse of TiO 2 from UV to visible wavelengths ( > 400   nm ). The effect of TiO 2 's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe 2 O 4 narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, and ZnFe 2 O 4 concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe 2 O 4 nanocomposite are outlined. The visible-light-activated photocatalytic activity of the TiO 2 -ZnFe 2 O 4 nanocomposites has been compared to an Aldrich TiO 2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol.« less

  4. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    PubMed

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  5. Electron-Selective TiO 2 Contact for Cu(In,Ga)Se 2 Solar Cells

    DOE PAGES

    Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; ...

    2015-11-03

    The non-toxic and wide bandgap material TiO 2 is explored as an n-type buffer layer on p-type Cu(In,Ga)Se 2 (CIGS) absorber layer for thin film solar cells. The amorphous TiO 2 thin film deposited by atomic layer deposition process at low temperatures shows conformal coverage on the CIGS absorber layer. Solar cells from non-vacuum deposited CIGS absorbers with TiO 2 buffer layer result in a high short-circuit current density of 38.9 mA/cm 2 as compared to 36.9 mA/cm 2 measured in the reference cell with CdS buffer layer, without compromising open-circuit voltage. The significant photocurrent gain, mainly in the UVmore » part of the spectrum, can be attributed to the low parasitic absorption loss in the ultrathin TiO 2 layer (~10 nm) with a larger bandgap of 3.4 eV compared to 2.4 eV of the traditionally used CdS. Overall the solar cell conversion efficiency was improved from 9.5% to 9.9% by substituting the CdS by TiO 2 on an active cell area of 10.5 mm2. In conclusion, optimized TiO 2/CIGS solar cells show excellent long-term stability. The results imply that TiO 2 is a promising buffer layer material for CIGS solar cells, avoiding the toxic CdS buffer layer with added performance advantage.« less

  6. Reaction of silanes in supercritical CO2 with TiO2 and Al2O3.

    PubMed

    Gu, Wei; Tripp, Carl P

    2006-06-20

    Infrared spectroscopy was used to investigate the reaction of silanes with TiO2 and Al2O3 using supercritical CO2 (Sc-CO2) as a solvent. It was found that contact of Sc-CO2 with TiO2 leads to partial removal of the water layer and to the formation of carbonate, bicarbonate, and carboxylate species on the surface. Although these carbonate species are weakly bound to the TiO2 surface and can be removed by a N2 purge, they poison the surface, resulting in a lower level of reaction of silanes with TiO2. Specifically, the amount of hexamethyldisilazane adsorbed on TiO2 is about 10% of the value obtained when the reaction is performed from the gas phase. This is not unique to TiO2, as the formation of carbonate species also occurs upon contact of Al2O3 with Sc-CO2 and this leads to a lower level of reaction with hexamethyldisilazane. This is in contrast to reactions of silanes on SiO2 where Sc-CO2 has several advantages over conventional gaseous or nonaqueous methods. As a result, caution needs to be applied when using Sc-CO2 as a solvent for silanization reactions on oxides other than SiO2.

  7. H2O2/TiO2 photocatalytic oxidation of metol. Identification of intermediates and reaction pathways.

    PubMed

    Aceituno, Mónica; Stalikas, Constantine D; Lunar, Loreto; Rubio, Soledad; Pérez-Bendito, Dolores

    2002-08-01

    The applicability of H2O2 to increase the efficiency of TiO2 photocatalytic degradations was investigated. The photographic developer metol [N-methyl-p-aminophenol] that does not adsorb on the surface of TiO2 particulates was used as a model for this purpose. It was proved that metol was mineralised under oxidation with H2O2/TiO2/UV through different thermal and photochemical reactions. Identification of intermediates by both HPLC-electron impact-MS and HPLC-electrospray ionisation-MS helped to elucidate the role of H2O2 and TiO2 in the degradation process and to establish degradation pathways. Intermediates yielded were partially oxygenated aromatic species and dimers, which were amenable to oxidation. The optimal degradation conditions found for mineralisation were 0.4 M H2O2, 5 mg/ml TiO2, pH 9 and irradiation centred at 360 nm (4.9 mW/cm2). The use of oxidants opens an interesting medium to the treatment of effluents containing a diversity of organics since they increase substantially the efficiency of TiO2 photocatalytic degradations.

  8. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the

  9. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator.

    PubMed

    Oliveira, Haroldo G; Ferreira, Leticia H; Bertazzoli, Rodnei; Longo, Claudia

    2015-04-01

    TiO2 and TiO2/WO3 electrodes, irradiated by a solar simulator in configurations for heterogeneous photocatalysis (HP) and electrochemically-assisted HP (EHP), were used to remediate aqueous solutions containing 10 mg L(-1) (34 μmol L(-1)) of 17-α-ethinylestradiol (EE2), active component of most oral contraceptives. The photocatalysts consisted of 4.5 μm thick porous films of TiO2 and TiO2/WO3 (molar ratio W/Ti of 12%) deposited on transparent electrodes from aqueous suspensions of TiO2 particles and WO3 precursors, followed by thermal treatment at 450 (°)C. First, an energy diagram was organized with photoelectrochemical and UV-Vis absorption spectroscopy data and revealed that EE2 could be directly oxidized by the photogenerated holes at the semiconductor surfaces, considering the relative HOMO level for EE2 and the semiconductor valence band edges. Also, for the irradiated hybrid photocatalyst, electrons in TiO2 should be transferred to WO3 conduction band, while holes move toward TiO2 valence band, improving charge separation. The remediated EE2 solutions were analyzed by fluorescence, HPLC and total organic carbon measurements. As expected from the energy diagram, both photocatalysts promoted the EE2 oxidation in HP configuration; after 4 h, the EE2 concentration decayed to 6.2 mg L(-1) (35% of EE2 removal) with irradiated TiO2 while TiO2/WO3 electrode resulted in 45% EE2 removal. A higher performance was achieved in EHP systems, when a Pt wire was introduced as a counter-electrode and the photoelectrodes were biased at +0.7 V; then, the EE2 removal corresponded to 48 and 54% for the TiO2 and TiO2/WO3, respectively. The hybrid TiO2/WO3, when compared to TiO2 electrode, exhibited enhanced sunlight harvesting and improved separation of photogenerated charge carriers, resulting in higher performance for removing this contaminant of emerging concern from aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Thermal degradation of TiO2 nanotubes on titanium

    NASA Astrophysics Data System (ADS)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  11. ALMA observations of TiO2 around VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Vlemmings, W.; Muller, S.; Black, J. H.; O'Gorman, E.; Richards, A. M. S.; Baudry, A.; Maercker, M.; Decin, L.; Humphreys, E. M.

    2015-08-01

    Context. Titanium dioxide, TiO2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO2 has been detected only in the complex environment of the red supergiant VY CMa. Aims: We aim to constrain the distribution and excitation of TiO2 around VY CMa in order to clarify its role in dust formation. Methods: We analyse spectra and channel maps for TiO2 extracted from ALMA science verification data. Results: We detect 15 transitions of TiO2, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO2 emission likely traces gas exposed to the stellar radiation field. An accelerating bipolar-like structure is found, oriented roughly east-west, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. Conclusions: We find that a significant fraction of TiO2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa. Appendix A is available in electronic form at http://www.aanda.org

  12. Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Wen, Dongsheng; Tarakina, Nadezda V.; Liang, Jierong; Bushby, Andy J.; Sukhorukov, Gleb B.

    2016-02-01

    Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery.Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These

  13. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, Karla Rosa; Stephens, Zachary Dan.; Robinson, David B.

    2013-05-01

    A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The ECmore » redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.« less

  14. Composite WO 3/TiO 2 nanostructures for high electrochromic activity

    DOE PAGES

    Reyes-Gil, Karla R.; Stephens, Zachary D.; Stavila, Vitalie; ...

    2015-01-06

    A composite material consisting of TiO 2 nanotubes (NT) with WO 3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO 2 made from commercially available TiO 2 nanoparticles creates an interface for the TiO 2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WOmore » 3 concentration on the EC performance were studied. As a result, the composite WO 3/TiO 2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO 3 and TiO 2 materials« less

  15. Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2

    NASA Astrophysics Data System (ADS)

    Xu, Difa; Hai, Yang; Zhang, Xiangchao; Zhang, Shiying; He, Rongan

    2017-04-01

    Photocatalytic hydrogen production using water splitting is of potential importance from the viewpoint of renewable energy development. Herein, Bi2O3-TiO2 composite photocatalysts presented as Bi-Bi2O3-anatase-rutile TiO2 multijunction were first fabricated by a simple impregnation-calcination method using Bi2O3 as H2-production cocatalysts. The obtained multijunction samples exhibit an obvious enhancement in photocatalytic H2 evolution activity in the presence of glycerol. The effect of Bi2O3 amount on H2-evolution activity of TiO2 was investigated and the optimal Bi2O3 content was found to be 0.89 mol%, achieving a H2-production rate of 920 μmol h-1, exceeding that of pure TiO2 by more than 73 times. The enhanced mechanism of photocatalytic H2-evolution activity is proposed. This study will provide new insight into the design and fabrication of TiO2-based hydrogen-production photocatalysts using low-cost Bi2O3 as cocatalyst.

  16. The influence of ozone on the photocatalytic degradation of phenol using TiO2 photocatalyst supported by Bayah natural zeolite

    NASA Astrophysics Data System (ADS)

    Sulaiman, Fatah; Sari, Denni Kartika; Kustiningsih, Indar

    2017-05-01

    Effect of ozone on the photocatalytic degradation of phenol using TiO2 photocatalyst which supported Bayah Natural Zeolite has been investigated. Phenol (merk Pro analys) was used as waste solution. TiO2 photocatalyst was obtained from Titanium isopropoxide using sol gel method which supported by Bayah Natural Zeolite. The influence of temperature of calcination and catalyst loading have been conducted. The calcination temperature of photocatalyst was 450°C, 500°C, 550°C dan 600°C while the catalyst loading of 0,1g/L; 0,3 g/L; 0,6 g/L; 1 g/L dan 1,2 g/L. Analysis of phenol concentration was used Hach Spechtrophotometer. To determine the effect of ozone on photocatalytic degradation during process ozone was flowed into reactor. The result showed the optimum calcination temperature was obtained at 500°C. The optimum catalyst loading to degrade the phenolic compounds was equal to 1g/L. In these optimum condition the conversion of phenol degradation was 87% after 5 hours. By adding ozone during the degradation process, the conversion reached 100% after 2 hours.

  17. Recovery TiO2 by leaching process of carbothermic reduced Kalimantan ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Sari, P. P.; Ramelan, A. H.

    2018-05-01

    Ilmenite naturally occurred in iron titanate (FeTiO3) minerals. The separation of natural ilmenite into TiO2 and Fe2O3 need to be explored to gain the high purity separation product. A new combination method named of carbothermic reduction, acidic-leaching and complexation by EDTA were proposed for separation TiO2 from Ilmenite. Roasting of ilmenite was carried out at 950 °C for 1 h by the addition of activated carbon with mass ratio of ilmenite : activated carbon =4:3. The carbothermic reduction was carried out to yield a high separation of initial content of ilmenite that will be easily to dissolve within hydrochloric acid solution in leaching process. The composition of ilmenite observed by X-Ray Fluoresences (XRF) changed after the carbothermic reduction process and the dominant content is TiO2 (57.56%). X-Ray Diffraction (XRD) of roasted ilmenite composed of decomposed product of ilmenite i.e. hematite (Fe2O3), TiO2 anatase, TiO2 rutile, and inorganic salt. The leaching of the roasted ilmenite has been done by sulphuric acid solution (6 M) to gain the titanyl sulphate solution. Separation of iron impurities of TiO2 gel from titanyl sulphate (TiOSO4) solution was conducted by complexation method using EDTA as a complexation agent. The characteristic of TiO2 obtained using XRD showed that TiO2 is anatase type and the percentage of TiO2 using XRF showed that TiO2 content of 86,03%.

  18. Excess electrons in reduced rutile and anatase TiO2

    NASA Astrophysics Data System (ADS)

    Yin, Wen-Jin; Wen, Bo; Zhou, Chuanyao; Selloni, Annabella; Liu, Li-Min

    2018-05-01

    As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.

  19. TiO2 and its composites as effective photocatalyst for glucose degradation processes

    NASA Astrophysics Data System (ADS)

    Kukh, A. A.; Ivanenko, I. M.; Astrelin, I. M.

    2018-03-01

    Titanium-dioxide photocatalyst was impregnated onto the activated carbon using originally developed low-temperature sol-gel method to form a TiO2:AC composite material. 15% (mass.) solution Ti2(SO4)3 in sulphuric acid was used as a precursor for photocatalyst synthesis. The highly effective composite material was obtained through a combination of properties of titanium dioxide and activated carbon. Synthesized composites TiO2 with activated carbon demonstrate highly developed surface characteristics and exhibit significantly higher activity in comparison with samples of pure TiO2 synthesized the same way, existing analogues of pure TiO2 synthesized from TiCl3 and even industrial photocatalyst. This was testified by the degradation of 1% aqueous glucose solution using TiO2:AC, samples of pure TiO2 and commercial TiO2 AEROXIDE® TiO2 P25 produced by EVONIK Industries.

  20. Hierarchically mesostructured porous TiO2 hollow nanofibers for high performance glucose biosensing.

    PubMed

    Guo, Qiaohui; Liu, Lijuan; Zhang, Man; Hou, Haoqing; Song, Yonghai; Wang, Huadong; Zhong, Baoying; Wang, Li

    2017-06-15

    Effective immobilization of enzymes on an electrode surface is of great importance for biosensor development, but it still remains challenging because enzymes tend to denaturation and/or form close-packed structures. In this work, a free-standing TiO 2 hollow nanofibers (HNF-TiO 2 ) was successfully prepared by a simple and scalable electrospun nanofiber film template-assisted sol-gel method, and was further explored for glucose oxidase (GOD) immobilization and biosensing. This porous and nanotubular HNF-TiO 2 provides a well-defined hierarchical nanostructure for GOD loading, and the fine TiO 2 nanocrystals facilitate direct electron transfer from GOD to the electrode, also the strong interaction between GOD and HNF-TiO 2 greatly enhances the stability of the biosensor. The as-prepared glucose biosensors show good sensing performances both in O 2 -free and O 2 -containing conditions with good sensitivity, satisfactory selectivity, long-term stability and sound reliability. The novel textile formation, porous and hierarchically mesostructured nature of HNF-TiO 2 with excellent analytical performances make it a superior platform for the construction of high-performance glucose biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis.

    PubMed

    De Santo, Ilaria; Sanguigno, Luigi; Causa, Filippo; Monetta, Tullio; Netti, Paolo A

    2012-11-07

    Drug elution properties of TiO(2) nanotube arrays have been largely investigated by means of solely macroscopic observations. Controversial elution performances have been reported so far and a clear comprehension of these phenomena is still missing as a consequence of a lack of molecular investigation methods. Here we propose a way to discern drug elution properties of nanotubes through the evaluation of drug localization by Fluorescence Correlation Spectroscopy (FCS) analysis. We verified this method upon doxorubicin elution from differently loaded TiO(2) nanotubes. Diverse elution profiles were obtained from nanotubes filled by soaking and wet vacuum impregnation methods. Impregnated nanotubes controlled drug diffusion up to thirty days, while soaked samples completed elution in seven days. FCS analysis of doxorubicin motion in loaded nanotubes clarified that more than 90% of drugs dwell preferentially in inter-nanotube spaces in soaked samples due to decorrelation in a 2D fashion, while a 97% fraction of molecules showed 1D mobility ascribable to displacements along the nanotube vertical axis of wet vacuum impregnated nanotubes. The diverse drug localizations inferred from FCS measurements, together with distinct drug-surface interaction strengths resulting from diverse drug filling techniques, could explain the variability in elution kinetics.

  2. Enhanced properties of nanostructured TiO2-graphene composites by rapid sintering

    NASA Astrophysics Data System (ADS)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2018-01-01

    Despite of many attractive properties of TiO2, the drawback of TiO2 ceramic is low fracture toughness for widely industrial application. The method to improve the fracture toughness and hardness has been reported by addition of reinforcing phase to fabricate a nanostructured composite. In this regard, graphene has been evaluated as an ideal second phase in ceramics. Nearly full density of nanostructured TiO2-graphene composite was achieved within one min using pulsed current activated sintering. The effect of graphene on microstructure, fracture toughness and hardness of TiO2-graphene composite was evaluated using Vickers hardness tester and field emission scanning electron microscopy. The grain size of TiO2 in the TiO2-x vol% (x = 0, 1, 3, and 5) graphene composite was greatly reduced with increase in addition of graphene. Both hardness and fracture toughness of TiO2-graphene composites simultaneously increased in the addition of graphene.

  3. A review on methods of synthesizing nanostructures TiO2

    NASA Astrophysics Data System (ADS)

    Munirah, S.; Nadzirah, Sh.; Khusaimi, Z.; Fazlena, H.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) is a well-known materials and being extensively investigated due to the stability of the chemical structure, optical, physical, and electrical properties, also its biocompatibility. There are a lot of efforts have been done to synthesis TiO2 since the previous years by using different kind of methods. In this review paper, we summarize the methods of synthesizing nanostructured TiO2.

  4. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  5. [TiO2-Induced Photodegradation of Levofloxacin by Visible Light and Its Mechanism].

    PubMed

    Guo, Hong-sheng; Liu, Ya-nan; Qiao, Qi; Wei, Hong; Dong, Cheng-xing; Xue, Jie; Li, Ke-bin

    2015-05-01

    Levofloxacin is an emerging pollutant. Single levofloxacin and TiO2 have no visible-light activity. However, photodegradation of levofloxacin dramatically enhanced in the presence of TiO2 under visible light irradiation. Considering this finding, he photodegradation of levofloxacin over TiO2 was investigated under visible light irradiation. Effects of TiO2 dosage, levofloxacin concentration, and solution pH on levofloxacin photodegradation were examined by monitoring its concentration decay with time. The results showed that levofloxacin photodegradation fitted the Langmuir-Hinshelwood kinetic model. Solution pH, TiO2 dose, and levofloxacin concentration had significant effects on the photodegradation rates. In addition, batch adsorption experiments revealed that adsorption of levofloxacin on TiO2 conformed to the pseudo-second-order kinetics and the Langmuir isotherm. DRS spectrum of levofloxacin-adsorbed TiO2 suggested that a surface complex was formed between levofloxacin and TiO2. Addition of radical scavengers and N2-degassing affecting levofloxacin photodegradation indicated that the superoxide ion radical was mainly active species. UV-Vis spectra of a deaerated TiO2 and levofloxacin suspensions further confirmed that the electron injection into TiO2 conduction band took place under visible light irradiation. Based on these results, a charge-transfer mechanism initiated by photoexcitation of TiO2/ levofloxacin surface complex was proposed for levofloxacin photocatalytic degradation over TiO2 under visible light. This study indicates that the charge-transfer-complex-mediated photocatalytic technique has promising applications in the removal of colorless organic pollutants.

  6. SiO2/TiO2/Ag multilayered microspheres: Preparation, characterization, and enhanced infrared radiation property

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyun; Cai, Shuguang; Zheng, Chan; Xiao, Xueqing; Hua, Nengbin; Huang, Yanyi

    2015-08-01

    SiO2/TiO2/Ag core-shell multilayered microspheres were successfully synthesized by the combination of anatase of TiO2 modification on the surfaces of SiO2 spheres and subsequent Ag nanoparticles deposition and Ag shell growth with face-centered cubic (fcc) Ag. The composites were characterized by TEM, FT-IR, UV-vis, Raman spectroscopy and XRD, respectively. The infrared emissivity values during 8-14 μm wavelengths of the composites were measured. The results revealed that TiO2 thin layers with the thickness of ∼10 nm were coated onto the SiO2 spheres of ∼220 nm in diameter. The thickness of the TiO2 layers was controlled by varying the amount of TBOT precursor. Homogeneous Ag nanoparticles of ∼20 nm in size were successfully deposited by ultrasound on the surfaces of SiO2/TiO2 composites, followed by complete covering of Ag shell. The infrared emissivity value of the SiO2/TiO2 composites was decreased than that of pure SiO2. Moreover, the introduction of the Ag brought the remarkably lower infrared emissivity value of the SiO2/TiO2/Ag multilayered microspheres with the lowest value down to 0.424. Strong chemical effects in the interface of SiO2/TiO2 core-shell composites and high reflection performance of the metal Ag are two decisive factors for the improved infrared radiation performance of the SiO2/TiO2/Ag multilayered microspheres.

  7. Y-doping TiO2 nanorod arrays for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Deng, Xinlian; Wang, Yanqing; Cui, Zhendong; Li, Long; Shi, Chengwu

    2018-05-01

    To improve the electron transportation in TiO2 nanorod arrays and charge separation in the interface of TiO2/perovskite, Y-doping TiO2 nanorod arrays with the length of 200 nm, diameter of 11 nm and areal density of 1050 μm-2 were successfully prepared by the hydrothermal method and the influence of Y/Ti molar ratios of 0%, 3%, 5% in the hydrothermal grown solutions on the growth of TiO2 nanorod arrays was investigated. The results revealed that the appropriate Y/Ti molar ratios can increase the areal density of the corresponding TiO2 nanorod arrays and improve the charge separation in the interface of the TiO2/perovskite. The Y-doping TiO2 nanorod array perovskite solar cells with the Y/Ti molar ratio of 3% exhibited a photoelectric conversion efficiency (PCE) of 18.11% along with an open-circuit voltage (Voc) of 1.06 V, short-circuit photocurrent density (Jsc) of 22.50 mA cm-2 and fill factor (FF) of 76.16%, while the un-doping TiO2 nanorod array perovskite solar cells gave a PCE of 16.42% along with Voc of 1.04 V, Jsc of 21.66 mA cm-2 and FF of 72.97%.

  8. Preparation of atomically flat TiO2(001) surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Weitering, Hanno H.; Snijders, Paul C.

    2015-03-01

    Transition metal oxides with the rutile structure (MO2, M = e.g. Ti, V, or Nb) have highly directional partially occupied t2g orbitals. Some of these orbitals form quasi-1D electronic bands along the rutile c-axis, and Peierls-like ordering phenomena have been observed in VO2 and NbO2. Tailoring the electronic properties of these materials via quantum confinement requires epitaxial growth on suitable substrates such as low index TiO2 surfaces. Because of the high surface energy of rutile TiO2(001), the standard approach of sputtering and annealing usually introduces faceting. Here we demonstrate a facile method to create atomically flat, non-faceted TiO2(001) surfaces. Using scanning tunneling microscopy we observe terraces with a width of approximately 150 nm. Step heights of approximately 0.3 nm are observed, consistent with the c lattice parameter of rutile TiO2. Low energy electron diffraction patterns reveal sharp diffraction spots with an in-plane lattice constant of 0.358 nm which is consistent with a (1x1) ordering of the (001) plane. These TiO2(001) single crystal surfaces can serve as an ideal substrate for further growth of rutile heterostructures. Research sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  9. Photoelectrochemical Properties of CuS-GeO2-TiO2 Composite Coating Electrode

    PubMed Central

    Wen, Xinyu; Zhang, Huawei

    2016-01-01

    The ITO (indium tin oxide) conductive glass-matrix CuS-GeO2-TiO2 composite coating was generated via EPD (electrophoretic deposition) and followed by a sintering treatment at 450°C for 40 minutes. Characterizations of the CuS-GeO2-TiO2 composite coating were taken by SEM (scanning electron microscope), XRD (X-ray diffraction), EDX (energy dispersive X-ray), UV-Vis DRS (ultraviolet-visible diffuse reflection spectrum), and FT-IR (Fourier transform infrared spectroscopy). Results showed that CuS and GeO2 had dispersed in this CuS-GeO2-TiO2 composite coating (mass percentages for CuS and GeO2 were 1.23% and 2.79%, respectively). The electrochemical studies (cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization) of this CuS-GeO2-TiO2 composite coating electrode were performed in pH = 9.51 Na2CO3-NaHCO3 buffer solution containing 0.50 mol/L CH3OH under the conditions of visible light, ultraviolet light (λ = 365 nm), and dark (without light irradiation as control), respectively. Electrochemical studies indicated that this CuS-GeO2-TiO2 composite coating electrode had better photoelectrocatalytic activity than the pure TiO2 electrode in the electrocatalysis of methanol under visible light. PMID:27055277

  10. Photoelectrochemical Properties of CuS-GeO2-TiO2 Composite Coating Electrode.

    PubMed

    Wen, Xinyu; Zhang, Huawei

    2016-01-01

    The ITO (indium tin oxide) conductive glass-matrix CuS-GeO2-TiO2 composite coating was generated via EPD (electrophoretic deposition) and followed by a sintering treatment at 450°C for 40 minutes. Characterizations of the CuS-GeO2-TiO2 composite coating were taken by SEM (scanning electron microscope), XRD (X-ray diffraction), EDX (energy dispersive X-ray), UV-Vis DRS (ultraviolet-visible diffuse reflection spectrum), and FT-IR (Fourier transform infrared spectroscopy). Results showed that CuS and GeO2 had dispersed in this CuS-GeO2-TiO2 composite coating (mass percentages for CuS and GeO2 were 1.23% and 2.79%, respectively). The electrochemical studies (cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization) of this CuS-GeO2-TiO2 composite coating electrode were performed in pH = 9.51 Na2CO3-NaHCO3 buffer solution containing 0.50 mol/L CH3OH under the conditions of visible light, ultraviolet light (λ = 365 nm), and dark (without light irradiation as control), respectively. Electrochemical studies indicated that this CuS-GeO2-TiO2 composite coating electrode had better photoelectrocatalytic activity than the pure TiO2 electrode in the electrocatalysis of methanol under visible light.

  11. TiO2/porous adsorbents: Recent advances and novel applications.

    PubMed

    MiarAlipour, Shayan; Friedmann, Donia; Scott, Jason; Amal, Rose

    2018-01-05

    This article reviews two interrelated areas of research: the first is the use of TiO 2 -supported adsorbent materials as enhanced heterogeneous photocatalysts and their application to various reactions for organic pollutant removal from air and water; the second is the combination of adsorbent materials with TiO 2 photocatalysts which aims to efficiently regenerate adsorbent materials using illumination. By reviewing both areas of research, the following topics are covered; (i) photocatalytic activation of TiO 2; (ii) related properties of photocatalytic TiO 2; (iii) shortcomings of photocatalytic processes; (iv) preparation methods of composite TiO 2 /adsorbent materials and their photocatalytic performance; (v) properties of common adsorbents and their applications for pollutant removal from air and water; (vi) adsorbent regeneration methods and their economic and operational issues; (vii) conclusions and future outlooks. This topic has not been previously reviewed to such an extent, and considerable knowledge can be gained from assembling the large number of studies on adsorption-photocatalysis combinations. As such, this review provides guidance for researchers working in the fields of environmental and chemical engineering focussing on organic pollutant removal and the engineering of new high performance photocatalytic TiO 2 -supported porous adsorbent materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of TiO2 NPs on Silkworm Growth and Feed Efficiency.

    PubMed

    Li, YangYang; Ni, Min; Li, FanChi; Zhang, Hua; Xu, KaiZun; Zhao, XiaoMing; Tian, JiangHai; Hu, JingSheng; Wang, BinBin; Shen, WeiDe; Li, Bing

    2016-02-01

    Silkworm (Bombyx mori) (B. mori) is an economically important insect and a model species for Lepidoptera. It has been reported that feeding of low concentrations of titanium dioxide nanoparticles (TiO2 NPs) can improve feed efficiency and increase cocoon mass, cocoon shell mass, and the ratio of cocoon shell. However, high concentrations of TiO2 NPs are toxic. In this study, we fed B. mori with different concentrations of TiO2 NPs (5, 10, 20, 40, 80, and 160 mg/L) and investigated B. mori growth, feed efficiency, and cocoon quality. We found that low concentrations of TiO2 NPs (5 and 10 mg/L) were more effective for weight gains, with significant weight gain being obtained at 72 h (P < 0.05). TiO2 NPs at 20 mg/L or higher had certain inhibitory effects, with significant inhibition to B. mori growth being observed at 48 h. The feed efficiency was significantly improved at low concentrations of 5 and 10 mg/L for 14.6 and 13.1 %, respectively (P < 0.05). All B. mori fed with TiO2 NPs showed increased cocoon mass and cocoon shell mass; at 5 and 10 mg/L TiO2 NPs, cocoon mass was significantly increased by 8.29 and 9.39 %, respectively (P < 0.05). We also found that low concentrations (5 and 10 mg/L) of TiO2 NPs promoted B. mori growth and development, improved feed efficiency, and increased cocoon production, while high concentrations (20 mg/L or higher) of TiO2 NPs showed inhibitory effect to the B. mori. Consecutive feeding of high concentrations of TiO2 NPs led to some degrees of adaptability. This study provides a reference for the research on TiO2 NPs toxicity and the basis for the development of TiO2 NPs as a feed additive for B. mori.

  13. Enrichment of Sc2O3 and TiO2 from bauxite ore residues.

    PubMed

    Deng, Bona; Li, Guanghui; Luo, Jun; Ye, Qing; Liu, Mingxia; Peng, Zhiwei; Jiang, Tao

    2017-06-05

    As a major byproduct generated in the alumina industry, bauxite ore residue is an important reserve of scandium and titanium. In this study, the feasibility and mechanism of enriching Sc 2 O 3 and TiO 2 from a non-magnetic material, which was obtained from carbothermal reductive roasting and magnetic separation of bauxite ore residue, were investigated based on a two-step (acidic and alkali) leaching process. It was revealed that approximately 78% SiO 2 and 30-40% of CaO, FeO and Al 2 O 3 were removed from a non-magnetic material with 0.0134wt.% Sc 2 O 3 and 7.64wt.% TiO 2 by phosphoric acidic leaching, while about 95% Al 2 O 3 and P 2 O 5 were further leached by subsequent sodium hydroxide leaching of the upper-stream leach residue. A Sc 2 O 3 -, TiO 2 - rich material containing 0.044wt.% Sc 2 O 3 and 25.5wt.% TiO 2 was obtained, the recovery and the enrichment factor of Sc 2 O 3 and TiO 2 were about 85% and 5, respectively. The enrichment of Sc 2 O 3 was attributed to higher pH (>3.3) of phosphoric acid solution than its dissolution pH 0 , and the enrichment of TiO 2 was mainly associated with the insoluble perovskite (CaTiO 3 ) in the acidic solution at ambient temperature. As Sc 2 O 3 and TiO 2 cannot be dissolved in the alkali solution, they were further enriched in the leach residue. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Study of TiO2 particles size, dyes, and catalyst to improve the performance of DSSC

    NASA Astrophysics Data System (ADS)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-02-01

    This study reports effort to improve performance of solar cells by using various natural dyes in dye-sensitized solar cell (DSSC). We applied three kind of natural dye, i.e, black rice dye, cactus dye and dragon fruit dye. We found that performance of DSSC which employ black rice dye was higher than other natural dyes. It is because the wider spectrum wavelength of black rice dyes. Its performance also compared with rhutenium dye (N719). Effect of TiO2 particle to DSSC performance was also investigated. It was concluded that smaller TiO2 particle size will increase the performance of DSSC solar cells. It was because the smaller particle size (high surface area) will load more dye. In addition, we also demonstrated the use of graphite from lead pencil as counter electrode.

  15. Quantum dot sensitized solar cell based on TiO2/CdS/Ag2S heterostructure

    NASA Astrophysics Data System (ADS)

    Pawar, Sachin A.; Patil, Dipali S.; Kim, Jin Hyeok; Patil, Pramod S.; Shin, Jae Cheol

    2017-04-01

    Quantum dot sensitized solar cell (QDSSC) is fabricated based on a stepwise band structure of TiO2/CdS/Ag2S to improve the photoconversion efficiency of TiO2/CdS system by incorporating a low band gap Ag2S QDs. Vertically aligned TiO2 nanorods assembly is prepared by a simple hydrothermal technique. The formation of CdS and Ag2S QDs over TiO2 nanorods assembly as a photoanode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The synthesized electrode materials are characterized by XRD, XPS, field emission scanning electron microscopy (FE-SEM), Optical, solar cell and electrochemical performances. The results designate that the QDs of CdS and Ag2S have efficiently covered exterior surfaces of TiO2 nanorods assembly. A cautious evaluation between TiO2/CdS and TiO2/CdS/Ag2S sensitized cells tells that CdS and Ag2S synergetically helps to enhance the light harvesting ability. Under AM 1.5G illumination, the photoanodes show an improved power conversion efficiency of 1.87%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 7.03 mA cm-2 which is four fold higher than that of a TiO2/CdS system.

  16. The Influence of Fe2O3 Addition on the Tio2 Structure and Photoactivity Properties

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Prasetyawati, L.; Saputri, L. N. M. Z.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The influence of Fe2O3 addition on the TiO2 structure and photoactivity properties have been studied. The addition of Fe2O3 on the TiO2 done by TiO2-Fe2O3 synthesized with variation of annealing temperature. The result showed that peak of anatase TiO2 at 2θ = 25.35° and Fe2O3 at 2θ = 54.20°. The XRD of TiO2 show annealing temperature at 400°C is anatase phase and the composite with annealing at temperature 150°C, 300°C, 400°C and 500°C is crystalline anatase phase, due to the addition of Fe2O3. Photodegradation of Rhodamin B with TiO2 at 400°C annealing temperature showed optimum degradation 36.2 %, and the composite with annealing at 400°C showed optimum degradation 44.3% for 300 minutes irradiation.

  17. TiO2 anode materials for lithium-ion batteries with different morphology and additives

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Ng, Yip Hang; Leung, Yu Hang; Liu, Fangzhou; Djurišic, Aleksandra B.; Xie, Mao Hai; Chan, Wai Kin

    2014-03-01

    Electrochemical performances of different TiO2 nanostructures, TiO2/CNT composite and TiO2 with titanium isopropoxide (TTIP) treatment anode were investigated. For different TiO2 nanostructures, we investigated vertically aligned TiO2 nanotubes on Ti foil and TiO2 nanotube-powders fabricated by rapid breakdown anodization technique. The morphology of the prepared samples was characterized by scanning probe microscopy (SEM). The electrochemical lithium storage abilities were studied by galvanostatic method. In addition, carbon nanotubes (CNT) additives and solution treatment process of TiO2 anode were investigated, and the results show that the additives and treatment could enhance the cycling performance of the TiO2 anode on lithium ion batteries.

  18. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    NASA Astrophysics Data System (ADS)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  19. Solution-Processed Ultrathin TiO2 Compact Layer Hybridized with Mesoporous TiO2 for High-Performance Perovskite Solar Cells.

    PubMed

    Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae

    2017-10-25

    The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.

  20. Effect of Electric Field on CO2 Photoreduction by TiO2 Film

    NASA Astrophysics Data System (ADS)

    Huang, Zhengfeng; Cheng, Xudong; Dong, Peimei; Zhang, Xiwen

    2017-02-01

    To mitigate the greenhouse effect, many studies have been carried out to improve the CO2 conversion efficiency of TiO2. Modification of TiO2 has been intensively investigated, but the influence of an electric field on photoreduction by this material remains largely unknown. Accordingly, in this study, we explored the effect of an electric field on the photoreduction process using a porous TiO2-Ti material. The results indicated that the CO yield improved 85-fold (equivalent to 4772 μmol/g h) when a 30-kV voltage was applied during the reduction process. To make the electric field effect fully functional, we also explored the effect of water on the photoreduction process, finding that TiO2 showed the highest conversion rate when the humidity was controlled at 50% relative humidity (RH).

  1. Photoinduced underwater superoleophobicity of TiO2 thin films.

    PubMed

    Sawai, Yusuke; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Fujii, Eiji; Miyake, Michihiro

    2013-06-11

    The photoinduced wettabilities of water, n-hexadecane, dodecane, and n-heptane on a flat TiO2 surface prepared by a sol-gel method-based coating were investigated. An amphiphilic surface produced by UV irradiation exhibited underwater superoleophobicity with an extremely high static oil contact angle (CA) of over 160°. The TiO2 surface almost completely repelled the oil droplet in water. A robust TiO2 surface with no fragile nanomicrostructure was fabricated on a Ti mesh with a pore size of approximately 150 μm. The fabricated mesh was found to be applicable as an oil/water separation filter.

  2. Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Dong; Zheng, Ya-Lun; Feng, Yu-Jie; Sun, Ke-Ning

    2018-02-01

    Here we report, for the first time, delicate ternary nanostructures consisting of TiO2 nanoplatelets co-doped with Ag and V2O5 nanoparticles. The relationship between the composition and the morphology is systematically studied. We find a remarkable synergistic effect among the three components, and the resulting delicate Ag/V2O5/TiO2 ternary nanostructures exhibit a superior photocatalytic performance over neat TiO2 nanoplatelets as well as Ag/TiO2 and V2O5/TiO2 binary nanostructures for the degradation of methyl orange. We believe our delicate Ag/V2O5/TiO2 ternary nanostructures may lay a basis for developing next-generating, high-performance composite photocatalysts.

  3. Mechanical Grinding Preparation and Characterization of TiO2-Coated Wollastonite Composite Pigments

    PubMed Central

    Chen, Wanting; Liang, Yu; Hou, Xifeng; Zhang, Jing; Ding, Hao; Sun, Sijia; Cao, Hu

    2018-01-01

    TiO2-coated wollastonite composite pigments were prepared by the mechano-chemical grinding of wollastonite and TiO2 powder together in a wet ultrafine stirred mill. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and infrared spectra were used to investigate the microstructures and morphologies of the composite and the reaction mechanism. The results indicate that the TiO2-coated wollastonite composite pigments have similar properties to titanium dioxide pigment, showing much better properties than dry and wet mixing of wollastonite and TiO2. The hiding power of TiO2-coated wollastonite composite pigments (45% TiO2) is 17.97 g/m2, reaching 81.08% of titanium dioxide. A firm combination between wollastonite and TiO2 is obtained through a surface dehydroxylation reaction during the mechano-chemical method. PMID:29649116

  4. Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment.

    PubMed

    Li, X Z; Liu, H S

    2005-06-15

    In this study, an innovative E-H2O2/TiO2 (E-H2O2 = electrogenerated hydrogen peroxide) photoelectrocatalytic (PEC) oxidation system was successfully developed for water and wastewater treatment. A TiO2/Ti mesh electrode was applied in this photoreactor as the anode to conduct PEC oxidation, and a reticulated vitreous carbon (RVC) electrode was used as the cathode to electrogenerate hydrogen peroxide simultaneously. The TiO2/Ti mesh electrode was prepared with a modified anodic oxidation process in a quadrielectrolyte (H2SO4-H3PO4-H2O2-HF) solution. The crystal structure, surface morphology, and film thickness of the TiO2/Ti mesh electrode were characterized by X-ray diffraction and scanning electron microscopy. The analytical results showed that a honeycomb-type anatase film with a thickness of 5 microm was formed. Photocatalytic oxidation (PC) and PEC oxidation of 2,4,6-trichlorophenol (TCP) in an aqueous solution were performed under various experimental conditions. Experimental results showed that the TiO2/Ti electrode, anodized in the H2SO4-H3PO4-H2O2-HF solution, had higher photocatalytic activity than the TiO2/Ti electrode anodized in the H2SO4 solution. It was found that the maximum applied potential would be around 2.5 V, corresponding to an optimum applied current density of 50 microA cm(-2) under UV-A illumination. The experiments confirmed that the E-H2O2 on the RVC electrode can significantly enhance the PEC oxidation of TCP in aqueous solution. The rate of TCP degradation in such an E-H2O2-assisted TiO2 PEC reaction was 5.0 times that of the TiO2 PC reaction and 2.3 times that of the TiO2 PEC reaction. The variation of pH during the E-H2O2-assisted TiO2 PEC reaction, affected by individual reactions, was also investigated. It was found that pH was well maintained during the TCP degradation in such an E-H2O2/TiO2 reaction system. This is beneficial to TCP degradation in an aqueous solution.

  5. Role of Fe doping in tuning the band gap of TiO2 for photo-oxidation induced cytotoxicity paradigm

    PubMed Central

    George, Saji; Pokhrel, Suman; Ji, Zhaoxia; Henderson, Bryana L.; Xia, Tian; Li, LinJiang; Zink, Jeffrey I.; Nel, André E.; Mädler, Lutz

    2014-01-01

    UV-Light induced electron-hole (e−/h+) pair generation and free radical production in TiO2 based nanoparticles is a major conceptual paradigm for biological injury. However, to date, this hypothesis has been difficult to experimentally verify due to the high energy of UV light that is intrinsically highly toxic to biological systems. Here, a versatile flame spray pyrolysis (FSP) synthetic process has been exploited to synthesize a library of iron doped (0–10 at wt%) TiO2 nanoparticles. These particles have been tested for photoactivation-mediated cytotoxicity using near-visible light exposure. The reduction in TiO2 band gap energy with incremental levels of Fe loading maintained the nanoparticle crystalline structure in spite of homogeneous Fe distribution (demonstrated by XRD, HRTEM, SAED, EFTEM, and EELS). Photochemical studies showed that band gap energy was reciprocally tuned proportional to the Fe content. The photo-oxidation capability of Fe-doped TiO2 was found to increase during near-visible light exposure. Use of a macrophage cell line to evaluate cytotoxic and ROS production showed increased oxidant injury and cell death in parallel with a decrease in band gap energy. These findings demonstrate the importance of band gap energy in the phototoxic response of the cell to TiO2 nanoparticles and reflect the potential of this material to generate adverse effects in humans and the environment during high intensity light exposure. PMID:21678906

  6. Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders.

    PubMed

    McManamon, Colm; Holmes, Justin D; Morris, Michael A

    2011-10-15

    This paper studies the photocatalytic degradation of phenol using zirconia-doped TiO(2) nanoparticles. ZrO(2) was chosen due to its promising results during preliminary studies. Particles smaller than 10nm were synthesised and doped with quantities of ZrO(2) ranging from 0.5 to 4% (molar metal content). Particles were calcined at different temperatures to alter the TiO(2) structure, from anatase to rutile, in order to provide an ideal ratio of the two phases. Powder X-ray diffraction (PXRD) analysis was used to examine the transformation between anatase and rutile. Degradation of phenol was carried out using a 40 W UV bulb at 365 nm and results were measured by UV-vis spectrometry. TEM images were obtained and show the particles exhibit a highly ordered structure. TiO(2) doped with 1% ZrO(2) (molar metal content) calcined at 700 °C proved to be the most efficient catalyst. This is due to an ideal anatase:rutlie ratio of 80:20, a large surface area and the existence of stable electron-hole pairs. ZrO(2) doping above the optimum loading acted as an electron-hole recombination centre for electron-hole pairs and reduced photocatalytic degradation. Synthesised photocatalysts compared favourably to the commercially available photocatalyst P25. The materials also demonstrated the ability to be recycled with similar results to those achieved on fresh material after 5 uses. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Oxidative degradation and toxicity reduction of trichloroethylene (TCE) in water using TiO2/solar light: comparative study of TiO2 slurry and immobilized systems.

    PubMed

    Cho, Il-Hyoung; Park, Jae-Hong; Kim, Young-Gyu

    2005-01-01

    A solar-driven, photocatalyzed degradation system using TiO2 slurry and immobilized systems was constructed and applied to the degradation of trichloroethylene (TCE) contaminated water using TiO2 with solar light. The experiments were carried out under constant weather conditions on a sunny day. Solar photocatalytic treatment efficiency of the solar light/TiO2 slurry system was compared with that of the solar light/TiO2 immobilized system. The operation of the solar light/TiO2 slurry and immobilized systems showed 100% (TiO2 slurry system), 80% (TiO2 immobilized system) degradation of the TCE after 6 h, with a chloride production yield of approximately 89% (TiO2 slurry system), 72% (TiO2 immobilized system). The oxidants such as H2O2 and S2O8(2-) in the TiO2 slurry and immobilized systems increased TCE degradation rate by suppressing the electron/hole recombination process. The degradation rate and relative toxicity reduction of TCE followed the order of solar light/TiO2 slurry + S2O8(2-) > solar light/TiO2 slurry + H2O2 > solar light/TiO2 immobilized + S2O8(2-) > solar light/TiO2 slurry > solar light/TiO2 immobilized + H2O2 > solar light/TiO2 immobilized. Finally, following to the toxicity result, the acute toxicity was reduced by below toxicity endpoint (EC50 concentration) following the treatment. It means that many of the metabolites of TCE reduction are less toxic to Vibrio fischeri than the parent compound. Based on these results, TCE can be efficiently and safely treated in a solar-driven, photocatalyzed degradation system.

  8. High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Lee, Shu Chin; Lintang, Hendrik O; Yuliati, Leny

    2017-01-01

    Two series of Fe 2 O 3 /TiO 2 samples were prepared via impregnation and photodeposition methods. The effect of preparation method on the properties and performance of Fe 2 O 3 /TiO 2 for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV light irradiation was examined. The Fe 2 O 3 /TiO 2 nanocomposites prepared by impregnation showed lower activity than the unmodified TiO 2 , mainly due to lower specific surface area caused by heat treatment. On the other hand, the Fe 2 O 3 /TiO 2 nanocomposites prepared by photodeposition showed higher photocatalytic activity than the unmodified TiO 2 . Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe 2 O 3 (0.5)/TiO 2 . The improved activity of TiO 2 after photodeposition of Fe 2 O 3 was contributed to the formation of a heterojunction between the Fe 2 O 3 and TiO 2 nanoparticles that improved charge transfer and suppressed electron-hole recombination. A further investigation on the role of the active species on Fe 2 O 3 /TiO 2 confirmed that the crucial active species were both holes and superoxide radicals. The Fe 2 O 3 (0.5)/TiO 2 sample also showed good stability and reusability, suggesting its potential for water purification applications.

  9. Disruption of Autolysis in Bacillus subtilis using TiO2 Nanoparticles

    PubMed Central

    McGivney, Eric; Han, Linchen; Avellan, Astrid; VanBriesen, Jeanne; Gregory, Kelvin B.

    2017-01-01

    In contrast to many nanotoxicity studies where nanoparticles (NPs) are observed to be toxic or reduce viable cells in a population of bacteria, we observed that increasing concentration of TiO2 NPs increased the cell survival of Bacillus subtilis in autolysis-inducing buffer by 0.5 to 5 orders of magnitude over an 8 hour exposure. Molecular investigations revealed that TiO2 NPs prevent or delay cell autolysis, an important survival and growth-regulating process in bacterial populations. Overall, the results suggest two potential mechanisms for the disruption of autolysis by TiO2 NPs in a concentration dependent manner: (i) directly, through TiO2 NP deposition on the cell wall, delaying the collapse of the protonmotive-force and preventing the onset of autolysis; and (ii) indirectly, through adsorption of autolysins on TiO2 NP, limiting the activity of released autolysins and preventing further lytic activity. Enhanced darkfield microscopy coupled to hyperspectral analysis was used to map TiO2 deposition on B. subtilis cell walls and released enzymes, supporting both mechanisms of autolysis interference. The disruption of autolysis in B. subtilis cultures by TiO2 NPs suggests the mechanisms and kinetics of cell death may be influenced by nano-scale metal oxide materials, which are abundant in natural systems. PMID:28303908

  10. Bi12TiO20 crystallization in a Bi2O3-TiO2-SiO2-Nd2O3 system

    NASA Astrophysics Data System (ADS)

    Slavov, S.; Jiao, Z.

    2018-03-01

    Polycrystalline mono-phase bismuth titanate was produced by free cooling from melts heated to 1170 °C. The control over the initial amounts in the starting compositions in the system Bi2O3/TiO2/SiO2/Nd2O3 and over the thermal gradient of the heat process resulted in the formation of specific structures and microstructures of monophase sillenite ceramics. The main phase Bi12TiO20 belongs to the amorphous network groups based on oxides of silicon, bismuth and titanium. In this work, we demonstrated a way to control the crystalline and amorphous phase formation in bulk poly-crystalline materials in the selected system.

  11. Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis.

    PubMed

    Yoshida, Tomoko; Niimi, Satoshi; Yamamoto, Muneaki; Nomoto, Toyokazu; Yagi, Shinya

    2015-06-01

    The thickness-controlled TiO2 thin films are fabricated by the pulsed laser deposition (PLD) method. These samples function as photocatalysts under UV light irradiation and the reaction rate depends on the TiO2 thickness, i.e., with an increase of thickness, it increases to the maximum, followed by decreasing to be constant. Such variation of the reaction rate is fundamentally explained by the competitive production and annihilation processes of photogenerated electrons and holes in TiO2 films, and the optimum TiO2 thickness is estimated to be ca. 10nm. We also tried to dope nitrogen into the effective depth region (ca. 10nm) of TiO2 by an ion implantation technique. The nitrogen doped TiO2 enhanced photocatalytic activity under visible-light irradiation. XANES and XPS analyses indicated two types of chemical state of nitrogen, one photo-catalytically active N substituting the O sites and the other inactive NOx (1⩽x⩽2) species. In the valence band XPS spectrum of the high active sample, the additional electronic states were observed just above the valence band edge of a TiO2. The electronic state would be originated from the substituting nitrogen and be responsible for the band gap narrowing, i.e., visible light response of TiO2 photocatalysts. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Synthesis and characterization of a mixed phase of anatase TiO2 and TiO2(B) by low pressure chemical vapour deposition (LPCVD) for high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chimupala, Y.; Hyett, G.; Simpson, R.; Brydson, R.

    2014-06-01

    This project is concerned with enhancing photocatalytic activity by preparing a mixed phase of nano-sized TiO2. TiO2 thin films were synthesized by using Low Pressure Chemical Vapour Deposition (LPCVD). Titanium isopropoxide and N2 gas were used as the precursor and carrier gas respectively. The effects of reaction temperature, carrier gas flow rate and deposited area were studied. TiO2 thin films with nano-sized TiO2 particles were obtained under suitable conditions and SEM, TEM, powder XRD and Raman spectroscopy were employed to characterize the phase and physical appearance of synthesized materials. Preliminary results show that a dual phase (TiO2(B) and anatase) thin film nanopowder was successfully prepared by LPCVD with needle- and polygonal plate-shape crystallites respectively. This thin film deposit produced a preferred orientation of TiO2(B) needles in the [001] direction of average crystallite size 50-80 nm in length and 5-10 nm in width, whilst the crystallite size of anatase polygonal-plates was around 200 nm. The optimal LPCVD condition for preparing this mixed phase of TiO2 was 600°C with a 1 mL/s N2 flow rate.

  13. Wet-Chemical Preparation of TiO2-Based Composites with Different Morphologies and Photocatalytic Properties

    PubMed Central

    Xiang, Liqin; Zhao, Xiaopeng

    2017-01-01

    TiO2-based composites have been paid significant attention in the photocatalysis field. The size, crystallinity and nanomorphology of TiO2 materials have an important effect on the photocatalytic efficiency. The synthesis and photocatalytic activity of TiO2-based materials have been widely investigated in past decades. Based on our group’s research works on TiO2 materials, this review introduces several methods for the fabrication of TiO2, rare-earth-doped TiO2 and noble-metal-decorated TiO2 particles with different morphologies. We focused on the preparation and the formation mechanism of TiO2-based materials with unique structures including spheres, hollow spheres, porous spheres, hollow porous spheres and urchin-like spheres. The photocatalytical activity of urchin-like TiO2, noble metal nanoparticle-decorated 3D (three-dimensional) urchin-like TiO2 and bimetallic core/shell nanoparticle-decorated urchin-like hierarchical TiO2 are briefly discussed. PMID:28991208

  14. DFT study on the interaction of TiO2 (001) surface with HCHO molecules

    NASA Astrophysics Data System (ADS)

    Wu, Guofei; Zhao, Cuihua; Guo, Changqing; Chen, Jianhua; Zhang, Yibing; Li, Yuqiong

    2018-01-01

    The interactions of formaldehyde (HCHO) molecule with TiO2 (001) surface were studied using density functional theory calculations. HCHO molecules are dissociated by the cleavage of Csbnd H bonds after adsorption on TiO2 surface. The strong interactions between HCHO melecules and TiO2 surface are largely attributed to the bonding of hydrogen of HCHO and oxygen of TiO2 surface, which is mainly from the hybridization of the H 1s, O 2p and O 2s. The newly formed Hsbnd O bonds cause the structure changes of TiO2 surface, and lead to the cleavage of Osbnd Ti bond of TiO2 surface. The Csbnd O bond that the dissociated remains of HCHO and newly formed Hsbnd O bond can be oxidized to form carbon dioxide and water in subsequent action by oxygen from the atomosphere. The charges transfer from HCHO to TiO2 surface, and the sum amount of the charges transferred from four HCHO molecules to TiO2 surface is bigger than that from one HCHO molecule to TiO2 surface due to the combined interaction of four HCHO molecules with TiO2 surface.

  15. Data on the effect of improved TiO2/FTO interface and Ni(OH)2 cocatalyst on the photoelectrochemical performances and stability of CdS cased ZnIn2S4/TiO2 heterojunction.

    PubMed

    Mahadik, Mahadeo A; Shinde, Pravin S; Lee, Hyun Hwi; Cho, Min; Jang, Jum Suk

    2018-04-01

    This data article presents the experimental evidences of the effect of TiO 2 -fluorine doped tin oxide interface annealing and Ni(OH) 2 cocatalysts on the photoelectrochemical, structural, morphological and optical properties of Ni(OH) 2 /CdS/ZnIn 2 S 4 /TiO 2 heterojunction. The Raman spectroscopy exhibits the sharp features of the rutile phase of TiO 2 and in agreement with the X-ray diffraction data. The band gap energy of the 500 °C sample was found to be 3.12 eV, further it was increased to 3.20, 3.22 eV for samples annealed at 600 and 700 °C respectively. The decrease in the band gap energy at 500 °C related to the oxygen vacancies and was analysed by photoluminescence spectroscopy analysis. The synthesis, characterization methods and other experimental details of TiO 2 based heterostructure are also provided. The presence of CdS and ZnIn 2 S 4 coating on surface of TiO 2 electrodes providing a high surface area, extended visible absorption and helps to improve the change separation. This data article contains data related to the research article entitled "Highly efficient and stable 3D Ni(OH) 2 /CdS/ZnIn 2 S 4 /TiO 2 heterojunction under solar light: Effect of an improved TiO 2 /FTO interface and cocatalyst" (Mahadik et al., 2017) [1].

  16. Removal of pharmaceutically active compounds from synthetic and real aqueous mixtures and simultaneous disinfection by supported TiO2/UV-A, H2O2/UV-A, and TiO2/H2O2/UV-A processes.

    PubMed

    Bosio, Morgana; Satyro, Suéllen; Bassin, João Paulo; Saggioro, Enrico; Dezotti, Márcia

    2018-05-01

    Pharmaceutically active compounds are carried into aquatic bodies along with domestic sewage, industrial and agricultural wastewater discharges. Psychotropic drugs, which can be toxic to the biota, have been detected in natural waters in different parts of the world. Conventional water treatments, such as activated sludge, do not properly remove these recalcitrant substances, so the development of processes able to eliminate these compounds becomes very important. Advanced oxidation processes are considered clean technologies, capable of achieving high rates of organic compounds degradation, and can be an efficient alternative to conventional treatments. In this study, the degradation of alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine was evaluated through TiO 2 /UV-A, H 2 O 2 /UV-A, and TiO 2 /H 2 O 2 /UV-A, using sunlight and artificial irradiation. While using TiO 2 in suspension, best results were found at [TiO 2 ] = 0.1 g L -1 . H 2 O 2 /UV-A displayed better results under acidic conditions, achieving from 60 to 80% of removal. When WWTP was used, degradation decreased around 50% for both processes, TiO 2 /UV-A and H 2 O 2 /UV-A, indicating a strong matrix effect. The combination of both processes was shown to be an adequate approach, since removal increased up to 90%. H 2 O 2 /UV-A was used for disinfecting the aqueous matrices, while mineralization was obtained by TiO 2 -photocatalysis.

  17. Ammonia Sensing Behaviors of TiO2-PANI/PA6 Composite Nanofibers

    PubMed Central

    Wang, Qingqing; Dong, Xianjun; Pang, Zengyuan; Du, Yuanzhi; Xia, Xin; Wei, Qufu; Huang, Fenglin

    2012-01-01

    Titanium dioxide-polyaniline/polyamide 6 (TiO2-PANI/PA6) composite nanofibers were prepared by in situ polymerization of aniline in the presence of PA6 nanofibers and a sputtering-deposition process with a high purity titanium sputtering target. TiO2-PANI/PA6 composite nanofibers and PANI/PA6 composite nanofibers were fabricated for ammonia gas sensing. The ammonia sensing behaviors of the sensors were examined at room temperature. All the results indicated that the ammonia sensing property of TiO2-PANI/PA6 composite nanofibers was superior to that of PANI/PA6 composite nanofibers. TiO2-PANI/PA6 composite nanofibers had good selectivity to ammonia. It was also found that the content of TiO2 had a great influence on both the morphology and the sensing property of TiO2-PANI/PA6 composite nanofibers. PMID:23235446

  18. Quantum Dot Sensitized Solar Cells Based on TiO2/AgInS2

    NASA Astrophysics Data System (ADS)

    Pawar, Sachin A.; Jeong, Jae Pil; Patil, Dipali S.; More, Vivek M.; Lee, Rochelle S.; Shin, Jae Cheol; Choi, Won Jun

    2018-05-01

    Quantum dot heterojunctions with type-II band alignment can efficiently separate photogenerated electron-hole pairs and, hence, are useful for solar cell studies. In this study, a quantum dot sensitized solar cell (QDSSC) made of TiO2/AgInS2 is achieved to boost the photoconversion efficiency for the TiO2-based system by varying the AgInS2 layer's thickness. The TiO2 nanorods array film is prepared by using a simple hydrothermal technique. The formation of a AgInS2 QD-sensitized TiO2-nanorod photoelectrode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The effect of the QD layer on the performance of the solar cell is studied by varying the SILAR cycles of the QD coating. The synthesized electrode materials are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy and solar cell performances. The results indicate that the nanocrystals have effectively covered the outer surfaces of the TiO2 nanorods. The interfacial structure of quantum dots (QDs)/TiO2 is also investigated, and the growth interface is verified. A careful comparison between TiO2/AgInS2 sensitized cells reveals that the trasfer of electrons and hole proceeds efficiently, the recombination is suppressed for the optimum thickness of the QD layer and light from the entire visible spectrum is utilised. Under AM 1.5G illumination, a high photocurrent of 1.36 mAcm-2 with an improved power conversion efficiency of 0.48% is obtained. The solar cell properties of our photoanodes suggest that the TiO2 nanorod array films co-sensitized by AgInS2 nanoclusters have potential applications in solar cells.

  19. Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2

    PubMed Central

    Che Ramli, Zatil Amali; Asim, Nilofar; Isahak, Wan N. R. W.; Emdadi, Zeynab; Ahmad-Ludin, Norasikin; Yarmo, M. Ambar; Sopian, K.

    2014-01-01

    This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples. PMID:25013855

  20. Preparation of flexible TiO2 photoelectrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ren; Wang, Hsiu-Hsuan; Lin, Chia-Feng; Su, Chaochin

    2014-09-01

    Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 photoelectrodes on indium tin oxide (ITO) coated polymer substrates have drawn great attention due to its lightweight, flexibility and advantages in commercial applications. However, the thermal instability of polymer substrates limits the process temperature to below 150 °C. In order to assure high and firm interparticle connection between TiO2 nanocrystals (TiO2-NC) and polymer substrates, the post-treatment of flexible TiO2 photoelectrodes (F-TiO2-PE) by mechanical compression was employed. In this work, Degussa P25 TiO2-NC was mixed with tert-butyl alcohol and DI-water to form TiO2 paste. F-TiO2-PE was then prepared by coating the TiO2 paste onto ITO coated polyethylene terephthalate (PET) substrate using doctor blade followed by low temperature sintering at 120 °C for 2 hours. To study the effect of mechanical compression, we applied 50 and 100 kg/cm2 pressure on TiO2/PET to complete the fabrication of F-TiO2-PE. The surface morphology of F-TiO2-PE was characterized using scanning electron microscopy. The resultant F-TiO2-PE sample exhibited a smooth, crack-free structure indicating the great improvement in the interparticle connection of TiO2-NC. Increase of compression pressure could lead to the increase of DSSC photoconversion efficiency. The best photoconversion efficiency of 4.19 % (open circuit voltage (Voc) = 0.79 V, short-circuit photocurrent density (Jsc) = 7.75 mA/cm2, fill factor (FF) = 0.68) was obtained for the F-TiO2-PE device, which showed great enhancement compared with the F-TiO2-PE cell without compression treatment. The effect of compression in DSSC performance was vindicated by the electrochemical impedance spectroscopy measurement.

  1. MS2 inactivation by TiO2 nanoparticles in the presence of quartz sand

    NASA Astrophysics Data System (ADS)

    Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2017-04-01

    Virus inactivation by nanoparticles (NPs) is hypothesized to affect virus fate and transport in the subsurface. This study examines the interactions of viruses with titanium dioxide (TiO2) anatase NPs, which is a good disinfectant with unique physiochemical properties, using three different virus concentrations. The bacteriophage MS2 was used as a model virus. A series of batch experiments of MS2 inactivation by TiO2 NPs were conducted at room temperature (25 °C), in the presence of quartz sand, with and without ambient light. The virus inactivation experimental data were satisfactorily fitted with a pseudo-first order expression with a time dependent rate coefficient. Quartz sand was shown to affect MS2 inactivation by TiO2 NPs both in the presence and absence of ambient light, because, under the experimental conditions of this study, the quartz sand offers a protection to the attached MS2 against inactivation. Moreover, in most cases similar inactivation rates were observed in reactor and control tubes (absence of TiO2 NPs) suggesting that low TiO2 concentration (10 mg/L) affects only slightly MS2 inactivation with and without ambient light.

  2. Effect of Cu2O morphology on photocatalytic hydrogen generation and chemical stability of TiO2/Cu2O composite.

    PubMed

    Zhu, Lihong; Zhang, Junying; Chen, Ziyu; Liu, Kejia; Gao, Hong

    2013-07-01

    Improving photocatalytic activity and stability of TiO2/Cu2O composite is a challenge in generating hydrogen from water. In this paper, the TiO2 film/Cu2O microgrid composite was prepared via a microsphere lithography technique, which possesses a remarkable performance of producing H2 under UV-vis light irradiation, in comparison with pure TiO2 film, Cu2O film and TiO2 film/Cu2O film. More interesting is that in TiO2 film/Cu2O microgrid, photo-corrosion of Cu2O can be retarded. After deposition of Pt on its surface, the photocatalytic activity of TiO2/Cu2O microgrid in producing H2 is improved greatly.

  3. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  4. Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation

    PubMed Central

    Cui, Guixin; Xin, Yan; Jiang, Xin; Dong, Mengqi; Li, Junling; Wang, Peng; Zhai, Shumei; Dong, Yongchun; Jia, Jianbo; Yan, Bing

    2015-01-01

    Anatase TiO2 nanoparticles (TNPs) are synthesized using the sol-gel method and loaded onto the surface of polyester-cotton (65/35) fabrics. The nanofabrics degrade formaldehyde at an efficiency of 77% in eight hours with visible light irradiation or 97% with UV light. The loaded TNPs display very little release from nanofabrics (~0.0%) during a standard fastness to rubbing test. Assuming TNPs may fall off nanofabrics during their life cycles, we also examine the possible toxicity of TNPs to human cells. We found that up to a concentration of 220 μg/mL, they do not affect viability of human acute monocytic leukemia cell line THP-1 macrophages and human liver and kidney cells. PMID:26610470

  5. Structure of a model TiO2 photocatalytic interface

    NASA Astrophysics Data System (ADS)

    Hussain, H.; Tocci, G.; Woolcot, T.; Torrelles, X.; Pang, C. L.; Humphrey, D. S.; Yim, C. M.; Grinter, D. C.; Cabailh, G.; Bikondoa, O.; Lindsay, R.; Zegenhagen, J.; Michaelides, A.; Thornton, G.

    2017-04-01

    The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.

  6. Foldable and Cytocompatible Sol-gel TiO2 Photonics

    NASA Astrophysics Data System (ADS)

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-09-01

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.

  7. Foldable and Cytocompatible Sol-gel TiO2 Photonics

    PubMed Central

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-01-01

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices. PMID:26344823

  8. Foldable and Cytocompatible Sol-gel TiO2 Photonics.

    PubMed

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B; Geiger, Sarah J; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-09-07

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.

  9. TiO2@Pt@CeO2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr (VI) and photo-oxidation of benzyl alcohol.

    PubMed

    Li, Shunxing; Cai, Jiabai; Wu, Xueqing; Liu, Biwen; Chen, Qiaoying; Li, Yuehai; Zheng, Fengying

    2018-03-15

    An solar-light-driven and bifunctional photocatalyst was designed for photo-reduction of Cr(VI) and selective photo-oxidation of benzyl alcohol into benzaldehyde in the presence of water under ambient conditions. Double-shelled and sandwiched TiO 2 @Pt@CeO 2 hollow spheres were prepared by using functionalized polystyrene spheres, sol-gel, hydrothermal reaction, and calcination. The Pt nanoparticles (NPs) were controllably loaded between the TiO 2 shell and CeO 2 shell. Under solar-light irradiation, the photo-reduction rate of Cr(VI) (μmol h -1 ) was in the order of TiO 2 @Pt@CeO 2 (1.901) > TiO 2 @CeO 2 (1.424) > TiO 2 (1.040) > CeO 2 (0.992). Among the above-mentioned photocatalysts, the conversion rate of benzyl alcohol for TiO 2 @Pt@CeO 2 was also the best. These results were attributed to the combination of TiO 2 and CeO 2 as photocatalyst and oxygen buffer, the double-shelled and sandwiched nanostructure, and the addition of Pt NPs as cocatalyst and electron trap site, which could store and shuttle photo-generated electrons, reduce the recombination of the electron-hole, and then enhance photo-generation of active radicals. This conclusion was verified by the electron paramagnetic resonance (EPR) spectroscopy. Considering the versatile combination of photocatalyst, oxygen buffer and cocatalyst, this work could provide new insights into the design of high-performance bifunctional photocatalysts for heavy metal removal and selective synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Influence of NiO Addition in TiO2 Structure and Its Photoactivity

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Purwanti, P. D.; Munawaroh, H.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The synthesis of TiO2 together with the TiO2-NiO composite using various annealing temperatures has been studied. The synthesis of TiO2 was performed by sol gel method using Titanium Tetra Isopropoxide (TTIP) precursor, whereas the synthesis of TiO2-NiO composite was done by wet impregnation method using NiNO3.6H2O precursor. This study aims to determine the influence of NiO addition in its structure and photoactivity. The diffraction of synthesized TiO2 at 400 °C temperature shows anatase TiO2 peak at 2θ = 25.35 °. The addition of NiO dopant to the synthesis of TiO2 process is carried out by annealing at 300 °C, 400 °C, 500 °C, 600 °C, and 700 °C, respectively. The TiO2-NiO composite has been prepared and shows the diffraction peak of NiO at 2θ=43° about 33.08 to 36.68%. The optimum result of Rhodamine B photodegradation with TiO2 was 43.15%, while the optimum result of Rhodamine B degradation with TiO2-NiO composite was 92.85%.

  11. Photocatalytic degradation of acetaminophen in modified TiO2 under visible irradiation.

    PubMed

    Dalida, Maria Lourdes P; Amer, Kristine Marfe S; Su, Chia-Chi; Lu, Ming-Chun

    2014-01-01

    This study investigated the photocatalytic degradation of acetaminophen (ACT) in synthetic titanium dioxide (TiO2) solution under a visible light (λ >440 nm). The TiO2 photocatalyst used in this study was synthesized via sol-gel method and doped with potassium aluminum sulfate (KAl(SO4)2) and sodium aluminate (NaAlO2). The influence of some parameters on the degradation of acetaminophen was examined, such as initial pH, photocatalyst dosage, and initial ACT concentration. The optimal operational conditions were also determined. Results showed that synthetic TiO2 catalysts presented mainly as anatase phase and no rutile phase was observed. The results of photocatalytic degradation showed that LED alone degraded negligible amount of ACT but with the presence of TiO2/KAl(SO4)2, 95% removal of 0.10-mM acetaminophen in 540-min irradiation time was achieved. The synthetic TiO2/KAl(SO4)2 presented better photocatalytic degradation of acetaminophen than commercially available Degussa P-25. The weak crystallinity of synthesized TiO2/NaAlO2 photocatalyst showed low photocatalytic degradation than TiO2/KAl(SO4)2. The optimal operational conditions were obtained in pH 6.9 with a dose of 1.0 g/L TiO2/KAl(SO4)2 at 30 °C. Kinetic study illustrated that photocatalytic degradation of acetaminophen fits well in the pseudo-first order model. Competitive reactions from intermediates affected the degradation rate of ACT, and were more obvious as the initial ACT concentration increased.

  12. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  13. Lunar mare TiO2 abundances estimated from UV/Vis reflectance

    NASA Astrophysics Data System (ADS)

    Sato, Hiroyuki; Robinson, Mark S.; Lawrence, Samuel J.; Denevi, Brett W.; Hapke, Bruce; Jolliff, Bradley L.; Hiesinger, Harald

    2017-11-01

    The visible (400-700 nm) and near-infrared (700-2800 nm) reflectance of the lunar regolith is dominantly controlled by variations in the abundance of plagioclase, iron-bearing silicate minerals, opaque minerals (e.g., ilmenite), and maturation products (e.g., agglutinate glass, radiation-produced rims on soil grains, and Fe-metal). The same materials control reflectance into the near-UV (250-400 nm) with varying degrees of importance. A key difference is that while ilmenite is spectrally neutral in the visible to near-infrared, it exhibits a diagnostic upturn in reflectance in the near-UV, at wavelengths shorter than about 450 nm. The Lunar Reconnaissance Orbiter Wide Angle Camera (WAC) filters were specifically designed to take advantage of this spectral feature to enable more accurate mapping of ilmenite within mare soils than previously possible. Using the reflectance measured at 321 and 415 nm during 62 months of repeated near-global WAC observations, first we found a linear correlation between the TiO2 contents of the lunar soil samples and the 321/415 nm ratio of each sample return site. We then used the coefficients from the linear regression and the near-global WAC multispectral mosaic to derive a new TiO2 map. The average TiO2 content is 3.9 wt% for the 17 major maria. The highest TiO2 values were found in Mare Tranquillitatis (∼12.6 wt%) and Oceanus Procellarum (∼11.6 wt%). Regions contaminated by highland ejecta, lunar swirls, and the low-TiO2 maria (e.g., Mare Frigoris, the northeastern units of Mare Imbrium) exhibit very low TiO2 values (<2 wt%). We find that the Clementine visible to near-infrared based TiO2 maps (Lucey et al., 2000) have systematically higher values relative to the WAC estimates. The Lunar Prospector Gamma-Ray Spectrometer (GRS) TiO2 map is consistent with the WAC TiO2 map, although there are local offsets possibly due to the different depth sensitivities and large pixel scale of the GRS relative to the WAC. We find a wide

  14. Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water.

    PubMed

    Andronic, Luminita; Isac, Luminita; Miralles-Cuevas, Sara; Visa, Maria; Oller, Isabel; Duta, Anca; Malato, Sixto

    2016-12-15

    Materials with photocatalytic and adsorption properties for advanced wastewater treatment targeting reuse were studied. Making use of TiO 2 as a well-known photocatalyst, Cu 2 S as a Vis-active semiconductor, and fly ash as a good adsorbent, dispersed mixtures/composites were prepared to remove pollutants from wastewater. X-ray diffraction, scanning electron microscopy, energy-dispersive X-Ray spectroscopy, atomic force microscopy, band gap energy, point of zero charge (pH pzc ) and BET porosity were used to characterize the substrates. Phenol, imidacloprid and dichloroacetic acid were used as pollutants for photocatalytic activity of the new photocatalysts. Experiments using the new dispersed powders were carried out at laboratory scale in two solar simulators and under natural solar irradiation at the Plataforma Solar de Almería, in a Compound Parabolic Collector (CPC) for a comparative analysis of pollutants removal and mineralization efficiencies, and to identify features that could facilitate photocatalyst separation and reuse. The results show that radiation intensity significantly affects the phenol degradation rate. The composite mixture of TiO 2 and fly ash is 2-3 times less active than sol-gel TiO 2 . Photodegradation kinetic data on the highly active TiO 2 are compared for pollutants elimination. Photodegradation of dichloroacetic acid was fast and complete after 90min in the CPC, while after 150min imidacloprid and phenol removal was 90% and 56% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthesis of TiO2 NRs - ZnO Composite for Dye Sensitized Solar Cell Photoanodes

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Hidayat, R.; Fadillah, G.; Munawaroh, H.; Saputri, L. N. M. Z.

    2017-07-01

    Composite of TiO2 NRs - ZnO were synthesized for DSSCs photoanode materials. TiO2 NRs was synthesized from TiO2 anatase by mechanochemical technique using ball milling process with agitation speed of 1000 rpm. While, the further hydrothermal refluxing process was conducted at 120°C under various concentration of NaOH in aqueous solution. The starting material of ZnO was prepared from ZnSO4.7H2O as a precursor. The hydrothermal treated TiO2 was added to the ZnO powder in a certain composition of 1:1, 1:2 and 2:1 (w/w), and the mixtures were then annealed at 400°C. The resulting material was characterized by X-ray diffraction (XRD), Surface area analyzer (SAA), Transmission electron microscopy (TEM), and Thermogravimetry/Differential thermal analysis (TG/DTA). The TiO2 revolution occurs from anatase phase into brookite phase. Rutile TiO2 phase was increasing when the NaOH was added at about 12 M. Nanograf of TEM showed the optimum condition for the formation of TiO2 NRs was obtained when 12 M NaOH was used. Structural transformation to 1D nanorods of TiO2 capable increase surface area up to 79 m2/g. TiO2 NRs-ZnO composite was prepared from TiO2 NRs and ZnO using comparation of TiO2 NRs: ZnO = 1:1, 1:2, dan 2:1. Anatase phase TiO2 as a single phase TiO2 was obtained in the TiO2-ZnO composite (1:1 w/w) upon heating the sample until 400°C. Difference TiO2 NRs-ZnO composite materials were investigated as good photovoltaic materials. Evaluation of the performance of DSSCs was conducted by I-V Keithley 2602A measurement indicate that photoanode built of TiO2 NRs - ZnO thin film has a higher solar cell efficiency than that of TiO2 thin film photoanode.

  16. Quantitative evaluation of local pulmonary distribution of TiO2 in rats following single or multiple intratracheal administrations of TiO2 nanoparticles using X-ray fluorescence microscopy.

    PubMed

    Zhang, Guihua; Shinohara, Naohide; Kano, Hirokazu; Senoh, Hideki; Suzuki, Masaaki; Sasaki, Takeshi; Fukushima, Shoji; Gamo, Masashi

    2016-10-01

    Uneven pulmonary nanoparticle (NP) distribution has been described when using single-dose intratracheal administration tests. Multiple-dose intratracheal administrations with small quantities of NPs are expected to improve the unevenness of each dose. The differences in local pulmonary NP distribution (called microdistribution) between single- and multiple-dose administrations may cause differential pulmonary responses; however, this has not been evaluated. Here, we quantitatively evaluated the pulmonary microdistribution (per mesh: 100 μm × 100 μm) of TiO2 in lung sections from rats following one, two, three, or four doses of TiO2 NPs at a same total dosage of 10 mg kg(-1) using X-ray fluorescence microscopy. The results indicate that: (i) multiple-dose administrations show lower variations in TiO2 content (ng mesh(-1) ) for sections of each lobe; (ii) TiO2 appears to be deposited more in the right caudal and accessory lobes located downstream of the administration direction of NP suspensions, and less so in the right middle lobes, irrespective of the number of doses; (iii) there are not prominent differences in the pattern of pulmonary TiO2 microdistribution between rats following single and multiple doses of TiO2 NPs. Additionally, the estimation of pulmonary TiO2 deposition for multiple-dose administrations imply that every dose of TiO2 would be randomly deposited only in part of the fixed 30-50% of lung areas. The evidence suggests that multiple-dose administrations do not offer remarkable advantages over single-dose administration on the pulmonary NP microdistribution, although multiple-dose administrations may reduce variations in the TiO2 content for each lung lobe. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  18. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction

    NASA Astrophysics Data System (ADS)

    Low, Jingxiang; Qiu, Shuoqi; Xu, Difa; Jiang, Chuanjia; Cheng, Bei

    2018-03-01

    Surface plasmon resonance (SPR) effect has been utilized in many solar conversion applications because of its ability to convert visible photons into "hot electron" energy. However, the direct evidence and enhancement of this unique effect are still great challenges, limiting its practical applications. Here we present the direct evidence and enhancement of SPR effect using TiO2 nanotube arrays (TNTAs) loaded with Ag nanoparticles (NPs) as a proof-of-concept example. Particularly, electrochemical deposition method is applied to deposit Ag NPs into the inner space of TNTAs for enhancing SPR effect of Ag NPs, as demonstrated by Raman and light absorption spectroscopies. This enhanced SPR effect is because multi-scattered light within TNTAs can be effectively utilized by Ag NPs in the inner space of TNTAs. Moreover, combining synchronous-illumination X-ray photoelectron and electrochemical impedance spectroscopy characterization, we confirm that the SPR effect of Ag NPs can enhance photocatalytic performance of TNTAs mainly from two aspects: (i) injection of "hot electrons" from Ag NPs to TNTAs and (ii) acceleration of charge carrier migration on the TNTAs through a unique near field effect. The direct evidence and enhancement of SPR effect open new perspectives in design of functional plasmonic nanomaterials with high solar conversion efficiency.

  19. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    PubMed

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (< 30 min) and highly reliable method to detect and quantify TiO 2 particles (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.

  20. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    PubMed

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Principal component analysis of Raman spectra for TiO2 nanoparticle characterization

    NASA Astrophysics Data System (ADS)

    Ilie, Alina Georgiana; Scarisoareanu, Monica; Morjan, Ion; Dutu, Elena; Badiceanu, Maria; Mihailescu, Ion

    2017-09-01

    The Raman spectra of anatase/rutile mixed phases of Sn doped TiO2 nanoparticles and undoped TiO2 nanoparticles, synthesised by laser pyrolysis, with nanocrystallite dimensions varying from 8 to 28 nm, was simultaneously processed with a self-written software that applies Principal Component Analysis (PCA) on the measured spectrum to verify the possibility of objective auto-characterization of nanoparticles from their vibrational modes. The photo-excited process of Raman scattering is very sensible to the material characteristics, especially in the case of nanomaterials, where more properties become relevant for the vibrational behaviour. We used PCA, a statistical procedure that performs eigenvalue decomposition of descriptive data covariance, to automatically analyse the sample's measured Raman spectrum, and to interfere the correlation between nanoparticle dimensions, tin and carbon concentration, and their Principal Component values (PCs). This type of application can allow an approximation of the crystallite size, or tin concentration, only by measuring the Raman spectrum of the sample. The study of loadings of the principal components provides information of the way the vibrational modes are affected by the nanoparticle features and the spectral area relevant for the classification.

  2. Photocatalytic bacterial inactivation by TiO2-coated surfaces

    PubMed Central

    2013-01-01

    The aim of this study was the evaluation of the photoactivated antibacterial activity of titanium dioxide (TiO2)-coated surfaces. Bacterial inactivation was evaluated using TiO2-coated Petri dishes. The experimental conditions optimized with Petri dishes were used to test the antibacterial effect of TiO2-coated ceramic tiles. The best antibacterial effect with Petri dishes was observed at 180, 60, 30 and 20 min of exposure for Escherichia coli, Staphylococcus aureus, Pseudomonas putida and Listeria innocua, respectively. The ceramic tiles demonstrated a photoactivated bactericidal effect at the same exposure time. In general, no differences were observed between the antibacterial effect obtained with Petri dishes and tiles. However, the photochemical activity of Petri dishes was greater than the activity of the tiles. Results obtained indicates that the TiO2-coated surfaces showed a photoactivated bactericidal effect with all bacteria tested highlighting that the titania could be used in the ceramic and building industry for the production of coated surfaces to be placed in microbiologically sensitive environments, such as the hospital and food industry. PMID:24090112

  3. Thermostable photocatalytically active TiO2 anatase nanoparticles

    NASA Astrophysics Data System (ADS)

    Qi, Fei; Moiseev, Anna; Deubener, Joachim; Weber, Alfred

    2011-03-01

    Anatase is the low-temperature (300-550 °C) crystalline polymorph of TiO2 and it transforms to rutile upon heating. For applications utilizing the photocatalytic properties of nanoscale anatase at elevated temperatures (over 600 °C) the issue of phase stabilisation is of major interest. In this study, binary TiO2/SiO2 particles were synthesized by a flame aerosol process with TiCl4 and SiCl4 as precursors. The theoretical Si/Ti ratio was varied in the range of 0.7-1.3 mol/mol. The synthesized TiO2/SiO2 samples were heat treated at 900 and 1,000 °C for 3 h to determine the thermostability of anatase. Pyrogenic TiO2 P25 (from Evonik/Degussa, Germany) widely applied as photocatalyst was used as non-thermostabilized reference material for comparison of photocatalytic activity of powders. Both the non-calcinated and calcinated powders were characterized by means of XRD, TEM and BET. Photocatalytic activity was examined with dichloroacetic acid (DCA) chosen as a model compound. It was found that SiO2 stabilized the material retarding the collapse of catalyst surface area during calcination. The weighted anatase content of 85% remains completely unchanged even after calcination at 1,000 °C. The presence of SiO2 layer/bridge as spacer between TiO2 particles freezes the grain growth: the average crystallite size increased negligibly from 17 to 18 nm even during the calcination at 1,000 °C. Due to the stabilizing effect of SiO2 the titania nanoparticles calcinated at 900 and 1,000 °C show significant photocatalytic activity. Furthermore, the increase in photocatalytic activity with calcination temperature indicates that the titania surface becomes more accessible either due to intensified cracking of the SiO2 layer or due to enhanced transport of SiO2 into the necks thus releasing additional titania surface.

  4. Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors.

    PubMed

    Valitova, Irina; Kumar, Prajwal; Meng, Xiang; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2016-06-15

    Metal oxides constitute a class of materials whose properties cover the entire range from insulators to semiconductors to metals. Most metal oxides are abundant and accessible at moderate cost. Metal oxides are widely investigated as channel materials in transistors, including electrolyte-gated transistors, where the charge carrier density can be modulated by orders of magnitude upon application of relatively low electrical bias (2 V). Electrolyte gating offers the opportunity to envisage new applications in flexible and printed electronics as well as to improve our current understanding of fundamental processes in electronic materials, e.g. insulator/metal transitions. In this work, we employ photolithographically patterned TiO2 films as channels for electrolyte-gated transistors. TiO2 stands out for its biocompatibility and wide use in sensing, electrochromics, photovoltaics and photocatalysis. We fabricated TiO2 electrolyte-gated transistors using an original unconventional parylene-based patterning technique. By using a combination of electrochemical and charge carrier transport measurements we demonstrated that patterning improves the performance of electrolyte-gated TiO2 transistors with respect to their unpatterned counterparts. Patterned electrolyte-gated (EG) TiO2 transistors show threshold voltages of about 0.9 V, ON/OFF ratios as high as 1 × 10(5), and electron mobility above 1 cm(2)/(V s).

  5. Genotoxic and cytotoxic activity of green synthesized TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Koca, Fatih Doğan; Duman, Fatih

    2018-03-01

    Nowadays, nanomaterials that are smaller than 100 nm in size are very attractive owing to their enhanced physicochemical properties. Although they have been used widely for industrial applications, their toxicity still remains a problem. This article is a new record of the synthesis of titanium dioxide nanoparticles (TiO2 NPs) by a Mentha aquatica leaf extract and determination of its toxicity to rat marrow mesenchymal stem cells. In this study, we aimed to determine the genotoxic and cytotoxic effects of biologically synthetized TiO2 NPs. The characteristic peak of the nanomaterial was observed at 354 nm. The mean size of the nanomaterial was measured to be 69 nm from SEM images. According to zeta analysis, the surface charge of the nanomaterial was - 37.6 mV. The crystalline structure of the nanomaterial was determined using XRD analysis. It was concluded that the obtained nanomaterial was TiO2 The results of the FT-IR analysis showed that the functional groups that were found in the plant extract could play an important role in the formation and stabilization of TiO2 NPs. The effective size of the TiO2 NPs was found to be 304 nm using DLS analysis. The TGA analysis results showed that the total mass loss was 4% at 900 °C. According to DNA cleavage analysis results, TiO2 NPs cause damage to the plasmid pBR322 DNA in a concentration-dependant matter. It has been noted that TiO2 NPs lead to decreased cell viability during increased time and concentration of applications on rat marrow mesenchymal stem cells. It has also been determined that bulk TiO2 causes a greater reduction in the stem cell viability compared to the biosynthesized NPs. The obtained results could be useful for further application and toxicity studies.

  6. Improving device performance of perovskite solar cells by micro-nanoscale composite mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Ting, Hungkit; Zhang, Danfei; He, Yihao; Wei, Shiyuan; Li, Tieyi; Sun, Weihai; Wu, Cuncun; Chen, Zhijian; Wang, Qi; Zhang, Guoyi; Xiao, Lixin

    2018-02-01

    In perovskite solar cells, the morphology of the porous TiO2 electron transport layer (ETL) largely determines the quality of the perovskites. Here, we chose micro-scale TiO2 (0.2 µm) and compared it with the conventional nanoscale TiO2 (20 nm) in relation to the crystallinity of perovskites. The results show that the micro-scale TiO2 is favorable for increasing the grain size of the perovskites and enhancing the light scattering. However, the oversized TiO2 results in an uneven surface. The evenness of the perovskites can be improved by nanoscale TiO2, while the crystallinity and compactness are not as good as those of the films based on micro-scale TiO2. To combine the advantages of both micro-scale and nanoscale TiO2, by mixing 0.2 µm/20 nm TiO2 with a ratio of 1:2 as the composite ETL, the device average power conversion efficiency was increased to 11.2% from 9.9% in the case of only 20 nm TiO2.

  7. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    PubMed

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Spectrum characterization and fine structure of copper phthalocyanine-doped TiO2 microcavities].

    PubMed

    Liu, Cheng-lin; Zhang, Xin-yi; Zhong, Ju-hua; Zhu, Yi-hua; He, Bo; Wei, Shi-qiang

    2007-10-01

    Copper phthalocyanine-doped TiO2 microcavities were fabricated by chemistry method. Their spectrum characterization was studied by Fourier transform infrared (FTIR) and Raman spectroscopy, and their fine structure was analyzed by X-ray absorption fine structure (XAFS). The results show that there is interaction of copper phthalocyanine (CuPc) and TiO2 microcavities after TiO2 microcavities was doped with CuPc. For example, there is absorption at 900.76 cm(-1) in FTIR spectra, and the "red shift" of both OH vibration at 3392.75 cm(-1) and CH vibration at 2848.83 cm(-1). There exist definite peak shifts and intensity changes in infrared absorption in the C-C or C-N vibration in the planar phthalocyanine ring, the winding vibration of C-H inside and C-N outside plane of benzene ring. In Raman spectrum, there are 403.4, 592.1 and 679.1 cm(-1) characterized peaks of TiO2 in CuPc-doped TiO2 microcavities, but their wave-numbers show shifts to anatase TiO2. The vibration peaks at 1586.8 and 1525.6 cm(-1) show that there exists the composite material of CuPc and TiO2. These changes are related to the plane tropism of the molecule structure of copper phthalocyanine. XAFS showed tetrahedron TiO4 structure of Ti in TiO2 microcavities doped with copper phthalocyanine, and the changes of inner "medial distances" and the surface structure of TiO2 microcavities.

  9. The Influence of Cr3+ on TiO2 Crystal Growth and Photoactivity Properties

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Hidayatika, W. N.; Sari, P. L.; Sari, P. P.; Hidayat, R.; Munawaroh, H.; Ramelan, A. H.

    2018-03-01

    The photocatalyst technology is an integrated combination of photochemical processes and catalysis in order to carry out a chemical transformation reaction. One of the semiconductor materials that have good photocatalytic activity is TiO2 anatase. This study aim to determine the effect of the Cr3+ addition on the growth of TiO2 rutile crystal and the increasing of TiO2 photoactivity. Diffractogram X-Ray of the samples showed that the synthesized TiO2 at 400 °C has been produced 100% TiO2 anatase. Synthesis of TiO2 doped Cr3+ composite was using wet impregnation method. The TiO2 doped Cr3+ composites have beed grown by annealed at a temperature of 300, 400, 500, 600 and 700 °C, respectively Annealing process have capabled to gain to the TiO2 doped Cr3+ nanocomposite. The result product annealed at 500 °C only appear anatase phase due to the Cr3+ addition influence that was able to suppress the growth of rutile. Identification of TiO2 doped Cr3+ composite using Fourier Transform Infra-Red (FT-IR) showed O-Cr vibration at 2283.72 cm-1. The TiO2 doped Cr3+ photoactivity was studied to degrade Rhodamin B. The best result on photodegradation of Rhodamin B was performed by using TiO2 doped Cr3+ composite which was annealed at 700 °C i.e. 74.71%.

  10. TiO2 Nanorods Preparation from Titanyl Sulphate Produced by Dissolution of Ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Rinawati, L.; Munifa, R. M. I.; Ramelan, A. H.; Sulistyono, Eko

    2017-02-01

    One-dimensional titanium oxides (TiO2) nanorods have substantial applications in photocatalytic, nanoelectronic, and photoelectrochemical solar cells. These applications require large quantities of materials and a production technique suitable for future industry fabrication. We demonstrate here a new method of TiO2 nanorods production from ilmenite sands (FeTiO3). In this process, the roasted ilmenite sand was separated from the iron content and dissolved in the sulphuric acid solution. Separation process of TiO2 from ilmenite has been carried out by roasting, leaching and precipitation processes. The roasting process was conducted by the addition of Na2S at a temperature of 800°C that had been deomposed ilmenite into hematite (Fe2O3), anatase TiO2, rutile TiO2, Na2SO4, NaFeS2 and NaFeO2. Separation TiO2 from titanyl sulfate (TiOSO4) after leaching in H2SO4 solution was conducted by hydrolysis-condensation step and complexation step of Fe2+ content. KCNS solution was used as a complexing agent. The xerogel synthesized TiO2 then was prepared to 1-D nanostructure of TiO2 nanorods by hydrothermal process under alkaline condition. By the two-step method, we finally gain the 1D nanorods TiO2 extracted from ilmenite sand. The characterization using the Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) obtained the nanorod morphology at a diameter about 9.6 nm.

  11. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction

    NASA Astrophysics Data System (ADS)

    Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P.

    2017-02-01

    TiO2/g-C3N4 photocatalysts with the various TiO2/g-C3N4 weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO2 was prepared by thermal hydrolysis and pure g-C3N4 was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO2/g-C3N4 nanocomposites showed moderate improvement compared to pure g-C3N4 but pure TiO2 proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO2/g-C3N4 (1:2) nanocomposite exhibited an increase compared to pure TiO2. Nevertheless, further increase of g-C3N4 amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO2 and g-C3N4 have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C3N4. This is probably due to the generation of heterojunction on the TiO2/g-C3N4 interface.

  12. Characteristics of ionic polymer-metal composite with chemically doped TiO2 particles

    NASA Astrophysics Data System (ADS)

    Jung, Youngsoo; Kim, Seong Jun; Kim, Kwang J.; Lee, Deuk Yong

    2011-12-01

    Many studies have investigated techniques to improve the bending performance of ionic polymer-metal composite (IPMC) actuators, including 'doping' of metal particles in the polymer membrane usually by means of physical processes. This study is mainly focused on the characterization of the physical, electrochemical and electromechanical properties of TiO2-doped ionic polymer membranes and IPMCs prepared by the sol-gel method, which results in a uniform distribution of the particles inside the polymer membrane. X-ray and UV-visible spectra indicate the presence of anatase-TiO2 in the modified membranes. TiO2-doped membranes (0.16 wt%) exhibit the highest level of water uptake. The glass transition temperature of these membranes, measured using differential scanning calorimetry (DSC), increases with the increase of the amount of TiO2 in the membrane. Dynamic mechanical analysis (DMA) demonstrated that the storage modulus of dried TiO2-doped ionic polymer membranes increases as the amount of TiO2 in the membrane increases, whereas the storage modulus of hydrated samples is closely related to the level of water uptake. Electrochemical impedance spectroscopy (EIS) shows that the conductivity of TiO2-doped membranes decreases with increasing TiO2 content in spite of an internal resistance drop in the samples. Above all, bending deflection of TiO2-doped IPMC decreased with higher TiO2 content in the membrane while the blocking force of each sample increased with the higher TiO2 content. Additionally, it was determined that the lifetime of IPMC is strongly dependent on the level of water uptake.

  13. Enhanced photo-degradation of paracetamol on n-platinum-loaded TiO2: The effect of ultrasound and OH/hole scavengers.

    PubMed

    Ziylan-Yavaş, Asu; Ince, Nilsun H

    2016-11-01

    Elimination/mineralization of paracetamol (PCT) was investigated by catalytic oxidation under ultrasound, UV and both. The catalyst was synthesized by immobilization of nPt on TiO2 to benefit from the ability of Pt to facilitate charge transfer processes and to separate e(-)/h(+) pairs. It was found that increasing the Pt-loading enhanced the rate of sonochemical reactions, but retarded that of photolytic reactions, due to reduced UV absorption on the surface. Simultaneous application of sonolysis and photolysis was synergistic due to disaggregation of the particles and homogenization of the active species over the catalyst surface. The decay of PCT was highly dependent on the availability of OH, as the reactions were nearly terminated in the presence of a strong OH scavenger-2-propanol. However, a remarkable rate enhancement was observed in the presence of a suitable dose of I(-), which scavenges both OH and hvb(+). The result was explained by the production of excess radicals upon sonolysis of iodide solutions, and the reactivity of PCT with them. Finally, carbon mineralization was significantly hindered in the presence of both scavengers due to increased competition for OH and inefficient formation of hydroquinone arising from reduced availability of hvb(+). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  15. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh

    2010-01-01

    We present the synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles (NPs) and TiO2 nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag2S NPs and TiO2 NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag2S NPs on TiO2 NWs was created. Due to the coupling with such a low bandgap material as Ag2S, the TiO2 nanocomposites could have a visible-light absorption capability much higher than that of pure TiO2. As a result, the synthesized Ag2S/TiO2 nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO2 (Degussa P25, Germany) under visible light.

  16. Preparation of brookite TiO2 nanoparticles with small sizes and the improved photovoltaic performance of brookite-based dye-sensitized solar cells.

    PubMed

    Xu, Jinlei; Wu, Shufang; Jin, Jingpeng; Peng, Tianyou

    2016-11-10

    Brookite TiO 2 nanoparticles with small sizes (hereafter denoted as BTP particles) were synthesized through the hydrothermal treatment of TiCl 4 solution with Pb(NO 3 ) 2 as an additive. The obtained BTP particles have a large specific surface area (∼122.2 m 2 g -1 ) and relatively uniform particle sizes (∼10 nm) with the coexistence of a small quantity of nanorods with a length of ∼100 nm. When used as a photoanode material for dye-sensitized solar cells (DSSCs), the BTP particles show a much higher dye-loading content than the brookite TiO 2 quasi nanocubes (denoted as BTN particles) with a mean size of ∼50 nm and a specific surface area of ∼34.2 m 2 g -1 that were prepared through a similar hydrothermal process but without the addition of Pb(NO 3 ) 2 . The fabricated BTP film-based solar cell with an optimized film thickness gives a conversion efficiency up to 6.36% with a 74% improvement when compared to the BTN film-based one (3.65%) under AM 1.5G one sun irradiation, while the corresponding bilayer brookite-based solar cell by using brookite TiO 2 submicrometer particles as an overlayer of the BTP film displays a significantly enhanced efficiency of 7.64%. Both of them exceed the current record (5.97%) for the conversion efficiency of pure brookite-based DSSCs reported in the literature. The present results not only demonstrate a really simple synthesis of brookite TiO 2 nanoparticles with both high phase purity and a large surface area, but also offer an efficient approach to improve the photovoltaic performance of brookite-based solar cells by offsetting brookite's inherent shortages such as lower dye-loading and poor conductivity as compared to anatase.

  17. Charge transfer in photorechargeable composite films of TiO2 and polyaniline

    NASA Astrophysics Data System (ADS)

    Nomiyama, Teruaki; Sasabe, Kenichi; Sakamoto, Kenta; Horie, Yuji

    2015-07-01

    A photorechargeable battery (PRB) is a photovoltaic device having an energy storage function in a single cell. The photoactive electrode of PRB is a bilayer film consisting of bare porous TiO2 and a TiO2-polyaniline (PANi) mixture that work as a photovoltaic current generator and an electrochemical energy storage by ion dedoping, respectively. To study the charge transfer between TiO2 and PANi, the photorechargeable quantum efficiency QE ([electron count on discharge]/[incident photon count on photocharge]) was measured by varying the thickness LS of the TiO2-PANi mixture. The quantum efficiency QEuv for UV photons had a maximum of ˜7% at LS ˜ 7 µm. The time constant τTP for the charge transfer was about 10-1 s, which was longer ten times or more than the lifetime of excited electrons within TiO2. These facts reveal that the main rate-limiting factor in the photocharging process is the charge transfer between TiO2 and PANi.

  18. Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions.

    PubMed

    Di, Kai; Zhu, Yihua; Yang, Xiaoling; Li, Chunzhong

    2006-02-15

    A type of anhydrous electrorheological (ER) material of copper phthalocyanine (CuPC)-doped mesoporous TiO2 was synthesized by in situ micelle-assisted incorporation CuPC during mesoporous TiO2 synthesis. TEM, XRD and the nitrogen adsorption-desorption isotherms demonstrated that the material had mesoporous structure and an anatase framework. The ER behavior of the suspensions of CuPC-doped mesoporous TiO2 in silicone oil with the different volume fractions was investigated under an applied electric field. It is found that the suspensions showed visible electrorheological behavior which were compared with that of pure TiO2. The dopants of CuPC molecules within the mesochannel of TiO2 mesoporous sieve improved the conductivity of the particles and produced a proper conductivity of approximately 10(-7) S m(-1). Dielectric spectra of the ER fluid were measured to examine the peak of epsilon'' should appear in the frequency range of 10(2)-10(5) Hz and have a large Deltaepsilon' in this frequency range. Therefore, the both properties may make a conjunct effect on electrorheological behavior.

  19. Photoelectrochemical Performance of TiO2/Ti Electrode for Organic Compounds

    NASA Astrophysics Data System (ADS)

    Maulidiyah, M.; Wijawan, I. B. P.; Wibowo, D.; Aladin, A.; Hamzah, B.; Nurdin, M.

    2018-05-01

    Photoelectrochemical performance of TiO2/Ti electrode was investigated by using organic compounds. The TiO2/Ti electrode was prepared by anodic oxidation at a potential bias of 25 V for 4 h then calcined for 450 °C to obtain the anatase polymorph. Subsequently, it was characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX). The XRD pattern showed that TiO2 has anatase phase as confirmed by 2θ peaks at 37.93° 63.00°, and 83.00°. Using SEM-EDX data the TiO2 layer was formed on Ti plate with the composition of Ti (4.5 keV) and O (0.5 keV) elements. Furthermore, the photoelectrochemical sensing on the three organic compounds (ascorbic acid, glucose, and titan yellow) with the electrolyte addition showed that the linearity of TiO2/Ti electrode were 0.937, 0.968, and 0.938, meanwhile without the electrolyte were 0.998, 0.989, and 0.923, respectively.

  20. Nanoparticulate anatase TiO2 (TiO2 NPs) upregulates the expression of silkworm (Bombyx mori) neuropeptide receptor and promotes silkworm feeding, growth, and silking.

    PubMed

    Ni, Min; Zhang, Hua; Li, Fan Chi; Wang, Bin Bin; Xu, Kai Zun; Shen, Wei De; Li, Bing

    2015-06-01

    Bombyx mori orphan G protein-coupled receptor, BNGR-A4, is the specific receptor of B. mori neuropeptide F (BmNPFR, neuropeptide F designated NPF). BmNPFR binds specifically and efficiently to B. mori neuropeptides BmNPF1a and BmNPF1b, which activates the ERK1/2 signaling pathway to regulate B. mori food intake and growth. Titanium dioxide nanoparticles (TiO2 NPs) can promote B. mori growth. However, whether the mechanisms of TiO2 NPs' effects are correlated with BmNPFR remains unknown. In this study, the effects of TiO2 NPs (5mg/L) feeding and BmNPFR-dsRNA injection on B. mori food intake and growth were investigated; after TiO2 NPs treatments, B. mori food intake, body weight, and cocoon shell weight were 5.82%, 4.64%, and 9.30% higher, respectively, than those of controls. The food intake, body weight, and cocoon shell weight of the BmNPFR-dsRNA injection group were reduced by 8.05%, 6.28%, and 6.98%, respectively, compared to the control. After TiO2 NPs treatment for 72h, the transcriptional levels of BmNPFR, BmNPF1a, and BmNPF1b in the midgut were 1.58, 1.43, and 1.34-folds, respectively, of those of the control, but 1.99, 2.26, and 2.19-folds, respectively, of the BmNPFR-dsRNA injection group; the phosphorylation level of MAPK was 24.03% higher than the control, while the phosphorylation level of BmNPFR-dsRNA injection group was 71.00% of control. The results indicated that TiO2 NPs affect B. mori feeding and growth through increasing the expression of BmNPFR. This study helps clarify the roles of BmNPF/BmNPFR system in TiO2 NPs' effects on B. mori feeding, growth, and development. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effects of TiO2 crystal structure on the luminescence quenching of [Ru(bpy)2(dppz)]2 +-intercalated into DNA

    NASA Astrophysics Data System (ADS)

    Chen, Linlin; Wang, Yi; Huang, Minggao; Li, Xiaodan; Zhu, Licai; Li, Hong

    2017-06-01

    The intercalation of [Ru(bpy)2(dppz)]2 + labeled as Ru(II) (bpy = 2,2‧-bipyridine and dppz = dipyrido[3,2,-a:2‧,3‧-c]phenazine) into herring sperm DNA leads to the formation of emissive Ru(II)-DNA dyads, which can be quenched by TiO2 nanoparticles (NPs) and sol-gel silica matrices at heterogeneous interfaces. The calcinations temperature exhibits a remarkable influence on the luminescence quenching of the Ru(II)-DNA dyads by TiO2 NPs. With increasing calcinations temperature in the range from 200 to 850 °C, the anatase-to-rutile TiO2 crystal structure transformation increases the average particle size and hydrodynamic diameter of TiO2 and DNA@TiO2. The anatase TiO2 has the stronger ability to unbind the Ru(II)-DNA dyads than the rutile TiO2 at room temperature. The TiO2 NPs and sol-gel silica matrices can quench the luminescence of the Ru(II) complex intercalated into DNA by selectively capturing the negatively DNA and positively charged Ru(II) complex to unbind the dyads, respectively. This present results provide new insights into the luminescence quenching and competitive binding of dye-labeled DNA dyads by inorganic NPs.

  2. Synthesis of TiO2/functionalized graphene sheets (FGSs) nanocomposites in super critical CO2

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Chen, Bo; Charpentier, Paul A.

    2010-06-01

    Highly ordered TiO2 nanowire arrays were prepared on the surface of Functionalized Graphene sheets (FGSs) by solgel method using titanium isopropoxide monomer with acetic acid as the polycondensation agent in the green solvent, supercritical carbon dioxide (sc-CO2). Morphology of synthesized materials was studied by SEM and TEM. Optical properties of the nanocomposites studied by UV spectroscopy which showed high absorption in visible area as well as reduction in their band gap compared to TiO2. By high resolution XPS, chelating bidentate structure of TiO2 with carboxylic group on the surface of graphene sheets can be confirmed. Improvement in the optical properties of the synthesized composites compared to TiO2 alone was confirmed by photocurrent measurements.

  3. Photodeposition-assisted synthesis of novel nanoparticulate In, S-codoped TiO2 powders with high visible light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Reisi-Vanani, A.; Razi, P.; Hoseinifard, S.; Jabbari, V.

    2013-11-01

    In order to search for an efficient photocatalysts working under visible light illumination, we have investigated the effect of metal and nonmetal ions (In, S) codoping on the photocatalytic activity of TiO2 nanoparticles (TiO2 NPs) prepared by combining of sol-gel (SG) and photodeposition (PD) methods using titanium tetra isopropoxide (TTIP), indium nitrate (In(NO3)3) and thiourea as precursors. In this regard, at first three different percentage of S (0.05, 0.2 and 0.5) doped into the TiO2 by SG method, and then different amount of In(III) loaded on the surface of the prepared samples by PD technique. The results showed that the In, S-codoped TiO2 (In, S-TiO2) with a spheroidal shape demonstrates a smaller grain size than the pure TiO2. Meanwhile, the UV-vis DRS of In, S-TiO2 showed a considerable red shift to the visible region. Finally, the photocatalytic activity of In, S-TiO2 photocatalysts were evaluated by photooxidative degradation of methyl orange (MO) solution under UV and visible light illumination. As a result, it was found that 0.05%S-0.5%In/TiO2, 0.2%S-1.5%In/TiO2 and 0.5%S-0.5%In/TiO2 had the highest catalytic activity under visible light in each group and among these samples 0.2%S-1.5%In/TiO2 showed the best photocatalytic performance under visible light and decomposes more than 95% MO in only 90 min.

  4. First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling

    NASA Astrophysics Data System (ADS)

    Jiang, Fengzhou; Yang, Lei; Zhou, Dali; He, Gang; Zhou, Jiabei; Wang, Fanhou; Chen, Zhi-Gang

    2018-04-01

    Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry application and surface engineering. In this study, the shape of the rutile TiO2 was constructed by applying equilibrium thermodynamics of TiO2 crystals via first-principles density functional theory (DFT) and Wulff principles. From the DFT calculations, the surface energies of six low-index stoichiometric facets of TiO2 are determined after the calibrations of crystal structure. And then, combined surface energy calculations and Wulff principles, a geometric model of equilibrium rutile TiO2 is built up, which is coherent with the typical morphology of fully-developed equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for the surface analysis and surface modification of the rutile TiO2-based materials from experimental research to industry manufacturing.

  5. Improved Photo-Detection Using Zigzag TiO2 Nanostructures as an Active Medium.

    PubMed

    Tiwari, A K; Mondal, A; Mahajan, B K; Choudhuri, B; Goswami, T; Sarkar, M B; Chakrabartty, S; Ngangbam, C; Saha, S

    2015-07-01

    Zigzag TiO2 nanostructures were fabricated using oblique angle deposition technique. The field emission gun-scanning electron microscope (FEG-SEM) image shows that the TiO2 zigzag nanostructures were ~500 nm in length. Averagely two times enhanced UV-Vis absorption was recorded for zigzag structure compared to perpendicular TiO2 nanowires. The main band transition was observed at ~3.4 eV. The zigzag TiO2 exhibited high turn on voltage (+11 V) than that of nanowire (+2 V) detector under dark which were reduced to +0.2 V and +1.0 V under white light illumination, respectively. A maximum ~6 fold photo-responsivity was observed for the zigzag TiO2 compared with nanowire device at + 1.0 V applied potential. The maximum photo-responsivity of 0.36 A/W at 370 nm was measured for the zigzag TiO2 detector. The TiO2 zigzag detector showed slow response with rise time of 10.2 s and fall time of 10.3 s respectively. The UV (370 nm) to visible (450 nm) wavelength rejection ratio of photo-responsivity was recorded ~4 times for the detector.

  6. Calcination Conditions on the Properties of Porous TiO2 Film

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjie; Pei, Xiaobei; Bai, Jiawei; He, Hongbo

    2014-03-01

    Porous TiO2 films were deposited on SiO2 precoated glass-slides by sol-gel method using PEG1000 as template. The strongest XRD diffraction peak at 2θ = 25.3° is attributed to [101] plane of anatase TiO2 in the film. The increases of calcination temperature and time lead to stronger diffraction peak intensity. High transmittance and blue shift of light absorption edge are the properties of the film prepared at high calcination temperature. The average pore size of the films increases with the increasing calcination temperature as the result of TiO2 crystalline particles growing up and aggregation, accompanied with higher specific surface area. Photocatalytic activity of porous TiO2 films increases with the increasing calcination temperature. The light absorption edge of the films slightly moves to longer wavelength region along with the increasing calcination time. The mesoporous film calcinated at 500 °C for 2 h has the highest transmittance, the maximum surface area, and the maximum total pore volume. Consequently, the optimum degradation activity is achieved on the porous TiO2 film calcinated at 500 °C for 2 h.

  7. Fabrication of transparent TiO2 nanotube-based photoanodes for CdS/CdTe quantum co-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gualdrón-Reyes, A. F.; Cárdenas-Arenas, A.; Martínez, C. A.; Kouznetsov, V. V.; Meléndez, A. M.

    2017-01-01

    In order to fabricate a solar cell, ordered TiO2 nanotube (TNT) arrays were prepared by double anodization. TNT arrays with variable lengths were obtained by changing the duration of the anodizing process of up to 3h. TNT membranes were transferred to indium tin oxide substrates and attached with a B-TiO2 sol. TNT photoanode with the best photoelectrochemical performance was sensitized with CdS by SILAR method. On other hand, CdTe quantum dots prepared via colloidal synthesis were deposited on TNT photoanodes for 2h, 4h and 6h. In addition, TNT/CdS was loaded with CdTe quantum dots for 4 h. Morphology and chemical modification of TiO2 were characterized by FESEM and XPS, while their photoelectrochemical performance was measured by open-circuit photopotential and photovoltammetry under visible light. TiO2 nanotubes grown during 2.5h showed the highest photocurrent due to presence of Ti3+ donor states by N and F co-doping, increasing the number of photogenerated electrons transported to back collector. TNT/CdS/CdTe photoanode reach the highest conversion efficiency under AM 1.5G simulated solar illumination.

  8. Dip coated TiO2 nanostructured thin film: synthesis and application

    NASA Astrophysics Data System (ADS)

    Vanaraja, Manoj; Muthukrishnan, Karthika; Boomadevi, Shanmugam; Karn, Rakesh Kumar; Singh, Vijay; Singh, Pramod K.; Pandiyan, Krishnamoorthy

    2016-02-01

    TiO2 thin film was fabricated by dip coating method using titanium IV chloride as precursor and sodium carboxymethyl cellulose as thickening as well as capping agent. Structural and morphological features of TiO2 thin film were characterized by X-ray diffractometer and field emission scanning electron microscope, respectively. Crystallinity of the film was confirmed with high-intensity peak at (101) plane, and its average crystallite size was found to be 28 nm. The ethanol-sensing properties of TiO2 thin film was studied by the chemiresistive method. Furthermore, various gases were tested in order to verify the selectivity of the sensor. Among the several gases, the fabricated TiO2 sensor showed very high selectivity towards ethanol at room temperature.

  9. Enhanced supercapacitor performances using C-doped porous TiO2 electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Juanrong; Qiu, Fengxian; Zhang, Ying; Liang, Jianzheng; Zhu, Huijun; Cao, Shunsheng

    2015-11-01

    Considerable efforts have been paid to develop electrochemical capacitors with energy storage capability in order to meet the demands of multifunctional electronics. Here we report a facile method to fabricate C-doped porous anatase TiO2. This technique involves the preparation of monodisperse cationic polystyrene nanoparticles (CPN), following sequential deposition of tetrabutylorthotitanate (TBT), and directly carbonizing of CPN. Interestingly, during the process of carbonizing CPN, a phase transition of TiO2 will be happened and whist C-doped porous anatase TiO2 is in situ formed. When this porous C-doped TiO2 is used as electrode material to prepare electrochemical capacitor, it manifests a higher capacitance than the commercial P25, effectively broadening it potential for many practical applications.

  10. Bimodal TiO2 Contents of Mare Basalts at Apollo and Luna Sites and Implications for TiO2 Derived from Clementine Spectral Reflectance

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.

    2001-01-01

    A revised algorithm to estimate Ti contents of mare regions centered on Apollo and Luna sites shows a bimodal distribution, consistent with mare-basalt sample data. A global TiO2 map shows abundant intermediate TiO2 basalts in western Procellarum. Additional information is contained in the original extended abstract.

  11. Highly efficient TiO2-based microreactor for photocatalytic applications.

    PubMed

    Krivec, Matic; Žagar, Kristina; Suhadolnik, Luka; Čeh, Miran; Dražić, Goran

    2013-09-25

    A photocatalytic, TiO2-based microreactor is designed and fabricated on a metal-titanium foil. The microchannel is mechanically engraved in the substrate foil, and a double-layered TiO2 anatase film is immobilized on its inner walls with a two-step synthesis, which included anodization and a hydrothermal treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm the presence of an approximately 10-μm-thick layer of titania nanotubes and anatase nanoparticles. The SEM and transmission electron microscopy (TEM) of the cross sections show a dense interface between the titanium substrate and the TiO2 nanotubes. An additional layer of TiO2-anatase nanoparticles on the top of the film provides a large, photocatalytic surface area. The metal-titanium substrate with a functionalized serpentine channel is sealed with UV-transparent Plexiglas, and four 0.8-mW UV LEDs combined with a power controller on a small printed-circuit board are fixed over the substrate. The photocatalytic activity and the kinetic properties for the degradation of caffeine are provided, and the longer-term stability of the TiO2 film is evaluated. The results show that after 6 months of use and 3600 working cycles the microreactor still exhibits 60% of its initial efficiency.

  12. Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Marami, Mohammad Bagher; Farahmandjou, Majid; Khoshnevisan, Bahram

    2018-03-01

    Fe-doped TiO2 powders were synthesized by the sol-gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18-39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol-gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase/rutile) of Fe-doped TiO2 by this facile method.

  13. Sol-Gel Synthesis of Fe-Doped TiO2 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Marami, Mohammad Bagher; Farahmandjou, Majid; Khoshnevisan, Bahram

    2018-07-01

    Fe-doped TiO2 powders were synthesized by the sol-gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18-39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol-gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase /rutile) of Fe-doped TiO2 by this facile method.

  14. Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite.

    PubMed

    Khataee, Alireza; Kayan, Berkant; Gholami, Peyman; Kalderis, Dimitrios; Akay, Sema

    2017-11-01

    TiO 2 -biochar (TiO 2 -BC) nanocomposite was synthesized by sol-gel method. The characteristics of the prepared nanocomposite were examined using X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and N 2 adsorption-desorption analysis. The performance of synthesized TiO 2 -BC nanocomposite as efficient sonocatalyst was studied for the degradation of Reactive Blue 69 (RB69). Sonocatalytic degradation of RB69 in the presence of TiO 2 -BC nanocomposite could be explained by the mechanisms of hot spots and sonoluminescence. The optimized values for main operational parameters were determined as pH of 7, TiO 2 -BC dosage of 1.5g/L, RB69 initial concentration of 20mg/L and ultrasonic power of 300W. Furthermore, the effect of OH, h + and O 2 - scavengers on the RB69 degradation efficiency was studied. Gas chromatography-mass spectroscopy analysis was used to identify intermediate compounds formed during the RB69 degradation. The results of repeated applications of TiO 2 -BC in the sonocatalytic process verified its stability in long-term usage. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption.

    PubMed

    Cho, Sumin; Ahn, Changui; Park, Junyong; Jeon, Seokwoo

    2018-05-24

    Considering the environmental issues, it is essential to develop highly efficient and recyclable photocatalysts in purification systems. Conventional TiO2 nanoparticles have strong intrinsic oxidizing power and high surface area, but are difficult to collect after use and rarely absorb visible light, resulting in low photocatalytic efficiency under sunlight. Here we develop a new type of highly efficient and recyclable photocatalyst made of a three-dimensional (3D) nanostructured N-doped TiO2 monolith with enhanced visible light absorption. To prepare the sample, an ultrathin TiN layer (∼10 nm) was conformally coated using atomic layer deposition (ALD) on 3D nanostructured TiO2. Subsequent thermal annealing at low temperature (550 °C) converted TiN to anatase phase N-doped TiO2. The resulting 3D N-doped TiO2 showed ∼33% enhanced photocatalytic performance compared to pure 3D TiO2 of equivalent thickness under sunlight due to the reduced bandgap, from 3.2 eV to 2.75 eV through N-doping. The 3D N-doped TiO2 monolith could be easily collected and reused at least 5 times without any degradation in photocatalytic performance.

  16. A 2 TiO 5 (A = Dy, Gd, Er, Yb) at High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sulgiye; Rittman, Dylan R.; Tracy, Cameron L.

    The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, and Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates, and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal and cubic), respectively. All samples undergo irreversible high pressure phase transformations, but with different onset pressures depending on the initial structure. While individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressuremore » range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ~ 21 GPa, followed by Im-3m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (~ 55 GPa) reached, indicating a kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high pressure cubic X-type phase (Im-3m) is confirmed using highresolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.« less

  17. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    PubMed

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Tungsten-Doped TiO2 Nanolayers with Improved CO2 Gas Sensing Properties for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Saberi, Maliheh; Ashkarran, Ali Akbar

    Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.

  19. The Effects of Leaching Process to the TiO2 Synthesis from Bangka Ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Pramono, E.; Argawan, P.; Djatisulistya, A.; Firdiyono, F.; Sulistiyono, E.; Sari, P. P.

    2018-03-01

    Ilmenite mineral is a naturally occurring iron titanate (FeTiO3) and is abundant in nature. The separation of components into TiO2 and Fe2O3 must be expand. The purpose of this research is to synthesis TiO2 nanoparticles from the filtrate of Bangka ilmenite leaching process. Leaching of ilmenite was done with H2SO4 and HCl at various concentrations. The formation of TiO2 crystal determined by hydrolysis conditions and condensation reaction. TiO2 synthesized from the filtrate of sulfuric acid leaching that produced from TiO2 anatase phase when hydrolyzed in an aquaregia solvent and low concentrations of HCl (0.1M). Hydrolysis conditions at higher concentrations of HCl (1M) was produced TiO2 anatase-rutile phase. The synthesis of TiO2 from the filtrate of hydrochloric acid leaching was produced anatase phase. While the condition under the alcoholic solvent (2-propanol: H2O (v/v) = 9: 1) anatase phase crystallites grow in the temperature range up to 550 °C, above this temperature, TiO2 transform into rutile phase.

  20. Controlled synthesis and facets-dependent photocatalysis of TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Roy, Nitish; Park, Yohan; Sohn, Youngku; Pradhan, Debabrata

    2015-04-01

    Titanium dioxide (TiO2) is a wide band gap semiconductor that has been extensively used in several environmental applications including degradation of organic hazardous chemicals, water splitting to generate hydrogen, dye sensitized solar cells, self cleaning agents, and pigments. Herein we demonstrate the synthesis of TiO2 nanocrystals (NCs) with the shapes of ellipsoids, rods, cuboids, and sheets with different exposed facets using a noncorrosive and nontoxic chemical (i.e. diethanolamine) as the shape controlling agent, unlike hydrofluoric acid commonly used. The TiO2 NCs of diverse shapes with different exposed facets were tested for photocatalytic hydroxyl radical (OH•) formation, which determines their photocatalytic behavior and the results were compared with the standard P-25 Degussa. The formation rate of OH• per specific surface area was found to be >6 fold higher for rod-shaped TiO2 NCs than that of commercial Degussa P25 catalyst. The highest photocatalytic activity of rod-shaped TiO2 NCs is ascribed to the unique chemical environment of {010} exposed facets which facilitates the electron/hole separation in presence of {101} facets.

  1. Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays.

    PubMed

    Li, Xin; Dai, Si-Min; Zhu, Pei; Deng, Lin-Long; Xie, Su-Yuan; Cui, Qian; Chen, Hong; Wang, Ning; Lin, Hong

    2016-08-24

    Perovskite solar cells (PSCs) with TiO2 materials have attracted much attention due to their high photovoltaic performance. Aligned TiO2 nanorods have long been used for potential application in highly efficient perovskite solar cells, but the previously reported efficiencies of perovskite solar cells based on TiO2 nanorod arrays were underrated. Here we show a solvothermal method based on a modified ketone-HCl system with the addition of organic acids suitable for modulation of the TiO2 nanorod array films to fabricate highly efficient perovskite solar cells. Photovoltaic measurements indicated that efficient nanorod-structured perovskite solar cells can be achieved with the length of the nanorods as long as approximately 200 nm. A record efficiency of 18.22% under the reverse scan direction has been optimized by avoiding direct contact between the TiO2 nanorods and the hole transport materials, eliminating the organic residues on the nanorod surfaces using UV-ozone treatment and tuning the nanorod array morphologies through addition of different organic acids in the solvothermal process.

  2. Determination of surface morphology of TiO2 nanostructure using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Das, Gangadhar; Kumar, Manoj; Biswas, A. K.; Khooha, Ajay; Mondal, Puspen; Tiwari, M. K.

    2017-05-01

    Nanostructures of Titanium oxide (TiO2) are being studied for many promising applications, e.g., solar photovoltaics, solar water splitting for H2 fuel generation etc., due to their excellent photo-catalytic properties. We have synthesized low-dimensional TiO2 nanoparticles by gas phase CW CO2 laser pyrolysis. The laser synthesis process has been optimized for the deposition of highly pure, nearly mono-dispersed TiO2 nanoparticles on silicon substrates. Hard x-ray standing wave-field (XSW) measurements in total reflection geometry were carried out on the BL-16 beamline of Indus-2 synchrotron radiation facility in combination with x-ray reflectivity and grazing incidence x-ray fluorescence measurements for the determination of surface morphology of the deposited TiO2 nanostructures. The average particle size of TiO2 nanostructure estimated using transmission electron microscopy (TEM) was found to closely agree with the XSW and grazing incidence x-ray diffraction (GIXRD) results.

  3. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae.

    PubMed

    Zhang, Shuai; Deng, Rui; Lin, Daohui; Wu, Fengchang

    Engineered nanoparticles are increasingly discharged into the environment. After discharge, these nanoparticles can interact with co-existing organic contaminants, resulting in a phenomena referred to as 'joint toxicity'. This study evaluated joint toxicities of TiO 2 nanoparticles (TiO 2 NPs) with four different (atrazine, hexachlorobenzene, pentachlorobenzene, and 3,3',4,4'-tetrachlorobiphenyl) organochlorine contaminants (OCs) toward algae (Chlorella pyrenoidosa). The potential mechanisms underlying the joint toxicity were discussed, including TiO 2 NPs-OC interactions, effects of TiO 2 NPs and OCs on biophysicochemical properties of algae and effects of TiO 2 NPs and OCs on each other's bioaccumulation in algae. The results indicate that coexposure led to a synergistic effect on the joint toxicity for TiO 2 NPs-atrazine, antagonistic effect for TiO 2 NPs-hexachlorobenzene and TiO 2 NPs-3,3',4,4'-tetrachlorobiphenyl, and an additive effect for TiO 2 NPs-pentachlorobenzene. There was nearly no adsorption of OCs by TiO 2 NPs, and the physicochemical properties of TiO 2 NPs were largely unaltered by the presence of OCs. However, both OCs and NPs affected the biophysicochemical properties of algal cells and thereby influenced the cell surface binding and/or internalization. TiO 2 NPs significantly increased the bioaccumulation of each OC. However, with the exception of atrazine, the bioaccumulation of TiO 2 NPs decreased when used with each OC. The distinct joint toxicity outcomes were a result of the balance between the increased toxicities of OCs (increased bioaccumulations) and the altered toxicity of TiO 2 NPs (bioaccumulation can either increase or decrease). These results can significantly improve our understanding of the potential environmental risks associated with NPs.

  4. Resistive switching in TiO2 nanocolumn arrays electrochemically grown

    NASA Astrophysics Data System (ADS)

    Marik, M.; Mozalev, A.; Hubalek, J.; Bendova, M.

    2017-04-01

    Resistive switching in metal oxides, especially in TiO2, has been intensively investigated for potential application in non-volatile memory microdevices. As one of the working mechanisms, a conducting filament consisting of a substoichiometric oxide phase is created within the oxide layer. With the aim of investigating the filament formation in spatially confined elements, we fabricate arrays of self-ordered TiO2 nanocolumns by porous-anodic-alumina (PAA)-assisted anodizing, incorporate them into solid-state microdevices, study their electron transport properties, and reveal that this anodizing approach is suitable for growing TiO2 nanostructures exhibiting resistive switching. The electrical properties and resistive switching behavior are both dependent on the electrolytic formation conditions, influencing the concentration and distribution of oxygen vacancies in the nanocolumn material during the film growth. Therefore, the PAA-assisted TiO2 nanocolumn arrays can be considered as a platform for investigating various phenomena related to resistive switching in valve metal oxides at the nanoscale.

  5. Photocatalytic self-cleaning TiO2 coatings on carbonatic stones

    NASA Astrophysics Data System (ADS)

    Bergamonti, Laura; Bondioli, Federica; Alfieri, Ilaria; Lorenzi, Andrea; Mattarozzi, Monica; Predieri, Giovanni; Lottici, Pier Paolo

    2016-02-01

    A self-cleaning coating based on TiO2 nanoparticles obtained by sol-gel method in an alkaline environment has been tested on different types of carbonatic stones: Botticino, Carrara and Pietra Dorata, frequently used in historic buildings. XRD and Raman measurements confirmed the nanocrystalline nature of titania in anatase form, with 5-10 nm crystal size, and evidenced a small amount of brookite. A fast photocatalytic oxidation by TiO2 coatings of the stained stones with methyl orange and methylene blue under UV lamp irradiation has been assessed. The enhancement of surface wettability due to UV-induced TiO2 hydrophilicity has been evidenced by contact angle measurements. ESEM/EDS showed a surface distribution of the coating fairly homogeneous. The coating does not introduce significant colorimetric changes of the stones and does not alter the water capillarity absorption. Thus, the alkaline nanocrystalline TiO2 is promising for self-cleaning coatings on carbonatic stones.

  6. Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica.

    PubMed

    Pakdel, Esfandiar; Daoud, Walid A

    2013-07-01

    This manuscript aims to investigate the functionalization of cotton fabrics with TiO2/SiO2. In this study, the sol-gel method was employed to prepare titania and silica sols and the functionalization was carried out using the dip-pad-dry-cure process. Titanium tetra isopropoxide (TTIP) and tetra ethyl orthosilicate (TEOS) were utilized as precursors of TiO2 and SiO2, respectively. TiO2/SiO2 composite sols were prepared in three different Ti:Si molar ratios of 1:0.43, 1:1, and 1:2.33. The self-cleaning property of cotton samples functionalized with TiO2/SiO2 was assessed based on the coffee stain removal capability and the decomposition rate of methylene blue under UV irradiation. FTIR study of the TiO2/SiO2 photocatalyst confirmed the existence of Si-O-Si and Ti-O-Si bonds. Scanning electron microscopy was employed to investigate the morphology of the functionalized cotton samples. The samples coated with TiO2/SiO2 showed greater ability of coffee stain removal and methylene blue degradation compared with samples functionalized with TiO2 demonstrating improved self-cleaning properties. The role of SiO2 in improving these properties is also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye; Wang, Xiaodong; Zhang, Min; Yang, Jianjun

    2015-02-01

    Lanthanum- and nitrogen-codoped TiO2 photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO2 were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra. The La-/N-codoped TiO2 showed excellent photoactivity of propylene oxidation compared with the single-doped TiO2 and La-/N-codoped P25 TiO2 nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.

  8. Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications

    NASA Astrophysics Data System (ADS)

    Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash

    2017-03-01

    Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.

  9. Fabrication of Photocatalytic Paper Using TiO2 Nanoparticles Confined in Hollow Silica Capsules.

    PubMed

    Fujiwara, Kensei; Kuwahara, Yasutaka; Sumida, Yuki; Yamashita, Hiromi

    2017-01-10

    TiO 2 nanoparticles (NPs) encapsulated in hollow silica spheres (TiO 2 @HSSs) show a shielding-effect that can insulate photocatalytically active TiO 2 NPs from the surrounding environment and thus prohibit the self-degradation of organic support materials under ultraviolet (UV)-light irradiation. In this study, photocatalytically active papers were fabricated by combining TiO 2 @HSS and cellulose fibers, and their photocatalytic activities and durability under UV-light irradiation were examined. The yolk-shell nanostructured TiO 2 @HSS, which has an ample void space between inner TiO 2 NPs and an outer silica shell, was synthesized using a facile single-step method utilizing an oil-in-water microemulsion as an organic template. The thus-prepared TiO 2 @HSS particles were deposited onto a cellulose paper either by the chemical adhesion process via ionic bonding or by the physical adhesion process using a dual polymer system. The obtained paper containing TiO 2 @HSS particles with high air permeability exhibited a higher photocatalytic activity in the photocatalytic decomposition of volatile organic compounds than unsupported powdery TiO 2 @HSS particles because of the uniform dispersion on the paper with a reticular fiber network. In addition, the paper was hardly damaged under UV-light irradiation, whereas the paper containing naked TiO 2 NPs showed a marked deterioration with a considerably decreased strength, owing to the ability of the silica shell to prevent direct contact between TiO 2 and organic fibers. This study can offer a promising method to fabricate photocatalytically active papers with a photoresistance property available for real air cleaning.

  10. Structure and Formation Mechanism of Black TiO 2 Nanoparticles

    DOE PAGES

    Tian, Mengkun; Mahjouri-Samani, Masoud; Eres, Gyula; ...

    2015-10-27

    The remarkable properties of black TiO 2 are due to its disordered surface shell surrounding a crystalline core. However, the chemical composition and the atomic and electronic structure of the disordered shell and its relationship to the core remain poorly understood. Using advanced transmission electron microscopy methods, we show that the outermost layer of black TiO 2 nanoparticles consists of a disordered Ti 2O 3 shell. The measurements show a transition region that connects the disordered Ti 2O 3 shell to the perfect rutile core consisting first of four to five monolayers of defective rutile, containing clearly visible Ti interstitialmore » atoms, followed by an ordered reconstruction layer of Ti interstitial atoms. Our data suggest that this reconstructed layer presents a template on which the disordered Ti 2O 3 layers form by interstitial diffusion of Ti ions. In contrast to recent reports that attribute TiO 2 band-gap narrowing to the synergistic action of oxygen vacancies and surface disorder of nonspecific origin, our results point to Ti 2O 3, which is a narrow-band-gap semiconductor. In conclusion, as a stoichiometric compound of the lower oxidation state Ti 3+ it is expected to be a more robust atomic structure than oxygen-deficient TiO 2 for preserving and stabilizing Ti 3+ surface species that are the key to the enhanced photocatalytic activity of black TiO 2.« less

  11. Highly ordered Fe3+/TiO2 nanotube arrays for efficient photocataltyic degradation of nitrobenzene

    NASA Astrophysics Data System (ADS)

    Zhang, Yiyang; Gu, Di; Zhu, Lingyue; Wang, Baohui

    2017-10-01

    Highly ordered TiO2 nanotube arrays (TiO2 NTs) were prepared through a facile two-step electrochemical anodization, subsequently, active iron ions were introduced into the TiO2 NTs via a direct impregnation method. The XPS results showed that the iron elements existed in TiO2 NTs in the form of Fe3+ ions. Compared with the undoped TiO2 NTs, the absorption edge of Fe3+/TiO2 NTs showed an overt red shift and the photocurrent improved obviously, which indicated that Fe3+/TiO2 had a much higher photocatalytic activity. The optimal doping content was tested to be 0.1 mol/L which could make the photocatalytic activity of TiO2 NTs obviously improves under both visible and ultraviolent light. The prepared samples were adopted as photocatalyst to degrade nitrobenzene (NB). The reaction rate constants ks under UV light were in the order kone-stepTiO2NTs = 0.00338 TiO NTs = 0.00455 TiO NTs = 0.00736 which showed the superior photocatalysis activity of Fe3+/TiO2 NTs. The final degradation products were probed to be CO2 and H2O, which demonstrated that NB could be completely mineralized to harmless inorganic substance. The mechanism of NB degradation with Fe3+/TiO2 was also discussed and the quenching experiments further confirm that rad OH, h+ and rad O2- are active intermediates in the process of photocatalytic degradation.

  12. Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes.

    PubMed

    Ionita, Daniela; Bajenaru-Georgescu, Daniela; Totea, Georgeta; Mazare, Anca; Schmuki, Patrik; Demetrescu, Ioana

    2017-01-30

    Herein we investigate the efficiency of various biomimetic coatings for localized drug delivery, using vancomycin as key therapeutic drug, which is a widely used antibiotic for the treatment of strong infections caused by positive Gram bacteria. We evaluate classical hydroxyapatite and biomimetic hydroxyapatite-collagen coatings obtained by electrochemical deposition as well as TiO 2 nanotubes arrays obtained by electrochemical anodization. Surface morphology, compositional and structural data confirm the incorporation of vancomycin into the layers and drug release profiles for vancomycin evaluate their release ability. Namely, hydroxyapatite coatings lead to a ≈92% vancomycin release after 30h and hydroxyapatite-collagen to 85%, while the TiO 2 nanotubes layers lead to 78% release. The antibacterial effect of such drug loaded coatings is evaluated against S. aureus (Gram-positive bacteria). Our study shows that the vancomycin incorporated hydroxyapatite coatings lead to a faster release, while the nanotubular coatings may lead to longer time release and additionally both types of coatings ensure a good antibacterial inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Amphiphilic block-graft copolymer templates for organized mesoporous TiO2 films in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lim, Jung Yup; Lee, Chang Soo; Lee, Jung Min; Ahn, Joonmo; Cho, Hyung Hee; Kim, Jong Hak

    2016-01-01

    Amphiphilic block-graft copolymers composed of poly(styrene-b-butadiene-b-styrene) (SBS) backbone and poly(oxyethylene methacrylate) (POEM) side chains are synthesized and combined with hydrophilically preformed TiO2 (Pre-TiO2), which works as a structural binder as well as titania source. This results in the formation of crack free, 6-μm-thick, organized mesoporous TiO2 (OM-TiO2) films via one-step doctor-blading based on self-assembly of SBS-g-POEM as well as preferential interaction of POEM chains with Pre-TiO2. SBS-g-POEM with different numbers of ethylene oxide repeating units, SBS-g-POEM(500) and SBS-g-POEM(950), are used to form OM-TiO2(500) and OM-TiO2(950), respectively. The efficiencies of dye-sensitized solar cells (DSSCs) with a quasi-solid-state polymer electrolyte reach 5.7% and 5.8% at 100 mW/cm2 for OM-TiO2(500) and OM-TiO2(950), respectively. The surface area of OM-TiO2(950) was greater than that of OM-TiO2(500) but the light reflectance was lower in the former, which is responsible for similar efficiency. Both DSSCs exhibit much higher efficiency than one (4.8%) with randomly-organized particulate TiO2 (Ran-TiO2), which is attributed to the higher dye loading, reduced charge recombination and improved pore infiltration of OM-TiO2. When utilizing poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII) and mesoporous TiO2 spheres as the solid electrolyte and the scattering layer, the efficiency increases up to 7.5%, one of the highest values for N719-based solid-state DSSCs.

  14. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    PubMed

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-13

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.

  15. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals

    PubMed Central

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-01

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs. PMID:26758941

  16. Simplified TiO2 force fields for studies of its interaction with biomolecules

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  17. Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.

    PubMed

    Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C

    2018-02-14

    Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

  18. Coaxial nanofibers containing TiO2 in the shell for water treatment applications

    NASA Astrophysics Data System (ADS)

    Kizildag, N.; Geltmeyer, J.; Ucar, N.; De Buysser, K.; De Clerck, K.

    2017-10-01

    In recent years, the basic electrospinning setup has undergone many modifications carried out to enhance the quality and improve the functionality of the resulting nanofibers. Being one of these modifications, coaxial electrospinning has attracted great attention. It enables to use different materials in nanofiber production and produce multi-layered and functional nanofibers in one step. In this study, TiO2 has been added to the shell layer of coaxial nanofibers to develop functional nanofibers which may be used in water treatment applications. The coaxial nanofibers containing TiO2 in the shell layer are compared to uniaxial nanofibers containing TiO2 in bulk fiber structure, regarding their morphology and photocatalytic activity. Uniform uniaxial and coaxial nanofibers with TiO2 were obtained. The average nanofiber diameter of coaxial nanofibers were higher. Coaxial nanofibers, which contained lower amount of TiO2, displayed similar performance to uniaxial nanofibers with TiO2 in terms of photocatalytic degradation ability against isoproturon.

  19. Benzimidazole derivative vs. different phases of TiO2-physico-chemical approach.

    PubMed

    Karunakaran, C; Jayabharathi, J; Jayamoorthy, K

    2013-10-01

    1-Benzyl-2-phenyl-1H-benzo[d]imidazole (BPBI) has been synthesized by simple steps and characterized by spectral studies. Absorption and fluorescence spectral studies have been employed to investigate the interaction of BPBI with the anatase, hombikat, P25 and rutile phases of TiO2. The emission of the BPBI is efficiently quenched by anatase, hombikat and P25 TiO2 nanoparticles owing to charge injection from the excited singlet state of BPBI to the conduction band of the TiO2 nanoparticles. Surprisingly, rutile phase enhances the fluorescence which is likely due to lowering of LUMO and HOMO levels of the ligand on ducking of the benzimidazole moiety of the BPBI molecule into the void space of rutile TiO2. Electron injection from photoexcited BPBI to the TiO2 conduction band (S*→S(+)+e(-)(CB)) is likely to enhance the fluorescence. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  1. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Yoo, Seung Hwa; Ali, Ghafar; Cho, Sung Oh

    2010-03-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  2. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    PubMed Central

    2010-01-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2. PMID:20671780

  3. Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Ding, Lei; Xi, Yaoning; Shi, Liang; Su, Ge; Gao, Rongjie; Wang, Wei; Dong, Bohua; Cao, Lixin

    2018-06-01

    In this paper, Ag(CH3NH2)2+, Ag(NH3)2+ and Ag+ with different radii have been used as silver sources to find out the distribution of Ag ions on the H-TNT surface, which is critical to the final performance. The influence of this distribution on visible photocatalytic activity is further studied. The results indicate that, when Ag+ used as silver source with low concentration, these small sized silver ions mainly distribute on interlayer spacing of H-TNT. After heat-treatment and photo-reduction, the generated silver nanoparticles uniformly embed in the anatase TiO2 nanotube walls, and bring large interfacial area between Ag particles and TiO2 nanotubes. The separation effect of photogenerated electron-hole pair in TiO2 is enhanced by Ag particles, and achieves the best at 0.15 g/L, much higher than P25, TiO2/0, Ag-N@TiO2 and Ag-C-N@TiO2. This paper provides new ideas for the modification of TiO2 nanotubes.

  4. Influence of Ta doping in resistive switching behavior of TiO2

    NASA Astrophysics Data System (ADS)

    Barman, Arabinda; Saini, Chetan P.; Deshmukh, Sujit; Dhar, Sankar; Kanjilal, Aloke

    An approach has been made to understand the resistive switching behavior in Ta-doped TiO2 films on Pt substrates. Prior to thin film deposition, Ta-doped TiO2 powder has been synthesized chemically using Ta and Ti precursor solutions. However, the Ta doping has seriously been affected by increasing Ta concentration above 1 at% due to the segregation of Ta2O5 phase. The Ta-doped TiO2 targets have been prepared for pulsed laser deposition of the films on Pt substrates using an excitation wavelength of 248 nm. The structural and chemical properties of the Ta-doped TiO2 films have been investigated in details with the help of XRD, SIMS, XAS and XPS. The stoichiometry of the Ta-doped TiO2 films with increasing depth has been verified initially by SIMS. The electrical study of the corresponding device structures further suggests that the optimized resistive switching effect can be accomplished up to a threshold Ta-doping of 1 at%. Nevertheless, a highly conducting behavior has been shown when the TiO2 films are doped with 2 at% Ta. These results will be discussed in details in the light of defect induced resistive switching phenomenon.

  5. Efficient Bulk Heterojunction CH3NH3PbI3-TiO2 Solar Cells with TiO2 Nanoparticles at Grain Boundaries of Perovskite by Multi-Cycle-Coating Strategy.

    PubMed

    Shao, Jun; Yang, Songwang; Liu, Yan

    2017-05-17

    A novel bulk heterojunction (BHJ) perovskite solar cell (PSC), where the perovskite grains act as donor and the TiO 2 nanoparticles act as acceptor, is reported. This efficient BHJ PSC was simply solution processed from a mixed precursor of CH 3 NH 3 PbI 3 (MAPbI 3 ) and TiO 2 nanoparticles. With dissolution and recrystallization by multi-cycle-coating, a unique composite structure ranging from a MAPbI 3 -TiO 2 -dominated layer on the substrate side to a pure perovskite layer on the top side is formed, which is beneficial for the blocking of possible contact between TiO 2 and the hole transport material at the interface. Scanning electron microscopy clearly shows that TiO 2 nanoparticles accumulate along the grain boundaries (GBs) of perovskite. The TiO 2 nanoparticles at the GBs quickly extract and reserve photogenerated electrons before they transport into the perovskite phase, as described in the multitrapping model, retarding the electron-hole recombination and reducing the energy loss, resulting in increased V OC and fill factor. Moreover, the pinning effect of the TiO 2 nanoparticles at the GBs from the strong bindings between TiO 2 and MAPbI 3 suppresses massive ion migration along the GBs, leading to improved operational stability and diminished hysteresis. Photoluminescence (PL) quenching and PL decay confirm the efficient exciton dissociation on the heterointerface. Electrochemical impedance spectroscopy and open-circuit photovoltage decay measurements show the reduced recombination loss and improved carrier lifetime of the BHJ PSCs. This novel strategy of device design effectively combines the benefits of both planar and mesostructured architectures whilst avoiding their shortcomings, eventually leading to a high PCE of 17.42% under 1 Sun illumination. The newly proposed approach also provides a new way to fabricate a TiO 2 -containing perovskite active layer at a low temperature.

  6. Preparation of rutile TiO(2) coating by thermal chemical vapor deposition for anticoking applications.

    PubMed

    Tang, Shiyun; Wang, Jianli; Zhu, Quan; Chen, Yaoqiang; Li, Xiangyuan

    2014-10-08

    To inhibit the metal catalytic coking and improve the oxidation resistance of TiN coating, rutile TiO2 coating has been directly designed as an efficient anticoking coating for n-hexane pyrolysis. TiO2 coatings were prepared on the inner surface of SS304 tubes by a thermal CVD method under varied temperatures from 650 to 900 °C. The rutile TiO2 coating was obtained by annealing the as-deposited TiO2 coating, which is an alternative route for the deposition of rutile TiO2 coating. The morphology, elemental and phase composition of TiO2 coatings were characterized by SEM, EDX and XRD, respectively. The results show that deposition temperature of TiO2 coatings has a strong effect on the morphology and thickness of as-deposited TiO2 coatings. Fe, Cr and Ni at.% of the substrate gradually changes to 0 when the temperature is increased to 800 °C. The thickness of TiO2 coating is more than 6 μm and uniform by metalloscopy, and the films have a nonstoichiometric composition of Ti3O8 when the deposition temperature is above 800 °C. The anticoking tests show that the TiO2 coating at a deposition temperature of 800 °C is sufficiently thick to cover the cracks and gaps on the surface of blank substrate and cut off the catalytic coke growth effect of the metal substrate. The anticoking ratio of TiO2 coating corresponding to each 5 cm segments is above 65% and the average anticoking ratio of TiO2 coating is up to 76%. Thus, the TiO2 coating can provide a very good protective layer to prevent the substrate from severe coking efficiently.

  7. Comparing Multi-Step IMAC and Multi-Step TiO2 Methods for Phosphopeptide Enrichment

    PubMed Central

    Yue, Xiaoshan; Schunter, Alissa; Hummon, Amanda B.

    2016-01-01

    Phosphopeptide enrichment from complicated peptide mixtures is an essential step for mass spectrometry-based phosphoproteomic studies to reduce sample complexity and ionization suppression effects. Typical methods for enriching phosphopeptides include immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) beads, which have selective affinity and can interact with phosphopeptides. In this study, the IMAC enrichment method was compared with the TiO2 enrichment method, using a multi-step enrichment strategy from whole cell lysate, to evaluate their abilities to enrich for different types of phosphopeptides. The peptide-to-beads ratios were optimized for both IMAC and TiO2 beads. Both IMAC and TiO2 enrichments were performed for three rounds to enable the maximum extraction of phosphopeptides from the whole cell lysates. The phosphopeptides that are unique to IMAC enrichment, unique to TiO2 enrichment, and identified with both IMAC and TiO2 enrichment were analyzed for their characteristics. Both IMAC and TiO2 enriched similar amounts of phosphopeptides with comparable enrichment efficiency. However, phosphopeptides that are unique to IMAC enrichment showed a higher percentage of multi-phosphopeptides, as well as a higher percentage of longer, basic, and hydrophilic phosphopeptides. Also, the IMAC and TiO2 procedures clearly enriched phosphopeptides with different motifs. Finally, further enriching with two rounds of TiO2 from the supernatant after IMAC enrichment, or further enriching with two rounds of IMAC from the supernatant TiO2 enrichment does not fully recover the phosphopeptides that are not identified with the corresponding multi-step enrichment. PMID:26237447

  8. Structure of a model TiO2 photocatalytic interface.

    PubMed

    Hussain, H; Tocci, G; Woolcot, T; Torrelles, X; Pang, C L; Humphrey, D S; Yim, C M; Grinter, D C; Cabailh, G; Bikondoa, O; Lindsay, R; Zegenhagen, J; Michaelides, A; Thornton, G

    2017-04-01

    The interaction of water with TiO 2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO 2 (110) interface with water. This has provided an atomic-level understanding of the water-TiO 2 interaction. However, nearly all of the previous studies of water/TiO 2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO 2 (110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O 2 and H 2 O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO 2 photocatalysis.

  9. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7.

    PubMed

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P<0.05) as compared to TiO2/MWCNT coated ceramic. The photocatalytic killing rate constant for TiO2-ceramic and MWCNT/TiO2-ceramic under fluorescent light was found be 1.45×10(-2) min(-1) and 2.23×10(-2) min(-1) respectively. Further, when I-V characteristics were performed for TiO2/MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. © 2013 Elsevier B.V. All rights reserved.

  10. A study of ethanol reactions on O2-treated Au/TiO2. Effect of support and metal loading on reaction selectivity

    NASA Astrophysics Data System (ADS)

    Nadeem, M. A.; Waterhouse, G. I. N.; Idriss, H.

    2016-08-01

    The reactions of ethanol have been studied on bare and Au supported TiO2 polymorphs (anatase and rutile) in order to understand the effect of Au loading and prior O2 treatment on the reaction selectivity and conversion using temperature programmed desorption (TPD). Although O2 treatment has negligible effect on the reaction selectivity of ethanol on TiO2 alone it considerably affects the reaction on Au/TiO2. Au/TiO2 had three main effects on the reaction when compared to TiO2 alone. First, it switches the reaction selectivity of the dehydration (to ethylene) in favor of dehydrogenation (to acetaldehyde) on both polymorphs. Second, it decreases the desorption temperature of the main reaction products. Third, it increases secondary reaction products (mainly C4 (crotonaldehyde, butene, furan) reaching ca. 78% of the overall carbon selectivity for the 8 wt.% Au/TiO2 anatase. These effects are more pronounced on the anatase phase when compared to that on the rutile phase. Reasons for these are discussed.

  11. Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications

    PubMed Central

    Ansari, Sajid Ali; Cho, Moo Hwan

    2016-01-01

    This paper reports that the introduction of elemental red phosphorus (RP) into TiO2 can shift the light absorption ability from the UV to the visible region, and confirmed that the optimal RP loading and milling time can effectively improve the visible light driven-photocatalytic activity of TiO2. The resulting RP-TiO2 nanohybrids were characterized systematically by a range of techniques and the photocatalytic ability of the RP-TiO2 photocatalysts was assessed further by the photodegradation of a model Rhodamine B pollutant under visible light irradiation. The results suggest that the RP-TiO2 has superior photodegradation ability for model contaminant decomposition compared to other well-known photocatalysts, such as TiO2 and other reference materials. Furthermore, as a photoelectrode, electrochemical impedance spectroscopy, differential pulse voltammetry, and linear scan voltammetry were also performed in the dark and under visible light irradiation. These photoelectrochemical performances of RP-TiO2 under visible light irradiation revealed more efficient photoexcited electron-hole separation and rapid charge transfer than under the dark condition, and thus improved photocatalytic activity. These findings show that the use of earth abundant and inexpensive red phosphorus instead of expensive plasmonic metals for inducing visible light responsive characteristics in TiO2 is an effective strategy for the efficient energy conversion of visible light. PMID:27146098

  12. Constructing TiO2 decorated Bi2WO6 architectures with enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyuan; Chen, Lu; Yang, Yun; Wang, Junjie; Huang, Yongkui; Liu, Xiaoxia; Yang, Shuijin

    2017-06-01

    TiO2 nanoparticles modified Bi2WO6 photocatalysts were prepared via a facile hydrothermal process. The photocatalytic activity of as-prepared TiO2/Bi2WO6 composites was investigated sufficiently by the photodegradation of rhodamine B (RhB), tetracycline hydrochloride (TC) and ciprofloxacin (CIP). The TiO2/Bi2WO6 composites, in which the molar ratio of TiO2 to Bi2WO6 is 1:1, exhibited optimum photocatalytic activity, which is found to increase by about 2.4 times more than that of pristine Bi2WO6 for the photodegradation of TC. The enhanced photocatalytic activity may be attributed to the higher surface area and the highly efficient charge separation between Bi2WO6 nanosheets and TiO2 nanoparticles. The mechanism of the photocatalysts is investigated by the determination of reactive species in the photocatalytic reactions, the photoluminescence measurement and photoelectrochemical analyses.

  13. Synthesis of TiO2-CNT hybrid nanocatalyst and its application in direct oxidation of H2S to S

    NASA Astrophysics Data System (ADS)

    Daraee, Maryam; Baniadam, Majid; Rashidi, Alimorad; Maghrebi, Morteza

    2018-07-01

    In this study, a TiO2-CNT hybrid catalyst has been synthesized and its catalytic activity in the oxidation of H2S to S has been investigated and compared with those of TiO2 nanoparticles and pyrolyzed TiO2-CNT hybrid (P-TiO2-CNT). The optimum catalyst amount was determined using central composite design (CCD) method. Catalysts were characterized by various analytical techniques. The H2S conversion, sulfur selectivity and yield at the optimal temperature of 200 °C and O2/H2S ratio of 0.5 were 98.3, 99.5 and 97%, respectively. TiO2-CNT16% catalyst has a higher surface area than TiO2 nanoparticles and P-TiO2-CNT. In addition, the former catalyst gives a high conversion of H2S and sulfur selectivity at 200 °C and O2/H2S ratio of 0.5 compared with the latter two catalysts. The superior conversion (over 10%) of TiO2-CNT16% hybrid compared to TiO2 nanoparticles can be attributed to the synergistic effects of TiO2 and CNT, the reduced band gap of TiO2-CNT16% hybrid and high specific surface area of the catalyst.

  14. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    PubMed

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  15. Preparation of Sb2S3 nanocrystals modified TiO2 dendritic structure with nanotubes for hybrid solar cell

    NASA Astrophysics Data System (ADS)

    Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao

    2018-06-01

    Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.

  16. Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Song, Liang; Cao, Lixin

    2015-09-01

    TiO2 nanotubes (TNT) crystallized at different temperatures were loaded with WO3 hydrate through the reaction between (NH4)6W7O24·6H2O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO3/TiO2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K-773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation.

  17. Effect of TiO2 nanoparticles on the reproduction of silkworm.

    PubMed

    Ni, Min; Li, Fanchi; Wang, Binbin; Xu, Kaizun; Zhang, Hua; Hu, Jingsheng; Tian, Jianghai; Shen, Weide; Li, Bing

    2015-03-01

    Silkworm (Bombyx mori) is an important economic insect and the model insect of Lepidoptera. Because of its high fecundity and short reproduction cycle, it has been widely used in reproduction and development research. The high concentrations of titanium dioxide nanoparticles (TiO2 NPs) show reproductive toxicity, while low concentrations of TiO2 NPs have been used as feed additive and demonstrated significant biological activities. However, whether the low concentrations of TiO2 NPs affect the reproduction of B. mori has not been reported. In this study, the growth and development of gonad of B. mori fed with a low concentration of TiO2 NPs (5 mg/L) were investigated by assessing egg production and expression of reproduction-related genes. The results showed that the low concentration of TiO2 NPs resulted in faster development of the ovaries and testes and more gamete differentiation and formation, with an average increase of 51 eggs per insect and 0.34 × 10(-4) g per egg after the feeding. The expressions of several reproduction-related genes were upregulated, such as the yolk-development-related genes Ovo-781 and vitellogenin (Vg) were increased by 5.33- and 6.77-folds, respectively. This study shows that TiO2 NPs feeding at low concentration can enhance the reproduction of B. mori, and these results are useful in developing new methods to improve fecundity in B. mori and providing new clues for its broad biological applications.

  18. Synthesis of nanocrystalline TiO 2 in toluene by a solvothermal route

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Moon, Byung Kee; Park, Jong-Ho; Tae Chung, Su; Son, Se-Mo

    2003-07-01

    A solvothermal synthetic method to TiO 2 nanoparticles has been investigated in toluene solutions with titanium isopropoxide (TIP) as precursor. Weight ratios of precursor to solvent prepared in the mixture are 5/100, 10/100, 20/100, 30/100 and 40/100. At the weight ratio of 10/100, 20/100 and 30/100, TiO 2 nanocrystalline particles were obtained after synthesis at 250°C for 3 h in an autoclave. X-ray diffraction and tranmission electron microscopy shows that the product has uniform anatase structure with average particle size below 20 nm. As the composition of TIP in the solution increases, the particle size of TiO 2 powder tends to increase. At 5/100 and 40/100, however, pale yellow colloidal solution is obtained after synthesis and crystalline phase of TiO 2 is not produced. The specific surface area of the TiO 2 nanocrystalline powder was also investigated using BET surface area analyzer.

  19. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.

    PubMed

    Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue

    2016-08-01

    TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of TiO2 films obtained by a wet chemical process

    NASA Astrophysics Data System (ADS)

    Sedik, Asma; Ferraria, Ana M.; Carapeto, Ana P.; Bellal, Bouzid; Trari, Mohamed; Outemzabet, Ratiba

    2017-12-01

    TiO2 has an easily tunable bandgap and a great absorption dye ability being widely used in many fields and in a number of fascinating applications. In this study, a wet chemical route, particularly a sol gel method using spin-coating is adopted to deposit TiO2 thin films onto soda lime glass and silicon substrates. TiO2 films were prepared by using an alcoholic solution of analytical reagent grade TiCl4 as titanium precursor at various experimental conditions. The accent was put on the conditions of preparation (spin time, spin speed, precursor concentration, number of coating layers etc), doping and on the post-deposit treatment namely the drying and the crystallization. The results showed a strong dependence on the drying temperature and on the temperature and duration of the crystallization. We found that the solution preparation and its color are important for getting a reproducible final product. The Raman spectra recorded at room temperature, showed the characteristic peaks of anatase which appear at 143 and around 396 cm-1. These peaks confirm the presence of TiO2. The X-ray diffraction (XRD) was used to identify the crystalline characteristic of TiO2 while the chemical states and relative amounts of the main elements existing in the samples were investigated by X-ray Photoelectron Spectroscopy (XPS). The morphology of the samples was visualized by AFM. We show by this work the feasibility to obtain different nanostructured TiO2 by changing the concentration of the solution. Photocatalytic activity of TiO2 films was evaluated. Rhodamine B is a recalcitrant dye and TiO2 was successfully tested for its oxidation. An abatement of 60% was obtained under sunlight for an initial concentration of 10 mg/l.

  1. Effect of TiO2 nano fillers on the electrical conductivity of PSAN/TiO2 polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ningaraju, S.; Munirathnamma, L. M.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2016-05-01

    The microstructural characterization of Polystyrene co-acrylonitrile and Titanium dioxide (PSAN/TiO2) nanocomposites has been performed by Positron Annihilation Lifetime Spectroscopy. The decrease of positron lifetime parameters viz. o-Ps lifetime (τ3) and free volume size (Vf) up to 0.6 wt% of TiO2 is attributed to the filling of free volume holes by TiO2 nanoparticles. The increased free volume size (Vf) after 0.6 wt% of TiO2 indicates the formation of interface due to TiO2 nanoclusters. The variation of electrical conductivity at the lower and higher concentration of TiO2 in (PSAN/TiO2) nanocomposites is attributed to the blocking effect and space charge effect respectively.

  2. Enhanced photocatalytic activity of wool-ball-like TiO2 microspheres on carbon fabric and FTO substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Gu, Jian; Zhang, Mengqi

    2018-06-01

    The wool-ball-like TiO2 microspheres on carbon fabric (TiO2-CF) and FTO substrates (TiO2-FTO) have been synthesized by a facile hydrothermal method in alkali environment, using commercial TiO2 (P25) as precursors. The XRD results indicate that the as-prepared TiO2 have good crystallinity. And the SEM images show that the wool-ball-like TiO2 microspheres with a diameter of 2-3 μm are composed of TiO2 nanowires, which have a diameter of 50 nm. The photocatalytic behavior of the wool-ball-like TiO2 microspheres, TiO2-CF and TiO2-FTO under ultraviolet light was investigated by a pseudo first-order kinetic model, using methyl orange (MO) as pollutant. The wool-ball-like TiO2 microspheres obtained a degradation rate constant (Kap) of 6.91×10-3 min-1 . The Kap values of TiO2-FTO and TiO2-CF reach 13.97×10-3 min-1 and 11.80×10-3 min-1, which are 2.0 and 1.7 times higher than that of pristine wool-ball-like TiO2 microspheres due to the "sum effect" between TiO2 and substrates. This study offers a facile hydrothermal method to prepare wool-ball-like TiO2 microspheres on CF and FTO substrates, which will improve the recyclability of phtocatalysts and can be extended to other fields.

  3. ESR investigation of ROS generated by H2O2 bleaching with TiO2 coated HAp.

    PubMed

    Saita, Makiko; Kobayashi, Kyo; Kobatashi, Kyou; Yoshino, Fumihiko; Hase, Hiriko; Nonami, Toru; Kimoto, Katsuhiko; Lee, Masaichi-Chang-il

    2012-01-01

    It is well known that clinical bleaching can be achieved with a solution of 30% hydrogen peroxide (H2O2) or H2O2/titanium dioxide (TiO2) combination. This study examined the hypothesis that TiO2 coated with hydroxyapatite (HAp-TiO2) can generate reactive oxygen species (ROS). ROS are generated via photocatalysis using electron spin resonance (ESR). The bleaching properties of HAp-TiO2 in the presence of H2O2 can be measured using hematoporphyrin litmus paper and extracted teeth. We demonstrate that superoxides (O2(•-)) and hydroxyl radicals (HO(•)) can be generated through excitation of anatase TiO2, rutile TiO2, anatase HAp-TiO2, and rutile HAp-TiO2 in the presence of H2O2. The combination of R HAp-TiO2 with H2O2 produced the highest level of HO(•) generation and the most marked bleaching effects of all the samples. The superior bleaching effects exhibited by R HAp-TiO2 with H2O2 suggest that this combination may lead to novel methods for the clinical application of bleaching treatments.

  4. Photocatalytic Oxidation of Acetone Over High Thermally Stable TiO2 Nanosheets With Exposed (001) Facets.

    PubMed

    Shi, Ting; Duan, Youyu; Lv, Kangle; Hu, Zhao; Li, Qin; Li, Mei; Li, Xiaofang

    2018-01-01

    Anatase TiO 2 (A-TiO 2 ) usually exhibits superior photocatalytic activity than rutile TiO 2 (R-TiO 2 ). However, the phase transformation from A-TiO 2 to R-TiO 2 will inevitably happens when the calcination temperature is up to 600°C, which hampers the practical applications of TiO 2 photocatalysis in hyperthermal situations. In this paper, high energy faceted TiO 2 nanosheets (TiO 2 -NSs) with super thermal stability was prepared by calcination of TiOF 2 cubes. With increase in the calcination temperature from 300 to 600°C, TiOF 2 transforms into TiO 2 hollow nanoboxes (TiO 2 -HNBs) assembly from TiO 2 -NSs via Ostwald Rippening process. Almost all of the TiO 2 -HNBs are disassembled into discrete TiO 2 -NSs when calcination temperature is higher than 700°C. Phase transformation from A-TiO 2 to R-TiO 2 begins at 1000°C. Only when the calcination temperature is higher than 1200°C can all the TiO 2 -NSs transforms into R-TiO 2 . The 500°C-calcined sample (T500) exhibits the highest photoreactivity toward acetone oxidation possibly because of the production of high energy TiO 2 -NSs with exposed high energy (001) facets and the surface adsorbed fluorine. Surface oxygen vacancy, due to the heat-induced removal of surface adsorbed fluoride ions, is responsible for the high thermal stability of TiO 2 -NSs which are prepared by calcination of TiOF 2 cubes.

  5. Diatom-templated TiO2 with enhanced photocatalytic activity: biomimetics of photonic crystals

    NASA Astrophysics Data System (ADS)

    He, Jiao; Chen, Daomei; Li, Yongli; Shao, Junlong; Xie, Jiao; Sun, Yuejuan; Yan, Zhiying; Wang, Jiaqiang

    2013-11-01

    The siliceous frustules with sophisticated optical structure endow diatoms with superior solar light-harvesting abilities for effective photosynthesis. The preserved frustules of diatom ( Cocconeis placentula) cells, as biophotonic crystals, were thus employed as both hard templates and silicon resources to synthesize TiO2 photocatalyst. Characterizations by a combination of physicochemical techniques proved that the bio-inspired sample is TiO2-coated SiO2 with biogenic C self-doped in. It was found that the synthesized composites exhibited similar morphologies to the original diatom templates. In comparison with commercial Degussa P25 TiO2, the C-doped TiO2/SiO2 catalyst exhibited more light absorption in the visible region and higher photocatalytic efficiency for photodegradation of rhodamine B under visible light due to the biomorphic hierarchical structures, TiO2 coating and C-doping.

  6. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective.

    PubMed

    Chen, Biao; Meng, Yuhuan; Sha, Junwei; Zhong, Cheng; Hu, Wenbin; Zhao, Naiqin

    2017-12-21

    The rapidly increasing severity of the energy crisis and environmental degradation are stimulating the rapid development of photocatalysts and rechargeable lithium/sodium ion batteries. In particular, MoS 2 /TiO 2 based nanocomposites show great potential and have been widely studied in the areas of both photocatalysis and rechargeable lithium/sodium ion batteries due to their superior combination properties. In addition to the low-cost, abundance, and high chemical stability of both MoS 2 and TiO 2 , MoS 2 /TiO 2 composites also show complementary advantages. These include the strong optical absorption of TiO 2 vs. the high catalytic activity of MoS 2 , which is promising for photocatalysis; and excellent safety and superior structural stability of TiO 2 vs. the high theoretic specific capacity and unique layered structure of MoS 2 , thus, these composites are exciting as anode materials. In this review, we first summarize the recent progress in MoS 2 /TiO 2 -based nanomaterials for applications in photocatalysis and rechargeable batteries. We highlight the synthesis, structure and mechanism of MoS 2 /TiO 2 -based nanomaterials. Then, advancements and strategies for improving the performance of these composites in photocatalytic degradation, hydrogen evolution, CO 2 reduction, LIBs and SIBs are critically discussed. Finally, perspectives on existing challenges and probable opportunities for future exploration of MoS 2 /TiO 2 -based composites towards photocatalysis and rechargeable batteries are presented. We believe the present review would provide enriched information for a deeper understanding of MoS 2 /TiO 2 composites and open avenues for the rational design of MoS 2 /TiO 2 based composites for energy and environment-related applications.

  7. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods

    NASA Astrophysics Data System (ADS)

    Paul, Kamal Kumar; Ghosh, Ramesh; Giri, P. K.

    2016-08-01

    We report on the ultra-high rate of photodegradation of organic dyes under visible light illumination on Ag2O-nanoparticle-decorated (NP) porous pure B-phase TiO2 (TiO2(B)) nanorods (NRs) grown by a solvothermal route. The as-grown TiO2(B) NRs are found to be nanoporous in nature and the Ag2O NPs are uniformly decorated over its surface, since most of the pores work as nucleation sites for the growth of Ag2O NPs. The effective band gap of the TiO2(B)/Ag2O heterostructure (HS), with a weight ratio of 1:1, has been significantly reduced to 1.68 eV from the pure TiO2(B) band gap of 2.8 eV. Steady state and time-resolved photoluminescence (PL) studies show the reduced intensity of visible PL and slower recombination dynamics in the HS samples. The photocatalytic degradation efficiency of the TiO2(B)/Ag2O HS has been investigated using aqueous methyl orange and methylene blue as reference dyes under visible light (390-800 nm) irradiation. It is found that photodegradation by the TiO2(B)/Ag2O HS is about one order of magnitude higher than that of bare TiO2(B) NRs and Ag2O NPs. The optimized TiO2(B)/Ag2O HS exhibited the highest photocatalytic efficiency, with 88.2% degradation for 30 min irradiation. The corresponding first order degradation rate constant is 0.071 min-1, which is four times higher than the reported values. Furthermore, cyclic stability studies show the high stability of the HS photocatalyst for up to four cycles of use. The major improvement in photocatalytic efficiency has been explained on the basis of enhanced visible light absorption and band-bending-induced efficient charge separation in the HS. Our results demonstrate the long-term stability and superiority of the TiO2(B)/Ag2O HS over the bare TiO2(B) NRs and other TiO2-based photocatalysts for its cutting edge application in hydrogen production and environmental cleaning driven by solar light photocatalysis.

  8. Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

    PubMed Central

    Kusior, Anna; Trenczek-Zajac, Anita

    2016-01-01

    2D TiO2 thin films and 3D flower-like TiO2-based nanostructures, also decorated with SnO2, were prepared by chemical and thermal oxidation of Ti substrates, respectively. The crystal structure, morphology and gas sensing properties of the TiO2-based sensing materials were investigated. 2D TiO2 thin films crystallized mainly in the form of rutile, while the flower-like 3D nanostructures as anatase. The sensor based on the 2D TiO2 showed the best performance for H2 detection, while the flower-like 3D nanostructures exhibited enhanced selectivity to CO(CH3)2 after sensitization by SnO2 nanoparticles. The sensor response time was of the order of several seconds. Their fast response, high sensitivity to selected gas species, improved selectivity and stability suggest that the SnO2-decorated flower-like 3D nanostructures are a promising material for application as an acetone sensor. PMID:28144521

  9. Development of DNA biosensor based on TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A novel technique of DNA hybridization on the TiO2 nanoparticles film was developed by dropping a single droplet of target DNA onto the surface of TiO2 for the study of various concentrations of target DNA. The surface of TiO2 nanoparticle film was functionalized with APTES and covalently immobilized with 1 µM probe DNA on the silanized TiO2 nanoparticles surface. The effect of silanization, immobilization and hybridization were quantitatively measured by the output current signal obtained using a picoammeter. The 1 µM target DNA was found to be the most effective target towards the 1 µM probe DNA as the output current signal was within range; while the output current signal of the 10 µM target DNA was observed to beyond the range of the probe DNA control due to the excessive concentration as compared to the probe DNA. This approach has several advantages such as rapid, simple, low cost, and sensitive current signal during detection of different target DNA concentrations.

  10. Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres: Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres

    DOE PAGES

    Khromova, Irina; Kužel, Petr; Brener, Igal; ...

    2016-06-27

    Monocrystalline titanium dioxide (TiO 2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO 2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO 2 micro-resonators can be used to enhance the interplay of magneticmore » and electric dipole resonances in the emerging THz all-dielectric metamaterial technology.« less

  11. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    A simple yet promising strategy to modify TiO2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO2 shows better optical properties relative to single N and F doped TiO2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO2. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  12. On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization.

    PubMed

    Suárez, Silvia; Coronado, Juan M; Portela, Raquel; Martín, Juan Carlos; Yates, Malcolm; Avila, Pedro; Sánchez, Benigno

    2008-08-15

    Hybrid structured photocatalysts based on sepiolite, an adsorbent, and TiO2 were prepared by extrusion of ceramic dough and conformed as plates. The influence of the photocatalyst configuration was studied either by including TiO2 in the extrusion process (incorporated materials) or by coating the sepiolite plates with a TiO2 film (coated materials). The influence of the OH- surface concentration in the photocatalytic performance was studied by treating the ceramic plates at different temperatures. The samples were characterized by N2 adsorption-desorption, MIP, SEM, XRD, and UV-vis-NIR spectroscopy and tested in the photocatalytic degradation of trichloroethylene (TCE) as a target VOC molecule. Most of the catalysts presented high photoactivity, but considerable differences were observed when the CO2 selectivity was analyzed. The results demonstrate that there is a significant effect of the catalyst configuration on the selectivity of the process. An intimate contact between the sepiolite fibers and TiO2 particles for incorporated materials with a corncob-like structure favored the migration of nondesirable reaction products such as COCl2 and dichloroacetyl chloride (DCAC) to the adsorbent, reacting with OH- groups of the adsorbent and favoring the TCE mimeralization.

  13. Non-equilibrium nitrogen DC-arc plasma treatment of TiO2 nanopowder.

    PubMed

    Suzuki, Yoshikazu; Gonzalez-Aguilar, José; Traisnel, Noel; Berger, Marie-Hélène; Repoux, Monique; Fulcheri, Laurent

    2009-01-01

    Non-equilibrium nitrogen DC-arc plasma treatment of a commercial TiO2 anatase nanopowder was examined to obtain nitrogen-doped TiO2. By using a non-thermal discharge at low current (150 mA) and high voltage (1200 V) using pure N2 gas, light yellowish-gray TiO2 powder was successfully obtained within a short period of 5-10 min. XPS and TEM-EELS studies confirmed the existence of doped nitrogen. Due to the relatively mild conditions (plasma power of 180 W), metastable anatase structure and fine crystallite size of TiO2 (ca. 10 nm) were maintained after the plasma treatment. The in-flight powder treatment system used in this study is promising for various type of powder treatment.

  14. Enhanced the hydrophobic surface and the photo-activity of TiO2-SiO2 composites

    NASA Astrophysics Data System (ADS)

    Wahyuni, S.; Prasetya, A. T.

    2017-02-01

    The aim of this research is to develop nanomaterials for coating applications. This research studied the effect of various TiO2-SiO2 composites in acrylic paint to enhance the hydrophobic properties of the substrate. Titanium dioxide containing silica in the range 20-35 mol% has been synthesized using sol-gel route. The XRD’s spectra show that increasing SiO2 content in the composite, decreasing its crystalline properties but increasing the surface area. TiO2-SiO2 composite was dispersed in acrylic paint in 2% composition by weight. The largest contact angle was 70, which produced by the substrate coated with TS-35-modified acrylic paint. This study also investigated the enhanced photo-activity of TiO2-SiO2 modified with poly-aniline. The XRD spectra show that the treatment does not change the crystal structure of TiO2. The photo-activity of the composite was evaluated by degradation of Rhodamine-B with visible light. The best performance of the degradation process was handled by the composite treated with 0.1mL anilines per gram of TiO2-SiO2 composite (TSP-A). On the other side, the contact angle 70 has not shown an excellent hydrophobic activity. However, the AFM spectra showed that nanoroughness has started to form on the surface of acrylic paint modified with TiO2-SiO2 than acrylic alone.

  15. A Surface Science Perspective on TiO2 Photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2011-06-15

    The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photochemistry and photocatalysis. This review highlights, from a surface science perspective, recent literature providing molecular-level insights into phonon-initiated events on TiO2 surfaces obtained in seven key scientific issues: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form.

  16. Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria.

    PubMed

    Ghanbary, Fatemeh; Seydi, Enaytollah; Naserzadeh, Parvaneh; Salimi, Ahmad

    2018-03-01

    The effect of nanotitanium dioxide (TiO 2 -NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO 2 -NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO 2 -NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO 2 -NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO 2 -NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO 2 -NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO 2 -NP.

  17. TiO2-based photocatalytic disinfection of microbes in aqueous media: A review.

    PubMed

    Laxma Reddy, P Venkata; Kavitha, Beluri; Kumar Reddy, Police Anil; Kim, Ki-Hyun

    2017-04-01

    The TiO 2 based photocatalyst has great potential for the disinfection/inactivation of harmful pathogens (such as E.coli in aqueous media) along with its well-known usefulness on various chemical pollutants. The disinfection property of TiO 2 is primarily attributed to surface generation of reactive oxygen species (ROS) as well as free metal ions formation. Furthermore, its disinfection capacity and overall performance can be significantly improved through modifications of the TiO 2 material. In this review, we provide a brief survey on the effect of various TiO 2 materials in the disinfection of a wide range of environmentally harmful microbial pathogens (e.g., bacteria, fungi, algae, and viruses) in aqueous media. The influencing factors (such as reactor design, water chemistry, and TiO 2 modifications) of such processes are discussed along with the mechanisms of such disinfection. It is believed that the combined application of disinfection and decontamination will greatly enhance the utilization of TiO 2 photocatalyst as a potential alternative to conventional methods of water purification. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles

    PubMed Central

    Yang, Wei-Wan; Miao, Ai-Jun; Yang, Liu-Yan

    2012-01-01

    In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii. PMID:22403644

  19. Methanethiol chemistry on TiO 2-supported Ni clusters

    NASA Astrophysics Data System (ADS)

    Ozturk, O.; Park, J. B.; Black, T. J.; Rodriguez, J. A.; Hrbek, J.; Chen, D. A.

    2008-10-01

    The thermal decomposition of methanethiol on Ni clusters grown on TiO 2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO 2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO 2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO 2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiO x and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.

  20. First-principles study of Mn-S codoped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui

    2018-04-01

    In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.

  1. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light

    NASA Astrophysics Data System (ADS)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-01-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  2. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light.

    PubMed

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-12-01

    We report the preparation of TiO 2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi 2 S 3 , to improve the photocathodic protection property of TiO 2 for metals under visible light. Bi 2 S 3 /TiO 2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi 2 S 3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO 2 and orthorhombic Bi 2 S 3 and exhibited a high visible light response. The photocurrent density of Bi 2 S 3 /TiO 2 was significantly higher than that of pure TiO 2 under visible light. The sensitization of Bi 2 S 3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO 2 . The Bi 2 S 3 /TiO 2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  3. Synthesis and characterization of high surface area TiO 2/SiO 2 mesostructured nanocomposite

    NASA Astrophysics Data System (ADS)

    Bonne, Magali; Pronier, Stéphane; Can, Fabien; Courtois, Xavier; Valange, Sabine; Tatibouët, Jean-Michel; Royer, Sébastien; Marécot, Patrice; Duprez, Daniel

    2010-06-01

    Recently titania synthesis was reported using various structuration procedures, leading to the production of solid presenting high surface area but exhibiting moderate thermal stability. The study presents the synthesis of TiO 2/SiO 2 nanocomposites, a solid that can advantageously replace bulk titania samples as catalyst support. The silica host support used for the synthesis of the nanocomposite is a SBA-15 type silica, having a well-defined 2D hexagonal pore structure and a large pore size. The control of the impregnation media is important to obtain dispersed titania crystals into the porosity, the best results have been obtained using an impregnation in an excess of solvent. After calcination at low temperature (400 °C), nanocomposites having titania nanodomains (˜2-3 nm) located inside the pores and no external aggregates visible are obtained. This nanocomposite exhibits high specific surface area (close to that of the silica host support, even with a titania loading of 55 wt.%) and a narrow pore size distribution. Surprisingly, the increase in calcination temperature up to 800 °C does not allow to detect the anatase to rutile transition. Even at 800 °C, the hexagonal mesoporous structure of the silica support is maintained, and the anatase crystal domain size is evaluated at ˜10 nm, a size close to that of the silica host support porosity (8.4 nm). Comparison of their physical properties with the results presented in literature for bulk samples evidenced that these TiO 2/SiO 2 solids are promising in term of thermal stability.

  4. Data of chemical analysis and electrical properties of SnO2-TiO2 composite nanofibers.

    PubMed

    Bakr, Zinab H; Wali, Qamar; Ismail, Jamil; Elumalai, Naveen Kumar; Uddin, Ashraf; Jose, Rajan

    2018-06-01

    In this data article, we provide energy dispersive X-ray spectroscopy (EDX) spectra of the electrospun composite (SnO 2 -TiO 2 ) nanowires with the elemental values measured in atomic and weight%. The linear sweep voltammetry data of composite and its component nanofibers are provided. The data collected in this article is directly related to our research article "Synergistic combination of electronic and electrical properties of SnO 2 and TiO 2 in a single SnO 2 -TiO 2 composite nanowire for dye-sensitized solar cells" [1].

  5. Improving surface-enhanced Raman scattering properties of TiO(2) nanoparticles by metal Co doping.

    PubMed

    Yang, Libin; Qin, Xiaoyu; Gong, Mengdi; Jiang, Xin; Yang, Ming; Li, Xiuling; Li, Guangzhi

    2014-04-05

    In this paper, pure and different amount Co ions doped TiO2 nanoparticles were synthesized by a sol-hydrothermal method and were served as SERS-active substrate. The effect of metal Co doping on SERS properties of TiO2 nanoparticles was mostly investigated. The results indicate that abundant metal doping energy levels can be formed in the energy gap of TiO2 by an appropriate amount Co ions doping, which can promote the charge transfer from TiO2 to molecule, and subsequently enhance SERS signal of adsorbed molecule on TiO2 substrate, and improve remarkably SERS properties of TiO2 nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. High surface area TiO2/SBA-15 nanocomposites: Synthesis, microstructure and adsorption-enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Wei, J. Q.; Chen, X. J.; Wang, P. F.; Han, Y. B.; Xu, J. C.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, X. Q.

    2018-06-01

    Mesoporous SBA-15 was used to anchor TiO2 nanoparticles into the mesopores to form high surface area TiO2/SBA-15 nanocomposites, and then the influence of mesoporous-structure on the photocatalytic performance was investigated. TiO2/SBA-15 nanocomposites possessed the high specific surface area and appropriate pore size, indicating the excellent adsorption performance. TiO2/SBA-15 nanocomposites exhibited the higher photocatalytic activity to degrade dyes (methylene blue: MB) than TiO2 (removing SBA-15), which should attributed to the excellent adsorption performance of the nanocomposites. MB was absorbed to form the higher concentration near TiO2/SBA-15 photocatalysts, and the photocatalytic degradation for MB was improved.

  7. Preparation of uniaxially aligned TiO2 ultrafine fibers by electrospinning.

    PubMed

    Nien, Yu-Hsun; Tsai, Yan-Sheng; Wang, Jia-Yi; Syu, Shu-Ping

    2012-11-01

    TiO2 nanofibers are often produced by electrospinning using a collector consisting of two parallel electrodes. In this work, a high speed rotating drum was used as a collector to produce uniaxially aligned TiO2 ultrafine fibers. The apparatus to manufacture uniaxially aligned TiO2 ultrafine fiber consisted of a high-speed roller, a high-voltage power supply, a controllable syringe pump and a syringe. Titanium (IV) isopropoxide and polyvinylpyrrolidone were used as precursor and auxiliary, respectively. Titanium (IV) isopropoxide and polyvinylpyrrolidone were well mixed with other essential reagents to form the polymer solution. The polymer solution was poured into the syringe and pumped at various flow rates. The electrospun ultrafine fibers collected on the roller were heat treated up to 600 degrees C and the uniaxially aligned TiO2 ultrafine fibers were formed and characterized using scanning electron microscope and X-ray diffraction.

  8. Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment.

    PubMed

    Yang, Yang; Wang, Hong; Li, Jianxin; He, Benqiao; Wang, Tonghua; Liao, Shijun

    2012-06-19

    Membrane fouling is a critical problem in membrane filtration processes for water purification. Electrocatalytic membrane reactor (ECMR) was an effective method to avoid membrane fouling and improve water quality. This study focuses on the preparation and characterization of a novel functionalized nano-TiO(2) loading electrocatalytic membrane for oily wastewater treatment. A TiO(2)/carbon membrane used in the reactor is prepared by coating TiO(2) as an electrocatalyst via a sol-gel process on a conductive microporous carbon membrane. In order to immobilize TiO(2) on the carbon membrane, the carbon membrane is first pretreated with HNO(3) to generate the oxygen-containing functional groups on its surface. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS) analyses are used to evaluate the morphology and microstructure of the membranes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements are employed to illustrate the eletrochemical activity of the TiO(2)/carbon membrane. The membrane performance is investigated by treating oily wastewater. The oil removal rate increases with a decrease in the liquid hourly space velocity (LHSV) through the ECMR. The COD removal rate was 100% with a LHSV of 7.2 h(-1) and 87.4% with a LHSV of 21.6 h(-1) during the treatment of 200 mg/L oily water. It suggests that the synergistic effect of electrocatalytic oxidation and membrane separation in the ECMR plays a key role.

  9. Ultra-fine structural characterization and bioactivity evaluation of TiO2 nanotube layers.

    PubMed

    Jang, JaeMyung; Kwon, TaeYub; Kim, KyoHan

    2008-10-01

    For an application as biomedical materials of high performance with a good biocompatibility, the TiO2 nanotube-type oxide film on Ti substrate has been fabricated by electrochemical method, and the effects of surface characteristics of TiO2 naotube layer have been investigated. The surface morphology of TiO2 nanotube layer depends on factors such as anodizing time, current density, and electrolyte temperature. Moreover, the cell and pore size gradually were increased with the passage of anodizing time. X-ray diffraction (XRD) results indicated that the TiO2 nanotube layer formed in acidic electrolytes was mainly composed of anatase structure containing rutile. From the analysis of chemical states of TiO2 nanotube layer using X-ray photoelectron spectroscopy (XPS), Ti2p, P2p and O1s were observed in the nanotubes layer, which were penetrated from the electrolyte into the oxide layer during anodic process. The incorporated phosphate species were found mostly in the forms of HPO4-, PO4-, and PO3-. From the result of biological evaluation in simulated body fluid (SBF) the TiO2 nanotube layer was effective for bioactive property.

  10. Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Troppová, Ivana; Šihor, Marcel; Reli, Martin; Ritz, Michal; Praus, Petr; Kočí, Kamila

    2018-02-01

    The TiO2/g-C3N4 nanocomposites with the various TiO2:g-C3N4 weight ratios from 1:1 to 1:3 were prepared unconventionally by pressurized hot water processing in a flow regime. The parent TiO2 and g-C3N4 was prepared by thermal hydrolysis and thermal annealing, respectively. The nanocomposites as well as parent TiO2 and g-C3N4 were characterized using several complementary characterization methods and investigated in the photocatalytic decomposition of N2O under UVA (λ = 365 nm) irradiation. All the prepared TiO2/g-C3N4 nanocomposites showed higher photocatalytic activity in comparison with the pure g-C3N4 and chiefly pure TiO2. The photocatalytic activity of TiO2/g-C3N4 nanocomposites was decreasing in the following sequence: TiO2/g-C3N4 (1:3) > TiO2/g-C3N4 (1:2) > TiO2/g-C3N4 (1:1). In comparison with the parent TiO2 or g-C3N4, the TiO2/g-C3N4 nanocomposites' photocatalytic capability was significantly enhanced by coupling TiO2 with g-C3N4. The generation of TiO2/g-C3N4 Z-scheme photocatalyst mainly benefited from the effective separation of photoinduced electron-hole pairs and the extended optical absorption range. The TiO2/g-C3N4 (1:3) nanocomposite showed the best photocatalytic behavior in a consequence of the optimal weight ratio of TiO2:g-C3N4 and the lowest band gap energy from all nanocomposites. The N2O conversion in its presence was 70.6% after 20 h of UVA irradiation.

  11. Evaluation of the combined solar TiO2/photo-Fenton process using multivariate analysis.

    PubMed

    Nogueira, R F P; Trovó, A G; Paterlini, W C

    2004-01-01

    The effect of combining the photocatalytic processes using TiO2 and the photo-Fenton reaction with Fe3+ or ferrioxalate as a source of Fe2+ was investigated in the degradation of 4-chlorophenol (4CP) and dichloroacetic acid (DCA) using solar irradiation. Multivariate analysis was used to evaluate the role of three variables: iron, H2O2 and TiO2 concentrations. The results show that TiO2 plays a minor role when compared to iron and H2O2 in the solar degradation of 4CP and DCA in the studied conditions. However, its presence can improve TOC removal when H2O2 is totally consumed. Iron and peroxide play major roles, especially when Fe(NO3)3 is used in the degradation of 4CP. No significant synergistic effect was observed by the addition of TiO2 in this process. On the other hand, synergistic effects were observed between FeOx and TiO2 and between H2O2 and TiO2 in the degradation of DCA.

  12. Wastewater remediation by TiO2-impregnated chitosan nano-grafts exhibited dual functionality: High adsorptivity and solar-assisted self-cleaning.

    PubMed

    Essawy, Amr A; Sayyah, S M; El-Nggar, A M

    2017-08-01

    This work provides a very infrequent and unique avenue of a novel bio-based nanografted polymeric composites achieving encouraging results in green management of dye contaminants in wastewater. A chitosan-grafted-polyN-Methylaniline (Ch-g-PNMANI) and chitosan-grafted-polyN-Methylaniline imprinted TiO 2 nanocomposites (Ch-g-PNMANI/TiO 2 ) were prepared and efficiently applied in wastewater remediation. The nanocomposites were characterized by FT-IR spectroscopy, X-ray diffraction, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy and Brunauer-Emmett-Teller surface area (BET) measurements. The prepared composites exhibit higher adsorptivity in removing remazol red RB-133 (RR RB-133) dye compared to other adsorbents reported in literature. The effects of TiO 2 loadings, initial dye concentration, contact time, and pH on dye adsorption were investigated. The maximum adsorption of dye was found at low pH values. Furthermore, Ch-g-PNMANI/TiO 2 of the optimum TiO 2 loading has higher adsorption capacity (116.3mg/g) than the pristine Ch-g-PNMANI (108.7mg/g). Moreover, the prepared adsorbents are photoactive under sunlight-irradiation. The study addresses a nanocomposite of considerable adsorption and in the same time has the fastest self-cleaning photoactivity (t 1/2 =31.5min.) under sunlight irradiation where a plausible photodegradation mechanism was proposed. Interestingly, the presented photoactive adsorbents are still effective in removing dye after five adsorption/sunlight-assisted self-cleaning photoregeneration cycles and therefore, they can be potentially applied to the rapid, "green" and low-cost remediation of RR RB-133 enriched industrial printing and dyeing wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  14. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  15. Biochemical effects of six TiO2 and four CeO2 nanomaterials in HepG2 cells

    EPA Science Inventory

    Biochemical effects of six TiO2 and four CeO2 nanomaterials in HepG2 cellsBecause of their growing number of uses, nanoparticles composed of CeO2 (cosmetics, polishing materials and automotive fuel additives) and TiO2 (pigments, sunscreens and photocatalysts) are of particular to...

  16. Evaluation method of TiO2-SiO2 ultra-low-expansion glasses with periodic striae using the LFB ultrasonic material characterization system.

    PubMed

    Kushibiki, Jun-ichi; Arakawa, Mototaka; Ohashi, Yuji; Suzuki, Kouji

    2006-09-01

    Experimental procedures and standard specimens for characterizing and evaluating TiO2-SiO2 ultra-low expansion glasses with periodic striae using the line-focus-beam (LFB) ultrasonic material characterization system are discussed. Two types of specimens were prepared, with specimen surfaces parallel and perpendicular to the striae plane using two different grades of glass ingots. The inhomogeneities of each of the specimens were evaluated at 225 MHz. It was clarified that parallel specimens are useful for accurately measuring velocity variations of leaky surface acoustic waves (LSAWs) excited on a water-loaded specimen surface associated with the striae. Perpendicular specimens are useful for obtaining periodicities in the striae for LSAW propagation perpendicular to the striae plane on a surface and for precisely measuring averaged velocities for LSAW propagation parallel to the striae plane. The standard velocity of Rayleigh-type LSAWs traveling parallel to the striae plane for the perpendicular specimens was numerically calculated using the measured velocities of longitudinal and shear waves and density. Consequently, a reliable standard specimen with an LSAW velocity of 3308.18 +/- 0.35 m/s at 23 degrees C and its temperature coefficient of 0.39 (m/s)/degrees C was obtained for a TiO2-SiO2 glass with a TiO2 concentration of 7.09 wt%. A basis for the striae analysis using this ultrasonic method was established.

  17. Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing

    NASA Astrophysics Data System (ADS)

    Patil, S. M.; Dhodamani, A. G.; Vanalakar, S. A.; Deshmukh, S. P.; Delekar, S. D.

    2018-04-01

    TiO2-based mixed metal oxide heteronanostructures have multiple applications in photocatalysis and gas sensing because of their charge transport properties. In this study, we prepared tetragonal TiO2/SnO2 nanocomposites (NCs) with different weight percentages using a simple wet impregnation method. The physicochemical properties of the NCs were investigated using X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and Brunauer-Emmett-Teller surface area analysis. The results showed that the surface area of the NCs increased significantly and the anatase TiO2 was sensitized after the addition of a small amount of cassiterite SnO2 NPs. We systematically studied the as-prepared NCs during the photocatalytic degradation of Congo Red dye under visible light irradiation (λ > 420 nm) and NH3 gas sensing, which demonstrated the efficient photocatalytic performance and the superior sensing response of the catalyst with a weight composition of 25% SnO2 in TiO2 (4:1) compared with the other NCs or the bare individual nanoparticles. The improved photocatalytic and gas sensing performance of the TiO2/SnO2 (4:1) NCs may be attributed to the increased active surface area, the increased adsorption of the dye and target gas molecules, as well as efficient electron-hole charge separation and transfer.

  18. Thermodynamic and kinetic analyses of the CO2 chemisorption mechanism on Na2TiO3: Experimental and theoretical evidences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2014-01-01

    ABSTRACT: Sodium metatitanate (Na2TiO3) was successfully synthesized via a solid-state reaction. The Na2TiO3 structure and microstructure were characterized using X-ray diffraction, scanning and transmission electron microscopy, and N2 adsorption. Then, the CO2 chemisorption mechanism on Na2TiO3 was systematically analyzed to determine the influence of temperature. The CO2 chemisorption capacity of Na2TiO3 was evaluated both dynamically and isothermally, and the products were reanalyzed to elucidate the Na2TiO3-CO2 reaction mechanism. Different chemical species (Na2CO3, Na2O, and Na4Ti5O12 or Na16Ti10O28) were identified during the CO2 capture process in Na2TiO3. In addition, some CO2 chemisorption kinetic parameters were determined. The ΔH‡ was found tomore » be 140.9 kJ/mol, to the Na2TiO3-CO2 system, between 600 and 780 °C. Results evidenced that CO2 chemisorption on Na2TiO3 highly depends on the reaction temperature. Furthermore, the experiments were theoretically supported by different thermodynamic calculations. The calculated thermodynamic properties of CO2 capture reactions by (Na2TiO3, Na4Ti5O12, and Na16Ti10O28) sodium titanates were fully investigated.« less

  19. Characterization and properties of TiO2-SnO2 nanocomposites, obtained by hydrolysis method

    NASA Astrophysics Data System (ADS)

    Kutuzova, Anastasiya S.; Dontsova, Tetiana A.

    2018-04-01

    The paper deals with the process of TiO2-SnO2 nanocomposites synthesis utilizing simple hydrolysis method with further calcination for photocatalytic applications. The obtained nanopowders contain 100, 90, 75, 65 and 25 wt% of TiO2. The synthesized nanocomposite samples were analyzed by X-ray diffraction method, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption method. The correlation between structure and morphology of the obtained nanocrystalline composite powders and their sorption and photocatalytic activity towards methylene blue degradation was established. It was found that the presence of SnO2 in the nanocomposites stabilizes the anatase phase of TiO2. Furthermore, sorption and photocatalytic properties of the obtained composites are significantly influenced not only by specific surface area, but also by pore size distribution and mesopore volume of the samples. In our opinion, the results obtained in this study have shown that the TiO2-SnO2 composites with SnO2 content that does not exceed 10% are promising for photocatalytic applications.

  20. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-01

    We report the design, fabrication and characterization of novel TiO2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO2 nanotube photonic crystals are fabricated by annealing of anodized TiO2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm-2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  1. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    PubMed

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  2. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles

    PubMed Central

    Xie, Zheng; Liu, Xiangxuan; Wang, Weipeng; Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2014-01-01

    TiO2 nanorod arrays (TiO2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation. PMID:27877718

  3. Excited-state dynamics of size-dependent colloidal TiO2-Au nanocomposites

    NASA Astrophysics Data System (ADS)

    Karam, Tony E.; Khoury, Rami A.; Haber, Louis H.

    2016-03-01

    The ultrafast excited-state dynamics of size-dependent TiO2-Au nanocomposites synthesized by reducing gold nanoclusters to the surface of colloidal TiO2 nanoparticles are studied using pump-probe transient absorption spectroscopy with 400 nm excitation pulses. The results show that the relaxation processes of the plasmon depletion band, which are described by electron-phonon and phonon-phonon scattering lifetimes, are independent of the gold nanocluster shell size surrounding the TiO2 nanoparticle core. The dynamics corresponding to interfacial electron transfer between the gold nanoclusters and the TiO2 bandgap are observed to spectrally overlap with the gold interband transition signal, and the electron transfer lifetimes are shown to significantly decrease as the nanocluster shell size increases. Additionally, size-dependent periodic oscillations are observed and are attributed to acoustic phonons of a porous shell composed of aggregated gold nanoclusters around the TiO2 core, with frequencies that decrease and damping times that remain constant as the nanocluster shell size increases. These results are important for the development of improved catalytic nanomaterial applications.

  4. Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir

    2018-05-01

    Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.

  5. CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation.

    PubMed

    Yin, Ruiyang; Liu, Mingyang; Tang, Rui; Yin, Longwei

    2017-09-02

    In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe 2 O 3 /TiO 2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe 2 O 3 /TiO 2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broadened optical-response to visible light region, greatly facilitates the separation of photogenerated carriers, giving rise to the enhancement of PEC water oxidation performance. Importantly, for the designed abnormal type-II heterostructure between Fe 2 O 3 /TiO 2 , the conduction band position of Fe 2 O 3 is higher than that of TiO 2 , the photogenerated electrons from Fe 2 O 3 will rapidly recombine with the photogenerated holes from TiO 2 , thus leads to an efficient separation of photogenerated electrons from Fe 2 O 3 /holes from TiO 2 at the Fe 2 O 3 /TiO 2 interface, greatly improving the separation efficiency of photogenerated holes within Fe 2 O 3 and enhances the photogenerated electron injection efficiency in TiO 2 . Working as the photoanodes of PEC water oxidation, CdS/α-Fe 2 O 3 /TiO 2 heterostucture electrode exhibits improved photocurrent density of 0.62 mA cm - 2 at 1.23 V vs. reversible hydrogen electrode (RHE) in alkaline electrolyte, with an obviously negatively shifted onset potential of 80 mV. This work provides promising methods to enhance the PEC water oxidation performance of the TiO 2 -based heterostructure photoanodes.

  6. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    NASA Astrophysics Data System (ADS)

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml-1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses.

  7. Copper doping enhanced the oxidative stress-mediated cytotoxicity of TiO2 nanoparticles in A549 cells.

    PubMed

    Ahmad, J; Siddiqui, M A; Akhtar, M J; Alhadlaq, H A; Alshamsan, A; Khan, S T; Wahab, R; Al-Khedhairy, A A; Al-Salim, A; Musarrat, J; Saquib, Q; Fareed, M; Ahamed, M

    2018-05-01

    Physicochemical properties of titanium dioxide nanoparticles (TiO 2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO 2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO 2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO 2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO 2 and Cu in Cu-doped TiO 2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO 2 NPs (24 nm) was lower than pure TiO 2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO 2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO 2 NPs was higher than pure TiO 2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO 2 NPs. This is the first report showing that Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO 2 NPs.

  8. Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Huang, Yunfang; Wei, Yuelin; Wang, Jing; Luo, Dan; Fan, Leqing; Wu, Jihuai

    2017-11-01

    Three-dimensional Bi2O3/TiO2 hierarchical composites have been successfully prepared by a two-step hydrothermal method and subsequent calcination. The samples were characterized using XRD, SEM, TEM, EDS, BET and DRS. The measurement results signified that heterojunctions of various morphologies β-Bi2O3 growing on the three-dimensional hierarchical anatase TiO2 nanorods arrays on FTO glass were apparently formed. The morphology of Bi2O3 changed from three-dimension flower-like microstructures to the sphere-like nanoparticles as the Li(OH) dosage increased. The photocatalytic results showed that all samples exhibited much higher photocatalytic activities than that of pure Bi2O3 and TiO2 (P25) in photocatalytic degradation of methyl blue (MB) under visible-light irradiation. Whereas BTL4 sample exhibited the highest photoactivity with increasing the dosage of Li(OH) to 2 mmol. Furthermore, the absorption edge of the Bi2O3/TiO2 series composites displayed a broad-spectrum photoabsorption from UV to visible-light compared with the individual component. The as-synthesized Bi2O3/TiO2 composites possessed excellent photocatalytic activity and outstanding recyclability. The enhanced photocatalytic efficiency was mainly attributed to the Bi2O3/TiO2p-n heterojunctions and hierarchical nanostructure. The recombination of photogenerated electron-hole pairs was efficiently suppressed by the Bi2O3/TiO2p-n heterojunctions.

  9. Efficiency enhancement of dye-sensitized solar cells by use of ZrO2-doped TiO2 nanofibers photoanode.

    PubMed

    Mohamed, Ibrahim M A; Dao, Van-Duong; Barakat, Nasser A M; Yasin, Ahmed S; Yousef, Ahmed; Choi, Ho-Suk

    2016-08-15

    Due to the good stability and convenient optical properties, TiO2 nanostructures still the prominent photoanode materials in the Dye Sensitized Solar Cells (DSCs). However, the well-known low bandgap energy and weak adsorption affinity for the dye distinctly constrain the wide application. This work discusses the impact of Zr-doping and nanofibrous morphology on the performance and physicochemical properties of TiO2. Zr-doped TiO2 nanofibers (NFs), with various zirconia content (0, 0.5, 1, 1.5 and 2wt%) were prepared by calcination of electrospun mats composed of polyvinyl acetate, titanium isopropoxyl and zirconium n-propoxyl. For all formulations, the results have shown that the prepared materials are continuous, randomly oriented, and good morphology nanofibers. The average diameter decreased from 353.85nm to 210.78nm after calcination without a considerable influence on the nanofibrous structure regardless the zirconia content. XRD result shows that there is no Rutile nor Brookite phases in the obtained material and the average crystallite size of the sample is affected by the presence of Zr-doping and changed from 23.01nm to 37.63nm for TiO2 and Zr-doped TiO2, respectively. Optical studies have shown Zr-doped TiO2 NFs have more absorbance in the visible region than that of pristine TiO2 NFs; the maximum absorbance is corresponding to the NFs having 1wt% zirconia. The improved spectra of Zr-doped TiO2 in the visible region is attributed to the heterostructure composition resulting from Zr-doping. The absorption bandgaps were calculated using Tauc model as 3.202 and 3.217 for pristine and Zr (1wt%)-doped TiO2 NFs, respectively. Furthermore, in Dye-sensitized Solar Cells, utilizing Zr (1wt%)-doped TiO2 nanofibers achieved higher efficiency of 4.51% compared to the 1.61% obtained from the pristine TiO2 NFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Rational design of a tripartite-layered TiO2 photoelectrode: a candidate for enhanced power conversion efficiency in dye sensitized solar cells.

    PubMed

    Khan, Javid; Gu, Jiuwang; He, Shiman; Li, Xiaohui; Ahmed, Gulzar; Liu, Zhongwu; Akhtar, Muhammad Nadeem; Mai, Wenjie; Wu, Mingmei

    2017-07-20

    A tri-layered photoelectrode for dye-sensitized solar cells (DSSCs) is assembled using single crystal hollow TiO 2 nanoparticles (HTNPs), sub-micro hollow TiO 2 mesospheres (SHTMSs) and hierarchical TiO 2 microspheres (HTMSs). The bottom layer composed of single crystal hollow TiO 2 nanoparticles serves to absorb dye molecules, harvest light due to its hollow structure and keep a better mechanical contact with FTO conducting glass; the middle layer consisting of sub-micro hollow mesospheres works as a multifunctional layer due to its high dye adsorption ability, strong light trapping and scattering ability and slow recombination rates; and the top layer consisting of hierarchical microspheres enhances light scattering. The DSSCs made of photoanodes with a tripartite-layer structure (Film 4) show a superior photoconversion efficiency (PCE) of 9.24%, which is 7.4% higher than a single layered photoanode composed of HTNPs (Film 1: 8.90%), 4.6% higher than a double layer-based electrode consisting of HTNPs and SHTMSs (Film 2: 9.03%) and 2.6% higher than a double layer-based electrode made of HTNPs and HTMSs (Film 3: 9.11%). The significant improvements in the PCE for tri-layered TiO 2 photoanodes are mainly because of the combined effects of their higher light scattering ability, long electron lifetime, fast electron transport rate, efficient charge collection and a considerable surface area with high dye-loading capability. This study confirms that the facile tri-layered photoanode is an interesting structure for high-efficiency DSSCs.

  11. Enhanced electrochromic properties of TiO2 nanoporous film prepared based on an assistance of polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Xu, Shunjian; Luo, Xiaorui; Xiao, Zonghu; Luo, Yongping; Zhong, Wei; Ou, Hui; Li, Yinshuai

    2017-01-01

    Polyethylene glycol (PEG) was employed as pore-forming agent to prepare TiO2 nanoporous film based on spin-coating a TiO2 nanoparticle mixed paste on fluorine doped tin oxide (FTO) glass. The electrochromic and optical properties of the obtained TiO2 film were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and UV-Vis spectrophotometer. The results show that the PEG in the mixed paste endows the TiO2 film with well-developed porous structure and improves the uniformity of the TiO2 film, which are helpful for the rapid intercalation and extraction of lithium ions within the TiO2 film and the strengthening of the diffuse reflection of visible light in the TiO2 film. As a result, the TiO2 film derived from the mixed paste with PEG displays higher electrochemical activity and more excellent electrochromic performances compared with the TiO2 film derived from the mixed paste without PEG. The switching times of coloration/bleaching are respectively 10.16/5.65 and 12.77/6.13 s for the TiO2 films with PEG and without PEG. The maximum value of the optical contrast of the TiO2 film with PEG is 21.2% while that of the optical contrast of the TiO2 film without PEG is 14.9%. Furthermore, the TiO2 film with PEG has better stability of the colored state than the TiO2 film without PEG.

  12. Alkali-corrosion synthesis and excellent DSSC performance of novel jujube-like hierarchical TiO2 microspheres

    NASA Astrophysics Data System (ADS)

    Xiao, Jiajia; Li, Po; Wen, Xiaogang

    2018-04-01

    Novel jujube-like hierarchical TiO2 microspheres (HTMs) were synthesized by an alkali-corrosion process of titanium phosphate (Ti2O3(H2PO4)2 · 2H2O) microspheres. The hierarchical titanium phosphate microsphere (HTPM) intermediates consisting of nanoflakes with a thickness of 20 nm were firstly prepared by a facile hydrothermal method. After reacting with diluted NaOH at low temperature and atmospheric pressure, followed by subsequent acid washing and a calcination process, the HTPM intermediates were transformed to TiO2 with the microsphere morphology well retained, while the nanoflakes became porous, and some new nanowires were formed between the nanoflakes. Finally, HTMs consisting of porous nanoflakes and nanowires were obtained. The possible growth mechanisms of HTPMs and HTMs are discussed. The HTMs demonstrate high specific surface area and excellent light-scattering ability. The performance of the dye sensitized solar cells (DSSCs) of the HTMs synthesized under different conditions is studied, and a total conversion efficiency of up to 8.93% was obtained. The improved DSSC performance was attributed to the enhanced dye loading, light-scattering, and charge transporting ability of the HTMs with a unique hierarchical nanostructure.

  13. Alkali-corrosion synthesis and excellent DSSC performance of novel jujube-like hierarchical TiO2 microspheres.

    PubMed

    Xiao, Jiajia; Li, Po; Wen, Xiaogang

    2018-04-27

    Novel jujube-like hierarchical TiO 2 microspheres (HTMs) were synthesized by an alkali-corrosion process of titanium phosphate (Ti 2 O 3 (H 2 PO 4 ) 2  · 2H 2 O) microspheres. The hierarchical titanium phosphate microsphere (HTPM) intermediates consisting of nanoflakes with a thickness of 20 nm were firstly prepared by a facile hydrothermal method. After reacting with diluted NaOH at low temperature and atmospheric pressure, followed by subsequent acid washing and a calcination process, the HTPM intermediates were transformed to TiO 2 with the microsphere morphology well retained, while the nanoflakes became porous, and some new nanowires were formed between the nanoflakes. Finally, HTMs consisting of porous nanoflakes and nanowires were obtained. The possible growth mechanisms of HTPMs and HTMs are discussed. The HTMs demonstrate high specific surface area and excellent light-scattering ability. The performance of the dye sensitized solar cells (DSSCs) of the HTMs synthesized under different conditions is studied, and a total conversion efficiency of up to 8.93% was obtained. The improved DSSC performance was attributed to the enhanced dye loading, light-scattering, and charge transporting ability of the HTMs with a unique hierarchical nanostructure.

  14. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    PubMed Central

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and

  15. Tribological Properties of TiO2/SiO2 Double Layer Coatings Deposited on CP-Ti

    NASA Astrophysics Data System (ADS)

    Çomakli, O.; Yazici, M.; Yetim, T.; Yetim, A. F.; Çelik, A.

    In the present paper, the influences of different double layer on wear and scratch performances of commercially pure Titanium (CP-Ti) were investigated. TiO2/SiO2 and SiO2/TiO2 double layer coatings were deposited on CP-Ti by sol-gel dip coating process and calcined at 750∘C. The phase structure, cross-sectional morphology, composition, wear track morphologies, adhesion properties, hardness and roughness of uncoated and coated samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), nano-indentation technique, scratch tester and 3D profilometer. Also, the tribological performances of all samples were investigated by a pin-on-disc tribo-tester against Al2O3 ball. Results showed that hardness, elastic modulus and adhesion resistance of double layer coated samples were higher than untreated CP-Ti. It was found that these properties of TiO2/SiO2 double layer coatings have higher than SiO2/TiO2 double layer coating. Additionally, the lowest friction coefficient and wear rates were obtained from TiO2/SiO2 double layer coatings. Therefore, it was seen that phase structure, hardness and film adhesion are important factors on the tribological properties of double layer coatings.

  16. Photoinactivation and Toxicity of Nano-sized TiO2 on Paint Microflora Using Visible Lights

    NASA Astrophysics Data System (ADS)

    Obidi, Olayide; Halverson, Larry

    2016-04-01

    Traditional TiO2 has been used as an antimicrobial additive to paints, but more recently the use of TiO2 nanoparticles (NPs) has been proposed as an alternative because of its ability to induce oxidative damage to the cell membrane of bacteria. This study focused on how photoinactivation of TiO2 NPs by fluorescent and halogen lights (400-700 nm) influenced survival of Bacillus sphaericus (Gram-positive bacterium) and Klebsiella pneumoniae (Gram-negative bacterium) isolated from spoiled paints. The loss of viability of the test organisms in the presence of TiO2 NPs determined by culturable (plate) count technique indicated a decrease in viable bacteria that was predominant after 24-h exposure. The TiO2 NPs showed higher antibacterial performance under fluorescent light than halogen light with increasing irradiation time and confirms the photokilling effect of TiO2 NPs. TiO2 NPs were also bactericidal under dark conditions, suggesting potential antibacterial applications in the paint industry.

  17. Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO2 films: a comparison of two different ruthenium complexes.

    PubMed

    Li, Xiaoe; Nazeeruddin, Mohammad K; Thelakkat, Mukundan; Barnes, Piers R F; Vilar, Ramón; Durrant, James R

    2011-01-28

    We report the application of spectroelectrochemical techniques to compare the hole percolation dynamics of molecular networks of two ruthenium bipyridyl complexes adsorbed onto mesoporous, nanocrystalline TiO(2) films. The percolation dynamics of the ruthenium complex cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-tridecyl) ruthenium(II), N621, is compared with those observed for an analogous dye with an additional tri-phenyl amine (TPA) donor moiety, cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-bis(vinyltriphenylamine)) ruthenium(II), HW456. The in situ oxidation of these ruthenium complexes adsorbed to the TiO(2) films is monitored by cyclic voltammetry and voltabsorptometry, whilst the dynamics of hole (cation) percolation between adsorbed ruthenium complexes is monitored by potentiometric spectroelectrochemistry and chronoabsorptometry. The hole diffusion coefficient, D(eff), is shown to be dependent on the dye loading on the nanocrystalline TiO(2) film, with a threshold observed at ∼60% monolayer surface coverage for both dyes. The hole diffusion coefficient of HW456 is estimated to be 2.6 × 10(-8) cm(2)/s, 20-fold higher than that obtained for the control N621, attributed to stronger electronic coupling between the TPA moieties of HW456 accelerating the hole percolation dynamics. The presence of mercuric ions, previously shown to bind to the thiocyanates of analogous ruthenium complexes, resulted in a quenching of the hole percolation for N621/TiO(2) films and an enhancement for HW456/TiO(2) films. These results strongly suggest that the hole percolation pathway is along the overlapped neighbouring -NCS groups for the N621 molecules, whereas in HW456 molecules cation percolation proceeds between intermolecular TPA ligands. These results are discussed in the context of their relevance to the process of dye regeneration in dye sensitised solar cells, and to the molecular wiring of wide

  18. Visible light driven photocatalyst of vanadium (V3+) doped TiO2 synthesized using sonochemical method

    NASA Astrophysics Data System (ADS)

    Aini, N.; Ningsih, R.; Maulina, D.; Lami’, F. F.; Chasanah, S. N.

    2018-03-01

    TiO2 has been widely investigated due to its superior photocatalytic activity under ultraviolet irradiation among the photocatalyst materials. In this research, vanadium (V3+) was doped into TiO2 to enhance its light response under visible irradiation for wider application. Vanadium was introduced into TiO2 lattice at various concentration respectively 0.3, 0.5, 0.7 and 0.9% using simple and fast sonochemical method. X-Ray Diffraction data show that vanadium doped TiO2 crystallized in anatase phase with I41amd space group. X-Ray Diffraction pattern shifted to lower value of 2θ due to vanadium dopant. It indicated that V3+ was incorporated into anatase lattice. UV-Vis Diffuse Reflectance Spectra was revealed that the doped TiO2 has lowered reflectance and enhanced absorption coefficient in visible region than undoped TiO2 and commercial anatase TiO2. Band gap energy for undoped and doped TiO2 were respectively 3.22, 3.05, 2.93, 3.03 and 2.40 eV. Therefore vanadium doped TiO2 had potential to be applied under visible light.

  19. Semiconducting and quartz microbalance (QCM) humidity sensor properties of TiO2 by sol gel calcination method

    NASA Astrophysics Data System (ADS)

    Yakuphanoglu, Fahrettin

    2012-06-01

    Titanium dioxide (TiO2) material was synthesized using the sol gel calcination method. The structural properties of the TiO2 semiconductor were investigated by atomic force microscopy. The electrical conductivity of the TiO2 was measured as a function of temperature and TiO2 exhibits a conductivity of 2.55 × 10-6 S/m at room temperature with activation energy of 104 meV. The electrical conductivity of the TiO2 at room temperature is higher than that of nanocrystalline TiO2 (3 × 10-7 S/m) and TiO2 thin film in air (5 × 10-9 S/m) and in vacuum (8.8 × 10-10 S/m). It was found that the electrical transport mechanism of the TiO2 is controlled by thermally activated mechanism. The optical band gap of the TiO2 powder sample was determined to be 3.17 eV, which is good in agreement with the bulk TiO2 (Eg = 3.2 eV). Up to our knowledge, there is no any reported data about the band gap of TiO2 nanopowder based on the diffused reflectance calculation. Quartz crystal microbalance (QCM) TiO2 humidity sensor was prepared. The sensor indicates a large frequency change with an interaction occurred between TiO2 and humidity molecules. The sensor exhibits a good repeatability when it was exposed to the moist air of 65% RH.

  20. Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2

    PubMed Central

    Kim, Youngmin; Hwang, Hee Min; Wang, Luyang; Kim, Ikjoon; Yoon, Yeoheung; Lee, Hyoyoung

    2016-01-01

    A generation of reactive oxygen species (ROS) from TiO2 under solar light has been long sought since the ROS can disinfect organic pollutants. We found that newly developed crystalline/amorphous reduced TiO2 (rTiO2) that has low energy bandgap can effectively generate ROS under solar light and successfully remove a bloom of algae. The preparation of rTiO2 is a one-pot and mass productive solution-process reduction using lithium-ethylene diamine (Li-EDA) at room temperature. Interestingly only the rutile phase of TiO2 crystal was reduced, while the anatase phase even in case of both anatase/rutile phased TiO2 was not reduced. Only reduced TiO2 materials can generate ROS under solar light, which was confirmed by electron spin resonance. Among the three different types of Li-EDA treated TiO2 (anatase, rutile and both phased TiO2), the both phased rTiO2 showed the best performance to produce ROS. The generated ROS effectively removed the common green algae Chlamydomonas. This is the first report on algae degradation under solar light, proving the feasibility of commercially available products for disinfection. PMID:27121120

  1. Interfacial band-edge engineered TiO2 protection layer on Cu2O photocathodes for efficient water reduction reaction

    NASA Astrophysics Data System (ADS)

    Choi, Jaesuk; Song, Jun Tae; Jang, Ho Seong; Choi, Min-Jae; Sim, Dong Min; Yim, Soonmin; Lim, Hunhee; Jung, Yeon Sik; Oh, Jihun

    2017-01-01

    Photoelectrochemical (PEC) water splitting has emerged as a potential pathway to produce sustainable and renewable chemical fuels. Here, we present a highly active Cu2O/TiO2 photocathode for H2 production by enhancing the interfacial band-edge energetics of the TiO2 layer, which is realized by controlling the fixed charge density of the TiO2 protection layer. The band-edge engineered Cu2O/TiO2 (where TiO2 was grown at 80 °C via atomic layer deposition) enhances the photocurrent density up to -2.04 mA/cm2 at 0 V vs. RHE under 1 sun illumination, corresponding to about a 1,200% enhancement compared to the photocurrent density of the photocathode protected with TiO2 grown at 150 °C. Moreover, band-edge engineering of the TiO2 protection layer prevents electron accumulation at the TiO2 layer and enhances both the Faraday efficiency and the stability for hydrogen production during the PEC water reduction reaction. This facile control over the TiO2/electrolyte interface will also provide new insight for designing highly efficient and stable protection layers for various other photoelectrodes such as Si, InP, and GaAs. [Figure not available: see fulltext.

  2. Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO2-ZnO Nanorod Film

    PubMed Central

    Abd Samad, Nur Azimah; Lai, Chin Wei; Lau, Kung Shiuh; Abd Hamid, Sharifah Bee

    2016-01-01

    Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl2 and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO2 into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO2 loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm2 (with V vs. Ag/AgCl) under UV illumination and 14.75 mA/cm2 (with V vs. Ag/AgCl) under solar illumination with photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance was approximately 3–4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO2-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination. PMID:28774068

  3. Conducting interface in oxide homojunction: Understanding of superior properties in black TiO 2

    DOE PAGES

    Lu, Xujie; Chen, Aiping; Luo, Yongkang; ...

    2016-09-14

    Black TiO 2 nanoparticles with a crystalline core and amorphous-shell structure exhibit superior optoelectronic properties in comparison with pristine TiO 2. The fundamental mechanisms underlying these enhancements, however, remain unclear, largely due to the inherent complexities and limitations of powder materials. Here, we fabricate TiO 2 homojunction films consisting of an oxygen-deficient amorphous layer on top of a highly crystalline layer, to simulate the structural/functional configuration of black TiO 2 nanoparticles. Metallic conduction is achieved at the crystalline–amorphous homointerface via electronic interface reconstruction, which we show to be the main reason for the enhanced electron transport of black TiO 2.more » As a result, this work not only achieves an unprecedented understanding of black TiO 2 but also provides a new perspective for investigating carrier generation and transport behavior at oxide interfaces, which are of tremendous fundamental and technological interest.« less

  4. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria.

    PubMed

    Kim, Byunghoon; Kim, Dohwan; Cho, Donglyun; Cho, Sungyong

    2003-07-01

    Titanium dioxide (TiO(2)) photocatalysts have attracted great attention as a material for photocatalytic sterilization in the food and environmental industry. This research aimed to design a new photobioreactor and its application to sterilize selected food borne pathogenic bacteria, Salmonella choleraesuis subsp., Vibrio parahaemolyticus, and Listeria monocytogenes. The photocatalytic reaction was carried out with various TiO(2) concentrations and Ultraviolet (UV) illumination time. A feasible synergistic effect was found that the bactericidal effect of TiO(2) on all bacterial suspension after UV light irradiation was much higher than that of without TiO(2). As the concentration of TiO(2) increased to 1.0 mg/ml, bactericidal effect increased. However, the bactericidal effect was rapidly abbreviated at TiO(2) concentration higher than 1.25 mg/ml to all selected bacteria. UV illumination time affected drastically the viability of all bacteria with different death rate. Similar trends were obtained from S. choleraesuis subsp. and V. parahaemolyticus that their complete killing was achieved after 3 h of illumination. However, L. monocytogenes was more resistant and its death ratio was about 87% at that time.

  5. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells.

    PubMed

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-24

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  6. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    PubMed Central

    2014-01-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure. PMID:24565201

  7. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current ( J sc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved J sc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  8. Thermodynamic Simulation of Viscosity of TiO2-Ti2O3-CaO Ternary Slag

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ma, W. H.; Zhang, S. J.; Lei, Y.; Wen, J. H.

    2017-12-01

    The viscosity of high titanium slag at high temperature is one of the key factors of slag-iron separation. Based on the Einstein-Roscoe equation, thermodynamic simulation of viscosity of TiO2-Ti2O3-CaO ternary slag is studied by using FactSage® software, and the effects of temperature, CaO content and solid-phase particles on the viscosity of slag were studied. The results show that the increase of CaO content has the effect of reducing melting temperature and viscosity of TiO2-Ti2O3-CaO ternary slag. After the TiO2-Ti2O3-CaO ternary slag is completely melted, the increase of temperature has little effect on viscosity of slag, and the viscosity is about 110~125mPa·s. When the temperature is lower than melting temperature, TiO2-Ti2O3-CaO ternary slag will precipitate solid-phase particles, and the precipitation process is carried out in stages, and with the decrease of temperature, the precipitation will increase and the viscosity will sharply increase. TiO2-Ti2O3-CaO ternary titanium slag has obvious characteristics of short slag.

  9. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Yu, Jianyu; Zhou, Lin; Wang, Yang; Tan, Yingling; Wang, Zhenlin; Zhu, Shining; Zhu, Jia

    2018-03-01

    The mechanisms of plasmonic nanostructures assisted photocatalytic processes are fundamental and of great importance and interest for decades. Therefore, we adopt a unique porous structure of three-dimensional TiO2/Au nanoparticles to experimentally explore the potential mechanisms of rhodamine B (RhB) based photocatalytic degradation. The highly efficient absorbance measured across the entire ultraviolet and infrared regions shows the broadband light harvesting capability and photocatalytic activity, in which the direct bandgap transition, plasmon sensitization as well as the plasmonic photothermal effect can be beneficial for the photocatalytic reaction. The RhB photocatalytic degradation experiments were conducted systematically under solar irradiance with finely chosen optical filters. Apart from the ultraviolet-driven degradation of TiO2, the plasmon assisted photocatalytic rate of our TiO2/Au structure can be enhanced by >30% as compared to the referenced TiO2 structure (equivalent to 2-4 times promotion with respect to the same quantity of the active material TiO2). Detailed wavelength-dependent analyses have revealed that the visible-driven degradation rate can be enhanced by 10 times because of the plasmon sensitization effect; while infrared-driven degradation rate is enhanced by 4 times as well for the plasmonic photothermal effect, respectively. Our experimental results may provide a clear understanding for the wavelength-dependent plasmon enhanced photocatalytic processes.

  10. Angle dependent antireflection property of TiO2 inspired by cicada wings

    NASA Astrophysics Data System (ADS)

    Zada, Imran; Zhang, Wang; Li, Yao; Sun, Peng; Cai, Nianjin; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Zhang, Di

    2016-10-01

    Inspired by cicada wings, biomorphic TiO2 with antireflective structures (ARSs) was precisely fabricated using a simple, inexpensive, and highly effective sol-gel process combined with subsequent calcination. It was confirmed that the fabricated biomorphic TiO2 not only effectively inherited the ARS but also exhibited high-performance angle dependent antireflective properties ranging from normal to 45°. Reflectance spectra demonstrated that the reflectivity of the biomorphic TiO2 with ARSs gradually changed from 1.4% to 7.8% with the increasing incidence angle over a large visible wavelength range. This angle dependent antireflective property is attributed to an optimized gradient refractive index between air and TiO2 via ARSs on the surface. Such surfaces with ARSs may have potential application in solar cells.

  11. TiO2 nanocomposite for the controlled release of drugs against pathogens causing wound infections

    NASA Astrophysics Data System (ADS)

    Devanand Venkatasubbu, G.; Nagamuthu, S.; Anusuya, T.; Kumar, J.; Chelliah, Ramachandran; Rani Ramakrishnan, Sudha; Antony, Usha; Khan, Imran; Oh, Deog-Hwan

    2018-02-01

    Chitosan titanium dioxide nanocomposite has been used for wound healing. Titanium dioxide (TiO2) nanoparticles are synthesised and made in to nanocomposite along with chitosan. Curcumin nanoparticles are synthesised. Three different drugs with antimicrobial activity are incorporated into the chitosan/TiO2nanocomposite. Ciprofloxacin, amoxicillin and curcumin nanoparticles are incorporated within the chitosan/TiO2 nanoparticles. The nanoparticles and nanocomposite are characterized with XRD, FTIR, TEM and SEM. Drug loading was found to be around 45% for all the three drug molecules. The drug release profile shows a controlled release of drug molecules from the nanocomposite. Antibacterial studies shows a good inhibition of bacterial species by the nanocomposites.

  12. Effects of Functionalization of TiO2 Nanotube Array Sensors with Pd Nanoparticles on Their Selectivity

    PubMed Central

    Park, Sunghoon; Kim, Soohyun; Park, Suyoung; Lee, Wan In; Lee, Chongmu

    2014-01-01

    This study compared the responses of Pd-functionalized and pristine titanate (TiO2) nanotube arrays to ethanol with those to acetone to determine the effects of functionalization of TiO2 nanotubes with Pd nanoparticles on the sensitivity and selectivity. The responses of pristine and Pd-functionalized TiO2 nanotube arrays to ethanol gas at 200 °C were ∼2877% and ∼21,253%, respectively. On the other hand, the responses of pristine and Pd-functionalized TiO2 nanotube arrays to acetone gas at 250 °C were ∼1636% and 8746% respectively. In the case of ethanol sensing, the response and recovery times of Pd-functionalized TiO2 nanotubes (10.2 and 7.1 s) were obviously shorter than those of pristine TiO2 nanotubes (14.3 and 8.8 s), respectively. In contrast, in the case of acetone sensing the response and recovery times of Pd-functionalized TiO2 nanotubes (42.5 and 19.7 s) were almost the same as those of pristine TiO2 nanotubes (47.2 and 17.9 s). TiO2 nanotube arrays showed the strongest response to ethanol and Pd functionalization was the most effective in improving the response of TiO2 nanotubes to ethanol among six different types of gases: ethanol, acetone, CO, H2, NH3 and NO2. The origin of the superior sensing properties of Pd-functionalized TiO2 nanotubes toward ethanol to acetone is also discussed. PMID:25166499

  13. The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Guo, Qiyao; Huang, Yunfang; Xu, Hui; Luo, Dan; Huang, Feiyue; Gu, Lin; Wei, Yuelin; Zhao, Huang; Fan, Leqing; Wu, Jihuai

    2018-04-01

    Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron-hole separation, and lead to the increasing photocatalytic activity.

  14. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Du, Zoufei; Cheng, Cheng; Tan, Lin; Lan, Jianwu; Jiang, Shouxiang; Zhao, Ludan; Guo, Ronghui

    2018-03-01

    In this study, a visible-light-driven photocatalyst Bi2WO6/TiO2 composite was reported using one-step hydrothermal method and then coated on the polyester fabric. The samples were systematically characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy (PL). The photocatalytic activity of Bi2WO6/TiO2 coated polyester fabric was evaluated by degradation of Rhodamine B (RhB) and Methylene blue (MB) under visible light irradiation. The self-cleaning property of the fabrics was assessed through removing red wine stain. The results reveal that the Bi2WO6/TiO2 composites with irregular shape are coated on the polyester fabric successfully. The UV-vis absorption spectra show a broad absorption band in the visible region, which extends the scope of absorption spectrum and helps to improve the photocatalytic degradation efficiency. Photocatalytic activities of the Bi2WO6/TiO2 composite polyester fabric are associated with the content of TiO2. Bi2WO6/15%TiO2 coated polyester fabric exhibits the degradation efficiency for RhB and MB up to 98% and 95.1%, respectively, which is much higher than that of pure Bi2WO6 and TiO2 coated polyester fabric. Moreover, Bi2WO6/15%TiO2 coated polyester fabric shows good cycle stability toward continuous three cycles of photocatalytic experiment for dyes degradation. In addition, the Bi2WO6/TiO2 coated polyester fabric shows good self-cleaning property. This work could be extended to design of other composite photocatalyst coating on the fabric for enhancing activity by coupling suitable wide and narrow band-gap semiconductors.

  15. Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation

    PubMed Central

    Yoriya, Sorachon; Chumphu, Angkana; Pookmanee, Pusit; Laithong, Wreerat; Thepa, Sirichai; Songprakorp, Roongrojana

    2016-01-01

    Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times. PMID:28773930

  16. Some studies on TiO2 films deposited by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Narasimha Rao, K.; Vishwas, M.; Kumar Sharma, Sudhir; Arjuna Gowda, K. V.

    2008-08-01

    TiO2 films are extensively used in various applications including optical multi-layers, sensors, photo catalysis, environmental purification, and solar cells etc. These are prepared by both vacuum and non-vacuum methods. In this paper, we present the results on TiO2 thin films prepared by a sol-gel spin coating process in non-aqueous solvent. Titanium isopropoxide is used as TiO2 precursor. The films were annealed at different temperatures up to 3000 C for 5 hours in air. The influence of the various deposition parameters like spinning speed, spinning time and annealing temperature on the thickness of the TiO2 films has been studied. The variation of film thickness with time in ambient atmosphere was also studied. The optical, structural and morphological characteristics were investigated by optical transmittance-reflectance measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The refractive index and extinction coefficient of the films were determined by envelope technique and spectroscopic ellipsometry. TiO2 films exhibited high transparency (92%) in the visible region with a refractive index of 2.04 at 650 nm. The extinction coefficient was found to be negligibly small. The X-ray diffraction analysis showed that the TiO2 film deposited on glass substrate changes from amorphous to crystalline (anatase) phase with annealing temperature above 2500 C. SEM results show that the deposited films are uniform and crack free.

  17. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  18. A novel drug delivery of 5-fluorouracil device based on TiO2/ZnS nanotubes.

    PubMed

    Faria, Henrique Antonio Mendonça; de Queiroz, Alvaro Antonio Alencar

    2015-11-01

    The structural and electronic properties of titanium oxide nanotubes (TiO2) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO2 has typically been within ultraviolet spectrum. In this study, the surface modification of TiO2 nanotubes with ZnS quantum dots was found to produce a red shift in the ultra violet emission band. The TiO2 nanotubes used in this work were obtained by sol-gel template synthesis. The ZnS quantum dots were deposited onto TiO2 nanotube surface by a micelle-template inducing reaction. The structure and morphology of the resulting hybrid TiO2/ZnS nanotubes were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. According to the results of fluorescence spectroscopy, pure TiO2 nanotubes exhibited a high emission at 380nm (3.26eV), whereas TiO2/ZnS exhibited an emission at 410nm (3.02eV). The TiO2/ZnS nanotubes demonstrated good bio-imaging ability on sycamore cultured plant cells. The biocompatibility against mammalian cells (Chinese Hamster Ovarian Cells-CHO) suggesting that TiO2/ZnS may also have suitable optical properties for use as biological markers in diagnostic medicine. The drug release characteristic of TiO2/ZnS nanotubes was explored using 5-fluorouracil (5-FU), an anticancer drug used in photodynamic therapy. The results show that the TiO2/ZnS nanotubes are a promising candidate for anticancer drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Barkhade, Tejal; Banerjee, Indrani

    2018-05-01

    The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.

  20. Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bharati, B.; Sonkar, A. K.; Singh, N.; Dash, D.; Rath, Chandana

    2017-08-01

    As TiO2 is one of the most popular photocatalysts, we have studied here the photocatalytic degradation of the most common dyestuffs like rhodamine B (RhB), congo red (CR) and methylene blue (MB), which mainly come from the textile and photographic industries using nanoparticles of TiO2. Nanoparticles of TiO2 synthesized through a simple and cost effective sol-gel technique crystallizes in the anatase phase, showing a band gap less than that of bulk value. Particles consisting of coherently scattered domains of size 33 nm are found to be agglomerated and polycrystalline in nature. While the degradation rates of MB, CR and RhB after irradiating with a renewable source of energy, i.e. sunlight, show 100% degradation, TiO2 irradiated with UV light of 4.8 eV shows a much slower degradation rate. To use the waste water after photocatalysis, we examine further the biocompatibile nature of the TiO2 nanoparticles by platelet interaction activity, hemolysis effect and MTT assay. It is worth mentioning here that TiO2 nanoparticles are found to be highly hemocompatible, show no platelet aggregation, and the level of intracellular ROS in human platelets does not show significant change in ROS level. We conclude that TiO2 nanoparticles constitute an excellent photocatalyst and biocompatible material, and that after photocatalytic degradation of dye effluents obtained from textile industries, purified water can be used in agriculture and domestic sectors.

  1. Selection of a novel peptide aptamer with high affinity for TiO2-nanoparticle through a direct electroporation with TiO2-binding phage complexes.

    PubMed

    Inoue, Ippei; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yasueda, Hisashi

    2016-11-01

    We have developed an easy and rapid screening method of peptide aptamers with high affinity for a target material TiO 2 using M13 phage-display and panning procedure. In a selection step, the phage-substrate complexes and Escherichia coli cells were directly applied by electric pulse for electroporation, without separating the objective phages from the TiO 2 nanoparticles. Using this simple and rapid method, we obtained a novel peptide aptamer (named ST-1 with the sequence AYPQKFNNNFMS) with highly strong binding activity for TiO 2 . A cage-shaped protein fused with both ST-1 and an available carbon nanotube-affinity peptide was designed and produced in E. coli. The multi-functional supraprotein could efficiently mineralize a titanium-compound around the surface of single-wall carbon nanotubes (SWNTs), indicating that the ST-1 is valuable in the fabrication of nano-composite materials with titanium-compounds. The structural analysis of ST-1 variants indicated the importance of the N-terminal region (as a motif of AXPQKX 6 S) of the aptamer in the TiO 2 -binding activity. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Band alignment of rutile and anatase TiO2

    NASA Astrophysics Data System (ADS)

    Scanlon, David O.; Dunnill, Charles W.; Buckeridge, John; Shevlin, Stephen A.; Logsdail, Andrew J.; Woodley, Scott M.; Catlow, C. Richard A.; Powell, Michael. J.; Palgrave, Robert G.; Parkin, Ivan P.; Watson, Graeme W.; Keal, Thomas W.; Sherwood, Paul; Walsh, Aron; Sokol, Alexey A.

    2013-09-01

    The most widely used oxide for photocatalytic applications owing to its low cost and high activity is TiO2. The discovery of the photolysis of water on the surface of TiO2 in 1972 launched four decades of intensive research into the underlying chemical and physical processes involved. Despite much collected evidence, a thoroughly convincing explanation of why mixed-phase samples of anatase and rutile outperform the individual polymorphs has remained elusive. One long-standing controversy is the energetic alignment of the band edges of the rutile and anatase polymorphs of TiO2 (ref. ). We demonstrate, through a combination of state-of-the-art materials simulation techniques and X-ray photoemission experiments, that a type-II, staggered, band alignment of ~ 0.4 eV exists between anatase and rutile with anatase possessing the higher electron affinity, or work function. Our results help to explain the robust separation of photoexcited charge carriers between the two phases and highlight a route to improved photocatalysts.

  3. Effect of TiO2 nanoparticles on some photophysical characteristics of ketocyanine dyes.

    PubMed

    Thipperudrappa, Javuku; Raghavendra, U P; Basanagouda, Mahantesha

    2017-11-01

    The effect of titanium dioxide (TiO 2 ) nanoparticles (NPs) on photophysical characteristics of 2,5-di[(E)-1-(4-dimethylaminophenyl) methylidine]-1-cyclopentanone (2,5-DMAPMC) and 2,5-di[(E)-1-(4-diethylaminophenyl)methylidine]-1-cyclopentanone (2,5-DEAPMC) ketocyanine dyes has been studied using absorption, steady-state and time-resolved fluorescence spectroscopy. The magnitudes of association constants determined based on modified absorption spectrum of dyes due to the presence of TiO 2 NPs indicate the interaction of TiO 2 NPs with dye molecules. The quenching of fluorescence intensity of dyes by TiO 2 NPs is observed and it follows linear Stern-Volmer (S-V) equation. The magnitude of quenching rate parameter suggests the involvement of static quenching mechanism. The involvement of electron transfer process in reducing fluorescence intensity of dyes has been discussed. Also, varying influence of TiO 2 NPs on two dyes is explained based on the presence of different alkyl substituent in two dyes. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Study on Photocatalytic Properties of TiO2 Nanoparticle in various pH condition

    NASA Astrophysics Data System (ADS)

    Nasikhudin; Diantoro, M.; Kusumaatmaja, A.; Triyana, K.

    2018-04-01

    Titanium dioxide has been widely studied for its ability to photocatalytic and applications have high performance for photovoltaic applications. In this paper TiO2 nanoparticle was investigated for the degradation of methylene blue under UV light in various pH condition. The TiO2 nanoparticle was characterized by SEM and XRD. The results showed that TiO2 nanoparticle has the structure of anatase and have a particle size of 27 nm. The photocatalytic activity of TiO2 nanoparticle show that the degradation of methylene blue under UV light have dye removal of 97% dye was degraded in 3 h, but the degradation of methylene blue without UV light have dye removal of 15% dye was degraded in 3 h. It indicated that The photocatalytic activity of TiO2 nanoparticle could occur if there the UV light. If not UV light the photocatalytic activity cannot occurs, the degradation of Methylene Blue 15% is not a photocatalytic activity but it is adsorption of Methylene Blue by TiO2 nanoparticle. The photocatalytic activity of TiO2 nanoparticle has pH-sensitive. The photocatalytic activity of TiO2 nanoparticle in acid condition (pH 4.1) is 40%, in neutral condition (pH 7.0) is 90%, and in base condition (pH 9.7) is 97%. The highest photocatalytic activity occurs in base condition, it causes in base condition OH- can be direct reaction with a hole to produce hydroxyl radical (OH*).

  5. Lithiation Thermodynamics and Kinetics of the TiO 2 (B) Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xiao; Liu, Zheng; Fischer, Michael G.

    TiO2 (B) has attracted a lot of attention in recent years because it exhibits the largest capacity among all studied titania polymorphs with high rate performance for Li intercalation achieved when this material is nanostructured. However, due to the complex nature of its lithiation mechanism and practical challenges in probing Li local environments in nanostructured materials, a definitive understanding of the lithiation thermodynamics has yet to be established. A comprehensive mechanistic investigation of the TiO2 (B) nanoparticles is therefore presented using a combination of in situ / operando X-ray pair distribution function (PDF) and electrochemical techniques. The discharge begins withmore » surface reactions involving surface hydroxyl groups. Such reactions contribute to the capacity loss and take place in parallel with Li insertion into the near-surface region of the nanoparticles. The Li bulk insertion starts with a single-phase reaction into the A2 site, a position adjacent to the b channel. A change of the Li diffusion pathway from that along this open channel to that along the c-direction is likely to occur at the composition of Li0.25TiO2 until Li0.5TiO2 is attained, leading to a two-step A2-site incorporation with one step kinetically distinct from the other. Subsequent Li insertion involves C’ site, a position situated inside the channel, and follows a rapid two-phase reaction to form Li0.75TiO2. Due to the high diffusion barrier associated with the further lithiation, Li insertion into the A1 site, another position adjacent to the channel neighboring the A2 sites, is kinetically restricted. It can be promoted by either nanostructuring or raising the operating temperature, the latter however triggering concurrent electrolyte decomposition giving rise to additional capacity loss. This study not only provides compelling experimental evidence for the unresolved reaction thermodynamics of nanoparticulate TiO2 (B), but also serves as a strong

  6. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO 2-Functionalized Mesoporous Silica Nanoparticles

    DOE PAGES

    Khan, M. Arif; Wallace, William T.; Islam, Syed Z.; ...

    2017-08-21

    Exploiting specific interactions with titania (TiO 2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO 2 has many potential advantages over bulk and mesoporous TiO 2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO 2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO 2 content (up to 636 mg TiO2/g). The adsorption isotherms of twomore » polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO 2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO 2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO 2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.« less

  7. The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice.

    PubMed

    Borghi, Sergio M; Mizokami, Sandra S; Pinho-Ribeiro, Felipe A; Fattori, Victor; Crespigio, Jefferson; Clemente-Napimoga, Juliana T; Napimoga, Marcelo H; Pitol, Dimitrius L; Issa, João P M; Fukada, Sandra Y; Casagrande, Rubia; Verri, Waldiceu A

    2018-03-01

    Titanium dioxide (TiO 2 ) is a common component of orthopedic prosthesis. However, prosthesis wear releases TiO 2 , which induces inflammation and osteolysis in peri-prosthetic tissues. Quercetin is a flavonoid widely present in human diet, which presents biological activities such as antinociceptive, anti-inflammatory and antioxidant effects. Therefore, the effect of intraperitoneal treatment with quercetin in TiO 2 -induced arthritis model was evaluated. In the first set of experiments, mice received injection of TiO 2 (0.1-3 mg/knee joint) and articular mechanical hyperalgesia, edema and histopathology analysis were performed in a 30 days protocol. The dose of 3 mg of TiO 2 showed the most harmful effect, and was chosen to the following experiments. Subsequently, mice received 3 mg of TiO 2 followed by post-treatment with quercetin during 30 days. Quercetin (10-100 mg/kg) inhibited in a dose-dependent manner TiO 2 -induced knee joint mechanical hyperalgesia, edema and leukocyte recruitment and did not induce damage in major organs such as liver, kidney and stomach. The dose of 30 mg/kg was chosen for the subsequent analysis, and reduced histopathological changes such as leukocyte infiltration, vascular proliferation and synovial hyperplasia (pannus formation) on day 30 after TiO 2 challenge. The protective analgesic and anti-inflammatory mechanisms of quercetin included the inhibition of TiO 2 -induced neutrophil and macrophage recruitment, proteoglycan degradation, oxidative stress, cytokine production (TNF-α, IL-1β, IL-6, and IL-10), COX-2 mRNA expression, and bone resorption as well as activation of Nrf2/HO-1 signaling pathway. These results demonstrate the potential therapeutic applicability of the dietary flavonoid quercetin to reduce pain and inflammatory damages associated with prosthesis wear process-induced arthritis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO 2-Functionalized Mesoporous Silica Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. Arif; Wallace, William T.; Islam, Syed Z.

    Exploiting specific interactions with titania (TiO 2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO 2 has many potential advantages over bulk and mesoporous TiO 2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO 2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO 2 content (up to 636 mg TiO2/g). The adsorption isotherms of twomore » polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO 2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO 2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO 2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.« less

  9. Defect assisted coupling of a MoS2/TiO2 interface and tuning of its electronic structure.

    PubMed

    Chen, Guifeng; Song, Xiaolin; Guan, Lixiu; Chai, Jianwei; Zhang, Hui; Wang, Shijie; Pan, Jisheng; Tao, Junguang

    2016-09-02

    Although MoS2 based heterostructures have drawn increased attention, the van der Waals forces within MoS2 layers make it difficult for the layers to form strong chemical coupled interfaces with other materials. In this paper, we demonstrate the successful strong chemical attachment of MoS2 on TiO2 nanobelts after appropriate surface modifications. The etch-created dangling bonds on TiO2 surfaces facilitate the formation of a steady chemically bonded MoS2/TiO2 interface. With the aid of high resolution transmission electron microscope measurements, the in-plane structure registry of MoS2/TiO2 is unveiled at the atomic scale, which shows that MoS2[1-10] grows along the direction of TiO2[001] and MoS2[110] parallel to TiO2[100] with every six units of MoS2 superimposed on five units of TiO2. Electronically, type II band alignments are realized for all surface treatments. Moreover, the band offsets are delicately correlated to the surface states, which plays a significant role in their photocatalytic performance.

  10. Enhanced Photocatalytic Activity of TiO2 Nanoparticles Supported on Electrically Polarized Hydroxyapatite.

    PubMed

    Zhang, Xuefei; Yates, Matthew Z

    2018-05-23

    Fast recombination of photogenerated charge carriers in titanium dioxide (TiO 2 ) remains a challenging issue, limiting the photocatalytic activity. This study demonstrates increased photocatalytic performance of TiO 2 nanoparticles supported on electrically polarized hydroxyapatite (HA) films. Dense and thermally stable yttrium and fluorine co-doped HA films with giant internal polarization were synthesized as photocatalyst supports. TiO 2 nanoparticles deposited on the support were then used to catalyze the photochemical reduction of aqueous silver ions to produce silver nanoparticles. It was found that significantly more silver nanoparticles were produced on polarized HA supports than on depolarized HA supports. In addition, the photodegradation of methyl orange with TiO 2 nanoparticles on polarized HA supports was found to be much faster than with TiO 2 nanoparticles on depolarized HA supports. It is proposed that separation of photogenerated electrons and holes in TiO nanoparticles is promoted by the internal polarization of the HA support, and consequently, the recombination of charge carriers is mitigated. The results imply that materials with large internal polarization can be used in strategies for enhancing quantum efficiency of photocatalysts.

  11. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    PubMed Central

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    Abstract This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml–1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses. PMID:27877913

  12. Production of hybrid lipid-based particles loaded with inorganic nanoparticles and active compounds for prolonged topical release.

    PubMed

    García-González, C A; Sampaio da Sousa, A R; Argemí, A; López Periago, A; Saurina, J; Duarte, C M M; Domingo, C

    2009-12-01

    The production of particulate hybrid carriers containing a glyceryl monostearate (Lumulse GMS-K), a waxy triglyceride (Cutina HR), silanized TiO(2) and caffeine were investigated with the aim of producing sunscreens with UV-radiation protection properties. Particles were obtained using the supercritical PGSS (Particles from Gas Saturated Solutions) technique. This method takes advantages of the lower melting temperatures of the lipids obtained from the dissolution of CO(2) in the bulk mixture. Experiments were performed at 13 MPa and 345 K, according to previous melting point measurements. Blends containing Lumulse GMS-K and Cutina HR lipids (50 wt%) were loaded with silanized TiO(2) and caffeine in percentile proportions of 6 and 4 wt%, respectively. The particles produced were characterized using several analytical techniques as follows: system crystallinity was checked by X-ray diffraction and differential scanning calorimetry, thermal stability by thermogravimetric analysis, and morphology by scanning and transmission electron microscopy. Further, the UV-shielding ability of TiO(2) after its dispersion in the lipidic matrix was assessed by solid UV-vis spectroscopy. Preliminary results indicated that caffeine-loaded solid lipid particles presented a two-step dissolution profile, with an initial burst of 60 wt% of the loaded active agent. Lipid blends loaded with TiO(2) and caffeine encompassed the UV-filter behavior of TiO(2) and the photoaging prevention properties of caffeine.

  13. Bulk oxygen vacancies enriched TiO2 and its enhanced visible photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Xu, Liming; Ma, Xujun; Sun, Na; Chen, Feng

    2018-05-01

    Via a vacuum thermal treatment, oxygen vacancy (Ov) was introduced into TiO2 bulk lattice during the phase transformation from amorphous TiO2 to anatase. High-resolution transmission electron microscopy (HRTEM), Raman spectra and X-ray diffraction (XRD) confirm the involvement of Ov causes more violent changes in both bulk and surface structure. Electron paramagnetic resonance (EPR) demonstrated as-obtained V350 gets about a 40-times enhanced Ov signal compared with pure TiO2 (A350) and a 10-times larger signal than that of common Ov modified TiO2 (A450-V350), which clearly illustrates the high concentration of Ov in its bulk lattice. The much enriched Ovs in both bulk and surface lattices of TiO2 help V350 get an enhanced capacity in either visible light harvest or photocarriers generation. And a much higher visible photocatalytic activity for Aicd Orange 7 degradation was finally achieved by V350.

  14. Immobilized TiO2 nanoparticles produced by flame spray for photocatalytic water remediation

    NASA Astrophysics Data System (ADS)

    Bettini, Luca Giacomo; Diamanti, Maria Vittoria; Sansotera, Maurizio; Pedeferri, Maria Pia; Navarrini, Walter; Milani, Paolo

    2016-08-01

    Anatase/rutile mixed-phase titanium dioxide (TiO2) photocatalysts in the form of nanostructured powders with different primary particle size, specific surface area, and rutile content were produced from the gas-phase by flame spray pyrolysis (FSP) starting from an organic solution containing titanium (IV) isopropoxide as Ti precursor. Flame spray-produced TiO2 powders were characterized by means of X-ray diffraction, Raman spectroscopy, and BET measurements. As-prepared powders were mainly composed of anatase crystallites with size ranging from 7 to 15 nm according to the synthesis conditions. TiO2 powders were embedded in a multilayered fluoropolymeric matrix to immobilize the nanoparticles into freestanding photocatalytic membranes. The photocatalytic activity of the TiO2-embedded membranes toward the abatement of hydrosoluble organic pollutants was evaluated employing the photodegradation of rhodamine B in aqueous solution as test reaction. The photoabatement rate of best performing membranes significantly overcomes that of membranes produced by the same method and incorporating commercial P25-TiO2.

  15. Location Of Hole And Electron Traps On Nanocrystalline Anatase TiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Candy C.; Knorr, Fritz J.; McHale, Jeanne L.

    2012-05-17

    The defect photoluminescence from TiO2 nanoparticles in the anatase phase is reported for nanosheets which expose predominantly (001) surfaces, and compared to that from conventional anatase nanoparticles which expose mostly (101) surfaces. Also reported is the weak defect photoluminescence of TiO2 nanotubes, which we find using electron back-scattered diffraction to consist of walls which expose (110) and (100) facets. The nanotubes exhibit photoluminescence that is blue-shifted and much weaker than that from conventional TiO2 nanoparticles. Despite the preponderance of (001) surfaces in the nanosheet samples, they exhibit photoluminescence similar to that of conventional nanoparticles. We assign the broad visible photoluminescencemore » of anatase nanoparticles to two overlapping distributions: hole trap emission associated with oxygen vacancies on (101) exposed surfaces, which peaks in the green, and a broader emission extending into the red which results from electron traps on under-coordinated titanium atoms, which are prevalent on (001) facets. The results of this study suggest how morphology of TiO2 nanoparticles could be optimized to control the distribution and activity of surface traps. Our results also shed light on the mechanism by which the TiCl4 surface treatment heals traps on anatase and mixed-phase TiO2 films, and reveals distinct differences in the trap-state distributions of TiO2 nanoparticles and nanotubes. The molecular basis for electron and hole traps and their spatial separation on different facets is discussed.« less

  16. The effect of Schorl on the photocatalytic properties of the TiO2/Schorl composite materials

    NASA Astrophysics Data System (ADS)

    Qi, ShuYan; Wu, Chao; Wang, De Peng; Xu, HuanYan

    The TiO2/Schorl composite materials were synthesized by a hydrothermal method. The results showed that the amount of Schorl obviously affected the photocatalytic performance of the TiO2/Schorl. The fluorescence intensity of all TiO2/Schorl samples was weaker than that of the pure TiO2 implying the Schorl could effectively reduce the recombination rate of the excitation electron and hole. The highest photocatalytic efficiency reached to 99.4% of TiO2/3%Schorl.

  17. Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Dhar, J. C.; Mondal, A.; Bhattacharyya, A.; Singh, N. K.

    2012-04-01

    The glancing angle deposition technique has been employed to synthesize TiO2 nanowire (NW) arrays which have been characterized by x-ray diffraction, field emission-scanning electron microscopy and high resolution transmission electron microscopy. Optical absorption measurements show the absorption edge at 3.42 eV and 3.48 eV for TiO2 thin film (TF) and NW, respectively. The blue shift in absorption band is attributed to quantum confinement in NW structures. Photoluminescence measurement revealed oxygen-defect-related emission at 425 nm (˜2.9 eV). Ag/TiO2 (NW) and Ag/TiO2 (TF) contacts exhibit Schottky behaviour, and a higher turn-on voltage (˜6.5 V) was observed for NW devices than that of TF devices (˜5.25 V) under dark condition. In addition, TiO2-NW-based devices show twofold improvement in photodetection efficiency in the UV region, compared with TiO2-TF-based devices.

  18. Immobilization of TiO 2 nanofibers on titanium plates for implant applications

    NASA Astrophysics Data System (ADS)

    Lim, Jin Ik; Yu, Bin; Woo, Kyung Mi; Lee, Yong-Keun

    2008-12-01

    Nanofibers have shown good biological performances such as improved cell adhesion and differentiation; therefore, nanofibrous modification of dental and bone implants might enhance osseo-integration. The purpose of this study was to investigate the nanofibrous modification of titanium implants. TiO 2 nanofibers were fabricated by the electrospinning method using a mixture of Ti(IV)isopropoxide and poly(vinyl pyrrolidone) (PVP) in acidic alcohol solution. Then the nanofibers were immobilized on the NaOH/HCl-treated titanium plates by inducing the alcohol condensation reaction of Ti(IV)isopropoxide with Ti-OH group on the titanium surface and subsequent calcination (500-1000 °C). The immobilized TiO 2 nanofibers were characterized by SEM, XRD and a simulated removal test. The diameter of the TiO 2 nanofibers could be controlled within the range of 20-350 nm by changing the amounts of Ti(IV)isopropoxide and PVP. Phase transformation from anatase to rutile was observed after calcination. After the simulated removal test, TiO 2 nanofibers remained on titanium surface. These TiO 2 nanofibers on titanium plates could be used for the surface modification of titanium implants to improve the osseo-integration.

  19. Morphology modulation of SrTiO3/TiO2 heterostructures for enhanced photoelectrochemical performance.

    PubMed

    Jiao, Zhengbo; Chen, Tao; Yu, Hongchao; Wang, Teng; Lu, Gongxuan; Bi, Yingpu

    2014-04-01

    Design and fabrication of nanoscale semiconductors with regulatable morphology or structure has attracted tremendous interest due to the dependency relationship between properties and architectures. Two types of SrTiO3/TiO2 nanocomposites with different morphologies and structures have been fabricated by controlling the kinetics of hydrothermal reactions. One is TiO2 nanotube arrays densely wrapped by SrTiO3 film and the other is SrTiO3 nanospheres distributed on the top region of TiO2 nanotube arrays, which has been firstly fabricated. It has been found that the photoelectrochemical performances of these heterostructures are crucially dominated by their architectures. Heterostructured SrTiO3/TiO2 nanotube arrays were fabricated by traditional method in the absence of NaOH and they exhibited higher photoelectrochemical performance than pure TiO2 nanotube arrays. However, the compact SrTiO3 coating film on the sidewalls of TiO2 nanotube arrays could inevitably destroy the tubular structures of TiO2 and thus go against the vectorial transport of electrons. Interestingly, when excess NaOH was added into the growth solution, SrTiO3 nanospheres would be rationally grafted on the top of TiO2 nanotube arrays, which could preserve the tubular structures of TiO2, and thus further improve the photoelectrochemical performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Fabrication of NIR-responsive NaYF4:Yb,Tm/anatase TiO2 composite aerogel

    NASA Astrophysics Data System (ADS)

    Li, Fu-Chih; Kitamoto, Yoshitaka

    2018-01-01

    3-dimensional interconnected network structure of TiO2 aerogel has attracted considerable attention to solve environmental issues due to an advanced oxidation process which uses abundant sunlight for the complete minimization of toxic pollutants. The TiO2 aerogel with high specific surface area, large pores, and low density has a potential to be used as photocatalyst for air and water purification. Nonetheless, due to the larger band gap, TiO2 semiconductor photocatalysts possess high oxidizing properties under UV light only which occupies 5% of solar energy. To expand the absorption spectrum of TiO2 aerogel under solar irradiation, the NaYF4:Yb,Tm nanoparticles (NPs) are introduced into the TiO2 aerogel matrix structure. The morphology and crystal structure of the composite aerogel are investigated by transmission electron microscopy and X-ray diffraction, respectively. The particle size of NaYF4:Yb,Tm NPs is approximately 40 nm and the crystallite size of TiO2 is around 10 nm. In addition, the NaYF4:Yb,Tm NPs are enclosed by anatase phase of TiO2 aerogel. The NaYF4:Yb,Tm NPs which exist in the TiO2 aerogel has a capability of transferring NIR light to UV region.

  1. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Liu, Yuanxu; Wang, Zhonglei; Huang, Weixin

    2016-12-01

    CuOx/TiO2 photocatalysts employing TiO2 with different phase structures as well as P25 as supports were prepared, and their structures and activity for photocatalytic H2 production in methanol/water solution under simulated solar light were comparatively studied. Structural characterization results demonstrated that the TiO2 phase structure strongly affects the CuOx-TiO2 interaction and copper species in various CuOx/TiO2 photocatalysts. The Cu2O-rutile TiO2 interaction is much stronger than the Cu2O-anatase TiO2 interaction, facilitates the interfacial charge transfer process within the Cu2O-rutile TiO2 heterojunction but disables supported Cu2O to catalyze the hole-participated methanol oxidation. The Cu2O-anatase TiO2 heterojunction with the appropriate Cu2O-anatase TiO2 interaction and thus the balancing efficiencies between the interfacial charge transfer process and hole-participated methanol oxidation is most photocatalytic active, and CuOx/P25 with the largest population of Cu2O-anatase TiO2 heterojunction exhibits the highest photocatalytic H2 production. These results provide novel insights in the applied surface science of CuOx/TiO2 photocatalysts.

  2. The light transmission and distribution in an optical fiber coated with TiO2 particles.

    PubMed

    Wang, Wen; Ku, Young

    2003-03-01

    The light delivery and distribution phenomena along the optical fiber coated with the P-25 TiO(2) particles by dipping was investigated. The surface properties (coverage, roughness and thickness) of the TiO(2) layer coated on the optical fiber were characterized by SEM micrographs. For TiO(2) layer prepared from solutions containing less than 20 wt.% of TiO(2) slurry, the thickness of layer was increased linearly with the TiO(2) slurry content in solutions. The UV light intensity transmitted along a TiO(2)-coated optical fiber decreased more rapidly than that transmitted along a non-coated fiber. Based on the experimental results, the light intensity distribution around a coated optical fiber was modeled to determine the optimum configuration for the design of optical fiber reactors under various operational conditions. Copyright 2002 Elsevier Science Ltd.

  3. Synthesis, characterization and sonocatalytic applications of nano-structured carbon based TiO2 catalysts.

    PubMed

    Choi, Jongbok; Cui, Mingcan; Lee, Yonghyeon; Kim, Jeonggwan; Yoon, Yeomin; Jang, Min; Khim, Jeehyeong

    2018-05-01

    In order to enhance sonocatalytic oxidation of a recalcitrant organic pollutant, rhodamine B (RhB), it is necessary to study the fundamental aspects of sonocatalysis. In this study, TiO 2 -incorporated nano-structured carbon (i.e., carbon nanotubes (CNTs) or graphene (GR)) composites were synthesized by coating TiO 2 on CNTs or GR of different mass percentages (0.5, 1, 5, and 10 wt%) by a facile hydrothermal method. The sonocatalytic degradation rates of RhB were examined for the effect of ultrasound (US) frequency and calcination temperature by using the prepared TiO 2 -NSC composites. Since US frequency affected the sonoluminescence (SL) intensities, it was proposed that there exists a correlation between the surface area or band-gap of the sonocatalysts and the degradation kinetic constants of RhB. In addition, the reusability of TiO 2 -GR composites was also investigated. Overall, the performance of TiO 2 -GRs prepared by the hydrothermal method was better than that of calcined TiO 2 -CNTs. Among TiO 2 -GRs, 5% GR incorporated media (TiO 2 -GR-5) showed the best performance. Interestingly, the kinetic constants of sonocatalysts prepared under hydrothermal conditions had a negative linear relationship with the band-gap energy for the corresponding media. Furthermore, the strongest SL intensity and highest degradation rates of RhB for both carbonaceous composites were observed at 500 kHz. The kinetic constants of calcined media decreased linearly as the specific area of the media decreased, while the band-gap energy could not be correlated with the kinetic constants. The GR combined TiO 2 composite might be a good sonocatalyst in wastewater treatment using ultrasound-based oxidation because of its high stability. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Facile fabrication of transparent TiO2-C@TiO2-C free-standing film for visible-light photocatalytic application

    NASA Astrophysics Data System (ADS)

    Hu, Luyang; Zhang, Yumin; Zhang, Shanmei; Li, Benxia

    2017-02-01

    A transparent TiO2-C@TiO2-C free-standing film has been synthesized by two-step hydrothermal method and subsequent thermal annealing. The chemical composition and morphological features of the TiO2-C@TiO2-C film are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption measurement. The results indicate that the flower-like micro/nanostructure TiO2-C particle layers are intimately inhered to porous TiO2-C fibers. The fibers in film are interconnected each other to form a three-dimensional reticulate microstructure, and exhibit intense visible light absorption and high adsorptivity of dye molecules. The interaction between TiO2 and its surface carbon layer in TiO2-C particle promotes the generation of Ti-O-C bonds, which leads to effective charge transfer. Under visible-light irradiation, TiO2-C@TiO2-C film presents enhanced photocatalytic activity for degradation of methylene blue. This work may provide a new viewpoint for designing transparent photocatalytic film for promising applications in heterogeneous photocatalysis.

  5. Hierarchical heterostructure of MoS2 flake anchored on TiO2 sphere for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Chanda, K.; Thakur, S.; Maiti, S.; Acharya, A.; Paul, T.; Besra, N.; Sarkar, S.; Das, A.; Sardar, K.; Chattopadhyay, K. K.

    2018-05-01

    Hierarchical architectures realized via rational coupling of several components not only boast synergy driven raised functionality compared to their structural constituents also exhibit noble interface phenomena, thus made them significantly pertinent from research and technological point of view. Here in, geometrically intricate hierarchical nanoform constituting MoS2 nanoflakes anchored on TiO2 sphere was realized via two steps hydrothermal protocol. Initially TiO2 sphere was synthesized using titanium isopropoxide assisted hydrothermal route followed by which the sphere was used as scaffold for secondary growth of MoS2. As synthesized hybrid sample displayed much improved electrochemical behavior than pristine TiO2 sphere. Assessed value of specific capacitance for the hybrid is found to 152.22 F/g at current density of 0.1A/g which is 30 fold than TiO2 sphere. This electrochemical performance enhancement can be accredited to high surface area of the hybrid sample.

  6. 1-D and 2-D morphology of metal cation co-doped (Zn, Mn) TiO2 and investigation of their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Benjwal, Poonam; De, Bibekananda; Kar, Kamal K.

    2018-01-01

    Morphology and electronic bandgap of titania (TiO2) are considered to be the primary factors for determining the photocatalytic efficiency, as they determine the number of active sites for the photocatalytic reactions. In the present study, two different morphologies of TiO2 (nanosphere and nanorod) with varying Zn and Mn co-doping were synthesized by solvothermal and hydrothermal methods to examine their photocatalytic efficiency by methylene blue degradation. The co-doped photocatalysts were characterized by XRD, XPS, SEM, TEM, Raman, FTIR and UV-vis DRS. Further, a comparison has been made with co-doped TiO2 nanospheres and TiO2 nanorods, where Zn, Mn co-doped TiO2 nanorods show higher photocatalytic activity compared to nanospheres. This higher photocatalytic activity of co-doped TiO2 is attributed to its polymorphic phases, as they act as heterojunctions for TiO2. Further, being 1-D nanostructure, the TiO2 nanorods exhibit the straight diffusion path for charge carriers, which reduces the recombination possibilities. The obtained results suggest that the photocatalysis efficiency of TiO2 can be significantly enhanced by tailoring the shape and co-doping concentration, which enforce a new concept for developing the new nanostructures of TiO2.

  7. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.

  8. High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruu Siah, Wai; Lintang, Hendrik O.; Shamsuddin, Mustaffa; Yuliati, Leny

    2016-02-01

    Titanium dioxide (TiO2) is well-known as an active photocatalyst for degradation of various organic pollutants. Over the years, a wide range of TiO2 nanoparticles with different phase compositions, crystallinities, and surface areas have been developed. Due to the different methods and conditions used to synthesize these commercial TiO2 nanoparticles, the properties and photocatalytic performance would also be different from each other. In this study, the photocatalytic removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5- trichlorophenoxyacetic acid (2,4,5-T) was investigated on commercial Evonik P25, Evonik P90, Hombikat UV100 and Hombikat N100 TiO2 nanoparticles. Upon photocatalytic tests, it was found that overall, the photocatalytic activities of the P25 and the P90 were higher than the N100 and the UV100 for the removal of both 2,4-D and 2,4,5-T. The high activities of the P25 and the P90 could be attributed to their phase compositions, which are made up of a mixture of anatase and rutile phases of TiO2. Whereas, the UV100 and the N100 are made up of 100% anatase phase of TiO2. The synergistic effect of the anatase/rutile mixture was reported to slow down the recombination rate of photogenerated electron-hole pairs. Consequently, the photocatalytic activity was increased on these TiO2 nanoparticles.

  9. Crystalline TiO 2 grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom-transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan

    2010-12-01

    Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.

  10. Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.

    PubMed

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2010-05-01

    We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.

  11. Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice

    NASA Astrophysics Data System (ADS)

    Hong, Fashui; Wang, Ling; Yu, Xiaohong; Zhou, Yingjun; Hong, Jie; Sheng, Lei

    2015-08-01

    Currently, impacts of exposure to TiO2 nanoparticles (NPs) on the cardiovascular system are not well understood. The aim of this study was to investigate whether TiO2 NPs induce myocarditis and its underlying molecular mechanism in the cardiac inflammation in mice. Mice were exposed to TiO2 NPs for 6 months; biochemical parameters of serum and expression of Th1-related and Th2-related cytokines in the heart were investigated. The results showed that TiO2 NP exposure resulted in cardiac lesions coupling with pulmonary inflammation; increases of aspartate aminotransferase (AST), creatine kinase (CK), C-reaction protein (CRP), lactate dehydrogenase (LDH), alpha-hydroxybutyrate dehydrogenase (HBDH), adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels; and a reduction of nitric oxide (NOx) level in the serum. These were associated with increases of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, transforming growth factor-β (TGF-β), creatine kinase, CRP, adhesion molecule-1, and monocyte chemoattractant protein-1, interferon-γ (IFN-γ), signal transducers and activators of transcription (STAT)1, STAT3, or STAT6, GATA-binding domain-3, GATA-binding domain-4, endothelin-1 expression levels, and T-box expressed in T cells expression level that is the master regulator of pro-inflammatory cytokines and transcription factors in the heart. These findings imply that TiO2 NP exposure may increase the occurrence and development of cardiovascular diseases.

  12. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    PubMed

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  13. Comparison of field portable measurements of ultrafine TiO2: X-ray fluorescence, laser-induced breakdown spectroscopy, and Fourier-transform infrared spectroscopy.

    PubMed

    LeBouf, Ryan F; Miller, Arthur L; Stipe, Christopher; Brown, Jonathan; Murphy, Nate; Stefaniak, Aleksandr B

    2013-06-01

    Laboratory measurements of ultrafine titanium dioxide (TiO2) particulate matter loaded on filters were made using three field portable methods (X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), and Fourier-transform infrared (FTIR) spectroscopy) to assess their potential for determining end-of-shift exposure. Ultrafine TiO2 particles were aerosolized and collected onto 37 mm polycarbonate track-etched (PCTE) filters in the range of 3 to 578 μg titanium (Ti). Limit of detection (LOD), limit of quantification (LOQ), and calibration fit were determined for each measurement method. The LOD's were 11.8, 0.032, and 108 μg Ti per filter, for XRF, LIBS, and FTIR, respectively and the LOQ's were 39.2, 0.11, and 361 μg Ti per filter, respectively. The XRF calibration curve was linear over the widest dynamic range, up to the maximum loading tested (578 μg Ti per filter). LIBS was more sensitive but, due to the sample preparation method, the highest loaded filter measurable was 252 μg Ti per filter. XRF and LIBS had good predictability measured by regressing the predicted mass to the gravimetric mass on the filter. XRF and LIBS produced overestimations of 4% and 2%, respectively, with coefficients of determination (R(2)) of 0.995 and 0.998. FTIR measurements were less dependable due to interference from the PCTE filter media and overestimated mass by 2% with an R(2) of 0.831.

  14. Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry.

    PubMed

    Renault, Christophe; Nicole, Lionel; Sanchez, Clément; Costentin, Cyrille; Balland, Véronique; Limoges, Benoît

    2015-04-28

    In this work, we demonstrate that chronoabsorptometry and more specifically cyclic voltabsorptometry are particularly well suited techniques for acquiring a comprehensive understanding of the dynamics of electron transfer/charge transport within a transparent mesoporous semiconductive metal oxide film loaded with a redox-active dye. This is illustrated with the quantitative analysis of the spectroelectrochemical responses of two distinct heme-based redox probes adsorbed in highly-ordered mesoporous TiO2 thin films (prepared from evaporation-induced self-assembly, EISA). On the basis of a finite linear diffusion-reaction model as well as the establishment of the analytical expressions governing the limiting cases, it was possible to quantitatively analyse, predict and interpret the unusual voltabsorptometric responses of the adsorbed redox species as a function of the potential applied to the semiconductive film (i.e., as a function of the transition from an insulating to a conductive state or vice versa). In particular, we were able to accurately determine the interfacial charge transfer rates between the adsorbed redox species and the porous semiconductor. Another important and unexpected finding, inferred from the voltabsorptograms, is an interfacial electron transfer process predominantly governed by the extended conduction band states of the EISA TiO2 film and not by the localized traps in the bandgap. This is a significant result that contrasts those previously observed for dye-sensitized solar cells formed of randomly sintered TiO2 nanoparticles, a behaviour that was ascribed to a particularly low density of localized surface states in EISA TiO2. The present methodology also provides a unique and straightforward access to an activation-driving force relationship according to the Marcus theory, thus opening new opportunities not only to investigate the driving-force effects on electron recombination dynamics in dye-sensitized solar cells but also to study the

  15. Bulk magnetic terahertz metamaterial based on TiO2 microresonators(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kadlec, Christelle; Sindler, Michal; Dominec, Filip; Němec, Hynek; Elissalde, Catherine; Mounaix, Patrick; Kuzel, Petr

    2017-05-01

    Dielectric spheres with high permittivity represent a Mie resonance-based metamaterial. Owing to its high far-infrared permittivity and low dielectric losses, TiO2 is a suitable material for the realization of magnetic metamaterials based on micro-resonators for the terahertz (THz) range. In a previous work, we experimentally demonstrated the magnetic effective response of TiO 2 microspheres dispersed in air, forming nearly a single-layer sample enclosed between two sapphire wafers [1]. Here we embedded the polycrystalline TiO2 microparticles into a polyethylene matrix, which enabled us to prepare a rigid bulk metamaterial with a controllable concentration of micro- resonators. TiO2 microspheres with a diameter of a few tens of micrometers were prepared by a bottom up approach. A liquid suspension of TiO2 nanoparticles was first spray-dried producing fragile TiO2 microspheres. These were subsequently sintered in a furnace at 1200° C for two hours, in order to consolidate individually each sphere. The particles show polycrystalline rutile structure with a porosity of 15%. The microspheres were finally sieved and sorted along their diameters in order to obtain a narrow size distribution. They were mixed with polyethylene powder and a pressure of 14 MPa was used to prepare rigid pellets with random spatial distribution of the TiO2 microspheres. Using finite-difference time-domain simulations, we investigated how the filling fraction and the ratio between the permittivities of the microspheres and the host matrix affect the position and the strength of the magnetic response associated with the lowest Mie mode. We found that a range of negative effective magnetic permeability can be achieved for sufficiently high filling factors and contrasts between the permittivities of the resonators and the embedding medium. Using time-domain THz spectroscopy we experimentally characterized the response of the realized structures and confirmed the magnetic character of their

  16. Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix

    NASA Astrophysics Data System (ADS)

    Cruz, Marta; Gomez, Cristina; Duran-Valle, Carlos J.; Pastrana-Martínez, Luisa M.; Faria, Joaquim L.; Silva, Adrián M. T.; Faraldos, Marisol; Bahamonde, Ana

    2017-09-01

    The photocatalytic activity of a home-made titanium dioxide (TiO2) and its corresponding composite based on graphene oxide (GO), the GO-TiO2 catalyst, has been investigated under UV-vis in the photodegradation of a mixture of four pesticides classified by the European Union as priority pollutants: diuron, alachlor, isoproturon and atrazine. The influence of two water matrices (ultrapure or natural water) was also studied. Natural water led to a decrease on the degradation of the studied pollutants when the bare TiO2 photocatalyst was employed, since this water contains both inorganic and organic species that are dissolved and commonly restrain the photocatalytic process. On the contrary, the photo-efficiency of the GO-TiO2 composite seems to be less affected by water matrix variation, with very good initial pesticide photodegradation rates under both natural and ultrapure water matrices. A comparative study between GO-TiO2 and the commercial Evonik TiO2 P25 catalyst was also carried out to analyze the photocatalytic degradation of these pesticides under visible light illumination conditions. Once again, a higher photocatalytic activity was found for the GO-TiO2 composite.

  17. Using TiO2 as a conductive protective layer for photocathodic H2 evolution.

    PubMed

    Seger, Brian; Pedersen, Thomas; Laursen, Anders B; Vesborg, Peter C K; Hansen, Ole; Chorkendorff, Ib

    2013-01-23

    Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO(2) layer on top of a thin Ti metal layer may be used to protect an n(+)p Si photocathode during photocatalytic H(2) evolution. Although TiO(2) is a semiconductor, we show that it behaves like a metallic conductor would under photocathodic H(2) evolution conditions. This behavior is due to the fortunate alignment of the TiO(2) conduction band with respect to the hydrogen evolution potential, which allows it to conduct electrons from the Si while simultaneously protecting the Si from surface passivation. By using a Pt catalyst the electrode achieves an H(2) evolution onset of 520 mV vs NHE and a Tafel slope of 30 mV when illuminated by the red part (λ > 635 nm) of the AM 1.5 spectrum. The saturation photocurrent (H(2) evolution) was also significantly enhanced by the antireflective properties of the TiO(2) layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe(2+)/Fe(3+) redox couple was used to help elucidate details of the band diagram.

  18. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler

    NASA Astrophysics Data System (ADS)

    Sarma, Pullela K.; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran

    2011-12-01

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.

  19. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler

    PubMed Central

    2011-01-01

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2. PMID:21711765

  20. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler.

    PubMed

    Sarma, Pullela K; Srinivas, Vadapalli; Rao, Vedula Dharma; Kumar, Ayyagari Kiran

    2011-03-17

    The present investigation summarizes detailed experimental studies with standard lubricants of commercial quality known as Racer-4 of Hindustan Petroleum Corporation (India) dispersed with different mass concentrations of nanoparticles of Cu and TiO2. The test bench is fabricated with a four-stroke Hero-Honda motorbike hydraulically loaded at the rear wheel with proper instrumentation to record the fuel consumption, the load on the rear wheel, and the linear velocity. The whole range of data obtained on a stationery bike is subjected to regression analysis to arrive at various relationships between fuel consumption as a function of brake power, linear velocity, and percentage mass concentration of nanoparticles in the lubricant. The empirical relation correlates with the observed data with reasonable accuracy. Further, extension of the analysis by developing a mathematical model has revealed a definite improvement in brake thermal efficiency which ultimately affects the fuel economy by diminishing frictional power in the system with the introduction of nanoparticles into the lubricant. The performance of the engine seems to be better with nano Cu-Racer-4 combination than the one with nano TiO2.