Sample records for age related decline

  1. Aging-related limit of exercise efficacy on motor decline

    PubMed Central

    Arnold, Jennifer C.; Cantu, Mark A.; Kasanga, Ella A.; Nejtek, Vicki A.; Papa, Evan V.; Bugnariu, Nicoleta; Salvatore, Michael F.

    2017-01-01

    Identifying lifestyle strategies and allied neurobiological mechanisms that reduce aging-related motor impairment is imperative, given the accelerating number of retirees and increased life expectancy. A physically active lifestyle prior to old age can reduce risk of debilitating motor decline. However, if exercise is initiated after motor decline has begun in the lifespan, it is unknown if aging itself may impose a limit on exercise efficacy to decelerate further aging-related motor decline. In Brown-Norway/Fischer 344 F1 hybrid (BNF) rats, locomotor activity begins to decrease in middle age (12–18 months). One mechanism of aging-related motor decline may be decreased expression of GDNF family receptor, GFRα-1, which is decreased in substantia nigra (SN) between 12 and 30 months old. Moderate exercise, beginning at 18 months old, increases nigral GFRα-1 and tyrosine hydroxylase (TH) expression within 2 months. In aged rats, replenishing aging-related loss of GFRα-1 in SN increases TH in SN alone and locomotor activity. A moderate exercise regimen was initiated in sedentary male BNF rats in a longitudinal study to evaluate if exercise could attenuate aging-related motor decline when initiated at two different ages in the latter half of the lifespan (18 or 24 months old). Motor decline was reversed in the 18-, but not 24-month-old, cohort. However, exercise efficacy in the 18-month-old group was reduced as the rats reached 27 months old. GFRα-1 expression was not increased in either cohort. These studies suggest exercise can decelerate motor decline when begun in the latter half of the lifespan, but its efficacy may be limited by age of initiation. Decreased plasticity of GFRα-1 expression following exercise may limit its efficacy to reverse motor decline. PMID:29176896

  2. Aging-related limit of exercise efficacy on motor decline.

    PubMed

    Arnold, Jennifer C; Cantu, Mark A; Kasanga, Ella A; Nejtek, Vicki A; Papa, Evan V; Bugnariu, Nicoleta; Salvatore, Michael F

    2017-01-01

    Identifying lifestyle strategies and allied neurobiological mechanisms that reduce aging-related motor impairment is imperative, given the accelerating number of retirees and increased life expectancy. A physically active lifestyle prior to old age can reduce risk of debilitating motor decline. However, if exercise is initiated after motor decline has begun in the lifespan, it is unknown if aging itself may impose a limit on exercise efficacy to decelerate further aging-related motor decline. In Brown-Norway/Fischer 344 F1 hybrid (BNF) rats, locomotor activity begins to decrease in middle age (12-18 months). One mechanism of aging-related motor decline may be decreased expression of GDNF family receptor, GFRα-1, which is decreased in substantia nigra (SN) between 12 and 30 months old. Moderate exercise, beginning at 18 months old, increases nigral GFRα-1 and tyrosine hydroxylase (TH) expression within 2 months. In aged rats, replenishing aging-related loss of GFRα-1 in SN increases TH in SN alone and locomotor activity. A moderate exercise regimen was initiated in sedentary male BNF rats in a longitudinal study to evaluate if exercise could attenuate aging-related motor decline when initiated at two different ages in the latter half of the lifespan (18 or 24 months old). Motor decline was reversed in the 18-, but not 24-month-old, cohort. However, exercise efficacy in the 18-month-old group was reduced as the rats reached 27 months old. GFRα-1 expression was not increased in either cohort. These studies suggest exercise can decelerate motor decline when begun in the latter half of the lifespan, but its efficacy may be limited by age of initiation. Decreased plasticity of GFRα-1 expression following exercise may limit its efficacy to reverse motor decline.

  3. Consequences of Age-Related Cognitive Declines

    PubMed Central

    Salthouse, Timothy

    2013-01-01

    Adult age differences in a variety of cognitive abilities are well documented, and many of those abilities have been found to be related to success in the workplace and in everyday life. However, increased age is seldom associated with lower levels of real-world functioning, and the reasons for this lab-life discrepancy are not well understood. This article briefly reviews research concerned with relations of age to cognition, relations of cognition to successful functioning outside the laboratory, and relations of age to measures of work performance and achievement. The final section discusses several possible explanations for why there are often little or no consequences of age-related cognitive declines in everyday functioning. PMID:21740223

  4. BDNF is Associated With Age-Related Decline in Hippocampal Volume

    PubMed Central

    Erickson, Kirk I.; Prakash, Ruchika Shaurya; Voss, Michelle W.; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D.; Martin, Stephen A.; Vieira, Victoria J.; Woods, Jeffrey A.; Kramer, Arthur F.

    2010-01-01

    Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958

  5. [Physical activity diminishes aging-related decline of physical and cognitive performance].

    PubMed

    Apor, Péter; Babai, László

    2014-05-25

    Aging-related decline of muscle force, walking speed, locomotor coordination, aerobic capacity and endurance exert prognostic impact on life expectancy. Proper use of training may diminish the aging process and it may improve the quality of life of elderly persons. This paper provides a brief summary on the impact of training on aging-related decline of physical and cognitive functions.

  6. Age-related white matter microstructural differences partly mediate age-related decline in processing speed but not cognition.

    PubMed

    Salami, Alireza; Eriksson, Johan; Nilsson, Lars-Göran; Nyberg, Lars

    2012-03-01

    Aging is associated with declining cognitive performance as well as structural changes in brain gray and white matter (WM). The WM deterioration contributes to a disconnection among distributed brain networks and may thus mediate age-related cognitive decline. The present diffusion tensor imaging (DTI) study investigated age-related differences in WM microstructure and their relation to cognition (episodic memory, visuospatial processing, fluency, and speed) in a large group of healthy subjects (n=287) covering 6 decades of the human life span. Age related decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were observed across the entire WM skeleton as well as in specific WM tracts, supporting the WM degeneration hypothesis. The anterior section of the corpus callosum was more susceptible to aging compared to the posterior section, lending support to the anterior-posterior gradient of WM integrity in the corpus callosum. Finally, and of critical interest, WM integrity differences were found to mediate age-related reductions in processing speed but no significant mediation was found for episodic memory, visuospatial ability, or fluency. These findings suggest that compromised WM integrity is not a major contributing factor to declining cognitive performance in normal aging. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Age-related slowing: perceptuomotor, decision, or attention decline?

    PubMed

    Godefroy, Olivier; Roussel, Martine; Despretz, Pascal; Quaglino, Véronique; Boucart, Muriel

    2010-04-01

    Age-related slowing is well documented but its origin remains unclear. A first validation study (Study 1) performed in 46 participants examined the effect of attention allocation (manipulated through a dual task) on various portions of individual simple reaction time (SRT) distribution (minimum, centile 5, centile 50, and centile 95 RTs). It showed that attention 'deprivation' due to a secondary task is not uniform throughout the distribution but impaired mainly the ability to produce a large number of fast responses. Study 2 investigated in 88 healthy participants age-related slowing of perceptual, motor, decision, and attentional processes using SRT and choice reaction time (CRT), finger tapping, and visual inspection time tests. It showed that the majority of SRT slowing after the age of 40 is due to lengthening of centile 5 RT, suggesting perceptuomotor slowing, an interpretation supported by longer visual inspection time and lower tapping frequency. After 60 years, SRT lengthening was due to a further lengthening of the centile 5-centile 50 SRT index, suggesting the participation of attentional decline. These findings support the hypothesis that age-related slowing in simple repetitive tasks is mainly related to slowing at the stage of perceptuomotor processes, and after 60 years, to additional decline of attention.

  8. The age-related performance decline in ultraendurance mountain biking.

    PubMed

    Haupt, Samuel; Knechtle, Beat; Knechtle, Patrizia; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2013-01-01

    The age-related changes in ultraendurance performance have been previously examined for running and triathlon but not mountain biking. The aims of this study were (i) to describe the performance trends and (ii) to analyze the age-related performance decline in ultraendurance mountain biking in a 120-km ultraendurance mountain bike race the "Swiss Bike Masters" from 1995 to 2009 in 9,325 male athletes. The mean (±SD) race time decreased from 590 ± 80 min to 529 ± 88 min for overall finishers and from 415 ± 8 min to 359 ± 16 min for the top 10 finishers, respectively. The mean (±SD) age of all finishers significantly (P < 0.001) increased from 31.6 ± 6.5 years to 37.9 ± 8.9 years, while the age of the top 10 remained stable at 30.0 ± 1.6 years. The race time of mountain bikers aged between 25 and 34 years was significantly (P < 0.01) faster compared with the race time of older age groups. The age-related decline in performance in endurance mountain bikers in the "Swiss Bike Masters" appears to start earlier compared with other ultraendurance sports.

  9. Social integration and age-related decline in lung function.

    PubMed

    Crittenden, Crista N; Murphy, Michael L M; Cohen, Sheldon

    2018-05-01

    We tested the hypothesis that social integration, measured as number of social roles, is associated with less age-related loss of lung function, an important marker of health and longevity. We also investigated possible psychological factors through which social integration might influence lung health. Data were analyzed from the Health and Retirement Study (ages 52-94, n = 4,224). Each additional social role reported at baseline was associated with less of a decline in lung function between baseline and the follow-up assessment four years later. The association withstood controls for demographics, weight, and height and was mediated by more positive and less negative affect and lower rates of cigarette smoking and more physical activity. Roles were mostly substitutable, with both high (spouse, parent, friends, relatives) and low (employee, religious service attendee, volunteer, members of other groups) intimacy roles independently contributing to less age-related decline in lung function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Age-related decline of precision and binding in visual working memory.

    PubMed

    Peich, Muy-Cheng; Husain, Masud; Bays, Paul M

    2013-09-01

    Working memory declines with normal aging, but the nature of this impairment is debated. Studies based on detecting changes to arrays of visual objects have identified two possible components to age-related decline: a reduction in the number of items that can be stored, or a deficit in maintaining the associations (bindings) between individual object features. However, some investigations have reported intact binding with aging, and specific deficits arising only in Alzheimer's disease. Here, using a recently developed continuous measure of recall fidelity, we tested the precision with which adults of different ages could reproduce from memory the orientation and color of a probed array item. The results reveal a further component of cognitive decline: an age-related decrease in the resolution with which visual information can be maintained in working memory. This increase in recall variability with age was strongest under conditions of greater memory load. Moreover, analysis of the distribution of errors revealed that older participants were more likely to incorrectly report one of the unprobed items in memory, consistent with an age-related increase in misbinding. These results indicate a systematic decline with age in working memory resources that can be recruited to store visual information. The paradigm presented here provides a sensitive index of both memory resolution and feature binding, with the potential for assessing their modulation by interventions. The findings have implications for understanding the mechanisms underpinning working memory deficits in both health and disease.

  11. Age-Related Decline of Precision and Binding in Visual Working Memory

    PubMed Central

    2013-01-01

    Working memory declines with normal aging, but the nature of this impairment is debated. Studies based on detecting changes to arrays of visual objects have identified two possible components to age-related decline: a reduction in the number of items that can be stored, or a deficit in maintaining the associations (bindings) between individual object features. However, some investigations have reported intact binding with aging, and specific deficits arising only in Alzheimer’s disease. Here, using a recently developed continuous measure of recall fidelity, we tested the precision with which adults of different ages could reproduce from memory the orientation and color of a probed array item. The results reveal a further component of cognitive decline: an age-related decrease in the resolution with which visual information can be maintained in working memory. This increase in recall variability with age was strongest under conditions of greater memory load. Moreover, analysis of the distribution of errors revealed that older participants were more likely to incorrectly report one of the unprobed items in memory, consistent with an age-related increase in misbinding. These results indicate a systematic decline with age in working memory resources that can be recruited to store visual information. The paradigm presented here provides a sensitive index of both memory resolution and feature binding, with the potential for assessing their modulation by interventions. The findings have implications for understanding the mechanisms underpinning working memory deficits in both health and disease. PMID:23978008

  12. The impact of retirement on age related cognitive decline - a systematic review.

    PubMed

    Meng, Annette; Nexø, Mette Andersen; Borg, Vilhelm

    2017-07-21

    Knowledge on factors affecting the rate of cognitive decline and how to maintain cognitive functioning in old age becomes increasingly relevant. The purpose of the current study was to systematically review the evidence for the impact of retirement on cognitive functioning and on age related cognitive decline. We conducted a systematic literature review, following the principles of the PRISMA statement, of longitudinal studies on the association between retirement and cognition. Only seven studies fulfilled the inclusion criteria. We found weak evidence that retirement accelerates the rate of cognitive decline in crystallised abilities, but only for individuals retiring from jobs high in complexity with people. The evidence of the impact of retirement on the rate of decline in fluid cognitive abilities is conflicting. The review revealed a major knowledge gap in regards to the impact of retirement on cognitive decline. More knowledge on the association between retirement and age related cognitive decline as well as knowledge on the mechanisms behind these associations is needed.

  13. Age-related memory decline is associated with vascular and microglial degeneration in aged rats.

    PubMed

    Zhang, Rong; Kadar, Tamar; Sirimanne, Ernest; MacGibbon, Alastair; Guan, Jian

    2012-12-01

    The hippocampus processes memory is an early target of aging-related biological and structural lesions, leading to memory decline. With absent neurodegeneration in the hippocampus, which identified in rodent model of normal aging the pathology underlying age-related memory impairment is not complete. The effective glial-vascular networks are the key for maintaining neuronal functions. The changes of glial cells and cerebral capillaries with age may contribute to memory decline. Thus we examined age associated changes in neurons, glial phenotypes and microvasculature in the hippocampus of aged rats with memory decline. Young adult (6 months) and aged (35 months) male rats (Fisher/Norway-Brown) were used. To evaluate memory, four days of acquisition phase of Morris water maze tasks were carried out in both age groups and followed by a probe trial 2 h after the acquisition. The brains were then collected for analysis using immunochemistry. The aged rats showed a delayed latency (p<0.001) and longer swimming path (p<0.001) to locate a hidden platform. They also spent less time in and made delayed and fewer entries into the correct quadrant during the probe trial. Without seen neuronal degeneration, the aged rats with memory impairments have displayed dopamine depletion, profound vascular and microglial degeneration with reduced vascular endothelial growth factor and elevated GFAP expression in the hippocampus. The data indicate the memory decline with age is associated with neuronal dysfunction, possibly due to impaired glial-vascular-neuronal networks, but not neuronal degeneration. Glial and vascular degeneration found in aged rats may represent early event of aging pathology prior to neuronal degeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Education mitigates age-related decline in N-Acetylaspartate levels.

    PubMed

    Erickson, Kirk I; Leckie, Regina L; Weinstein, Andrea M; Radchenkova, Polina; Sutton, Bradley P; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock-Heyman, Laura; McAuley, Edward; Kramer, Arthur F

    2015-03-01

    Greater educational attainment is associated with better neurocognitive health in older adults and is thought to reflect a measure of cognitive reserve. In vivo neuroimaging tools have begun to identify the brain systems and networks potentially responsible for reserve. We examined the relationship between education, a commonly used proxy for cognitive reserve, and N-acetylaspartate (NAA) in neurologically healthy older adults (N=135; mean age=66 years). Using single voxel MR spectroscopy, we predicted that higher levels of education would moderate an age-related decline in NAA in the frontal cortex. After controlling for the variance associated with cardiorespiratory fitness, sex, annual income, and creatine levels, there were no significant main effects of education (B=0.016, P=0.787) or age (B=-0.058, P=0.204) on NAA levels. However, consistent with our predictions, there was a significant education X age interaction such that more years of education offset an age-related decline in NAA (B=0.025, P=0.031). When examining working memory via the backwards digit span task, longer span length was associated with greater education (P<0.01) and showed a trend with greater NAA concentrations (P<0.06); however, there was no age X education interaction on digit span performance nor a significant moderated mediation effect between age, education, and NAA on digit span performance. Taken together, these results suggest that higher levels of education may attenuate an age-related reduction in neuronal viability in the frontal cortex.

  15. Age-related differences in associative memory: the role of sensory decline.

    PubMed

    Naveh-Benjamin, Moshe; Kilb, Angela

    2014-09-01

    Numerous studies show age-related decline in episodic memory. One of the explanations for this decline points to older adults' deficit in associative memory, reflecting the difficulties they have in binding features of episodes into cohesive entities and retrieving these bindings. Here, we evaluate the degree to which this deficit may be mediated by sensory loss associated with increased age. In 2 experiments, young adults studied word pairs that were degraded at encoding either visually (Experiment 1) or auditorily (Experiment 2). We then tested their memory for both the component words and the associations with recognition tests. For both experiments, young adults under nondegraded conditions showed an advantage in associative over item memory, relative to a group of older adults. In contrast, under perceptually degraded conditions younger adults performed similarly to the older adults who were tested under nondegraded conditions. More specifically, under perceptual degradation, young adults' associative memory declined and their component memory improved somewhat, resulting in an associative deficit, similar to that shown by older adults. This evidence is consistent with a sensory acuity decline in old age being one mediator in the associative deficit of older adults. These results broaden our understanding of age-related memory changes and how sensory and cognitive processes interact to shape these changes. The theoretical implications of these results are discussed with respect to mechanisms underlying age-related changes in episodic memory and resource tradeoffs in the encoding of component and associative memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. Education mitigates age-related decline in N-Acetylaspartate levels

    PubMed Central

    Erickson, Kirk I; Leckie, Regina L; Weinstein, Andrea M; Radchenkova, Polina; Sutton, Bradley P; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock-Heyman, Laura; McAuley, Edward; Kramer, Arthur F

    2015-01-01

    Background Greater educational attainment is associated with better neurocognitive health in older adults and is thought to reflect a measure of cognitive reserve. In vivo neuroimaging tools have begun to identify the brain systems and networks potentially responsible for reserve. Methods We examined the relationship between education, a commonly used proxy for cognitive reserve, and N-acetylaspartate (NAA) in neurologically healthy older adults (N = 135; mean age = 66 years). Using single voxel MR spectroscopy, we predicted that higher levels of education would moderate an age-related decline in NAA in the frontal cortex. Results After controlling for the variance associated with cardiorespiratory fitness, sex, annual income, and creatine levels, there were no significant main effects of education (B = 0.016, P = 0.787) or age (B = −0.058, P = 0.204) on NAA levels. However, consistent with our predictions, there was a significant education X age interaction such that more years of education offset an age-related decline in NAA (B = 0.025, P = 0.031). When examining working memory via the backwards digit span task, longer span length was associated with greater education (P < 0.01) and showed a trend with greater NAA concentrations (P < 0.06); however, there was no age X education interaction on digit span performance nor a significant moderated mediation effect between age, education, and NAA on digit span performance. Conclusions Taken together, these results suggest that higher levels of education may attenuate an age-related reduction in neuronal viability in the frontal cortex. PMID:25798329

  17. Enriched childhood experiences moderate age-related motor and cognitive decline

    PubMed Central

    Metzler, Megan J.; Saucier, Deborah M.; Metz, Gerlinde A.

    2012-01-01

    Aging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover, it is thought that decreased lateralization of neural function in older adults may point to increased neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks. PMID:23423702

  18. Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair.

    PubMed

    Borgesius, Nils Z; de Waard, Monique C; van der Pluijm, Ingrid; Omrani, Azar; Zondag, Gerben C M; van der Horst, Gijsbertus T J; Melton, David W; Hoeijmakers, Jan H J; Jaarsma, Dick; Elgersma, Ype

    2011-08-31

    Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.

  19. Age-Related Decline in Anticipatory Motor Planning and Its Relation to Cognitive and Motor Skill Proficiency.

    PubMed

    Stöckel, Tino; Wunsch, Kathrin; Hughes, Charmayne M L

    2017-01-01

    Anticipatory motor planning abilities mature as children grow older, develop throughout childhood and are likely to be stable till the late sixties. In the seventh decade of life, motor planning performance dramatically declines, with anticipatory motor planning abilities falling to levels of those exhibited by children. At present, the processes enabling successful anticipatory motor planning in general, as do the cognitive processes mediating these age-related changes, remain elusive. Thus, the aim of the present study was (a) to identify cognitive and motor functions that are most affected by normal aging and (b) to elucidate key (cognitive and motor) factors that are critical for successful motor planning performance in young ( n = 40, mean age = 23.1 ± 2.6 years) and older adults ( n = 37, mean age = 73.5 ± 7.1 years). Results indicate that normal aging is associated with a marked decline in all aspects of cognitive and motor functioning tested. However, age-related declines were more apparent for fine motor dexterity, processing speed and cognitive flexibility. Furthermore, up to 64% of the variance in motor planning performance across age groups could be explained by the cognitive functions processing speed, response planning and cognitive flexibility. It can be postulated that anticipatory motor planning abilities are strongly influenced by cognitive control processes, which seem to be key mechanisms to compensate for age-related decline. These findings support the general therapeutic and preventive value of cognitive-motor training programs to reduce adverse effects associated with high age.

  20. Influence of Cognitive Functioning on Age-Related Performance Declines in Visuospatial Sequence Learning.

    PubMed

    Krüger, Melanie; Hinder, Mark R; Puri, Rohan; Summers, Jeffery J

    2017-01-01

    Objectives: The aim of this study was to investigate how age-related performance differences in a visuospatial sequence learning task relate to age-related declines in cognitive functioning. Method: Cognitive functioning of 18 younger and 18 older participants was assessed using a standardized test battery. Participants then undertook a perceptual visuospatial sequence learning task. Various relationships between sequence learning and participants' cognitive functioning were examined through correlation and factor analysis. Results: Older participants exhibited significantly lower performance than their younger counterparts in the sequence learning task as well as in multiple cognitive functions. Factor analysis revealed two independent subsets of cognitive functions associated with performance in the sequence learning task, related to either the processing and storage of sequence information (first subset) or problem solving (second subset). Age-related declines were only found for the first subset of cognitive functions, which also explained a significant degree of the performance differences in the sequence learning task between age-groups. Discussion: The results suggest that age-related performance differences in perceptual visuospatial sequence learning can be explained by declines in the ability to process and store sequence information in older adults, while a set of cognitive functions related to problem solving mediates performance differences independent of age.

  1. Age-Related Decline in Anticipatory Motor Planning and Its Relation to Cognitive and Motor Skill Proficiency

    PubMed Central

    Stöckel, Tino; Wunsch, Kathrin; Hughes, Charmayne M. L.

    2017-01-01

    Anticipatory motor planning abilities mature as children grow older, develop throughout childhood and are likely to be stable till the late sixties. In the seventh decade of life, motor planning performance dramatically declines, with anticipatory motor planning abilities falling to levels of those exhibited by children. At present, the processes enabling successful anticipatory motor planning in general, as do the cognitive processes mediating these age-related changes, remain elusive. Thus, the aim of the present study was (a) to identify cognitive and motor functions that are most affected by normal aging and (b) to elucidate key (cognitive and motor) factors that are critical for successful motor planning performance in young (n = 40, mean age = 23.1 ± 2.6 years) and older adults (n = 37, mean age = 73.5 ± 7.1 years). Results indicate that normal aging is associated with a marked decline in all aspects of cognitive and motor functioning tested. However, age-related declines were more apparent for fine motor dexterity, processing speed and cognitive flexibility. Furthermore, up to 64% of the variance in motor planning performance across age groups could be explained by the cognitive functions processing speed, response planning and cognitive flexibility. It can be postulated that anticipatory motor planning abilities are strongly influenced by cognitive control processes, which seem to be key mechanisms to compensate for age-related decline. These findings support the general therapeutic and preventive value of cognitive-motor training programs to reduce adverse effects associated with high age. PMID:28928653

  2. Female age-related fertility decline. Committee Opinion No. 589.

    PubMed

    2014-03-01

    The fecundity of women decreases gradually but significantly beginning approximately at age 32 years and decreases more rapidly after age 37 years. Education and enhanced awareness of the effect of age on fertility are essential in counseling the patient who desires pregnancy. Given the anticipated age-related decline in fertility, the increased incidence of disorders that impair fertility, and the higher risk of pregnancy loss, women older than 35 years should receive an expedited evaluation and undergo treatment after 6 months of failed attempts to conceive or earlier, if clinically indicated. In women older than 40 years, more immediate evaluation and treatment are warranted.

  3. Mechanisms of Age-Related Decline in Memory Search across the Adult Life Span

    ERIC Educational Resources Information Center

    Hills, Thomas T.; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R.

    2013-01-01

    Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis).…

  4. Ability of university-level education to prevent age-related decline in emotional intelligence

    PubMed Central

    Cabello, Rosario; Navarro Bravo, Beatriz; Latorre, José Miguel; Fernández-Berrocal, Pablo

    2014-01-01

    Numerous studies have suggested that educational history, as a proxy measure of active cognitive reserve, protects against age-related cognitive decline and risk of dementia. Whether educational history also protects against age-related decline in emotional intelligence (EI) is unclear. The present study examined ability EI in 310 healthy adults ranging in age from 18 to 76 years using the Mayer–Salovey–Caruso Emotional Intelligence Test (MSCEIT). We found that older people had lower scores than younger people for total EI and for the EI branches of perceiving, facilitating, and understanding emotions, whereas age was not associated with the EI branch of managing emotions. We also found that educational history protects against this age-related EI decline by mediating the relationship between age and EI. In particular, the EI scores of older adults with a university education were higher than those of older adults with primary or secondary education, and similar to those of younger adults of any education level. These findings suggest that the cognitive reserve hypothesis, which states that individual differences in cognitive processes as a function of lifetime intellectual activities explain differential susceptibility to functional impairment in the presence of age-related changes and brain pathology, applies also to EI, and that education can help preserve cognitive-emotional structures during aging. PMID:24653697

  5. Female age-related fertility decline. Committee Opinion No. 589.

    PubMed

    2014-03-01

    The fecundity of women decreases gradually but significantly beginning approximately at age 32 years and decreases more rapidly after age 37 years. Education and enhanced awareness of the effect of age on fertility are essential in counseling the patient who desires pregnancy. Given the anticipated age-related decline in fertility, the increased incidence of disorders that impair fertility, and the higher risk of pregnancy loss, women older than 35 years should receive an expedited evaluation and undergo treatment after 6 months of failed attempts to conceive or earlier, if clinically indicated. In women older than 40 years, more immediate evaluation and treatment are warranted. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline

    PubMed Central

    Müller, Nils C. J.; Genzel, Lisa; Konrad, Boris N.; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience–in our case piano skills–increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  7. Age-related decline in cognitive control: the role of fluid intelligence and processing speed

    PubMed Central

    2014-01-01

    Background Research on cognitive control suggests an age-related decline in proactive control abilities whereas reactive control seems to remain intact. However, the reason of the differential age effect on cognitive control efficiency is still unclear. This study investigated the potential influence of fluid intelligence and processing speed on the selective age-related decline in proactive control. Eighty young and 80 healthy older adults were included in this study. The participants were submitted to a working memory recognition paradigm, assessing proactive and reactive cognitive control by manipulating the interference level across items. Results Repeated measures ANOVAs and hierarchical linear regressions indicated that the ability to appropriately use cognitive control processes during aging seems to be at least partially affected by the amount of available cognitive resources (assessed by fluid intelligence and processing speed abilities). Conclusions This study highlights the potential role of cognitive resources on the selective age-related decline in proactive control, suggesting the importance of a more exhaustive approach considering the confounding variables during cognitive control assessment. PMID:24401034

  8. Associations between cognitively stimulating leisure activities, cognitive function and age-related cognitive decline.

    PubMed

    Ferreira, Nicola; Owen, Adrian; Mohan, Anita; Corbett, Anne; Ballard, Clive

    2015-04-01

    Emerging literature suggests that lifestyle factors may play an important role in reducing age-related cognitive decline. There have, however, been few studies investigating the role of cognitively stimulating leisure activities in maintaining cognitive health. This study sought to identify changes in cognitive performance with age and to investigate associations of cognitive performance with several key cognitively stimulating leisure activities. Over 65,000 participants provided demographic and lifestyle information and completed tests of grammatical reasoning, spatial working memory, verbal working memory and episodic memory. Regression analyses suggested that frequency of engaging in Sudoku or similar puzzles was significantly positively associated with grammatical reasoning, spatial working memory and episodic memory scores. Furthermore, for participants aged under 65 years, frequency of playing non-cognitive training computer games was also positively associated with performance in the same cognitive domains. The results also suggest that grammatical reasoning and episodic memory are particularly vulnerable to age-related decline. Further investigation to determine the potential benefits of participating in Sudoku puzzles and non-cognitive computer games is indicated, particularly as they are associated with grammatical reasoning and episodic memory, cognitive domains found to be strongly associated with age-related cognitive decline. Results of this study have implications for developing improved guidance for the public regarding the potential value of cognitively stimulating leisure activities. The results also suggest that grammatical reasoning and episodic memory should be targeted in developing appropriate outcome measures to assess efficacy of future interventions, and in developing cognitive training programmes to prevent or delay cognitive decline. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Young and Older Adults’ Beliefs about Effective Ways to Mitigate Age-Related Memory Decline

    PubMed Central

    Horhota, Michelle; Lineweaver, Tara; Ositelu, Monique; Summers, Kristi; Hertzog, Christopher

    2013-01-01

    This study investigated whether young and older adults vary in their beliefs about the impact of various mitigating factors on age-related memory decline. Eighty young (ages 18–23) and eighty older (ages 60–82) participants reported their beliefs about their own memory abilities and the strategies that they use in their everyday lives to attempt to control their memory. Participants also reported their beliefs about memory change with age for hypothetical target individuals who were described as using (or not using) various means to mitigate memory decline. There were no age differences in personal beliefs about control over current or future memory ability. However, the two age groups differed in the types of strategies they used in their everyday life to control their memory. Young adults were more likely to use internal memory strategies, whereas older adults were more likely to focus on cognitive exercise and maintaining physical health as ways to optimize their memory ability. There were no age differences in rated memory change across the life span in hypothetical individuals. Both young and older adults perceived strategies related to improving physical and cognitive health as effective means of mitigating memory loss with age, whereas internal memory strategies were perceived as less effective means for controlling age-related memory decline. PMID:22082012

  10. Young and older adults' beliefs about effective ways to mitigate age-related memory decline.

    PubMed

    Horhota, Michelle; Lineweaver, Tara; Ositelu, Monique; Summers, Kristi; Hertzog, Christopher

    2012-06-01

    This study investigated whether young and older adults vary in their beliefs about the impact of various mitigating factors on age-related memory decline. Eighty young (ages 18-23) and 80 older (ages 60-82) participants reported their beliefs about their own memory abilities and the strategies that they use in their everyday lives to attempt to control their memory. Participants also reported their beliefs about memory change with age for hypothetical target individuals who were described as using (or not using) various means to mitigate memory decline. There were no age differences in personal beliefs about control over current or future memory ability. However, the two age groups differed in the types of strategies they used in their everyday life to control their memory. Young adults were more likely to use internal memory strategies, whereas older adults were more likely to focus on cognitive exercise and maintaining physical health as ways to optimize their memory ability. There were no age differences in rated memory change across the life span in hypothetical individuals. Both young and older adults perceived strategies related to improving physical and cognitive health as effective means of mitigating memory loss with age, whereas internal memory strategies were perceived as less effective means for controlling age-related memory decline. PsycINFO Database Record (c) 2012 APA, all rights reserved

  11. Aging-related episodic memory decline: are emotions the key?

    PubMed Central

    Kinugawa, Kiyoka; Schumm, Sophie; Pollina, Monica; Depre, Marion; Jungbluth, Carolin; Doulazmi, Mohamed; Sebban, Claude; Zlomuzica, Armin; Pietrowsky, Reinhard; Pause, Bettina; Mariani, Jean; Dere, Ekrem

    2013-01-01

    Episodic memory refers to the recollection of personal experiences that contain information on what has happened and also where and when these events took place. Episodic memory function is extremely sensitive to cerebral aging and neurodegerative diseases. We examined episodic memory performance with a novel test in young (N = 17, age: 21–45), middle-aged (N = 16, age: 48–62) and aged but otherwise healthy participants (N = 8, age: 71–83) along with measurements of trait and state anxiety. As expected we found significantly impaired episodic memory performance in the aged group as compared to the young group. The aged group also showed impaired working memory performance as well as significantly decreased levels of trait anxiety. No significant correlation between the total episodic memory and trait or state anxiety scores was found. The present results show an age-dependent episodic memory decline along with lower trait anxiety in the aged group. Yet, it still remains to be determined whether this difference in anxiety is related to the impaired episodic memory performance in the aged group. PMID:23378831

  12. Subcortical volumetric changes across the adult lifespan: subregional thalamic atrophy accounts for age-related sensorimotor performance declines.

    PubMed

    Serbruyns, Leen; Leunissen, Inge; Huysmans, Toon; Cuypers, Koen; Meesen, Raf L; van Ruitenbeek, Peter; Sijbers, Jan; Swinnen, Stephan P

    2015-04-01

    Even though declines in sensorimotor performance during healthy aging have been documented extensively, its underlying neural mechanisms remain unclear. Here, we explored whether age-related subcortical atrophy plays a role in sensorimotor performance declines, and particularly during bimanual manipulative performance (Purdue Pegboard Test). The thalamus, putamen, caudate and pallidum of 91 participants across the adult lifespan (ages 20-79 years) were automatically segmented. In addition to studying age-related changes in the global volume of each subcortical structure, local deformations within these structures, indicative of subregional volume changes, were assessed by means of recently developed shape analyses. Results showed widespread age-related global and subregional atrophy, as well as some notable subregional expansion. Even though global atrophy failed to explain the observed performance declines with aging, shape analyses indicated that atrophy in left and right thalamic subregions, specifically subserving connectivity with the premotor, primary motor and somatosensory cortical areas, mediated the relation between aging and performance decline. It is concluded that subregional volume assessment by means of shape analyses offers a sensitive tool with high anatomical resolution in the search for specific age-related associations between brain structure and behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Age-related Decline of Abiotic Stress Tolerance in Young Drosophila melanogaster Adults.

    PubMed

    Colinet, Hervé; Chertemps, Thomas; Boulogne, Isabelle; Siaussat, David

    2016-12-01

    Stress tolerance generally declines with age as a result of functional senescence. Age-dependent alteration of stress tolerance can also occur in early adult life. In Drosophila melanogaster, evidence of such a decline in young adults has only been reported for thermotolerance. It is not known whether early adult life entails a general stress tolerance reduction and whether the response is peculiar to thermal traits. The present work was designed to investigate whether newly eclosed D melanogaster adults present a high tolerance to a range of biotic and abiotic insults. We found that tolerance to most of the abiotic stressors tested (desiccation, paraquat, hydrogen peroxide, deltamethrin, and malathion) was high in newly eclosed adults before dramatically declining over the next days of adult life. No clear age-related pattern was found for resistance to biotic stress (septic or fungal infection) and starvation. These results suggest that newly eclosed adults present a culminating level of tolerance to extrinsic stress which is likely unrelated to immune process. We argue that stress tolerance variation at very young age is likely a residual attribute from the previous life stage (ontogenetic carryover) or a feature related to the posteclosion development. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training.

    PubMed

    Van de Winckel, Ann; Tseng, Yu-Ting; Chantigian, Daniel; Lorant, Kaitlyn; Zarandi, Zinat; Buchanan, Jeffrey; Zeffiro, Thomas A; Larson, Mia; Olson-Kellogg, Becky; Konczak, Jürgen; Keller-Ross, Manda L

    2017-01-01

    Perception of limb and body positions is known as proprioception. Sensory feedback, especially from proprioceptive receptors, is essential for motor control. Aging is associated with a decline in position sense at proximal joints, but there is inconclusive evidence of distal joints being equally affected by aging. In addition, there is initial evidence that physical activity attenuates age-related decline in proprioception. Our objectives were, first, to establish wrist proprioceptive acuity in a large group of seniors and compare their perception to young adults, and second, to determine if specific types of training or regular physical activity are associated with preserved wrist proprioception. We recruited community-dwelling seniors ( n = 107, mean age, 70 ± 5 years, range, 65-84 years) without cognitive decline (Mini Mental State Examination-brief version ≥13/16) and young adult students ( n = 51, mean age, 20 ± 1 years, range, 19-26 years). Participants performed contralateral and ipsilateral wrist position sense matching tasks with a bimanual wrist manipulandum to a 15° flexion reference position. Systematic error or proprioceptive bias was computed as the mean difference between matched and reference position. The respective standard deviation over five trials constituted a measure of random error or proprioceptive precision . Current levels of physical activity and previous sport, musical, or dance training were obtained through a questionnaire. We employed longitudinal mixed effects linear models to calculate the effects of trial number, sex, type of matching task and age on wrist proprioceptive bias and precision. The main results were that relative proprioceptive bias was greater in older when compared to young adults (mean difference: 36% ipsilateral, 88% contralateral, p < 0.01). Proprioceptive precision for contralateral but not for ipsilateral matching was smaller in older than in young adults (mean difference: 38% contralateral, p < 0

  15. Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training

    PubMed Central

    Van de Winckel, Ann; Tseng, Yu-Ting; Chantigian, Daniel; Lorant, Kaitlyn; Zarandi, Zinat; Buchanan, Jeffrey; Zeffiro, Thomas A.; Larson, Mia; Olson-Kellogg, Becky; Konczak, Jürgen; Keller-Ross, Manda L.

    2017-01-01

    Perception of limb and body positions is known as proprioception. Sensory feedback, especially from proprioceptive receptors, is essential for motor control. Aging is associated with a decline in position sense at proximal joints, but there is inconclusive evidence of distal joints being equally affected by aging. In addition, there is initial evidence that physical activity attenuates age-related decline in proprioception. Our objectives were, first, to establish wrist proprioceptive acuity in a large group of seniors and compare their perception to young adults, and second, to determine if specific types of training or regular physical activity are associated with preserved wrist proprioception. We recruited community-dwelling seniors (n = 107, mean age, 70 ± 5 years, range, 65–84 years) without cognitive decline (Mini Mental State Examination-brief version ≥13/16) and young adult students (n = 51, mean age, 20 ± 1 years, range, 19–26 years). Participants performed contralateral and ipsilateral wrist position sense matching tasks with a bimanual wrist manipulandum to a 15° flexion reference position. Systematic error or proprioceptive bias was computed as the mean difference between matched and reference position. The respective standard deviation over five trials constituted a measure of random error or proprioceptive precision. Current levels of physical activity and previous sport, musical, or dance training were obtained through a questionnaire. We employed longitudinal mixed effects linear models to calculate the effects of trial number, sex, type of matching task and age on wrist proprioceptive bias and precision. The main results were that relative proprioceptive bias was greater in older when compared to young adults (mean difference: 36% ipsilateral, 88% contralateral, p < 0.01). Proprioceptive precision for contralateral but not for ipsilateral matching was smaller in older than in young adults (mean difference: 38% contralateral, p < 0

  16. Visual function and cognitive speed of processing mediate age-related decline in memory span and fluid intelligence

    PubMed Central

    Clay, Olivio J.; Edwards, Jerri D.; Ross, Lesley A.; Okonkwo, Ozioma; Wadley, Virginia G.; Roth, David L.; Ball, Karlene K.

    2010-01-01

    Objectives: To evaluate the relationship between sensory and cognitive decline, particularly with respect to speed of processing, memory span, and fluid intelligence. Additionally, the common cause, sensory degradation and speed of processing hypotheses were compared. Methods: Structural equation modeling was used to investigate the complex relationships among age-related decrements in these areas. Results: Cross-sectional data analyses included 842 older adult participants (M = 73 years). After accounting for age-related declines in vision and processing speed, the direct associations between age and memory span and between age and fluid intelligence were nonsignificant. Older age was associated with visual decline, which was associated with slower speed of processing, which in turn was associated with greater cognitive deficits. Discussion: The findings support both the sensory degradation and speed of processing accounts of age-related cognitive decline. Further, the findings highlight positive aspects of normal cognitive aging in that older age may not be associated with a loss of fluid intelligence if visual sensory functioning and processing speed can be maintained. PMID:19436063

  17. Mechanisms of Age-Related Decline in Memory Search Across the Adult Life Span

    PubMed Central

    Hills, Thomas T.; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R.

    2013-01-01

    Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis). We investigated these 3 hypotheses by formally modeling the semantic recall patterns of 185 adults between 27 to 99 years of age in the animal fluency task (Thurstone, 1938). The results indicate that people switch between global frequency-based retrieval cues and local item-based retrieval cues to navigate their semantic memory. Contrary to the global slowing hypothesis that predicts no qualitative differences in dynamic search processes and the cluster-switching hypothesis that predicts reduced switching between retrieval cues, the results indicate that as people age, they tend to switch more often between local and global cues per item recalled, supporting the cue-maintenance hypothesis. Additional support for the cue-maintenance hypothesis is provided by a negative correlation between switching and digit span scores and between switching and total items recalled, which suggests that cognitive control may be involved in cue maintenance and the effective search of memory. Overall, the results are consistent with age-related decline in memory search being a consequence of reduced cognitive control, consistent with models suggesting that working memory is related to goal perseveration and the ability to inhibit distracting information. PMID:23586941

  18. Age-related decline in mitochondrial DNA copy number in isolated human pancreatic islets.

    PubMed

    Cree, L M; Patel, S K; Pyle, A; Lynn, S; Turnbull, D M; Chinnery, P F; Walker, M

    2008-08-01

    Pancreatic beta cell function has been shown to decline with age in man. Depletion of mitochondrial DNA (mtDNA) copy number is associated with impaired insulin secretion in pancreatic beta cell lines, and decreased mtDNA copy number has been observed with age in skeletal muscle in man. We investigated whether mtDNA copy number decreases with age in human pancreatic beta cells, which might in turn contribute to the age-related decline in insulin secretory capacity. We quantified mtDNA copy number in isolated human islet preparations from 15 pancreas donors aged between 17 and 75 years. Islets (n = 20) were individually hand-picked and pooled from each donor isolate for the quantification of mtDNA copy number and deleted mtDNA (%), which were determined using real-time PCR methods. There was a significant negative correlation between mtDNA copy number and islet donor age (r = -0.53, p = 0.044). mtDNA copy number was significantly decreased in islet preparations from donors aged > or =50 years (n = 8) compared with those aged <50 years (n = 7) (median [interquartile range]: 418 [236-503] vs 596 [554-729] mtDNA copy number/diploid genome; p = 0.032). None of the islet preparations harboured high levels of deleted mtDNA affecting the major arc. Given the correlation between mtDNA content and respiratory chain activity, the age-related decrease in mtDNA copy number that we observed in human pancreatic islet preparations may contribute to the age-dependent decline in pancreatic beta cell insulin secretory capacity.

  19. Trajectories of age-related cognitive decline and potential associated factors of cognitive function in senior citizens of Beijing.

    PubMed

    Li, He; Lv, Chenlong; Zhang, Ting; Chen, Kewei; Chen, Chuansheng; Gai, Guozhong; Hu, Liangping; Wang, Yongyan; Zhang, Zhanjun

    2014-01-01

    With a longer life expectancy and an increased prevalence of neurodegenerative diseases, investigations on trajectories of cognitive aging have become exciting and promising. This study aimed to estimate the patterns of age-related cognitive decline and the potential associated factors of cognitive function in community-dwelling residents of Beijing, China. In this study, 1248 older adults aged 52-88 years [including 175 mild cognitive impairment (MCI) subjects] completed a battery of neuropsychological scales. The personal information, including demographic information, medical history, eating habits, lifestyle regularity and leisure activities, was also collected. All cognitive function exhibited an agerelated decline in normal volunteers. Piece-wise linear fitting results suggested that performance on the Auditory Verbal Learning Test remained stable until 58 years of age and continued to decline thereafter. The decline in processing speed and executive function began during the early 50's. Scores on visual-spatial and language tests declined after 66 years of age. The decline stage of the general mental status ranged from 63 to 70 years of age. However, the MCI group did not exhibit an obvious age-related decline in most cognitive tests. Multivariate linear regression analyses indicated that education, gender, leisure activities, diabetes and eating habits were associated with cognitive abilities. These results indicated various trajectories of age-related decline across multiple cognitive domains. We also found different patterns of agerelated cognitive decline between MCI and normal elderly. These findings could help improve the guidance of cognitive intervention program and have implications for public policy issues.

  20. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.

    PubMed

    Camacho-Pereira, Juliana; Tarragó, Mariana G; Chini, Claudia C S; Nin, Veronica; Escande, Carlos; Warner, Gina M; Puranik, Amrutesh S; Schoon, Renee A; Reid, Joel M; Galina, Antonio; Chini, Eduardo N

    2016-06-14

    Nicotinamide adenine dinucleotide (NAD) levels decrease during aging and are involved in age-related metabolic decline. To date, the mechanism responsible for the age-related reduction in NAD has not been elucidated. Here we demonstrate that expression and activity of the NADase CD38 increase with aging and that CD38 is required for the age-related NAD decline and mitochondrial dysfunction via a pathway mediated at least in part by regulation of SIRT3 activity. We also identified CD38 as the main enzyme involved in the degradation of the NAD precursor nicotinamide mononucleotide (NMN) in vivo, indicating that CD38 has a key role in the modulation of NAD-replacement therapy for aging and metabolic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Age-related testosterone decline in a Brazilian cohort of healthy military men.

    PubMed

    Nardozza Júnior, Archimedes; Szelbracikowski, Sergio dos Santos; Nardi, Aguinaldo Cesar; Almeida, Jose Carlos de

    2011-01-01

    Androgen decline in the aging man has become a topic of increasing clinical relevance worldwide, as the reduction in testosterone levels has been reported to be accompanied by loss of muscle mass, accumulation of central adiposity, impaired mobility and increase risk of bone fractures. Although well-established in studies conducted in developed countries, progressive decline in serum testosterone levels with age has been poorly investigated in Brazil. To determine the pattern of blood testosterone concentrations decline with age in a cohort of Brazilian healthy military men. We retrospectively reviewed data on serum testosterone measurements of healthy individuals that had undergone a routine check-up at the Military Biology Institute. Blood samples were obtained early in the morning, and total testosterone concentration was determined using a commercial chemoluminescent immunoassay. Mean values were analyzed in five age groups: ≤ 40, 41 to 50, 51 to 60, 61 to 70, and > 70 years. Mean total testosterone levels. 1,623 subjects were included in the analysis; mean age was 57 years (24 to 87), and mean testosterone level was 575.5 ng/dL (25.0 to 1308.0 ng/dL). The evaluation of age-related changes in total testosterone levels revealed a progressive reduction in serum levels of this hormone with increasing age. Testosterone levels below 300 ng/dL were reported in 321 participants, a prevalence of nearly 20% in the study population. In agreement with other findings, a reduction of total testosterone levels with age was reported for healthy Brazilian men.

  2. Age Differences in Brain Activity during Emotion Processing: Reflections of Age-Related Decline or Increased Emotion Regulation?

    PubMed Central

    Nashiro, Kaoru; Sakaki, Michiko; Mather, Mara

    2012-01-01

    Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processing and discusses how this evidence relates to two opposing theoretical accounts of older adults’ positivity effect. The aging-brain model [Cacioppo et al. in: Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York, Oxford University Press, 2011] proposes that older adults’ positivity effect is a consequence of age-related decline in the amygdala, whereas the cognitive control hypothesis [Kryla-Lighthall and Mather in: Handbook of Theories of Aging, ed 2. New York, Springer, 2009; Mather and Carstensen: Trends Cogn Sci 2005;9:496–502; Mather and Knight: Psychol Aging 2005;20:554–570] argues that the positivity effect is a result of older adults’ greater focus on regulating emotion. Based on evidence for structural and functional preservation of the amygdala in older adults and findings that older adults show greater prefrontal cortex activity than younger adults while engaging in emotion-processing tasks, we argue that the cognitive control hypothesis is a more likely explanation for older adults’ positivity effect than the aging-brain model. PMID:21691052

  3. Age differences in brain activity during emotion processing: reflections of age-related decline or increased emotion regulation?

    PubMed

    Nashiro, Kaoru; Sakaki, Michiko; Mather, Mara

    2012-01-01

    Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processing and discusses how this evidence relates to two opposing theoretical accounts of older adults' positivity effect. The aging-brain model [Cacioppo et al. in: Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York, Oxford University Press, 2011] proposes that older adults' positivity effect is a consequence of age-related decline in the amygdala, whereas the cognitive control hypothesis [Kryla-Lighthall and Mather in: Handbook of Theories of Aging, ed 2. New York, Springer, 2009; Mather and Carstensen: Trends Cogn Sci 2005;9:496-502; Mather and Knight: Psychol Aging 2005;20:554-570] argues that the positivity effect is a result of older adults' greater focus on regulating emotion. Based on evidence for structural and functional preservation of the amygdala in older adults and findings that older adults show greater prefrontal cortex activity than younger adults while engaging in emotion-processing tasks, we argue that the cognitive control hypothesis is a more likely explanation for older adults' positivity effect than the aging-brain model. Copyright © 2011 S. Karger AG, Basel.

  4. Age-related Decline in Case-Marker Processing and its Relation to Working Memory Capacity.

    PubMed

    Sung, Jee Eun

    2017-09-01

    Purposes of the current study were to investigate whether age-related decline emerged in a case-marker assignment task (CMAT) and to explore the relationship between working-memory (WM) capacity and case-marker processing. A total of 121 individuals participated in the study with 62 younger adults and 59 elderly adults. All were administered a CMAT that consisted of active and passive constructions with canonical and noncanonical word-order conditions. A composite measure of WM tasks served as an index of participants' WM capacity. The older group performed worse than the younger group, and the noncanonical word order elicited worse performance than the canonical condition. The older group demonstrated greater difficulty in case-marker processing under the canonical condition and passive construction. Regression results revealed that age, education, and sentence type were the best predictors to account for performance on the CMAT. The canonicity of word order and passive construction were critical factors related to decline in abilities in a case-marker assignment. The combination of age, education, and sentence type factors accounted for overall performance on case-marker processing. Results indicated the crucial necessity to find a cognitively and linguistically demanding condition that elicits aging effects most efficiently, considering language-specific syntactic features. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline

    PubMed Central

    Deibel, Scott H.; Zelinski, Erin L.; Keeley, Robin J.; Kovalchuk, Olga; McDonald, Robert J.

    2015-01-01

    Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline. PMID:26252151

  6. Age-related annual decline of lung function in patients with COPD.

    PubMed

    Kim, Soo Jung; Lee, Jinwoo; Park, Young Sik; Lee, Chang-Hoon; Yoon, Ho Il; Lee, Sang-Min; Yim, Jae-Joon; Kim, Young Whan; Han, Sung Koo; Yoo, Chul-Gyu

    2016-01-01

    According to the Fletcher-Peto curve, rate of decline in forced expiratory volume in 1-second (FEV1) accelerates as age increases. However, recent studies have not demonstrated that the rate of FEV1 decline accelerates with age among COPD patients. The objective of the study is to evaluate annual rate of FEV1 decline as age increases among COPD patients. In this retrospective cohort study, we enrolled COPD patients who were followed up at two tertiary care university hospitals from January 2000 to August 2013. COPD was defined as post-bronchodilator (BD) FEV1/forced vital capacity (FVC) of <0.7. All participants had more than two spirometries, including BD response. Age groups were categorized as follows: below versus above median age or four quartiles. A total of 518 participants (94.2% male; median age, 67 years; range, 42-90 years) were included. Mean absolute and predictive values of post-BD FEV1 were 1.57±0.62 L and 52.53%±18.29%, respectively. Distribution of Global initiative for Chronic Obstructive Lung Disease groups did not show statistical differences between age groups categorized by two different criteria. After grouping the population by age quartiles, the rate of FEV1 decline was faster among older patients than younger ones whether expressed as absolute value (-10.60±5.57 mL/year, -15.84±6.01 mL/year, -18.63±5.53 mL/year, 32.94±6.01 mL/year, respectively; P=0.048) or predicted value (-0.34%±0.19%/year, -0.53%±0.21%/year, -0.62%±0.19%/year, -1.26%±0.21%/year, respectively, P=0.010). As suggested conceptually by the Fletcher-Peto curve, annual FEV1 decline among COPD patients is accelerated among older patients than younger ones.

  7. Visual Search Load Effects on Age-Related Cognitive Decline: Evidence From the Yakumo Longitudinal Study.

    PubMed

    Hatta, Takeshi; Kato, Kimiko; Hotta, Chie; Higashikawa, Mari; Iwahara, Akihiko; Hatta, Taketoshi; Hatta, Junko; Fujiwara, Kazumi; Nagahara, Naoko; Ito, Emi; Hamajima, Nobuyuki

    2017-01-01

    The validity of Bucur and Madden's (2010) proposal that an age-related decline is particularly pronounced in executive function measures rather than in elementary perceptual speed measures was examined via the Yakumo Study longitudinal database. Their proposal suggests that cognitive load differentially affects cognitive abilities in older adults. To address their proposal, linear regression coefficients of 104 participants were calculated individually for the digit cancellation task 1 (D-CAT1), where participants search for a given single digit, and the D-CAT3, where they search for 3 digits simultaneously. Therefore, it can be conjectured that the D-CAT1 represents primarily elementary perceptual speed and low-visual search load task. whereas the D-CAT3 represents primarily executive function and high-visual search load task. Regression coefficients from age 65 to 75 for the D-CAT3 showed a significantly steeper decline than that for the D-CAT1, and a large number of participants showed this tendency. These results support the proposal by Brcur and Madden (2010) and suggest that the degree of cognitive load affects age-related cognitive decline.

  8. Long-Term Moderate Exercise Rescues Age-Related Decline in Hippocampal Neuronal Complexity and Memory.

    PubMed

    Tsai, Sheng-Feng; Ku, Nai-Wen; Wang, Tzu-Feng; Yang, Yan-Hsiang; Shih, Yao-Hsiang; Wu, Shih-Ying; Lee, Chu-Wan; Yu, Megan; Yang, Ting-Ting; Kuo, Yu-Min

    2018-05-07

    Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. Young (3 months), middle-aged (9-12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline. © 2018 S. Karger AG, Basel.

  9. Evaluating Alzheimer's disease biomarkers as mediators of age-related cognitive decline.

    PubMed

    Hohman, Timothy J; Tommet, Doug; Marks, Shawn; Contreras, Joey; Jones, Rich; Mungas, Dan

    2017-10-01

    Age-related changes in cognition are partially mediated by the presence of neuropathology and neurodegeneration. This manuscript evaluates the degree to which biomarkers of Alzheimer's disease, (AD) neuropathology and longitudinal changes in brain structure, account for age-related differences in cognition. Data from the AD Neuroimaging Initiative (n = 1012) were analyzed, including individuals with normal cognition and mild cognitive impairment. Parallel process mixed effects regression models characterized longitudinal trajectories of cognitive variables and time-varying changes in brain volumes. Baseline age was associated with both memory and executive function at baseline (p's < 0.001) and change in memory and executive function performances over time (p's < 0.05). After adjusting for clinical diagnosis, baseline, and longitudinal changes in brain volume, and baseline levels of cerebrospinal fluid biomarkers, age effects on change in episodic memory and executive function were fully attenuated, age effects on baseline memory were substantially attenuated, but an association remained between age and baseline executive function. Results support previous studies that show that age effects on cognitive decline are fully mediated by disease and neurodegeneration variables but also show domain-specific age effects on baseline cognition, specifically an age pathway to executive function that is independent of brain and disease pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Biological age and sex-related declines in physical activity during adolescence.

    PubMed

    Cairney, John; Veldhuizen, Scott; Kwan, Matthew; Hay, John; Faught, Brent E

    2014-04-01

    Sex differences in the rate of decline in physical activity (PA) are most pronounced during adolescence. However, once boys and girls are aligned on biological age, sex differences in the patterns of PA become attenuated. The aim of this study was to test whether biological maturation can account for sex differences in participation in PA over time from late childhood to early adolescence. A prospective cohort of children (N = 2100; 1064 boys) was followed from ages 11 to 14 yr, with repeated assessments of PA and anthropometry. Self-reported participation in organized and free play activities was used to track participation in PA. Biological age was measured using an estimate of years to attainment of peak height velocity. Mixed-effects models were used to test whether controlling for biological age attenuates the effect of chronological age and sex on PA. As expected, the rate of decline in participation in PA was greater for girls than for boys (B = -1.18, P < 0.01). In multivariable analyses, adjusting for biological age completely attenuated the effect of sex and chronological age for participation in free play activities, but not for participation in organized play. Overall, biological age was a stronger predictor of participation than chronological age. The effect of biological age on sex by chronological age differences may be specific to certain types of PA participation. Given the importance of maturation to participation in activity, it is suggested that public health strategies target biological not chronological age to prevent declines in PA during adolescence particularly when promoting habitual or lifestyle activity.

  11. A novel approach to rapidly prevent age-related cognitive decline

    PubMed Central

    Adlard, Paul A; Sedjahtera, Amelia; Gunawan, Lydia; Bray, Lisa; Hare, Dominic; Lear, Jessica; Doble, Philip; Bush, Ashley I; Finkelstein, David I; Cherny, Robert A

    2014-01-01

    The loss of cognitive function is a pervasive and often debilitating feature of the aging process for which there are no effective therapeutics. We hypothesized that a novel metal chaperone (PBT2; Prana Biotechnology, Parkville, Victoria, Australia) would enhance cognition in aged rodents. We show here that PBT2 rapidly improves the performance of aged C57Bl/6 mice in the Morris water maze, concomitant with increases in dendritic spine density, hippocampal neuron number and markers of neurogenesis. There were also increased levels of specific glutamate receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-d-aspartate), the glutamate transporter (VGLUT1) and glutamate itself. Markers of synaptic plasticity [calmodulin-dependent protein kinase II (CaMKII) and phosphorylated CaMKII, CREB, synaptophysin] were also increased following PBT2 treatment. We also demonstrate that PBT2 treatment results in a subregion-specific increase in hippocampal zinc, which is increasingly recognized as a potent neuromodulator. These data demonstrate that metal chaperones are a novel approach to the treatment of age-related cognitive decline. PMID:24305557

  12. HIV/HCV Co-infection, Liver Disease Progression, and Age-Related IGF-1 Decline.

    PubMed

    Quinn, Jeffrey; Astemborski, Jacquie; Mehta, Shruti H; Kirk, Gregory D; Thomas, David L; Balagopal, Ashwin

    2017-01-01

    We have previously reported that persons co-infected with HIV and hepatitis C virus (HCV) had liver disease stages similar to HIV-uninfected individuals who were approximately 10 years older. Insulin-like growth factor 1(IGF-1) levels have long been known to decline with advancing age in humans and non-humans alike. We examined whether HIV infection affects the expected decline in IGF-1 in persons with chronic hepatitis C virus (HCV) infection and if that alteration in IGF-1 decline contributes to the link between HIV, aging, and liver disease progression. A total of 553 individuals with HCV infection were studied from the AIDS Linked to the Intravenous Experience (ALIVE) cohort for whom more than 10 years of follow-up was available. Serum IGF-1 levels were determined by ELISA and evaluated according to baseline characteristics and over time by HIV status and liver disease progression. Linear regression with generalized estimating equations was used to determine whether IGF-1 decline over time was independently associated with liver disease progression. Baseline IGF-1 levels were strongly associated with age ( P < 0.0001) but not with gender or HIV infection. Levels of IGF-1 declined at a rate of -1.75 ng/mL each year in HCV mono-infected individuals and at a rate of -1.23 ng/mL each year in HIV/HCV co-infected individuals ( P < 0.05). In a multivariable linear regression model, progression of liver fibrosis was associated with HIV infection and age, as well as with a slower rate of IGF-1 decline ( P = 0.001); however, the rate of IGF-1 decline did not alter the strength of the associations between HIV, liver disease, and age. The normal decline in IGF-1 levels with age was attenuated in HIV/HCV co-infected individuals compared to those with HCV mono-infection, and slower IGF-1 decline was independently associated with liver disease progression.

  13. Alzheimer's disease and age-related memory decline (preclinical).

    PubMed

    Terry, Alvin V; Callahan, Patrick M; Hall, Brandon; Webster, Scott J

    2011-08-01

    An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer's disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as "Mild Cognitive Impairment" (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD and MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy and adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory

  14. ESTROGENS AND AGE-RELATED MEMORY DECLINE IN RODENTS: WHAT HAVE WE LEARNED AND WHERE DO WE GO FROM HERE?

    PubMed Central

    Frick, Karyn M.

    2009-01-01

    The question of whether ovarian hormone therapy can prevent or reduce age-related memory decline in menopausal women has been the subject of much recent debate. Although numerous studies have demonstrated a beneficial effect of estrogen and/or progestin therapy for certain types of memory in menopausal women, recent clinical trials suggest that such therapy actually increases the risk of cognitive decline and dementia. Because rodent models have been frequently used to examine the effects of age and/or ovarian hormone deficiency on mnemonic function, rodent models of age-related hormone and memory decline may be useful in helping to resolve this issue. This review will focus on evidence suggesting that estradiol modulates memory, particularly hippocampal-dependent memory, in young and aging female rats and mice. Various factors affecting the mnemonic response to estradiol in aging females will be highlighted to illustrate the complications inherent to studies of estrogen therapy in aging females. Avenues for future development of estradiol-based therapies will also be discussed, and it is argued that an approach to drug development based on identifying the molecular mechanisms underlying estrogenic modulation of memory may lead to promising future treatments for reducing age-related mnemonic decline. PMID:18835561

  15. Raspberry differentially improves age-related declines in psychomotor function dependent on baseline motor ability

    USDA-ARS?s Scientific Manuscript database

    Among older adults, falls are a leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demonstrated that berry supplementation improves the age-related declines in balance, muscle strength, and coordination...

  16. Cortical grey matter content is associated with both age and bimanual performance, but is not observed to mediate age-related behavioural decline.

    PubMed

    van Ruitenbeek, Peter; Serbruyns, Leen; Solesio-Jofre, Elena; Meesen, Raf; Cuypers, Koen; Swinnen, Stephan P

    2017-01-01

    Declines in both cortical grey matter and bimanual coordination performance are evident in healthy ageing. However, the relationship between ageing, bimanual performance, and grey matter loss remains unclear, particularly across the whole adult lifespan. Therefore, participants (N = 93, range 20-80 years) performed a complex Bimanual Tracking Task, and structural brain images were obtained using magnetic resonance imaging. Analyses revealed that age correlated negatively with task performance. Voxel-based morphometry analysis revealed that age was associated with grey matter declines in task-relevant cortical areas and that grey matter in these areas was negatively associated with task performance. However, no evidence for a mediating effect of grey matter in age-related bimanual performance decline was observed. We propose a new hypothesis that functional compensation may account for the observed absence of mediation, which is in line with the observed pattern of increased inter-individual variance in performance with age.

  17. Impact of the hypothalamic-pituitary-adrenal/gonadal axes on trajectory of age-related cognitive decline.

    PubMed

    Conrad, Cheryl D; Bimonte-Nelson, Heather A

    2010-01-01

    Life expectancies have increased substantially in the last century, dramatically amplifying the proportion of individuals who will reach old age. As individuals age, cognitive ability declines, although the rate of decline differs amongst the forms of memory domains and for different individuals. Memory domains especially impacted by aging are declarative and spatial memories. The hippocampus facilitates the formation of declarative and spatial memories. Notably, the hippocampus is particularly vulnerable to aging. Genetic predisposition and lifetime experiences and exposures contribute to the aging process, brain changes and subsequent cognitive outcomes. In this review, two factors to which an individual is exposed, the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis, will be considered regarding the impact of age on hippocampal-dependent function. Spatial memory can be affected by cumulative exposure to chronic stress via glucocorticoids, released from the HPA axis, and from gonadal steroids (estrogens, progesterone and androgens) and gonadotrophins, released from the HPG axis. Additionally, this review will discuss how these hormones impact age-related hippocampal function. We hypothesize that lifetime experiences and exposure to these hormones contribute to the cognitive makeup of the aged individual, and contribute to the heterogeneous aged population that includes individuals with cognitive abilities as astute as their younger counterparts, as well as individuals with severe cognitive decline or neurodegenerative disease. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Food for thought: the role of appetitive peptides in age-related cognitive decline.

    PubMed

    Fadel, Jim R; Jolivalt, Corinne G; Reagan, Lawrence P

    2013-06-01

    Through their well described actions in the hypothalamus, appetitive peptides such as insulin, orexin and leptin are recognized as important regulators of food intake, body weight and body composition. Beyond these metabolic activities, these peptides also are critically involved in a wide variety of activities ranging from modulation of immune and neuroendocrine function to addictive behaviors and reproduction. The neurological activities of insulin, orexin and leptin also include facilitation of hippocampal synaptic plasticity and enhancement of cognitive performance. While patients with metabolic disorders such as obesity and diabetes have greater risk of developing cognitive deficits, dementia and Alzheimer's disease (AD), the underlying mechanisms that are responsible for, or contribute to, age-related cognitive decline are poorly understood. In view of the importance of these peptides in metabolic disorders, it is not surprising that there is a greater focus on their potential role in cognitive deficits associated with aging. The goal of this review is to describe the evidence from clinical and pre-clinical studies implicating insulin, orexin and leptin in the etiology and progression of age-related cognitive decline. Collectively, these studies support the hypothesis that leptin and insulin resistance, concepts normally associated with the hypothalamus, are also applicable to the hippocampus. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Seafood Types and Age-Related Cognitive Decline in the Women’s Health Study

    PubMed Central

    2013-01-01

    Background. Seafood consumption may prevent age-related cognitive decline. However, benefits may vary by nutrient contents in different seafood types. We examined associations between total seafood consumption and cognitive decline and whether these associations differ by seafood types. Methods. We conducted a prospective cohort study of 5,988 women (mean age, 72 years) from the Women’s Health Study who self-reported seafood intake at Women’s Health Study baseline and also participated in telephone assessments of general cognition, verbal memory, and category fluency administered 5.6 years after Women’s Health Study baseline and 2 and 4 years thereafter. Primary outcomes were standardized composite scores of global cognition and verbal memory. Results. After adjusting for potential confounders, different amounts of total seafood consumption were not associated with changes in global cognition (p = .56) or verbal memory (p = .29). Considering seafood types, however, compared with women consuming less than once-weekly tuna or dark-meat finfish, those with once-weekly or higher consumption had significantly better verbal memory (0.079 standard units; p < .01) after 4 years—a difference comparable to that for women 2.1 years apart in age. There was also a statistically nonsignificant suggestion of better global cognition (p = .13) with once-weekly or higher tuna or dark-meat fish consumption. No significant associations were observed for light-meat finfish or shellfish. Conclusions. The relation of seafood to cognition may depend on the types consumed. Total consumption levels of seafood were unrelated to cognitive change. However, consumption of tuna and dark-meat fish once weekly or higher was associated with lower decline in verbal memory for a period of 4 years. PMID:23554464

  20. Initiation of calorie restriction in middle-aged male rats attenuates aging-related motoric decline and bradykinesia without increased striatal dopamine

    PubMed Central

    Salvatore, Michael F.; Terrebonne, Jennifer; Fields, Victoria; Nodurft, Danielle; Runfalo, Cori; Latimer, Brian; Ingram, Donald K.

    2015-01-01

    Aging-related bradykinesia affects ~15% of those reaching age 65 and 50% of those reaching their 80s. Given this high risk and lack of pharmacological therapeutics, non-invasive lifestyle strategies should be identified to diminish its risk and identify the neurobiological targets to reduce aging-related bradykinesia. Early-life, long-term calorie restriction (CR) attenuates aging-related bradykinesia in rodents. Here, we addressed whether CR initiation at middle age could attenuate aging-related bradykinesia and motoric decline measured as rotarod performance. A 30% CR regimen was implemented for 6 months duration in 12-month old male Brown-Norway Fischer 344 F1 hybrid rats after establishing individual baseline locomotor activities. Locomotor capacity was assessed every 6 weeks thereafter. The ad libitum (AL) group exhibited predictably decreased locomotor activity, except movement speed, out to 18 months of age. In contrast, in the CR group, movement number and horizontal activity did not decrease during the 6-month trial and aging-related decline in rotarod performance was attenuated. The response to CR was influenced by baseline locomotor activity. The lower the locomotor activity level at baseline, the greater the response to CR. Rats in the lower 50th percentile surpassed their baseline level of activity, whereas rats in the top 50th percentile decreased at 6 weeks and then returned to baseline by 12 weeks of CR. We hypothesized that nigrostriatal dopamine tissue content would be greater in the CR group and observed a modest increase only in substantia nigra with no group differences in striatum, nucleus accumbens, or ventral tegmental area. These results indicate initiation of CR at middle age may reduce aging-related bradykinesia and, furthermore, subjects with below average locomotor activity may increase baseline activity. Sustaining nigral DA neurotransmission may be one component of preserving locomotor capabilities during aging. PMID:26610387

  1. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    PubMed

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.

  2. β-Secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice

    PubMed Central

    Chang, Wan-Pin; Huang, Xiangping; Downs, Deborah; Cirrito, John R.; Koelsch, Gerald; Holtzman, David M.; Ghosh, Arun K.; Tang, Jordan

    2011-01-01

    Alzheimer disease is intimately linked to an excess amount of amyloid-β (Aβ) in the brain. Thus, therapeutic inhibition of Aβ production is an attractive clinical approach to treat this disease. Here we provide the first direct experimental evidence that the treatment of Tg2576 transgenic mice with an inhibitor of β-secretase, GRL-8234, rescues the age-related cognitive decline. We demonstrated that the injected GRL-8234 effectively enters the brain and rapidly decreases soluble Aβ in the brain of Tg2576 mice. The rescue of cognition, which was observed only after long-term inhibitor treatment ranging from 5 to 7.5 mo, was associated with a decrease of brain amyloid-β plaque load. We also found no accumulation of amyloid-β precursor protein after several months of inhibitor treatment. These observations substantiate the idea that Aβ accumulation plays a major role in the cognitive decline of Tg2576 mice and support the concept of Aβ reduction therapy as a treatment of AD.—Chang, W.-P., Huang, X., Downs, D., Cirrito, J. R., Koelsch, G., Holtzman, D. M. Ghosh, A. K., Tang, J. β-Secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. PMID:21059748

  3. Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice.

    PubMed

    Mendias, Christopher L; Bakhurin, Konstantin I; Gumucio, Jonathan P; Shallal-Ayzin, Mark V; Davis, Carol S; Faulkner, John A

    2015-08-01

    The molecular mechanisms behind aging-related declines in muscle function are not well understood, but the growth factor myostatin (MSTN) appears to play an important role in this process. Additionally, epidemiological studies have identified a positive correlation between skeletal muscle mass and longevity. Given the role of myostatin in regulating muscle size, and the correlation between muscle mass and longevity, we tested the hypotheses that the deficiency of myostatin would protect oldest-old mice (28-30 months old) from an aging-related loss in muscle size and contractility, and would extend the maximum lifespan of mice. We found that MSTN(+/-) and MSTN(-/-) mice were protected from aging-related declines in muscle mass and contractility. While no differences were detected between MSTN(+/+) and MSTN(-/-) mice, MSTN(+/-) mice had an approximately 15% increase in maximal lifespan. These results suggest that targeting myostatin may protect against aging-related changes in skeletal muscle and contribute to enhanced longevity. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Protective Effects of Foods Containing Flavonoids on Age-Related Cognitive Decline.

    PubMed

    Gildawie, Kelsea R; Galli, Rachel L; Shukitt-Hale, Barbara; Carey, Amanda N

    2018-06-01

    Evidence suggests that flavonoids, polyphenolic compounds found in many plant-derived foods, such as berries, may allay cognitive impairment. We review recent research exploring the protective effects of flavonoids on age-related cognitive decline and neurodegenerative disorders in humans and animals. We also address the mechanisms by which flavonoids may exert their effects and promising avenues of future research. Flavonoids have been found to decrease neuroinflammation, reduce oxidative stress, and mediate neuroplasticity in animal models of neurodegeneration and aging. Injecting flavonoids encased in metal nanoparticles may further enhance the efficacy of flavonoids. Animal studies also demonstrate that flavonoid supplementation may alleviate neurodegenerative cognitive and memory impairments. Limited human studies, however, demonstrate the need for further clinical research investigating flavonoids. Flavonoid supplementation, as well as dietary modification to include whole foods high in flavonoids, may provide therapeutic potential for aging individuals experiencing cognitive deficits resulting from neurodegeneration.

  5. Age-Related Skeletal Muscle Decline Is Similar in HIV-Infected and Uninfected Individuals

    PubMed Central

    Yarasheski, Kevin E.; Scherzer, Rebecca; Kotler, Donald P.; Dobs, Adrian S.; Tien, Phyllis C.; Lewis, Cora E.; Kronmal, Richard A.; Heymsfield, Steven B.; Bacchetti, Peter

    2011-01-01

    Background. Skeletal muscle (SM) mass decreases with advanced age and with disease in HIV infection. It is unknown whether age-related muscle loss is accelerated in the current era of antiretroviral therapy and which factors might contribute to muscle loss among HIV-infected adults. We hypothesized that muscle mass would be lower and decline faster in HIV-infected adults than in similar-aged controls. Methods. Whole-body 1H-magnetic resonance imaging was used to quantify regional and total SM in 399 HIV-infected and 204 control men and women at baseline and 5 years later. Multivariable regression identified associated factors. Results. At baseline and Year 5, total SM was lower in HIV-infected than control men. HIV-infected women were similar to control women at both time points. After adjusting for demographics, lifestyle factors, and total adipose tissue, HIV infection was associated with lower Year 5 SM in men and higher SM in women compared with controls. Average overall 5-year change in total SM was small and age related, but rate of change was similar in HIV-infected and control men and women. CD4 count and efavirenz use in HIV-infected participants were associated with increasing SM, whereas age and stavudine use were associated with decreasing SM. Conclusions. Muscle mass was lower in HIV-infected men compared with controls, whereas HIV-infected women had slightly higher SM than control women after multivariable adjustment. We found evidence against substantially faster SM decline in HIV infected versus similar-aged controls. SM gain was associated with increasing CD4 count, whereas stavudine use may contribute to SM loss. PMID:21310810

  6. Age-related skeletal muscle decline is similar in HIV-infected and uninfected individuals.

    PubMed

    Yarasheski, Kevin E; Scherzer, Rebecca; Kotler, Donald P; Dobs, Adrian S; Tien, Phyllis C; Lewis, Cora E; Kronmal, Richard A; Heymsfield, Steven B; Bacchetti, Peter; Grunfeld, Carl

    2011-03-01

    Skeletal muscle (SM) mass decreases with advanced age and with disease in HIV infection. It is unknown whether age-related muscle loss is accelerated in the current era of antiretroviral therapy and which factors might contribute to muscle loss among HIV-infected adults. We hypothesized that muscle mass would be lower and decline faster in HIV-infected adults than in similar-aged controls. Whole-body (1)H-magnetic resonance imaging was used to quantify regional and total SM in 399 HIV-infected and 204 control men and women at baseline and 5 years later. Multivariable regression identified associated factors. At baseline and Year 5, total SM was lower in HIV-infected than control men. HIV-infected women were similar to control women at both time points. After adjusting for demographics, lifestyle factors, and total adipose tissue, HIV infection was associated with lower Year 5 SM in men and higher SM in women compared with controls. Average overall 5-year change in total SM was small and age related, but rate of change was similar in HIV-infected and control men and women. CD4 count and efavirenz use in HIV-infected participants were associated with increasing SM, whereas age and stavudine use were associated with decreasing SM. Muscle mass was lower in HIV-infected men compared with controls, whereas HIV-infected women had slightly higher SM than control women after multivariable adjustment. We found evidence against substantially faster SM decline in HIV infected versus similar-aged controls. SM gain was associated with increasing CD4 count, whereas stavudine use may contribute to SM loss.

  7. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing.

    PubMed

    Nashiro, Kaoru; Sakaki, Michiko; Braskie, Meredith N; Mather, Mara

    2017-06-01

    Correlations in activity across disparate brain regions during rest reveal functional networks in the brain. Although previous studies largely agree that there is an age-related decline in the "default mode network," how age affects other resting-state networks, such as emotion-related networks, is still controversial. Here we used a dual-regression approach to investigate age-related alterations in resting-state networks. The results revealed age-related disruptions in functional connectivity in all 5 identified cognitive networks, namely the default mode network, cognitive-auditory, cognitive-speech (or speech-related somatosensory), and right and left frontoparietal networks, whereas such age effects were not observed in the 3 identified emotion networks. In addition, we observed age-related decline in functional connectivity in 3 visual and 3 motor/visuospatial networks. Older adults showed greater functional connectivity in regions outside 4 out of the 5 identified cognitive networks, consistent with the dedifferentiation effect previously observed in task-based functional magnetic resonance imaging studies. Both reduced within-network connectivity and increased out-of-network connectivity were correlated with poor cognitive performance, providing potential biomarkers for cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. MIND diet slows cognitive decline with aging.

    PubMed

    Morris, Martha Clare; Tangney, Christy C; Wang, Yamin; Sacks, Frank M; Barnes, Lisa L; Bennett, David A; Aggarwal, Neelum T

    2015-09-01

    The Mediterranean and dash diets have been shown to slow cognitive decline; however, neither diet is specific to the nutrition literature on dementia prevention. We devised the Mediterranean-Dietary Approach to Systolic Hypertension (DASH) diet intervention for neurodegenerative delay (MIND) diet score that specifically captures dietary components shown to be neuroprotective and related it to change in cognition over an average 4.7 years among 960 participants of the Memory and Aging Project. In adjusted mixed models, the MIND score was positively associated with slower decline in global cognitive score (β = 0.0092; P < .0001) and with each of five cognitive domains. The difference in decline rates for being in the top tertile of MIND diet scores versus the lowest was equivalent to being 7.5 years younger in age. The study findings suggest that the MIND diet substantially slows cognitive decline with age. Replication of these findings in a dietary intervention trial would be required to verify its relevance to brain health. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  9. Neuroanatomical Substrates of Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2011-01-01

    There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…

  10. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline.

    PubMed

    Yurko-Mauro, Karin; McCarthy, Deanna; Rom, Dror; Nelson, Edward B; Ryan, Alan S; Blackwell, Andrew; Salem, Norman; Stedman, Mary

    2010-11-01

    Docosahexaenoic acid (DHA) plays an important role in neural function. Decreases in plasma DHA are associated with cognitive decline in healthy elderly adults and in patients with Alzheimer's disease. Higher DHA intake is inversely correlated with relative risk of Alzheimer's disease. The potential benefits of DHA supplementation in age-related cognitive decline (ARCD) have not been fully examined. Determine effects of DHA administration on improving cognitive functions in healthy older adults with ARCD. Randomized, double-blind, placebo-controlled, clinical study was conducted at 19 U.S. clinical sites. A total of 485 healthy subjects, aged ≥55 with Mini-Mental State Examination >26 and a Logical Memory (Wechsler Memory Scale III) baseline score ≥1 standard deviation below younger adults, were randomly assigned to 900 mg/d of DHA orally or matching placebo for 24 weeks. The primary outcome was the CANTAB Paired Associate Learning (PAL), a visuospatial learning and episodic memory test. Intention-to-treat analysis demonstrated significantly fewer PAL six pattern errors with DHA versus placebo at 24 weeks (difference score, -1.63 ± 0.76 [-3.1, -0.14, 95% CI], P = .03). DHA supplementation was also associated with improved immediate and delayed Verbal Recognition Memory scores (P < .02), but not working memory or executive function tests. Plasma DHA levels doubled and correlated with improved PAL scores (P < .02) in the DHA group. DHA was well tolerated with no reported treatment-related serious adverse events. Twenty-four week supplementation with 900 mg/d DHA improved learning and memory function in ARCD and is a beneficial supplement that supports cognitive health with aging. Clinicaltrials.gov, Identifier: NCT0027813. Copyright © 2010 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  11. Age-related Effects on Word Recognition: Reliance on Cognitive Control Systems with Structural Declines in Speech-responsive Cortex

    PubMed Central

    Walczak, Adam; Ahlstrom, Jayne; Denslow, Stewart; Horwitz, Amy; Dubno, Judy R.

    2008-01-01

    Speech recognition can be difficult and effortful for older adults, even for those with normal hearing. Declining frontal lobe cognitive control has been hypothesized to cause age-related speech recognition problems. This study examined age-related changes in frontal lobe function for 15 clinically normal hearing adults (21–75 years) when they performed a word recognition task that was made challenging by decreasing word intelligibility. Although there were no age-related changes in word recognition, there were age-related changes in the degree of activity within left middle frontal gyrus (MFG) and anterior cingulate (ACC) regions during word recognition. Older adults engaged left MFG and ACC regions when words were most intelligible compared to younger adults who engaged these regions when words were least intelligible. Declining gray matter volume within temporal lobe regions responsive to word intelligibility significantly predicted left MFG activity, even after controlling for total gray matter volume, suggesting that declining structural integrity of brain regions responsive to speech leads to the recruitment of frontal regions when words are easily understood. Electronic supplementary material The online version of this article (doi:10.1007/s10162-008-0113-3) contains supplementary material, which is available to authorized users. PMID:18274825

  12. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion.

    PubMed

    Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Huang, Xiang; Zhang, Honglian; Kong, Weijia

    2012-12-01

    The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the Cc

  13. Perceptions of oocyte banking from women intending to circumvent age-related fertility decline.

    PubMed

    de Groot, Marije; Dancet, Eline; Repping, Sjoerd; Goddijn, Mariette; Stoop, Dominic; van der Veen, Fulco; Gerrits, Trudie

    2016-12-01

    Women can now opt to bank their oocytes with the intention of increasing their chances of achieving a pregnancy after their fertility has declined. This exploratory study aimed to gain insight into how women, considering oocyte banking to circumvent age-related fertility decline, perceive this intervention. We conducted a qualitative study in a Dutch university medical center and held in-depth interviews with women on the waiting list for oocyte banking. We recorded the interviews, transcribed them verbatim and used thematic analysis. All women were financially independent and lived in single-person urban households. They opted for oocyte banking because they wished to share parenthood with a future partner rather than becoming a single parent. This strong desire was key in their interpretation of all aspects of the intervention. Women set aside information about the limited success rates and potential risks, as they were optimistic about their own prognosis, thought that the chances for success were equally likely as the chances it would fail, and because of "anticipatory regret". They perceived oocyte banking as a "helping hand" to achieve shared parenthood. Although women found the costs of the intervention high, they were willing to invest their money to increase their chances for shared parenthood. Oocyte banking allows women to circumvent age-related fertility decline. The prospect of potential shared parenthood overrules the perceived health risks and burden. Health professionals should take this into account when informing potential users of oocyte banking. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  14. Metabolic syndrome but not obesity measures are risk factors for accelerated age-related glomerular filtration rate decline in the general population.

    PubMed

    Stefansson, Vidar T N; Schei, Jørgen; Solbu, Marit D; Jenssen, Trond G; Melsom, Toralf; Eriksen, Bjørn O

    2018-05-01

    Rapid age-related glomerular filtration rate (GFR) decline increases the risk of end-stage renal disease, and a low GFR increases the risk of mortality and cardiovascular disease. High body mass index and the metabolic syndrome are well-known risk factors for patients with advanced chronic kidney disease, but their role in accelerating age-related GFR decline independent of cardiovascular disease, hypertension and diabetes is not adequately understood. We studied body mass index, waist circumference, waist-hip ratio and metabolic syndrome as risk factors for accelerated GFR decline in 1261 middle-aged people representative of the general population without diabetes, cardiovascular disease or kidney disease. GFR was measured as iohexol clearance at baseline and repeated after a median of 5.6 years. Metabolic syndrome was defined as fulfilling three out of five criteria, based on waist circumference, blood pressure, glucose, high-density lipoprotein cholesterol and triglycerides. The mean GFR decline rate was 0.95 ml/min/year. Neither the body mass index, waist circumference nor waist-hip ratio predicted statistically significant changes in age-related GFR decline, but individuals with baseline metabolic syndrome had a significant mean of 0.30 ml/min/year faster decline than individuals without metabolic syndrome in a multivariable adjusted linear regression model. This association was mainly driven by the triglyceride criterion of metabolic syndrome, which was associated with a significant 0.36 ml/min/year faster decline when analyzed separately. Results differed significantly when GFR was estimated using creatinine and/or cystatin C. Thus, metabolic syndrome, but not the body mass index, waist circumference or waist-hip ratio, is an independent risk factor for accelerated age-related GFR decline in the general population. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Processing Speed, Inhibitory Control, and Working Memory: Three Important Factors to Account for Age-Related Cognitive Decline

    ERIC Educational Resources Information Center

    Pereiro Rozas, Arturo X.; Juncos-Rabadan, Onesimo; Gonzalez, Maria Soledad Rodriguez

    2008-01-01

    Processing speed, inhibitory control and working memory have been identified as the main possible culprits of age-related cognitive decline. This article describes a study of their interrelationships and dependence on age, including exploration of whether any of them mediates between age and the others. We carried out a LISREL analysis of the…

  16. Alzheimer’s Disease and Age-Related Memory Decline (Preclinical)

    PubMed Central

    Terry, Alvin V.; Callahan, Patrick M.; Hall, Brandon; Webster, Scott J.

    2011-01-01

    An unfortunate result of the rapid rise in geriatric populations worldwide is the increasing prevalence of age-related cognitive disorders such as Alzheimer’s disease (AD). AD is a devastating neurodegenerative illness that is characterized by a profound impairment of cognitive function, marked physical disability, and an enormous economic burden on the afflicted individual, caregivers, and society in general. The rise in elderly populations is also resulting in an increase in individuals with related (potentially treatable) conditions such as “Mild Cognitive Impairment” (MCI) which is characterized by a less severe (but abnormal) level of cognitive impairment and a high-risk for developing dementia. Even in the absence of a diagnosable disorder of cognition (e.g., AD, MCI), the perception of increased forgetfulness and declining mental function is a clear source of apprehension in the elderly. This is a valid concern given that even a modest impairment of cognitive function is likely to be associated with significant disability in a rapidly evolving, technology-based society. Unfortunately, the currently available therapies designed to improve cognition (i.e., for AD and other forms of dementia) are limited by modest efficacy, adverse side effects, and their effects on cognitive function are not sustained over time. Accordingly, it is incumbent on the scientific community to develop safer and more effective therapies that improve and/or sustain cognitive function in the elderly allowing them to remain mentally active and productive for as long as possible. As diagnostic criteria for memory disorders evolve, the demand for pro-cognitive therapeutic agents is likely to surpass AD and dementia to include MCI and potentially even less severe forms of memory decline. The purpose of this review is to provide an overview of the contemporary therapeutic targets and preclinical pharmacologic approaches (with representative drug examples) designed to enhance memory

  17. Characterizing age-related decline of recognition memory and brain activation profile in mice.

    PubMed

    Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale

    2018-06-01

    Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Age-related cognitive decline coincides with accelerated volume loss of the dorsal but not ventral hippocampus in mice.

    PubMed

    Reichel, J M; Bedenk, B T; Czisch, M; Wotjak, C T

    2017-01-01

    Even in the absence of neurodegenerative diseases, progressing age often coincides with cognitive decline and morphological changes. However, longitudinal studies that directly link these two processes are missing. In this proof-of-concept study we therefore performed repeated within-subject testing of healthy male R26R mice in a spatial learning task in combination with manganese-enhanced volumetric MRI analyses at the ages of 8, 16, and 24 months. We grouped the mice into good and poor performers (n = 6, each), based on their spatial learning abilities at the age of 24 months. Using this stratification, we failed to detect a priori volume differences, but observed a significant decrease in total hippocampal volume over time for both groups. Interestingly, this volume decrease was specific for the dorsal hippocampus and significantly accelerated in poor performers between 16 and 24 months of age. This is the first time that individual changes in hippocampal volume were traced alongside cognitive performance within the same subjects over 1½ years. Our study points to a causal link between volume loss of the dorsal hippocampus and cognitive impairments. In addition, it suggests accelerated degenerative processes rather than a priori volume differences as determining trajectories of age-related cognitive decline. Despite the relatively small sample sizes, the strong behavioral and moderate morphological alterations demonstrate the general feasibility of longitudinal studies of age-related decline in cognition and hippocampus integrity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Hearing, Cognition, and Healthy Aging: Social and Public Health Implications of the Links between Age-Related Declines in Hearing and Cognition

    PubMed Central

    Pichora-Fuller, M. Kathleen; Mick, Paul; Reed, Marilyn

    2015-01-01

    Sensory input provides the signals used by the brain when listeners understand speech and participate in social activities with other people in a range of everyday situations. When sensory inputs are diminished, there can be short-term consequences to brain functioning, and long-term deprivation can affect brain neuroplasticity. Indeed, the association between hearing loss and cognitive declines in older adults is supported by experimental and epidemiologic evidence, although the causal mechanisms remain unknown. These interactions of auditory and cognitive aging play out in the challenges confronted by people with age-related hearing problems when understanding speech and engaging in social interactions. In the present article, we use the World Health Organization's International Classification of Functioning, Disability and Health and the Selective Optimization with Compensation models to highlight the importance of adopting a healthy aging perspective that focuses on facilitating active social participation by older adults. First, we examine epidemiologic evidence linking ARHL to cognitive declines and other health issues. Next, we examine how social factors influence and are influenced by auditory and cognitive aging and if they may provide a possible explanation for the association between ARHL and cognitive decline. Finally, we outline how audiologists could reposition hearing health care within the broader context of healthy aging. PMID:27516713

  20. Age-related declines in the swallowing muscle strength of men and women aged 20-89 years: A cross-sectional study on tongue pressure and jaw-opening force in 980 subjects.

    PubMed

    Hara, Koji; Tohara, Haruka; Kobayashi, Kenichiro; Yamaguchi, Kohei; Yoshimi, Kanako; Nakane, Ayako; Minakuchi, Shunsuke

    2018-05-31

    Swallowing muscle strength weakens with aging. Although numerous studies have investigated tongue pressure (TP) changes with age, studies on jaw-opening force (JOF), an indicator of suprahyoid muscle strength, are lacking. We investigated differences between age-related declines in TP and JOF in a cross-sectional study of 980 healthy and independent participants (379 men, 601 women) without dysphagia. Hand grip strength (HGS), TP, and JOF were compared among decade-based age groups in multiple comparison analyses with post-hoc tests and effect size calculated. Participants were divided into adult (20 s-50 s) and elderly groups (60 s-80 s); within each group, Pearson correlations between age and muscle strength indices were evaluated. TP started to significantly decline in the 60 s and 50 s for men and women (p < .01, medium effect size and p < .05, small effect size, respectively); HGS also declined at these ages (men: p < .01, women: p < .01, medium effect size). JOF started to significantly decline in men in their 80 s (p < .01, large effect size), but remained unchanged in women. In the elderly group, all measurements declined with age more sharply in men (HGS: r = -0.56, TP: r = -0.63, JOF: r = -0.13) than in women (HGS: r = -0.38, TP: r = -0.49, JOF: r = -0.003). TP declined more steeply than did JOF. Thus, the age related-decline in TP was similar to that of the HGS, but not the JOF. The results reveal that different patterns exist in the age-related decline in swallowing muscle strength, and suggest that maintenance of JOF might contribute to safe swallowing in healthy elderly individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The therapeutic potential of metabolic hormones in the treatment of age-related cognitive decline and Alzheimer’s disease

    PubMed Central

    Grizzanti, John; Lee, Hyoung-Gon; Camins, Antoni; Pallas, Merce; Casadesus, Gemma

    2017-01-01

    Aging leads to a number of physiological alterations, specifically changes in circulating hormone levels, increases in fat deposition, decreases in metabolism, changes in inflammatory responses, and reductions in growth factors. These progressive changes in physiology and metabolism are exacerbated by modern culture and Western diet and give rise to diseases such as obesity, metabolic syndrome, and type 2 (non–insulin-dependent) diabetes (T2D). These age and lifestyle-related metabolic diseases are often accompanied by insulin and leptin resistance, as well as aberrant amylin production and signaling. Many of these alterations in hormone production and signaling are directly influenced by an increase in both oxidative stress and inflammation. Importantly, changes in hormone production and signaling have direct effects on brain function and the development of age-related neurologic disorders. Therefore, this review aims to present evidence on the effects that diet and metabolic disease have on age-related cognitive decline and the development of cognitive diseases, particularly Alzheimer disease. This review will focus on the metabolic hormones insulin, leptin, and amylin and their role in cognitive decline, as well as the therapeutic potential of these hormones in treating cognitive disease. Future investigations targeting the long-term effects of insulin and leptin treatment may reveal evidence to reduce risk of cognitive decline and Alzheimer disease. PMID:27923524

  2. Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

    PubMed

    Thompson, Joseph J; Blair, Mark R; Henrey, Andrew J

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.

  3. Over the Hill at 24: Persistent Age-Related Cognitive-Motor Decline in Reaction Times in an Ecologically Valid Video Game Task Begins in Early Adulthood

    PubMed Central

    Thompson, Joseph J.; Blair, Mark R.; Henrey, Andrew J.

    2014-01-01

    Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load. PMID:24718593

  4. The importance of age-related decline in forest NPP for modeling regional carbon balances.

    PubMed

    Zaehle, Sönke; Sitch, Stephen; Prentice, I Colin; Liski, Jari; Cramer, Wolfgang; Erhard, Markus; Hickler, Thomas; Smith, Benjamin

    2006-08-01

    We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.

  5. Mouse forepaw lumbrical muscles are resistant to age-related declines in force production.

    PubMed

    Russell, Katelyn A; Ng, Rainer; Faulkner, John A; Claflin, Dennis R; Mendias, Christopher L

    2015-05-01

    A progressive loss of skeletal muscle mass and force generating capacity occurs with aging. Mice are commonly used in the study of aging-associated changes in muscle size and strength, with most models of aging demonstrating 15-35% reductions in muscle mass, cross-sectional area (CSA), maximum isometric force production (Po) and specific force (sPo), which is Po/CSA. The lumbrical muscle of the mouse forepaw is exceptionally small, with corresponding short diffusion distances that make it ideal for in vitro pharmacological studies and measurements of contractile properties. However, the aging-associated changes in lumbrical function have not previously been reported. To address this, we tested the hypothesis that compared to adult (12month old) mice, the forepaw lumbrical muscles of old (30month old) mice exhibit aging-related declines in size and force production similar to those observed in larger limb muscles. We found that the forepaw lumbricals were composed exclusively of fibers with type II myosin heavy chain isoforms, and that the muscles accumulated connective tissue with aging. There were no differences in the number of fibers per whole-muscle cross-section or in muscle fiber CSA. The whole muscle CSA in old mice was increased by 17%, but the total CSA of all muscle fibers in a whole-muscle cross-section was not different. No difference in Po was observed, and while sPo normalized to total muscle CSA was decreased in old mice by 22%, normalizing Po by the total muscle fiber CSA resulted in no difference in sPo. Combined, these results indicate that forepaw lumbrical muscles from 30month old mice are largely protected from the aging-associated declines in size and force production that are typically observed in larger limb muscles. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Functional neuroimaging of normal aging: Declining brain, adapting brain.

    PubMed

    Sugiura, Motoaki

    2016-09-01

    Early functional neuroimaging research on normal aging brain has been dominated by the interest in cognitive decline. In this framework the age-related compensatory recruitment of prefrontal cortex, in terms of executive system or reduced lateralization, has been established. Further details on these compensatory mechanisms and the findings reflecting cognitive decline, however, remain the matter of intensive investigations. Studies in another framework where age-related neural alteration is considered adaptation to the environmental change are recently burgeoning and appear largely categorized into three domains. The age-related increase in activation of the sensorimotor network may reflect the alteration of the peripheral sensorimotor systems. The increased susceptibility of the network for the mental-state inference to the socioemotional significance may be explained by the age-related motivational shift due to the altered social perception. The age-related change in activation of the self-referential network may be relevant to the focused positive self-concept of elderly driven by a similar motivational shift. Across the domains, the concept of the self and internal model may provide the theoretical bases of this adaptation framework. These two frameworks complement each other to provide a comprehensive view of the normal aging brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

    PubMed Central

    Tsakmaki, Anastasia; Mousavy Gharavy, S Neda; Murawala, Priyanka; Konantz, Judith; Birke, Sarah; Hodson, David J; Rutter, Guy A; Bewick, Gavin A

    2018-01-01

    The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age. PMID:29624168

  8. Systemic Regulation of the Age-Related Decline of Pancreatic β-Cell Replication

    PubMed Central

    Salpeter, Seth J.; Khalaileh, Abed; Weinberg-Corem, Noa; Ziv, Oren; Glaser, Benjamin; Dor, Yuval

    2013-01-01

    The frequency of pancreatic β-cell replication declines dramatically with age, potentially contributing to the increased risk of type 2 diabetes in old age. Previous studies have shown the involvement of cell-autonomous factors in this phenomenon, particularly the decline of polycomb genes and accumulation of p16/INK4A. Here, we demonstrate that a systemic factor found in the circulation of young mice is able to increase the proliferation rate of old pancreatic β-cells. Old mice parabiosed to young mice have increased β-cell replication compared with unjoined old mice or old mice parabiosed to old mice. In addition, we demonstrate that old β-cells transplanted into young recipients have increased replication rate compared with cells transplanted into old recipients; conversely, young β-cells transplanted into old mice decrease their replication rate compared with young cells transplanted into young recipients. The expression of p16/INK4A mRNA did not change in heterochronic parabiosis, suggesting the involvement of other pathways. We conclude that systemic factors contribute to the replicative decline of old pancreatic β-cells. PMID:23630298

  9. Quality of life attenuates age-related decline in functional status of older adults.

    PubMed

    Palgi, Yuval; Shrira, Amit; Zaslavsky, Oleg

    2015-08-01

    In the present study, we aimed to examine the total and moderating effects of needs-satisfaction-driven quality-of-life (QoL) measure on age-related change in functional status. Participants in the Survey of Health and Retirement in Europe (N = 18,781 at Wave 1) completed a measure of QoL (CASP-12) at baseline and reported their functional status across subsequent three waves using activities of daily living (ADL), instrumental activities of daily living (IADL), and functional limitation indices. Growth-curve model estimates revealed that aged individuals with lower QoL scores at baseline had a steeper increase in disability deficits accumulation and functional limitation progression than their counterparts with a higher sense of QoL. The effects were more pronounced in ADL and IADL disability scales in which QoL moderated both linear and quadratic age-related changes. Higher QoL attenuates processes of functional decline in late adulthood. Practitioners may seek strategies for improving and enhancing patients' QoL, as its salutary effects diffuse beyond psychological experience and include long-term effects on physical functioning.

  10. Age-associated Cognitive Decline: Insights into Molecular Switches and Recovery Avenues.

    PubMed

    Konar, Arpita; Singh, Padmanabh; Thakur, Mahendra K

    2016-03-01

    Age-associated cognitive decline is an inevitable phenomenon that predisposes individuals for neurological and psychiatric disorders eventually affecting the quality of life. Scientists have endeavored to identify the key molecular switches that drive cognitive decline with advancing age. These newly identified molecules are then targeted as recovery of cognitive aging and related disorders. Cognitive decline during aging is multi-factorial and amongst several factors influencing this trajectory, gene expression changes are pivotal. Identifying these genes would elucidate the neurobiological underpinnings as well as offer clues that make certain individuals resilient to withstand the inevitable age-related deteriorations. Our laboratory has focused on this aspect and investigated a wide spectrum of genes involved in crucial brain functions that attribute to senescence induced cognitive deficits. We have recently identified master switches in the epigenome regulating gene expression alteration during brain aging. Interestingly, these factors when manipulated by chemical or genetic strategies successfully reverse the age-related cognitive impairments. In the present article, we review findings from our laboratory and others combined with supporting literary evidences on molecular switches of brain aging and their potential as recovery targets.

  11. Stuck in default mode: inefficient cross-frequency synchronization may lead to age-related short-term memory decline.

    PubMed

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando; Sauseng, Paul

    2015-04-01

    Aging-related decline in short-term memory capacity seems to be caused by deficient balancing of task-related and resting state brain networks activity; however, the exact neural mechanism underlying this deficit remains elusive. Here, we studied brain oscillatory activity in healthy young and old adults during visual information maintenance in a delayed match-to-sample task. Particular emphasis was on long range phase:amplitude coupling of frontal alpha (8-12 Hz) and posterior fast oscillatory activity (>30 Hz). It is argued that through posterior fast oscillatory activity nesting into the excitatory or the inhibitory phase of frontal alpha wave, long-range networks can be efficiently coupled or decoupled, respectively. On the basis of this mechanism, we show that healthy, elderly participants exhibit a lack of synchronization in task-relevant networks while maintaining synchronized regions of the resting state network. Lacking disconnection of this resting state network is predictive of aging-related short-term memory decline. These results support the idea of inefficient orchestration of competing brain networks in the aging human brain and identify the neural mechanism responsible for this control breakdown. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆

    PubMed Central

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226

  13. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep.

    PubMed

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Rates of decline in Alzheimer disease decrease with age.

    PubMed

    Holland, Dominic; Desikan, Rahul S; Dale, Anders M; McEvoy, Linda K

    2012-01-01

    Age is the strongest risk factor for sporadic Alzheimer disease (AD), yet the effects of age on rates of clinical decline and brain atrophy in AD have been largely unexplored. Here, we examined longitudinal rates of change as a function of baseline age for measures of clinical decline and structural MRI-based regional brain atrophy, in cohorts of AD, mild cognitive impairment (MCI), and cognitively healthy (HC) individuals aged 65 to 90 years (total n = 723). The effect of age was modeled using mixed effects linear regression. There was pronounced reduction in rates of clinical decline and atrophy with age for AD and MCI individuals, whereas HCs showed increased rates of clinical decline and atrophy with age. This resulted in convergence in rates of change for HCs and patients with advancing age for several measures. Baseline cerebrospinal fluid densities of AD-relevant proteins, Aβ(1-42), tau, and phospho-tau(181p) (ptau), showed a similar pattern of convergence with advanced age across cohorts, particularly for ptau. In contrast, baseline clinical measures did not differ by age, indicating uniformity of clinical severity at baseline. These results imply that the phenotypic expression of AD is relatively mild in individuals older than approximately 85 years, and this may affect the ability to distinguish AD from normal aging in the very old. Our findings show that inclusion of older individuals in clinical trials will substantially reduce the power to detect disease-modifying therapeutic effects, leading to dramatic increases in required clinical trial sample sizes with age of study sample.

  15. Functional brain imaging of episodic memory decline in ageing.

    PubMed

    Nyberg, L

    2017-01-01

    The episodic long-term memory system supports remembering of events. It is considered to be the most age-sensitive system, with an average onset of decline around 60 years of age. However, there is marked interindividual variability, such that some individuals show faster than average change and others show no or very little change. This variability may be related to the risk of developing dementia, with elevated risk for individuals with accelerated episodic memory decline. Brain imaging with functional magnetic resonance imaging (MRI) of blood oxygen level-dependent (BOLD) signalling or positron emission tomography (PET) has been used to reveal the brain bases of declining episodic memory in ageing. Several studies have demonstrated a link between age-related episodic memory decline and the hippocampus during active mnemonic processing, which is further supported by studies of hippocampal functional connectivity in the resting state. The hippocampus interacts with anterior and posterior neocortical regions to support episodic memory, and alterations in hippocampus-neocortex connectivity have been shown to contribute to impaired episodic memory. Multimodal MRI studies and more recently hybrid MRI/PET studies allow consideration of various factors that can influence the association between the hippocampal BOLD signal and memory performance. These include neurovascular factors, grey and white matter structural alterations, dopaminergic neurotransmission, amyloid-Β and glucose metabolism. Knowledge about the brain bases of episodic memory decline can guide interventions to strengthen memory in older adults, particularly in those with an elevated risk of developing dementia, with promising results for combinations of cognitive and physical stimulation. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  16. Age-Related Declines in the Fidelity of Newly Acquired Category Representations

    ERIC Educational Resources Information Center

    Davis, Tyler; Love, Bradley C.; Maddox, W. Todd

    2012-01-01

    We present a theory suggesting that the ability to build category representations that reflect the nuances of category structures in the environment depends upon clustering mechanisms instantiated in an MTL-PFC-based circuit. Because function in this circuit declines with age, we predict that the ability to build category representations will be…

  17. Age-related decline in ovarian follicle stocks differ between chimpanzees (Pan troglodytes) and humans.

    PubMed

    Cloutier, Christina T; Coxworth, James E; Hawkes, Kristen

    2015-02-01

    Similarity in oldest parturitions in humans and great apes suggests that we maintain ancestral rates of ovarian aging. Consistent with that hypothesis, previous counts of primordial follicles in postmortem ovarian sections from chimpanzees (Pan troglodytes) showed follicle stock decline at the same rate that human stocks decline across the same ages. Here, we correct that finding with a chimpanzee sample more than three times larger than the previous one, which also allows comparison into older ages. Analyses show depletion rates similar until about age 35, but after 35, the human counts continue to fall with age, while the change is much less steep in chimpanzees. This difference implicates likely effects on ovarian dynamics from other physiological systems that are senescing at different rates, and, potentially, different perimenopausal experience for chimpanzees and humans.

  18. The Tyrosine Phosphatase STEP Is Involved in Age-Related Memory Decline.

    PubMed

    Castonguay, David; Dufort-Gervais, Julien; Ménard, Caroline; Chatterjee, Manavi; Quirion, Rémi; Bontempi, Bruno; Schneider, Jay S; Arnsten, Amy F T; Nairn, Angus C; Norris, Christopher M; Ferland, Guylaine; Bézard, Erwan; Gaudreau, Pierrette; Lombroso, Paul J; Brouillette, Jonathan

    2018-04-02

    Cognitive disabilities that occur with age represent a growing and expensive health problem. Age-associated memory deficits are observed across many species, but the underlying molecular mechanisms remain to be fully identified. Here, we report elevations in the levels and activity of the striatal-enriched phosphatase (STEP) in the hippocampus of aged memory-impaired mice and rats, in aged rhesus monkeys, and in people diagnosed with amnestic mild cognitive impairment (aMCI). The accumulation of STEP with aging is related to dysfunction of the ubiquitin-proteasome system that normally leads to the degradation of STEP. Higher level of active STEP is linked to enhanced dephosphorylation of its substrates GluN2B and ERK1/2, CREB inactivation, and a decrease in total levels of GluN2B and brain-derived neurotrophic factor (BDNF). These molecular events are reversed in aged STEP knockout and heterozygous mice, which perform similarly to young control mice in the Morris water maze (MWM) and Y-maze tasks. In addition, administration of the STEP inhibitor TC-2153 to old rats significantly improved performance in a delayed alternation T-maze memory task. In contrast, viral-mediated STEP overexpression in the hippocampus is sufficient to induce memory impairment in the MWM and Y-maze tests, and these cognitive deficits are reversed by STEP inhibition. In old LOU/C/Jall rats, a model of healthy aging with preserved memory capacities, levels of STEP and GluN2B are stable, and phosphorylation of GluN2B and ERK1/2 is unaltered. Altogether, these data suggest that elevated levels of STEP that appear with advancing age in several species contribute to the cognitive declines associated with aging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. [Declining fertility with age].

    PubMed

    Lourdel, Emmanuelle; Merviel, Philippe; Cabry-Goubet, Rosalie; Brzakowski, Mélanie

    2010-06-20

    The will to be a mother at a late age has become a real problem of society for many reasons, first and foremost because of efficient birth control, long studies and second matrimonies. In front of these still young women but quite "old" for maternity, practitioners specialized in medically assisted procreation (MAP) are often helpless, specially because most of the patients think that the MAP will be able to cure the natural decline of fertility. However, MAP's procedures cannot correct the decrease of pregnancies' rates and the increase of spontaneous miscarriages linked with the age. One of the first aims of consulting-physicians should be to give patients proper advice about fertility decline, so that women could run their life, aware of these facts.

  20. Association between age associated cognitive decline and health related quality of life among Iranian older individuals.

    PubMed

    Kazazi, Leila; Foroughan, Mahshid; Nejati, Vahid; Shati, Mohsen

    2018-04-01

    Age associated cognitive decline or normal cognitive aging is related with lower levels of functioning in real life, and may interfere with maintaining independence and health related quality of life (HRQL). In this study, health related quality of life and cognitive function in community-dwelling older adults were evaluated with the aim of exploring the association between them by adjusting for potential confounders. This cross-sectional study, was implemented on 425 community-dwelling older adults aged 60 and over, between August 2016 and October 2016 in health centers of the municipality of Tehran, Iran, using Mini Mental State Examination (MMSE) to assess cognitive function and Short Form-36 scales (SF-36) to assess HRQL. The relation between HRQL and cognitive function was evaluated by Pearson's correlation coefficient, and the impact of cognitive function on HRQL adjusted for potential confounders was estimated by linear regression model. All analyses were done using SPSS, version 22.0. A positive significant correlation between cognitive function and quality of life (r=0.434; p<0.001) and its dimensions was observed. Two variables of educational level (B=2.704; 95% CI: 2.09 to 3.30; p<0.001) and depression (B=2.554; 95% CI: 2.00 to 3.10; p<0.001) were assumed as potential confounder by changing effect measure after entering the model. After adjusting for potential confounders in regression model, the association between MMSE scores and quality of life persisted (B=2.417; 95% CI: 1.86 to 2.96; p<0.001). The results indicate that cognitive function was associated with HRQL in older adults with age associated cognitive function. Two variables of educational level and depression can affect the relation between cognitive decline and HRQL.

  1. Protective Role of Recent and Past Long-Term Physical Activity on Age-Related Cognitive Decline: The Moderating Effect of Sex.

    PubMed

    Lopez-Fontana, Iréné; Castanier, Carole; Le Scanff, Christine; Perrot, Alexandra

    2018-06-13

    This study aimed to investigate if the impact of both recent and long-term physical activity on age-related cognitive decline would be modified by sex. One-hundred thirty-five men (N = 67) and women (N = 68) aged 18 to 80 years completed the Modifiable Activity Questionnaire and the Historical Leisure Activity Questionnaire. A composite score of cognitive functions was computed from five experimental tasks. Hierarchical regression analyses performed to test the moderating effect of recent physical activity on age-cognition relationship had not revealed significant result regardless of sex. Conversely, past long-term physical activity was found to slow down the age-related cognitive decline among women (β = 0.22, p = .03), but not men. The findings support a lifecourse approach in identifying determinants of cognitive aging and the importance of taking into account the moderating role of sex. This article presented potential explanations for these moderators and future avenues to explore.

  2. Brain Network Changes and Memory Decline in Aging

    PubMed Central

    Beason-Held, Lori L.; Hohman, Timothy J.; Venkatraman, Vijay; An, Yang; Resnick, Susan M.

    2016-01-01

    One theory of age-related cognitive decline proposes that changes within the default mode network (DMN) of the brain impact the ability to successfully perform cognitive operations. To investigate this theory, we examined functional covariance within brain networks using regional cerebral blood flow data, measured by 15O-water PET, from 99 participants (mean baseline age 68.6 ±7.5) in the Baltimore Longitudinal Study of Aging collected over a 7.4 year period. The sample was divided in tertiles based on longitudinal performance on a verbal recognition memory task administered during scanning, and functional covariance was compared between the upper (improvers) and lower (decliners) tertile groups. The DMN and verbal memory networks (VMN) were then examined during the verbal memory scan condition. For each network, group differences in node-to-network coherence and individual node-to-node covariance relationships were assessed at baseline and in change over time. Compared with improvers, decliners showed differences in node-to-network coherence and in node-to-node relationships in the DMN but not the VMN during verbal memory. These DMN differences reflected greater covariance with better task performance at baseline and both increasing and declining covariance with declining task performance over time for decliners. When examined during the resting state alone, the direction of change in DMN covariance was similar to that seen during task performance, but node-to-node relationships differed from those observed during the task condition. These results suggest that disengagement of DMN components during task performance is not essential for successful cognitive performance as previously proposed. Instead, a proper balance in network processes may be needed to support optimal task performance. PMID:27319002

  3. Evidence for age-associated cognitive decline from Internet game scores.

    PubMed

    Geyer, Jason; Insel, Philip; Farzin, Faraz; Sternberg, Daniel; Hardy, Joseph L; Scanlon, Michael; Mungas, Dan; Kramer, Joel; Mackin, R Scott; Weiner, Michael W

    2015-06-01

    Lumosity's Memory Match (LMM) is an online game requiring visual working memory. Change in LMM scores may be associated with individual differences in age-related changes in working memory. Effects of age and time on LMM learning and forgetting rates were estimated using data from 1890 game sessions for users aged 40 to 79 years. There were significant effects of age on baseline LMM scores (β = -.31, standard error or SE = .02, P < .0001) and lower learning rates (β = -.0066, SE = .0008, P < .0001). A sample size of 202 subjects/arm was estimated for a 1-year study for subjects in the lower quartile of game performance. Online memory games have the potential to identify age-related decline in cognition and to identify subjects at risk for cognitive decline with smaller sample sizes and lower cost than traditional recruitment methods.

  4. Age-related declines in exploratory behavior and markers of hippocampal plasticity are attenuated by prenatal choline supplementation in rats

    PubMed Central

    Glenn, Melissa J.; Kirby, Elizabeth D.; Gibson, Erin M.; Wong-Goodrich, Sarah; Mellott, Tiffany J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Supplemental choline in the maternal diet produces a lasting enhancement in memory in offspring that resists age-related decline and is accompanied by neuroanatomical, neurophysiological and neurochemical changes in the hippocampus. The present study was designed to examine: 1) if prenatal choline supplementation alters behaviors that contribute to risk or resilience in cognitive aging, and 2) whether, at old age (25 months), prenatally choline supplemented rats show evidence of preserved hippocampal plasticity. A longitudinal design was used to look at exploration of an open field, with and without objects, at 1 and 24 months of age in male and female rats whose mothers were fed a diet supplemented with choline (SUP; 5 mg/kg choline chloride) or not supplemented (CON; 1.1 mg/kg choline chloride) on embryonic days 12–17. Aging caused a significant decline in open field exploration that was more pronounced in males but interest in novel objects was maintained in both sexes. Prenatal choline supplementation attenuated, but did not prevent age-related decline in exploration in males and increased object exploration in young females. Following behavioral assessment, rats were euthanized to assess markers of hippocampal plasticity. Aged SUP males and females had more newly proliferated cells in the hippocampal dentate gyrus and protein levels of vascular-endothelial growth factor (VEGF) and neurotrophin-3 (NT-3) were significantly elevated in female SUP rats in comparison to all other groups. Taken together, these findings provide the first evidence that prenatal cholinesupplementation causes changes in exploratory behaviors over the lifespan and preserves some features of hippocampal plasticity that can be seen even at 2 years of age. PMID:18786518

  5. Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands.

    PubMed

    Schoonmaker, A S; Lieffers, V J; Landhäusser, S M

    2016-07-01

    In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.

  6. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill.

    PubMed

    Aumond, Márcio L; de Araujo, Artur T; de Oliveira Junkes, Camila F; de Almeida, Márcia R; Matsuura, Hélio N; de Costa, Fernanda; Fett-Neto, Arthur G

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus , the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1 , a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1 , suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression ( TPL , IAA12 ) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1 , showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process.

  7. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill

    PubMed Central

    Aumond, Márcio L.; de Araujo, Artur T.; de Oliveira Junkes, Camila F.; de Almeida, Márcia R.; Matsuura, Hélio N.; de Costa, Fernanda; Fett-Neto, Arthur G.

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus, the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1, a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1, suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression (TPL, IAA12) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1, showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process. PMID:29067033

  8. Meditation and successful aging: can meditative practices counteract age-related cognitive decline?

    PubMed

    Sperduti, Marco; Makowski, Dominique; Blondé, Philippe; Piolino, Pascale

    2017-06-01

    Life expectancy is constantly increasing in the developed countries due to medical, hygiene and socio-economic advances. Unfortunately, a longer life not always corresponds to a healthier life. Indeed, aging is associated with growing risk factors for illness associated with societal conditions (isolation, maltreatment), and neurodegenerative diseases. Even normal aging is associated with a cognitive decline that can hinder independence and quality of life of elderly. Thus, one major societal challenge is to build policies that support people of all ages to maintain a maximum health and functional capacity throughout their lives. Meditation could be a promising intervention in contrasting the negative effects of aging. Indeed, it has been shown to enhance cognitive efficiency in several domains, such as attention and executive functions in young adults. Nevertheless, whether these effects extend to old participants is still a matter of debate. Few studies have directly investigated this issue, reporting encouraging results in a large panel of cognitive functions, such as: attention, executive functions and memory. However, a final conclusion about the causal role of meditation and the generalization of these results is made difficult due to several methodological limitations. We propose a roadmap for future studies to pass these limitations with the hope that the present work would contribute to the development of the young research field of meditation in gerontology.

  9. Insulin-like growth factor-1 is a mediator of age-related decline of bone health status in men.

    PubMed

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman; Mohamed, Isa Naina; Hanapi Johari, Mohamad; Ahmad, Fairus; Mohamed Ramli, Elvy Suhana; Wan Ngah, Wan Zurinah

    2014-06-01

    The role of insulin-like growth factor-1 (IGF-1) in bone health in men is debatable. This study aimed to determine whether IGF-1 is a mediator in age-related decline of bone health status measured by calcaneal speed of sound (SOS) in Malaysian men. The study recruited 279 Chinese and Malay men. Their demographic data, weight, height, calcaneal SOS were taken and fasting blood was collected for total testosterone, sex-hormone binding globulin and IGF-1 assays. The associations between the studied variables were assessed using multiple linear regression (MLR) analysis. Mediator analysis was performed using Sobel test. There was a significant and parallel decrease of IGF-1 and SOS with age (p < 0.05). Serum IGF-1 was significantly and positively associated with SOS (p < 0.05) but after further adjustment for age, the significance was lost (p > 0.05). The strength of the association between age and SOS decreased after adjusting for IGF-1 level but it remained significant (p < 0.05). Sobel test revealed that IGF-1 was a significant partial mediator in the relationship between age and SOS (z = -4.3). Serum IGF-1 is a partial mediator in the age-related decline of bone health in men as determined by calcaneal ultrasound. A prospective study should be performed to validate this relationship.

  10. Increased bone morphogenetic protein signaling contributes to age-related declines in neurogenesis and cognition.

    PubMed

    Meyers, Emily A; Gobeske, Kevin T; Bond, Allison M; Jarrett, Jennifer C; Peng, Chian-Yu; Kessler, John A

    2016-02-01

    Aging is associated with decreased neurogenesis in the hippocampus and diminished hippocampus-dependent cognitive functions. Expression of bone morphogenetic protein 4 (BMP4) increases with age by more than 10-fold in the mouse dentate gyrus while levels of the BMP inhibitor, noggin, decrease. This results in a profound 30-fold increase in phosphorylated-SMAD1/5/8, the effector of canonical BMP signaling. Just as observed in mice, a profound increase in expression of BMP4 is observed in the dentate gyrus of humans with no known cognitive abnormalities. Inhibition of BMP signaling either by overexpression of noggin or transgenic manipulation not only increases neurogenesis in aging mice, but remarkably, is associated with a rescue of cognitive deficits to levels comparable to young mice. Additive benefits are observed when combining inhibition of BMP signaling and environmental enrichment. These findings indicate that increased BMP signaling contributes significantly to impairments in neurogenesis and to cognitive decline associated with aging, and identify this pathway as a potential druggable target for reversing age-related changes in cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Aging in the Brain: New Roles of Epigenetics in Cognitive Decline.

    PubMed

    Barter, Jolie D; Foster, Thomas C

    2018-06-01

    Gene expression in the aging brain depends on transcription signals generated by senescent physiology, interacting with genetic and epigenetic programs. In turn, environmental factors influence epigenetic mechanisms, such that an epigenetic-environmental link may contribute to the accumulation of cellular damage, susceptibility or resilience to stressors, and variability in the trajectory of age-related cognitive decline. Epigenetic mechanisms, DNA methylation and histone modifications, alter chromatin structure and the accessibility of DNA. Furthermore, small non-coding RNA, termed microRNA (miRNA) bind to messenger RNA (mRNA) to regulate translation. In this review, we examine key questions concerning epigenetic mechanisms in regulating the expression of genes associated with brain aging and age-related cognitive decline. In addition, we highlight the interaction of epigenetics with senescent physiology and environmental factors in regulating transcription.

  12. Linking Cognitive and Visual Perceptual Decline in Healthy Aging: The Information Degradation Hypothesis

    PubMed Central

    Monge, Zachary A.; Madden, David J.

    2016-01-01

    Several hypotheses attempt to explain the relation between cognitive and perceptual decline in aging (e.g., common-cause, sensory deprivation, cognitive load on perception, information degradation). Unfortunately, the majority of past studies examining this association have used correlational analyses, not allowing for these hypotheses to be tested sufficiently. This correlational issue is especially relevant for the information degradation hypothesis, which states that degraded perceptual signal inputs, resulting from either age-related neurobiological processes (e.g., retinal degeneration) or experimental manipulations (e.g., reduced visual contrast), lead to errors in perceptual processing, which in turn may affect non-perceptual, higher-order cognitive processes. Even though the majority of studies examining the relation between age-related cognitive and perceptual decline have been correlational, we reviewed several studies demonstrating that visual manipulations affect both younger and older adults’ cognitive performance, supporting the information degradation hypothesis and contradicting implications of other hypotheses (e.g., common-cause, sensory deprivation, cognitive load on perception). The reviewed evidence indicates the necessity to further examine the information degradation hypothesis in order to identify mechanisms underlying age-related cognitive decline. PMID:27484869

  13. Selective decline of Nogo mRNA in the aging brain.

    PubMed

    Trifunovski, Alexandra; Josephson, Anna; Bickford, Paula C; Olson, Lars; Brené, Stefan

    2006-06-26

    The Nogo system has recently been implicated not only in regeneration but also in modulating plasticity. One reason for declining memory functions in aging may be altered plasticity in the aged hippocampus and cortex cerebri. Therefore, we have examined the levels of mRNA encoding Nogo, OMgp and MAG, as well as the receptor components NgR, Lingo-1 and Troy in cortex and hippocampus of young (4 months), middle aged (16 months) and old (24 months) Fisher 344 rats. No significant changes of receptor components or the ligands OMgp or MAG were observed. Nogo mRNA, however, was significantly decreased in hippocampal subregions of aged animals. The specific decrease of Nogo mRNA levels in hippocampus and possibly cortex cerebri may relate to age-dependent decline of brain plasticity.

  14. Aging children of long-lived parents experience slower cognitive decline.

    PubMed

    Dutta, Ambarish; Henley, William; Robine, Jean-Marie; Llewellyn, David; Langa, Kenneth M; Wallace, Robert B; Melzer, David

    2014-10-01

    Parental longevity confers lower risks for some age-related diseases in offspring. We tested the association between parental longevity and late-life cognitive decline or dementia. Data were from the Health and Retirement Study (HRS), a US national sample. Biennial cognitive assessment (Telephone Interview of Cognitive Status-Modified [TICS-m]) occurred for ages 64 years or older in 1996 through 2008 (maximum, 79 years), including physician-diagnosed memory disorder. Offspring were categorized into parental longevity groups based on gender-specific distributional cut points. Model covariates included race, respondents' education, and income status during childhood and adulthood. Offspring groups did not differ on TICS-m scores at baseline. During follow-up, offspring of two long-lived parents experienced 40% slower rates of TICS-m decline than those with no long-lived parents (95% confidence interval, 12-72; P=.003; n=4731). Increased parental longevity was also associated with lower risk of physician-diagnosed memory disorder. Estimates did not change after controlling for environmental variables. Parental longevity is associated inversely with cognitive decline and self-reported diagnosed memory disorders in aging offspring. Parental longevity may be a valuable trait for identifying early biomarkers for resistance to cognitive decline in aging. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  15. Can psychosocial work conditions protect against age-related cognitive decline? Results from a systematic review

    PubMed Central

    Nexø, Mette Andersen; Meng, Annette; Borg, Vilhelm

    2016-01-01

    According to the use it or lose it hypothesis, intellectually stimulating activities postpone age-related cognitive decline. A previous systematic review concluded that a high level of mental work demands and job control protected against cognitive decline. However, it did not distinguish between outcomes that were measured as cognitive function at one point in time or as cognitive decline. Our study aimed to systematically review which psychosocial working conditions were prospectively associated with high levels of cognitive function and/or changes in cognitive function over time. Articles were identified by a systematic literature search (MEDLINE, Web of Science (WOS), PsycNET, Occupational Safety and Health (OSH)). We included only studies with longitudinal designs examining the impact of psychosocial work conditions on outcomes defined as cognitive function or changes in cognitive function. Two independent reviewers compared title-abstract screenings, full-text screenings and quality assessment ratings. Eleven studies were included in the final synthesis and showed that high levels of mental work demands, occupational complexity or job control at one point in time were prospectively associated with higher levels of cognitive function in midlife or late life. However, the evidence to clarify whether these psychosocial factors also affected cognitive decline was insufficient, conflicting or weak. It remains speculative whether job control, job demands or occupational complexity can protect against cognitive decline. Future studies using methodological advancements can reveal whether workers gain more cognitive reserve in midlife and late life than the available evidence currently suggests. The public health implications of a previous review should thereby be redefined accordingly. PMID:27178844

  16. Age-related decline in task switching is linked to both global and tract-specific changes in white matter microstructure.

    PubMed

    Jolly, Todd A D; Cooper, Patrick S; Rennie, Jaime L; Levi, Christopher R; Lenroot, Rhoshel; Parsons, Mark W; Michie, Patricia T; Karayanidis, Frini

    2017-03-01

    Task-switching performance relies on a broadly distributed frontoparietal network and declines in older adults. In this study, they investigated whether this age-related decline in task switching performance was mediated by variability in global or regional white matter microstructural health. Seventy cognitively intact adults (43-87 years) completed a cued-trials task switching paradigm. Microstructural white matter measures were derived using diffusion tensor imaging (DTI) analyses on the diffusion-weighted imaging (DWI) sequence. Task switching performance decreased with increasing age and radial diffusivity (RaD), a measure of white matter microstructure that is sensitive to myelin structure. RaD mediated the relationship between age and task switching performance. However, the relationship between RaD and task switching performance remained significant when controlling for age and was stronger in the presence of cardiovascular risk factors. Variability in error and RT mixing cost were associated with RaD in global white matter and in frontoparietal white matter tracts, respectively. These findings suggest that age-related increase in mixing cost may result from both global and tract-specific disruption of cerebral white matter linked to the increased incidence of cardiovascular risks in older adults. Hum Brain Mapp 38:1588-1603, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Patterns of brain atrophy associated with episodic memory and semantic fluency decline in aging.

    PubMed

    Pelletier, Amandine; Bernard, Charlotte; Dilharreguy, Bixente; Helmer, Catherine; Le Goff, Melanie; Chanraud, Sandra; Dartigues, Jean-François; Allard, Michèle; Amieva, Hélène; Catheline, Gwénaëlle

    2017-03-09

    The cerebral substratum of age-related cognitive decline was evaluated in an elderly-cohort followed for 12 years (n=306). Participants, free of dementia, received neuropsychological assessments every two years and an MRI exam at baseline and four years later. Cognitive decline was evaluated on two broadly used tests to detect dementia: the Free and Cued Selective Reminding Test (FCSRT), a verbal episodic memory task, and the Isaacs Set Test (IST), a semantic fluency task. Using voxel-based approach, the relationship between cognitive decline with 1/ baseline grey matter volumes and 2/ grey matter volume loss between the two scans was explored. Baseline volumes analysis revealed that FCSRT and IST declines were both associated with lower volumes of the medial temporal region. Volumes loss analysis confirmed that both declines are related to medial temporal lobe atrophy and revealed that FCSRT decline was specifically associated with atrophy of the posterior cingulate cortex whereas IST decline was specifically related to temporal pole atrophy. These results suggest that cognitive decline across aging is firstly related to structural modifications of the medial temporal lobe, followed by an atrophy in the posterior midline structures for episodic memory and an atrophy of the temporal pole for semantic fluency.

  18. Age-related cognitive decline as a function of daytime testing.

    PubMed

    Puiu, Andrei Alexandru

    2017-05-01

    The current study investigates the effects of age, cognitive load, optimal time-of-day testing, and irrelevant background noise suppression on mental processing. One hundred and seventy-eight young (M = 22.97 years) and 114 old adults (M = 56.38 years) were assessed for implicit learning and speed of information processing under irrelevant sound interference early during daytime (7AM-2.30PM) or in the afternoons (3PM-midnight). No direct effect of irrelevant speech effect was found on implicit learning. An optimal time of testing per age group was identified according to the ability to suppress irrelevant auditory information. If no semantic meaning was derived from the sound conditions, irrelevant sound was easily inhibited leaving no room for declined cognitive performance. This suggests an intact phonological inhibition in older adults and a further circumvention of the phonological loop. However, when difficulty was increased, a widened performance gap between young and old people could be observed. Education modulated difficult performance irrespective of age. With increasing age, task demand fulfillment becomes a function of a limited time mechanism. If extraneous time is not adapted to cognitive skills and performance, higher order processing cannot be reached, rendering older adults slower than their younger counterparts.

  19. Genetic Contributions to Age-Related Decline in Executive Function: A 10-Year Longitudinal Study of COMT and BDNF Polymorphisms

    PubMed Central

    Erickson, Kirk I.; Kim, Jennifer S.; Suever, Barbara L.; Voss, Michelle W.; Francis, B. Magnus; Kramer, Arthur F.

    2008-01-01

    Genetic variability in the dopaminergic and neurotrophic systems could contribute to age-related impairments in executive control and memory function. In this study we examined whether genetic polymorphisms for catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) were related to the trajectory of cognitive decline occurring over a 10-year period in older adults. A single nucleotide polymorphism in the COMT (Val158/108Met) gene affects the concentration of dopamine in the prefrontal cortex. In addition, a Val/Met substitution in the pro-domain for BDNF (Val66Met) affects the regulated secretion and trafficking of BDNF with Met carriers showing reduced secretion and poorer cognitive function. We found that impairments over the 10-year span on a task-switching paradigm did not vary as a function of the COMT polymorphism. However, for the BDNF polymorphism the Met carriers performed worse than Val homozygotes at the first testing session but only the Val homozygotes demonstrated a significant reduction in performance over the 10-year span. Our results argue that the COMT polymorphism does not affect the trajectory of age-related executive control decline, whereas the Val/Val polymorphism for BDNF may promote faster rates of cognitive decay in old age. These results are discussed in relation to the role of BDNF in senescence and the transforming impact of the Met allele on cognitive function in old age. PMID:18958211

  20. Higher serum cholesterol is associated with intensified age-related neural network decoupling and cognitive decline in early- to mid-life.

    PubMed

    Spielberg, Jeffrey M; Sadeh, Naomi; Leritz, Elizabeth C; McGlinchey, Regina E; Milberg, William P; Hayes, Jasmeet P; Salat, David H

    2017-06-01

    Mounting evidence indicates that serum cholesterol and other risk factors for cardiovascular disease intensify normative trajectories of age-related cognitive decline. However, the neural mechanisms by which this occurs remain largely unknown. To understand the impact of cholesterol on brain networks, we applied graph theory to resting-state fMRI in a large sample of early- to mid-life Veterans (N = 206, Mean age  = 32). A network emerged (centered on the banks of the superior temporal sulcus) that evidenced age-related decoupling (i.e., decreased network connectivity with age), but only in participants with clinically-elevated total cholesterol (≥180 mg/dL). Crucially, decoupling in this network corresponded to greater day-to-day disability and mediated age-related declines in psychomotor speed. Finally, examination of network organization revealed a pattern of age-related dedifferentiation for the banks of the superior temporal sulcus, again present only with higher cholesterol. More specifically, age was related to decreasing within-module communication (indexed by Within-Module Degree Z-Score) and increasing between-module communication (indexed by Participation Coefficient), but only in participants with clinically-elevated cholesterol. Follow-up analyses indicated that all findings were driven by low-density lipoprotein (LDL) levels, rather than high-density lipoprotein (HDL) or triglycerides, which is interesting as LDL levels have been linked to increased risk for cardiovascular disease, whereas HDL levels appear inversely related to such disease. These findings provide novel insight into the deleterious effects of cholesterol on brain health and suggest that cholesterol accelerates the impact of age on neural trajectories by disrupting connectivity in circuits implicated in integrative processes and behavioral control. Hum Brain Mapp 38:3249-3261, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Age-related decline in oligodendrogenesis retards white matter repair in mice.

    PubMed

    Miyamoto, Nobukazu; Pham, Loc-Duyen D; Hayakawa, Kazuhide; Matsuzaki, Toshinori; Seo, Ji Hae; Magnain, Caroline; Ayata, Cenk; Kim, Kyu-Won; Boas, David; Lo, Eng H; Arai, Ken

    2013-09-01

    Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask whether, compared with young brains, white matter regions in older brains may be more vulnerable in part because of decreased rates of compensatory oligodendrogenesis after injury. A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month-old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells to sublethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Baseline myelin density in the corpus callosum was similar in 2-month and 8-month-old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in cyclic AMP response element-binding protein signaling may be involved because activating cyclic AMP response element-binding protein with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of oligodendrocyte precursor cells, alleviated myelin loss, and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of oligodendrocyte precursor cells. An age-related decline in cyclic AMP response element-binding protein-mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate cyclic AMP response element-binding protein signaling provide a potential therapeutic approach for treating white matter injury in aging brains.

  2. Predictive neuromechanical simulations indicate why walking performance declines with ageing.

    PubMed

    Song, Seungmoon; Geyer, Hartmut

    2018-04-01

    Although the natural decline in walking performance with ageing affects the quality of life of a growing elderly population, its physiological origins remain unknown. By using predictive neuromechanical simulations of human walking with age-related neuro-musculo-skeletal changes, we find evidence that the loss of muscle strength and muscle contraction speed dominantly contribute to the reduced walking economy and speed. The findings imply that focusing on recovering these muscular changes may be the only effective way to improve performance in elderly walking. More generally, the work is of interest for investigating the physiological causes of altered gait due to age, injury and disorders. Healthy elderly people walk slower and energetically less efficiently than young adults. This decline in walking performance lowers the quality of life for a growing ageing population, and understanding its physiological origin is critical for devising interventions that can delay or revert it. However, the origin of the decline in walking performance remains unknown, as ageing produces a range of physiological changes whose individual effects on gait are difficult to separate in experiments with human subjects. Here we use a predictive neuromechanical model to separately address the effects of common age-related changes to the skeletal, muscular and nervous systems. We find in computer simulations of this model that the combined changes produce gait consistent with elderly walking and that mainly the loss of muscle strength and mass reduces energy efficiency. In addition, we find that the slower preferred walking speed of elderly people emerges in the simulations when adapting to muscle fatigue, again mainly caused by muscle-related changes. The results suggest that a focus on recovering these muscular changes may be the only effective way to improve performance in elderly walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  3. A neuropsychological instrument measuring age-related cerebral decline in older drivers: development, reliability, and validity of MedDrive

    PubMed Central

    Vaucher, Paul; Cardoso, Isabel; Veldstra, Janet L.; Herzig, Daniela; Herzog, Michael; Mangin, Patrice; Favrat, Bernard

    2014-01-01

    When facing age-related cerebral decline, older adults are unequally affected by cognitive impairment without us knowing why. To explore underlying mechanisms and find possible solutions to maintain life-space mobility, there is a need for a standardized behavioral test that relates to behaviors in natural environments. The aim of the project described in this paper was therefore to provide a free, reliable, transparent, computer-based instrument capable of detecting age-related changes on visual processing and cortical functions for the purposes of research into human behavior in computational transportation science. After obtaining content validity, exploring psychometric properties of the developed tasks, we derived (Study 1) the scoring method for measuring cerebral decline on 106 older drivers aged ≥70 years attending a driving refresher course organized by the Swiss Automobile Association to test the instrument's validity against on-road driving performance (106 older drivers). We then validated the derived method on a new sample of 182 drivers (Study 2). We then measured the instrument's reliability having 17 healthy, young volunteers repeat all tests included in the instrument five times (Study 3) and explored the instrument's psychophysical underlying functions on 47 older drivers (Study 4). Finally, we tested the instrument's responsiveness to alcohol and effects on performance on a driving simulator in a randomized, double-blinded, placebo, crossover, dose-response, validation trial including 20 healthy, young volunteers (Study 5). The developed instrument revealed good psychometric properties related to processing speed. It was reliable (ICC = 0.853) and showed reasonable association to driving performance (R2 = 0.053), and responded to blood alcohol concentrations of 0.5 g/L (p = 0.008). Our results suggest that MedDrive is capable of detecting age-related changes that affect processing speed. These changes nevertheless do not necessarily affect

  4. Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity

    PubMed Central

    Liu, Peiying; Hebrank, Andrew C.; Rodrigue, Karen M.; Kennedy, Kristen M.; Section, Jarren; Park, Denise C.; Lu, Hanzhang

    2013-01-01

    BOLD fMRI has provided a wealth of information about the aging brain. A common finding is that posterior regions of the brain manifest an age-related decrease in activation while the anterior regions show an age-related increase. Several neurocognitive models have been proposed to interpret these findings. However, one issue that has not been sufficiently considered to date is that the BOLD signal is based on vascular responses secondary to neural activity. Thus the above findings could be in part due to a vascular change, especially in view of the expected decline of vascular health with age. In the present study, we aim to examine age-related differences in memory-encoding fMRI response in the context of vascular aging. One hundred and thirty healthy subjects ranging from 20 to 89 years old underwent a scene-viewing fMRI task and, in the same session, cerebrovascular reactivity (CVR) was measured in each subject using a CO2-inhalation task. Without accounting for the influence of vascular changes, the task-activated fMRI signal showed the typical age-related decrease in visual cortex and medial temporal lobe (MTL), but manifested an increase in the right inferior frontal gyrus (IFG). In the same individuals, an age-related CVR reduction was observed in all of these regions. We then used a previously proposed normalization approach to calculate a CVR-corrected fMRI signal, which was defined as the uncorrected signal divided by CVR. Based on the CVR-corrected fMRI signal, an age-related increase is now seen in both the left and right side of IFG; and no brain regions showed a signal decrease with age. We additionally used a model-based approach to examine the fMRI data in the context of CVR, which again suggested an age-related change in the two frontal regions, but not in the visual and MTL regions. PMID:23624491

  5. Age-associated power decline from running, jumping, and throwing male masters world records.

    PubMed

    Gava, Paolo; Kern, Helmut; Carraro, Ugo

    2015-01-01

    BACKGROUND/STUDY CONTEXT: The capacity to perform everyday tasks is directly related to the muscular power the body can develop (see Appendix). The age-related loss of power is a fact, but the characterization or the rate of muscle power loss remains an open issue. Data useful to study the decline of the skeletal muscles power are largely available from sources other than medical tests, e.g., from track and field competitions of Masters athletes. The aim of our study is to identify the age-related decline trend of the power developed by the athletes in carrying out the track and field events. Absolute male world records of 16 events were collected along with world records of male Masters categories. Performance was normalized with respect to the absolute record; the performance of various age groups is consequently represented by a number ranging from 1 (world absolute records) to 0 (null performance). The performance of a jumping event is transformed into a parameter proportional to the power developed by the athletes: the displacement of the center of gravity of the athlete. Throwing events are further normalized for the decreasing weight of the implements with the increasing age of the Masters athletes. Most track and field events show a linear decline to 70 years. The annual rate of power decline for all the events (running, throwing, and jumping), using a simplified synthesis, is 1.25% per year. The events that involve mostly upper limbs (shot put, javelin throw) show a higher rate of decline (1.4% per year) compared to those where the lower limbs are mostly involved (long jump 1.1%, track events 0.6-0.7% per year). This analysis of muscle power decline is only partially in line with the results of works based on clinical tests. A clarification of the reasons for such discrepancy may provide clinically significant information. Human power decline in Masters athletes was analyzed, adopting a coherent approach based on an extended database. Skeletal muscle power

  6. Aging and the shape of cognitive change before death: terminal decline or terminal drop?

    PubMed

    MacDonald, Stuart W S; Hultsch, David F; Dixon, Roger A

    2011-05-01

    Relative to typical age-related cognitive decrements, the terms "terminal decline" and "terminal drop" refer to the phenomenon of increased cognitive decline in proximity to death. Given that these terms are not necessarily synonymous, we examined the important theoretical distinction between the two alternative trajectories or shapes of changes they imply. We used 12-year (5-wave) data from the Victoria Longitudinal Study to directly test whether pre-death cognitive decrements follow a terminal decline (generally gradual) or a terminal drop (more abrupt) shape. Pre-death trajectories of cognitive decline for n=265 decedents (Mage = 72.67 years, SD = 6.44) were examined separately for 5 key cognitive constructs (verbal speed, working memory, episodic memory, semantic memory, and crystallized ability). Several classes of linear mixed models evaluated whether cognitive decline increased per additional year closer to death. Findings indicated that the shape of pre-death cognitive change was predominantly characterized by decline that is steeper as compared with typical aging-related change, but still best described as slow and steady decline, especially as compared with precipitous drop. The present findings suggest that terminal decline and terminal drop trajectories may not be mutually exclusive but could rather reflect distinct developmental trajectories within the same individual.

  7. Music to my ears: Age-related decline in musical and facial emotion recognition.

    PubMed

    Sutcliffe, Ryan; Rendell, Peter G; Henry, Julie D; Bailey, Phoebe E; Ruffman, Ted

    2017-12-01

    We investigated young-old differences in emotion recognition using music and face stimuli and tested explanatory hypotheses regarding older adults' typically worse emotion recognition. In Experiment 1, young and older adults labeled emotions in an established set of faces, and in classical piano stimuli that we pilot-tested on other young and older adults. Older adults were worse at detecting anger, sadness, fear, and happiness in music. Performance on the music and face emotion tasks was not correlated for either age group. Because musical expressions of fear were not equated for age groups in the pilot study of Experiment 1, we conducted a second experiment in which we created a novel set of music stimuli that included more accessible musical styles, and which we again pilot-tested on young and older adults. In this pilot study, all musical emotions were identified similarly by young and older adults. In Experiment 2, participants also made age estimations in another set of faces to examine whether potential relations between the face and music emotion tasks would be shared with the age estimation task. Older adults did worse in each of the tasks, and had specific difficulty recognizing happy, sad, peaceful, angry, and fearful music clips. Older adults' difficulties in each of the 3 tasks-music emotion, face emotion, and face age-were not correlated with each other. General cognitive decline did not appear to explain our results as increasing age predicted emotion performance even after fluid IQ was controlled for within the older adult group. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Age-related decline in bottom-up processing and selective attention in the very old.

    PubMed

    Zhuravleva, Tatyana Y; Alperin, Brittany R; Haring, Anna E; Rentz, Dorene M; Holcomb, Philip J; Daffner, Kirk R

    2014-06-01

    Previous research demonstrating age-related deficits in selective attention have not included old-old adults, an increasingly important group to study. The current investigation compared event-related potentials in 15 young-old (65-79 years old) and 23 old-old (80-99 years old) subjects during a color-selective attention task. Subjects responded to target letters in a specified color (Attend) while ignoring letters in a different color (Ignore) under both low and high loads. There were no group differences in visual acuity, accuracy, reaction time, or latency of early event-related potential components. The old-old group showed a disruption in bottom-up processing, indexed by a substantially diminished posterior N1 (smaller amplitude). They also demonstrated markedly decreased modulation of bottom-up processing based on selected visual features, indexed by the posterior selection negativity (SN), with similar attenuation under both loads. In contrast, there were no group differences in frontally mediated attentional selection, measured by the anterior selection positivity (SP). There was a robust inverse relationship between the size of the SN and SP (the smaller the SN, the larger the SP), which may represent an anteriorly supported compensatory mechanism. In the absence of a decline in top-down modulation indexed by the SP, the diminished SN may reflect age-related degradation of early bottom-up visual processing in old-old adults.

  9. Can psychosocial work conditions protect against age-related cognitive decline? Results from a systematic review.

    PubMed

    Nexø, Mette Andersen; Meng, Annette; Borg, Vilhelm

    2016-07-01

    According to the use it or lose it hypothesis, intellectually stimulating activities postpone age-related cognitive decline. A previous systematic review concluded that a high level of mental work demands and job control protected against cognitive decline. However, it did not distinguish between outcomes that were measured as cognitive function at one point in time or as cognitive decline. Our study aimed to systematically review which psychosocial working conditions were prospectively associated with high levels of cognitive function and/or changes in cognitive function over time. Articles were identified by a systematic literature search (MEDLINE, Web of Science (WOS), PsycNET, Occupational Safety and Health (OSH)). We included only studies with longitudinal designs examining the impact of psychosocial work conditions on outcomes defined as cognitive function or changes in cognitive function. Two independent reviewers compared title-abstract screenings, full-text screenings and quality assessment ratings. Eleven studies were included in the final synthesis and showed that high levels of mental work demands, occupational complexity or job control at one point in time were prospectively associated with higher levels of cognitive function in midlife or late life. However, the evidence to clarify whether these psychosocial factors also affected cognitive decline was insufficient, conflicting or weak. It remains speculative whether job control, job demands or occupational complexity can protect against cognitive decline. Future studies using methodological advancements can reveal whether workers gain more cognitive reserve in midlife and late life than the available evidence currently suggests. The public health implications of a previous review should thereby be redefined accordingly. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Age-related cognitive decline and associations with sex, education and apolipoprotein E genotype across ethnocultural groups and geographic regions: a collaborative cohort study.

    PubMed

    Lipnicki, Darren M; Crawford, John D; Dutta, Rajib; Thalamuthu, Anbupalam; Kochan, Nicole A; Andrews, Gavin; Lima-Costa, M Fernanda; Castro-Costa, Erico; Brayne, Carol; Matthews, Fiona E; Stephan, Blossom C M; Lipton, Richard B; Katz, Mindy J; Ritchie, Karen; Scali, Jacqueline; Ancelin, Marie-Laure; Scarmeas, Nikolaos; Yannakoulia, Mary; Dardiotis, Efthimios; Lam, Linda C W; Wong, Candy H Y; Fung, Ada W T; Guaita, Antonio; Vaccaro, Roberta; Davin, Annalisa; Kim, Ki Woong; Han, Ji Won; Kim, Tae Hui; Anstey, Kaarin J; Cherbuin, Nicolas; Butterworth, Peter; Scazufca, Marcia; Kumagai, Shuzo; Chen, Sanmei; Narazaki, Kenji; Ng, Tze Pin; Gao, Qi; Reppermund, Simone; Brodaty, Henry; Lobo, Antonio; Lopez-Anton, Raúl; Santabárbara, Javier; Sachdev, Perminder S

    2017-03-01

    The prevalence of dementia varies around the world, potentially contributed to by international differences in rates of age-related cognitive decline. Our primary goal was to investigate how rates of age-related decline in cognitive test performance varied among international cohort studies of cognitive aging. We also determined the extent to which sex, educational attainment, and apolipoprotein E ε4 allele (APOE*4) carrier status were associated with decline. We harmonized longitudinal data for 14 cohorts from 12 countries (Australia, Brazil, France, Greece, Hong Kong, Italy, Japan, Singapore, Spain, South Korea, United Kingdom, United States), for a total of 42,170 individuals aged 54-105 y (42% male), including 3.3% with dementia at baseline. The studies began between 1989 and 2011, with all but three ongoing, and each had 2-16 assessment waves (median = 3) and a follow-up duration of 2-15 y. We analyzed standardized Mini-Mental State Examination (MMSE) and memory, processing speed, language, and executive functioning test scores using linear mixed models, adjusted for sex and education, and meta-analytic techniques. Performance on all cognitive measures declined with age, with the most rapid rate of change pooled across cohorts a moderate -0.26 standard deviations per decade (SD/decade) (95% confidence interval [CI] [-0.35, -0.16], p < 0.001) for processing speed. Rates of decline accelerated slightly with age, with executive functioning showing the largest additional rate of decline with every further decade of age (-0.07 SD/decade, 95% CI [-0.10, -0.03], p = 0.002). There was a considerable degree of heterogeneity in the associations across cohorts, including a slightly faster decline (p = 0.021) on the MMSE for Asians (-0.20 SD/decade, 95% CI [-0.28, -0.12], p < 0.001) than for whites (-0.09 SD/decade, 95% CI [-0.16, -0.02], p = 0.009). Males declined on the MMSE at a slightly slower rate than females (difference = 0.023 SD/decade, 95% CI [0.011, 0.035], p

  11. Age-related cognitive decline and associations with sex, education and apolipoprotein E genotype across ethnocultural groups and geographic regions: a collaborative cohort study

    PubMed Central

    Lipnicki, Darren M.; Crawford, John D.; Thalamuthu, Anbupalam; Castro-Costa, Erico; Stephan, Blossom C. M.; Lipton, Richard B.; Katz, Mindy J.; Ritchie, Karen; Scali, Jacqueline; Ancelin, Marie-Laure; Scarmeas, Nikolaos; Yannakoulia, Mary; Dardiotis, Efthimios; Lam, Linda C. W.; Fung, Ada W. T.; Vaccaro, Roberta; Davin, Annalisa; Kim, Ki Woong; Han, Ji Won; Kim, Tae Hui; Cherbuin, Nicolas; Butterworth, Peter; Scazufca, Marcia; Kumagai, Shuzo; Chen, Sanmei; Narazaki, Kenji; Lobo, Antonio; Lopez-Anton, Raúl; Santabárbara, Javier; Sachdev, Perminder S.

    2017-01-01

    Background The prevalence of dementia varies around the world, potentially contributed to by international differences in rates of age-related cognitive decline. Our primary goal was to investigate how rates of age-related decline in cognitive test performance varied among international cohort studies of cognitive aging. We also determined the extent to which sex, educational attainment, and apolipoprotein E ε4 allele (APOE*4) carrier status were associated with decline. Methods and findings We harmonized longitudinal data for 14 cohorts from 12 countries (Australia, Brazil, France, Greece, Hong Kong, Italy, Japan, Singapore, Spain, South Korea, United Kingdom, United States), for a total of 42,170 individuals aged 54–105 y (42% male), including 3.3% with dementia at baseline. The studies began between 1989 and 2011, with all but three ongoing, and each had 2–16 assessment waves (median = 3) and a follow-up duration of 2–15 y. We analyzed standardized Mini-Mental State Examination (MMSE) and memory, processing speed, language, and executive functioning test scores using linear mixed models, adjusted for sex and education, and meta-analytic techniques. Performance on all cognitive measures declined with age, with the most rapid rate of change pooled across cohorts a moderate -0.26 standard deviations per decade (SD/decade) (95% confidence interval [CI] [-0.35, -0.16], p < 0.001) for processing speed. Rates of decline accelerated slightly with age, with executive functioning showing the largest additional rate of decline with every further decade of age (-0.07 SD/decade, 95% CI [-0.10, -0.03], p = 0.002). There was a considerable degree of heterogeneity in the associations across cohorts, including a slightly faster decline (p = 0.021) on the MMSE for Asians (-0.20 SD/decade, 95% CI [-0.28, -0.12], p < 0.001) than for whites (-0.09 SD/decade, 95% CI [-0.16, -0.02], p = 0.009). Males declined on the MMSE at a slightly slower rate than females (difference = 0

  12. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review.

    PubMed

    Frater, Julanne; Lie, David; Bartlett, Perry; McGrath, John J

    2018-03-01

    Insulin-like Growth Factor 1 (IGF-1) and its signaling pathway play a primary role in normal growth and ageing, however serum IGF-1 is known to reduce with advancing age. Recent findings suggest IGF-1 is essential for neurogenesis in the adult brain, and this reduction of IGF-1 with ageing may contribute to age-related cognitive decline. Experimental studies have shown manipulation of the GH/GF-1 axis can slow rates of cognitive decline in animals, making IGF-1 a potential biomarker of cognition, and/or its signaling pathway a possible therapeutic target to prevent or slow age-related cognitive decline. A systematic literature review and qualitative narrative summary of current evidence for IGF-1 as a biomarker of cognitive decline in the ageing brain was undertaken. Results indicate IGF-1 concentrations do not confer additional diagnostic information for those with cognitive decline, and routine clinical measurement of IGF-1 is not currently justified. In cases of established cognitive impairment, it remains unclear whether increasing circulating or brain IGF-1 may reverse or slow down the rate of further decline. Advances in neuroimaging, genetics, neuroscience and the availability of large well characterized biobanks will facilitate research exploring the role of IGF-1 in both normal ageing and age-related cognitive decline. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Age-related reduction in microcolumnar structure correlates with cognitive decline in ventral but not dorsal area 46 of the rhesus monkey.

    PubMed

    Cruz, L; Roe, D L; Urbanc, B; Inglis, A; Stanley, H E; Rosene, D L

    2009-02-18

    The age-related decline in cognitive function that is observed in normal aging monkeys and humans occurs without significant loss of cortical neurons. This suggests that cognitive impairment results from subtle, sub-lethal changes in the cortex. Recently, changes in the structural coherence in mini- or microcolumns without loss of neurons have been linked to loss of function. Here we use a density map method to quantify microcolumnar structure in both banks of the sulcus principalis (prefrontal cortical area 46) of 16 (ventral) and 19 (dorsal) behaviorally tested female rhesus monkeys from 6 to 33 years of age. While total neuronal density does not change with age in either of these banks, there is a significant age-related reduction in the strength of microcolumns in both regions on the order of 40%. This likely reflects a subtle but definite loss of organization in the structure of the cortical microcolumn. The reduction in strength in ventral area 46 correlates with cognitive impairments in learning and memory while the reduction in dorsal area 46 does not. This result is congruent with published data attributing cognitive functions to ventral area 46 that are similar to our particular cognitive battery which does not optimally tap cognitive functions attributed to dorsal area 46. While the exact mechanisms underlying this loss of microcolumnar organization remain to be determined, it is plausible that they reflect age-related alterations in dendritic and/or axonal organization which alter connectivity and may contribute to age-related declines in cognitive performance.

  14. Aging and the Shape of Cognitive Change Before Death: Terminal Decline Or Terminal Drop?

    PubMed Central

    Hultsch, David F.; Dixon, Roger A.

    2011-01-01

    Objectives. Relative to typical age-related cognitive decrements, the terms “terminal decline” and “terminal drop” refer to the phenomenon of increased cognitive decline in proximity to death. Given that these terms are not necessarily synonymous, we examined the important theoretical distinction between the two alternative trajectories or shapes of changes they imply. Methods. We used 12-year (5-wave) data from the Victoria Longitudinal Study to directly test whether pre-death cognitive decrements follow a terminal decline (generally gradual) or a terminal drop (more abrupt) shape. Pre-death trajectories of cognitive decline for n = 265 decedents (Mage = 72.67 years, SD = 6.44) were examined separately for 5 key cognitive constructs (verbal speed, working memory, episodic memory, semantic memory, and crystallized ability). Results. Several classes of linear mixed models evaluated whether cognitive decline increased per additional year closer to death. Findings indicated that the shape of pre-death cognitive change was predominantly characterized by decline that is steeper as compared with typical aging-related change, but still best described as slow and steady decline, especially as compared with precipitous drop. Discussion. The present findings suggest that terminal decline and terminal drop trajectories may not be mutually exclusive but could rather reflect distinct developmental trajectories within the same individual. PMID:21300703

  15. Aging- and task-related resilience decline is linked to food responsiveness in highly social honey bees.

    PubMed

    Speth, Martin T; Kreibich, Claus D; Amdam, Gro V; Münch, Daniel

    2015-05-01

    Conventional invertebrate models of aging have provided striking examples for the influence of food- and nutrient-sensing on lifespan and stress resilience. On the other hand, studies in highly social insects, such as honey bees, have revealed how social context can shape very plastic life-history traits, for example flexible aging dynamics in the helper caste (workers). It is, however, not understood how food perception and stress resilience are connected in honey bee workers with different social task behaviors and aging dynamics. To explore this linkage, we tested if starvation resilience, which normally declines with age, depends on food responsiveness in honey bees. We studied two typically non-senesced groups of worker bees with different social task behaviors: mature nurses (caregivers) and mature foragers (food collectors). In addition, we included a group of old foragers for which functional senescence is well-established. Bees were individually scored for their food perception by measuring the gustatory response to different sucrose concentrations. Subsequently, individuals were tested for survival under starvation stress. We found that starvation stress resilience, but not gustatory responsiveness differed between workers with different social task behaviors (mature nurses vs. mature foragers). In addition starvation stress resilience differed between foragers with different aging progressions (mature foragers vs. old foragers). Control experiments confirmed that differences in starvation resilience between mature nurses and mature foragers were robust against changing experimental conditions, such as water provision and activity. For all worker groups we established that individuals with low gustatory responsiveness were more resilient to starvation stress. Finally, for the group of rapidly aging foragers we found that low food responsiveness was linked to a delayed age-related decline in starvation resilience. Our study highlights associations between

  16. Moving Forward: Age Effects on the Cerebellum Underlie Cognitive and Motor Declines

    PubMed Central

    Bernard, Jessica A.; Seidler, Rachael D.

    2014-01-01

    Though the cortical contributions to age-related declines in motor and cognitive performance are well-known, the potential contributions of the cerebellum are less clear. The diverse functions of the cerebellum make it an important structure to investigate in aging. Here, we review the extant literature on this topic. To date, there is evidence to indicate that there are morphological age differences in the cerebellum that are linked to motor and cognitive behavior. Cerebellar morphology is often as good as -- or even better -- at predicting performance than the prefrontal cortex. We also touch on the few studies using functional neuroimaging and connectivity analyses that further implicate the cerebellum in age-related performance declines. Importantly, we provide a conceptual framework for the cerebellum influencing age differences in performance, centered on the notion of degraded internal models. The evidence indicating that cerebellar age differences associate with performance highlights the need for additional work in this domain to further elucidate the role of the cerebellum in age differences in movement control and cognitive function. PMID:24594194

  17. Divergence of Age-Related Differences in Social-Communication: Improvements for Typically Developing Youth but Declines for Youth with Autism Spectrum Disorder.

    PubMed

    Wallace, Gregory L; Dudley, Katerina; Anthony, Laura; Pugliese, Cara E; Orionzi, Bako; Clasen, Liv; Lee, Nancy Raitano; Giedd, Jay N; Martin, Alex; Raznahan, Armin; Kenworthy, Lauren

    2017-02-01

    Although social-communication difficulties and repetitive behaviors are hallmark features of autism spectrum disorder (ASD) and persist across the lifespan, very few studies have compared age-related differences in these behaviors between youth with ASD and same-age typically developing (TD) peers. We examined this issue using SRS-2 (Social Responsiveness Scale-Second Edition) measures of social-communicative functioning and repetitive behaviors in a stratified cross-sectional sample of 324 youth with ASD in the absence of intellectual disability, and 438 TD youth (aged 4-29 years). An age-by-group interaction emerged indicating that TD youth exhibited age-related improvements in social-communication scores while the ASD group demonstrated age-related declines in these scores. This suggests that adolescents/adults with ASD may fall increasingly behind their same-age peers in social-communicative skills.

  18. Sex-related differences in the wheel-running activity of mice decline with increasing age.

    PubMed

    Bartling, Babett; Al-Robaiy, Samiya; Lehnich, Holger; Binder, Leonore; Hiebl, Bernhard; Simm, Andreas

    2017-01-01

    Laboratory mice of both sexes having free access to running wheels are commonly used to study mechanisms underlying the beneficial effects of physical exercise on health and aging in human. However, comparative wheel-running activity profiles of male and female mice for a long period of time in which increasing age plays an additional role are unknown. Therefore, we permanently recorded the wheel-running activity (i.e., total distance, median velocity, time of breaks) of female and male mice until 9months of age. Our records indicated higher wheel-running distances for females than males which were highest in 2-month-old mice. This was mainly reached by higher running velocities of the females and not by longer running times. However, the sex-related differences declined in parallel to the age-associated reduction in wheel-running activities. Female mice also showed more variances between the weekly running distances than males, which were recorded most often for females being 4-6months old but not older. Additional records of 24-month-old mice of both sexes indicated highly reduced wheel-running activities at old age. Surprisingly, this reduction at old age resulted mainly from lower running velocities and not from shorter running times. Old mice also differed in their course of night activity which peaked later compared to younger mice. In summary, we demonstrated the influence of sex on the age-dependent activity profile of mice which is somewhat contrasting to humans, and this has to be considered when transferring exercise-mediated mechanism from mouse to human. Copyright © 2016. Published by Elsevier Inc.

  19. Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging.

    PubMed

    Maass, Anne; Lockhart, Samuel N; Harrison, Theresa M; Bell, Rachel K; Mellinger, Taylor; Swinnerton, Kaitlin; Baker, Suzanne L; Rabinovici, Gil D; Jagust, William J

    2018-01-17

    The medial temporal lobe (MTL) is an early site of tau accumulation and MTL dysfunction may underlie episodic-memory decline in aging and dementia. Postmortem data indicate that tau pathology in the transentorhinal cortex is common by age 60, whereas spread to neocortical regions and worsening of cognition is associated with β-amyloid (Aβ). We used [ 18 F]AV-1451 and [ 11 C]PiB positron emission tomography, structural MRI, and neuropsychological assessment to investigate how in vivo tau accumulation in temporal lobe regions, Aβ, and MTL atrophy contribute to episodic memory in cognitively normal older adults ( n = 83; age, 77 ± 6 years; 58% female). Stepwise regressions identified tau in MTL regions known to be affected in old age as the best predictor of episodic-memory performance independent of Aβ status. There was no interactive effect of MTL tau with Aβ on memory. Higher MTL tau was related to higher age in the subjects without evidence of Aβ. Among temporal lobe subregions, episodic memory was most strongly related to tau-tracer uptake in the parahippocampal gyrus, particularly the posterior entorhinal cortex, which in our parcellation includes the transentorhinal cortex. In subjects with longitudinal MRI and cognitive data ( n = 57), entorhinal atrophy mirrored patterns of tau pathology and their relationship with memory decline. Our data are consistent with neuropathological studies and further suggest that entorhinal tau pathology underlies memory decline in old age even without Aβ. SIGNIFICANCE STATEMENT Tau tangles and β-amyloid (Aβ) plaques are key lesions in Alzheimer's disease (AD) but both pathologies also occur in cognitively normal older people. Neuropathological data indicate that tau tangles in the medial temporal lobe (MTL) underlie episodic-memory impairments in AD dementia. However, it remains unclear whether MTL tau pathology also accounts for memory impairments often seen in elderly people and how Aβ affects this relationship

  20. Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline.

    PubMed

    Lupo, Giuseppe; Nisi, Paola S; Esteve, Pilar; Paul, Yu-Lee; Novo, Clara Lopes; Sidders, Ben; Khan, Muhammad A; Biagioni, Stefano; Liu, Hai-Kun; Bovolenta, Paola; Cacci, Emanuele; Rugg-Gunn, Peter J

    2018-06-01

    Adult neurogenesis declines with aging due to the depletion and functional impairment of neural stem/progenitor cells (NSPCs). An improved understanding of the underlying mechanisms that drive age-associated neurogenic deficiency could lead to the development of strategies to alleviate cognitive impairment and facilitate neuroregeneration. An essential step towards this aim is to investigate the molecular changes that occur in NSPC aging on a genomewide scale. In this study, we compare the transcriptional, histone methylation and DNA methylation signatures of NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old) and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic profiles of SVZ-derived NSPCs are largely unchanged in aged cells. Despite the global similarities, we detect robust age-dependent changes at several hundred genes and regulatory elements, thereby identifying putative regulators of neurogenic decline. Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its promoter region has altered histone and DNA methylation levels, in aged NSPCs. Using functional in vitro assays, we show that elevated Dbx2 expression in young adult NSPCs promotes age-related phenotypes, including the reduced proliferation of NSPC cultures and the altered transcript levels of age-associated regulators of NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the reverse gene expression changes. Taken together, these results provide new insights into the molecular programmes that are affected during mouse NSPC aging, and uncover a new functional role for Dbx2 in promoting age-related neurogenic decline. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Early-life Infection is a Vulnerability Factor for Aging-Related Glial Alterations and Cognitive Decline

    PubMed Central

    Bilbo, Staci D.

    2010-01-01

    There is significant individual variability in cognitive decline during aging, suggesting the existence of “vulnerability factors” for eventual deficits. Neuroinflammation may be one such factor; increased glial reactivity is a common outcome of aging, which in turn is associated with numerous neurodegenerative conditions. Early-life infection leads to cognitive impairment in conjunction with an inflammatory challenge in young adulthood, which led us to explore whether it might also accelerate the cognitive decline associated with aging. Rats were treated on postnatal day 4 with PBS or E. coli, and then tested for learning & memory at 2 or 16 month of age, using 2 fear conditioning tasks (context pre-exposure and ambiguous cue), and a spatial water maze task. Neonatally-infected rats exhibited memory impairments in both the ambiguous cue fear-conditioning task and in the water maze, but only at 16 month. There were no differences in anxiety between groups. Neonatally-infected rats also exhibited greater aging-induced increases in glial markers (CD11b and MHC II on microglia, and GFAP on astrocytes), as well as selective changes in NMDA receptor subunit expression within the hippocampus, but not in amygdala or parietal cortex compared to controls. Taken together, these data suggest that early-life infection leads to less successful cognitive aging, which may be linked to changes in glial reactivity. PMID:20388544

  2. Early-life infection is a vulnerability factor for aging-related glial alterations and cognitive decline.

    PubMed

    Bilbo, Staci D

    2010-07-01

    There is significant individual variability in cognitive decline during aging, suggesting the existence of "vulnerability factors" for eventual deficits. Neuroinflammation may be one such factor; increased glial reactivity is a common outcome of aging, which in turn is associated with numerous neurodegenerative conditions. Early-life infection leads to cognitive impairment in conjunction with an inflammatory challenge in young adulthood, which led us to explore whether it might also accelerate the cognitive decline associated with aging. Rats were treated on postnatal day 4 with PBS or Escherichia coli, and then tested for learning and memory at 2 or 16months of age, using two fear-conditioning tasks (context pre-exposure and ambiguous cue), and a spatial water maze task. Neonatally-infected rats exhibited memory impairments in both the ambiguous cue fear-conditioning task and in the water maze, but only at 16months. There were no differences in anxiety between groups. Neonatally-infected rats also exhibited greater aging-induced increases in glial markers (CD11b and MHCII on microglia, and GFAP on astrocytes), as well as selective changes in NMDA receptor subunit expression within the hippocampus, but not in amygdala or parietal cortex compared to controls. Taken together, these data suggest that early-life infection leads to less successful cognitive aging, which may be linked to changes in glial reactivity.

  3. Context Memory Decline in Middle Aged Adults is Related to Changes in Prefrontal Cortex Function

    PubMed Central

    Kwon, Diana; Maillet, David; Pasvanis, Stamatoula; Ankudowich, Elizabeth; Grady, Cheryl L.; Rajah, M. Natasha

    2016-01-01

    The ability to encode and retrieve spatial and temporal contextual details of episodic memories (context memory) begins to decline at midlife. In the current study, event-related fMRI was used to investigate the neural correlates of context memory decline in healthy middle aged adults (MA) compared with young adults (YA). Participants were scanned while performing easy and hard versions of spatial and temporal context memory tasks. Scans were obtained at encoding and retrieval. Significant reductions in context memory retrieval accuracy were observed in MA, compared with YA. The fMRI results revealed that overall, both groups exhibited similar patterns of brain activity in parahippocampal cortex, ventral occipito-temporal regions and prefrontal cortex (PFC) during encoding. In contrast, at retrieval, there were group differences in ventral occipito-temporal and PFC activity, due to these regions being more activated in MA, compared with YA. Furthermore, only in YA, increased encoding activity in ventrolateral PFC, and increased retrieval activity in occipital cortex, predicted increased retrieval accuracy. In MA, increased retrieval activity in anterior PFC predicted increased retrieval accuracy. These results suggest that there are changes in PFC contributions to context memory at midlife. PMID:25882039

  4. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    PubMed

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P < 0.05). Furthermore, central IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P < 0.05). Taken together, IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets.

    PubMed

    Wu, Rui-Xin; Bi, Chun-Sheng; Yu, Yang; Zhang, Lin-Lin; Chen, Fa-Ming

    2015-08-01

    In this study, periodontal ligament (PDL) stem cells (PDLSCs) derived from different-aged donors were used to evaluate the effect of aging on cell sheet formation. The activity of PDLSCs was first determined based on their colony-forming ability, surface markers, proliferative/differentiative potentials, senescence-associated β-galactosidase (SA-βG) staining, and expression of pluripotency-associated transcription factors. The ability of these cells to form sheets, based on their extracellular matrix (ECM) contents and their functional properties necessary for osteogenic differentiation, was evaluated to predict the age-related changes in the regenerative capacity of the cell sheets in their further application. It was found that human PDLSCs could be isolated from the PDL tissue of different-aged subjects. However, the ability of the PDLSCs to proliferate and to undergo osteogenic differentiation and their expression of pluripotency-associated transcription factors displayed age-related decreases. In addition, these cells exhibited an age-related increase in SA-βG expression. Aged cells showed an impaired ability to form functional cell sheets, as determined by morphological observations and Ki-67 immunohistochemistry staining. Based on the production of ECM proteins, such as fibronectin, integrin β1, and collagen type I; alkaline phosphatase (ALP) activity; and the expression of osteogenic genes, such as ALP, Runt-related transcription factor 2, and osteocalcin, cell sheets formed by PDLSCs derived from older donors demonstrated a less potent osteogenic capacity compared to those formed by PDLSCs from younger donors. Our data suggest that the age-associated decline in the matrix contents and osteogenic properties of PDLSC sheets should be taken into account in cell sheet engineering research and clinical periodontal regenerative therapy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Pattern of age-associated decline of static and dynamic balance in community-dwelling older women.

    PubMed

    Takeshima, Nobuo; Islam, Mohammod M; Rogers, Michael E; Koizumi, Daisuke; Tomiyama, Naoki; Narita, Makoto; Rogers, Nicole L

    2014-07-01

    Falling is the leading cause of injury-related deaths in older adults, and a loss of balance is often the precursor to a fall. However, little is known about the rate at which balance declines with age. The objective of the present study was to determine whether there is an age-associated decline in static (SB) and/or dynamic (DB) balance in community-dwelling older women. SB and DB were determined in 971 older women. Intraclass correlation coefficients (ICC) were used to determine test-retest reliability. Sway velocity was used to measure SB standing on a platform and foam with eyes open and closed. DB was characterized by limits of stability (LOS) that measured end-point excursion (EXE) and maximum excursion (MXE) of the body's center of pressure. ICC for EXE and MXE for the LOS test were excellent (EPE = 0.96, MXE = 0.96). ICC for SB tests, except for the eyes open firm surface condition (ICC = 0.10), showed a high level of reproducibility (ICC = 0.88 and 0.90). Relationships existed between age and SB (r = 0.31, P < 0.001), and between age and DB (r = -0.46--0.48, P < 0.001). The rate of decline for both DB and SB was approximately 1% per year. Age was significantly associated with all balance measures. DB got significantly lower with advancing age until 80 years, and then plateaued. SB did not decline with age until 80 years, and then decreased significantly thereafter. Although large individual variation was found with balance ability, an age-related decline was found with both dynamic and static balance for Japanese older women. © 2013 Japan Geriatrics Society.

  7. Men's Preferences for Female Facial Femininity Decline With Age.

    PubMed

    Marcinkowska, Urszula M; Dixson, Barnaby J; Kozlov, Mikhail V; Prasai, Keshav; Rantala, Markus J

    2017-01-01

    Women tend to have a smaller chin, fuller lips, and rounder eyes than men, due in part to the effects of estrogen. These features associated with facial femininity have been found to be positively associated with fertility. Although young men in their 20s typically judge facial femininity as more attractive than facial masculinity, at all ages, men with higher sexual desire and testosterone levels tend to show a marked preference for feminine faces. In the current study, we extend this research using a large cross-national sample to test the hypothesis that facial femininity preferences will be stronger among younger men than among older men. We also tested whether these preferences are influenced by self-reported sexual openness, national health indices, and gross national income. We quantified attractiveness judgments (i.e., preferences) among 2,125 heterosexual men (aged 17-73 years) for female faces that were manipulated to appear more or less feminine using a computer graphics program. Facial femininity preferences decreased with age, being highest among men in their 30s and lowest among men in their 70s. This pattern was independent of men's sexual openness and cross-national variation in health and socioeconomic development. Our study shows that men's preferences for facial femininity are age dependent. At the proximate level, differences in preferences could reflect age-related declines in testosterone levels. These age-related declines in preferences could benefit older men, who are less able to invest in mating effort, and thus may opt out of competition with younger men for mates with potentially higher fertility. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. A prospective study of decline in lung function in relation to welding emissions.

    PubMed

    Christensen, Sigve W; Bonde, Jens Peter; Omland, Oyvind

    2008-02-26

    Numerous cross-sectional studies have reported reduced lung function among welders but limitations of exposure assessment and design preclude causal inference. The aim of this study was to investigate if long-term exposure to welding fume particulates accelerates the age-related decline in lung function. Lung function was measured by spirometry in 1987 and 2004 among 68 steel welders and 32 non-welding production workers. The decline in forced expiratory volume (FEV1) was analysed in relation to cumulated exposure to fume particulates among welders during the follow-up period. Among smokers the decline in FEV1 through follow-up period was in average 150 ml larger among welders than non-welders while the difference was negligible among non-smokers. The results did not reach statistical significance and within welders the decline in lung function was not related to the cumulated welding particulate exposure during follow-up period Long-term exposure to welding emissions may accelerate the age-related decline of lung function but at exposure levels in the range of 1.5 to 6.5 mg/m3 the average annual excess loss of FEV1 is unlikely to exceed 25 ml in smokers and 10 ml in non-smokers.

  9. Age-related differences in associative memory: Empirical evidence and theoretical perspectives.

    PubMed

    Naveh-Benjamin, Moshe; Mayr, Ulrich

    2018-02-01

    Systematic research and anecdotal evidence both indicate declines in episodic memory in older adults in good health without dementia-related disorders. Several hypotheses have been proposed to explain these age-related changes in episodic memory, some of which attribute such declines to a deterioration in associative memory. The current special issue of Psychology and Aging on Age-Related Differences in Associative Memory includes 16 articles by top researchers in the area of memory and aging. Their contributions provide a wealth of empirical work that addresses different aspects of aging and associative memory, including different mediators and predictors of age-related declines in binding and associative memory, cognitive, noncognitive, genetic, and neuro-related ones. The contributions also address the processing phases where these declines manifest themselves and look at ways to ameliorate these age-related declines. Furthermore, the contributions in this issue draw on different theoretical perspectives to explain age-related changes in associative memory and provide a wealth of varying methodologies to assess older and younger adults' performance. Finally, although most of the studies focus on normative/healthy aging, some of them contain insights that are potentially applicable to disorders and pathologies. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Context Memory Decline in Middle Aged Adults is Related to Changes in Prefrontal Cortex Function.

    PubMed

    Kwon, Diana; Maillet, David; Pasvanis, Stamatoula; Ankudowich, Elizabeth; Grady, Cheryl L; Rajah, M Natasha

    2016-06-01

    The ability to encode and retrieve spatial and temporal contextual details of episodic memories (context memory) begins to decline at midlife. In the current study, event-related fMRI was used to investigate the neural correlates of context memory decline in healthy middle aged adults (MA) compared with young adults (YA). Participants were scanned while performing easy and hard versions of spatial and temporal context memory tasks. Scans were obtained at encoding and retrieval. Significant reductions in context memory retrieval accuracy were observed in MA, compared with YA. The fMRI results revealed that overall, both groups exhibited similar patterns of brain activity in parahippocampal cortex, ventral occipito-temporal regions and prefrontal cortex (PFC) during encoding. In contrast, at retrieval, there were group differences in ventral occipito-temporal and PFC activity, due to these regions being more activated in MA, compared with YA. Furthermore, only in YA, increased encoding activity in ventrolateral PFC, and increased retrieval activity in occipital cortex, predicted increased retrieval accuracy. In MA, increased retrieval activity in anterior PFC predicted increased retrieval accuracy. These results suggest that there are changes in PFC contributions to context memory at midlife. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Age-related changes in ultra-triathlon performances

    PubMed Central

    2012-01-01

    Background The age-related decline in performance has been investigated in swimmers, runners and triathletes. No study has investigated the age-related performance decline in ultra-triathletes. The purpose of this study was to analyse the age-related declines in swimming, cycling, running and overall race time for both Triple Iron ultra-triathlon (11.4-km swimming, 540-km cycling and 126.6-km running) and Deca Iron ultra-triathlon (38-km swimming, 1,800-km cycling and 420-km running). Methods The age and performances of 423 male Triple Iron ultra-triathletes and 119 male Deca Iron ultra-triathletes were analysed from 1992 to 2010 using regression analyses and ANOVA. Results The mean age of the finishers was significantly higher for Deca Iron ultra-triathletes (41.3 ± 3.1 years) compared to a Triple Iron ultra-triathletes (38.5 ± 3.3 years) (P < 0.05). For both ultra-distances, the fastest overall race times were achieved between the ages of 25 and 44 years. Deca Iron ultra-triathletes achieved the same level of performance in swimming and cycling between 25 and 54 years of age. Conclusions The magnitudes of age-related declines in performance in the three disciplines of ultra-triathlon differ slightly between Triple and Deca Iron ultra-triathlon. Although the ages of Triple Iron ultra-triathletes were on average younger compared to Deca Iron ultra-triathletes, the fastest race times were achieved between 25 and 44 years for both distances. Further studies should investigate the motivation and training of ultra-triathletes to gain better insights in ultra-triathlon performance. PMID:23849327

  12. Cognitive declines in healthy aging: evidence from multiple aspects of interference resolution.

    PubMed

    Pettigrew, Corinne; Martin, Randi C

    2014-06-01

    The present study tested the hypothesis that older adults show age-related deficits in interference resolution, also referred to as inhibitory control. Although oftentimes considered as a unitary aspect of executive function, various lines of work support the notion that interference resolution may be better understood as multiple constructs, including resistance to proactive interference (PI) and response-distractor inhibition (e.g., Friedman & Miyake, 2004). Using this dichotomy, the present study assessed whether older adults (relative to younger adults) show impaired performance across both, 1, or neither of these interference resolution constructs. To do so, we used multiple tasks to tap each construct and examined age effects at both the single task and latent variable levels. Older adults consistently demonstrated exaggerated interference effects across resistance to PI tasks. Although the results for the response-distractor inhibition tasks were less consistent at the individual task level analyses, age effects were evident on multiple tasks, as well as at the latent variable level. However, results of the latent variable modeling suggested declines in interference resolution are best explained by variance that is common to the 2 interference resolution constructs measured herein. Furthermore, the effect of age on interference resolution was found to be both distinct from declines in working memory, and independent of processing speed. These findings suggest multiple cognitive domains are independently sensitive to age, but that declines in the interference resolution constructs measured herein may originate from a common cause. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Increased Re-Entry into Cell Cycle Mitigates Age-Related Neurogenic Decline in the Murine Subventricular Zone

    PubMed Central

    Stoll, Elizabeth A.; Habibi, Behnum A.; Mikheev, Andrei M.; Lasiene, Jurate; Massey, Susan C.; Swanson, Kristin R.; Rostomily, Robert C.; Horner, Philip J.

    2012-01-01

    Although new neurons are produced in the subventricular zone (SVZ) of the adult mammalian brain, fewer functional neurons are produced with increasing age. The age-related decline in neurogenesis has been attributed to a decreased pool of neural progenitor cells (NPCs), an increased rate of cell death, and an inability to undergo neuronal differentiation and develop functional synapses. The time between mitotic events has also been hypothesized to increase with age, but this has not been directly investigated. Studying primary-cultured NPCs from the young adult and aged mouse forebrain, we observe that fewer aged cells are dividing at a given time; however, the mitotic cells in aged cultures divide more frequently than mitotic cells in young cultures during a 48-hour period of live-cell time-lapse imaging. Double-thymidine-analog labeling also demonstrates that fewer aged cells are dividing at a given time, but those that do divide are significantly more likely to re-enter the cell cycle within a day, both in vitro and in vivo. Meanwhile, we observed that cellular survival is impaired in aged cultures. Using our live-cell imaging data, we developed a mathematical model describing cell cycle kinetics to predict the growth curves of cells over time in vitro and the labeling index over time in vivo. Together, these data surprisingly suggest that progenitor cells remaining in the aged SVZ are highly proliferative. PMID:21948688

  14. Polyphenol- and PUFA-rich walnuts protect against age-associated cognitive decline through epigenetic modulation

    USDA-ARS?s Scientific Manuscript database

    A demographic shift towards an aging population and the incidence of age-related brain disorders are on the rise worldwide. A rapid decline in brain health with aging is primarily caused by the brain’s exceptionally high demand for energy which drives high oxygen consumption, leading to a subsequent...

  15. Greater cognitive decline with aging among elders with high serum concentrations of organochlorine pesticides.

    PubMed

    Kim, Se-A; Lee, Yu-Mi; Lee, Ho-Won; Jacobs, David R; Lee, Duk-Hee

    2015-01-01

    Although cognitive decline is very common in elders, age-related cognitive decline substantially differs among elders and the determinants of the differences in age-related cognitive decline are unclear. We investigated our hypothesis that the association between age and cognition was stronger in those with higher serum concentrations of organochlorine (OC) pesticides, common persistent and strongly lipophilic neurotoxic chemicals. Participants were 644 elders aged 60-85, participating in the National Health and Nutrition Examination Survey 1999-2002. Six OC pesticides (p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodipenyldichloroethylene (DDE), β-hexachlorocyclohexane, trans-nonachlor, oxychlordane, and heptachlor epoxide) were evaluated. "Lower cognitive function" was defined as having a low Digit-Symbol Substitution Test (DSST) score (<25th percentile of DSST score, cutpoint 28 symbols substituted). Higher levels of β-hexachlorocyclohexane, trans-nonachlor, oxychlordane, and heptachlor epoxide modified the associations between age and lower cognitive function (Pinteraction<0.01, 0.03, <0.01, and 0.02, respectively). Elders in the 3rd tertile of these chemicals demonstrated a greater risk of lower cognitive function with aging, compared to those in the combined 1st and 2nd tertiles. Among those with highest OC pesticides (3rd tertile), the odds ratio for the risk of lower cognitive function was about 6 to 11 for the highest quintile of age (80-85 years) vs. the first quintile of age (60-63 years), while the association between age and lower cognitive function became flatter in those with lower OC pesticides (combined 1st and 2nd tertiles). Both DDT and DDE showed no interaction, with lower DSST scores for higher age irrespective of serum concentrations of DDT or DDE. Even though DSST score measures only one aspect of cognition, several OC pesticides modified aging-related prevalence of low cognitive score, a finding which should be evaluated in

  16. Declining lymphoid progenitor fitness promotes aging-associated leukemogenesis.

    PubMed

    Henry, Curtis J; Marusyk, Andriy; Zaberezhnyy, Vadym; Adane, Biniam; DeGregori, James

    2010-12-14

    Aging is associated with the functional decline of cells, tissues, and organs. At the same time, age is the single most important prognostic factor in the development of most human cancers, including chronic myelogenous and acute lymphoblastic leukemias initiated by Bcr-Abl oncogenic translocations. Prevailing paradigms attribute the association between aging and cancers to the accumulation of oncogenic mutations over time, because the accrual of oncogenic events is thought to be the rate-limiting step in initiation and progression of cancers. Conversely, aging-associated functional decline caused by both cell-autonomous and non-cell-autonomous mechanisms is likely to reduce the fitness of stem and progenitor cell populations. This reduction in fitness should be conducive for increased selection of oncogenic mutations that can at least partially alleviate fitness defects, thereby promoting the initiation of cancers. We tested this hypothesis using mouse hematopoietic models. Our studies indicate that the dramatic decline in the fitness of aged B-lymphopoiesis coincides with altered receptor-associated kinase signaling. We further show that Bcr-Abl provides a much greater competitive advantage to old B-lymphoid progenitors compared with young progenitors, coinciding with restored kinase signaling pathways, and that this enhanced competitive advantage translates into increased promotion of Bcr-Abl-driven leukemias. Moreover, impairing IL-7-mediated signaling is sufficient to promote selection for Bcr-Abl-expressing B progenitors. These studies support an unappreciated causative link between aging and cancer: increased selection of oncogenic mutations as a result of age-dependent alterations of the fitness landscape.

  17. Income differentials in functional disability in old age: relative risks of onset, recovery, decline, attrition and mortality.

    PubMed

    Broese van Groenou, Marjolein I; Deeg, Dorly J H; Penninx, Brenda W J H

    2003-04-01

    Socioeconomic status (SES) differences in health decline in late life may be underestimated, because the relatively higher risks of attrition of lower-SES persons are seldom taken into account. This longitudinal study aimed at comparing income differences in the course of disability, non-mortality attrition and mortality in older adults. A sample population of 3107 older adults who participated in the 1992/1993 baseline of the Longitudinal Aging Study Amsterdam was examined regarding changes in functional disability in 1998/1999. SES was indicated by household income. Multinomial regression analyses revealed that, for men without disability at baseline, the relative rate for attrition was four times higher and the mortality rate was twice as high for low-income vs high-income persons. For non-disabled women, the relative risk for the onset of disability was nearly twice as high for low-income vs high-income persons. For both men and women, these risks decreased only slightly when behavioral and psychosocial risk factors were taken into account. Among persons with disability at baseline, the relative risks for attrition (for women) and mortality (for men) were twice as high for low-income persons, but no income differences were found with respect to recovery and decline. Adjustment for risk factors decreased the relative risks for attrition and mortality to a non-significant level. Income inequality in health in late life is to a large degree explained by the higher incidence of disability among lower-status women and by the higher attrition and mortality risks among lower-status men.

  18. Expertise and age-related changes in components of intelligence.

    PubMed

    Masunaga, H; Horn, J

    2001-06-01

    In a sample of 263 male GO players at 48 levels of expertise and ranging from 18 to 78 years of age, it was found that factors of expertise deductive reasoning (EDR) and expertise working memory (EWM) were independent of factors of fluid reasoning (Gf) and short-term working memory (STWM) that, along with cognitive speed (Gs), have been found to characterize decline of intelligence in adulthood. The main effects of analyses of cross-sectional age differences indicated age-related decline in EDR and EWM as well as in Gf, STWM, and Gs. However, interaction and partialing analyses indicated that decline in EDR and EWM decreased to no decline with increase in level of expertise. The results thus suggest that with increase in factors known to raise the level of expertise--particularly, intensive, well-designed practice--there may be no age-related decline in the intelligence that is measured in the abilities of expertise.

  19. Assessing age-related gray matter decline with voxel-based morphometry depends significantly on segmentation and normalization procedures

    PubMed Central

    Callaert, Dorothée V.; Ribbens, Annemie; Maes, Frederik; Swinnen, Stephan P.; Wenderoth, Nicole

    2014-01-01

    Healthy ageing coincides with a progressive decline of brain gray matter (GM) ultimately affecting the entire brain. For a long time, manual delineation-based volumetry within predefined regions of interest (ROI) has been the gold standard for assessing such degeneration. Voxel-Based Morphometry (VBM) offers an automated alternative approach that, however, relies critically on the segmentation and spatial normalization of a large collection of images from different subjects. This can be achieved via different algorithms, with SPM5/SPM8, DARTEL of SPM8 and FSL tools (FAST, FNIRT) being three of the most frequently used. We complemented these voxel based measurements with a ROI based approach, whereby the ROIs are defined by transforms of an atlas (containing different tissue probability maps as well as predefined anatomic labels) to the individual subject images in order to obtain volumetric information at the level of the whole brain or within separate ROIs. Comparing GM decline between 21 young subjects (mean age 23) and 18 elderly (mean age 66) revealed that volumetric measurements differed significantly between methods. The unified segmentation/normalization of SPM5/SPM8 revealed the largest age-related differences and DARTEL the smallest, with FSL being more similar to the DARTEL approach. Method specific differences were substantial after segmentation and most pronounced for the cortical structures in close vicinity to major sulci and fissures. Our findings suggest that algorithms that provide only limited degrees of freedom for local deformations (such as the unified segmentation and normalization of SPM5/SPM8) tend to overestimate between-group differences in VBM results when compared to methods providing more flexible warping. This difference seems to be most pronounced if the anatomy of one of the groups deviates from custom templates, a finding that is of particular importance when results are compared across studies using different VBM methods. PMID

  20. Preliminary development of a new individualised questionnaire measuring quality of life in older men with age-related hormonal decline: the A-RHDQoL

    PubMed Central

    McMillan, Carolyn V; Bradley, Clare; Giannoulis, Manthos; Martin, Finbarr; Sönksen, Peter H

    2003-01-01

    Background There is increasing interest in hormone replacement therapy to improve health and quality of life (QoL) of older men with age-related decline in hormone levels. This paper reports the preliminary development and evaluation of the psychometric properties of a new individualised questionnaire, the A-RHDQoL, measuring perceived impact of age-related hormonal decline on QoL of older men. A-RHDQoL design was based on the HDQoL for people with growth hormone (GH) deficiency and the ADDQoL (for diabetes). Methods Internal consistency reliability and some aspects of validity of the A-RHDQoL were investigated in a cross-sectional survey of 128 older men (age range: 64 – 80 yrs), being screened for inclusion in a trial of GH and testosterone (T) replacement, and who completed the A-RHDQoL once. Respondents rated personally applicable life domains for importance and impact of their hormonal decline. A single overview item measured present QoL. Serum levels of Insulin-like Growth Factor-I and total T were measured. Results Of the 24 A-RHDQoL domains, 21 were rated as relevant and important for older men. All domains were perceived as negatively impacted by hormonal decline. The most negatively impacted domains were: memory (-4.54 ± 3.02), energy (-4.44 ± 2.49), sex life (-4.34 ± 3.08) and physical stamina (-4.29 ± 2.41), (maximum range -9 to +9). The shorter 21-domain A-RHDQoL had high internal consistency reliability (Cronbach's alpha coefficient = 0.935, N = 103) and applicable domains could be weighted and summed into an overall Average Weighted Impact score. The questionnaire was acceptable to the majority of respondents and content validity was good. The single overview item measuring present QoL correlated significantly with total T levels [r = 0.26, p <0.01, N = 114]. Conclusion The new 21-item A-RHDQoL is an individualised questionnaire measuring perceived impact of age-related hormonal decline on the QoL of older men. The internal consistency

  1. Do glutathione levels decline in aging human brain?

    PubMed

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A prospectus for ethical analysis of ageing individuals' responsibility to prevent cognitive decline.

    PubMed

    Forlini, Cynthia; Hall, Wayne

    2017-11-01

    As the world's population ages, governments and non-governmental organizations in developed countries are promoting healthy cognitive ageing to reduce the rate of age-related cognitive decline and sustain economic productivity in an ageing workforce. Recommendations from the Productivity Commission (Australia), Dementia Australia, Government Office for Science (UK), Presidential Commission for the Study of Bioethical Issues (USA), Institute of Medicine (USA), among others, are encouraging older adults to engage in mental, physical, and social activities. These lifestyle recommendations for healthy cognitive ageing are timely and well supported by scientific evidence but they make implicit normative judgments about the responsibility of ageing individuals to prevent cognitive decline. Ethical tensions arise when this individual responsibility collides with social and personal realities of ageing populations. First, we contextualize the priority given to healthy cognitive ageing within the current brain-based medical and social discourses. Second, we explore the individual responsibility by examining the economic considerations, medical evidence and individual interests that relate to the priority given to healthy cognitive ageing. Third, we identify three key ethical challenges for policymakers seeking to implement lifestyle recommendations as an effective population-level approach to healthy cognitive ageing. The result is a prospectus for future in-depth analysis of ethical tensions that arise from current policy discussions of healthy cognitive ageing. © 2017 John Wiley & Sons Ltd.

  3. The rate of change in declining steroid hormones: a new parameter of healthy aging in men?

    PubMed

    Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike

    2016-09-20

    Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors.

  4. The rate of change in declining steroid hormones: a new parameter of healthy aging in men?

    PubMed Central

    Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike

    2016-01-01

    Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors. PMID:27589836

  5. Age-Related Changes in Creative Thinking

    ERIC Educational Resources Information Center

    Roskos-Ewoldsen, Beverly; Black, Sheila R.; Mccown, Steven M.

    2008-01-01

    Age-related differences in cognitive processes were used to understand age-related declines in creativity. According to the Geneplore model (Finke, Ward, & Smith, 1992), there are two phases of creativity--generating an idea and exploring the implications of the idea--each with different underlying cognitive processes. These two phases are…

  6. Association of Family History of Exceptional Longevity With Decline in Physical Function in Aging.

    PubMed

    Ayers, Emmeline; Barzilai, Nir; Crandall, Jill P; Milman, Sofiya; Verghese, Joe

    2017-11-09

    Although many genetic and nongenetic factors interact to determine an individual's physical phenotype, there has been limited examination of the contribution of family history of exceptional parental longevity on decline in physical function in aging. The LonGenity study recruited a relatively genetically homogenous cohort of Ashkenazi Jewish adults age 65 and older, who were defined as either offspring of parents with exceptional longevity ([OPEL]: having at least one parent who lived to age 95 or older) or offspring of parents with usual survival ([OPUS]: neither parent survived to age 95). Decline in performance on objective measures of strength (grip strength), balance (unipedal stance), and mobility (gait speed) as well as a composite physical function measure, the Short physical performance battery (SPPB), were compared between the two groups over a median follow-up of 3.2 years, accounting for age, sex, education, and comorbidities. Of the 984 LonGenity participants (mean age 76, 55% women), 448 were OPEL and 536 were OPUS. Compared to OPUS, OPEL had slower decline on measures of unipedal stance (-0.03 log-units/year, p = .026), repeated chair rise (0.13 s/year, p = .020) and SPPB (-0.11 points/year, p = .002). OPEL women had slower decline on chair rise and SPPB scores compared to OPUS women, although OPEL men had slower decline on unipedal stance compared to OPUS men. Our findings provide evidence that variation in late-life decline in physical function is associated with familial longevity, and may vary for men and women. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial.

    PubMed

    Valls-Pedret, Cinta; Sala-Vila, Aleix; Serra-Mir, Mercè; Corella, Dolores; de la Torre, Rafael; Martínez-González, Miguel Ángel; Martínez-Lapiscina, Elena H; Fitó, Montserrat; Pérez-Heras, Ana; Salas-Salvadó, Jordi; Estruch, Ramon; Ros, Emilio

    2015-07-01

    Oxidative stress and vascular impairment are believed to partly mediate age-related cognitive decline, a strong risk factor for development of dementia. Epidemiologic studies suggest that a Mediterranean diet, an antioxidant-rich cardioprotective dietary pattern, delays cognitive decline, but clinical trial evidence is lacking. To investigate whether a Mediterranean diet supplemented with antioxidant-rich foods influences cognitive function compared with a control diet. Parallel-group randomized clinical trial of 447 cognitively healthy volunteers from Barcelona, Spain (233 women [52.1%]; mean age, 66.9 years), at high cardiovascular risk were enrolled into the Prevención con Dieta Mediterránea nutrition intervention trial from October 1, 2003, through December 31, 2009. All patients underwent neuropsychological assessment at inclusion and were offered retesting at the end of the study. Participants were randomly assigned to a Mediterranean diet supplemented with extravirgin olive oil (1 L/wk), a Mediterranean diet supplemented with mixed nuts (30 g/d), or a control diet (advice to reduce dietary fat). Rates of cognitive change over time based on a neuropsychological test battery: Mini-Mental State Examination, Rey Auditory Verbal Learning Test (RAVLT), Animals Semantic Fluency, Digit Span subtest from the Wechsler Adult Intelligence Scale, Verbal Paired Associates from the Wechsler Memory Scale, and the Color Trail Test. We used mean z scores of change in each test to construct 3 cognitive composites: memory, frontal (attention and executive function), and global. Follow-up cognitive tests were available in 334 participants after intervention (median, 4.1 years). In multivariate analyses adjusted for confounders, participants allocated to a Mediterranean diet plus olive oil scored better on the RAVLT (P = .049) and Color Trail Test part 2 (P = .04) compared with controls; no between-group differences were observed for the other cognitive tests

  8. A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer's disease.

    PubMed

    Harrison, Fiona E

    2012-01-01

    Antioxidants in the diet have long been thought to confer some level of protection against the oxidative damage that is involved in the pathology of Alzheimer's disease as well as general cognitive decline in normal aging. Nevertheless, support for this hypothesis in the literature is equivocal. In the case of vitamin C (ascorbic acid) in particular, lack of consideration of some of the specific features of vitamin C metabolism has led to studies in which classification of participants according to vitamin C status is inaccurate, and the absence of critical information precludes the drawing of appropriate conclusions. Vitamin C levels in plasma are not always reported, and estimated daily intake from food diaries may not be accurate or reflect actual plasma values. The ability to transport ingested vitamin C from the intestines into blood is limited by the saturable sodium-dependent vitamin C transporter (SVCT1) and thus very high intakes and the use of supplements are often erroneously considered to be of greater benefit that they really are. The current review documents differences among the studies in terms of vitamin C status of participants. Overall, there is a large body of evidence that maintaining healthy vitamin C levels can have a protective function against age-related cognitive decline and Alzheimer's disease, but avoiding vitamin C deficiency is likely to be more beneficial than taking supplements on top of a normal, healthy diet.

  9. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart.

    PubMed

    Gómez, Luis A; Monette, Jeffrey S; Chavez, Juan D; Maier, Claudia S; Hagen, Tory M

    2009-10-01

    Accumulation of mitochondrial electron transport chain (ETC) defects is a recognized hallmark of the age-associated decline in cardiac bioenergetics; however, the molecular events involved are only poorly understood. In the present work, we hypothesized that age-related ETC deterioration stemmed partly from disassociation of large solid-state macromolecular assemblies termed "supercomplexes". Mitochondrial proteins from young and old rat hearts were separated by blue native-PAGE, protein bands analyzed by LC-MALDI-MS/MS, and protein levels quantified by densitometry. Results showed that supercomplexes comprised of various stoichiometries of complexes I, III and IV were observed, and declined significantly (p<0.05, n=4) with age. Supercomplexes displaying the highest molecular masses were the most severely affected. Considering that certain diseases (e.g. Barth Syndrome) display similar supercomplex destabilization as our results for aging, the deterioration in ETC supercomplexes may be an important underlying factor for both impaired mitochondrial function and loss of cardiac bioenergetics with age.

  10. Decline in offspring viability as a manifestation of aging in Drosophila melianogaster.

    PubMed

    Kern, S; Ackermann, M; Stearns, S C; Kawecki, T J

    2001-09-01

    The evolutionary explanation of senescence proposes that selection against alleles with deleterious effects manifested only late in life is weak because most individuals die earlier for extrinsic reasons. This argument also applies to alleles whose deleterious effects are nongenetically transmitted from mother to progeny, that is, that affect the performance of progeny produced at late ages rather than of the aging individuals themselves. We studied the effect of maternal age on offspring viability (egg hatching success and larva-to-adult survival) in two sets of Drosophila melanogaster lines (HAM/LAM and YOUNG/OLD), originating from two long-term selection experiments. In each set, some lines (HAM and YOUNG, respectively) have been selected for early reproduction, whereas later reproduction was favored in their counterparts (LAM and OLD). In the HAM and LAM lines, both egg hatching success and larval viability declined with mother's age and did so with accelerating rates. The hatching success declined significantly faster with maternal age in HAM than in LAM lines, according to one of two statistical approaches used. Egg hatching success also declined with maternal age in YOUNG and OLD lines, with no difference between the selection regimes. However, the relationship between mother's age and offspring larva-to-adult viability differed significantly between these two selection regimes: a decline of larval viability with maternal age occurred in YOUNG lines but not in OLD lines. This suggests that the rate with which offspring viability declines with mother's age responded to selection for early versus late reproduction. We suggest broadening the evolutionary concept of senescence to include intrinsically caused declines in offspring quality with maternal age.

  11. Age-Related Changes in 1/f Neural Electrophysiological Noise

    PubMed Central

    Kramer, Mark A.; Case, John; Lepage, Kyle Q.; Tempesta, Zechari R.; Knight, Robert T.; Gazzaley, Adam

    2015-01-01

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53 years) and scalp EEG data from healthy younger (20–30 years) and older (60–70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <−1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. SIGNIFICANCE STATEMENT Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise

  12. Prevalence of ageing-associated cognitive decline in an elderly population.

    PubMed

    Hanninen, T; Koivisto, K; Reinikainen, K J; Helkala, E L; Soininen, H; Mykkänen, L; Laakso, M; Riekkinen, P J

    1996-05-01

    Different diagnostic definitions have been proposed for use in the characterization of mild cognitive disorders associated with ageing. Previously, we reported a high (38.4%) prevalence of age-associated memory impairment (AAMI) using the National Institute of Mental Health criteria in an elderly population. Recently, a work group of the International Psychogeriatric Association proposed criteria for 'ageing-associated cognitive decline' (AACD). The objective of this study was to evaluate the prevalence of AACD in an elderly population. We examined 403 randomly selected subjects (68-78 years of age) with tests of memory, cognitive processing, attention, verbal and visuoconstructive functions and with a structured questionnaire for health status and subjective complaints of cognitive decline. In all, 26.6% of the subjects (24.4% of women, 30. 1% or men) fulfilled the AACD criteria. The prevalence was slightly related to age and education. The rate was lowest in the oldest age of 75 - 78 years (20.5%) and highest in the age of 71 -74 years (30%). Subjects with less than 4 years of education had the lowest (14.3%) and subjects with more than 6 years of education had the highest rate (29.4%) for AACD. However, the differences between these subgroups were not statistically significant. These results suggest that the prevalence of AACD is lower than that of AAMI. As AAMI tends to identify a very heterogeneous subject group, the AACD diagnosis, which takes into account age and education specific norms in its inclusion criteria, might prove superior to AAMI in differentiating a meaningful subgroup from an elderly population both for research purposes and in clinical settings.

  13. Molecular inflammation: underpinnings of aging and age-related diseases.

    PubMed

    Chung, Hae Young; Cesari, Matteo; Anton, Stephen; Marzetti, Emanuele; Giovannini, Silvia; Seo, Arnold Young; Carter, Christy; Yu, Byung Pal; Leeuwenburgh, Christiaan

    2009-01-01

    Recent scientific studies have advanced the notion of chronic inflammation as a major risk factor underlying aging and age-related diseases. In this review, low-grade, unresolved, molecular inflammation is described as an underlying mechanism of aging and age-related diseases, which may serve as a bridge between normal aging and age-related pathological processes. Accumulated data strongly suggest that continuous (chronic) upregulation of pro-inflammatory mediators (e.g., TNF-alpha, IL-1beta, IL-6, COX-2, iNOS) are induced during the aging process due to an age-related redox imbalance that activates many pro-inflammatory signaling pathways, including the NF-kappaB signaling pathway. These pro-inflammatory molecular events are discussed in relation to their role as basic mechanisms underlying aging and age-related diseases. Further, the anti-inflammatory actions of aging-retarding caloric restriction and exercise are reviewed. Thus, the purpose of this review is to describe the molecular roles of age-related physiological functional declines and the accompanying chronic diseases associated with aging. This new view on the role of molecular inflammation as a mechanism of aging and age-related pathogenesis can provide insights into potential interventions that may affect the aging process and reduce age-related diseases, thereby promoting healthy longevity.

  14. Molecular Inflammation: Underpinnings of Aging and Age-related Diseases

    PubMed Central

    Chung, Hae Young; Cesari, Matteo; Anton, Stephen; Marzetti, Emanuele; Giovannini, Silvia; Seo, Arnold Young; Carter, Christy; Yu, Byung Pal; Leeuwenburgh, Christiaan

    2013-01-01

    Recent scientific studies have advanced the notion of chronic inflammation as a major risk factor underlying aging and age-related diseases. In this review, low-grade, unresolved, molecular inflammation is described as an underlying mechanism of aging and age-related diseases, which may serve as a bridge between normal aging and age-related pathological processes. Accumulated data strongly suggest that continuous (chronic) up-regulation of pro-inflammatory mediators (e.g., TNF-α, IL-1β, 6, COX-2, iNOS) are induced during the aging process due to an age-related redox imbalance that activates many pro-inflammatory signaling pathways, including the NF-κB signaling pathway. These pro-inflammatory molecular events are discussed in relation to their role as basic mechanisms underlying aging and age-related diseases. Further, the anti-inflammatory actions of aging-retarding caloric restriction and exercise are reviewed. Thus, the purpose of this review is to describe the molecular roles of age-related physiological functional declines and the accompanying chronic diseases associated with aging. This new view on the role of molecular inflammation as a mechanism of aging and age-related pathogenesis can provide insights into potential interventions that may affect the aging process and reduce age-related diseases, thereby promoting healthy longevity. PMID:18692159

  15. An Age-Associated Decline in Thymic Output Differs in Dog Breeds According to Their Longevity.

    PubMed

    Holder, Angela; Mella, Stephanie; Palmer, Donald B; Aspinall, Richard; Catchpole, Brian

    2016-01-01

    The age associated decline in immune function is preceded in mammals by a reduction in thymic output. Furthermore, there is increasing evidence of a link between immune competence and lifespan. One approach to determining thymic output is to quantify signal joint T cell receptor excision circles (sj-TRECs), a method which has been developed and used in several mammalian species. Life expectancy and the rate of aging vary in dogs depending upon their breed. In this study, we quantified sj-TRECs in blood samples from dogs of selected breeds to determine whether there was a relationship between longevity and thymic output. In Labrador retrievers, a breed with a median expected lifespan of 11 years, there was an age-associated decline in sj-TREC values, with the greatest decline occurring before 5 years of age, but with sj-TREC still detectable in some geriatric animals, over 13 years of age. In large short-lived breeds (Burnese mountain dogs, Great Danes and Dogue de Bordeaux), the decline in sj-TREC values began earlier in life, compared with small long-lived breeds (Jack Russell terriers and Yorkshire terriers), and the presence of animals with undetectable sj-TRECs occurred at a younger age in the short-lived breeds. The study findings suggest that age-associated changes in canine sj-TRECs are related to breed differences in longevity, and this research highlights the use of dogs as a potential model of immunosenescence.

  16. Diffusion tensor imaging detects age related white matter change over a 2 year follow-up which is associated with working memory decline.

    PubMed

    Charlton, R A; Schiavone, F; Barrick, T R; Morris, R G; Markus, H S

    2010-01-01

    Diffusion tensor imaging (DTI) is a sensitive method for detecting white matter damage, and in cross sectional studies DTI measures correlate with age related cognitive decline. However, there are few data on whether DTI can detect age related changes over short time periods and whether such change correlates with cognitive function. In a community sample of 84 middle-aged and elderly adults, MRI and cognitive testing were performed at baseline and after 2 years. Changes in DTI white matter histograms, white matter hyperintensity (WMH) volume and brain volume were determined. Change over time in performance on tests of executive function, working memory and information processing speed were also assessed. Significant change in all MRI measures was detected. For cognition, change was detected for working memory and this correlated with change in DTI only. In a stepwise regression, with change in working memory as the dependent variable, a DTI histogram measure explained 10.8% of the variance in working memory. Change in WMH or brain volume did not contribute to the model. DTI is sensitive to age related change in white matter ultrastructure and appears useful for monitoring age related white matter change even over short time periods.

  17. Does Sensory Function Decline Independently or Concomitantly with Age? Data from the Baltimore Longitudinal Study of Aging.

    PubMed

    Gadkaree, Shekhar K; Sun, Daniel Q; Li, Carol; Lin, Frank R; Ferrucci, Luigi; Simonsick, Eleanor M; Agrawal, Yuri

    2016-01-01

    Objectives . To investigate whether sensory function declines independently or in parallel with age within a single individual. Methods . Cross-sectional analysis of Baltimore Longitudinal Study of Aging (BLSA) participants who underwent vision (visual acuity threshold), proprioception (ankle joint proprioceptive threshold), vestibular function (cervical vestibular-evoked myogenic potential), hearing (pure-tone average audiometric threshold), and Health ABC physical performance battery testing. Results . A total of 276 participants (mean age 70 years, range 26-93) underwent all four sensory tests. The function of all four systems declined with age. After age adjustment, there were no significant associations between sensory systems. Among 70-79-year-olds, dual or triple sensory impairment was associated with poorer physical performance. Discussion . Our findings suggest that beyond the common mechanism of aging, other distinct (nonshared) etiologic mechanisms may contribute to decline in each sensory system. Multiple sensory impairments influence physical performance among individuals in middle old-age (age 70-79).

  18. Does Sensory Function Decline Independently or Concomitantly with Age? Data from the Baltimore Longitudinal Study of Aging

    PubMed Central

    Gadkaree, Shekhar K.; Sun, Daniel Q.; Li, Carol; Lin, Frank R.; Ferrucci, Luigi; Simonsick, Eleanor M.

    2016-01-01

    Objectives. To investigate whether sensory function declines independently or in parallel with age within a single individual. Methods. Cross-sectional analysis of Baltimore Longitudinal Study of Aging (BLSA) participants who underwent vision (visual acuity threshold), proprioception (ankle joint proprioceptive threshold), vestibular function (cervical vestibular-evoked myogenic potential), hearing (pure-tone average audiometric threshold), and Health ABC physical performance battery testing. Results. A total of 276 participants (mean age 70 years, range 26–93) underwent all four sensory tests. The function of all four systems declined with age. After age adjustment, there were no significant associations between sensory systems. Among 70–79-year-olds, dual or triple sensory impairment was associated with poorer physical performance. Discussion. Our findings suggest that beyond the common mechanism of aging, other distinct (nonshared) etiologic mechanisms may contribute to decline in each sensory system. Multiple sensory impairments influence physical performance among individuals in middle old-age (age 70–79). PMID:27774319

  19. Quantitative evaluation of age-related decline in control of preprogramed movement

    PubMed Central

    Lee, Jongho; Kodama, Mitsuhiko; Kakei, Shinji; Masakado, Yoshihisa

    2017-01-01

    In this paper, we examined the age-related changes in control of preprogramed movement, with emphasis on its accuracy. Forty-nine healthy subjects participated in this study, and were divided into three groups depending on their ages: the young group (20–39 years) (n = 16), the middle-age group (40–59 years) (n = 16), and the elderly group (60–79 years) (n = 17). We asked the subjects to perform step-tracking movements of the wrist joint with a manipulandum, and recorded the movements. We evaluated the accuracy of control of preprogramed movement in the three groups in terms of the primary submovement, which was identified as the first segment of the step-tracking movement based on the bell-shaped velocity profile, and calculated the distance between the end position of the primary submovement and the target (i.e. error). The error in the young group was found to be significantly smaller than that in the middle-age and elderly groups, i.e., the error was larger for the higher age groups. These results suggest that young subjects have better control of preprogramed movement than middle-age or elderly subjects. Finally, we examined the temporal property of the primary submovement and its age-related changes. The duration of the primary submovement tended to be longer for the aged groups, although significance was reached only for the elderly group. In particular, the ratio of the duration of the primary submovement to total movement time tended to be lower for the aged groups, suggesting that the proportion of additional movements that are required to compensate for the incomplete control in the preprogramed movement, which are under feedback control, was higher for the aged groups. Consequently, our results indicate that the distance between the end point of the primary submovement and the target center (i.e. error) in the step-tracking movement is a useful parameter to evaluate the age-related changes in control of preprogramed movement. PMID:29186168

  20. Quantitative evaluation of age-related decline in control of preprogramed movement.

    PubMed

    Shimoda, Naoshi; Lee, Jongho; Kodama, Mitsuhiko; Kakei, Shinji; Masakado, Yoshihisa

    2017-01-01

    In this paper, we examined the age-related changes in control of preprogramed movement, with emphasis on its accuracy. Forty-nine healthy subjects participated in this study, and were divided into three groups depending on their ages: the young group (20-39 years) (n = 16), the middle-age group (40-59 years) (n = 16), and the elderly group (60-79 years) (n = 17). We asked the subjects to perform step-tracking movements of the wrist joint with a manipulandum, and recorded the movements. We evaluated the accuracy of control of preprogramed movement in the three groups in terms of the primary submovement, which was identified as the first segment of the step-tracking movement based on the bell-shaped velocity profile, and calculated the distance between the end position of the primary submovement and the target (i.e. error). The error in the young group was found to be significantly smaller than that in the middle-age and elderly groups, i.e., the error was larger for the higher age groups. These results suggest that young subjects have better control of preprogramed movement than middle-age or elderly subjects. Finally, we examined the temporal property of the primary submovement and its age-related changes. The duration of the primary submovement tended to be longer for the aged groups, although significance was reached only for the elderly group. In particular, the ratio of the duration of the primary submovement to total movement time tended to be lower for the aged groups, suggesting that the proportion of additional movements that are required to compensate for the incomplete control in the preprogramed movement, which are under feedback control, was higher for the aged groups. Consequently, our results indicate that the distance between the end point of the primary submovement and the target center (i.e. error) in the step-tracking movement is a useful parameter to evaluate the age-related changes in control of preprogramed movement.

  1. Use it or lose it: engaged lifestyle as a buffer of cognitive decline in aging?

    PubMed

    Hultsch, D F; Hertzog, C; Small, B J; Dixon, R A

    1999-06-01

    Data from the Victoria Longitudinal Study were used to examine the hypothesis that maintaining intellectual engagement through participation in everyday activities buffers individuals against cognitive decline in later life. The sample consisted of 250 middle-aged and older adults tested 3 times over 6 years. Structural equation modeling techniques were used to examine the relationships among changes in lifestyle variables and an array of cognitive variables. There was a relationship between changes in intellectually related activities and changes in cognitive functioning. These results are consistent with the hypothesis that intellectually engaging activities serve to buffer individuals against decline. However, an alternative model suggested the findings were also consistent with the hypothesis that high-ability individuals lead intellectually active lives until cognitive decline in old age limits their activities.

  2. Thalamic structures and associated cognitive functions: Relations with age and aging.

    PubMed

    Fama, Rosemary; Sullivan, Edith V

    2015-07-01

    The thalamus, with its cortical, subcortical, and cerebellar connections, is a critical node in networks supporting cognitive functions known to decline in normal aging, including component processes of memory and executive functions of attention and information processing. The macrostructure, microstructure, and neural connectivity of the thalamus changes across the adult lifespan. Structural and functional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) have demonstrated, regional thalamic volume shrinkage and microstructural degradation, with anterior regions generally more compromised than posterior regions. The integrity of selective thalamic nuclei and projections decline with advancing age, particularly those in thalamofrontal, thalamoparietal, and thalamolimbic networks. This review presents studies that assess the relations between age and aging and the structure, function, and connectivity of the thalamus and associated neural networks and focuses on their relations with processes of attention, speed of information processing, and working and episodic memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Age-dependent decline of nogo-a protein in the mouse cerebrum.

    PubMed

    Kumari, Anita; Thakur, M K

    2014-11-01

    Nogo-A, a myelin-associated neurite growth inhibitory protein, is implicated in synaptic plasticity. It binds to its receptor namely the Nogo-66 receptor1 (NgR1) and regulates filamentous (F) actin dynamics via small GTPases of the Rho family, RhoA kinase (ROCK), LimK and cofilin. These proteins are associated with the structural plasticity, one of the components of synaptic plasticity, which is known to decline with normal aging. So, the level of Nogo-A and its receptor NgR1 are likely to vary during normal brain aging. However, it is not clearly understood how the levels of Nogo-A and its receptor NgR1 change in the cerebrum during aging. Several studies show an age- and gender-dependent decline in synaptic plasticity. Therefore, the present study was planned to analyze the relative changes in the mRNA and protein levels of Nogo-A and NgR1 in both male and female mice cerebrum during normal aging. Western blot analysis has shown decrease in Nogo-A protein level during aging in both male and female mice cerebrum. This was further confirmed by immunofluorescence analysis. RT-PCR analysis of Nogo-A mRNA showed no significant difference in the above-mentioned groups. This was also supported by in situ hybridization. NgR1 protein and its mRNA expression levels showed no significant alteration with aging in the cerebrum of both male and female mice. Taken together, we speculate that the downregulation of Nogo-A protein might have a role in the altered synaptic plasticity during aging.

  4. An experimental test of the causes of forest growth decline with stand age.

    Treesearch

    Michael G. Ryan; Dan Binkley; James H. Fownes; Christian Giardina; Randy S. Senock

    2004-01-01

    The decline in aboveground wood production after canopy closure in even-aged forest stands is a common pattern in forests, but clear evidence for the mechanism causing the decline is lacking. The problem is fundamental to forest biology, commercial forestry (the decline sets the rotation age), and to carbon storage in forests. We tested three hypotheses...

  5. Internet use, social engagement and health literacy decline during ageing in a longitudinal cohort of older English adults

    PubMed Central

    Kobayashi, Lindsay C; Wardle, Jane; von Wagner, Christian

    2015-01-01

    Background Health literacy skills tend to decline during ageing, which is often attributed to age-related cognitive decline. Whether health literacy skills may be influenced by technological and social factors during ageing is unknown. Methods We investigated whether internet use and social engagement protect against health literacy decline during ageing, independent of cognitive decline. We used prospective data from 4368 men and women aged ≥52 years in the English Longitudinal Study of Ageing from 2004 to 2011. Health literacy was measured at baseline (2004–2005) and at follow-up (2010–2011) using a reading comprehension test of a fictitious medicine label. The influences of consistent internet use and engagement in each of the civic, leisure and cultural activities on health literacy decline over the follow-up were estimated. Results After adjusting for cognitive decline and other covariates, consistent internet use (1379/4368; 32%) was protectively associated with health literacy decline (OR=0.77; 95% CI 0.60 to 0.99), as was consistent engagement in cultural activities (1715/4368; 39%; OR=0.73; 95% CI 0.56 to 0.93). As the number of activities engaged in increased, the likelihood of health literacy decline steadily decreased (ptrend<0.0001), with OR=0.51 (95% CI 0.33 to 0.79) for engaging in all four of the internet use and civic, leisure and cultural activities versus none. Conclusions Internet use and social engagement, particularly in cultural activities (eg, attending the cinema, art galleries, museums and the theatre), may help older adults to maintain health literacy during ageing. Support for older adults to maintain socially engaged lives and to access the internet should help promote the maintenance of functional literacy skills during ageing. PMID:25428933

  6. Internet use, social engagement and health literacy decline during ageing in a longitudinal cohort of older English adults.

    PubMed

    Kobayashi, Lindsay C; Wardle, Jane; von Wagner, Christian

    2015-03-01

    Health literacy skills tend to decline during ageing, which is often attributed to age-related cognitive decline. Whether health literacy skills may be influenced by technological and social factors during ageing is unknown. We investigated whether internet use and social engagement protect against health literacy decline during ageing, independent of cognitive decline. We used prospective data from 4368 men and women aged ≥52 years in the English Longitudinal Study of Ageing from 2004 to 2011. Health literacy was measured at baseline (2004-2005) and at follow-up (2010-2011) using a reading comprehension test of a fictitious medicine label. The influences of consistent internet use and engagement in each of the civic, leisure and cultural activities on health literacy decline over the follow-up were estimated. After adjusting for cognitive decline and other covariates, consistent internet use (1379/4368; 32%) was protectively associated with health literacy decline (OR=0.77; 95% CI 0.60 to 0.99), as was consistent engagement in cultural activities (1715/4368; 39%; OR=0.73; 95% CI 0.56 to 0.93). As the number of activities engaged in increased, the likelihood of health literacy decline steadily decreased (ptrend<0.0001), with OR=0.51 (95% CI 0.33 to 0.79) for engaging in all four of the internet use and civic, leisure and cultural activities versus none. Internet use and social engagement, particularly in cultural activities (eg, attending the cinema, art galleries, museums and the theatre), may help older adults to maintain health literacy during ageing. Support for older adults to maintain socially engaged lives and to access the internet should help promote the maintenance of functional literacy skills during ageing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Age-Related Declines in General Cognitive Abilities of Balb/C Mice and General Activity Are Associated with Disparities in Working Memory, Body Weight, and General Activity

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Grossman, Henya; Light, Kenneth; Townsend, David; Kolata, Stefan

    2008-01-01

    A defining characteristic of age-related cognitive decline is a deficit in general cognitive performance. Here we use a testing and analysis regimen that allows us to characterize the general learning abilities of young (3-5 mo old) and aged (19-21 mo old) male and female Balb/C mice. Animals' performance was assessed on a battery of seven diverse…

  8. Consumption of alcoholic beverages and cognitive decline at middle age: the Doetinchem Cohort Study.

    PubMed

    Nooyens, Astrid C J; Bueno-de-Mesquita, H Bas; van Gelder, Boukje M; van Boxtel, Martin P J; Verschuren, W M Monique

    2014-02-01

    Accelerated cognitive decline increases the risk of dementia. Slowing down the rate of cognitive decline leads to the preservation of cognitive functioning in the elderly, who can live independently for a longer time. Alcohol consumption may influence the rate of cognitive decline. The aim of the present study was to evaluate the associations between the total consumption of alcoholic beverages and different types of alcoholic beverages and cognitive decline at middle age. In 2613 men and women of the Doetinchem Cohort Study, aged 43-70 years at baseline (1995-2002), cognitive function (global cognitive function and the domains memory, speed and flexibility) was assessed twice, with a 5-year time interval. In linear regression analyses, the consumption of different types of alcoholic beverages was analysed in relation to cognitive decline, adjusting for confounders. We observed that, in women, the total consumption of alcoholic beverages was inversely associated with the decline in global cognitive function over a 5-year period (P for trend = 0·02), while no association was observed in men. Regarding the consumption of different types of alcoholic beverages in men and women together, red wine consumption was inversely associated with the decline in global cognitive function (P for trend < 0·01) as well as memory (P for trend < 0·01) and flexibility (P for trend = 0·03). Smallest declines were observed at a consumption of about 1·5 glasses of red wine per d. No other types of alcoholic beverages were associated with cognitive decline. In conclusion, only (moderate) red wine consumption was consistently associated with less strong cognitive decline. Therefore, it is most likely that non-alcoholic substances in red wine are responsible for any cognition-preserving effects.

  9. Cognitive performance and age-related changes in the hippocampal proteome.

    PubMed

    Freeman, W M; VanGuilder, H D; Bennett, C; Sonntag, W E

    2009-03-03

    Declining cognitive performance is associated with increasing age, even in the absence of overt pathological processes. We and others have reported that declining cognitive performance is associated with age-related changes in brain glucose utilization, long-term potentiation and paired-pulse facilitation, protein expression, neurotransmitter levels, and trophic factors. However, it is unclear whether these changes are causes or symptoms of the underlying alterations in dendritic and synaptic morphology that occur with age. In this study, we examined the hippocampal proteome for age- and cognition-associated changes in behaviorally stratified young and old rats, using two-dimensional in-gel electrophoresis and MS/MS. Comparison of old cognitively intact with old cognitively impaired animals revealed additional changes that would not have been detected otherwise. Interestingly, not all age-related changes in protein expression were associated with cognitive decline, and distinct differences in protein expression were found when comparing old cognitively intact with old cognitively impaired rats. A large number of protein changes with age were related to the glycolysis/gluconeogenesis pathway. In total, the proteomic changes suggest that age-related alterations act synergistically with other perturbations to result in cognitive decline. This study also demonstrates the importance of examining behaviorally-defined animals in proteomic studies, as comparison of young to old animals regardless of behavioral performance would have failed to detect many cognitive impairment-specific protein expression changes evident when behavioral stratification data were used.

  10. APOE E4 status predicts age-related cognitive decline in the ninth decade: longitudinal follow-up of the Lothian Birth Cohort 1921.

    PubMed

    Schiepers, O J G; Harris, S E; Gow, A J; Pattie, A; Brett, C E; Starr, J M; Deary, I J

    2012-03-01

    Carriers of the APOE E4 allele have an increased risk of developing Alzheimer's disease. However, it is less clear whether APOE E4 status may also be involved in non-pathological cognitive ageing. The present study investigated the associations between APOE genotypes and cognitive change over 8 years in older community-dwelling individuals. APOE genotype was determined in 501 participants of the Lothian Birth Cohort 1921, whose intelligence had been measured in childhood in the Scottish Mental Survey 1932. A polymorphic variant of TOMM40 (rs10524523) was included to differentiate between the effects of the APOE E3 and E4 allelic variants. Cognitive performance on the domains of verbal memory, abstract reasoning and verbal fluency was assessed at mean age 79 years (n=501), and again at mean ages of 83 (n=284) and 87 (n=187). Using linear mixed models adjusted for demographic variables, vascular risk factors and IQ at age 11 years, possession of the APOE E4 allele was associated with a higher relative rate of cognitive decline over the subsequent 8 years for verbal memory and abstract reasoning. Individuals with the long allelic variant of TOMM40, which is linked to APOE E4, showed similar results. Verbal fluency was not affected by APOE E4 status. APOE E2 status was not associated with change in cognitive performance over 8 years. In non-demented older individuals, possession of the APOE E4 allele predicted a higher rate of cognitive decline on tests of verbal memory and abstract reasoning between 79 and 87 years. Thus, possession of the APOE E4 allele may not only predispose to Alzheimer's disease, but also appears to be a risk factor for non-pathological decline in verbal memory and abstract reasoning in the ninth decade of life.

  11. Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases

    PubMed Central

    Li, Yuanyuan; Tollefsbol, Trygve O

    2016-01-01

    Aging is considered as one of the most important developmental processes in organisms and is closely associated with global deteriorations of epigenetic markers such as aberrant methylomic patterns. This altered epigenomic state, referred to ‘epigenetic drift’, reflects deficient maintenance of epigenetic marks and contributes to impaired cellular and molecular functions in aged cells. Epigenetic drift-induced abnormal changes during aging are scantily repaired by epigenetic modulators. This inflexibility in the aged epigenome may lead to an age-related decline in phenotypic plasticity at the cellular and molecular levels due to epigenetic drift. This perspective aims to provide novel concepts for understanding epigenetic effects on the aging process and to provide insights into epigenetic prevention and therapeutic strategies for age-related human disease. PMID:27882781

  12. Differential effects of enriched environment at work on cognitive decline in old age.

    PubMed

    Then, Francisca S; Luck, Tobias; Luppa, Melanie; König, Hans-Helmut; Angermeyer, Matthias C; Riedel-Heller, Steffi G

    2015-05-26

    The aim of the present study was to investigate how different mentally demanding work conditions during the professional life-i.e., enriched environments at work-might influence the rate of cognitive decline in old age. Individuals (n = 1,054) of the Leipzig Longitudinal Study of the Aged, a representative population-based cohort study of individuals aged 75 years and older, underwent cognitive testing via the Mini-Mental State Examination (MMSE) in up to 6 measurement waves. Type and level of mentally demanding work conditions in the participants' former professional life were classified based on the O*NET job descriptor database. In multivariate mixed-model analyses (controlling for sociodemographic and health-related factors), a high level of mentally demanding work tasks stimulating verbal intelligence was significantly associated with a better cognitive functioning at baseline (on average 5 MMSE points higher) as well as a lower rate of cognitive decline (on average 2 MMSE points less) over the 8-year follow-up period compared with a low level. The rate of cognitive decline in old age was also significantly lower (on average 3 MMSE points less) in individuals who had a high level of mentally demanding work tasks stimulating executive functions than those who had a low level. The results suggest that a professional life enriched with work tasks stimulating verbal intelligence and executive functions may help to sustain a good cognitive functioning in old age (75+ years). The findings thus emphasize that today's challenging work conditions may also promote positive health effects. © 2015 American Academy of Neurology.

  13. Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis.

    PubMed

    Chen, Yuanyuan; Wang, Weiwei; Zhao, Xin; Sha, Miao; Liu, Ya'nan; Zhang, Xiong; Ma, Jianguo; Ni, Hongyan; Ming, Dong

    2017-01-01

    Normal aging is typically characterized by abnormal resting-state functional connectivity (FC), including decreasing connectivity within networks and increasing connectivity between networks, under the assumption that the FC over the scan time was stationary. In fact, the resting-state FC has been shown in recent years to vary over time even within minutes, thus showing the great potential of intrinsic interactions and organization of the brain. In this article, we assumed that the dynamic FC consisted of an intrinsic dynamic balance in the resting brain and was altered with increasing age. Two groups of individuals ( N = 36, ages 20-25 for the young group; N = 32, ages 60-85 for the senior group) were recruited from the public data of the Nathan Kline Institute. Phase randomization was first used to examine the reliability of the dynamic FC. Next, the variation in the dynamic FC and the energy ratio of the dynamic FC fluctuations within a higher frequency band were calculated and further checked for differences between groups by non-parametric permutation tests. The results robustly showed modularization of the dynamic FC variation, which declined with aging; moreover, the FC variation of the inter-network connections, which mainly consisted of the frontal-parietal network-associated and occipital-associated connections, decreased. In addition, a higher energy ratio in the higher FC fluctuation frequency band was observed in the senior group, which indicated the frequency interactions in the FC fluctuations. These results highly supported the basis of abnormality and compensation in the aging brain and might provide new insights into both aging and relevant compensatory mechanisms.

  14. Age-Related Decline in Primary CD8+ T Cell Responses Is Associated with the Development of Senescence in Virtual Memory CD8+ T Cells.

    PubMed

    Quinn, Kylie M; Fox, Annette; Harland, Kim L; Russ, Brendan E; Li, Jasmine; Nguyen, Thi H O; Loh, Liyen; Olshanksy, Moshe; Naeem, Haroon; Tsyganov, Kirill; Wiede, Florian; Webster, Rosela; Blyth, Chantelle; Sng, Xavier Y X; Tiganis, Tony; Powell, David; Doherty, Peter C; Turner, Stephen J; Kedzierska, Katherine; La Gruta, Nicole L

    2018-06-19

    Age-associated decreases in primary CD8 + T cell responses occur, in part, due to direct effects on naive CD8 + T cells to reduce intrinsic functionality, but the precise nature of this defect remains undefined. Aging also causes accumulation of antigen-naive but semi-differentiated "virtual memory" (T VM ) cells, but their contribution to age-related functional decline is unclear. Here, we show that T VM cells are poorly proliferative in aged mice and humans, despite being highly proliferative in young individuals, while conventional naive T cells (T N cells) retain proliferative capacity in both aged mice and humans. Adoptive transfer experiments in mice illustrated that naive CD8 T cells can acquire a proliferative defect imposed by the aged environment but age-related proliferative dysfunction could not be rescued by a young environment. Molecular analyses demonstrate that aged T VM cells exhibit a profile consistent with senescence, marking an observation of senescence in an antigenically naive T cell population. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Fish consumption, intake of fats and cognitive decline at middle and older age: the Doetinchem Cohort Study.

    PubMed

    Nooyens, Astrid C J; van Gelder, Boukje M; Bueno-de-Mesquita, H Bas; van Boxtel, Martin P J; Verschuren, W M Monique

    2018-06-01

    To get insight in the impact of fish and fat intake in the prevention of accelerated cognitive decline with ageing, we tested associations between fish and different fat intakes and 5-year change in cognitive functions. In 2612 men and women of the Doetinchem Cohort Study, aged 43-70 years at baseline, dietary intake (including fish consumption) and cognitive function were assessed at baseline and at 5-year follow-up. Average fish consumption (frequency) and intakes (as energy percentages) of total fat, saturated, mono unsaturated, and polyunsaturated fatty acids (PUFA), linoleic, docosahexaenoic, eicosapentaenoic, and a-linolenic acid (ALA), and cholesterol were averaged over baseline and follow-up. Intakes were studied in relation to 5-year change in global cognitive function, memory, information processing speed, and cognitive flexibility, using ANCOVA and multivariate linear regression analyses. No consistent association between (fatty) fish consumption and cognitive decline was observed. Higher cholesterol intake was associated with faster cognitive decline (p < 0.05). Higher n-3 PUFA (especially ALA) intake was associated with slower decline in global cognitive function and memory (p < 0.01). Intakes of other fatty acids were not associated with cognitive decline. Higher cholesterol intake was detrimental, while higher ALA intake was beneficial for maintaining cognitive function with ageing, already at middle age.

  16. Functional MRI evidence for the decline of word retrieval and generation during normal aging.

    PubMed

    Baciu, M; Boudiaf, N; Cousin, E; Perrone-Bertolotti, M; Pichat, C; Fournet, N; Chainay, H; Lamalle, L; Krainik, A

    2016-02-01

    This fMRI study aimed to explore the effect of normal aging on word retrieval and generation. The question addressed is whether lexical production decline is determined by a direct mechanism, which concerns the language operations or is rather indirectly induced by a decline of executive functions. Indeed, the main hypothesis was that normal aging does not induce loss of lexical knowledge, but there is only a general slowdown in retrieval mechanisms involved in lexical processing, due to possible decline of the executive functions. We used three tasks (verbal fluency, object naming, and semantic categorization). Two groups of participants were tested (Young, Y and Aged, A), without cognitive and psychiatric impairment and showing similar levels of vocabulary. Neuropsychological testing revealed that older participants had lower executive function scores, longer processing speeds, and tended to have lower verbal fluency scores. Additionally, older participants showed higher scores for verbal automatisms and overlearned information. In terms of behavioral data, older participants performed as accurate as younger adults, but they were significantly slower for the semantic categorization and were less fluent for verbal fluency task. Functional MRI analyses suggested that older adults did not simply activate fewer brain regions involved in word production, but they actually showed an atypical pattern of activation. Significant correlations between the BOLD (Blood Oxygen Level Dependent) signal of aging-related (A > Y) regions and cognitive scores suggested that this atypical pattern of the activation may reveal several compensatory mechanisms (a) to overcome the slowdown in retrieval, due to the decline of executive functions and processing speed and (b) to inhibit verbal automatic processes. The BOLD signal measured in some other aging-dependent regions did not correlate with the behavioral and neuropsychological scores, and the overactivation of these uncorrelated

  17. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age.

    PubMed

    Vaidya, Amita; Mao, Zhiyong; Tian, Xiao; Spencer, Brianna; Seluanov, Andrei; Gorbunova, Vera

    2014-07-01

    Accumulation of genome rearrangements is a characteristic of aged tissues. Since genome rearrangements result from faulty repair of DNA double strand breaks (DSBs), we hypothesized that DNA DSB repair becomes less efficient with age. The Non-Homologous End Joining (NHEJ) pathway repairs a majority of DSBs in vertebrates. To examine age-associated changes in NHEJ, we have generated an R26NHEJ mouse model in which a GFP-based NHEJ reporter cassette is knocked-in to the ROSA26 locus. In this model, NHEJ repair of DSBs generated by the site-specific endonuclease, I-SceI, reconstitutes a functional GFP gene. In this system NHEJ efficiency can be compared across tissues of the same mouse and in mice of different age. Using R26NHEJ mice, we found that NHEJ efficiency was higher in the skin, lung, and kidney fibroblasts, and lower in the heart fibroblasts and brain astrocytes. Furthermore, we observed that NHEJ efficiency declined with age. In the 24-month old animals compared to the 5-month old animals, NHEJ efficiency declined 1.8 to 3.8-fold, depending on the tissue, with the strongest decline observed in the skin fibroblasts. The sequence analysis of 300 independent NHEJ repair events showed that, regardless of age, mice utilize microhomology sequences at a significantly higher frequency than expected by chance. Furthermore, the frequency of microhomology-mediated end joining (MMEJ) events increased in the heart and lung fibroblasts of old mice, suggesting that NHEJ becomes more mutagenic with age. In summary, our study provides a versatile mouse model for the analysis of NHEJ in a wide range of tissues and demonstrates that DNA repair by NHEJ declines with age in mice, which could provide a mechanism for age-related genomic instability and increased cancer incidence with age.

  18. Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis

    PubMed Central

    Chen, Yuanyuan; Wang, Weiwei; Zhao, Xin; Sha, Miao; Liu, Ya’nan; Zhang, Xiong; Ma, Jianguo; Ni, Hongyan; Ming, Dong

    2017-01-01

    Normal aging is typically characterized by abnormal resting-state functional connectivity (FC), including decreasing connectivity within networks and increasing connectivity between networks, under the assumption that the FC over the scan time was stationary. In fact, the resting-state FC has been shown in recent years to vary over time even within minutes, thus showing the great potential of intrinsic interactions and organization of the brain. In this article, we assumed that the dynamic FC consisted of an intrinsic dynamic balance in the resting brain and was altered with increasing age. Two groups of individuals (N = 36, ages 20–25 for the young group; N = 32, ages 60–85 for the senior group) were recruited from the public data of the Nathan Kline Institute. Phase randomization was first used to examine the reliability of the dynamic FC. Next, the variation in the dynamic FC and the energy ratio of the dynamic FC fluctuations within a higher frequency band were calculated and further checked for differences between groups by non-parametric permutation tests. The results robustly showed modularization of the dynamic FC variation, which declined with aging; moreover, the FC variation of the inter-network connections, which mainly consisted of the frontal-parietal network-associated and occipital-associated connections, decreased. In addition, a higher energy ratio in the higher FC fluctuation frequency band was observed in the senior group, which indicated the frequency interactions in the FC fluctuations. These results highly supported the basis of abnormality and compensation in the aging brain and might provide new insights into both aging and relevant compensatory mechanisms. PMID:28713261

  19. Age-related practice effects across longitudinal neuropsychological assessments in older people with schizophrenia.

    PubMed

    Granholm, Eric; Link, Peter; Fish, Scott; Kraemer, Helena; Jeste, Dilip

    2010-09-01

    The relationship between aging and practice effects on longitudinal neuropsychological assessments was investigated in middle-aged and older people with schizophrenia and healthy controls. Older people with schizophrenia (n = 107; M age = 56.1) and age-comparable nonpsychiatric controls (n = 107; M age = 57.7) were scheduled to receive annual assessments on a comprehensive battery of neuropsychological tests for an average of 2.5 years (range 11 months to 4 years). Mixed-model analyses were used to separately examine the effects of practice and age on test performance. Number of prior assessments (practice) was associated with significant performance improvement across assessments, whereas older age was associated with significant decline in performance. The groups did not differ significantly in extent of age-related cognitive decline, but a three-way interaction among group, age, and practice was found, such that greater age-related decline in practice effects were found for older people with schizophrenia relative to nonpsychiatric participants. This study did not find any evidence of neurodegenerative age-related decline in neuropsychological abilities in middle-aged and older people with schizophrenia, but older age was associated with diminished ability to benefit from repeated exposure to cognitive tasks in people with schizophrenia. Cognitive impairment in schizophrenia may combine with cognitive decline associated with normal aging to reduce practice effects in older patients. These findings have important implications for the design of studies examining the longitudinal trajectory of cognitive functioning across the life span of people with schizophrenia, as well as clinical trials that attempt to demonstrate cognitive enhancement in these individuals. Copyright 2010 APA, all rights reserved.

  20. Interplay between financial assets and social relations on decline in physical function and mortality among older people.

    PubMed

    Jørgensen, Terese Sara Høj; Lund, Rikke; Siersma, Volkert Dirk; Nilsson, Charlotte Juul

    2018-06-01

    It is well established that socioeconomic position (SEP) and social relations impact physical function and mortality in old age. Due to differential vulnerability, few social relations may lead to greater decline in physical function and mortality among older people with low compared to high SEP. The aim was to investigate whether older people with few social relations experience greater decline in physical function and mortality when also subject to low financial assets? The study population included 4060 older people aged 75 or 80 years at baseline in 1998-1999. Social relations at baseline and physical function at baseline and after 1.5, 3.0 and 4.5 years were obtained from questionnaires. Financial assets at baseline and mortality during 10 years of follow-up were obtained from registers. Analyses of the associations between financial assets combined with social relations and decline in physical function and mortality, respectively, were conducted. Among males, but not females, low financial assets and few social relations were associated with the greatest decline in physical function. Yet, interaction only reached significance between financial assets and visits. Among males and females, low financial assets and few social relations were associated with the highest mortality. Interactions only reached significance between financial assets and visits for females and social activity for males. In conclusion, few social relations implied greater decline in physical function among older males and higher mortality among older males and females with low financial assets; however, the study only supports the presence of differential vulnerability for visits and social activity.

  1. Cohort Differences in Cognitive Aging and Terminal Decline in the Seattle Longitudinal Study

    PubMed Central

    Gerstorf, Denis; Ram, Nilam; Hoppmann, Christiane; Willis, Sherry L.; Schaie, K. Warner

    2011-01-01

    Life span researchers have long been interested in how and why fundamental aspects of human ontogeny differ between cohorts of people who have lived through different historical epochs. When examined at the same age, later born cohorts are often cognitively and physically fitter than earlier born cohorts. Less is known, however, about cohort differences in the rate of cognitive aging and if, at the very end of life, pervasive mortality-related processes overshadow and minimize cohort differences. We used data on 5 primary mental abilities from the Seattle Longitudinal Study (Schaie, 2005) to compare both age-related and mortality-related changes between earlier born cohorts (1886–1913) and later born cohorts (1914–1948). Our models covary for several individual and cohort differences in central indicators of life expectancy, education, health, and gender. Age-related growth models corroborate and extend earlier findings by documenting level differences at age 70 of up to 0.50 SD and less steep rates of cognitive aging on all abilities between 50 and 80 years of age favoring the later born cohort. In contrast, mortality-related models provide limited support for positive cohort differences. The later born cohort showed steeper mortality-related declines. We discuss possible reasons why often reported positive secular trends in age-related processes may not generalize to the vulnerable segment of the population that is close to death and suggest routes for further inquiry. PMID:21517155

  2. An hypothesis: the dramatic decline in heart attacks in the United States is temporally related to the decline in duodenal ulcer disease and Helicobacter pylori infection.

    PubMed

    Hughes, William S

    2014-06-01

    Studies of autopsies of military members dying in three US wars indicate that the prevalence of atherosclerosis in successive cohorts of healthy young men and women has dramatically decreased over the past half century. The objective of this study was to compare the decline in the prevalence of atherosclerosis and myocardial infarction with previously published studies on the decline in the prevalence of duodenal ulcer. A plot of the prevalence of coronary atherosclerosis and the prevalence of myocardial infarction in three cohorts of young men and women born from 1930 to 1980 was constructed. The figure shows a marked decline in prevalence in atherosclerosis beginning in a military cohort born around 1930 and a similar marked decline in prevalence of myocardial infarction in the US population beginning in 1970. In published studies duodenal ulcer began to decline in prevalence in 1960. As duodenal ulcers began to occur at age 30 and myocardial infarctions began to occur at age 40 at the time of peak prevalence, the cohort born in 1930 was the first to experience a decline in prevalence of both duodenal ulcer and heart attacks. The study shows that the decline in heart attacks is temporally related to the decline in duodenal ulcer and by inference, Helicobacter pylori infection. © 2014 John Wiley & Sons Ltd.

  3. Telling a (good?) counterstory of aging: natural bodybuilding meets the narrative of decline.

    PubMed

    Phoenix, Cassandra; Smith, Brett

    2011-09-01

    In Western society, the narrative of decline dominates the aging process. We know very little about the complexities of how people resist this narrative. The purpose of this article is to understand how a group of mature natural bodybuilders resisted the narrative of decline. In-depth life story interviews were conducted with 13 natural bodybuilders aged between 50 and 73 years. Verbatim transcripts were produced and the data analyzed using a structural narrative analysis. A dialogical analysis was also utilized. The participants' experiences did not fit with stereotypical assumptions about decline and deterioration in older age. They all told counterstories to "natural" aging, yet what differed was how the participants' counterstories resisted the narrative of decline and the level of resistance that they provided. We advance knowledge in the fields of aging and narrative inquiry by revealing the multidimensionality of resistance. We demonstrated how participants storied resistance in different ways and the important implications this had for the way aging was understood and acted upon-by themselves and potentially by others. In addition to advancing theoretical knowledge, in this article, we also significantly contribute to understandings of the potential of narrative for changing human lives and behavior across the life course in more positive and nuanced ways.

  4. AGED DOMINANT NEGATIVE p38α MAPK MICE ARE RESISTANT TO AGE-DEPENDENT DECLINE IN ADULT-NEUROGENESIS AND CONTEXT DISCRIMINATION FEAR CONDITIONING

    PubMed Central

    Cortez, IbDanelo; Bulavin, Dmitry V.; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T

    2018-01-01

    A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38αAF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38αAF/+) and kinase activity. As a result, aged DN-p38αAF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer’s disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual’s relative risk. In the present study, we evaluated aged DN-p38αAF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38αAF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38αAF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38αAF/+, we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38αAF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. PMID:27765672

  5. Aged dominant negative p38α MAPK mice are resistant to age-dependent decline in adult-neurogenesis and context discrimination fear conditioning.

    PubMed

    Cortez, IbDanelo; Bulavin, Dmitry V; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T

    2017-03-30

    A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38α AF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38α AF/+ ) and kinase activity. As a result, aged DN-p38α AF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer's disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual's relative risk. In the present study, we evaluated aged DN-p38α AF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38α AF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38α AF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38α AF/+ , we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38α AF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quantitative T2 mapping of white matter: applications for ageing and cognitive decline

    NASA Astrophysics Data System (ADS)

    Knight, Michael J.; McCann, Bryony; Tsivos, Demitra; Dillon, Serena; Coulthard, Elizabeth; Kauppinen, Risto A.

    2016-08-01

    In MRI, the coherence lifetime T2 is sensitive to the magnetic environment imposed by tissue microstructure and biochemistry in vivo. Here we explore the possibility that the use of T2 relaxometry may provide information complementary to that provided by diffusion tensor imaging (DTI) in ageing of healthy controls (HC), Alzheimer’s disease (AD) and mild cognitive impairment (MCI). T2 and diffusion MRI metrics were quantified in HC and patients with MCI and mild AD using multi-echo MRI and DTI. We used tract-based spatial statistics (TBSS) to evaluate quantitative MRI parameters in white matter (WM). A prolonged T2 in WM was associated with AD, and able to distinguish AD from MCI, and AD from HC. Shorter WM T2 was associated with better cognition and younger age in general. In no case was a reduction in T2 associated with poorer cognition. We also applied principal component analysis, showing that WM volume changes independently of  T2, MRI diffusion indices and cognitive performance indices. Our data add to the evidence that age-related and AD-related decline in cognition is in part attributable to WM tissue state, and much less to WM quantity. These observations suggest that WM is involved in AD pathology, and that T2 relaxometry is a potential imaging modality for detecting and characterising WM in cognitive decline and dementia.

  7. Education does not slow cognitive decline with aging: 12-year evidence from the victoria longitudinal study.

    PubMed

    Zahodne, Laura B; Glymour, M Maria; Sparks, Catharine; Bontempo, Daniel; Dixon, Roger A; MacDonald, Stuart W S; Manly, Jennifer J

    2011-11-01

    Although the relationship between education and cognitive status is well-known, evidence regarding whether education moderates the trajectory of cognitive change in late life is conflicting. Early studies suggested that higher levels of education attenuate cognitive decline. More recent studies using improved longitudinal methods have not found that education moderates decline. Fewer studies have explored whether education exerts different effects on longitudinal changes within different cognitive domains. In the present study, we analyzed data from 1014 participants in the Victoria Longitudinal Study to examine the effects of education on composite scores reflecting verbal processing speed, working memory, verbal fluency, and verbal episodic memory. Using linear growth models adjusted for age at enrollment (range, 54-95 years) and gender, we found that years of education (range, 6-20 years) was strongly related to cognitive level in all domains, particularly verbal fluency. However, education was not related to rates of change over time for any cognitive domain. Results were similar in individuals older or younger than 70 at baseline, and when education was dichotomized to reflect high or low attainment. In this large longitudinal cohort, education was related to cognitive performance but unrelated to cognitive decline, supporting the hypothesis of passive cognitive reserve with aging.

  8. Dietary enrichment with medium chain triglycerides (AC-1203) elevates polyunsaturated fatty acids in the parietal cortex of aged dogs: implications for treating age-related cognitive decline.

    PubMed

    Taha, Ameer Y; Henderson, Samuel T; Burnham, W M

    2009-09-01

    Dogs demonstrate an age-related cognitive decline, which may be related to a decrease in the concentration of omega-3 polyunsaturated fatty acids (n-3 PUFA) in the brain. Medium chain triglycerides (MCT) increase fatty acid oxidation, and it has been suggested that this may raise brain n-3 PUFA levels by increasing mobilization of n-3 PUFA from adipose tissue to the brain. The goal of the present study was to determine whether dietary MCT would raise n-3 PUFA concentrations in the brains of aged dogs. Eight Beagle dogs were randomized to a control diet (n = 4) or an MCT (AC-1203) enriched diet (n = 4) for 2 months. The animals were then euthanized and the parietal cortex was removed for phospholipid, cholesterol and fatty acid determinations by gas-chromatography. Dietary enrichment with MCT (AC-1203) resulted in a significant increase in brain phospholipid and total lipid concentrations (P < 0.05). In particular, n-3 PUFA within the phospholipid, unesterified fatty acid, and total lipid fractions were elevated in AC-1203 treated subjects as compared to controls (P < 0.05). Brain cholesterol concentrations did not differ significantly between the groups (P > 0.05). These results indicate that dietary enrichment with MCT, raises n-3 PUFA concentrations in the parietal cortex of aged dogs.

  9. Senescent Cells: A Novel Therapeutic Target for Aging and Age-Related Diseases

    PubMed Central

    Naylor, RM; Baker, DJ; van Deursen, JM

    2014-01-01

    Aging is the main risk factor for most chronic diseases, disabilities, and declining health. It has been proposed that senescent cells—damaged cells that have lost the ability to divide—drive the deterioration that underlies aging and age-related diseases. However, definitive evidence for this relationship has been lacking. The use of a progeroid mouse model (which expresses low amounts of the mitotic checkpoint protein BubR1) has been instrumental in demonstrating that p16Ink4a-positive senescent cells drive age-related pathologies and that selective elimination of these cells can prevent or delay age-related deterioration. These studies identify senescent cells as potential therapeutic targets in the treatment of aging and age-related diseases. Here, we describe how senescent cells develop, the experimental evidence that causally implicates senescent cells in age-related dysfunction, the chronic diseases and disorders that are characterized by the accumulation of senescent cells at sites of pathology, and the therapeutic approaches that could specifically target senescent cells. PMID:23212104

  10. Decline in semicircular canal and otolith function with age

    PubMed Central

    Agrawal, Yuri; Zuniga, M. Geraldine; Davalos-Bichara, Marcela; Schubert, Michael C.; Walston, Jeremy D.; Hughes, Jennifer; Carey, John P.

    2012-01-01

    Objective To characterize the physiologic nature of the vestibular dysfunction that occurs with the normative aging process. Study design Cross-sectional study. Setting Tertiary care academic medical center. Patients Fifty individuals age 70 and above. Interventions Head thrust dynamic visual acuity testing (htDVA) and cervical and ocular vestibular-evoked myogenic potential (VEMP) testing. Main Outcome Measures Semicircular canal function measured by htDVA in each of the three semicircular canal planes, and saccular and utricular function measured by cVEMP and oVEMP testing, respectively. Results We observed significant declines in semicircular canal function in each of the canal planes as well as otolith function associated with aging. We found that individuals with impaired horizontal and superior semicircular canal function were likely to also have concomitant deficits in utricular but not saccular function. Overall, we noted that the prevalence of semicircular canal dysfunction was highest followed by saccular then utricular impairment, although we did observe individuals with isolated otolith deficits. Conclusions These data suggest an overall decline in semicircular canal as well as otolith function associated with aging, although the magnitude of impairment was greater for the semicircular canals than the otoliths in this elderly population. A better understanding of the specific vestibular deficits that occur with aging can inform the development of rational screening, vestibular rehabilitation and fall risk reduction strategies in older individuals. PMID:22699991

  11. Verbal Memory Declines More Rapidly with Age in HIV Infected versus Uninfected Adults

    PubMed Central

    Seider, Talia R.; Luo, Xi; Gongvatana, Assawin; Devlin, Kathryn N.; de la Monte, Suzanne M.; Chasman, Jesse D.; Yan, Peisi; Tashima, Karen T.; Navia, Bradford; Cohen, Ronald A.

    2015-01-01

    Objectives In the current era of effective antiretroviral treatment, the number of older adults living with HIV is rapidly increasing. This study investigated the combined influence of age and HIV infection on longitudinal changes in verbal and visuospatial learning and memory. Methods In this longitudinal, case-control design, 54 HIV seropositive and 30 seronegative individuals aged 40–74 received neurocognitive assessments at baseline visits and again one year later. Assessment included tests of verbal and visuospatial learning and memory. Linear regression was used to predict baseline performance and longitudinal change on each test using HIV serostatus, age, and their interaction as predictors. MANOVA was used to assess the effects of these predictors on overall baseline performance and overall longitudinal change. Results The interaction of HIV and age significantly predicted longitudinal change in verbal memory performance, as did HIV status, indicating that although the seropositive group declined more than the seronegative group overall, the rate of decline depended on age such that greater age was associated with a greater decline in this group. The regression models for visuospatial learning and memory were significant at baseline, but did not predict change over time. HIV status significantly predicted overall baseline performance and overall longitudinal change. Conclusions This is the first longitudinal study focused on the effects of age and HIV on memory. Findings suggest that age and HIV interact to produce larger declines in verbal memory over time. Further research is needed to gain a greater understanding of the effects of HIV on the aging brain. PMID:24645772

  12. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth.

    PubMed

    Tang, Jianwu; Luyssaert, Sebastiaan; Richardson, Andrew D; Kutsch, Werner; Janssens, Ivan A

    2014-06-17

    The traditional view of forest dynamics originated by Kira and Shidei [Kira T, Shidei T (1967) Jap J Ecol 17:70-87] and Odum [Odum EP (1969) Science 164(3877):262-270] suggests a decline in net primary productivity (NPP) in aging forests due to stabilized gross primary productivity (GPP) and continuously increased autotrophic respiration (Ra). The validity of these trends in GPP and Ra is, however, very difficult to test because of the lack of long-term ecosystem-scale field observations of both GPP and Ra. Ryan and colleagues [Ryan MG, Binkley D, Fownes JH (1997) Ad Ecol Res 27:213-262] have proposed an alternative hypothesis drawn from site-specific results that aboveground respiration and belowground allocation decreased in aging forests. Here, we analyzed data from a recently assembled global database of carbon fluxes and show that the classical view of the mechanisms underlying the age-driven decline in forest NPP is incorrect and thus support Ryan's alternative hypothesis. Our results substantiate the age-driven decline in NPP, but in contrast to the traditional view, both GPP and Ra decline in aging boreal and temperate forests. We find that the decline in NPP in aging forests is primarily driven by GPP, which decreases more rapidly with increasing age than Ra does, but the ratio of NPP/GPP remains approximately constant within a biome. Our analytical models describing forest succession suggest that dynamic forest ecosystem models that follow the traditional paradigm need to be revisited.

  13. Impaired Sleep Predicts Cognitive Decline in Old People: Findings from the Prospective KORA Age Study.

    PubMed

    Johar, Hamimatunnisa; Kawan, Rasmila; Emeny, Rebecca Thwing; Ladwig, Karl-Heinz

    2016-01-01

    To investigate the association between sleep-related characteristics and cognitive change over 3 years of follow up in an aged population. Sleep characteristics and covariates were assessed at baseline in a standardized interview and clinical examination of the population-based KORA Age Study (n = 740, mean age = 75 years). Cognitive score (determined by telephone interview for cognitive status, TICS-m) was recorded at baseline and 3 years later. At baseline, 82.83% (n = 613) of participants had normal cognitive status, 13.51% (n = 100) were classified with mild cognitive impairment (MCI), and 3.64% (n = 27) with probable dementia. The effect of three distinct patterns of poor sleep (difficulties initiating [DIS] or maintaining sleep [DMS], daytime sleepiness [DS] or sleep duration) were considered on a change in cognitive score with adjustments for potential confounders in generalized linear regression models. Cognitive decline was more pronounced in individuals with DMS compared to those with no DMS (β = 1.33, 95% CI = 0.41-2.24, P < 0.001). However, the predictive power of DMS was only significant in individuals with normal cognition and not impaired subjects at baseline. Prolonged sleep duration increased the risk for cognitive decline in cognitively impaired elderly (β = 1.86, 95% CI = 0.15-3.57, P = 0.03). Other sleep characteristics (DIS and DS) were not significantly associated with cognitive decline. DMS and long sleep duration were associated with cognitive decline in normal and cognitively impaired elderly, respectively. The identification of impaired sleep quality may offer intervention strategies to deter cognitive decline in the elderly with normal cognitive function. © 2016 Associated Professional Sleep Societies, LLC.

  14. Peptidylarginine deiminase 4 promotes age-related organ fibrosis

    PubMed Central

    Erpenbeck, Luise; Savchenko, Alexander; Hayashi, Hideki; Cherpokova, Deya; Gallant, Maureen; Mauler, Maximilian; Cifuni, Stephen M.

    2017-01-01

    Aging promotes inflammation, a process contributing to fibrosis and decline in organ function. The release of neutrophil extracellular traps (NETs [NETosis]), orchestrated by peptidylarginine deiminase 4 (PAD4), damages organs in acute inflammatory models. We determined that NETosis is more prevalent in aged mice and investigated the role of PAD4/NETs in age-related organ fibrosis. Reduction in fibrosis was seen in the hearts and lungs of aged PAD4−/− mice compared with wild-type (WT) mice. An increase in left ventricular interstitial collagen deposition and a decline in systolic and diastolic function were present only in WT mice, and not in PAD4−/− mice. In an experimental model of cardiac fibrosis, cardiac pressure overload induced NETosis and significant platelet recruitment in WT but not PAD4−/− myocardium. DNase 1 was given to assess the effects of extracellular chromatin. PAD4 deficiency or DNase 1 similarly protected hearts from fibrosis. We propose a role for NETs in cardiac fibrosis and conclude that PAD4 regulates age-related organ fibrosis and dysfunction. PMID:28031479

  15. Probability of treatment following acute decline in lung function in children with cystic fibrosis is related to baseline pulmonary function.

    PubMed

    Morgan, Wayne J; Wagener, Jeffrey S; Yegin, Ashley; Pasta, David J; Millar, Stefanie J; Konstan, Michael W

    2013-10-01

    To determine whether the association between high forced expiratory volume in 1 second (FEV1) and increased rate of decline in FEV1 in children with cystic fibrosis could be due to less frequent intervention after acute declines (sudden decline events) in FEV1. Patients with cystic fibrosis aged 6-17 years enrolled in the Epidemiologic Study of Cystic Fibrosis were assessed for a sudden decline event, defined as a 10% relative decline in FEV1% predicted from an average of 3 consecutive stable baseline spirometries. The likelihood of therapeutic intervention within 14 days before and 56 days after this event was then related to their baseline FEV1% predicted age-specific decile using a logistic regression adjusting for age group (6-12 years, 13-17 years) and presence of Pseudomonas aeruginosa on respiratory culture. A total of 10 888 patients had at least 1 sudden decline event in FEV1. Patients in the highest FEV1 decile were significantly less likely than those in the lowest decile to receive intravenous antibiotics (OR, 0.14; 95% CI, 0.11-0.18; P < .001) or be hospitalized (OR, 0.18; 95% CI, 0.14-0.23; P < .001) following decline. Children and adolescents with high baseline lung function are less likely to receive a therapeutic intervention following an acute decline in FEV1, which may explain their greater rate of FEV1 decline. Copyright © 2013 Mosby, Inc. All rights reserved.

  16. Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity

    PubMed Central

    Lin, Ai-Ling; Coman, Daniel; Jiang, Lihong; Rothman, Douglas L; Hyder, Fahmeed

    2014-01-01

    Caloric restriction (CR) prolongs lifespan and retards many detrimental effects of aging, but its effect on brain mitochondrial function and neuronal activity—especially in healthy aging—remains unexplored. Here we measured rates of neuronal glucose oxidation and glutamate–glutamine neurotransmitter cycling in young control, old control (i.e., healthy aging), and old CR rats using in vivo nuclear magnetic resonance spectroscopy. We found that, compared with the young control, neuronal energy production and neurotransmission rates were significantly reduced in healthy aging, but were preserved in old CR rats. The results suggest that CR mitigated the age-related deceleration of brain physiology. PMID:24984898

  17. Higher mortality and impaired elimination of bacteria in aged mice after intracerebral infection with E. coli are associated with an age-related decline of microglia and macrophage functions.

    PubMed

    Schütze, Sandra; Ribes, Sandra; Kaufmann, Annika; Manig, Anja; Scheffel, Jörg; Redlich, Sandra; Bunkowski, Stephanie; Hanisch, Uwe-Karsten; Brück, Wolfgang; Nau, Roland

    2014-12-30

    Incidence and mortality of bacterial meningitis are strongly increased in aged compared to younger adults demanding new strategies to improve prevention and therapy of bacterial central nervous system (CNS) infections the elderly. Here, we established a geriatric mouse model for an intracerebral E. coli infection which reflects the clinical situation in aged patients: After intracerebral challenge with E. coli K1, aged mice showed a higher mortality, a faster development of clinical symptoms, and a more pronounced weight loss. Elimination of bacteria and systemic inflammatory response were impaired in aged mice, however, the number of infiltrating leukocytes and microglial cells in the CNS of aged and young mice did not differ substantially. In vitro, primary microglial cells and peritoneal macrophages from aged mice phagocytosed less E. coli and released less NO and cyto-/chemokines compared to cells from young mice both without activation and after stimulation by agonists of TLR 2, 4, and 9. Our results suggest that the age-related decline of microglia and macrophage functions plays an essential role for the higher susceptibility of aged mice to intracerebral infections. Strategies to improve the phagocytic potential of aged microglial cells and macrophages appear promising for prevention and treatment of CNS infections in elderly patients.

  18. Mathematical modelling of decline in follicle pool during female reproductive ageing.

    PubMed

    Thilagam, Alagu

    2016-03-01

    The factors which govern the subtle links between follicle loss and mammalian female reproductive ageing remain unclear despite extensive studies undertaken to understand the critical physiological and biochemical mechanisms that underly the accelerated decline in follicle numbers in women older than 37 years. It is not certain whether there is a sole control by the ovary or whether other factors which affect ageing also intersect with the ovarian effect. There is convincing experimental evidence for an interplay of several processes that seem to influence the follicle loss-female reproductive ageing links, with specific hormones (follicle-stimulating hormone, anti-Müllerian hormone, dehydroepiandrosterone) noted to play important roles in follicular dynamics and ovarian ageing. In this work, we examine the subtle links between the rate of follicular decline with ageing and the role of hormones via a series of non-autonomous equations. Simulation results based on the time evolution of the number of ovarian follicles and biochemical changes in the ovarian environment influenced by hormone levels is compared with empirical data based on follicle loss-reproductive ageing correlation studies. © Crown copyright 2015.

  19. Declines in arrestin and rhodopsin in the macula with progression of age-related macular degeneration.

    PubMed

    Ethen, Cheryl M; Feng, Xiao; Olsen, Timothy W; Ferrington, Deborah A

    2005-03-01

    Biochemical analysis of age-related macular degeneration (AMD) at distinct stages of the disease will help further understanding of the molecular events associated with disease progression. This study was conducted to determine the ability of a new grading system for eye bank eyes, the Minnesota Grading System (MGS), to discern distinct stages of AMD so that retinal region-specific changes in rod photoreceptor protein expression from donors could be determined. Donor eyes were assigned to a specific level of AMD by using the MGS. Expression of the rod photoreceptor proteins rhodopsin and arrestin was evaluated by Western immunoblot analysis in the macular and peripheral regions of the neurosensory retina from donors at different stages of AMD. A significant linear decline in both arrestin and rhodopsin content correlated with progressive MGS levels in the macula. In contrast, the peripheral region showed no significant correlation between MGS level and the content of either protein. The statistically significant relationship between decreasing macular rod photoreceptor proteins and progressive MGS levels of AMD demonstrates the utility of the clinically based MGS to correspond with specific protein changes found at known, progressive stages of degeneration. Future biochemical analysis of clinically characterized donor eyes will further understanding of the pathobiochemistry of AMD.

  20. DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging.

    PubMed

    Park, Sung-Jun; Gavrilova, Oksana; Brown, Alexandra L; Soto, Jamie E; Bremner, Shannon; Kim, Jeonghan; Xu, Xihui; Yang, Shutong; Um, Jee-Hyun; Koch, Lauren G; Britton, Steven L; Lieber, Richard L; Philp, Andrew; Baar, Keith; Kohama, Steven G; Abel, E Dale; Kim, Myung K; Chung, Jay H

    2017-05-02

    Hallmarks of aging that negatively impact health include weight gain and reduced physical fitness, which can increase insulin resistance and risk for many diseases, including type 2 diabetes. The underlying mechanism(s) for these phenomena is poorly understood. Here we report that aging increases DNA breaks and activates DNA-dependent protein kinase (DNA-PK) in skeletal muscle, which suppresses mitochondrial function, energy metabolism, and physical fitness. DNA-PK phosphorylates threonines 5 and 7 of HSP90α, decreasing its chaperone function for clients such as AMP-activated protein kinase (AMPK), which is critical for mitochondrial biogenesis and energy metabolism. Decreasing DNA-PK activity increases AMPK activity and prevents weight gain, decline of mitochondrial function, and decline of physical fitness in middle-aged mice and protects against type 2 diabetes. In conclusion, DNA-PK is one of the drivers of the metabolic and fitness decline during aging, and therefore DNA-PK inhibitors may have therapeutic potential in obesity and low exercise capacity. Published by Elsevier Inc.

  1. Left Ventricular Hypertrophy and Cognitive Decline in Old Age.

    PubMed

    Mahinrad, Simin; Vriend, Annelotte E; Jukema, J Wouter; van Heemst, Diana; Sattar, Naveed; Blauw, Gerard Jan; Macfarlane, Peter W; Clark, Elaine N; de Craen, Anton J M; Sabayan, Behnam

    2017-01-01

    Patients with advanced heart failure run a greater risk of dementia. Whether early cardiac structural changes also associate with cognitive decline is yet to be determined. We tested whether left ventricular hypertrophy (LVH) derived from electrocardiogram associates with cognitive decline in older subjects at risk of cardiovascular disease. We included 4,233 participants (mean age 75.2 years, 47.8% male) from PROSPER (PROspective Study of Pravastatin in the Elderly at Risk). LVH was assessed from baseline electrocardiograms by measuring the Sokolow-Lyon index. Higher levels of Sokolow-Lyon index indicate higher degrees of LVH. Cognitive domains involving selective attention, processing speed, and immediate and delayed memory were measured at baseline and repeated during a mean follow-up of 3.2 years. At baseline, LVH was not associated with worse cognitive function. During follow-up, participants with higher levels of LVH had a steeper decline in cognitive function including in selective attention (p = 0.009), processing speed (p = 0.010), immediate memory (p < 0.001), and delayed memory (p = 0.002). These associations were independent of cardiovascular risk factors, co-morbidities, and medications. LVH assessed by electrocardiogram associates with steeper decline in cognitive function of older subjects independent of cardiovascular risk factors and co-morbidities. This study provides further evidence on the link between subclinical cardiac structural changes and cognitive decline in older subjects.

  2. Some economic consequences of an ageing and declining population in Denmark.

    PubMed

    Leeson, G W

    1983-01-01

    Figures for 1981 indicate that Denmark has a fertility level of 1.45 which has been below replacement level since 1968. In that same time period, natural increase has decreased from over 27,000 in 1968 to only 1354 in 1980 and a negative natural increase in 1981 with deaths outnumbering births by 3001. Even during the depression in the 1930's, net population increase was between 6-9/1000 with a fertility level which hovered around replacement level. At that time, the number of females in the childbearing ages was enough to provide population growth, whereas the number is much less today. Population increase is only 0.3/1000. The national population projections for Denmark for 1981-2010 assume an increase in the fertility level from 1.45-1.70 by 1991 after which it remains constant. The number of 20-39 year olds increased steadily until 1945 after which there was a decline as the cohorts from periods with low fertility levels entered this age group, but this was again followed by a steady increase to the present day. The number of females aged 0-39 years is expected to decrease in all age groups to the year 2000. Those aged 40-59 increased in numbers from 1920 to the mid 1960s, since then they have decreased in number, but an increase is forcast for the remainder of the century. The number of elderly females also increased steadily from 1930-80, from about 200,000 to over 550,000; this is expected to continue until 1990 when a short-term decline will set in. Regarding the economic and social consequences of these trends, it is shown that the present decline in fertility has its origins in a period of low unemployment and its negative growth while there was still relatively low unemployment and economic growth. In 1973 the unemployed rate was 0.9% of the work force and this rose to 9.2% in 1981. The Danish population has aged from one with 1/4 million people aged 60 and over at the turn of the century to about 1 million of that age today. Also, the aged themselves

  3. Age-related slowing of digit symbol substitution revisited: what do longitudinal age changes reflect?

    PubMed

    MacDonald, Stuart W S; Hultsch, David F; Strauss, Esther; Dixon, Roger A

    2003-05-01

    A previous investigation reported that cross-sectional age differences in Digit Symbol Substitution (DSS) test performance reflect declines in perceptual processing speed. Support for the tenability of the processing speed hypothesis requires examining whether longitudinal age-related change in DSS performance is largely mediated by changes in speed. The present study used data from the Victoria Longitudinal Study to examine patterns and predictors of longitudinal change in DSS for 512 older adults (M(age) = 68.37 years, SD = 7.43). On the basis of multilevel modeling, baseline DSS performance was poorer for older participants and men, with longitudinal declines more pronounced with increasing age and decreasing speed. In contrast to the present cross-sectional findings, statistical control of change trajectories in perceptual speed using the same data did not substantially attenuate age changes. These discrepancies suggest different sources of variance may underlie cross-sectional age differences and longitudinal age changes for DSS.

  4. The two faces of selective memory retrieval: Earlier decline of the beneficial than the detrimental effect with older age.

    PubMed

    Aslan, Alp; Schlichting, Andreas; John, Thomas; Bäuml, Karl-Heinz T

    2015-12-01

    Recent work with young adults has shown that, depending on study context access, selective memory retrieval can both impair and improve recall of other memories (Bäuml & Samenieh, 2010). Here, we investigated the 2 opposing effects of selective retrieval in older age. In Experiment 1, we examined 64 younger (20-35 years) and 64 older participants (above 60 years), and manipulated study context access using list-method directed forgetting. Whereas both age groups showed a detrimental effect of selective retrieval on to-be-remembered items, only younger but not older adults showed a beneficial effect on to-be-forgotten items. In Experiment 2, we examined 112 participants from a relatively wide age range (40-85 years), and manipulated study context access by varying the retention interval between study and test. Overall, a detrimental effect of selective retrieval arose when the retention interval was relatively short, but a beneficial effect when the retention interval was prolonged. Critically, the size of the beneficial but not the detrimental effect of retrieval decreased with age and this age-related decline was mediated by individuals' working memory capacity, as measured by the complex operation span task. Together, the results suggest an age-related dissociation in retrieval dynamics, indicating an earlier decline of the beneficial than the detrimental effect of selective retrieval with older age. (c) 2015 APA, all rights reserved).

  5. Perception and Cognition in the Ageing Brain: A Brief Review of the Short- and Long-Term Links between Perceptual and Cognitive Decline

    PubMed Central

    Roberts, Katherine L.; Allen, Harriet A.

    2016-01-01

    Ageing is associated with declines in both perception and cognition. We review evidence for an interaction between perceptual and cognitive decline in old age. Impoverished perceptual input can increase the cognitive difficulty of tasks, while changes to cognitive strategies can compensate, to some extent, for impaired perception. While there is strong evidence from cross-sectional studies for a link between sensory acuity and cognitive performance in old age, there is not yet compelling evidence from longitudinal studies to suggest that poor perception causes cognitive decline, nor to demonstrate that correcting sensory impairment can improve cognition in the longer term. Most studies have focused on relatively simple measures of sensory (visual and auditory) acuity, but more complex measures of suprathreshold perceptual processes, such as temporal processing, can show a stronger link with cognition. The reviewed evidence underlines the importance of fully accounting for perceptual deficits when investigating cognitive decline in old age. PMID:26973514

  6. The use of films to simulate age-related declines in yellow vision.

    PubMed

    Yoshida, C A; Sakuraba, S

    1996-06-01

    One of characteristics of normal age-related vision losses depends on yellow-intensity in the lens of the eye. (1) We investigated discrimination between seven intensities of yellow in 303 elderly people aged from late 60s to early 90s. The results demonstrated that the failures of vision increase with age, and the losses depend on yellow intensity. (2) We got a yellow index (YI) from different Y-intensity color charts used in (I) above, covering 12 kinds of marketable yellow films, and selected two kinds of films which match (YI) original color charts, corresponding to 53% or 89% of Y intensity. (3) Finally, we judged that all of these colors' xy-chromaticities with or without the two films, were exactly on the unique-yellow line in the diagram, which means a pure yellow, not mixed. (4) Then, these two films could simulate each of the mid-level or high-level Y intensity, respectively, in age-related vision. (5) We analyzed changes of all kinds of colors (220) in xy-chromaticity diagrams and obtained mean changing distances from every original chromatogram compared to the others. These data would be useful for architects or designers to design cities or buildings for use by the elderly.

  7. Aging Exacerbates Obesity-induced Cerebromicrovascular Rarefaction, Neurovascular Uncoupling, and Cognitive Decline in Mice

    PubMed Central

    Tucsek, Zsuzsanna; Toth, Peter; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Warrington, Junie P.; Giles, Cory B.; Wren, Jonathan D.; Koller, Akos; Ballabh, Praveen; Sonntag, William E.; Csiszar, Anna

    2014-01-01

    Epidemiological studies show that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular impairment, we compared young (7 months) and aged (24 months) high-fat diet–fed obese C57BL/6 mice. We found that aging exacerbates the obesity-induced decline in microvascular density both in the hippocampus and in the cortex. The extent of hippocampal microvascular rarefaction and the extent of impairment of hippocampal-dependent cognitive function positively correlate. Aging exacerbates obesity-induced loss of pericyte coverage on cerebral microvessels and alters hippocampal angiogenic gene expression signature, which likely contributes to microvascular rarefaction. Aging also exacerbates obesity-induced oxidative stress and induction of NADPH oxidase and impairs cerebral blood flow responses to whisker stimulation. Collectively, obesity exerts deleterious cerebrovascular effects in aged mice, promoting cerebromicrovascular rarefaction and neurovascular uncoupling. The morphological and functional impairment of the cerebral microvasculature in association with increased blood–brain barrier disruption and neuroinflammation (Tucsek Z, Toth P, Sosnowsk D, et al. Obesity in aging exacerbates blood–brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol Biol Med Sci. 2013. In press, PMID: 24269929) likely contribute to obesity-induced cognitive decline in aging. PMID:24895269

  8. Developmental decline in height growth in Douglas-fir.

    Treesearch

    Barbara J. Bond; Nicole M. Czarnomski; Clifton Cooper; Michael E. Day; Michael S. Greenwood

    2007-01-01

    The characteristic decline in height growth that occurs over a tree's lifespan is often called "age-related decline." But is the reduction in height growth in aging trees a function of age or of size? We grafted shoot tips across different ages and sizes of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees to determine whether...

  9. Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats.

    PubMed

    Pietrelli, A; Lopez-Costa, J; Goñi, R; Brusco, A; Basso, N

    2012-01-27

    Recent research involving human and animals has shown that aerobic exercise of moderate intensity produces the greatest benefit on brain health and behavior. In this study we investigated the effects on cognitive function and anxiety-related behavior in rats at different ages of aerobic exercise, performed regularly throughout life. We designed an aerobic training program with the treadmill running following the basic principles of human training, and assuming that rats have the same physiological adaptations. The intensity was gradually adjusted to the fitness level and age, and maintained at 60-70% of maximum oxygen consumption (max.VO(2)). In middle age (8 months) and old age (18 months), we studied the cognitive response with the radial maze (RM), and anxiety-related behaviors with the open field (OF) and the elevated plus maze (EPM). Aerobically trained (AT) rats had a higher cognitive performance measured in the RM, showing that exercise had a cumulative and amplifier effect on memory and learning. The analysis of age and exercise revealed that the effects of aerobic exercise were modulated by age. Middle-aged AT rats were the most successful animals; however, the old AT rats met the criteria more often than the middle-aged sedentary controls (SC), indicating that exercise could reverse the negative effects of sedentary life, partially restore the cognitive function, and protect against the deleterious effects of aging. The results in the OF and EPM showed a significant decrease in key indicators of anxiety, revealing that age affected most of the analyzed variables, and that exercise had a prominent anxiolytic effect, particularly strong in old age. In conclusion, our results indicated that regular and chronic aerobic exercise has time and dose-dependent, neuroprotective and restorative effects on physiological brain aging, and reduces anxiety-related behaviors. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Demographic and clinical characteristics related to cognitive decline in Alzheimer disease in China: A multicenter survey from 2011 to 2014.

    PubMed

    Peng, Dantao; Shi, Zhihong; Xu, Jun; Shen, Lu; Xiao, Shifu; Zhang, Nan; Li, Yi; Jiao, Jinsong; Wang, Yan-Jiang; Liu, Shuai; Zhang, Meilin; Wang, Meng; Liu, Shuling; Zhou, Yuying; Zhang, Xiao; Gu, Xiao-Hua; Yang, Ce-Ce; Wang, Yu; Jiao, Bin; Tang, Beisha; Wang, Jinhuan; Yu, Tao; Ji, Yong

    2016-06-01

    Alzheimer disease (AD) is the most frequent cause of dementia. AD diagnosis, progression, and treatment have not been analyzed nationwide in China. The primary aim of this study was to analyze demographic and clinical characteristics related to cognitive decline in AD patients treated at outpatient clinics in China.We performed a retrospective study of 1993 AD patients at 10 cognitive centers across 8 cities in China from March 2011 to October 2014. Of these, 891 patients were followed for more than 1 year.The mean age at diagnosis was 72.0 ± 10.0 years (range 38-96 years), and the mean age at onset of AD was 69.8 ± 9.5 years. Most patients (65.1%) had moderate to severe symptoms at the time of diagnosis, and mean Mini-Mental State Examination at diagnosis was 15.7 ± 7.7. AD patients showed significant cognitive decline at 12 months after diagnosis. Having more than 9 years of formal education was an independent risk factor related to rapid cognitive decline [odds ratio (OR) = 1.80; 95% confidence interval (95% CI): 1.11-2.91]. Early-onset AD patients experienced more rapid cognitive decline than late-onset patients (OR = 1.83; 95% CI: 1.09-3.06).Most AD patients in China had moderate to severe symptoms at the time of diagnosis and experienced significant cognitive decline within 1 year. Rapid cognitive decline in AD was related to having a higher educational level and younger age of onset.

  11. The endoplasmic reticulum stress response in aging and age-related diseases

    PubMed Central

    Brown, Marishka K.; Naidoo, Nirinjini

    2012-01-01

    The endoplasmic reticulum(ER) is a multifunctional organelle within which protein folding, lipid biosynthesis, and calcium storage occurs. Perturbations such as energy or nutrient depletion, disturbances in calcium or redox status that disrupt ER homeostasis lead to the misfolding of proteins, ER stress and up-regulation of several signaling pathways coordinately called the unfolded protein response (UPR). The UPR is characterized by the induction of chaperones, degradation of misfolded proteins and attenuation of protein translation. The UPR plays a fundamental role in the maintenance of cellular homeostasis and thus is central to normal physiology. However, sustained unresolved ER stress leads to apoptosis. Aging linked declines in expression and activity of key ER molecular chaperones and folding enzymes compromise proper protein folding and the adaptive response of the UPR. One mechanism to explain age associated declines in cellular functions and age-related diseases is a progressive failure of chaperoning systems. In many of these diseases, proteins or fragments of proteins convert from their normally soluble forms to insoluble fibrils or plaques that accumulate in a variety of organs including the liver, brain or spleen. This group of diseases, which typically occur late in life includes Alzheimer's, Parkinson's, type II diabetes and a host of less well known but often equally serious conditions such as fatal familial insomnia. The UPR is implicated in many of these neurodegenerative and familial protein folding diseases as well as several cancers and a host of inflammatory diseases including diabetes, atherosclerosis, inflammatory bowel disease and arthritis. This review will discuss age-related changes in the ER stress response and the role of the UPR in age-related diseases. PMID:22934019

  12. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    USGS Publications Warehouse

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  13. Fertility Decline, Gender Composition of Families, and Expectations of Old Age Support.

    PubMed

    Allendorf, Keera

    2015-08-01

    Recent fertility declines in non-Western countries may have the potential to transform gender systems. One pathway for such transformations is the creation of substantial proportions of families with children of only one gender. Such families, particularly those with only daughters, may facilitate greater symmetry between sons and daughters. This article explores whether such shifts may influence gendered expectations of old age support. In keeping with patriarchal family systems, old age support is customarily provided by sons, but not daughters, in India. Using data from the 2005 Indian Human Development Survey, I find that women with sons overwhelmingly expect old age support from a son. By contrast, women with only daughters largely expect support from a daughter or a source besides a child. These findings suggest that fertility decline may place demographic pressure on gendered patterns of old age support and the gender system more broadly.

  14. Fertility Decline, Gender Composition of Families, and Expectations of Old Age Support

    PubMed Central

    Allendorf, Keera

    2017-01-01

    Recent fertility declines in non-Western countries may have the potential to transform gender systems. One pathway for such transformations is the creation of substantial proportions of families with children of only one gender. Such families, particularly those with only daughters, may facilitate greater symmetry between sons and daughters. This article explores whether such shifts may influence gendered expectations of old age support. In keeping with patriarchal family systems, old age support is customarily provided by sons, but not daughters, in India. Using data from the 2005 Indian Human Development Survey, I find that women with sons overwhelmingly expect old age support from a son. By contrast, women with only daughters largely expect support from a daughter or a source besides a child. These findings suggest that fertility decline may place demographic pressure on gendered patterns of old age support and the gender system more broadly. PMID:28344373

  15. Age-Related Differences in Multiple Task Monitoring

    PubMed Central

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609

  16. Age-related differences in multiple task monitoring.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  17. Age-related changes in cognitive conflict processing: an event-related potential study.

    PubMed

    Mager, Ralph; Bullinger, Alex H; Brand, Serge; Schmidlin, Maria; Schärli, Heinz; Müller-Spahn, Franz; Störmer, Robert; Falkenstein, Michael

    2007-12-01

    Cognitive tasks involving conflicting stimuli and responses are associated with an early age-related decline in performance. Conflict and conflict-induced interference can be stimulus- or response-related. In classical stimulus-response compatibility tasks, such as the Stroop task, the event-related potential (ERP) usually reveals a greater negativity on incongruent versus congruent trials which has often been linked with conflict processing. However, it is unclear whether this negativity is related to stimulus- or response-related conflict, thus rendering the meaning of age-related changes inconclusive. In the present study, a modified Stroop task was used to focus on stimulus-related interference processes while excluding response-related interference. Since we intended to study work-relevant effects ERPs and performance were determined in young (about 30 years old) and middle-aged (about 50 years old) healthy subjects (total n=80). In the ERP, a broad negativity developed after incongruent versus congruent stimuli between 350 and 650 ms. An age-related increase of the latency and amplitude of this negativity was observed. These results indicate age-related alterations in the processing of conflicting stimuli already in middle age.

  18. Idiom understanding in adulthood: examining age-related differences.

    PubMed

    Hung, Pei-Fang; Nippold, Marilyn A

    2014-03-01

    Idioms are figurative expressions such as hold your horses, kick the bucket, and lend me a hand, which commonly occur in everyday spoken and written language. Hence, the understanding of these expressions is essential for daily communication. In this study, we examined idiom understanding in healthy adults in their 20s, 40s, 60s and 80s (n=30 per group) to determine if performance would show an age-related decline. Participants judged their own familiarity with a set of 20 idioms, explained the meaning of each, described a situation in which the idiom could be used, and selected the appropriate interpretation from a set of choices. There was no evidence of an age-related decline on any tasks. Rather, the 60s group reported greater familiarity and offered better explanations than did the 20s group. Moreover, greater familiarity with idioms was associated with better understanding in adults.

  19. Video Games as a Means to Reduce Age-Related Cognitive Decline: Attitudes, Compliance, and Effectiveness

    PubMed Central

    Boot, Walter R.; Champion, Michael; Blakely, Daniel P.; Wright, Timothy; Souders, Dustin J.; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a “brain fitness” game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants’ ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why. PMID:23378841

  20. Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness.

    PubMed

    Boot, Walter R; Champion, Michael; Blakely, Daniel P; Wright, Timothy; Souders, Dustin J; Charness, Neil

    2013-01-01

    Recent research has demonstrated broad benefits of video game play to perceptual and cognitive abilities. These broad improvements suggest that video game-based cognitive interventions may be ideal to combat the many perceptual and cognitive declines associated with advancing age. Furthermore, game interventions have the potential to induce higher rates of intervention compliance compared to other cognitive interventions as they are assumed to be inherently enjoyable and motivating. We explored these issues in an intervention that tested the ability of an action game and a "brain fitness" game to improve a variety of abilities. Cognitive abilities did not significantly improve, suggesting caution when recommending video game interventions as a means to reduce the effects of cognitive aging. However, the game expected to produce the largest benefit based on previous literature (an action game) induced the lowest intervention compliance. We explain this low compliance by participants' ratings of the action game as less enjoyable and by their prediction that training would have few meaningful benefits. Despite null cognitive results, data provide valuable insights into the types of video games older adults are willing to play and why.

  1. Age-related white matter integrity differences in oldest-old without dementia.

    PubMed

    Bennett, Ilana J; Greenia, Dana E; Maillard, Pauline; Sajjadi, S Ahmad; DeCarli, Charles; Corrada, Maria M; Kawas, Claudia H

    2017-08-01

    Aging is known to have deleterious effects on cerebral white matter, yet little is known about these white matter alterations in advanced age. In this study, 94 oldest-old adults without dementia (90-103 years) underwent diffusion tensor imaging to assess relationships between chronological age and multiple measures of integrity in 18 white matter regions across the brain. Results revealed significant age-related declines in integrity in regions previously identified as being sensitive to aging in younger-old adults (corpus callosum, fornix, cingulum, external capsule). For the corpus callosum, the effect of age on genu fractional anisotropy was significantly weaker than the relationship between age and splenium fractional anisotropy. Importantly, age-related declines in white matter integrity did not differ in cognitively normal and cognitively impaired not demented oldest-old, suggesting that they were not solely driven by cognitive dysfunction or preclinical dementia in this advanced age group. Instead, white matter in these regions appears to remain vulnerable to normal aging processes through the 10th decade of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest

  3. Joint dysfunction and functional decline in middle age myostatin null mice.

    PubMed

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Oxidative stress induces the decline of brain EPO expression in aging rats.

    PubMed

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (p<0.05). Also, the amount of β-galactosidase and the MDA level in the hippocampus were significantly increased but the SOD activity was significantly decreased (p<0.05, 0.01 and 0.01, respectively). Similar to aging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (p<0.05) at 150mg·kg(-1) and 250mg·kg(-1). Interestingly, negative correlations were found between EPOR (r=-0

  5. Negative Perceptions of Aging and Decline in Walking Speed: A Self-Fulfilling Prophecy

    PubMed Central

    Robertson, Deirdre A.; Savva, George M.; King-Kallimanis, Bellinda L.; Kenny, Rose Anne

    2015-01-01

    Introduction Walking speed is a meaningful marker of physical function in the aging population. While it is a primarily physical measure, experimental studies have shown that merely priming older adults with negative stereotypes about aging results in immediate declines in objective walking speed. What is not clear is whether this is a temporary experimental effect or whether negative aging stereotypes have detrimental effects on long term objective health. We sought to explore the association between baseline negative perceptions of aging in the general population and objective walking speed 2 years later. Method 4,803 participations were assessed over 2 waves of The Irish Longitudinal Study on Ageing (TILDA), a prospective, population representative study of adults aged 50+ in the Republic of Ireland. Wave 1 measures – which included the Aging Perceptions Questionnaire, walking speed and all covariates - were taken between 2009 and 2011. Wave 2 measures – which included a second measurement of walking speed and covariates - were collected 2 years later between March and December 2012. Walking speed was measured as the number of seconds to complete the Timed Up-And-Go (TUG) task. Participations with a history of stroke, Parkinson’s disease or an MMSE < 18 were excluded. Results After full adjustment for all covariates (age, gender, level of education, disability, chronic conditions, medications, global cognition and baseline TUG) negative perceptions of aging at baseline were associated with slower TUG speed 2 years later (B=.03, 95% CI = .01 to 05, p< .05). Conclusions Walking speed has previously been considered to be a consequence of physical decline but these results highlight the direct role of psychological state in predicting an objective aging outcome. Negative perceptions about aging are a potentially modifiable risk factor of some elements of physical decline in aging. PMID:25923334

  6. Vitamin K Status Is not Associated with Cognitive Decline in Middle Aged Adults.

    PubMed

    van den Heuvel, E G H M; van Schoor, N M; Vermeer, C; Zwijsen, R M L; den Heijer, M; Comijs, H C

    2015-11-01

    The aim of this study was to examine the association between dephospho-uncarboxylated matrix Gla protein (dp-ucMGP), an indicator of vitamin K status, and cognitive decline, and the modifying role of 25(OH)D. Longitudinal study with six years follow-up. Community based. 599 participants of the Longitudinal Aging Study Amsterdam (aged 55-65 years). Information processing speed and a composite Z-score by combining three domains of cognition reflecting general cognitive functioning. Generalized estimating equations (GEE) showed no significant associations between dp-ucMGP and decline in general cognitive functioning. Vitamin D modified the association between dp-ucMGP and speed of information processing (p<0.05). In the group with a 25(OH)D concentration > 50 nmol/l, the highest tertile of dp-ucMGP (>406 pmol/l), which corresponds to lower vitamin K levels, was associated with 1.5 higher score on information processing speed (p=0.023) as compared to the lowest tertile of dp-ucMGP. In contrast to our hypothesis, a suboptimal vitamin K was not associated with cognitive decline in middle-aged adults.

  7. Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice.

    PubMed

    Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Lütjohann, Dieter; Veltien, Andor; Heerschap, Arend; Kiliaan, Amanda J

    2017-01-01

    Cardiovascular risk factors, especially hypertension, are also major risk factors for Alzheimer's disease (AD). To elucidate the underlying vascular origin of neurodegenerative processes in AD, we investigated the relation between systolic blood pressure (SBP) cerebral blood flow (CBF) and vasoreactivity with brain structure and function in a 16-18 months old double transgenic AβPP swe /PS1 dE9 (AβPP/PS1) mouse model for AD. These aging AβPP/PS1 mice showed an increased SBP linked to a declined regional CBF. Furthermore, using advanced MRI techniques, decline of functional and structural connectivity was revealed in the AD-like mice coupled to impaired cognition, increased locomotor activity, and anxiety-related behavior. Post mortem analyses demonstrated also increased neuroinflammation, and both decreased synaptogenesis and neurogenesis in the AβPP/PS1 mice. Additionally, deviant levels of fatty acids and sterols were present in the brain tissue of the AβPP/PS1 mice indicating maladapted brain fatty acid metabolism. Our findings suggest a link between increased SBP, decreased cerebral hemodynamics and connectivity in an AD mouse model during aging, leading to behavioral and cognitive impairments. As these results mirror the complex clinical symptomatology in the prodromal phase of AD, we suggest that this AD-like murine model could be used to investigate prevention and treatment strategies for early AD patients. Moreover, this study helps to develop more efficient therapies and diagnostics for this very early stage of AD.

  8. Initial brain aging: heterogeneity of mitochondrial size is associated with decline in complex I-linked respiration in cortex and hippocampus.

    PubMed

    Thomsen, Kirsten; Yokota, Takashi; Hasan-Olive, Md Mahdi; Sherazi, Niloofar; Fakouri, Nima Borhan; Desler, Claus; Regnell, Christine Elisabeth; Larsen, Steen; Rasmussen, Lene Juel; Dela, Flemming; Bergersen, Linda Hildegard; Lauritzen, Martin

    2018-01-01

    Brain aging is accompanied by declining mitochondrial respiration. We hypothesized that mitochondrial morphology and dynamics would reflect this decline. Using hippocampus and frontal cortex of a segmental progeroid mouse model lacking Cockayne syndrome protein B (CSB m/m ) and C57Bl/6 (WT) controls and comparing young (2-5 months) to middle-aged mice (13-14 months), we found that complex I-linked state 3 respiration (CI) was reduced at middle age in CSB m/m hippocampus, but not in CSB m/m cortex or WT brain. In hippocampus of both genotypes, mitochondrial size heterogeneity increased with age. Notably, an inverse correlation between heterogeneity and CI was found in both genotypes, indicating that heterogeneity reflects mitochondrial dysfunction. The ratio between fission and fusion gene expression reflected age-related alterations in mitochondrial morphology but not heterogeneity. Mitochondrial DNA content was lower, and hypoxia-induced factor 1α mRNA was greater at both ages in CSB m/m compared to WT brain. Our findings show that decreased CI and increased mitochondrial size heterogeneity are highly associated and point to declining mitochondrial quality control as an initial event in brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  10. An overall decline both in recollection and familiarity in healthy aging.

    PubMed

    Pitarque, Alfonso; Sales, Alicia; Meléndez, Juan C; Mayordomo, Teresa; Satorres, Encar

    2015-01-01

    In the area of recognition memory, the experimental data have been inconsistent about whether or not familiarity declines in healthy aging. A recent meta-analysis concluded that familiarity is impaired when estimated with the remember-know procedure, but not with the process-dissociation procedure. We present an associative recognition experiment with remember-know judgments that allow us to estimate both recollection and familiarity using both procedures in the same task and with the same participants (a sample of healthy older people and another sample of young people). Moreover, we performed a within-subjects manipulation of the type of materials (pairs of words or pairs of pictures), and the repetition or not of the pairs during the study phase. The results show that familiarity, estimated using both estimation procedures, declines significantly with age, although the effect size obtained with the process-dissociation procedure is significantly smaller than the one obtained with the remember-know procedure. Our results show that aging is associated with significant decreases both in recollection and, to a lesser extent, familiarity.

  11. Premature hippocampus-dependent memory decline in middle-aged females of a genetic rat model of depression.

    PubMed

    Lim, Patrick H; Wert, Stephanie L; Tunc-Ozcan, Elif; Marr, Robert; Ferreira, Adriana; Redei, Eva E

    2018-02-25

    Aging and major depressive disorder are risk factors for dementia, including Alzheimer's Disease (AD), but the mechanism(s) linking depression and dementia are not known. Both AD and depression show greater prevalence in women. We began to investigate this connection using females of the genetic model of depression, the inbred Wistar Kyoto More Immobile (WMI) rat. These rats consistently display depression-like behavior compared to the genetically close control, the Wistar Kyoto Less Immobile (WLI) strain. Hippocampus-dependent contextual fear memory did not differ between young WLI and WMI females, but, by middle-age, female WMIs showed memory deficits compared to same age WLIs. This deficit, measured as duration of freezing in the fear provoking-context was not related to activity differences between the strains prior to fear conditioning. Hippocampal expression of AD-related genes, such as amyloid precursor protein, amyloid beta 42, beta secretase, synucleins, total and dephosphorylated tau, and synaptophysin, did not differ between WLIs and WMIs in either age group. However, hippocampal transcript levels of catalase (Cat) and hippocampal and frontal cortex expression of insulin-like growth factor 2 (Igf2) and Igf2 receptor (Igf2r) paralleled fear memory differences between middle-aged WLIs and WMIs. This data suggests that chronic depression-like behavior that is present in this genetic model is a risk factor for early spatial memory decline in females. The molecular mechanisms of this early memory decline likely involve the interaction of aging processes with the genetic components responsible for the depression-like behavior in this model. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Age Related Changes in Metabolite Concentrations in the Normal Spinal Cord

    PubMed Central

    Abdel-Aziz, Khaled; Solanky, Bhavana S.; Yiannakas, Marios C.; Altmann, Daniel R.; Wheeler-Kingshott, Claudia A. M.; Thompson, Alan J.; Ciccarelli, Olga

    2014-01-01

    Magnetic resonance spectroscopy (MRS) studies have previously described metabolite changes associated with aging of the healthy brain and provided insights into normal brain aging that can assist us in differentiating age-related changes from those associated with neurological disease. The present study investigates whether age-related changes in metabolite concentrations occur in the healthy cervical spinal cord. 25 healthy volunteers, aged 23–65 years, underwent conventional imaging and single-voxel MRS of the upper cervical cord using an optimised point resolved spectroscopy sequence on a 3T Achieva system. Metabolite concentrations normalised to unsuppressed water were quantified using LCModel and associations between age and spinal cord metabolite concentrations were examined using multiple regressions. A linear decline in total N-Acetyl-aspartate concentration (0.049 mmol/L lower per additional year of age, p = 0.010) and Glutamate-Glutamine concentration (0.054 mmol/L lower per additional year of age, p = 0.002) was seen within our sample age range, starting in the early twenties. The findings suggest that neuroaxonal loss and/or metabolic neuronal dysfunction, and decline in glutamate-glutamine neurotransmitter pool progress with aging. PMID:25310093

  13. Disconnected Aging: Cerebral White Matter Integrity and Age-Related Differences in Cognition

    PubMed Central

    Bennett, Ilana J.; Madden, David J.

    2013-01-01

    Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging. PMID:24280637

  14. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease.

    PubMed

    Mostafavi, Sara; Gaiteri, Chris; Sullivan, Sarah E; White, Charles C; Tasaki, Shinya; Xu, Jishu; Taga, Mariko; Klein, Hans-Ulrich; Patrick, Ellis; Komashko, Vitalina; McCabe, Cristin; Smith, Robert; Bradshaw, Elizabeth M; Root, David E; Regev, Aviv; Yu, Lei; Chibnik, Lori B; Schneider, Julie A; Young-Pearse, Tracy L; Bennett, David A; De Jager, Philip L

    2018-06-01

    There is a need for new therapeutic targets with which to prevent Alzheimer's disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.

  15. AIDS-related dementia: a case report of rapid cognitive decline.

    PubMed

    Morgan, M K; Clark, M E; Hartman, W L

    1988-11-01

    Little is known psychometrically about the pattern of cognitive decline associated with acquired immunodeficiency syndrome (AIDS)-related dementia. Pre- and posttest results are presented to illustrate a case example of rapid cognitive decline. Increased psychometric assessment is recommended with additional examination of inconsistent results, which may be dismissed mistakenly as related to psychiatric symptoms. Implications for clinical practice and the role of the psychologist are discussed.

  16. Rising Energetic Cost of Walking Predicts Gait Speed Decline With Aging.

    PubMed

    Schrack, Jennifer A; Zipunnikov, Vadim; Simonsick, Eleanor M; Studenski, Stephanie; Ferrucci, Luigi

    2016-07-01

    Slow gait is a robust biomarker of health and a predictor of functional decline and death in older adults, yet factors contributing to the decline in gait speed with aging are not well understood. Previous research suggests that the energetic cost of walking at preferred speed is inversely associated with gait speed, but whether individuals with a rising energetic cost of walking experience a steeper rate of gait speed decline has not been investigated. In participants of the Baltimore Longitudinal Study of Aging, the energetic cost of overground walking at preferred speed (mL/kg/m) was assessed between 2007 and 2014 using a portable indirect calorimeter. The longitudinal association between the energetic cost of walking and usual gait speed over 6 meters (m/s) was assessed with multivariate linear regression models, and the risk of slow gait (<1.0 m/s) was analyzed using Cox proportional hazards models. The study population consisted of 457 participants aged 40 and older who contributed 1,121 person-visits to the analysis. In fully adjusted models, increases in the energetic cost of walking predicted the rate of gait speed decline in those older than 65 years (β = -0.008 m/s, p < .001). Moreover, those with a higher energetic cost of walking (>0.17mL/kg/m) had a 57% greater risk of developing slow gait compared with a normal energetic cost of walking (≤0.17mL/kg/m; adjusted hazard ratio = 1.57, 95% confidence interval: 1.01-2.46). These findings suggest that strategies to maintain walking efficiency hold significant implications for maintaining mobility in late life. Efforts to curb threats to walking efficiency should focus on therapies to treat gait and balance impairments, and reduce clinical disease burden. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Age-Dependent Decline of Endogenous Pain Control: Exploring the Effect of Expectation and Depression

    PubMed Central

    Grashorn, Wiebke; Sprenger, Christian; Forkmann, Katarina; Wrobel, Nathalie; Bingel, Ulrike

    2013-01-01

    Although chronic pain affects all age ranges, it is particularly common in the elderly. One potential explanation for the high prevalence of chronic pain in the older population is impaired functioning of the descending pain inhibitory system which can be studied in humans using conditioned pain modulation (CPM) paradigms. In this study we investigated (i) the influence of age on CPM and (ii) the role of expectations, depression and gender as potential modulating variables of an age-related change in CPM. 64 healthy volunteers of three different age groups (young = 20–40 years, middle-aged = 41–60 years, old = 61–80 years) were studied using a classical CPM paradigm that combined moderate heat pain stimuli to the right forearm as test stimuli (TS) and immersion of the contralateral foot into ice water as the conditioning stimulus (CS). The CPM response showed an age-dependent decline with strong CPM responses in young adults but no significant CPM responses in middle-aged and older adults. These age-related changes in CPM responses could not be explained by expectations of pain relief or depression. Furthermore, changes in CPM responses did not differ between men and women. Our results strongly support the notion of a genuine deterioration of descending pain inhibitory mechanisms with age. PMID:24086595

  18. Age-Related Differences in Listening Effort During Degraded Speech Recognition.

    PubMed

    Ward, Kristina M; Shen, Jing; Souza, Pamela E; Grieco-Calub, Tina M

    The purpose of the present study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Twenty-five younger adults (YA; 18-24 years) and 21 older adults (OA; 56-82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants' responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners' performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (single task vs. dual task); and (3) per group (YA vs. OA). Speech recognition declined with increasing spectral degradation for both YA and OA when they performed the task in isolation or concurrently with the visual monitoring task. OA were slower and less accurate than YA on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared with single-task performance, OA experienced greater declines in secondary-task accuracy, but not reaction time, than YA. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. OA experienced significantly greater declines in secondary-task accuracy during degraded speech recognition than YA. These

  19. Age-related differences in listening effort during degraded speech recognition

    PubMed Central

    Ward, Kristina M.; Shen, Jing; Souza, Pamela E.; Grieco-Calub, Tina M.

    2016-01-01

    Objectives The purpose of the current study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Design Twenty-five younger adults (18–24 years) and twenty-one older adults (56–82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants’ responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners’ performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (baseline vs. dual task); and (3) per group (younger vs. older adults). Results Speech recognition declined with increasing spectral degradation for both younger and older adults when they performed the task in isolation or concurrently with the visual monitoring task. Older adults were slower and less accurate than younger adults on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared to single-task performance, older adults experienced greater declines in secondary-task accuracy, but not reaction time, than younger adults. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. Conclusions Older

  20. Glutathione maintenance mitigates age-related susceptibility to redox cycling agents.

    PubMed

    Thomas, Nicholas O; Shay, Kate P; Kelley, Amanda R; Butler, Judy A; Hagen, Tory M

    2016-12-01

    Isolated hepatocytes from young (4-6mo) and old (24-26mo) F344 rats were exposed to increasing concentrations of menadione, a vitamin K derivative and redox cycling agent, to determine whether the age-related decline in Nrf2-mediated detoxification defenses resulted in heightened susceptibility to xenobiotic insult. An LC 50 for each age group was established, which showed that aging resulted in a nearly 2-fold increase in susceptibility to menadione (LC 50 for young: 405μM; LC 50 for old: 275μM). Examination of the known Nrf2-regulated pathways associated with menadione detoxification revealed, surprisingly, that NAD(P)H: quinone oxido-reductase 1 (NQO1) protein levels and activity were induced 9-fold and 4-fold with age, respectively (p=0.0019 and p=0.018; N=3), but glutathione peroxidase 4 (GPX4) declined by 70% (p=0.0043; N=3). These results indicate toxicity may stem from vulnerability to lipid peroxidation instead of inadequate reduction of menadione semi-quinone. Lipid peroxidation was 2-fold higher, and GSH declined by a 3-fold greater margin in old versus young rat cells given 300µM menadione (p<0.05 and p≤0.01 respectively; N=3). We therefore provided 400µMN-acetyl-cysteine (NAC) to hepatocytes from old rats before menadione exposure to alleviate limits in cysteine substrate availability for GSH synthesis during challenge. NAC pretreatment resulted in a >2-fold reduction in cell death, suggesting that the age-related increase in menadione susceptibility likely stems from attenuated GSH-dependent defenses. This data identifies cellular targets for intervention in order to limit age-related toxicological insults to menadione and potentially other redox cycling compounds. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. A phytochemical-rich diet may explain the absence of age-related decline in visual acuity of Amazonian hunter-gatherers in Ecuador.

    PubMed

    London, Douglas S; Beezhold, Bonnie

    2015-02-01

    Myopia is absent in undisturbed hunter-gatherers but ubiquitous in modern populations. The link between dietary phytochemicals and eye health is well established, although transition away from a wild diet has reduced phytochemical variety. We hypothesized that when larger quantities and greater variety of wild, seasonal phytochemicals are consumed in a food system, there will be a reduced prevalence of degenerative-based eye disease as measured by visual acuity. We compared food systems and visual acuity across isolated Amazonian Kawymeno Waorani hunter-gatherers and neighboring Kichwa subsistence agrarians, using dietary surveys, dietary pattern observation, and Snellen Illiterate E visual acuity examinations. Hunter-gatherers consumed more food species (130 vs. 63) and more wild plants (80 vs. 4) including 76 wild fruits, thereby obtaining larger variety and quantity of phytochemicals than agrarians. Visual acuity was inversely related to age only in agrarians (r = -.846, P < .001). As hypothesized, when stratified by age (<40 and ≥ 40 years), Mann-Whitney U tests revealed that hunter-gatherers maintained high visual acuity throughout life, whereas agrarian visual acuity declined (P values < .001); visual acuity of younger participants was high across the board, however, did not differ between groups (P > .05). This unusual absence of juvenile-onset vision problems may be related to local, organic, whole food diets of subsistence food systems isolated from modern food production. Our results suggest that intake of a wider variety of plant foods supplying necessary phytochemicals for eye health may help maintain visual acuity and prevent degenerative eye conditions as humans age. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Differential declines in syphilis-related mortality in the United States, 2000-2014.

    PubMed

    Barragan, Noel C; Moschetti, Kristin; Smith, Lisa V; Sorvillo, Frank; Kuo, Tony

    2017-04-01

    After reaching an all time low in 2000, the rate of syphilis in the United States has been steadily increasing. Parallel benchmarking of the disease's mortality burden has not been undertaken. Using ICD-10 classification, all syphilis-related deaths in the national Multiple Cause of Death dataset were examined for the period 2000-2014. Descriptive statistics and age-adjusted mortality rates were generated. Poisson regression was performed to analyze trends over time. A matched case-control analysis was conducted to assess the associations between syphilis-related deaths and comorbid conditions listed in the death records. A total of 1,829 deaths were attributed to syphilis; 32% (n = 593) identified syphilis as the underlying cause of death. Most decedents were men (60%) and either black (48%) or white (39%). Decedents aged ≥85 years had the highest average mortality rate (0.47 per 100,000 population; 95% confidence interval [CI], 0.42-0.52). For the sampled period, the average annual decline in mortality was -2.90% (95% CI, -3.93% to -1.87%). However, the average annual percent change varied across subgroups of interest. Declines in U.S. syphilis mortality suggest early detection and improved treatment access likely helped attenuate disease progression; however, increases in the disease rate since 2000 may be offsetting the impact of these advancements. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Do plasma melatonin concentrations decline with age?

    NASA Technical Reports Server (NTRS)

    Zeitzer, J. M.; Daniels, J. E.; Duffy, J. F.; Klerman, E. B.; Shanahan, T. L.; Dijk, D. J.; Czeisler, C. A.

    1999-01-01

    PURPOSE: Numerous reports that secretion of the putative sleep-promoting hormone melatonin declines with age have led to suggestions that melatonin replacement therapy be used to treat sleep problems in older patients. We sought to reassess whether the endogenous circadian rhythm of plasma melatonin concentration changes with age in healthy drug-free adults. METHODS: We analyzed the amplitude of plasma melatonin profiles during a constant routine in 34 healthy drug-free older subjects (20 women and 14 men, aged 65 to 81 years) and compared them with 98 healthy drug-free young men (aged 18 to 30 years). RESULTS: We could detect no significant difference between a healthy and drug-free group of older men and women as compared to one of young men in the endogenous circadian amplitude of the plasma melatonin rhythm, as described by mean 24-hour average melatonin concentration (70 pmol/liter vs 73 pmol/liter, P = 0.97), or the duration (9.3 hours vs 9.1 hours, P = 0.43), mean (162 pmol/liter vs 161 pmol/liter, P = 0.63), or integrated area (85,800 pmol x min/liter vs 86,700 pmol x min/liter, P = 0.66) of the nocturnal peak of plasma melatonin. CONCLUSION: These results do not support the hypothesis that reduction of plasma melatonin concentration is a general characteristic of healthy aging. Should melatonin replacement therapy or melatonin supplementation prove to be clinically useful, we recommend that an assessment of endogenous melatonin be carried out before such treatment is used in older patients.

  4. Aβ-related memory decline in APOE ε4 noncarriers: Implications for Alzheimer disease.

    PubMed

    Lim, Yen Ying; Laws, Simon M; Villemagne, Victor L; Pietrzak, Robert H; Porter, Tenielle; Ames, David; Fowler, Christopher; Rainey-Smith, Stephanie; Snyder, Peter J; Martins, Ralph N; Salvado, Olivier; Bourgeat, Pierrick; Rowe, Christopher C; Masters, Colin L; Maruff, Paul

    2016-04-26

    As the absence of Aβ-related memory decline in APOE ε4 noncarriers may be due to the relative brevity of previous studies, we aimed to characterize Aβ-related cognitive decline over 72 months in APOE ε4 carriers and noncarriers who were cognitively normal (CN). CN older adults (n = 423) underwent Aβ imaging and APOE genotyping. Participants completed comprehensive neuropsychological testing at baseline 18-, 36-, 54-, and 72-month assessments. Relative to Aβ- CN ε4 noncarriers, both Aβ+ CN ε4 carriers and noncarriers showed significantly increased decline in measures of memory, language, and executive function as well as higher rates of progression to a clinical classification of mild cognitive impairment. Memory decline was greater in Aβ+ CN ε4 carriers than in Aβ+ CN ε4 noncarriers. No cognitive decline was evident in Aβ- CN ε4 carriers. In CN older adults, Aβ+ is associated with memory decline in ε4 noncarriers; however, the rate of this decline is much slower than that observed in ε4 carriers. These data indicate that the processes by which ε4 carriage increases the rate of Aβ-related cognitive decline occur in the preclinical stage of Alzheimer disease. © 2016 American Academy of Neurology.

  5. BioAge: Toward A Multi-Determined, Mechanistic Account of Cognitive Aging

    PubMed Central

    DeCarlo, Correne A.; Tuokko, Holly A.; Williams, Dorothy; Dixon, Roger A.; MacDonald, Stuart W.S.

    2014-01-01

    The search for reliable early indicators of age-related cognitive decline represents a critical avenue for progress in aging research. Chronological age is a commonly used developmental index; however, it offers little insight into the mechanisms underlying cognitive decline. In contrast, biological age (BioAge), reflecting the vitality of essential biological systems, represents a promising operationalization of developmental time. Current BioAge models have successfully predicted age-related cognitive deficits. Research on aging-related cognitive function indicates that the interaction of multiple risk and protective factors across the human lifespan confers individual risk for late-life cognitive decline, implicating a multi-causal explanation. In this review, we explore current BioAge models, describe three broad yet pathologically relevant biological processes linked to cognitive decline, and propose a novel operationalization of BioAge accounting for both moderating and causal mechanisms of cognitive decline and dementia. We argue that a multivariate and mechanistic BioAge approach will lead to a greater understanding of disease pathology as well as more accurate prediction and early identification of late-life cognitive decline. PMID:25278166

  6. Distinct age-related differences in temporal discounting and risk taking in adolescents and young adults.

    PubMed

    de Water, Erik; Cillessen, Antonius H N; Scheres, Anouk

    2014-01-01

    Age-related differences in temporal discounting (TD) and risk taking, and their association, were examined in adolescents and young adults (n = 337) aged 12-27 years. Since monetary rewards are typically used in TD and risk-taking tasks, the association between monetary reward valuation and age and decision making in these tasks was explored as well. TD declined linearly with age, with a particularly sharp decline from 15 to 16 years. In contrast, risk taking was not correlated with age and TD. Reward valuation was not associated with TD and risk taking, and age-related differences in TD remained significant after controlling for reward valuation. Together, these findings suggest that risk taking and TD are two separate constructs with distinct age-related differences in adolescence and young adulthood. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  7. Do apolipoprotein E genotype and educational attainment predict the rate of cognitive decline in normal aging? A 12-year follow-up of the Maastricht Aging Study.

    PubMed

    Van Gerven, Pascal W M; Van Boxtel, Martin P J; Ausems, Eleonora E B; Bekers, Otto; Jolles, Jelle

    2012-07-01

    We investigated suspected longitudinal interaction effects of apolipoprotein E (APOE) genotype and educational attainment on cognitive decline in normal aging. Our sample consisted of 571 healthy, nondemented adults aged between 49 and 82 years. Linear mixed-models analyses were performed with four measurement time points: baseline, 3-year, 6-year, and 12-year follow-up. Covariates included age at baseline, sex, and self-perceived physical and mental health. Dependent measures were global cognitive functioning (Mini-Mental State Examination; Folstein, Folstein, & McHugh, 1975), Stroop performance (Stroop Color-Word Test; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006a), set-shifting performance (Concept Shifting Test; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006b), cognitive speed (Letter-Digit Substitution Test; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006c), verbal learning (Verbal Learning Test: Sum of five trials; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2005), and long-term memory (Verbal Learning Test: Delayed recall). We found only faint evidence that older, high-educated carriers of the APOE-ε4 allele (irrespective of zygosity) show a more pronounced decline than younger, low-educated carriers and noncarriers (irrespective of educational attainment). Moreover, this outcome was confined to concept-shifting performance and was especially observable between 6- and 12-year follow-ups. No protective effects of higher education were found on any of the six cognitive measures. We conclude that the combination of APOE-ε4 allele and high educational attainment may be a risk factor for accelerated cognitive decline in older age, as has been reported before, but only to a very limited extent. Moreover, we conclude that, within the cognitive reserve framework, education does not have significant protective power against age-related cognitive decline.

  8. Replacement Migration: Is It a Solution to Declining and Ageing Populations?

    ERIC Educational Resources Information Center

    United Nations, New York, NY. Dept. of Economic and Social Affairs.

    The United Nations (UN) Population Division monitors fertility, mortality, and migration trends for all countries as a basis for producing the official UN population estimates and projections. Among recent demographic trends, two are prominent: (1) population decline and (2) population aging. Focusing on these two critical trends, a study…

  9. Age-related normative values for handgrip strength and grip strength’s usefulness as a predictor of mortality and both cognitive and physical decline in older adults in northwest Russia

    PubMed Central

    Turusheva, A.; Frolova, E.; Degryse, J-M.

    2017-01-01

    Objectives: This paper sought to provide normative values for grip strength among older adults across different age groups in northwest Russia and to investigate their predictive value for adverse events. Methods: A population-based prospective cohort study of 611 community-dwelling individuals 65+. Grip strength was measured using the standard protocol applied in the Groningen Elderly Tests. The cut-off thresholds for grip strength were defined separately for men and women of different ages using a weighted polynomial regression. A Cox regression analysis, the c-statistic, a risk reclassification analysis, and bootstrapping techniques were used to analyze the data. The outcomes were the 5-year mortality rate, the loss of autonomy and mental decline. Results: We determined the age-related reference intervals of grip strength for older adults. The 5th and 10th percentiles of grip strength were associated with a higher risk for malnutrition, low autonomy, physical and mental functioning and 5-year mortality. The 5th percentile of grip strength was associated with a decline in autonomy. Conclusions: This study presents age- and sex-specific reference values for grip strength in the 65+ Russian population derived from a prospective cohort study. The norms can be used in clinical practice to identify patients at increased risk for adverse outcomes. PMID:28250246

  10. Disconnected aging: cerebral white matter integrity and age-related differences in cognition.

    PubMed

    Bennett, I J; Madden, D J

    2014-09-12

    Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Aging enhances serum cytokine response but not task-induced grip strength declines in a rat model of work-related musculoskeletal disorders

    PubMed Central

    2011-01-01

    Background We previously reported early tissue injury, increased serum and tissue inflammatory cytokines and decreased grip in young rats performing a moderate demand repetitive task. The tissue cytokine response was transient, the serum response and decreased grip were still evident by 8 weeks. Thus, here, we examined their levels at 12 weeks in young rats. Since aging is known to enhance serum cytokine levels, we also examined aged rats. Methods Aged and young rats, 14 mo and 2.5 mo of age at onset, respectfully, were trained 15 min/day for 4 weeks, and then performed a high repetition, low force (HRLF) reaching and grasping task for 2 hours/day, for 12 weeks. Serum was assayed for 6 cytokines: IL-1alpha, IL-6, IFN-gamma, TNF-alpha, MIP2, IL-10. Grip strength was assayed, since we have previously shown an inverse correlation between grip strength and serum inflammatory cytokines. Results were compared to naïve (grip), and normal, food-restricted and trained-only controls. Results Serum cytokines were higher overall in aged than young rats, with increases in IL-1alpha, IFN-gamma and IL-6 in aged Trained and 12-week HRLF rats, compared to young Trained and HRLF rats (p < 0.05 and p < 0.001, respectively, each). IL-6 was also increased in aged 12-week HRLF versus aged normal controls (p < 0.05). Serum IFN-gamma and MIP2 levels were also increased in young 6-week HRLF rats, but no cytokines were above baseline levels in young 12-week HRLF rats. Grip strength declined in both young and aged 12-week HRLF rats, compared to naïve and normal controls (p < 0.05 each), but these declines correlated only with IL-6 levels in aged rats (r = -0.39). Conclusion Aging enhanced a serum cytokine response in general, a response that was even greater with repetitive task performance. Grip strength was adversely affected by task performance in both age groups, but was apparently influenced by factors other than serum cytokine levels in young rats. PMID:21447183

  12. Age-related differences in idea generation and selection for propositional language.

    PubMed

    Madden, Daniel L; Sale, Martin V; Robinson, Gail A

    2018-05-21

    Conceptual preparation mechanisms such as novel idea generation and selection from amongst competing alternatives are critical for language production and may contribute to age-related language deficits. This study investigated whether older adults show diminished idea generation and selection abilities, compared to younger adults. Twenty younger (18-35 years) and 20 older (60-80 years) adults completed two novel experimental tasks, an idea generation task and a selection task. Older participants were slower than younger participants overall on both tasks. Importantly, this difference was more pronounced for task conditions with greater demands on generation and selection. Older adults were also significantly reduced on a semantic, but not phonemic, word fluency task. Overall, the older group showed evidence of age-related decline specific to idea generation and selection ability. This has implications for the message formulation stage of propositional language decline in normal aging.

  13. Sleep duration and age-related changes in brain structure and cognitive performance.

    PubMed

    Lo, June C; Loh, Kep Kee; Zheng, Hui; Sim, Sam K Y; Chee, Michael W L

    2014-07-01

    To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Community-based longitudinal brain and cognitive aging study using a convenience sample. Participants were studied in a research laboratory. Relatively healthy adults aged 55 y and older at study commencement. N/A. Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.

  14. Cognitive control adjustments in healthy older and younger adults: Conflict adaptation, the error-related negativity (ERN), and evidence of generalized decline with age.

    PubMed

    Larson, Michael J; Clayson, Peter E; Keith, Cierra M; Hunt, Isaac J; Hedges, Dawson W; Nielsen, Brent L; Call, Vaughn R A

    2016-03-01

    Older adults display alterations in neural reflections of conflict-related processing. We examined response times (RTs), error rates, and event-related potential (ERP; N2 and P3 components) indices of conflict adaptation (i.e., congruency sequence effects) a cognitive control process wherein previous-trial congruency influences current-trial performance, along with post-error slowing, correct-related negativity (CRN), error-related negativity (ERN) and error positivity (Pe) amplitudes in 65 healthy older adults and 94 healthy younger adults. Older adults showed generalized slowing, had decreased post-error slowing, and committed more errors than younger adults. Both older and younger adults showed conflict adaptation effects; magnitude of conflict adaptation did not differ by age. N2 amplitudes were similar between groups; younger, but not older, adults showed conflict adaptation effects for P3 component amplitudes. CRN and Pe, but not ERN, amplitudes differed between groups. Data support generalized declines in cognitive control processes in older adults without specific deficits in conflict adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Molecular inflammation as an underlying mechanism of the aging process and age-related diseases.

    PubMed

    Chung, H Y; Lee, E K; Choi, Y J; Kim, J M; Kim, D H; Zou, Y; Kim, C H; Lee, J; Kim, H S; Kim, N D; Jung, J H; Yu, B P

    2011-07-01

    Aging is a biological process characterized by time-dependent functional declines that are influenced by changes in redox status and by oxidative stress-induced inflammatory reactions. An organism's pro-inflammatory status may underlie the aging process and age-related diseases. In this review, we explore the molecular basis of low-grade, unresolved, subclinical inflammation as a major risk factor for exacerbating the aging process and age-related diseases. We focus on the redox-sensitive transcription factors, NF-κB and FOXO, which play essential roles in the expression of pro-inflammatory mediators and anti-oxidant enzymes, respectively. Major players in molecular inflammation are discussed with respect to the age-related up-regulation of pro-inflammatory cytokines and adhesion molecules, cyclo-oxygenase-2, lipoxygenase, and inducible nitric oxide synthase. The molecular inflammation hypothesis proposed by our laboratory is briefly described to give further molecular insights into the intricate interplay among redox balance, pro-inflammatory gene activation, and chronic age-related inflammatory diseases. The final section discusses calorie restriction as an aging-retarding intervention that also exhibits extraordinarily effective anti-inflammatory activity by modulating GSH redox, NF-κB, SIRT1, PPARs, and FOXOs.

  16. Age-Related Normogram for Ovarian Antral Follicle Count in Women with Polycystic Ovary Syndrome and Comparison with Age Matched Controls Using Magnetic Resonance Imaging.

    PubMed

    Aiyappan, Senthil Kumar; Karpagam, Bulabai; Vadanika, V; Chidambaram, Prem Kumar; Vinayagam, S; Saravanan, K C

    2016-01-01

    Antral Follicle count (AFC) is a reliable marker for ovarian reserve. Previous studies have used transvaginal ultrasound for estimation of AFC, however we used magnetic resonance imaging (MRI) for estimation of AFC and for creating an age-related normogram in patients with polycystic ovary syndrome (PCOS) and compared it with normal patients. The aim of this study is to create an age related normogram for AFC in women with PCOS and to compare that with women without polycystic ovarian syndrome using MRI. A total of 1500 women were examined, out of which 400 fitted the criteria for PCOS. They all underwent MRI study and similar age matched women without PCOS also underwent MRI examination. Normogram for AFC were obtained using LMS software and a percentile chart was obtained. Normogram for AFC in PCOS women showed decline in number of AFC as the age progresses and the decline was linear. The normogram for AFC was compared with equal number of patients without PCOS and they also showed decline in AFC as the age progresses, however the decline was exponential and faster. Age related normogram for AFC is widely used and considered as best clinical predictor for ovarian response in assisted reproductive technology. Knowledge of ovarian reserve is important in PCOS and non-PCOS females as PCOS patients are at risk for ovarian hyperstimulation syndrome during gonadotrophin theraphy. MRI is an equally effective and in some times better alternative to transvaginal ultrasound as it has got its own advantages.

  17. Performances on a cognitive theory of mind task: specific decline or general cognitive deficits? Evidence from normal aging.

    PubMed

    Fliss, Rafika; Lemerre, Marion; Mollard, Audrey

    2016-06-01

    Compromised theory of mind (ToM) can be explained either by a failure to implement specific representational capacities (mental state representations) or by more general executive selection demands. In older adult populations, evidence supporting affected executive functioning and cognitive ToM in normal aging are reported. However, links between these two functions remain unclear. In the present paper, we address these shortcomings by using a specific task of ToM and classical executive tasks. We studied, using an original cognitive ToM task, the effect of age on ToM performances, in link with the progressive executive decline. 96 elderly participants were recruited. They were asked to perform a cognitive ToM task, and 5 executive tests (Stroop test and Hayling Sentence Completion Test to appreciate inhibitory process, Trail Making Test and Verbal Fluency for shifting assessment and backward span dedicated to estimate working memory capacity). The results show changes in cognitive ToM performance according to executive demands. Correlational studies indicate a significant relationship between ToM performance and the selected executive measures. Regression analyzes demonstrates that level of vocabulary and age as the best predictors of ToM performance. The results are consistent with the hypothesis that ToM deficits are related to age-related domain-general decline rather than as to a breakdown in specialized representational system. The implications of these findings for the nature of social cognition tests in normal aging are also discussed.

  18. Age-related change in handgrip strength in men and women: is muscle quality a contributing factor?

    PubMed

    Abe, Takashi; Thiebaud, Robert S; Loenneke, Jeremy P

    2016-02-01

    Age-related changes in muscle quality and muscle mass in the forearm, which relate to decline in handgrip strength (HGS), have not been reported. The purpose of this study was to investigate the relationships between age-related declines in HGS and loss of muscle thickness and/or muscle quality in the forearm of 613 adults (306 men and 307 women) aged 20-89. Anterior forearm muscle thickness (MT-ulna) and HGS were measured using an ultrasound and a hand dynamometer, respectively, in the dominant hand. Muscle quality (fMQ) was defined as a ratio of HGS to MT-ulna. HGS was similar among younger (ages 20-29, 30-39, and 40-49) groups and was progressively lower with increasing age in both sexes. MT-ulna was similar between ages 20-29 and 60-69 in men and between ages 20-29 and 70-79 in women. In men, MT-ulna was lower in ages 70-79 and 80-89 compared with other age groups. In women, MT-ulna was lower in ages 80-89 compared with ages 20-29 and 40-49. In both men and women, fMQ was identical among younger (ages 20-29, 30-39, and 40-49) groups. After that fMQ was progressively lower with age in both men and women. The results indicated that age-related decline in HGS is associated with fMQ, but it appears to be accelerated after the seventh decade due to muscle loss.

  19. BioAge: toward a multi-determined, mechanistic account of cognitive aging.

    PubMed

    DeCarlo, Correne A; Tuokko, Holly A; Williams, Dorothy; Dixon, Roger A; MacDonald, Stuart W S

    2014-11-01

    The search for reliable early indicators of age-related cognitive decline represents a critical avenue for progress in aging research. Chronological age is a commonly used developmental index; however, it offers little insight into the mechanisms underlying cognitive decline. In contrast, biological age (BioAge), reflecting the vitality of essential biological systems, represents a promising operationalization of developmental time. Current BioAge models have successfully predicted age-related cognitive deficits. Research on aging-related cognitive function indicates that the interaction of multiple risk and protective factors across the human lifespan confers individual risk for late-life cognitive decline, implicating a multi-causal explanation. In this review, we explore current BioAge models, describe three broad yet pathologically relevant biological processes linked to cognitive decline, and propose a novel operationalization of BioAge accounting for both moderating and causal mechanisms of cognitive decline and dementia. We argue that a multivariate and mechanistic BioAge approach will lead to a greater understanding of disease pathology as well as more accurate prediction and early identification of late-life cognitive decline. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cognitive training and Bacopa monnieri: Evidence for a combined intervention to alleviate age associated cognitive decline.

    PubMed

    McPhee, Grace M; Downey, Luke A; Noble, Anthony; Stough, Con

    2016-10-01

    As the elderly population grows the impact of age associated cognitive decline as well as neurodegenerative diseases such as Alzheimer's disease and dementia will increase. Ageing is associated with consistent impairments in cognitive processes (e.g., processing speed, memory, executive function and learning) important for work, well-being, life satisfaction and overall participation in society. Recently, there has been increased effort to conduct research examining methods to improve cognitive function in older citizens. Cognitive training has been shown to improve performance in some cognitive domains; including memory, processing speed, executive function and attention in older adults. These cognitive changes are thought to be related to improvements in brain connectivity and neural circuitry. Bacopa monnieri has also been shown to improve specific domains of cognition, sensitive to age associated cognitive decline (particularly processing speed and memory). These Bacopa monnieri dependent improvements may be due to the increase in specific neuro-molecular mechanisms implicated in the enhancement of neural connections in the brain (i.e. synaptogenesis). In particular, a number of animal studies have shown Bacopa monnieri consumption upregulates calcium dependent kinases in the synapse and post-synaptic cell, crucial for strengthening and growing connections between neurons. These effects have been shown to occur in areas important for cognitive processes, such as the hippocampus. As Bacopa monnieri has shown neuro-molecular mechanisms that encourage synaptogenesis, while cognitive training enhances brain connectivity, Bacopa monnieri supplementation could theoretically enhance and strengthen synaptic changes acquired through cognitive training. Therefore, the current paper hypothesises that the combination of these two interventions could improve cognitive outcomes, over and above the effects of administrating these interventions independently, as an effective

  1. Relative value of diverse brain MRI and blood-based biomarkers for predicting cognitive decline in the elderly

    NASA Astrophysics Data System (ADS)

    Madsen, Sarah K.; Ver Steeg, Greg; Daianu, Madelaine; Mezher, Adam; Jahanshad, Neda; Nir, Talia M.; Hua, Xue; Gutman, Boris A.; Galstyan, Aram; Thompson, Paul M.

    2016-03-01

    Cognitive decline accompanies many debilitating illnesses, including Alzheimer's disease (AD). In old age, brain tissue loss also occurs along with cognitive decline. Although blood tests are easier to perform than brain MRI, few studies compare brain scans to standard blood tests to see which kinds of information best predict future decline. In 504 older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we first used linear regression to assess the relative value of different types of data to predict cognitive decline, including 196 blood panel biomarkers, 249 MRI biomarkers obtained from the FreeSurfer software, demographics, and the AD-risk gene APOE. A subset of MRI biomarkers was the strongest predictor. There was no specific blood marker that increased predictive accuracy on its own, we found that a novel unsupervised learning method, CorEx, captured weak correlations among blood markers, and the resulting clusters offered unique predictive power.

  2. Relationship of race and poverty to lower extremity function and decline: findings from the Women's Health and Aging Study.

    PubMed

    Thorpe, Roland James; Kasper, Judith D; Szanton, Sarah L; Frick, Kevin D; Fried, Linda P; Simonsick, Eleanor M

    2008-02-01

    Race- and poverty-related disparities in physical function are well documented, though little is known about effects of race and poverty on functional decline and the progression of disability. We examined cross-sectional and longitudinal relationships between race, poverty and lower extremity function using data from moderately to severely disabled women in the U.S. Women's Health and Aging Study. Severity of lower extremity functional limitation was determined from scaled responses of reported difficulty walking (1/4) mile, walking across a room, climbing stairs, and stooping, crouching or kneeling. Usual walking speed assessed over 4m was our objective measure of function. Of the 996 women who described themselves as black or white, 284 (29%) were black and 367 (37%) were living at or below 100% of the federal poverty level. Independent of demographic and health-related factors, among white women, the poor exhibited consistently worse lower extremity function than the non-poor; this association, however, was not observed in black women. Among the non-poor, black women had slower walking speeds, and reported more limitation in lower extremity function than their non-poor white counterparts, even after adjusting for demographic variables and health-related characteristics. After 3 years, accounting for baseline function, demographic and health-related factors, race and poverty status were unrelated to functional decline. Thus, while race and poverty status were associated with functional deficits in old age, they do not appear to impact the rate of functional decline or progression of disability over 3 years.

  3. An Examination of Age-Based Stereotype Threat About Cognitive Decline.

    PubMed

    Barber, Sarah J

    2017-01-01

    "Stereotype threat" is often thought of as a singular construct, with moderators and mechanisms that are stable across groups and domains. However, this is not always true. To illustrate this, the current review focuses on the stereotype threat that older adults face about their cognitive abilities. Drawing upon the multithreat framework, I first provide evidence that this is a self-concept threat and not a group-reputation threat. Because this differs from the forms of stereotype threat experienced by other groups (e.g., the threat that minority students face about their intellectual abilities), the moderators of stereotype threat observed in other groups (i.e., group identification) do not always generalize to age-based stereotype threat about cognitive decline. Looking beyond the forms of stereotype threat elicited, this review also provides evidence that the mechanisms underlying stereotype-threat effects may vary across the adult life span. Because of age-related improvements in emotion-regulation abilities, stereotype threat does not seem to reduce older adults' executive-control resources. Overall, this review highlights the need to approach the concept of stereotype threat with more granularity, allowing researchers to design more effective stereotype-threat interventions. It will also shed light on why certain stereotype threat effects "fail to replicate" across domains or groups.

  4. Learning to remember: cognitive training-induced attenuation of age-related memory decline depends on sex and cognitive demand, and can transfer to untrained cognitive domains.

    PubMed

    Talboom, Joshua S; West, Stephen G; Engler-Chiurazzi, Elizabeth B; Enders, Craig K; Crain, Ian; Bimonte-Nelson, Heather A

    2014-12-01

    Aging is associated with progressive changes in learning and memory. A potential approach to attenuate age-related cognitive decline is cognitive training. In this study, adult male and female rats were given either repeated exposure to a T-maze, or no exposure to any maze, and then tested on a final battery of cognitive tasks. Two groups of each sex were tested from 6 to 18 months old on the same T-maze; Group one received a version testing spatial reference memory, and Group two received only the procedural testing components with minimal cognitive demand. Groups three and four of each sex had no maze exposure until the final battery, and were comprised of aged or young rats, respectively. The final maze battery included the practiced T-maze plus two novel tasks, one with a similar, and one with a different, memory type to the practice task. Group five of each sex was not maze tested, serving as an aged control for the effects of maze testing on neurotrophin protein levels in cognitive brain regions. Results showed that adult intermittent cognitive training enhanced performance on the practice task when aged in both sexes, that cognitive training benefits transferred to novel tasks only in females, and that cognitive demand was necessary for these effects, since rats receiving only the procedural testing components showed no improvement on the final maze battery. Further, for both sexes, rats that showed faster learning when young demonstrated better memory when aged. Age-related increases in neurotrophin concentrations in several brain regions were revealed, which were related to performance on the training task only in females. This longitudinal study supports the tenet that cognitive training can help one remember later in life, with broader enhancements and associations with neurotrophins in females. Published by Elsevier Inc.

  5. Learning to remember: Cognitive training-induced attenuation of age-related memory decline depends on sex and cognitive demand, and can transfer to untrained cognitive domains

    PubMed Central

    Talboom, Joshua S.; West, Stephen G.; Engler-Chiurazzi, Elizabeth B.; Enders, Craig K.; Crain, Ian; Bimonte-Nelson, Heather A.

    2014-01-01

    Aging is associated with progressive changes in learning and memory. A potential approach to attenuate age-related cognitive decline is cognitive training. In this study, adult male and female rats were given either repeated exposure to a T-maze, or no exposure to any maze, and then tested on a final battery of cognitive tasks. Two groups of each sex were tested from 6-18 months old on the same T-maze; one group received a version testing spatial reference memory, and the other group received only the procedural testing components with minimal cognitive demand. Groups three and four of each sex had no maze exposure until the final battery, and were comprised of aged or young rats. The final maze battery included the practiced T-maze plus two novel tasks, one with a similar, and one with a different, memory type to the practice task. The fifth group of each sex was not maze tested, serving as an aged control for the effects of maze testing on neurotrophin protein levels in cognitive brain regions. Results showed that adult intermittent cognitive training enhanced performance on the practice task when aged in both sexes, that cognitive training benefits transferred to novel tasks only in females, and that cognitive demand was necessary for these effects since rats receiving only the procedural testing components showed no improvement on the final maze battery. Further, for both sexes, rats that showed faster learning when young demonstrated better memory when aged. Age-related increases in neurotrophin concentrations in several brain regions were revealed, which was related to performance on the training task only in females. This longitudinal study supports the tenet that cognitive training can help one remember later in life, with broader enhancements and associations with neurotrophins in females. PMID:25104561

  6. Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer's disease.

    PubMed

    Carman, A J; Dacks, P A; Lane, R F; Shineman, D W; Fillit, H M

    2014-04-01

    Although nothing has been proven conclusively to protect against cognitive aging, Alzheimer's disease or related dementias, decades of research suggest that specific approaches including the consumption of coffee may be effective. While coffee and caffeine are known to enhance short-term memory and cognition, some limited research also suggests that long-term use may protect against cognitive decline or dementia. In vitro and pre-clinical animal models have identified plausible neuroprotective mechanisms of action of both caffeine and other bioactive components of coffee, though epidemiology has produced mixed results. Some studies suggest a protective association while others report no benefit. To our knowledge, no evidence has been gathered from randomized controlled trials. Although moderate consumption of caffeinated coffee is generally safe for healthy people, it may not be for everyone, since comorbidities and personal genetics influence potential benefits and risks. Future studies could include short-term clinical trials with biomarker outcomes to validate findings from pre-clinical models and improved epidemiological studies that incorporate more standardized methods of data collection and analysis. Given the enormous economic and emotional toll threatened by the current epidemic of Alzheimer's disease and other dementias, it is critically important to validate potential prevention strategies such as coffee and caffeine.

  7. Sleep Duration and Age-Related Changes in Brain Structure and Cognitive Performance

    PubMed Central

    Lo, June C.; Loh, Kep Kee; Zheng, Hui; Sim, Sam K.Y.; Chee, Michael W.L.

    2014-01-01

    Study Objectives: To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Design: Community-based longitudinal brain and cognitive aging study using a convenience sample. Setting: Participants were studied in a research laboratory. Participants: Relatively healthy adults aged 55 y and older at study commencement. Interventions: N/A. Measurements and Results: Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. Conclusions: In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Citation: Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance. SLEEP 2014;37(7):1171-1178. PMID:25061245

  8. Loss of Cdk5 function in the nucleus accumbens decreases wheel running and may mediate age-related declines in voluntary physical activity.

    PubMed

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Childs, Thomas E; Grigsby, Kolter B; Booth, Frank W

    2017-01-01

    greater in 8- vs. 14-week-old rats. In depth analysis of these networks showed significant (∼20-30%; P < 0.05) decreases in cell adhesion molecule (Cadm)4 and p39 mRNAs, as well as their proteins from 8 to 14 weeks of age in running and sedentary rats. Furthermore, Cadm4, cyclin-dependent kinase 5 (Cdk5) and p39 mRNAs were significantly correlated with voluntary running distance. Analysis of dendritic spine density in the NAc showed that wheel access increased spine density (P < 0.001), whereas spine density was lower in 14- vs. 8-week-old sedentary rats (P = 0.03). Intriguingly, intra-NAc injection of the Cdk5 inhibitor roscovitine, dose-dependently decreased wheel running. Collectively, these experiments suggest that an age-dependent loss in synaptic function and Cdk5/p39 activity in the NAc may be partially responsible for age-related declines in voluntary running behaviour. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  9. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    PubMed

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.

  10. Body-mass dependence of age-related deterioration in human muscular function.

    PubMed

    Meltzer, D E

    1996-04-01

    Maximal anaerobic power of human muscles declines with increasing chronological age and is correlated with body mass. This study investigated whether the rate of deterioration in human muscular function among trained weight lifters is also correlated with body mass. Cross-sectional analysis of performance data of over 1,100 Masters competitors in Olympic-style weight lifting was carried out; eight body-weight classes and six age groups were represented. Two-lift total data (sum of snatch and clean and jerk lifts) were analyzed. Mean deterioration rates in the performance of athletes of widely diverse body masses were compared over the following age ranges: 42-57, 42-62, and 42-67 yr. No statistically significant correlation (P < 0.05) was found between rate of performance decline and body mass. The relationship between body mass and the magnitude of age-related variation of deterioration rate was also studied; no significant correlation was found. Previous studies have demonstrated that performance in Olympic-style weight lifting is correlated with maximal anaerobic muscular power. This leads us to suggest that the age-related deterioration rate of anaerobic power in trained subjects may not be correlated with the body mass of the individual.

  11. The relationship of bilingualism to cognitive decline: The Australian Longitudinal Study of Ageing.

    PubMed

    Mukadam, Naaheed; Jichi, Fatima; Green, David; Livingston, Gill

    2018-02-01

    We wished to clarify the link between bilingualism and cognitive decline, and examine whether improved executive function due to bilingualism may be a factor in preventing cognitive decline. We used the Australian Longitudinal Study of Ageing which collected data on 2087 participants aged over 65 over 20 years. We compared baseline demographics, health, and social characteristics between bilingual and non-bilingual participants. We used linear mixed models analysis to explore the effect of bilingualism on MMSE score over time and linear regression to explore the effect of bilingualism on baseline MMSE scores, controlling for pre-specified potential confounders. Bilingual participants had lower baseline MMSE scores than the non-bilingual population (mean difference = -2.3 points; 95% confidence intervals = 1.56-2.90). This was fully explained by education and National Adult Reading Test scores (17.4; standard deviation [SD] =7.7 versus 28.1; SD = 8.2) which also partly explained baseline executive function test scores differences. Bilingual and non-bilingual participants did not differ in MMSE decline over time (-0.33 points, P = 0.31) nor on baseline tests of executive function (-0.26, P = 0.051). In this cohort, education rather than bilingualism was a predictor of MMSE score, and being bilingual did not protect from cognitive decline. We conclude that bilingualism is complex, and when it is not the result of greater educational attainment, it does not always protect from cognitive decline. Neuroprotective effects of bilingualism over time may be attributable to the precise patterns of language use but not to bilingualism per se. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Nutritional Considerations for Healthy Aging and Reduction in Age-Related Chronic Disease.

    PubMed

    Shlisky, Julie; Bloom, David E; Beaudreault, Amy R; Tucker, Katherine L; Keller, Heather H; Freund-Levi, Yvonne; Fielding, Roger A; Cheng, Feon W; Jensen, Gordon L; Wu, Dayong; Meydani, Simin N

    2017-01-01

    A projected doubling in the global population of people aged ≥60 y by the year 2050 has major health and economic implications, especially in developing regions. Burdens of unhealthy aging associated with chronic noncommunicable and other age-related diseases may be largely preventable with lifestyle modification, including diet. However, as adults age they become at risk of "nutritional frailty," which can compromise their ability to meet nutritional requirements at a time when specific nutrient needs may be high. This review highlights the role of nutrition science in promoting healthy aging and in improving the prognosis in cases of age-related diseases. It serves to identify key knowledge gaps and implementation challenges to support adequate nutrition for healthy aging, including applicability of metrics used in body-composition and diet adequacy for older adults and mechanisms to reduce nutritional frailty and to promote diet resilience. This review also discusses management recommendations for several leading chronic conditions common in aging populations, including cognitive decline and dementia, sarcopenia, and compromised immunity to infectious disease. The role of health systems in incorporating nutrition care routinely for those aged ≥60 y and living independently and current actions to address nutritional status before hospitalization and the development of disease are discussed. © 2017 American Society for Nutrition.

  13. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines

    PubMed Central

    Rea, Irene Maeve; Gibson, David S.; McGilligan, Victoria; McNerlan, Susan E.; Alexander, H. Denis; Ross, Owen A.

    2018-01-01

    Cytokine dysregulation is believed to play a key role in the remodeling of the immune system at older age, with evidence pointing to an inability to fine-control systemic inflammation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine expression pattern, with a progressive tendency toward a pro-inflammatory phenotype has been called “inflamm-aging.” Despite research there is no clear understanding about the causes of “inflamm-aging” that underpin most major age-related diseases, including atherosclerosis, diabetes, Alzheimer’s disease, rheumatoid arthritis, cancer, and aging itself. While inflammation is part of the normal repair response for healing, and essential in keeping us safe from bacterial and viral infections and noxious environmental agents, not all inflammation is good. When inflammation becomes prolonged and persists, it can become damaging and destructive. Several common molecular pathways have been identified that are associated with both aging and low-grade inflammation. The age-related change in redox balance, the increase in age-related senescent cells, the senescence-associated secretory phenotype (SASP) and the decline in effective autophagy that can trigger the inflammasome, suggest that it may be possible to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation. Conversely there may be learning from molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. Here, we will discuss some of the current ideas and highlight molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with “inflammageing” or parainflammation. Evidence of these findings will be drawn from research in cardiovascular disease, cancer, neurological inflammation and rheumatoid arthritis. PMID:29686666

  14. Age Related Decline in Postural Control Mechanisms.

    ERIC Educational Resources Information Center

    Stelmach, George E.; And Others

    1989-01-01

    Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…

  15. Relational learning and transitive expression in aging and amnesia

    PubMed Central

    D'Angelo, Maria C.; Kamino, Daphne; Ostreicher, Melanie; Moses, Sandra N.; Rosenbaum, R. Shayna

    2016-01-01

    ABSTRACT Aging has been associated with a decline in relational memory, which is critically supported by the hippocampus. By adapting the transitivity paradigm (Bunsey and Eichenbaum (1996) Nature 379:255‐257), which traditionally has been used in nonhuman animal research, this work examined the extent to which aging is accompanied by deficits in relational learning and flexible expression of relational information. Older adults' performance was additionally contrasted with that of amnesic case DA to understand the critical contributions of the medial temporal lobe, and specifically, the hippocampus, which endures structural and functional changes in healthy aging. Participants were required to select the correct choice item (B versus Y) based on the presented sample item (e.g., A). Pairwise relations must be learned (A‐>B, B‐>C, C‐>D) so that ultimately, the correct relations can be inferred when presented with a novel probe item (A‐>C?Z?). Participants completed four conditions of transitivity that varied in terms of the degree to which the stimuli and the relations among them were known pre‐experimentally. Younger adults, older adults, and DA performed similarly when the condition employed all pre‐experimentally known, semantic, relations. Older adults and DA were less accurate than younger adults when all to‐be‐learned relations were arbitrary. However, accuracy improved for older adults when they could use pre‐experimentally known pairwise relations to express understanding of arbitrary relations as indexed through inference judgments. DA could not learn arbitrary relations nor use existing knowledge to support novel inferences. These results suggest that while aging has often been associated with an emerging decline in hippocampal function, prior knowledge can be used to support novel inferences. However, in case DA, significant damage to the hippocampus likely impaired his ability to learn novel relations, while additional damage to

  16. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  17. Age-related changes in event-cued visual and auditory prospective memory proper.

    PubMed

    Uttl, Bob

    2006-06-01

    We rely upon prospective memory proper (ProMP) to bring back to awareness previously formed plans and intentions at the right place and time, and to enable us to act upon those plans and intentions. To examine age-related changes in ProMP, younger and older participants made decisions about simple stimuli (ongoing task) and at the same time were required to respond to a ProM cue, either a picture (visually cued ProM test) or a sound (auditorily cued ProM test), embedded in a simultaneously presented series of similar stimuli (either pictures or sounds). The cue display size or loudness increased across trials until a response was made. The cue size and cue loudness at the time of response indexed ProMP. The main results showed that both visual and auditory ProMP declined with age, and that such declines were mediated by age declines in sensory functions (visual acuity and hearing level), processing resources, working memory, intelligence, and ongoing task resource allocation.

  18. Putting age-related task activation into large-scale brain networks: A meta-analysis of 114 fMRI studies on healthy aging.

    PubMed

    Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; Lu, Guang-Ming; Zuo, Xi-Nian

    2015-10-01

    Normal aging is associated with cognitive decline and underlying brain dysfunction. Previous studies concentrated less on brain network changes at a systems level. Our goal was to examine these age-related changes of fMRI-derived activation with a common network parcellation of the human brain function, offering a systems-neuroscience perspective of healthy aging. We conducted a series of meta-analyses on a total of 114 studies that included 2035 older adults and 1845 young adults. Voxels showing significant age-related changes in activation were then overlaid onto seven commonly referenced neuronal networks. Older adults present moderate cognitive decline in behavioral performance during fMRI scanning, and hypo-activate the visual network and hyper-activate both the frontoparietal control and default mode networks. The degree of increased activation in frontoparietal network was associated with behavioral performance in older adults. Age-related changes in activation present different network patterns across cognitive domains. The systems neuroscience approach used here may be useful for elucidating the underlying network mechanisms of various brain plasticity processes during healthy aging. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Declining performance of master athletes: silhouettes of the trajectory of healthy human ageing?

    PubMed

    Lazarus, Norman R; Harridge, Stephen D R

    2017-05-01

    Analysis of world record performances by master athletes suggests an essentially linear decline with age until around the eighth decade after which performance decline accelerates. Because these records are obtained from highly trained individuals they can be viewed as being reflective of the diminution of integrative physiological prowess that occurs solely as a result of ageing, unaffected by the confounding effects of inactivity. It can also be argued that these performance profiles mirror and provide an insight into the trajectory of the physiology of the human ageing process. Here we propose a set point theory that hypothesises that a given threshold of physical activity is needed to age optimally and to maximise the 'healthspan'. Exercising at levels below the set point will result in ageing being contaminated by the unpredictable and pathological effects of inactivity. Exercise above this threshold stimulates adaptations towards maximising athletic performance, but is unlikely to have further beneficial effects on health. Thus the decades-long, controlled diminution in athletic performance, should not be seen as a disease process. The ageing process is separate from, and independent of, exercise-mediated processes that maintain or adapt physiological function. Whether an understanding of these mechanisms will also help uncover mechanisms underpinning the ageing process itself is open to question. However, any model which does not take into account the effects of activity will not adequately describe the inherent ageing process. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  20. Raspberry supplementation alleviates age-related motor dysfunction in select populations

    USDA-ARS?s Scientific Manuscript database

    Age-related declines in balance, muscle strength and coordination often lead to a higher incidence of falling. Among older adults, falls are the leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demons...

  1. [Effects of fertilizing regime and planting age on soil calcium decline in Luochuan apple orchards].

    PubMed

    Li, Peng; Li, Chun Yue; Wang, Yi Quan; Jiao, Cai Qiang

    2017-05-18

    This study was conducted to assess the effects of fertilizing regime and orchard planting age on soil calcium contents and stocks in the apple orchards on the Loess Plateau. The apple orchards in Luochuan County, one of the best regions for apple plantation in the world, were selec-ted in this study. The contents of calcium carbonate,water-soluble calcium and exchangeable cal-cium at 0-100 cm soil layer under different fertilizing regimes and various planting ages were mea-sured, their stocks were calculated and their variation features were analyzed. The results showed that soil in the apple orchards in the study region was characterized by the decline in calcium contents. The decline was more serious in apple orchards with long-term application of chemical fertili-zer than in those with combined application of chemical fertilizer and farmyard manure. The average contents of calcium carbonate, water-soluble calcium and exchangeable calcium at 0-100 cm soil layer in apple orchards with long-term application of chemical fertilizer decreased by 38.8%, 25.4% and 5.6% respectively than those in the apple orchards with long-term application of both chemical fertilizer and farmyard manure. The stocks of calcium carbonate, water-soluble calcium and exchangeable calcium decreased by 36.4%, 26.0% and 4.3%, respectively. The decline of soil cal-cium was aggravated with the increase of orchard planting age. The contents of calcium carbonate, water-soluble calcium and exchangeable calcium at 0-100 cm soil layer in orchards of more than 25 years of planting age decreased by 48.8%, 69.4% and 39.5% respectively, compared with orchards of less than 10 years of planting age, and the stocks decreased by 40.8%, 64.1% and 33.0%, respectively. These results indicated that either long-term application of chemical fertilizer or long-term plantation of apple trees obviously depleted soil calcium carbonate, water-soluble calcium and exchangeable calcium. Therefore, it was recommended that

  2. Feature-selective attention in healthy old age: a selective decline in selective attention?

    PubMed

    Quigley, Cliodhna; Müller, Matthias M

    2014-02-12

    Deficient selection against irrelevant information has been proposed to underlie age-related cognitive decline. We recently reported evidence for maintained early sensory selection when older and younger adults used spatial selective attention to perform a challenging task. Here we explored age-related differences when spatial selection is not possible and feature-selective attention must be deployed. We additionally compared the integrity of feedforward processing by exploiting the well established phenomenon of suppression of visual cortical responses attributable to interstimulus competition. Electroencephalogram was measured while older and younger human adults responded to brief occurrences of coherent motion in an attended stimulus composed of randomly moving, orientation-defined, flickering bars. Attention was directed to horizontal or vertical bars by a pretrial cue, after which two orthogonally oriented, overlapping stimuli or a single stimulus were presented. Horizontal and vertical bars flickered at different frequencies and thereby elicited separable steady-state visual-evoked potentials, which were used to examine the effect of feature-based selection and the competitive influence of a second stimulus on ongoing visual processing. Age differences were found in feature-selective attentional modulation of visual responses: older adults did not show consistent modulation of magnitude or phase. In contrast, the suppressive effect of a second stimulus was robust and comparable in magnitude across age groups, suggesting that bottom-up processing of the current stimuli is essentially unchanged in healthy old age. Thus, it seems that visual processing per se is unchanged, but top-down attentional control is compromised in older adults when space cannot be used to guide selection.

  3. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: Relationship with spatial impairment

    PubMed Central

    Bañuelos, C.; LaSarge, C. L.; McQuail, J. A.; Hartman, J. J.; Gilbert, R. J.; Ormerod, B. K.; Bizon, J. L.

    2013-01-01

    Both cholinergic and GABAergic projections from the rostral basal forebrain have been implicated in hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in co-distributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase (ChAT) immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 (GAD67) immunopositive) neurons, and total (NeuN immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline. PMID:22817834

  4. An age-related deficit in spatial-feature reference memory in homing pigeons (Columba livia).

    PubMed

    Coppola, Vincent J; Flaim, Mary E; Carney, Samantha N; Bingman, Verner P

    2015-03-01

    Age-related memory decline in mammals has been well documented. By contrast, very little is known about memory decline in birds as they age. In the current study we trained younger and older homing pigeons on a reference memory task in which a goal location could be encoded by spatial and feature cues. Consistent with a previous working memory study, the results revealed impaired acquisition of combined spatial-feature reference memory in older compared to younger pigeons. Following memory acquisition, we used cue-conflict probe trials to provide an initial assessment of possible age-related differences in cue preference. Both younger and older pigeons displayed a similarly modest preference for feature over spatial cues. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. microRNA in Cardiovascular Aging and Age-Related Cardiovascular Diseases

    PubMed Central

    de Lucia, Claudio; Komici, Klara; Borghetti, Giulia; Femminella, Grazia Daniela; Bencivenga, Leonardo; Cannavo, Alessandro; Corbi, Graziamaria; Ferrara, Nicola; Houser, Steven R.; Koch, Walter J.; Rengo, Giuseppe

    2017-01-01

    Over the last decades, life expectancy has significantly increased although several chronic diseases persist in the population, with aging as the leading risk factor. Despite improvements in diagnosis and treatment, many elderlies suffer from cardiovascular problems that are much more frequent in an older, more fragile organism. In the long term, age-related cardiovascular diseases (CVDs) contribute to the decline of quality of life and ability to perform normal activities of daily living. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the posttranscriptional level in both physiological and pathological conditions. In this review, we will focus on the role of miRNAs in aging and age-related CVDs as heart failure, hypertension, atherosclerosis, atrial fibrillation, and diabetes mellitus. miRNAs are key regulators of complex biological mechanisms, representing an exciting potential therapeutic target in CVDs. Moreover, one major challenge in geriatric medicine is to find reliable biomarkers for diagnosis, prognosis, and prediction of the response to specific drugs. miRNAs represent a very promising tool due to their stability in the circulation and unique signature in CVDs. However, further studies are needed to investigate their translational potential in the real clinical practice. PMID:28660188

  6. Age-related effects on perceptual and semantic encoding in memory.

    PubMed

    Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H

    2014-03-07

    This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Longitudinal association between hippocampus atrophy and episodic-memory decline.

    PubMed

    Gorbach, Tetiana; Pudas, Sara; Lundquist, Anders; Orädd, Greger; Josefsson, Maria; Salami, Alireza; de Luna, Xavier; Nyberg, Lars

    2017-03-01

    There is marked variability in both onset and rate of episodic-memory decline in aging. Structural magnetic resonance imaging studies have revealed that the extent of age-related brain changes varies markedly across individuals. Past studies of whether regional atrophy accounts for episodic-memory decline in aging have yielded inconclusive findings. Here we related 15-year changes in episodic memory to 4-year changes in cortical and subcortical gray matter volume and in white-matter connectivity and lesions. In addition, changes in word fluency, fluid IQ (Block Design), and processing speed were estimated and related to structural brain changes. Significant negative change over time was observed for all cognitive and brain measures. A robust brain-cognition change-change association was observed for episodic-memory decline and atrophy in the hippocampus. This association was significant for older (65-80 years) but not middle-aged (55-60 years) participants and not sensitive to the assumption of ignorable attrition. Thus, these longitudinal findings highlight medial-temporal lobe system integrity as particularly crucial for maintaining episodic-memory functioning in older age. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Aging and Visual Attention

    PubMed Central

    Madden, David J.

    2007-01-01

    Older adults are often slower and less accurate than are younger adults in performing visual-search tasks, suggesting an age-related decline in attentional functioning. Age-related decline in attention, however, is not entirely pervasive. Visual search that is based on the observer’s expectations (i.e., top-down attention) is relatively preserved as a function of adult age. Neuroimaging research suggests that age-related decline occurs in the structure and function of brain regions mediating the visual sensory input, whereas activation of regions in the frontal and parietal lobes is often greater for older adults than for younger adults. This increased activation may represent an age-related increase in the role of top-down attention during visual tasks. To obtain a more complete account of age-related decline and preservation of visual attention, current research is beginning to explore the relation of neuroimaging measures of brain structure and function to behavioral measures of visual attention. PMID:18080001

  9. Workers who decline employment-related health insurance.

    PubMed

    Bernard, Didem M; Selden, Thomas M

    2006-05-01

    Families of workers who decline coverage represent a substantial share of the uninsured and publicly-insured population in the United States. We examined health status, access to health care, utilization, and expenditures among families that declined health insurance coverage offered by employers using data from the Medical Expenditure Panel Survey for 2001 and 2002. We found differences in insurance status for adults and children among families with offers. We found that among low-income families with offers, children are less likely to have private insurance compared with adults. However, the majority of children who decline private insurance end up with public coverage, whereas most of adults who decline offers remain uninsured. Decliners are more likely to report poor health, yet they are also less likely to have high cost medical conditions. Families declining coverage have weaker preferences for insurance than families that take up. Although access to care is lower among the decliners who remain uninsured, decliners with public insurance have similar access to care as those with private insurance. Families turning down coverage are more likely to face high expenditure burdens as a percentage of income and more likely to have financial barriers to care. Families who decline coverage rely heavily on the safety net. Public sources and uncompensated care account for 72% of total expenditures among adults who decline coverage. Our results suggest that policy initiatives aimed at increasing take up among workers need to take into account the incentives workers face given the availability of care through public sources and uncompensated care.

  10. Arterial stiffness and decline of renal function in a primary care population.

    PubMed

    van Varik, Bernard J; Vossen, Liv M; Rennenberg, Roger J; Stoffers, Henri E; Kessels, Alfons G; de Leeuw, Peter W; Kroon, Abraham A

    2017-01-01

    Arterial stiffness is an important pathophysiological factor linking cardiovascular disease and kidney disease. Controversy exists as to whether arterial stiffness causes renal function decline, or kidney dysfunction leads to stiffening or whether the association is mutual. We aimed to investigate the longitudinal association between arterial stiffness and annual rate of renal function decline. We prospectively investigated in a primary care population whether carotid-femoral pulse wave velocity (PWV) was associated with estimated glomerular filtration rate (eGFR) and annual decline in eGFR in participants aged ⩾40 years without overt kidney disease. Baseline data on PWV and eGFR were available for 587 participants; follow-up measurements with a mean duration of 5.6 years were available for 222 patients. PWV, female gender and mean arterial pressure were independently associated with eGFR at baseline, although age confounded this association. More importantly, baseline PWV, age and eGFR were independent predictors of renal function decline. Stratification for age showed that the effect of PWV on rate of eGFR decline was amplified with advancing age. On the other hand, baseline eGFR did not determine annual change in PWV, suggesting a unidirectional association between arterial stiffness and eGFR. Arterial stiffness amplifies age-related renal function decline, suggesting that arterial stiffness plays a causal role in the development of renal damage, at least at later stages of age-related renal function decline, possibly through impaired renal autoregulation and increased arterial blood pressure pulsatility.

  11. A greater decline in female facial attractiveness during middle age reflects women's loss of reproductive value.

    PubMed

    Maestripieri, Dario; Klimczuk, Amanda C E; Traficonte, Daniel M; Wilson, M Claire

    2014-01-01

    Facial attractiveness represents an important component of an individual's overall attractiveness as a potential mating partner. Perceptions of facial attractiveness are expected to vary with age-related changes in health, reproductive value, and power. In this study, we investigated perceptions of facial attractiveness, power, and personality in two groups of women of pre- and post-menopausal ages (35-50 years and 51-65 years, respectively) and two corresponding groups of men. We tested three hypotheses: (1) that perceived facial attractiveness would be lower for older than for younger men and women; (2) that the age-related reduction in facial attractiveness would be greater for women than for men; and (3) that for men, there would be a larger increase in perceived power at older ages. Eighty facial stimuli were rated by 60 (30 male, 30 female) middle-aged women and men using online surveys. Our three main hypotheses were supported by the data. Consistent with sex differences in mating strategies, the greater age-related decline in female facial attractiveness was driven by male respondents, while the greater age-related increase in male perceived power was driven by female respondents. In addition, we found evidence that some personality ratings were correlated with perceived attractiveness and power ratings. The results of this study are consistent with evolutionary theory and with previous research showing that faces can provide important information about characteristics that men and women value in a potential mating partner such as their health, reproductive value, and power or possession of resources.

  12. HbA1c, diabetes and cognitive decline: the English Longitudinal Study of Ageing.

    PubMed

    Zheng, Fanfan; Yan, Li; Yang, Zhenchun; Zhong, Baoliang; Xie, Wuxiang

    2018-04-01

    The aim of the study was to evaluate longitudinal associations between HbA 1c levels, diabetes status and subsequent cognitive decline over a 10 year follow-up period. Data from wave 2 (2004-2005) to wave 7 (2014-2015) of the English Longitudinal Study of Ageing (ELSA) were analysed. Cognitive function was assessed at baseline (wave 2) and reassessed every 2 years at waves 3-7. Linear mixed models were used to evaluate longitudinal associations. The study comprised 5189 participants (55.1% women, mean age 65.6 ± 9.4 years) with baseline HbA 1c levels ranging from 15.9 to 126.3 mmol/mol (3.6-13.7%). The mean follow-up duration was 8.1 ± 2.8 years and the mean number of cognitive assessments was 4.9 ± 1.5. A 1 mmol/mol increment in HbA 1c was significantly associated with an increased rate of decline in global cognitive z scores (-0.0009 SD/year, 95% CI -0.0014, -0.0003), memory z scores (-0.0005 SD/year, 95% CI -0.0009, -0.0001) and executive function z scores (-0.0008 SD/year, 95% CI -0.0013, -0.0004) after adjustment for baseline age, sex, total cholesterol, HDL-cholesterol, triacylglycerol, high-sensitivity C-reactive protein, BMI, education, marital status, depressive symptoms, current smoking, alcohol consumption, hypertension, CHD, stroke, chronic lung disease and cancer. Compared with participants with normoglycaemia, the multivariable-adjusted rate of global cognitive decline associated with prediabetes and diabetes was increased by -0.012 SD/year (95% CI -0.022, -0.002) and -0.031 SD/year (95% CI -0.046, -0.015), respectively (p for trend <0.001). Similarly, memory, executive function and orientation z scores showed an increased rate of cognitive decline with diabetes. Significant longitudinal associations between HbA 1c levels, diabetes status and long-term cognitive decline were observed in this study. Future studies are required to determine the effects of maintaining optimal glucose control on the rate of cognitive decline in people

  13. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline

    PubMed Central

    Febo, Marcelo; Foster, Thomas C.

    2016-01-01

    Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline. PMID:27468264

  14. Cognitive decline, mortality, and organophosphorus exposure in aging Mexican Americans.

    PubMed

    Paul, Kimberly C; Ling, Chenxiao; Lee, Anne; To, Tu My; Cockburn, Myles; Haan, Mary; Ritz, Beate

    2018-01-01

    Cognitive impairment is a major health concern among older Mexican Americans, associated with significant morbidity and mortality, and may be influenced by environmental exposures. To investigate whether agricultural based ambient organophosphorus (OP) exposure influences 1) the rate of cognitive decline and mortality and 2) whether these associations are mediated through metabolic or inflammatory biomarkers. In a subset of older Mexican Americans from the Sacramento Area Latino Study on Aging (n = 430), who completed modified mini-mental state exams (3MSE) up to 7 times (1998-2007), we examined the relationship between estimated ambient OP exposures and cognitive decline (linear repeated measures model) and time to dementia or being cognitively impaired but not demented (CIND) and time to mortality (cox proportional hazards model). We then explored metabolic and inflammatory biomarkers as potential mediators of these relationships (additive hazards mediation). OP exposures at residential addresses were estimated with a geographic information system (GIS) based exposure assessment tool. Participants with high OP exposure in the five years prior to baseline experienced faster cognitive decline (β = 0.038, p = 0.02) and higher mortality over follow-up (HR = 1.91, 95% CI = 1.12, 3.26). The direct effect of OP exposure was estimated at 241 (95% CI = 27-455) additional deaths per 100,000 person-years, and the proportion mediated through the metabolic hormone adiponectin was estimated to be 4% 1.5-19.2). No other biomarkers were associated with OP exposure. Our study provides support for the involvement of OP pesticides in cognitive decline and mortality among older Mexican Americans, possibly through biologic pathways involving adiponectin. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Central obesity, leptin and cognitive decline: the Sacramento Area Latino Study on Aging.

    PubMed

    Zeki Al Hazzouri, Adina; Haan, Mary N; Whitmer, Rachel A; Yaffe, Kristine; Neuhaus, John

    2012-01-01

    Central obesity is a risk factor for cognitive decline. Leptin is secreted by adipose tissue and has been associated with better cognitive function. Aging Mexican Americans have higher levels of obesity than non-Hispanic Whites, but no investigations examined the relationship between leptin and cognitive decline among them or the role of central obesity in this association. We analyzed 1,480 dementia-free older Mexican Americans who were followed over 10 years. Cognitive function was assessed every 12-15 months with the Modified Mini Mental State Exam (3MSE) and the Spanish and English Verbal Learning Test (SEVLT). For females with a small waist circumference (≤35 inches), an interquartile range difference in leptin was associated with 35% less 3MSE errors and 22% less decline in the SEVLT score over 10 years. For males with a small waist circumference (≤40 inches), an interquartile range difference in leptin was associated with 44% less 3MSE errors and 30% less decline in the SEVLT score over 10 years. There was no association between leptin and cognitive decline among females or males with a large waist circumference. Leptin interacts with central obesity in shaping cognitive decline. Our findings provide valuable information about the effects of metabolic risk factors on cognitive function. Copyright © 2012 S. Karger AG, Basel.

  16. High-sensitivity C-reactive protein and cognitive decline: the English Longitudinal Study of Ageing.

    PubMed

    Zheng, Fanfan; Xie, Wuxiang

    2018-06-01

    High-sensitivity C-reactive protein (hs-CRP) has been suggested to be involved in the process of cognitive decline. However, the results from previous studies exploring the relationship between hs-CRP concentration and cognitive decline are inconsistent. We employed data from wave 2 (2004-2005) to wave 7 (2014-2015) of the English Longitudinal Study of Ageing. Cognitive function was assessed at baseline (wave 2) and reassessed biennially at waves 3-7. A total of 5257 participants (54.9% women, mean age 65.4 ± 9.4 years) with baseline hs-CRP levels ranged from 0.2 to 210.0 mg/L (median: 2.0 mg/L, interquartile range: 0.9-4.1 mg/L) were studied. The mean follow-up duration was 8.1 ± 2.8 years, and the mean number of cognitive assessment was 4.9 ± 1.5. Linear mixed models show that a one-unit increment in natural log-transformed hs-CRP was associated with faster declines in global cognitive scores [-0.048 points/year, 95% confidence interval (CI) -0.072 to -0.023], memory scores (-0.022 points/year, 95% CI -0.031 to -0.013), and executive function scores (-0.025 points/year, 95% CI -0.043 to -0.006), after multivariable adjustment. Compared with the lowest quartile of hs-CRP, the multivariable-adjusted rate of global cognitive decline associated with the second, third, and highest quartile was faster by -0.043 points/year (95% CI -0.116 to 0.029), -0.090 points/year (95% CI -0.166 to -0.015), -0.145 (95% CI -0.221 to -0.069), respectively (p for trend <0.001). Similarly, memory and executive function also declined faster with increasing quartiles of hs-CRP. A significant association between hs-CRP concentration and long-term cognitive decline was observed in this study. Hs-CRP might serve as a biomarker for cognitive decline.

  17. Physical activity and motor decline in older persons.

    PubMed

    Buchman, A S; Boyle, P A; Wilson, R S; Bienias, Julia L; Bennett, D A

    2007-03-01

    We tested the hypothesis that physical activity modifies the course of age-related motor decline. More than 850 older participants of the Rush Memory and Aging Project underwent baseline assessment of physical activity and annual motor testing for up to 8 years. Nine strength measures and nine motor performance measures were summarized into composite measures of motor function. In generalized estimating equation models, global motor function declined during follow-up (estimate, -0.072; SE, 0.008; P < 0.001). Each additional hour of physical activity at baseline was associated with about a 5% decrease in the rate of global motor function decline (estimate, 0.004; SE, 0.001; P = 0.007). Secondary analyses suggested that the association of physical activity with motor decline was mostly due to the effect of physical activity on the rate of motor performance decline. Thus, higher levels of physical activity are associated with a slower rate of motor decline in older persons.

  18. Age-associated and deslorelin-induced declines in serum anti-Müllerian hormone concentrations in female cheetahs, Acinonyx jubatus.

    PubMed

    Place, Ned J; Crosier, Adrienne E; Comizzoli, Pierre; Nagashima, Jennifer B; Haefele, Holly; Schmidt-Küntzel, Anne; Marker, Laurie L

    2017-09-01

    Anti-Müllerian hormone (AMH) is widely used in human medicine to non-invasively estimate the size of the ovarian follicle reserve and to predict the ovarian response to gonadotropin stimulation in the context of assisted reproductive technologies (e.g., IVF). These applications of AMH testing have recently expanded to non-human mammals, with production animals, such as cows, goats and sheep being the primary focus of AMH research. However, few investigations have involved exotic species, and in particular carnivores. In this study, we measured AMH concentrations (0.078-3.078ng/mL) in archived serum samples that had been collected from 36 adult female cheetahs across their reproductive lifespan (2-15years of age). Similar to other mammals, AMH concentration in cheetahs declined with age, and its variability among females of the same age was considerable. The rates at which AMH declined over time in individual cheetahs were also highly variable. Five cheetahs had been contracepted with the long-acting GnRH agonist deslorelin for 6-18months prior to sample collection, and their AMH concentrations were relatively low compared to untreated females. In this first study of AMH in an exotic carnivore, the findings demonstrate that the age-associated decline in AMH is highly variable and that deslorelin appears to suppress AMH concentration in serum. Owing to the increased use of assisted reproductive technologies in ex situ populations of threatened and endangered species, such as cheetahs, the present study's findings will need to be taken into consideration if AMH is to be used successfully to optimize breeding management decisions in exotic species. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dysregulation of the Bmi-1/p16Ink4a pathway provokes an aging-associated decline of submandibular gland function

    PubMed Central

    Yamakoshi, Kimi; Katano, Satoshi; Iida, Mayu; Kimura, Hiromi; Okuma, Atsushi; Ikemoto-Uezumi, Madoka; Ohtani, Naoko; Hara, Eiji; Maruyama, Mitsuo

    2015-01-01

    Bmi-1 prevents stem cell aging, at least partly, by blocking expression of the cyclin-dependent kinase inhibitor p16Ink4a. Therefore, dysregulation of the Bmi-1/p16Ink4a pathway is considered key to the loss of tissue homeostasis and development of associated degenerative diseases during aging. However, because Bmi-1 knockout (KO) mice die within 20 weeks after birth, it is difficult to determine exactly where and when dysregulation of the Bmi-1/p16Ink4a pathway occurs during aging in vivo. Using real-time in vivo imaging of p16Ink4a expression in Bmi-1-KO mice, we uncovered a novel function of the Bmi-1/p16Ink4a pathway in controlling homeostasis of the submandibular glands (SMGs), which secrete saliva into the oral cavity. This pathway is dysregulated during aging in vivo, leading to induction of p16Ink4a expression and subsequent declined SMG function. These findings will advance our understanding of the molecular mechanisms underlying the aging-related decline of SMG function and associated salivary gland hypofunction, which is particularly problematic among the elderly. PMID:25832744

  20. Nutritional Considerations for Healthy Aging and Reduction in Age-Related Chronic Disease12

    PubMed Central

    Shlisky, Julie; Bloom, David E; Beaudreault, Amy R; Tucker, Katherine L; Keller, Heather H; Freund-Levi, Yvonne; Fielding, Roger A; Cheng, Feon W; Jensen, Gordon L; Wu, Dayong; Meydani, Simin N

    2017-01-01

    A projected doubling in the global population of people aged ≥60 y by the year 2050 has major health and economic implications, especially in developing regions. Burdens of unhealthy aging associated with chronic noncommunicable and other age-related diseases may be largely preventable with lifestyle modification, including diet. However, as adults age they become at risk of “nutritional frailty,” which can compromise their ability to meet nutritional requirements at a time when specific nutrient needs may be high. This review highlights the role of nutrition science in promoting healthy aging and in improving the prognosis in cases of age-related diseases. It serves to identify key knowledge gaps and implementation challenges to support adequate nutrition for healthy aging, including applicability of metrics used in body-composition and diet adequacy for older adults and mechanisms to reduce nutritional frailty and to promote diet resilience. This review also discusses management recommendations for several leading chronic conditions common in aging populations, including cognitive decline and dementia, sarcopenia, and compromised immunity to infectious disease. The role of health systems in incorporating nutrition care routinely for those aged ≥60 y and living independently and current actions to address nutritional status before hospitalization and the development of disease are discussed. PMID:28096124

  1. Age-related differences in the neural bases of phonological and semantic processes

    PubMed Central

    Diaz, Michele T.; Johnson, Micah A.; Burke, Deborah M.; Madden, David J.

    2014-01-01

    Changes in language functions during normal aging are greater for phonological compared to semantic processes. To investigate the behavioral and neural basis for these age-related differences, we used functional magnetic resonance imaging (fMRI) to examine younger and older adults who made semantic and phonological decisions about pictures. The behavioral performance of older adults was less accurate and less efficient than younger adults’ in the phonological task, but did not differ in the semantic task. In the fMRI analyses, the semantic task activated left-hemisphere language regions, while the phonological task activated bilateral cingulate and ventral precuneus. Age-related effects were widespread throughout the brain, and most often expressed as greater activation for older adults. Activation was greater for younger compared to older adults in ventral brain regions involved in visual and object processing. Although there was not a significant Age x Condition interaction in the whole-brain fMRI results, correlations examining the relationship between behavior and fMRI activation were stronger for younger compared to older adults. Our results suggest that the relationship between behavior and neural activation declines with age and this may underlie some of the observed declines in performance. PMID:24893737

  2. Lifelong Bilingualism Contributes to Cognitive Reserve against White Matter Integrity Declines in Aging

    PubMed Central

    Gold, Brian T.; Johnson, Nathan F.; Powell, David K.

    2013-01-01

    Recent evidence suggests that lifelong bilingualism may contribute to cognitive reserve (CR) in normal aging. However, there is currently no neuroimaging evidence to suggest that lifelong bilinguals can retain normal cognitive functioning in the face of age-related neurodegeneration. Here we explored this issue by comparing white matter (WM) integrity and gray matter (GM) volumetric patterns of older adult lifelong bilinguals (N = 20) and monolinguals (N = 20). The groups were matched on a range of relevant cognitive test scores and on the established CR variables of education, socioeconomic status and intelligence. Participants underwent high-resolution structural imaging for assessment of GM volume and diffusion tensor imaging (DTI) for assessment of WM integrity. Results indicated significantly lower microstructural integrity in the bilingual group in several WM tracts. In particular, compared to their monolingual peers, the bilingual group showed lower fractional anisotropy and/or higher radial diffusivity in the inferior longitudinal fasciculus/inferior fronto-occipital fasciculus bilaterally, the fornix, and multiple portions of the corpus callosum. There were no group differences in GM volume. Our results suggest that lifelong bilingualism contributes to CR against WM integrity declines in aging. PMID:24103400

  3. Gene expression changes in male accessory glands during ageing are accompanied by reproductive decline in Drosophila melanogaster.

    PubMed

    Koppik, Mareike; Fricke, Claudia

    2017-12-01

    Senescence is accompanied by loss of reproductive functions. Here, we studied reproductive ageing in Drosophila melanogaster males and asked whether the expected decline in male reproductive success is due to diminished functionality of the male accessory gland (AG). The male AG produces the majority of seminal fluid proteins (SFPs) transferred to the female at mating. SFPs induce female postmating changes and are key to male reproductive success. We measured age-dependent gene expression changes for five representative SFP genes in males from four different age groups ranging from 1 to 6 weeks after eclosion. Simultaneously, we also measured male reproductive success in postmating traits mediated by transfer of these five SFPs. We found a decreased in male SFP gene expression with advancing age and an accompanying decline in male postmating success. Hence, male reproductive senescence is associated with a decline in functionality of the male AG. While overall individual SFP genes decreased in expression, our results point towards the idea that the composition of an ejaculate might change with male age as the rate of change was variable for those five genes. © 2017 John Wiley & Sons Ltd.

  4. Comprehensive Analysis of Large Sets of Age-Related Physiological Indicators Reveals Rapid Aging around the Age of 55 Years.

    PubMed

    Lixie, Erin; Edgeworth, Jameson; Shamir, Lior

    2015-01-01

    While many studies show a correlation between chronological age and physiological indicators, the nature of this correlation is not fully understood. To perform a comprehensive analysis of the correlation between chronological age and age-related physiological indicators. Physiological aging scores were deduced using principal component analysis from a large dataset of 1,227 variables measured in a cohort of 4,796 human subjects, and the correlation between the physiological aging scores and chronological age was assessed. Physiological age does not progress linearly or exponentially with chronological age: a more rapid physiological change is observed around the age of 55 years, followed by a mild decline until around the age of 70 years. These findings provide evidence that the progression of physiological age is not linear with that of chronological age, and that periods of mild change in physiological age are separated by periods of more rapid aging. © 2015 S. Karger AG, Basel.

  5. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis.

    PubMed

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L

    2016-05-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.

  6. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis

    PubMed Central

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D.

    2016-01-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance—replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. Significance This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. PMID:26987353

  7. Physical activity and inflammation: effects on gray-matter volume and cognitive decline in aging.

    PubMed

    Papenberg, Goran; Ferencz, Beata; Mangialasche, Francesca; Mecocci, Patrizia; Cecchetti, Roberta; Kalpouzos, Grégoria; Fratiglioni, Laura; Bäckman, Lars

    2016-10-01

    Physical activity has been positively associated with gray-matter integrity. In contrast, pro-inflammatory cytokines seem to have negative effects on the aging brain and have been related to dementia. It was investigated whether an inactive lifestyle and high levels of inflammation resulted in smaller gray-matter volumes and predicted cognitive decline across 6 years in a population-based study of older adults (n = 414). Self-reported physical activity (fitness-enhancing, health-enhancing, inadequate) was linked to gray-matter volume, such that individuals with inadequate physical activity had the least gray matter. There were no overall associations between different pro-and anti-inflammatory markers (IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, G-CSF, and TNF-α) and gray-matter integrity. However, persons with inadequate activity and high levels of the pro-inflammatory marker IL-12p40 had smaller volumes of lateral prefrontal cortex and hippocampus and declined more on the Mini-Mental State Examination test over 6 years compared with physically inactive individuals with low levels of IL-12p40 and to more physically active persons, irrespective of their levels of IL-12p40. These patterns of data suggested that inflammation was particularly detrimental in inactive older adults and may exacerbate the negative effects of physical inactivity on brain and cognition in old age. Hum Brain Mapp 37:3462-3473, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Differential age-related decline in conflict-driven task-set shielding from emotional versus non-emotional distracters.

    PubMed

    Monti, Jim M; Weintraub, Sandra; Egner, Tobias

    2010-05-01

    While normal aging is associated with a marked decline in cognitive abilities, such as memory and executive functions, recent evidence suggests that control processes involved in regulating responses to emotional stimuli may remain well-preserved in the elderly. However, neither the precise nature of these preserved control processes, nor their domain-specificity with respect to comparable non-emotional control processes, are currently well-established. Here, we tested the hypothesis of domain-specific preservation of emotional control in the elderly by employing two closely matched behavioral tasks that assessed the ability to shield the processing of task-relevant stimulus information from competition by task-irrelevant distracter stimuli that could be either non-emotional or emotional in nature. The efficacy of non-emotional versus emotional task-set shielding, gauged via the 'conflict adaptation effect', was compared between cohorts of healthy young adults, healthy elderly adults, and individuals diagnosed with probable Alzheimer's disease (PRAD), age-matched to the elderly subjects. It was found that, compared to the young adult cohort, the healthy elderly displayed deficits in task-set shielding in the non-emotional but not in the emotional task, whereas PRAD subjects displayed impaired performance in both tasks. These results provide new evidence that healthy aging is associated with a domain-specific preservation of emotional control functions, specifically, the shielding of a current task-set from interference by emotional distracter stimuli. This selective preservation of function supports the notion of partly dissociable affective control mechanisms, and may either reflect different time-courses of degeneration in the neuroanatomical circuits mediating task-set maintenance in the face of non-emotional versus emotional distracters, or a motivational shift towards affective processing in the elderly. 2010 Elsevier Ltd. All rights reserved.

  9. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons

    PubMed Central

    Morsci, Natalia S.; Hall, David H.

    2016-01-01

    Aging is associated with cognitive decline and increasing risk of neurodegeneration. Perturbation of mitochondrial function, dynamics, and trafficking are implicated in the pathogenesis of several age-associated neurodegenerative diseases. Despite this fundamental importance, the critical understanding of how organismal aging affects lifetime neuronal mitochondrial maintenance remains unknown, particularly in a physiologically relevant context. To address this issue, we performed a comprehensive in vivo analysis of age-associated changes in mitochondrial morphology, density, trafficking, and stress resistance in individual Caenorhabditis elegans neurons throughout adult life. Adult neurons display three distinct stages of increase, maintenance, and decrease in mitochondrial size and density during adulthood. Mitochondrial trafficking in the distal neuronal processes declines progressively with age starting from early adulthood. In contrast, long-lived daf-2 mutants exhibit delayed age-associated changes in mitochondrial morphology, constant mitochondrial density, and maintained trafficking rates during adulthood. Reduced mitochondrial load at late adulthood correlates with decreased mitochondrial resistance to oxidative stress. Revealing aging-associated changes in neuronal mitochondria in vivo is an essential precedent that will allow future elucidation of the mechanistic causes of mitochondrial aging. Thus, our study establishes the critical foundation for the future analysis of cellular pathways and genetic and pharmacological factors regulating mitochondrial maintenance in aging- and disease-relevant conditions. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans as a model, we address long-standing questions: How does aging affect neuronal mitochondrial morphology, density, trafficking, and oxidative stress resistance? Are these age-related changes amenable to genetic manipulations that slow down the aging process? Our study illustrates that mitochondrial

  10. Age-Related Changes to the Neural Correlates of Social Evaluation

    PubMed Central

    Cassidy, Brittany S.; Shih, Joanne Y.; Gutchess, Angela H.

    2012-01-01

    Recent work suggests the existence of a specialized neural system underlying social processing that may be relatively spared with age, unlike pervasive aging-related decline occurring in many cognitive domains. We investigated how neural mechanisms underlying social evaluation are engaged with age, and how age-related changes to socioemotional goals affect recruitment of regions within this network. In a functional MRI study, fifteen young and fifteen older adults formed behavior-based impressions of individuals. They also responded to a prompt that was interpersonally meaningful, social but interpersonally irrelevant, or non-social. Both age groups engaged regions implicated in mentalizing and impression formation when making social relative to non-social evaluations, including dorsal and ventral medial prefrontal cortices, precuneus, and temporoparietal junction. Older adults had increased activation over young in right temporal pole when making social relative to non-social evaluations, suggesting reliance on past experiences when evaluating others. Young had greater activation than old in posterior cingulate gyrus when making interpersonally irrelevant, compared to interpersonally meaningful, evaluations, potentially reflecting enhanced valuation of this information. The findings demonstrate the age-related preservation of the neural correlates underlying social evaluation, and suggest that functioning in these regions might be mediated by age-related changes in socioemotional goals. PMID:22439896

  11. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking

    PubMed Central

    Kievit, Rogier A.; Davis, Simon W.; Mitchell, Daniel J.; Taylor, Jason R.; Duncan, John; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Geerligs, Linda; McCarrey, Anna; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, Richard N.A.

    2014-01-01

    Ageing is characterized by declines on a variety of cognitive measures. These declines are often attributed to a general, unitary underlying cause, such as a reduction in executive function owing to atrophy of the prefrontal cortex. However, age-related changes are likely multifactorial, and the relationship between neural changes and cognitive measures is not well-understood. Here we address this in a large (N=567), population-based sample drawn from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data. We relate fluid intelligence and multitasking to multiple brain measures, including grey matter in various prefrontal regions and white matter integrity connecting those regions. We show that multitasking and fluid intelligence are separable cognitive abilities, with differential sensitivities to age, which are mediated by distinct neural subsystems that show different prediction in older versus younger individuals. These results suggest that prefrontal ageing is a manifold process demanding multifaceted models of neurocognitive ageing. PMID:25519467

  12. Experimental evidence of age-related adaptive changes in human acinar airways

    PubMed Central

    Quirk, James D.; Sukstanskii, Alexander L.; Woods, Jason C.; Lutey, Barbara A.; Conradi, Mark S.; Gierada, David S.; Yusen, Roger D.; Castro, Mario

    2015-01-01

    The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized 3He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized 3He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518

  13. Age-related effects in the neocortical organization of chimpanzees: gray and white matter volume, cortical thickness, and gyrification.

    PubMed

    Autrey, Michelle M; Reamer, Lisa A; Mareno, Mary Catherine; Sherwood, Chet C; Herndon, James G; Preuss, Todd; Schapiro, Steve J; Hopkins, William D

    2014-11-01

    Among primates, humans exhibit the most profound degree of age-related brain volumetric decline in particular regions, such as the hippocampus and the frontal lobe. Recent studies have shown that our closest living relatives, the chimpanzees, experience little to no volumetric decline in gray and white matter over the adult lifespan. However, these previous studies were limited with a small sample of chimpanzees of the most advanced ages. In the present study, we sought to further test for potential age-related decline in cortical organization in chimpanzees by expanding the sample size of aged chimpanzees. We used the BrainVisa software to measure total brain volume, gray and white matter volumes, gray matter thickness, and gyrification index in a cross-sectional sample of 219 captive chimpanzees (8-53 years old), with 38 subjects being 40 or more years of age. Mean depth and cortical fold opening of 11 major sulci of the chimpanzee brains were also measured. We found that chimpanzees showed increased gyrification with age and a cubic relationship between age and white matter volume. For the association between age and sulcus depth and width, the results were mostly non-significant with the exception of one negative correlation between age and the fronto-orbital sulcus. In short, results showed that chimpanzees exhibit few age-related changes in global cortical organization, sulcus folding and sulcus width. These findings support previous studies and the theory that the age-related changes in the human brain is due to an extended lifespan. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The Association of Levels of and Decline in Grip Strength in Old Age with Trajectories of Life Course Occupational Position.

    PubMed

    Kröger, Hannes; Fritzell, Johan; Hoffmann, Rasmus

    2016-01-01

    The study of the influence of life course occupational position (OP) on health in old age demands analysis of time patterns in both OP and health. We study associations between life course time patterns of OP and decline in grip strength in old age. We analyze 5 waves from the Survey of Health Ageing and Retirement in Europe (n = 5108, ages 65-90). We use a pattern-mixture latent growth model to predict the level and decline in grip strength in old age by trajectory of life course OP. We extend and generalize the structured regression approach to establish the explanatory power of different life course models for both the level and decline of grip strength. Grip strength declined linearly by 0.70 kg (95% CI -0.74;-0.66) for men and 0.42 kg (95% CI -0.45;-0.39) for women per year. The level of men's grip strength can best be explained by a critical period during midlife, with those exposed to low OP during this period having 1.67 kg (95% CI -2.33;-1.00) less grip strength. These differences remain constant over age. For women, no association between OP and levels of or decline in grip strength was found. Men's OP in midlife seems to be a critical period for the level of grip strength in old age. Inequalities remain constant over age. The integration of the structured regression approach and latent growth modelling offers new possibilities for life course epidemiology.

  15. Neighborhood socioeconomic context and cognitive decline among older Mexican Americans: results from the Sacramento Area Latino Study on Aging.

    PubMed

    Zeki Al Hazzouri, Adina; Haan, Mary N; Osypuk, Theresa; Abdou, Cleopatra; Hinton, Ladson; Aiello, Allison E

    2011-08-15

    In 1 previous study, it was shown that neighborhood socioeconomic disadvantage is associated with cognitive decline among Latinos. No studies have explored whether and to what extent individual-level socioeconomic factors account for the relation between neighborhood disadvantage and cognitive decline. The purpose of the present study was to assess the influence of neighborhood socioeconomic position (SEP) on cognitive decline and examine how individual-level SEP factors (educational level, annual income, and occupation) influenced neighborhood associations over the course of 10 years. Participants (n = 1,789) were community-dwelling older Mexican Americans from the Sacramento Area Latino Study on Aging. Neighborhood SEP was derived by linking the participant's individual data to the 2000 decennial census. The authors assessed cognitive function with the Modified Mini-Mental State Examination. Analyses used 3-level hierarchical linear mixed models of time within individuals within neighborhoods. After adjustment for individual-level sociodemographic characteristics, higher neighborhood SEP was significantly associated with cognitive function (β = -0.033; P < 0.05) and rates of decline (β = -0.0009; P < 0.10). After adjustment for individual educational level, neighborhood SEP remained associated with baseline cognition but not with rates of decline. Differences in individual educational levels explained most of the intra- and interneighborhood variance. These results suggest that the effect of neighborhood SEP on cognitive decline among Latinos is primarily accounted for by education.

  16. High Resolution Topography of Age-Related Changes in Non-Rapid Eye Movement Sleep Electroencephalography

    PubMed Central

    Sprecher, Kate E.; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Davidson, Richard J.; Benca, Ruth M.

    2016-01-01

    Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel) electroencephalography (EEG) during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18–65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson’s coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor. PMID:26901503

  17. Declining Statewide Trends in Motor Vehicle Crashes and Injury-Related Hospital Admissions

    PubMed Central

    Dischinger, Patricia C.; Ryb, Gabriel E.; Kufera, Joseph A.; Ho, Shiu M.

    2013-01-01

    Numbers of crashes, rates of police-reported injury severity, and hospital admission rates were calculated for the ten year period between 2001 and 2010 in Maryland. Comparisons were made for two 5-year periods of 2001–2005 and 2006–2010. Crash characteristics remained similar for the two five-year periods, but there was a significant increase in occupant age. Declines in police-reported injury severity were noted for each of four age groups: 16–29, 30–54, 55–64, and 65+, with smaller declines among older occupants. In addition, there were significant declines in hospital admissions, comparing the two time periods. Although reductions in crashes may be attributable to various roadway, behavioral, and other safety improvement efforts, reductions in hospital admission rates most likely reflect major improvements in crashworthiness implemented during the past decade. For those admitted to hospitals, significant increases in injury severity were noted between the first and second time periods. There was an association between age and ISS, a measure of total bodily injury, with the highest ISS scores noted for the youngest and oldest groups (16–29 and 55+, respectively). In addition, there was a significant increase in the mean age over time, from 39 in 2001 to 43 in 2010, p<.001. In general, the incidence and severity of injuries increased for all body regions. There was also a significant increase in hospital mortality, although length of hospital stay remained the same. Given these trends, increased efforts need to focus on both injury prevention and treatment for the increasing population of older, sometimes frail, vehicle occupants. PMID:24406962

  18. A greater decline in female facial attractiveness during middle age reflects women’s loss of reproductive value

    PubMed Central

    Maestripieri, Dario; Klimczuk, Amanda C. E.; Traficonte, Daniel M.; Wilson, M. Claire

    2014-01-01

    Facial attractiveness represents an important component of an individual’s overall attractiveness as a potential mating partner. Perceptions of facial attractiveness are expected to vary with age-related changes in health, reproductive value, and power. In this study, we investigated perceptions of facial attractiveness, power, and personality in two groups of women of pre- and post-menopausal ages (35–50 years and 51–65 years, respectively) and two corresponding groups of men. We tested three hypotheses: (1) that perceived facial attractiveness would be lower for older than for younger men and women; (2) that the age-related reduction in facial attractiveness would be greater for women than for men; and (3) that for men, there would be a larger increase in perceived power at older ages. Eighty facial stimuli were rated by 60 (30 male, 30 female) middle-aged women and men using online surveys. Our three main hypotheses were supported by the data. Consistent with sex differences in mating strategies, the greater age-related decline in female facial attractiveness was driven by male respondents, while the greater age-related increase in male perceived power was driven by female respondents. In addition, we found evidence that some personality ratings were correlated with perceived attractiveness and power ratings. The results of this study are consistent with evolutionary theory and with previous research showing that faces can provide important information about characteristics that men and women value in a potential mating partner such as their health, reproductive value, and power or possession of resources. PMID:24592253

  19. Multiple prethymic defects underlie age-related loss of T progenitor competence

    PubMed Central

    Zediak, Valerie P.; Maillard, Ivan

    2007-01-01

    Aging in mice and humans is characterized by declining T-lymphocyte production in the thymus, yet it is unclear whether aging impacts the T-lineage potential of hematopoietic progenitors. Although alterations in the lymphoid progenitor content of aged mouse bone marrow (BM) have been described, irradiation-reconstitution experiments have failed to reveal defects in T-lineage potential of BM hematopoietic progenitors or purified hematopoietic stem cells (HSCs) from aged mice. Here, we assessed T-progenitor potential in unmanipulated recipient mice without conditioning irradiation. T-progenitor potential was reduced in aged BM compared with young BM, and this reduction was apparent at the earliest stages of intrathymic differentiation. Further, enriched populations of aged HSCs or multipotent progenitors (MPPs) gave rise to fewer T-lineage cells than their young counterparts. Whereas the T-precursor frequency within the MPP pool was unchanged, there was a 4-fold decline in T-precursor frequency within the HSC pool. In addition, among the T-competent HSC clones, there were fewer highly proliferative clones in the aged HSC pool than in the young HSC pool. These results identify T-compromised aged HSCs and define the nature and cellular sites of prethymic, age-related defects in T-lineage differentiation potential. PMID:17456721

  20. Menopause Is Associated with Accelerated Lung Function Decline.

    PubMed

    Triebner, Kai; Matulonga, Bobette; Johannessen, Ane; Suske, Sandra; Benediktsdóttir, Bryndís; Demoly, Pascal; Dharmage, Shyamali C; Franklin, Karl A; Garcia-Aymerich, Judith; Gullón Blanco, José Antonio; Heinrich, Joachim; Holm, Mathias; Jarvis, Debbie; Jõgi, Rain; Lindberg, Eva; Moratalla Rovira, Jesús Martínez; Muniozguren Agirre, Nerea; Pin, Isabelle; Probst-Hensch, Nicole; Puggini, Luca; Raherison, Chantal; Sánchez-Ramos, José Luis; Schlünssen, Vivi; Sunyer, Jordi; Svanes, Cecilie; Hustad, Steinar; Leynaert, Bénédicte; Gómez Real, Francisco

    2017-04-15

    Menopause is associated with changes in sex hormones, which affect immunity, inflammation, and osteoporosis and may impair lung function. Lung function decline has not previously been investigated in relation to menopause. To study whether lung function decline, assessed by FVC and FEV 1 , is accelerated in women who undergo menopause. The population-based longitudinal European Community Respiratory Health Survey provided serum samples, spirometry, and questionnaire data about respiratory and reproductive health from three study waves (n = 1,438). We measured follicle-stimulating hormone and luteinizing hormone and added information on menstrual patterns to determine menopausal status using latent class analysis. Associations with lung function decline were investigated using linear mixed effects models, adjusting for age, height, weight, pack-years, current smoking, age at completed full-time education, spirometer, and including study center as random effect. Menopausal status was associated with accelerated lung function decline. The adjusted mean FVC decline was increased by -10.2 ml/yr (95% confidence interval [CI], -13.1 to -7.2) in transitional women and -12.5 ml/yr (95% CI, -16.2 to -8.9) in post-menopausal women, compared with women menstruating regularly. The adjusted mean FEV 1 decline increased by -3.8 ml/yr (95% CI, -6.3 to -2.9) in transitional women and -5.2 ml/yr (95% CI, -8.3 to -2.0) in post-menopausal women. Lung function declined more rapidly among transitional and post-menopausal women, in particular for FVC, beyond the expected age change. Clinicians should be aware that respiratory health often deteriorates during reproductive aging.

  1. Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees.

    PubMed

    Abdul-Hamid, Hazandy; Mencuccini, Maurizio

    2009-01-01

    Forest growth is an important factor both economically and ecologically, and it follows a predictable trend with age. Generally, growth accelerates as canopies develop in young forests and declines substantially soon after maximum leaf area is attained. The causes of this decline are multiple and may be linked to age- or size-related processes, or both. Our objective was to determine the relative effects of tree age and tree size on the physiological attributes of two broadleaf species. As age and size are normally coupled during growth, an approach based on grafting techniques to separate the effects of size from those of age was adopted. Genetically identical grafted seedlings were produced from scions taken from trees of four age classes, ranging from 4 to 162 years. We found that leaf-level net photosynthetic rate per unit of leaf mass and some other leaf structural and biochemical characteristics had decreased substantially with increasing size of the donor trees in the field, whereas other gas exchange parameters expressed on a leaf area basis did not. In contrast, these parameters remained almost constant in grafted seedlings, i.e., scions taken from donor trees with different meristematic ages show no age-related trend after they were grafted onto young rootstocks. In general, the results suggested that size-related limitations triggered the declines in photosynthate production and tree growth, whereas less evidence was found to support a role of meristematic age.

  2. Age decline in the activity of the Ca2+-sensitive K+ channel of human red blood cells.

    PubMed

    Tiffert, Teresa; Daw, Nuala; Etzion, Zipora; Bookchin, Robert M; Lew, Virgilio L

    2007-05-01

    The Ca(2+)-sensitive K(+) channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca(2+) loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of age. Using glycated hemoglobin as a reliable RBC age marker, we investigated the age-activity relation of Gardos channels by measuring the mean age of RBC subpopulations exceeding a set high density boundary during dehydration. When K(+) permeabilization was induced with valinomycin, the oldest and densest cells, which started nearest to the set density boundary, crossed it first, reflecting conservation of the normal age-density distribution pattern during dehydration. However, when Ca(2+) loads were used to induce maximal K(+) fluxes via Gardos channels in all RBCs (F(max)), the youngest RBCs passed the boundary first, ahead of the older RBCs, indicating that Gardos channel F(max) was highest in those young RBCs, and that the previously observed appearance of uniform dehydration concealed a substantial degree of age scrambling during the dehydration process. Further analysis of the Gardos channel age-activity relation revealed a monotonic decline in F(max) with cell age, with a broad quasi-Gaussian F(max) distribution among the RBCs.

  3. Rapamycin increases grip strength and attenuates age-related decline in maximal running distance in old low capacity runner rats.

    PubMed

    Xue, Qian-Li; Yang, Huanle; Li, Hui-Fen; Abadir, Peter M; Burks, Tyesha N; Koch, Lauren G; Britton, Steven L; Carlson, Joshua; Chen, Laura; Walston, Jeremy D; Leng, Sean X

    2016-04-01

    Rapamycin is known to extend lifespan. We conducted a randomized placebo-controlled study of enteric rapamycin-treatment to evaluate its effect on physical function in old low capacity runner (LCR) rats, a rat model selected from diverse genetic background for low intrinsic aerobic exercise capacity without genomic manipulation and characterized by increased complex disease risks and aging phenotypes. The study was performed in 12 male and 16 female LCR rats aged 16-22 months at baseline. The treatment group was fed with rapamycin-containing diet pellets at approximately 2.24mg/kg body weight per day and the placebo group with the same diet without rapamycin for six months. Observation was extended for additional 2 months. Physical function measurements include grip strength measured as maximum tensile force using a rat grip strength meter and maximum running distance (MRD) using rat physical treadmill test. The results showed that rapamycin improved grip strength by 13% (p=.036) and 60% (p=.001) from its baseline in female and male rats, respectively. Rapamycin attenuated MRD decline by 66% (p=.001) and 46% (p=.319) in females and males, respectively. These findings provide initial evidence for beneficial effect of rapamycin on physical functioning in an aging rat model of high disease risks with significant implication in humans.

  4. Rapamycin increases grip strength and attenuates age-related decline in maximal running distance in old low capacity runner rats

    PubMed Central

    Xue, Qian-Li; Yang, Huanle; Li, Hui-Fen; Abadir, Peter M.; Burks, Tyesha N.; Koch, Lauren G.; Britton, Steven L.; Carlson, Joshua; Chen, Laura; Walston, Jeremy D.; Leng, Sean X.

    2016-01-01

    Rapamycin is known to extend lifespan. We conducted a randomized placebo-controlled study of enteric rapamycin-treatment to evaluate its effect on physical function in old low capacity runner (LCR) rats, a rat model selected from diverse genetic background for low intrinsic aerobic exercise capacity without genomic manipulation and characterized by increased complex disease risks and aging phenotypes. The study was performed in 12 male and 16 female LCR rats aged 16-22 months at baseline. The treatment group was fed with rapamycin-containing diet pellets at approximately 2.24mg/kg body weight per day and the placebo group with the same diet without rapamycin for six months. Observation was extended for additional 2 months. Physical function measurements include grip strength measured as maximum tensile force using a rat grip strength meter and maximum running distance (MRD) using rat physical treadmill test. The results showed that rapamycin improved grip strength by 13% (p=.036) and 60% (p<.001) from its baseline in female and male rats, respectively. Rapamycin attenuated MRD decline by 66% (p<.001) and 46% (p=.319) in females and males, respectively. These findings provide initial evidence for beneficial effect of rapamycin on physical functioning in an aging rat model of high disease risks with significant implication in humans. PMID:26997106

  5. Female age and sperm competition: last-male precedence declines as female age increases.

    PubMed

    Mack, Paul D; Priest, Nicholas K; Promislow, Daniel E L

    2003-01-22

    Until very recently, most studies of sperm competition have focused on variation in male competitive ability. However, we now know that a number of reproductive traits, including oviposition rate, use of stored sperm and receptivity to mating, vary with female condition. Because females can play an active part in the movement of sperm within their reproductive tract, sperm competition may be influenced by female condition. Existing studies of sperm competition in fruitflies ignore the effects of female condition, using females that are 3-4 days old and in their reproductive prime. But condition will decline as a female senesces. Here, we examine the effect of female age on the outcome of sperm competition in three strains of the fruitfly, Drosophila melanogaster. Previous studies have shown that female age influences preference for mates and male ejaculation strategies. In this study, we find that when males are mated to females that are older than 17 days, last-male sperm precedence decreases significantly. These results could lead to a greater understanding of the physiological mechanisms that regulate the outcome of sperm competition.

  6. Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging

    PubMed Central

    Longo, Francesco; Russo, Isabella; Shimshek, Derya R.; Greggio, Elisa; Morari, Michele

    2014-01-01

    The leucine-rich repeat kinase 2 mutation G2019S in the kinase-domain is the most common genetic cause of Parkinson's disease. To investigate the impact of the G2019S mutation on motor activity in vivo, a longitudinal phenotyping approach was developed in knock-in (KI) mice bearing this kinase-enhancing mutation. Two cohorts of G2019S KI mice and wild-type littermates (WT) were subjected to behavioral tests, specific for akinesia, bradykinesia and overall gait ability, at different ages (3, 6, 10, 15 and 19 months). The motor performance of G2019S KI mice remained stable up to the age of 19 months and did not show the typical age-related decline in immobility time and stepping activity of WT. Several lines of evidence suggest that enhanced LRRK2 kinase activity is the main contributor to the observed hyperkinetic phenotype of G2019S KI mice: i) KI mice carrying a LRRK2 kinase-dead mutation (D1994S KD) showed a similar progressive motor decline as WT; ii) two LRRK2 kinase inhibitors, H-1152 and Nov-LRRK2-11, acutely reversed the hyperkinetic phenotype of G2019S KI mice, while being ineffective in WT or D1994S KD animals. LRRK2 target engagement in vivo was further substantiated by reduction of LRRK2 phosphorylation at Ser935 in the striatum and cortex at efficacious doses of Nov-LRRK2-11, and in the striatum at efficacious doses of H-1152. In summary, expression of the G2019S mutation in the mouse LRRK2 gene confers a hyperkinetic phenotype that is resistant to age-related motor decline, likely via enhancement of LRRK2 kinase activity. This study provides an in vivo model to investigate the effects of LRRK2 inhibitors on motor function. PMID:25107341

  7. Adaptation to Low Vision Caused by Age-Related Macular Degeneration: A Case Study

    ERIC Educational Resources Information Center

    Smith, Theresa Marie

    2008-01-01

    One in eight Americans aged 65 and older has an eye disease resulting in low vision, and more women than men are visually impaired, mainly because women live longer. Age-related visual impairments are an indicator of a decline in activities of daily living and self-help skills. The top eye conditions that affect older adults are macular…

  8. Functional decline at the aging neuromuscular junction is associated with altered laminin-α4 expression.

    PubMed

    Lee, Kah Meng; Chand, Kirat K; Hammond, Luke A; Lavidis, Nickolas A; Noakes, Peter G

    2017-03-14

    Laminin-α4 is involved in the alignment of active zones to postjunctional folds at the neuromuscular junction (NMJ). Prior study has implicated laminin-α4 in NMJ maintenance, with altered NMJ morphology observed in adult laminin-α4 deficient mice ( lama 4 -/- ). The present study further investigated the role of laminin-α4 in NMJ maintenance by functional characterization of transmission properties, morphological investigation of synaptic proteins including synaptic laminin-α4, and neuromotor behavioral testing. Results showed maintained perturbed transmission properties at lama 4 -/- NMJs from adult (3 months) through to aged (18-22 months). Hind-limb grip force demonstrated similar trends as transmission properties, with maintained weaker grip force across age groups in lama 4 -/- . Interestingly, both transmission properties and hind-limb grip force in aged wild-types resembled those observed in adult lama 4 -/- . Most significantly, altered expression of laminin-α4 was noted at the wild-type NMJs prior to the observed decline in transmission properties, suggesting that altered laminin-α4 expression precedes the decline of neurotransmission in aging wild-types. These findings significantly support the role of laminin-α4 in maintenance of the NMJ during aging.

  9. Accelerated aging-related transcriptome changes in the female prefrontal cortex

    PubMed Central

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Boyd-Kirkup, Jerome; Khaitovich, Philipp; Somel, Mehmet

    2012-01-01

    Human female life expectancy is higher than that of males. Intriguingly, it has been reported that women display faster rates of age-related cognitive decline and a higher prevalence of Alzheimer’s disease (AD). To assess the molecular bases of these contradictory trends, we analyzed differences in expression changes with age between adult males and females, in four brain regions. In the superior frontal gyrus (SFG), a part of the prefrontal cortex, we observed manifest differences between the two sexes in the timing of age-related changes, that is, sexual heterochrony. Intriguingly, age-related expression changes predominantly occurred earlier, or at a faster pace, in females compared to men. These changes included decreased energy production and neural function and up-regulation of the immune response, all major features of brain aging. Furthermore, we found that accelerated expression changes in the female SFG correlated with expression changes observed in AD, as well as stress effects in the frontal cortex. Accelerated aging-related changes in the female SFG transcriptome may provide a link between a higher stress exposure or sensitivity in women and the higher prevalence of AD. PMID:22783978

  10. Exercise counteracts declining hippocampal function in aging and Alzheimer's disease.

    PubMed

    Intlekofer, Karlie A; Cotman, Carl W

    2013-09-01

    Alzheimer's disease (AD) afflicts more than 5.4 million Americans and ranks as the most common type of dementia (Thies and Bleiler, 2011), yet effective pharmacological treatments have not been identified. Substantial evidence indicates that physical activity enhances learning and memory for people of all ages, including individuals that suffer from cognitive impairment. The mechanisms that underlie these benefits have been explored using animal models, including transgenic models of AD. Accumulating research shows that physical activity reinstates hippocampal function by enhancing the expression of brain-derived neurotrophic factor (BDNF) and other growth factors that promote neurogenesis, angiogenesis, and synaptic plasticity. In addition, several studies have found that physical activity counteracts age- and AD-associated declines in mitochondrial and immune system function. A growing body of evidence also suggests that exercise interventions hold the potential to reduce the pathological features associated with AD. Taken together, animal and human studies indicate that exercise provides a powerful stimulus that can countervail the molecular changes that underlie the progressive loss of hippocampal function in advanced age and AD. 2012 Published by Elsevier Inc

  11. The effects of minimum legal drinking age 21 laws on alcohol-related driving in the United States.

    PubMed

    McCartt, Anne T; Hellinga, Laurie A; Kirley, Bevan B

    2010-04-01

    To examine trends in alcohol consumption and alcohol-related crashes among people younger than 21 in the United States and to review evidence on the effects of minimum legal drinking age (MLDA) laws. Trends in alcohol-related crashes and alcohol consumption among young people were examined, and studies on the effects of lowering and raising the drinking age were reviewed. MLDA laws underwent many changes during the 20th century in the United States. Since July 1988, the MLDA has been 21 in all 50 states and the District of Columbia. Surveys tracking alcohol consumption among high school students and young adults found that drinking declined since the late 1970 s, and most of the decline occurred by the early 1990 s. These were the years when states were establishing, or reinstating, a MLDA-21. Among fatally injured drivers ages 16-20, the percentage with positive BACs declined from 61% in 1982 to 31% in 1995, a bigger decline than for older age groups; declines occurred among the ages directly affected by raising MLDAs (ages 18-20) and among young teenagers not directly affected (ages 16-17). Almost all studies designed specifically to gauge the effects of drinking age changes show MLDAs of 21 reduce drinking, problematic drinking, drinking and driving, and alcohol-related crashes among young people. Yet many underage people still drink, many drink and drive, and alcohol remains an important risk factor in serious crashes of young drivers, especially as they progress through the teenage years. Stepped-up enforcement of MLDA and drinking and driving laws can reduce underage drinking. Recent efforts to lower MLDAs to 18 and issue licenses to drink upon completion of alcohol education have gained local and national media attention. There is no evidence that alcohol education can even partially replace the effect of MLDA-21. The cause and effect relationship between MLDAs of 21 and reductions in highway crashes is clear. Initiatives to lower the drinking age to 18

  12. An Event Related Potentials Study of the Effects of Age, Load and Maintenance Duration on Working Memory Recognition.

    PubMed

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM) capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes--with no effects on perceptual processes--and a posterior to anterior shift in the recruitment of neural resources.

  13. An Event Related Potentials Study of the Effects of Age, Load and Maintenance Duration on Working Memory Recognition

    PubMed Central

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM) capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes -with no effects on perceptual processes- and a posterior to anterior shift in the recruitment of neural resources. PMID:26569113

  14. [Predictors of verbal memory decline following temporal lobe surgery].

    PubMed

    de Vanssay-Maigne, A; Boutin, M; Baudoin-Chial, S

    2008-05-01

    Verbal memory decline can occur after temporal lobe surgery, especially when the left dominant hemisphere is involved. This potential functional risk must be evaluated before surgery. Among all factors that have been identified by several studies, the side of surgery (left dominant) and high baseline memory performance have been found to be predictive of verbal memory decline. Other factors such as etiology, sex, age at surgery, age at seizure onset, and duration may influence memory decline, but the results are not clear. Our purpose was to identify, in our population of patients and among all risk factors, those that may be predictive of verbal memory decline. Logistic regression was used to examine the effect of each factor on the postoperative verbal memory index (WMS-R) in 101 patients who underwent a right (n=49) or left (n=52) anterior temporal lobe resection. In the group as a whole, 22 % of the patients demonstrated verbal memory decline of more than one standard deviation. The verbal memory decline was significantly related to surgery on the left side and a high level of verbal memory performance. These factors were significant predictors of decline. The other factors (etiology, sex, age at surgery, age at seizure onset, and duration) were not found to be predictive of this decline. Our analysis demonstrates that the patients who are most at risk of undergoing verbal memory deterioration are those who undergo left-sided temporal resection and have good memory scores preoperatively. The contradictions found in the literature about the other factors could be explained by the diversity of the tests and criteria used to assess memory decline.

  15. Declines in marathon performance: Sex differences in elite and recreational athletes.

    PubMed

    Zavorsky, Gerald S; Tomko, Kelly A; Smoliga, James M

    2017-01-01

    The first aim of this study was to determine the age group at which marathon performance declines in top male and female runners and to compare that to the runners of average ability. Another aim of this of this study was to examine the age-related yearly decline in marathon performance between age group winners and the average marathon finisher. Data from the New York (NYC), Boston, and Chicago marathons from 2001-2016 were analyzed. Age, sex, and location were used in multiple linear regression models to determine the rate of decline in marathon times. Winners of each age group were assessed in 5-year increments from 16 through 74 years old (n = 47 per age group). The fastest times were between 25-34 years old, with overall champion males at 28.3 years old, and overall champion females at 30.8 years old (p = 0.004). At 35 years of age up to 74 years of age, female age group winners had a faster yearly decline in marathon finishing times compared to male age group winners, irrespective of marathon location [women = (min:sec) 2:33 per year, n = 336; men = 2:06 per year, n = 373, p < 0.01]. The median times between each age group only slowed beginning at 50 years old, thereafter the decline was similar between both men and women (women = 2:36, n = 140; men = 2:57, n = 150, p = 0.11). The median times were fastest at Boston and similar between Chicago and NYC. In conclusion, the rate of decline at 35 years old up to 74 years old is roughly linear (adjusted r2 = 0.88, p < 0.001) with female age group winners demonstrating 27 s per year greater decline per year compared to male age group winners.

  16. Declines in marathon performance: Sex differences in elite and recreational athletes

    PubMed Central

    Tomko, Kelly A.; Smoliga, James M.

    2017-01-01

    The first aim of this study was to determine the age group at which marathon performance declines in top male and female runners and to compare that to the runners of average ability. Another aim of this of this study was to examine the age-related yearly decline in marathon performance between age group winners and the average marathon finisher. Data from the New York (NYC), Boston, and Chicago marathons from 2001–2016 were analyzed. Age, sex, and location were used in multiple linear regression models to determine the rate of decline in marathon times. Winners of each age group were assessed in 5-year increments from 16 through 74 years old (n = 47 per age group). The fastest times were between 25–34 years old, with overall champion males at 28.3 years old, and overall champion females at 30.8 years old (p = 0.004). At 35 years of age up to 74 years of age, female age group winners had a faster yearly decline in marathon finishing times compared to male age group winners, irrespective of marathon location [women = (min:sec) 2:33 per year, n = 336; men = 2:06 per year, n = 373, p < 0.01]. The median times between each age group only slowed beginning at 50 years old, thereafter the decline was similar between both men and women (women = 2:36, n = 140; men = 2:57, n = 150, p = 0.11). The median times were fastest at Boston and similar between Chicago and NYC. In conclusion, the rate of decline at 35 years old up to 74 years old is roughly linear (adjusted r2 = 0.88, p < 0.001) with female age group winners demonstrating 27 s per year greater decline per year compared to male age group winners. PMID:28187185

  17. FDG metabolism associated with tau-amyloid interaction predicts memory decline

    PubMed Central

    Hanseeuw, Bernard J.; Betensky, Rebecca A.; Schultz, Aaron P.; Papp, Kate V.; Mormino, Elizabeth C.; Sepulcre, Jorge; Bark, John S.; Cosio, Danielle M.; LaPoint, Molly; Chhatwal, Jasmeer P.; Rentz, Dorene M.; Sperling, Reisa A.; Johnson, Keith

    2017-01-01

    Objective To evaluate in normal older adults and preclinical Alzheimer’s disease (AD) the impact of amyloid and regional tauopathy on cerebral glucose metabolism and subsequent memory decline. Methods We acquired positron emission tomography using F18 Flortaucipir (tau), C11 Pittsburgh Compound B (amyloid) and F18 Fluorodeoxyglucose in 90 clinically normal elderly of the Harvard Aging Brain Study. Results Posterior cingulate metabolism decreased when both amyloid and neocortical tau were high and predicted subsequent memory decline in a larger sample of normal elderly. In contrast, frontal hypometabolism related to the common age-related entorhinal tauopathy, but this dysfunction was independent of amyloid, and did not predict significant memory decline. Neocortical tauopathy was positively associated with metabolism in individuals with sub-threshold amyloid, suggesting that glucose metabolism increases before decreasing in the course of preclinical AD. Interpretation Our study identified a synergistic effect of amyloid and tau deposits and demonstrated for the first time in normal elderly its link to AD-like hypometabolism and to AD-like memory decline. The amyloid effect was seen with tau in neocortex, but not with tau in entorhinal cortex, which is the common site of age-related tauopathy. Entorhinal tau was associated with frontal hypometabolism, but this dysfunction was not associated with memory loss. PMID:28253546

  18. Age-Related Mitochondrial DNA Depletion and the Impact on Pancreatic Beta Cell Function

    PubMed Central

    Nile, Donna L.; Brown, Audrey E.; Kumaheri, Meutia A.; Blair, Helen R.; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M.; Payne, Brendan; Chinnery, Patrick F.; Brown, Louise; Gunn, David A.; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes. PMID:25532126

  19. Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function.

    PubMed

    Nile, Donna L; Brown, Audrey E; Kumaheri, Meutia A; Blair, Helen R; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M; Payne, Brendan; Chinnery, Patrick F; Brown, Louise; Gunn, David A; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.

  20. Complexity and Synchronicity of Resting State BOLD FMRI in Normal Aging and Cognitive Decline

    PubMed Central

    Liu, Collin Y; Krishnan, Anitha P; Yan, Lirong; Smith, Robert X; Kilroy, Emily; Alger, Jeffery R; Ringman, John M; Wang, Danny JJ

    2012-01-01

    Purpose To explore the use of approximate entropy (ApEn) as an index of the complexity and the synchronicity of resting state BOLD fMRI in normal aging and cognitive decline associated with familial Alzheimer’s disease (fAD). Materials and Methods Resting state BOLD fMRI data were acquired at 3T from 2 independent cohorts of subjects consisting of healthy young (age 23±2 years, n=8) and aged volunteers (age 66±3 years, n=8), as well as 22 fAD associated subjects (14 mutation carriers, age 41.2±15.8 years; and 8 non-mutation carrying family members, age 28.8±5.9 years). Mean ApEn values were compared between the two age groups, and correlated with cognitive performance in the fAD group. Cross-ApEn (C-ApEn) was further calculated to assess the asynchrony between precuneus and the rest of the brain. Results Complexity of brain activity measured by mean ApEn in gray and white matter decreased with normal aging. In the fAD group, cognitive impairment was associated with decreased mean ApEn in gray matter as well as decreased regional ApEn in right precuneus, right lateral parietal regions, left precentral gyrus, and right paracentral gyrus. A pattern of asynchrony between BOLD fMRI series emerged from C-ApEn analysis, with significant regional anti-correlation with cross-correlation coefficient of functional connectivity analysis. Conclusion ApEn and C-ApEn may be useful for assessing the complexity and synchronicity of brain activity in normal aging and cognitive decline associated with neurodegenerative diseases PMID:23225622

  1. Age-related declines of stability in visual perceptual learning.

    PubMed

    Chang, Li-Hung; Shibata, Kazuhisa; Andersen, George J; Sasaki, Yuka; Watanabe, Takeo

    2014-12-15

    One of the biggest questions in learning is how a system can resolve the plasticity and stability dilemma. Specifically, the learning system needs to have not only a high capability of learning new items (plasticity) but also a high stability to retain important items or processing in the system by preventing unimportant or irrelevant information from being learned. This dilemma should hold true for visual perceptual learning (VPL), which is defined as a long-term increase in performance on a visual task as a result of visual experience. Although it is well known that aging influences learning, the effect of aging on the stability and plasticity of the visual system is unclear. To address the question, we asked older and younger adults to perform a task while a task-irrelevant feature was merely exposed. We found that older individuals learned the task-irrelevant features that younger individuals did not learn, both the features that were sufficiently strong for younger individuals to suppress and the features that were too weak for younger individuals to learn. At the same time, there was no plasticity reduction in older individuals within the task tested. These results suggest that the older visual system is less stable to unimportant information than the younger visual system. A learning problem with older individuals may be due to a decrease in stability rather than a decrease in plasticity, at least in VPL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Examining an emotion enhancement effect in working memory: evidence from age-related differences.

    PubMed

    Mammarella, Nicola; Borella, Erika; Carretti, Barbara; Leonardi, Gloria; Fairfield, Beth

    2013-01-01

    The aim of the present study was to examine age-related differences between young, young-old and old-old adults in an affective version of the classical Working Memory Operation Span Test. The affective version of the Working Memory Operation Span Test included neutral words (as in the classical version) as well as negative and positive ones. Results showed that while young adults performed better than the young-old and old-old with neutral words, age-related differences between young and young-old with positive words were no longer significant, and age-related differences were nullified with negative ones. Altogether, results indicate that emotional words can reduce age-related decline when maintenance and manipulation of information in working memory in older adults are required.

  3. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice.

    PubMed

    Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B

    2015-06-15

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.

  4. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice

    PubMed Central

    Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.

    2015-01-01

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793

  5. Frontotemporal dysregulation of the SNARE protein interactome is associated with faster cognitive decline in old age.

    PubMed

    Ramos-Miguel, Alfredo; Jones, Andrea A; Sawada, Ken; Barr, Alasdair M; Bayer, Thomas A; Falkai, Peter; Leurgans, Sue E; Schneider, Julie A; Bennett, David A; Honer, William G

    2018-06-01

    The molecular underpinnings associated with cognitive reserve remain poorly understood. Because animal models fail to fully recapitulate the complexity of human brain aging, postmortem studies from well-designed cohorts are crucial to unmask mechanisms conferring cognitive resistance against cumulative neuropathologies. We tested the hypothesis that functionality of the SNARE protein interactome might be an important resilience factor preserving cognitive abilities in old age. Cognition was assessed annually in participants from the Rush "Memory and Aging Project" (MAP), a community-dwelling cohort representative of the overall aging population. Associations between cognition and postmortem neurochemical data were evaluated in functional assays quantifying various species of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) machinery in samples from the inferior temporal (IT, n = 154) and middle-frontal (MF, n = 174) gyri. Using blue-native gel electrophoresis, we isolated and quantified several types of complexes containing the three SNARE proteins (syntaxin-1, SNAP25, VAMP), as well as the GABAergic/glutamatergic selectively expressed complexins-I/II (CPLX1/2), in brain tissue homogenates and reconstitution assays with recombinant proteins. Multivariate analyses revealed significant associations between IT and MF neurochemical data (SNARE proteins and/or complexes), and multiple age-related neuropathologies, as well as with multiple cognitive domains of MAP participants. Controlling for demographic variables, neuropathologic indices and total synapse density, we found that temporal 150-kDa SNARE species (representative of pan-synaptic functionality) and frontal CPLX1/CPLX2 ratio of 500-kDa heteromeric species (representative of inhibitory/excitatory input functionality) were, among all the immunocharacterized complexes, the strongest predictors of cognitive function nearest death. Interestingly, these two neurochemical

  6. Age as a Predictor of Cognitive Decline in Bipolar Disorder

    PubMed Central

    Lewandowski, Kathryn E.; Sperry, Sarah H.; Malloy, Mary C.; Forester, Brent P.

    2013-01-01

    Objective Cognitive dysfunction is a core feature of Bipolar Disorder (BD) in both adult and geriatric patients. However, little is known about whether cognitive functioning declines at a faster rate in patients with BD and there are conflicting reports regarding the relationship between age and cognitive functioning in this population. This cross-sectional study examined the relationship between age and cognitive functioning in patients with BD. Methods Patients with BD I (n=113) and healthy adults (n=64) ages 18–87 completed measures of processing speed, attention, executive functioning, verbal fluency, and clinical symptomatology. Groupwise comparisons were used to examine differences between patients and the comparison group and adult and geriatric BD cohorts. A series of linear regressions was conducted to examine the relationship of age and cognitive functioning, and clinical variables and cognition. Results Patients performed significantly worse than the comparison group on all neuropsychological measures. Age was a significant predictor of Trails A scores with older age associated with worse performance. Conclusions Older age was associated with poorer performance on Trails A in patients with BD but not healthy adults. These results are suggestive of greater dysfunction in processing speed with older age in patients with BD compared to a healthy comparison group. As cognitive functioning is associated with community outcomes, these findings suggest a need for treatments targeting cognitive symptoms across the lifespan. Future research exploring neurobiological evidence for neurodegenerative processes in bipolar disorder will pave the way for potential therapeutic interventions. PMID:24262287

  7. 8 Areas of Age-Related Change

    MedlinePlus

    ... as they get older. The decline is slow. Tinnitus (tih-NIE-tuhs) accompanies many forms of hearing ... those that sometimes come with aging. People with tinnitus may hear a ringing, roaring, or some other ...

  8. Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space.

    PubMed

    Payne, Anthony M; Dodd, Stephen L; Leeuwenburgh, Christiaan

    2003-12-01

    The decline in muscle function is associated with an age-related decrease in muscle mass and an age-related decline in strength. However, decreased strength is not solely due to decreased muscle mass. The age-related decline in muscle-specific force (force/muscle cross-sectional area), a measure of intrinsic muscle function, also contributes to age-related strength decline, and the mechanisms by which this occurs are only partially known. Moreover, changes in the extracellular space could have a profound effect on skeletal muscle function. Life-long calorie restriction in rodents has shown to be a powerful anti-aging intervention. In this study, we examine whether calorie restriction is able to attenuate the loss of muscle function and elevations in extracellular space associated with aging. We hypothesize that calorie restriction attenuates the age-associated decline in specific force and increases in extracellular space. Measurements of in vitro contractile properties of the extensor digitorum longus (type II) and soleus (type I) muscles from 12-mo and 26- to 28-mo-old ad libitum-fed, as well as 27- to 28-mo-old life-long calorie-restricted male Fischer 344 rats, were performed. We found that calorie restriction attenuated the age-associated decline in muscle mass-to-body mass ratio (mg/g) and strength-to-body mass ratio (N/kg) in the extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle (P > 0.05). Importantly, muscle-specific force (N/cm2) in the extensor digitorum longus, but not in the soleus muscle, of the old calorie-restricted rats was equal to that of the young 12-mo-old animals. Moreover, the age-associated increase in extracellular space was reduced in the fast-twitch extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle with calorie restriction. We also found a significant correlation between the extracellular space and the muscle-specific force in the extensor digitorum longus (r = -0.58; P < 0.05) but not in the

  9. Shifting the IGF-axis: An age-related decline in human tear IGF-1 correlates with clinical signs of dry eye.

    PubMed

    Patel, Roshni; Zhu, Meifang; Robertson, Danielle M

    2018-06-01

    The human corneal epithelium expresses both the insulin-like growth factor type 1 receptor (IGF-1R) and the IGF-1R/insulin receptor (INSR) hybrid. Despite the previous identification of IGF-1 in human tear fluid, little is known regarding the regulation of IGF-1 in tear fluid and its role in corneal epithelial homeostasis. In the present study, we investigated the impact of biological parameters on the concentration of human tear levels of IGF-1. Tear levels of IGF-1 were measured in 41 healthy, human volunteers without any reported symptoms of dry eye. All volunteers underwent standard biomicroscopic examination of the cornea and tear film. In a subgroup of volunteers, corneal staining with sodium fluorescein, tear film break up time and tear production using a Schirmer's test strip were measured to assess clinical signs of dry eye. Tears were collected from the inferior tear meniscus using glass microcapillary tubes and IGF-1 levels were measured using a solid phase sandwich ELISA. Tear levels of IGF-1 were highest in young adults and significantly decreased in older adults (P = 0.003). There were no differences in tear IGF-1 between males and females (P = 0.628). Tear IGF-1 levels were correlated with tear film break up time (R = 0.738) and tear production (R = 0.826). These data indicate that there is a progressive decline in tear IGF-1 due to aging that is associated with clinical signs of dry eye. This effect is likely due to age-related changes in the lacrimal gland. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Impact of Aging on the Auditory System and Related Cognitive Functions: A Narrative Review

    PubMed Central

    Jayakody, Dona M. P.; Friedland, Peter L.; Martins, Ralph N.; Sohrabi, Hamid R.

    2018-01-01

    Age-related hearing loss (ARHL), presbycusis, is a chronic health condition that affects approximately one-third of the world's population. The peripheral and central hearing alterations associated with age-related hearing loss have a profound impact on perception of verbal and non-verbal auditory stimuli. The high prevalence of hearing loss in the older adults corresponds to the increased frequency of dementia in this population. Therefore, researchers have focused their attention on age-related central effects that occur independent of the peripheral hearing loss as well as central effects of peripheral hearing loss and its association with cognitive decline and dementia. Here we review the current evidence for the age-related changes of the peripheral and central auditory system and the relationship between hearing loss and pathological cognitive decline and dementia. Furthermore, there is a paucity of evidence on the relationship between ARHL and established biomarkers of Alzheimer's disease, as the most common cause of dementia. Such studies are critical to be able to consider any causal relationship between dementia and ARHL. While this narrative review will examine the pathophysiological alterations in both the peripheral and central auditory system and its clinical implications, the question remains unanswered whether hearing loss causes cognitive impairment or vice versa. PMID:29556173

  11. The relative temporal sequence of decline in mobility and cognition among initially unimpaired older adults: Results from the Baltimore Longitudinal Study of Aging.

    PubMed

    Tian, Qu; An, Yang; Resnick, Susan M; Studenski, Stephanie

    2017-05-01

    most older individuals who experience mobility decline, also show cognitive decline, but whether cognitive decline precedes or follows mobility limitation is not well understood. examine the temporal sequence of mobility and cognition among initially unimpaired older adults. mobility and cognition were assessed every 2 years for 6 years in 412 participants aged ≥60 with initially unimpaired cognition and gait speed. Using autoregressive models, accounting for the dependent variable from the prior assessment, baseline age, sex, body mass index and education, we examine the temporal sequence of change in mobility (6 m usual gait speed, 400 m fast walk time) and executive function (visuoperceptual speed: Digit Symbol Substitution Test (DSST); cognitive flexibility: Trail Making Test part B (TMT-B)) or memory (California Verbal Learning Test (CVLT) immediate, short-delay, long-delay). there was a bidirectional relationship over time between slower usual gait speed and both poorer DSST and TMT-B scores (Bonferroni-corrected P < 0.005). In contrast, slower 400 m fast walk time predicted subsequent poorer DSST, TMT-B, CVLT immediate recall and CVLT short-delay scores (P < 0.005), while these measures did not predict subsequent 400 m fast walk time (P > 0.005). among initially unimpaired older adults, the temporal relationship between usual gait speed and executive function is bidirectional, with each predicting change in the other, while poor fast walking performance predicts future executive function and memory changes but not vice versa. Challenging tasks like the 400 m walk appear superior to usual gait speed for predicting executive function and memory change in unimpaired older adults. Published by Oxford University Press on behalf of the British Geriatrics Society 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Childhood Cognitive Ability and Age-Related Changes in Physical Capability From Midlife: Findings From a British Birth Cohort Study.

    PubMed

    Cooper, Rachel; Richards, Marcus; Kuh, Diana

    2017-09-01

    The aim of the study was to test the hypothesis that higher childhood cognitive ability is associated with reduced risk of decline in physical capability in late midlife. Participants were 1954 men and women from the Medical Research Council National Survey of Health and Development with complete data on cognitive ability at age of 15 years and measures of grip strength and chair rise speed at ages of 53 and 60 to 64 years. Using multinomial logistic regression, associations of childhood cognitive ability with categories of change in grip strength and chair rise speed (i.e., decline, stable high, stable low, reference) were investigated. Adjustments were made for potential confounders from early life and adult mediators including health behaviors, educational level, and cognitive ability at age of 53 years. Higher childhood cognitive scores were associated with reduced risks of decline in grip strength and chair rise speed, for example, the sex-adjusted relative-risk ratio of decline (versus reference) in grip strength per 1SD increase in childhood cognitive score was 0.82 (95% confidence interval = 0.73-0.92). Higher childhood cognitive scores were also associated with reduced risk of stable low and increased likelihood of stable high chair rise speed. These findings suggest that childhood cognitive ability may be related to decline in physical capability in late midlife. A number of life course pathways are implicated, including those linking childhood and adult cognitive ability. Future research aiming to identify new opportunities to prevent or minimize age-related declines in physical capability may benefit from considering the potential role of neurodevelopmental as well as neurodegenerative pathways.

  13. Idiopathic Pulmonary Fibrosis: Gender-Age-Physiology Index Stage for Predicting Future Lung Function Decline.

    PubMed

    Salisbury, Margaret L; Xia, Meng; Zhou, Yueren; Murray, Susan; Tayob, Nabihah; Brown, Kevin K; Wells, Athol U; Schmidt, Shelley L; Martinez, Fernando J; Flaherty, Kevin R

    2016-02-01

    Idiopathic pulmonary fibrosis is a progressive lung disease with variable course. The Gender-Age-Physiology (GAP) Index and staging system uses clinical variables to stage mortality risk. It is unknown whether clinical staging predicts future decline in pulmonary function. We assessed whether the GAP stage predicts future pulmonary function decline and whether interval pulmonary function change predicts mortality after accounting for stage. Patients with idiopathic pulmonary fibrosis (N = 657) were identified retrospectively at three tertiary referral centers, and baseline GAP stages were assessed. Mixed models were used to describe average trajectories of FVC and diffusing capacity of the lung for carbon monoxide (Dlco). Multivariable Cox proportional hazards models were used to assess whether declines in pulmonary function ≥ 10% in 6 months predict mortality after accounting for GAP stage. Over a 2-year period, GAP stage was not associated with differences in yearly lung function decline. After accounting for stage, a 10% decrease in FVC or Dlco over 6 months independently predicted death or transplantation (FVC hazard ratio, 1.37; Dlco hazard ratio, 1.30; both, P ≤ .03). Patients with GAP stage 2 with declining pulmonary function experienced a survival profile similar to patients with GAP stage 3, with 1-year event-free survival of 59.3% (95% CI, 49.4-67.8) vs 56.9% (95% CI, 42.2-69.1). Baseline GAP stage predicted death or lung transplantation but not the rate of future pulmonary function decline. After accounting for GAP stage, a decline of ≥ 10% over 6 months independently predicted death or lung transplantation. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  14. Associations of Openness and Conscientiousness With Walking Speed Decline: Findings From the Health, Aging, and Body Composition Study

    PubMed Central

    Costa, Paul T.; Terracciano, Antonio; Ferrucci, Luigi; Faulkner, Kimberly; Coday, Mathilda (Mace) C.; Ayonayon, Hilsa N.; Simonsick, Eleanor M.

    2012-01-01

    Objectives. The objective of this study was to explore the associations between openness to experience and conscientiousness, two dimensions of the five-factor model of personality, and usual gait speed and gait speed decline. Method. Baseline analyses were conducted on 907 men and women aged 71–82 years participating in the Cognitive Vitality substudy of the Health, Aging, and Body Composition study. The longitudinal analytic sample consisted of 740 participants who had walking speed assessed 3 years later. Results. At baseline, gait speed averaged 1.2 m/s, and an average decline of 5% over the 3-year follow-up period was observed. Higher conscientiousness was associated with faster initial walking speed and less decline in walking speed over the study period, independent of sociodemographic characteristics. Lifestyle factors and disease status appear to play a role in the baseline but not the longitudinal association between conscientiousness and gait speed. Openness was not associated with either initial or decline in gait speed. Discussion. These findings extend the body of evidence suggesting a protective association between conscientiousness and physical function to performance-based assessment of gait speed. Future studies are needed to confirm these associations and to explore mechanisms that underlie the conscientiousness mobility connection in aging adults. PMID:22451484

  15. Manipulation of Behavioral Decline in Caenorhabditis elegans with the Rag GTPase raga-1

    PubMed Central

    Schreiber, Matthew A.; Pierce-Shimomura, Jonathan T.; Chan, Stefan; Parry, Dianne; McIntire, Steven L.

    2010-01-01

    Normal aging leads to an inexorable decline in motor performance, contributing to medical morbidity and decreased quality of life. While much has been discovered about genetic determinants of lifespan, less is known about modifiers of age-related behavioral decline and whether new gene targets may be found which extend vigorous activity, with or without extending lifespan. Using Caenorhabditis elegans, we have developed a model of declining neuromuscular function and conducted a screen for increased behavioral activity in aged animals. In this model, behavioral function suffers from profound reductions in locomotory frequency, but coordination is strikingly preserved until very old age. By screening for enhancers of locomotion at advanced ages we identified the ras-related Rag GTPase raga-1 as a novel modifier of behavioral aging. raga-1 loss of function mutants showed vigorous swimming late in life. Genetic manipulations revealed that a gain of function raga-1 curtailed behavioral vitality and shortened lifespan, while a dominant negative raga-1 lengthened lifespan. Dietary restriction results indicated that a raga-1 mutant is relatively protected from the life-shortening effects of highly concentrated food, while RNAi experiments suggested that raga-1 acts in the highly conserved target of rapamycin (TOR) pathway in C. elegans. Rag GTPases were recently shown to mediate nutrient-dependent activation of TOR. This is the first demonstration of their dramatic effects on behavior and aging. This work indicates that novel modulators of behavioral function can be identified in screens, with implications for future study of the clinical amelioration of age-related decline. PMID:20523893

  16. Understanding HIV-related stigma in older age in rural Malawi.

    PubMed

    Freeman, Emily

    2016-09-01

    The combination of HIV- and age-related stigma exacerbates prevalence of HIV infection and late diagnosis and initiation of anti-retroviral therapy among older populations (Moore, 2012; Richards et al. 2013). Interventions to address these stigmas must be grounded in understanding of situated systems of beliefs about illness and older age. This study analyses constructions of HIV and older age that underpinned the stigmatisation of older adults with HIV in rural Balaka, Malawi. It draws on data from a series of in-depth interviews (N = 135) with adults aged 50-∼90 (N = 43) in 2008-2010. Around 40% (n = 18) of the sample had HIV. Dominant understandings of HIV in Balaka pertained to the sexual transmission of the virus and poor prognosis of those infected. They intersected with understandings of ageing. Narratives about older age and HIV in older age both centred on the importance of having bodily, moral and social power to perform broadly-defined "work". Those who could not work were physically and socially excluded from the social world. This status, labelled as "child-like", was feared by all participants. In participants' narratives, growing old involves a gradual decline in the power required to produce one's membership of the social world through work. HIV infection in old age is understood to accelerate this decline. Understandings of the sexual transmission of HIV, in older age, imply the absence of moral power and in turn, loss of social power. The prognosis of those with HIV, in older age, reflects and causes amplified loss of bodily power. In generating dependency, this loss of bodily power infantilises older care recipients and jeopardises their family's survival, resulting in further loss of social power. This age-and HIV-related loss of power to produce social membership through work is the discrediting attribute at the heart of the stigmatisation of older people with HIV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The effects of attention on age-related relational memory deficits: Evidence from a novel attentional manipulation

    PubMed Central

    Kim, So-Yeon; Giovanello, Kelly S.

    2011-01-01

    Healthy aging is often accompanied by episodic memory decline. Prior studies have consistently demonstrated that older adults show disproportionate deficits in relational memory (RM) relative to item memory (IM). Despite rich evidence of an age-related RM deficit, the source of this deficit remains unspecified. One of the most widely investigated factors of age-related RM impairment is a reduction in attentional resources. However, no prior studies have demonstrated that reduced attentional resources are the critical source of age-related RM deficits. Here, we utilized qualitatively different attention tasks, and tested whether reduced attention for relational processing underlies the RM deficit observed in aging. In Experiment 1, we imposed either item-detection or relation-detection attention tasks on young adults during episodic memory encoding, and found that only the concurrent attention task involving relational processing disproportionately impaired RM performance in young adults. Moreover, by ruling out the possible confound of task-difficulty on the disproportionate RM impairment, we further demonstrated that reduced relational attention is a key factor for the age-related RM deficit. In Experiment 2, we replicated the results from Experiment 1 using different materials of stimuli and found that the effect of relational attention on RM is material-general. The results of Experiment 2 also showed that reducing attentional resources for relational processing in young adults strikingly equated their RM performance to that of older adults. Thus, the current study documents the first evidence that reduced attentional resources for relational processing are a critical factor for the relational memory impairment observed in aging. PMID:21707178

  18. Disparities in Age-Associated Cognitive Decline Between African-American and Caucasian Populations: The Roles of Health Literacy and Education.

    PubMed

    Gupta, Vishal K; Winter, Michael; Cabral, Howard; Henault, Lori; Waite, Katherine; Hanchate, Amresh; Bickmore, Timothy W; Wolf, Michael S; Paasche-Orlow, Michael K

    2016-08-01

    To examine health literacy as a mediator of racial disparities in cognitive decline as measured by executive function in elderly adults. Prospective cohort study. Secondary analysis of ElderWalk trial in Boston, Massachusetts. English-speaking African-American and Caucasian individuals in a walking intervention for community-dwelling adults aged 65 and older without dementia at baseline who completed baseline and 12-month evaluations (N = 198). Health literacy was measured using the Short Test of Functional Health Literacy in Adults. Fluid and crystallized cognitive functions were measured at baseline and 12 months using the Trail-Making Test Part B minus Part B (TMT B-A) and the Controlled Oral Word Association Test (COWAT). Associations between health literacy and 12-month cognitive decline were modeled using multivariate linear regression. Participants with higher health literacy and education experienced less cognitive decline than those with limited health literacy according to the TMT B-A (P = .01). After adjusting for covariates, Caucasian participants (n = 63) experienced less decline than African-American participants (n = 135) on TMT B-A (P = .001) and COWAT (P = .001). Adjusting for health literacy led to a 25.3% decrease in the point estimate for racial difference in TMT B-A and a 19.5% decrease in COWAT. Although independently related to cognitive decline, educational attainment did not mediate racial differences. Health literacy is a partial mediator of racial disparities in cognitive decline. These results indicate the need to develop interventions to mitigate cognitive decline that individuals with low heath literacy can use and to modify the healthcare environment to better accommodate this population. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  19. Developmental Course of Impulsivity and Capability from Age 10 to Age 25 as Related to Trajectory of Suicide Attempt in a Community Cohort

    PubMed Central

    Kasen, Stephanie; Cohen, Patricia; Chen, Henian

    2011-01-01

    Hierarchical linear models were used to examine trajectories of impulsivity and capability between ages 10 and 25 in relation to suicide attempt in 770 youths followed longitudinally: intercepts were set at age 17. The impulsivity measure assessed features of urgency (e.g., poor control, quick provocation, and disregard for external constraints); the capability measure assessed aspects of self-esteem and mastery. Compared to nonattempters, attempters reported significantly higher impulsivity levels with less age-related decline, and significantly lower capability levels with less age-related increase. Independent of other risks, suicide attempt was related significantly to higher impulsivity between ages 10 and 25, especially during the younger years, and lower capability. Implications of those findings for further suicidal behavior and preventive/intervention efforts are discussed. PMID:21342218

  20. Age-related changes in the bimanual advantage and in brain oscillatory activity during tapping movements suggest a decline in processing sensory reafference.

    PubMed

    Sallard, Etienne; Spierer, Lucas; Ludwig, Catherine; Deiber, Marie-Pierre; Barral, Jérôme

    2014-02-01

    Deficits in the processing of sensory reafferences have been suggested as accounting for age-related decline in motor coordination. Whether sensory reafferences are accurately processed can be assessed based on the bimanual advantage in tapping: because of tapping with an additional hand increases kinesthetic reafferences, bimanual tapping is characterized by a reduced inter-tap interval variability than unimanual tapping. A suppression of the bimanual advantage would thus indicate a deficit in sensory reafference. We tested whether elderly indeed show a reduced bimanual advantage by measuring unimanual (UM) and bimanual (BM) self-paced tapping performance in groups of young (n = 29) and old (n = 27) healthy adults. Electroencephalogram was recorded to assess the underlying patterns of oscillatory activity, a neurophysiological mechanism advanced to support the integration of sensory reafferences. Behaviorally, there was a significant interaction between the factors tapping condition and age group at the level of the inter-tap interval variability, driven by a lower variability in BM than UM tapping in the young, but not in the elderly group. This result indicates that in self-paced tapping, the bimanual advantage is absent in elderly. Electrophysiological results revealed an interaction between tapping condition and age group on low beta band (14-20 Hz) activity. Beta activity varied depending on the tapping condition in the elderly but not in the young group. Source estimations localized this effect within left superior parietal and left occipital areas. We interpret our results in terms of engagement of different mechanisms in the elderly depending on the tapping mode: a 'kinesthetic' mechanism for UM and a 'visual imagery' mechanism for BM tapping movement.

  1. Executive and memory correlates of age-related differences in wayfinding performances using a virtual reality application.

    PubMed

    Taillade, Mathieu; Sauzéon, Hélène; Dejos, Marie; Pala, Prashant Arvind; Larrue, Florian; Wallet, Grégory; Gross, Christian; N'Kaoua, Bernard

    2013-01-01

    The aim of this study was to evaluate in large-scale spaces wayfinding and spatial learning difficulties for older adults in relation to the executive and memory decline associated with aging. We compared virtual reality (VR)-based wayfinding and spatial memory performances between young and older adults. Wayfinding and spatial memory performances were correlated with classical measures of executive and visuo-spatial memory functions, but also with self-reported estimates of wayfinding difficulties. We obtained a significant effect of age on wayfinding performances but not on spatial memory performances. The overall correlations showed significant correlations between the wayfinding performances and the classical measures of both executive and visuo-spatial memory, but only when the age factor was not partialled out. Also, older adults underestimated their wayfinding difficulties. A significant relationship between the wayfinding performances and self-reported wayfinding difficulty estimates is found, but only when the age effect was partialled out. These results show that, even when older adults have an equivalent spatial knowledge to young adults, they had greater difficulties with the wayfinding task, supporting an executive decline view in age-related wayfinding difficulties. However, the correlation results are in favor of both the memory and executive decline views as mediators of age-related differences in wayfinding performances. This is discussed in terms of the relationships between memory and executive functioning in wayfinding task orchestration. Our results also favor the use of objective assessments of everyday navigation difficulties in virtual applications, instead of self-reported questionnaires, since older adults showed difficulties in estimating their everyday wayfinding problems.

  2. Age-related differences in emotion recognition ability: a cross-sectional study.

    PubMed

    Mill, Aire; Allik, Jüri; Realo, Anu; Valk, Raivo

    2009-10-01

    Experimental studies indicate that recognition of emotions, particularly negative emotions, decreases with age. However, there is no consensus at which age the decrease in emotion recognition begins, how selective this is to negative emotions, and whether this applies to both facial and vocal expression. In the current cross-sectional study, 607 participants ranging in age from 18 to 84 years (mean age = 32.6 +/- 14.9 years) were asked to recognize emotions expressed either facially or vocally. In general, older participants were found to be less accurate at recognizing emotions, with the most distinctive age difference pertaining to a certain group of negative emotions. Both modalities revealed an age-related decline in the recognition of sadness and -- to a lesser degree -- anger, starting at about 30 years of age. Although age-related differences in the recognition of expression of emotion were not mediated by personality traits, 2 of the Big 5 traits, openness and conscientiousness, made an independent contribution to emotion-recognition performance. Implications of age-related differences in facial and vocal emotion expression and early onset of the selective decrease in emotion recognition are discussed in terms of previous findings and relevant theoretical models.

  3. Age-related patterns in nonmedical prescription opioid use and disorder in the US population at ages 12-34 from 2002 to 2014.

    PubMed

    Hu, Mei-Chen; Griesler, Pamela; Wall, Melanie; Kandel, Denise B

    2017-08-01

    To estimate age-related patterns in nonmedical prescription opioid (NMPO) use in the US population and disorder among past-year users at ages 12-34 between 2002 and 2014, controlling for period and birth-cohort effects. Data are from 13 consecutive cross-sectional National Surveys on Drug Use and Health (N=542,556). Synthetic longitudinal cohorts spanning ages 12-34 were created and an age-period-cohort analysis was implemented based on the Intrinsic Estimator algorithm. In every birth cohort, past-year NMPO use increases during adolescence, peaks at ages 18-21, decreases through ages 30-34; disorder among past-year users increases from ages 18-21 through 30-34. Use at ages 12-34 decreased from the 1984-87 birth cohorts to more recently-born cohorts. Peak prevalence of use at ages 18-21 has also decreased, and the rates of increase from ages 14-17 to ages 18-21 are slowing down. Disorder at ages 18-34 increased from the 1976-79 to 1992-95 cohorts, but decreased at ages 12-17 from the 1992-95 to the most recently-born 2000-02 cohorts. The years 2010-2014 were characterized by lower NMPO use but higher disorder than 2002-2009. Increasing NMPO disorder among users aged 18-34 warrants concern. However, declining NMPO use among 12-34 year-olds, a declining rate of increase from adolescence to early adulthood, and a suggestive decline in disorder among the most recent adolescent cohorts may forecast a potential reduction in the public health crisis associated with NMPO drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Stressful life events and cognitive decline in late life: moderation by education and age. The Cache County Study.

    PubMed

    Tschanz, Joann T; Pfister, Roxane; Wanzek, Joseph; Corcoran, Chris; Smith, Ken; Tschanz, Brian T; Steffens, David C; Østbye, Truls; Welsh-Bohmer, Kathleen A; Norton, Maria C

    2013-08-01

    Stressful life events (SLE) have been associated with increased dementia risk, but their association with cognitive decline has been inconsistent. In a longitudinal population-based study of older individuals, we examined the association between SLE and cognitive decline, and the role of potential effect modifiers. A total of 2665 non-demented participants of the Cache County Memory Study completed an SLE questionnaire at Wave 2 and were revisited 4 and 7 years later. The events were represented via several scores: total number, subjective rating (negative, positive, and unexpected), and a weighted summary based on their impact. Cognition was assessed at each visit with the modified Mini-Mental State Exam. General linear models were used to examine the association between SLE scores and cognition. Effect modification by age, education, and APOE genotype was tested. Years of formal education (p = 0.006) modified the effect of number of SLE, and age (p = 0.009) modified the effect of negative SLE on the rate of cognitive decline. Faster decline was observed among those with fewer years of education experiencing more SLE and also among younger participants experiencing more negative SLE. There was no association between other indicators of SLE and cognitive decline. APOE genotype did not modify any of the aforementioned associations. The effects of SLE on cognition in late life are complex and vary by individual factors such as age and education. These results may explain some of the contradictory findings in the literature. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Mechanisms of age-related cognitive change and targets for intervention: social interactions and stress.

    PubMed

    Kremen, William S; Lachman, Margie E; Pruessner, Jens C; Sliwinski, Martin; Wilson, Robert S

    2012-06-01

    The effects of biological and physical factors on cognitive aging are widely studied. Less is known about the role of psychosocial factors such as stress and social relationships for cognitive functioning. Speakers in Session IV of the Summit focused on possible mechanisms linking social interactions and stressful experiences to cognitive changes with aging. Elevated cortisol, repetitive thinking, negative emotions, neuroticism, chronic stress, and early life adversity were negatively associated with memory and other cognitive dimensions in later life. In contrast, supportive social relationships were found to be positively related to cognitive functioning. Some evidence was provided for multidirectional, causal relationships involving stress and negative affect as both antecedents and consequences of cognitive decline. The findings contribute to understanding the potential underlying causal processes linking psychosocial factors and cognitive aging with a developmental focus on the etiology of declines and onset of cognitive impairments. This work provides an important foundation for future research to identify modifiable factors and to design interventions to minimize cognitive declines and optimize cognitive health in adulthood.

  6. Late Life Leisure Activities and Risk of Cognitive Decline

    PubMed Central

    2013-01-01

    Background. Studies concerning the effect of different types of leisure activities on various cognitive domains are limited. This study tests the hypothesis that mental, physical, and social activities have a domain-specific protection against cognitive decline. Methods. A cohort of a geographically defined population in China was examined in 2003–2005 and followed for an average of 2.4 years. Leisure activities were assessed in 1,463 adults aged 65 years and older without cognitive or physical impairment at baseline, and their cognitive performances were tested at baseline and follow-up examinations. Results. High level of mental activity was related to less decline in global cognition (β = −.23, p < .01), language (β = −.11, p < .05), and executive function (β = −.13, p < .05) in ANCOVA models adjusting for age, gender, education, history of stroke, body mass index, Apolipoprotein E genotype, and baseline cognition. High level of physical activity was related to less decline in episodic memory (β = −.08, p < .05) and language (β = −.15, p < .01). High level of social activity was associated with less decline in global cognition (β = −.11, p < .05). Further, a dose-response pattern was observed: although participants who did not engage in any of the three activities experienced a significant global cognitive decline, those who engaged in any one of the activities maintained their cognition, and those who engaged in two or three activities improved their cognition. The same pattern was observed in men and in women. Conclusions. Leisure activities in old age may protect against cognitive decline for both women and men, and different types of activities seem to benefit different cognitive domains. PMID:22879456

  7. [Impact of thymic function in age-related immune deterioration].

    PubMed

    Ferrando-Martínez, Sara; de la Fuente, Mónica; Guerrero, Juan Miguel; Leal, Manuel; Muñoz-Fernández, M Ángeles

    2013-01-01

    Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.

  8. Early Decline in Glucose Transport and Metabolism Precedes Shift to Ketogenic System in Female Aging and Alzheimer's Mouse Brain: Implication for Bioenergetic Intervention

    PubMed Central

    Ding, Fan; Yao, Jia; Rettberg, Jamaica R.; Chen, Shuhua; Brinton, Roberta Diaz

    2013-01-01

    We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3–15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6–9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential

  9. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer's mouse brain: implication for bioenergetic intervention.

    PubMed

    Ding, Fan; Yao, Jia; Rettberg, Jamaica R; Chen, Shuhua; Brinton, Roberta Diaz

    2013-01-01

    We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3-15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6-9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential

  10. Systematic review of the evidence relating FEV1 decline to giving up smoking

    PubMed Central

    2010-01-01

    Background The rate of forced expiratory volume in 1 second (FEV1) decline ("beta") is a marker of chronic obstructive pulmonary disease risk. The reduction in beta after quitting smoking is an upper limit for the reduction achievable from switching to novel nicotine delivery products. We review available evidence to estimate this reduction and quantify the relationship of smoking to beta. Methods Studies were identified, in healthy individuals or patients with respiratory disease, that provided data on beta over at least 2 years of follow-up, separately for those who gave up smoking and other smoking groups. Publications to June 2010 were considered. Independent beta estimates were derived for four main smoking groups: never smokers, ex-smokers (before baseline), quitters (during follow-up) and continuing smokers. Unweighted and inverse variance-weighted regression analyses compared betas in the smoking groups, and in continuing smokers by amount smoked, and estimated whether beta or beta differences between smoking groups varied by age, sex and other factors. Results Forty-seven studies had relevant data, 28 for both sexes and 19 for males. Sixteen studies started before 1970. Mean follow-up was 11 years. On the basis of weighted analysis of 303 betas for the four smoking groups, never smokers had a beta 10.8 mL/yr (95% confidence interval (CI), 8.9 to 12.8) less than continuing smokers. Betas for ex-smokers were 12.4 mL/yr (95% CI, 10.1 to 14.7) less than for continuing smokers, and for quitters, 8.5 mL/yr (95% CI, 5.6 to 11.4) less. These betas were similar to that for never smokers. In continuing smokers, beta increased 0.33 mL/yr per cigarette/day. Beta differences between continuing smokers and those who gave up were greater in patients with respiratory disease or with reduced baseline lung function, but were not clearly related to age or sex. Conclusion The available data have numerous limitations, but clearly show that continuing smokers have a beta that

  11. Age Decline in the Activity of the Ca2+-sensitive K+ Channel of Human Red Blood Cells

    PubMed Central

    Tiffert, Teresa; Daw, Nuala; Etzion, Zipora; Bookchin, Robert M.; Lew, Virgilio L.

    2007-01-01

    The Ca2+-sensitive K+ channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca2+ loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of age. Using glycated hemoglobin as a reliable RBC age marker, we investigated the age–activity relation of Gardos channels by measuring the mean age of RBC subpopulations exceeding a set high density boundary during dehydration. When K+ permeabilization was induced with valinomycin, the oldest and densest cells, which started nearest to the set density boundary, crossed it first, reflecting conservation of the normal age–density distribution pattern during dehydration. However, when Ca2+ loads were used to induce maximal K+ fluxes via Gardos channels in all RBCs (F max), the youngest RBCs passed the boundary first, ahead of the older RBCs, indicating that Gardos channel F max was highest in those young RBCs, and that the previously observed appearance of uniform dehydration concealed a substantial degree of age scrambling during the dehydration process. Further analysis of the Gardos channel age–activity relation revealed a monotonic decline in F max with cell age, with a broad quasi-Gaussian F max distribution among the RBCs. PMID:17470662

  12. Age and Pattern of Intellectual Decline among Down Syndrome and Other Mentally Retarded Adults.

    ERIC Educational Resources Information Center

    Gibson, David; And Others

    1988-01-01

    A study of 18 Down Syndrome and 18 other mentally retarded adults found evidence of a significant erosion of Wechsler Intelligence Scale for Children scores from the third to fourth decades of life. The Block Design subtest was especially vulnerable to performance decline with age in the Down Syndrome adults. (Author/JDD)

  13. Current concepts in age-related hearing loss: Epidemiology and mechanistic pathways

    PubMed Central

    Yamasoba, Tatsuya; Lin, Frank R.; Someya, Shinichi; Kashio, Akinori; Sakamoto, Takashi; Kondo, Kenji

    2013-01-01

    Age-related hearing loss (AHL), also known as presbycusis, is a universal feature of mammalian aging and is characterized by a decline of auditory function, such as increased hearing thresholds and poor frequency resolution. The primary pathology of AHL includes the hair cells, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. A growing body of evidence in animal studies has suggested that cumulative effect of oxidative stress could induce damage to macromolecules such as mitochondrial DNA (mtDNA) and that the resulting accumulation of mtDNA mutations/deletions and decline of mitochondrial function play an important role in inducing apoptosis of the cochlear cells, thereby the development of AHL. Epidemiological studies have demonstrated four categories of risk factors of AHL in humans: cochlear aging, environment such as noise exposure, genetic predisposition, and health co-morbidities such as cigarette smoking and atherosclerosis. Genetic investigation has identified several putative associating genes, including those related to antioxidant defense and atherosclerosis. Exposure to noise is known to induce excess generation of reactive oxygen species (ROS) in the cochlea, and cumulative oxidative stress can be enhanced by relatively hypoxic situations resulting from the impaired homeostasis of cochlear blood supply due to atherosclerosis, which could be accelerated by genetic and co-morbidity factors. Antioxidant defense system may also be influenced by genetic backgrounds. These may explain the large variations of the onset and extent of AHL among elderly subjects. PMID:23422312

  14. Microsurgeons do better--tactile training might prevent the age-dependent decline of the sensibility of the hand.

    PubMed

    Schmauss, Daniel; Megerle, Kai; Weinzierl, Andrea; Agua, Kariem; Cerny, Michael; Schmauss, Verena; Lohmeyer, Joern A; Machens, Hans-Guenther; Erne, Holger

    2015-12-01

    Recent data demonstrate that the normal sensibility of the hand seems to be age-dependent with the best values in the third decade and a consecutive deterioration afterwards. However, it is not clear if long-term tactile training might prevent this age-dependent decline. We evaluated sensibility of the hand in 125 surgeons aged between 26 and 75 years who perform microsurgical operations, thereby undergoing regular tactile training. We examined sensibility of the radial digital nerve of the index finger (N3) and the ulnar digital nerve of the small finger (N10) using static and moving two-point discrimination (2PD) tests and compared the results to 154 age-matched individuals without specific long-term tactile training. We found significantly lower static and moving 2PD values for the sixth, seventh, and eighth decade of life in the microsurgery group compared to the control group (p < 0.05). This study demonstrates that long-term tactile training might prevent the known age-dependent decline of the sensibility of the hand. © 2015 Peripheral Nerve Society.

  15. Developmental course of impulsivity and capability from age 10 to age 25 as related to trajectory of suicide attempt in a community cohort.

    PubMed

    Kasen, Stephanie; Cohen, Patricia; Chen, Henian

    2011-04-01

    Hierarchical linear models were used to examine trajectories of impulsivity and capability between ages 10 and 25 in relation to suicide attempt in 770 youths followed longitudinally: intercepts were set at age 17. The impulsivity measure assessed features of urgency (e.g., poor control, quick provocation, and disregard for external constraints); the capability measure assessed aspects of self-esteem and mastery. Compared to nonattempters, attempters reported significantly higher impulsivity levels with less age-related decline, and significantly lower capability levels with less age-related increase. Independent of other risks, suicide attempt was related significantly to higher impulsivity between ages 10 and 25, especially during the younger years, and lower capability. Implications of those findings for further suicidal behavior and preventive/intervention efforts are discussed. © 2011 The American Association of Suicidology.

  16. Decline in Weight and Incident Mild Cognitive Impairment: Mayo Clinic Study of Aging

    PubMed Central

    Alhurani, Rabe E.; Vassilaki, Maria; Aakre, Jeremiah; Mielke, Michelle M.; Kremers, Walter K.; Machulda, Mary M.; Geda, Yonas E.; Knopman, David S.; Peterson, Ronald C.; Roberts, Rosebud O.

    2016-01-01

    IMPORTANCE Unintentional weight loss has been associated with risk of dementia. Since mild cognitive impairment (MCI) is a prodromal stage for dementia, we sought to evaluate whether changes in weight and body mass index (BMI) may predict incident MCI. OBJECTIVE To investigate the association of change in weight and BMI with risk of MCI. DESIGN, SETTING, AND PARTICIPANTS A population-based, prospective study of participants aged 70 years and older from the Mayo Clinic Study of Aging. Maximum weight and height in midlife (aged 40 to 65 years old) were retrospectively ascertained from the medical records of participants using a medical records linkage system. MAIN OUTCOMES MEASURES Participants were evaluated for cognitive outcomes of normal cognition, MCI, or dementia at baseline and prospectively assessed for incident events at each 15-month evaluation. The association of rate of change in weight and body mass index with risk of MCI was investigated using proportional hazards models. RESULTS Over a mean follow-up of 4.4 years, 524 of 1895 cognitively normal participants developed incident MCI. The mean (standard deviation) rate of weight change per decade from midlife to study entry was greater for individuals who developed incident MCI vs. those who remained cognitively normal (−2.0 (5.1) vs. −1.2 (4.9) kg; p = 0.006). A greater decline in weight per decade was associated with an increased risk of incident MCI (hazard ratio [HR] 95% confidence interval [CI], 1.04 [1.02, 1.06], p < 0.001) after adjusting for sex, education and apolipoprotein E (APOE) ε4 allele. A weight loss of 5 kg/decade corresponds to a 24% increase in risk of MCI (HR=1.24). Higher decline in BMI per decade was also associated with incident MCI (HR, 1.08, 95% CI = [1.03, 1.13], p = 0.003). CONCLUSIONS AND RELEVANCE These findings suggest that declining weight from midlife to late-life is a marker for MCI and may help identify persons at increased risk for MCI. PMID:26831542

  17. Physiological neuronal decline in healthy aging human brain - An in vivo study with MRI and short echo-time whole-brain (1)H MR spectroscopic imaging.

    PubMed

    Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich

    2016-08-15

    Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Accelerated White Matter Aging in Schizophrenia: Role of White Matter Blood Perfusion

    PubMed Central

    Chiappelli, Joshua; McMahon, Robert; Muellerklein, Florian; Wijtenburg, S. Andrea; White, Michael G.; Rowland, Laura M.; Hong, L. Elliot

    2014-01-01

    Elevated rate of age-related decline in white matter integrity, indexed by fractional anisotropy (FA) from diffusion tensor imaging, was reported in patients with schizophrenia. Its etiology is unknown. We hypothesized that a decline of blood perfusion to the white matter may underlie the accelerated age-related reduction in FA in schizophrenia. Resting white matter perfusion and FA were collected using pseudo-continuous arterial spin labeling and high-angular-resolution diffusion tensor imaging, respectively, in 50 schizophrenia patients and 70 controls (age=18-63 years). Main outcome measures were the diagnosis-by-age interaction on whole-brain white matter perfusion, and FA. Significant age-related decline in brain white matter perfusion and FA were present in both groups. Age-by-diagnosis interaction was significant for FA (p<0.001) but not white matter perfusion. Age-by-diagnosis interaction for FA values remained significant even after accounting for age-related decline in perfusion. Therefore, we replicated the finding of an increased rate of age-related white matter FA decline in schizophrenia, and observed a significant age-related decline in white matter blood perfusion, although the latter did not contribute to the accelerated age-related decline in FA. The results suggest that factors other than reduced perfusion account for the accelerated age-related decline in white matter integrity in schizophrenia. PMID:24680326

  19. CREB Overexpression Ameliorates Age-related Behavioral and Biophysical Deficits

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Wen

    overexpressing CREB had increased excitability. This indicates that overexpression of CREB was sufficient to rescue both the cognitive deficits, and the biophysical dysfunction normally seen in aged animals. Together, the results from this thesis identify CREB as a new mechanism underlying age-related cognitive deficits. This not only furthers our understanding of how cognitive processes change with age, but also suggests that increasing activity of CREB or its downstream transcription targets may be a novel therapeutic for the treatment of age-related cognitive decline.

  20. Drivers of age-related inflammation and strategies for healthspan extension

    PubMed Central

    Goldberg, Emily L.; Dixit, Vishwa Deep

    2015-01-01

    Summary Aging is the greatest risk factor for the development of chronic diseases such as arthritis, type 2 diabetes, cardiovascular disease, kidney disease, Alzheimer’s disease, macular degeneration, frailty, and certain forms of cancers. It is widely regarded that chronic inflammation may be a common link in all these age-related diseases. This raises the provocative question, can one alter the course of aging and potentially slow the development of all chronic diseases by manipulating the mechanisms that cause age-related inflammation? Emerging evidence suggests that pro-inflammatory cytokines interleukin-1 (IL-1) and IL-18 show an age-dependent regulation implicating inflammasome mediated caspase-1 activation in the aging process. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome controls the caspase-1 activation in myeloid-lineage cells in several organs during aging. The NLRP3 inflammasome is especially relevant to aging as it can get activated in response to structurally diverse damage-associated molecular patterns (DAMPs) such as extracellular ATP, excess glucose, ceramides, amyloids, urate and cholesterol crystals, all of which increase with age. Interestingly, reduction of NLRP3-mediated inflammation prevents age-related insulin-resistance, bone loss, cognitive decline and frailty. NLRP3 is a major driver of age-related inflammation and therefore dietary or pharmacological approaches to lower aberrant inflammasome activation holds promise in reducing multiple chronic diseases of age and may enhance healthspan. PMID:25879284

  1. Drivers of age-related inflammation and strategies for healthspan extension.

    PubMed

    Goldberg, Emily L; Dixit, Vishwa Deep

    2015-05-01

    Aging is the greatest risk factor for the development of chronic diseases such as arthritis, type 2 diabetes, cardiovascular disease, kidney disease, Alzheimer's disease, macular degeneration, frailty, and certain forms of cancers. It is widely regarded that chronic inflammation may be a common link in all these age-related diseases. This raises the question, can one alter the course of aging and potentially slow the development of all chronic diseases by manipulating the mechanisms that cause age-related inflammation? Emerging evidence suggests that pro-inflammatory cytokines interleukin-1 (IL-1) and IL-18 show an age-dependent regulation implicating inflammasome-mediated caspase-1 activation in the aging process. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome controls the caspase-1 activation in myeloid-lineage cells in several organs during aging. The NLRP3 inflammasome is especially relevant to aging as it can get activated in response to structurally diverse damage-associated molecular patterns (DAMPs) such as extracellular ATP, excess glucose, ceramides, amyloids, urate, and cholesterol crystals, all of which increase with age. Interestingly, reduction in NLRP3-mediated inflammation prevents age-related insulin resistance, bone loss, cognitive decline, and frailty. NLRP3 is a major driver of age-related inflammation and therefore dietary or pharmacological approaches to lower aberrant inflammasome activation holds promise in reducing multiple chronic diseases of age and may enhance healthspan. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Accelerated age-related olfactory decline among type 1 Usher patients.

    PubMed

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D

    2016-06-22

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin' Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome.

  3. Resveratrol and pinostilbene confer neuroprotection against aging-related deficits through an ERK1/2 dependent-mechanism

    USDA-ARS?s Scientific Manuscript database

    Age-related declines in motor function may be due, in part, to an increase in oxidative stress in the aging brain leading to death of brain cells that transmit dopamine (DA), one of the brain chemicals responsible for transmitting signals between brain nerve cells. We examined the neuroprotective ef...

  4. Perceived Personal Control Buffers Terminal Decline in Well-Being

    PubMed Central

    Gerstorf, Denis; Heckhausen, Jutta; Ram, Nilam; Infurna, Frank J.; Schupp, Juergen; Wagner, Gert G.

    2015-01-01

    Recent research has repeatedly demonstrated that well-being typically evinces precipitous deterioration close to the end of life. However, the determinants of individual differences in these terminal declines are note well understood. In this study, we examine the role of perceived personal control as a potential buffer against steep terminal declines in well-being. We applied single- and multi-phase growth models to up to 25-year longitudinal data from 1,641 now deceased participants of the national German Socio-Economic Panel Study (SOEP; age at death: M = 74 years; SD = 14; 49% women). Results revealed that perceiving more personal control over one’s life was related to subsequently higher late-life well-being, less severe rates of late-life declines, and a later onset of terminal decline. Associations were independent of key predictors of mortality, including age, gender, SES, and disability. These findings suggest that feeling in control may ameliorate steep end-of-life decline in well-being. We also discuss scenarios for when and how processes of goal disengagement and giving up control may become beneficial. PMID:25244480

  5. The role of hormones, cytokines and heat shock proteins during age-related muscle loss.

    PubMed

    Lee, Claire E; McArdle, Anne; Griffiths, Richard D

    2007-10-01

    Ageing is associated with a progressive decline of muscle mass, strength, and quality, a condition known as sarcopenia. Due to the progressive ageing of western populations, age-related sarcopenia is a major public health problem. Several possible mechanisms for age-related muscle atrophy have been described; however the precise contribution of each is unknown. Age-related muscle loss is thought to be a multi-factoral process composed of events such as physical activity, nutritional intake, oxidative stress, inflammatory insults and hormonal changes. There is a need for a greater understanding of the loss of muscle mass with age as this could have a dramatic impact on the elderly and critically ill if this research leads to maintenance or improvement in functional ability. This review aims to outline the process of skeletal muscle degeneration with ageing, normal and aberrant skeletal muscle regeneration, and to address recent research on the effects of gender and sex steroid hormones during the process of age-related muscle loss.

  6. Cognitive and neuropsychological underpinnings of relational and conjunctive working memory binding across age.

    PubMed

    van Geldorp, Bonnie; Parra, Mario A; Kessels, Roy P C

    2015-01-01

    The ability to form associations (i.e., binding) is critical for memory formation. Recent studies suggest that aging specifically affects relational binding (associating separate features) but not conjunctive binding (integrating features within an object). Possibly, this dissociation may be driven by the spatial nature of the studies so far. Alternatively, relational binding may simply require more attentional resources. We assessed relational and conjunctive binding in three age groups and we included an interfering task (i.e., an articulatory suppression task). Binding was examined in a working memory (WM) task using non-spatial features: shape and colour. Thirty-one young adults (mean age = 22.35), 30 middle-aged adults (mean age = 54.80) and 30 older adults (mean age = 70.27) performed the task. Results show an effect of type of binding and an effect of age but no interaction between type of binding and age. The interaction between type of binding and interference was significant. These results indicate that aging affects relational binding and conjunctive binding similarly. However, relational binding is more susceptible to interference than conjunctive binding, which suggests that relational binding may require more attentional resources. We suggest that a general decline in WM resources associated with frontal dysfunction underlies age-related deficits in WM binding.

  7. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging.

    PubMed

    Vlassara, Helen; Torreggiani, Massimo; Post, James B; Zheng, Feng; Uribarri, Jaime; Striker, Gary E

    2009-12-01

    Oxidant stress (OS) and inflammation increase in normal aging and in chronic kidney disease (CKD), as observed in human and animal studies. In cross-sectional studies of the US population, these changes are associated with a decrease in renal function, which is exhibited by a significant proportion of the population. However, since many normal adults have intact renal function, and longitudinal studies show that some persons maintain normal renal function with age, the link between OS, inflammation, and renal decline is not clear. In aging mice, greater oxidant intake is associated with increased age-related CKD and mortality, which suggests that interventions that reduce OS and inflammation may be beneficial for older individuals. Both OS and inflammation can be readily lowered in normal subjects and patients with CKD stage 3-4 by a simple dietary modification that lowers intake and results in reduced serum and tissue levels of advanced glycation end products. Diabetic patients, including those with microalbuminuria, have a decreased ability to metabolize and excrete oxidants prior to observable changes in serum creatinine. Thus, OS and inflammation may occur in the diabetic kidney at an early time. We review the evidence that oxidants in the diet directly lead to increased serum levels of OS and inflammatory mediators in normal aging and in CKD. We also discuss a simple dietary intervention that helps reduce OS and inflammation, an important and achievable therapeutic goal for patients with CKD and aging individuals with reduced renal function.

  8. Age-related Changes in the Fracture Resistance of Male Fischer F344 Rat Bone

    PubMed Central

    Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J.; Does, Mark D.; Nyman, Jeffry S.

    2015-01-01

    In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Both Raman spectroscopy and reference point indentation detected differences in tissue properties with age, though the trends did not necessarily match observations from human tissue. PMID:26610688

  9. Age-related changes in the fracture resistance of male Fischer F344 rat bone.

    PubMed

    Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J; Does, Mark D; Nyman, Jeffry S

    2016-02-01

    In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Raman spectroscopy analysis of embedded cross-sections of the tibia mid-shaft detected an increase in carbonate subsitution with advanced aging for both inner and outer tissue. Published by Elsevier Inc.

  10. The Aging Epigenome

    PubMed Central

    Booth, Lauren N.

    2016-01-01

    During aging, the mechanisms that normally maintain health and stress resistance strikingly decline, resulting in decrepitude, frailty, and ultimately death. Exactly when and how this decline occurs is unknown. Changes in transcriptional networks and chromatin state lie at the heart of age-dependent decline. These epigenomic changes are not only observed during aging but also profoundly affect cellular function and stress resistance, thereby contributing to the progression of aging. We propose that the dysregulation of transcriptional and chromatin networks is a crucial component of aging. Understanding age-dependent epigenomic changes will yield key insights into how aging begins and progresses and should lead to the development of new therapeutics that delay or even reverse aging and age-related diseases. PMID:27259204

  11. Neural correlates of cognitive aging during the perception of facial age: the role of relatively distant and local texture information

    PubMed Central

    Komes, Jessica; Schweinberger, Stefan R.; Wiese, Holger

    2015-01-01

    Previous event-related potential (ERP) research revealed that older relative to younger adults show reduced inversion effects in the N170 (with more negative amplitudes for inverted than upright faces), suggestive of impairments in face perception. However, as these studies used young to middle-aged faces only, this finding may reflect preferential processing of own- relative to other-age faces rather than age-related decline. We conducted an ERP study in which young and older participants categorized young and old upright or inverted faces by age. Stimuli were presented either unfiltered or low-pass filtered at 30, 20, or 10 cycles per image (CPI). Response times revealed larger inversion effects, with slower responses for inverted faces, for young faces in young participants. Older participants did not show a corresponding effect. ERPs yielded a trend toward reduced N170 inversion effects in older relative to younger adults independent of face age. Moreover, larger inversion effects for young relative to old faces were detected, and filtering resulted in smaller N170 amplitudes. The reduced N170 inversion effect in older adults may reflect age-related changes in neural correlates of face perception. A smaller N170 inversion effect for old faces may indicate that facial changes with age hamper early face perception stages. PMID:26441790

  12. C-reactive protein and genetic variants and cognitive decline in old age: The PROSPER Study

    USDA-ARS?s Scientific Manuscript database

    Plasma concentrations of C-reactive protein (CRP), a marker of chronic inflammation, have been associated with cognitive impairment in old age. However, it is unknown whether CRP is causally linked to cognitive decline. Within the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) tri...

  13. Accelerated age-related olfactory decline among type 1 Usher patients

    PubMed Central

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D.

    2016-01-01

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin’ Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome. PMID:27329700

  14. Religiosity is negatively associated with later-life intelligence, but not with age-related cognitive decline☆

    PubMed Central

    Ritchie, Stuart J.; Gow, Alan J.; Deary, Ian J.

    2014-01-01

    A well-replicated finding in the psychological literature is the negative correlation between religiosity and intelligence. However, several studies also conclude that one form of religiosity, church attendance, is protective against later-life cognitive decline. No effects of religious belief per se on cognitive decline have been found, potentially due to the restricted measures of belief used in previous studies. Here, we examined the associations between religiosity, intelligence, and cognitive change in a cohort of individuals (initial n = 550) with high-quality measures of religious belief taken at age 83 and multiple cognitive measures taken in childhood and at four waves between age 79 and 90. We found that religious belief, but not attendance, was negatively related to intelligence. The effect size was smaller than in previous studies of younger participants. Longitudinal analyses showed no effect of either religious belief or attendance on cognitive change either from childhood to old age, or across the ninth decade of life. We discuss differences between our cohort and those in previous studies – including in age and location – that may have led to our non-replication of the association between religious attendance and cognitive decline. PMID:25278639

  15. Animal models of aging research: implications for human aging and age-related diseases.

    PubMed

    Mitchell, Sarah J; Scheibye-Knudsen, Morten; Longo, Dan L; de Cabo, Rafael

    2015-01-01

    Aging is characterized by an increasing morbidity and functional decline that eventually results in the death of an organism. Aging is the largest risk factor for numerous human diseases, and understanding the aging process may thereby facilitate the development of new treatments for age-associated diseases. The use of humans in aging research is complicated by many factors, including ethical issues; environmental and social factors; and perhaps most importantly, their long natural life span. Although cellular models of human disease provide valuable mechanistic information, they are limited in that they may not replicate the in vivo biology. Almost all organisms age, and thus animal models can be useful for studying aging. Herein, we review some of the major models currently used in aging research and discuss their benefits and pitfalls, including interventions known to extend life span and health span. Finally, we conclude by discussing the future of animal models in aging research.

  16. Imaging Phenotype of Occupational Endotoxin-Related Lung Function Decline.

    PubMed

    Lai, Peggy S; Hang, Jing-Qing; Zhang, Feng-Ying; Sun, J; Zheng, Bu-Yong; Su, Li; Washko, George R; Christiani, David C

    2016-09-01

    Although occupational exposures contribute to a significant proportion of obstructive lung disease, the phenotype of obstructive lung disease associated with work-related organic dust exposure independent of smoking remains poorly defined. We identified the relative contributions of smoking and occupational endotoxin exposure to parenchymal and airway remodeling as defined by quantitative computed tomography (CT). The Shanghai Textile Worker Study is a longitudinal study of endotoxin-exposed cotton workers and endotoxin-unexposed silk workers that was initiated in 1981. Spirometry, occupational endotoxin exposure, and smoking habits were assessed at 5-year intervals. High-resolution computed tomography (CT) was performed in 464 retired workers in 2011, along with quantitative lung densitometric and airway analysis. Significant differences in all CT measures were noted across exposure groups. Occupational endotoxin exposure was associated with a decrease (-1.3%) in percent emphysema (LAAI-950), a 3.3-Hounsfield unit increase in 15th percentile density, an 18.1-g increase in lung mass, and a 2.3% increase in wall area percent. Current but not former smoking was associated with a similar CT phenotype. Changes in LAAI-950 were highly correlated with 15th percentile density (correlation -1.0). Lung mass was the only measure associated with forced expiratory volume in 1 sec (FEV1) decline, with each 10-g increase in lung mass associated with an additional loss (-6.1 mL) of FEV1 (p = 0.001) between 1981 and 2011. There are many similarities between the effects of occupational endotoxin exposure and those of tobacco smoke exposure on lung parenchyma and airway remodeling. The effects of occupational endotoxin exposure appear to persist even after the cessation of exposure. LAAI-950 may not be a reliable indicator of emphysema in subjects without spirometric impairment. Lung mass is a CT-based biomarker of accelerated lung function decline. Lai PS, Hang J, Zhang F, Sun J

  17. Feather corticosterone levels are related to age and future body condition, but not to subsequent fitness, in a declining migratory songbird.

    PubMed

    Boves, Than J; Fairhurst, Graham D; Rushing, Clark S; Buehler, David A

    2016-01-01

    In migratory species, breeding and non-breeding locations are geographically separate, yet the effects of conditions from one stage may carry over to affect a subsequent stage. Ideally, to understand the mechanisms and implications of 'carry-over effects', one would need to follow individuals throughout the year, quantify potential environmental causal factors and physiological mediators during multiple life-history stages, and measure downstream fitness. Owing to current limitations of tracking technology, this is impossible for small, long-distance migrants, so indirect methods to characterize carry-over effects are required. Corticosterone (CORT) is a suspected physiological mediator of carry-over effects, but when collected from blood it provides only a physiological snapshot at that point in time. When extracted from feathers, however, feather corticosterone (CORT f ) provides a measure of responses to stressors from previous, and longer, time periods. We collected feathers grown during two life-history stages (post-breeding and subsequent wintering) from individuals of two age classes of a rapidly declining migratory songbird, the cerulean warbler ( Setophaga cerulea ), on their breeding grounds and quantified CORT f concentrations. We then monitored reproduction and survival of individuals and analysed relationships among CORT f and age, body condition and future fitness. Compared with older males, second-year males had higher CORT f concentrations during both stages. When controlling for age and year, body condition at capture was positively related to CORT f concentrations from winter (especially for older birds). However, we found no relationships between CORT f and fitness (as defined by reproduction and survival). Thus, elevated CORT may represent a beneficial physiological response (e.g. hyperphagia prior to migration), particularly for certain life-history stages, and may mediate the condition in which individuals transition between stages. But for

  18. Age-Related Imbalance Is Associated With Slower Walking Speed: An Analysis From the National Health and Nutrition Examination Survey.

    PubMed

    Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri

    Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P < .01). In the multivariable regression analysis, inability to perform the balance task was significantly associated with 0.06 m/s slower walking speed (95% confidence interval: -0.09 to -0.03; P < .01), an effect size equivalent to 12 years of age. The structural equation model estimated that age-related imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance

  19. Age-related reduction and independent predictors of toe flexor strength in middle-aged men.

    PubMed

    Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Iwase, Mitsunori; Yokochi, Takashi

    2017-01-01

    Toe flexor muscles play an important role in posture and locomotion, and poor toe flexor strength is a risk factor for falls. In this cross-sectional study, we estimated the age-related change in toe flexor strength and compared it with that of handgrip strength. Independent factors predicting toe flexor and handgrip strength were also determined. A total of 1401 male (aged 35-59 years) study participants were divided into five groups according to their chronological age; 35-39, 40-44, 45-49, 50-54, and 55-59 years. Toe flexor and handgrip strength, anthropometry, and resting blood pressure were measured. Fasting blood samples were collected to measure blood glucose, triglycerides, high- and low-density lipoprotein-cholesterols, and albumin. A self-administered lifestyle questionnaire was conducted. Decline in absolute toe flexor and handgrip strength began in the age groups 50-55 and 55-59 years, respectively. In comparison to the mean values of the youngest group, relative toe flexor strength (87.0 ± 26.6%) was significantly lower than handgrip strength (94.4 ± 13.1%) for the oldest group. Multiple regression analyses showed that independent factors predicting both toe flexor and handgrip strength were lean body mass, age, serum albumin, drinking habit, and fat mass. Additionally, fasting blood glucose, diastolic blood pressure, sleeping time and exercise habit were predicting factors of toe flexor strength but not of handgrip strength. Age-related reduction in toe flexor strength was earlier and greater than handgrip strength, and toe flexor strength reflects body composition and metabolic status.

  20. The effect of education on age-related changes in three cognitive domains: a cross-sectional study in primary care.

    PubMed

    Martins, Isabel Pavão; Maruta, Carolina; Silva, Cláudia; Rodrigues, Pedro; Chester, Catarina; Ginó, Sandra; Freitas, Vanda; Freitas, Sara; Oliveira, António Gouveia

    2012-01-01

    The present study aims to investigate the protective effect of formal education on age-related changes in different cognitive domains with the hypothesis that it may attenuate the rate of decline. Individuals aged 50 years or older attending primary care physicians without known brain disease (431 participants, mostly [60.3%] female with 66.3 [±9.1] years of age and 7.7 [±4.1] years of education, on average), were evaluated with a neuropsychological battery including 28 cognitive measures. Cognitive domains identified by factor analysis were subject to repeated multiple regression analyses to determine the variance explained by age and education controlling for gender, depressive symptoms, and vascular risk factors. The slope of the regression equation was compared between two educational groups with an average of 4 years and 11 years of education, respectively. Factors identified corresponded to processing ability (Factor 1), memory (Factor 2), and acquired knowledge (Factor 3). Although education improved performance in Factors 1 and 3, it did not change the slope of age-related decline in any factor. This study suggests that in culturally heterogeneous groups, small increments in education enhance cognition but do not modify the rate of decline of executive functioning with age. These results contradict some clinical findings and need to be confirmed in longitudinal studies.

  1. The neural consequences of age-related hearing loss

    PubMed Central

    Peelle, Jonathan E.; Wingfield, Arthur

    2016-01-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension. PMID:27262177

  2. Positive affect and cognitive decline: a 12-year follow-up of the Maastricht Aging Study.

    PubMed

    Berk, Lotte; van Boxtel, Martin; Köhler, Sebastian; van Os, Jim

    2017-12-01

    In cross-sectional studies, positive affect (PA) has been associated with higher levels of cognitive functioning. This study examined whether positive affect (PA) is associated with change in cognitive function over 12 years in an adult population sample. Participants (n = 258), aged 40 to 82 years, were drawn from a subsample of the Maastricht Aging Study (MAAS) and assessed at baseline, 6 years and 12 years. PA was measured at baseline with a Dutch translation of the Positive and Negative Affect Schedule (PANAS). PA scores and associations with cognitive decline were tested in random-effects models. Controlling for demographics and depressive symptoms, there was no significant association with PA scores and decline in memory (χ 2  = 1.52; df = 2; P = 0.47), executive functions (χ 2  = 0.99; df = 2; P = 0.61), and information processing speed (χ 2  = 0.52; df = 2; P = 0.77) at 6- and 12-year follow-up. PA did not predict cognitive change over time. These findings question the extent of protective effects of PA on cognitive aging in adulthood, and are discussed in terms of age range and types of measures used for PA and cognition. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Age-related Changes in Energy Intake and Weight in Community-dwelling Middle-aged and Elderly Japanese.

    PubMed

    Otsuka, R; Kato, Y; Nishita, Y; Tange, C; Tomida, M; Nakamoto, M; Imai, T; Ando, F; Shimokata, H

    2016-04-01

    This study attempts to describe trends in energy intake and weight change over 12 years according to age at first participation in the study. Prospective cohort study. The National Institute for Longevity Sciences - Longitudinal Study of Aging (NILS-LSA), a community-based study. Participants included 922 men and 879 women who participated in the first study-wave (age 40-79 years) and also participated in at least one study-wave from the second to seventh study-wave. Each study-wave was conducted biennially. For individuals, the entire follow-up period was 12 years. Energy intake was calculated from 3-day dietary records with photographs. Weight and height were measured under a fasting state. To estimate linear changes in energy intake and weight over 12 years according to age at first study-wave, we used the mixed-effects model. Mean (SD) follow-up time and number of study-wave visits were 9.5 (3.7) years and 5.4 (1.8) times, respectively. The fixed effect of the interaction of age and time in energy intake and weight was statistically or marginally statistically significant both in men (p<0.01) and in women (p<0.06). In men, when energy intake was estimated according to age, the rate of decrease in energy intake increased from -6.8 to -33.8 kcal/year for ages 40-79 years. In women, the rate of decrease in energy intake slightly increased in older age groups (-9.1 to -16.7 kcal/year for ages 40-79 years). Weight increased in males in their 40s (0.07 kg/year from age 40) and started to decline by age 53. In women, weight started to decline around age 47 (-0.04 kg/year). Twelve-year longitudinal data showed energy intake declined both in men and women in their 40s, and the rate of decrease increased in older males. Weight started to decline in men in their mid-50s and women in their late 40s. Further studies that focus on energy intake and weight reduction are needed to prevent weight loss or underweight in an increasingly aging society.

  4. Age-related similarities and differences in monitoring spatial cognition.

    PubMed

    Ariel, Robert; Moffat, Scott D

    2018-05-01

    Spatial cognitive performance is impaired in later adulthood but it is unclear whether the metacognitive processes involved in monitoring spatial cognitive performance are also compromised. Inaccurate monitoring could affect whether people choose to engage in tasks that require spatial thinking and also the strategies they use in spatial domains such as navigation. The current experiment examined potential age differences in monitoring spatial cognitive performance in a variety of spatial domains including visual-spatial working memory, spatial orientation, spatial visualization, navigation, and place learning. Younger and older adults completed a 2D mental rotation test, 3D mental rotation test, paper folding test, spatial memory span test, two virtual navigation tasks, and a cognitive mapping test. Participants also made metacognitive judgments of performance (confidence judgments, judgments of learning, or navigation time estimates) on each trial for all spatial tasks. Preference for allocentric or egocentric navigation strategies was also measured. Overall, performance was poorer and confidence in performance was lower for older adults than younger adults. In most spatial domains, the absolute and relative accuracy of metacognitive judgments was equivalent for both age groups. However, age differences in monitoring accuracy (specifically relative accuracy) emerged in spatial tasks involving navigation. Confidence in navigating for a target location also mediated age differences in allocentric navigation strategy use. These findings suggest that with the possible exception of navigation monitoring, spatial cognition may be spared from age-related decline even though spatial cognition itself is impaired in older age.

  5. The Declining Relative Status of Black Women Workers, 1980-2002

    ERIC Educational Resources Information Center

    Dozier, Raine

    2010-01-01

    During the 1980s and 1990s, industrial restructuring led to a marked increase in wage inequality. Women, however, were not as negatively affected by declining manufacturing employment because their pay was relatively low within the industry, and their already high representation in the service sector provided access to newly created opportunities.…

  6. Longitudinal Mediation of Processing Speed on Age-Related Change in Memory and Fluid Intelligence

    PubMed Central

    Robitaille, Annie; Piccinin, Andrea M.; Muniz, Graciela; Hoffman, Lesa; Johansson, Boo; Deeg, Dorly J.H.; Aartsen, Marja J.; Comijs, Hannie C.; Hofer, Scott M.

    2014-01-01

    Age-related decline in processing speed has long been considered a key driver of cognitive aging. While the majority of empirical evidence for the processing speed hypothesis has been obtained from analyses of between-person age differences, longitudinal studies provide a direct test of within-person change. Using recent developments in longitudinal mediation analysis, we examine the speed–mediation hypothesis at both the within- and between-person levels in two longitudinal studies, LASA and OCTO-Twin. We found significant within-person indirect effects of change in age, such that increasing age was related to lower speed which, in turn, relates to lower performance across repeated measures on other cognitive outcomes. Although between-person indirect effects were also significant in LASA, they were not in OCTO-Twin. These differing magnitudes of direct and indirect effects across levels demonstrate the importance of separating between- and within-person effects in evaluating theoretical models of age-related change. PMID:23957224

  7. Age-Related Changes in Visual Pseudoneglect

    ERIC Educational Resources Information Center

    Schmitz, Remy; Peigneux, Philippe

    2011-01-01

    Pseudoneglect is a slight but consistent leftward attentional bias commonly observed in healthy young populations, purportedly explained by right hemispheric dominance. It has been suggested that normal aging might be associated with a decline of the right hemisphere. According to this hypothesis, a few studies have shown that elderly tend to…

  8. Quantitative proteomic analysis of age-related subventricular zone proteins associated with neurodegenerative disease.

    PubMed

    Wang, Xianli; Dong, Chuanming; Sun, Lixin; Zhu, Liang; Sun, Chenxi; Ma, Rongjie; Ning, Ke; Lu, Bing; Zhang, Jinfu; Xu, Jun

    2016-11-18

    Aging is characterized by a progressive decline in the function of adult tissues which can lead to neurodegenerative disorders. However, little is known about the correlation between protein changes in the subventricular zone (SVZ) and neurodegenerative diseases with age. In the present study, neural stem cells (NSCs) were derived from the SVZ on postnatal 7 d, 1 m, and 12 m-old mice. With age, NSCs exhibited increased SA-β-gal activity and decreased proliferation and pool size in the SVZ zone, and were associated with elevated inflammatory chemokines and cytokines. Furthermore, quantitative proteomics and ingenuity pathway analysis were used to evaluate the significant age-related alterations in proteins and their functions. Some downregulated proteins such as DPYSL2, TPI1, ALDH, and UCHL1 were found to play critical roles in the neurological disease and PSMA1, PSMA3, PSMC2, PSMD11, and UCHL1 in protein homeostasis. Taken together, we have provided valuable insight into the cellular and molecular processes that underlie aging-associated declines in SVZ neurogenesis for the early detection of differences in gene expression and the potential risk of neurological disease, which is beneficial in the prevention of the diseases.

  9. Age-related differences in the topological efficiency of the brain structural connectome in amnestic mild cognitive impairment.

    PubMed

    Zhao, Tengda; Sheng, Can; Bi, Qiuhui; Niu, Weili; Shu, Ni; Han, Ying

    2017-11-01

    Amnestic mild cognitive impairment (aMCI) is accompanied by the accelerated cognitive decline and rapid brain degeneration with aging. However, the age-related alterations of the topological organization of the brain connectome in aMCI patients remained largely unknown. In this study, we constructed the brain structural connectome in 51 aMCI patients and 51 healthy controls by diffusion magnetic resonance imaging and deterministic tractography. The different age-related alteration patterns of the global and regional network metrics between aMCI patients and healthy controls were assessed by a linear regression model. Compared with healthy controls, significantly decreased global and local network efficiency in aMCI patients were found. When correlating network efficiency with age, we observed a significant decline in network efficiency with aging in the aMCI patients, while not in the healthy controls. The age-related decreases of nodal efficiency in aMCI patients were mainly distributed in the key regions of the default-mode network, such as precuneus, anterior cingulate gyrus, and parahippocampal gyrus. In addition, age-related decreases in the connection strength of the edges between peripheral nodes were observed in aMCI patients. Moreover, the decreased regional efficiency of the parahippocampal gyrus was correlated with impaired memory performances in patients. The present study suggests an age-related disruption of the topological organization of the brain structural connectome in aMCI patients, which may provide evidence for different neural mechanisms underlying aging in aMCI and may serve as a potential imaging marker for the early diagnosis of Alzheimer's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Transparent Meta-Analysis: Does Aging Spare Prospective Memory with Focal vs. Non-Focal Cues?

    PubMed Central

    Uttl, Bob

    2011-01-01

    Background Prospective memory (ProM) is the ability to become aware of a previously-formed plan at the right time and place. For over twenty years, researchers have been debating whether prospective memory declines with aging or whether it is spared by aging and, most recently, whether aging spares prospective memory with focal vs. non-focal cues. Two recent meta-analyses examining these claims did not include all relevant studies and ignored prevalent ceiling effects, age confounds, and did not distinguish between prospective memory subdomains (e.g., ProM proper, vigilance, habitual ProM) (see Uttl, 2008, PLoS ONE). The present meta-analysis focuses on the following questions: Does prospective memory decline with aging? Does prospective memory with focal vs. non-focal cues decline with aging? Does the size of age-related declines with focal vs. non-focal cues vary across ProM subdomains? And are age-related declines in ProM smaller than age-related declines in retrospective memory? Methods and Findings A meta-analysis of event-cued ProM using data visualization and modeling, robust count methods, and conventional meta-analysis techniques revealed that first, the size of age-related declines in ProM with both focal and non-focal cues are large. Second, age-related declines in ProM with focal cues are larger in ProM proper and smaller in vigilance. Third, age-related declines in ProM proper with focal cues are as large as age-related declines in recall measures of retrospective memory. Conclusions The results are consistent with Craik's (1983) proposal that age-related declines on ProM tasks are generally large, support the distinction between ProM proper vs. vigilance, and directly contradict widespread claims that ProM, with or without focal cues, is spared by aging. PMID:21304905

  11. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease

    PubMed Central

    Mora, Ana L.; Rojas, Mauricio; Pardo, Annie; Selman, Moises

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal age-associated disease that is characterized by progressive and irreversible scarring of the lung. The pathogenesis of IPF is not completely understood and current therapies are limited to those that reduce the rate of functional decline in patients with mild-to-moderate disease. In this context, new therapeutic approaches that substantially improve the survival time and quality of life of these patients are urgently needed. Our incomplete understanding of the pathogenic mechanisms of IPF and the lack of appropriate experimental models that reproduce the key characteristics of the human disease are major challenges. As ageing is a major risk factor for IPF, age-related cell perturbations such as telomere attrition, senescence, epigenetic drift, stem cell exhaustion, loss of proteostasis and mitochondrial dysfunction are becoming targets of interest for IPF therapy. In this Review, we discuss current and emerging therapies for IPF, particularly those targeting age-related mechanisms, and discuss future therapeutic approaches. PMID:29081515

  12. The "Open-Earedness" Hypothesis and the Development of Age-Related Aesthetic Reactions to Music in Elementary School Children

    ERIC Educational Resources Information Center

    Kopiez, Reinhard; Lehmann, Marco

    2008-01-01

    This study investigates age-related changes in musical preference in elementary school children. The tolerance towards unconventional musical styles has been called "open-earedness" (Hargreaves, 1982a), and it is assumed to decline with increasing age. Musical preferences of 186 students from grade 1 to 4 (age range: 6-10 years) were…

  13. Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance.

    PubMed

    Bejder, Lars; Samuels, Amy; Whitehead, Hal; Gales, Nick; Mann, Janet; Connor, Richard; Heithaus, Mike; Watson-Capps, Jana; Flaherty, Cindy; Krützen, Michael

    2006-12-01

    Studies evaluating effects of human activity on wildlife typically emphasize short-term behavioral responses from which it is difficult to infer biological significance or formulate plans to mitigate harmful impacts. Based on decades of detailed behavioral records, we evaluated long-term impacts of vessel activity on bottlenose dolphins (Tursiops sp.) in Shark Bay, Australia. We compared dolphin abundance within adjacent 36-km2 tourism and control sites, over three consecutive 4.5-year periods wherein research activity was relatively constant but tourism levels increased from zero, to one, to two dolphin-watching operators. A nonlinear logistic model demonstrated that there was no difference in dolphin abundance between periods with no tourism and periods in which one operator offered tours. As the number of tour operators increased to two, there was a significant average decline in dolphin abundance (14.9%; 95% CI=-20.8 to -8.23), approximating a decline of one per seven individuals. Concurrently, within the control site, the average increase in dolphin abundance was not significant (8.5%; 95% CI=-4.0 to +16.7). Given the substantially greater presence and proximity of tour vessels to dolphins relative to research vessels, tour-vessel activity contributed more to declining dolphin numbers within the tourism site than research vessels. Although this trend may not jeopardize the large, genetically diverse dolphin population of Shark Bay, the decline is unlikely to be sustainable for local dolphin tourism. A similar decline would be devastating for small, closed, resident, or endangered cetacean populations. The substantial effect of tour vessels on dolphin abundance in a region of low-level tourism calls into question the presumption that dolphin-watching tourism is benign.

  14. Age-related changes in localization of injected radiolabelled lymphocytes in the lymph nodes of antigen-stimulated mice.

    PubMed Central

    Inchley, C J; Micklem, H S; Barrett, J; Hunter, J; Minty, C

    1976-01-01

    The localization of i.v. injected syngeneic lymph node cells, radiolabelled with 51Cr or 75Se-L-selenomethionine, was studied in male CBA/H mice aged between 3 and 30 months. The following results were obtained. (1) Localization of cells from young adult donors was greater in the s.c. lymph nodes of old than of young recipients, the main increase being between 15 and 17 months of age. Increases in lymph node weight and DNA-synthesis were also seen at this time; but the rise in cell localization was significant even when calculated per unit of tissue weight. Splenic localization either declined slightly with age or, like the liver, showed no significant change. (2) Local antigenic stimulation by a single injection of sheep erythrocytes into one front footpad, 24 hr before lymph node cell injection, resulted in increased localization in the regional lymph nodes of 3-17 month old, but rarely of 24-30 month old mice. (3) No consistent differences in localization were observed between lymph node cells from 4-month and 25-month old donors. Both age-related and antigen-related increases in cell localization were at least partly attributable to an enhanced rate of entry of lymphocytes from the blood to the lymph nodes. Although the changes underlying the decline in antigen-related localization of cells in old recipients have still to be clarified, it is probable that the defective immune responses of old mice result partly from this decline. PMID:991459

  15. Age-Related Gray and White Matter Changes in Normal Adult Brains

    PubMed Central

    Farokhian, Farnaz; Yang, Chunlan; Beheshti, Iman; Matsuda, Hiroshi; Wu, Shuicai

    2017-01-01

    Normal aging is associated with both structural changes in many brain regions and functional declines in several cognitive domains with advancing age. Advanced neuroimaging techniques enable explorative analyses of structural alterations that can be used as assessments of such age-related changes. Here we used voxel-based morphometry (VBM) to investigate regional and global brain volume differences among four groups of healthy adults from the IXI Dataset: older females (OF, mean age 68.35 yrs; n=69), older males (OM, 68.43 yrs; n=66), young females (YF, 27.09 yrs; n=71), and young males (YM, 27.91 yrs; n=71), using 3D T1-weighted MRI data. At the global level, we investigated the influence of age and gender on brain volumes using a two-way analysis of variance. With respect to gender, we used the Pearson correlation to investigate global brain volume alterations due to age in the older and young groups. At the regional level, we used a flexible factorial statistical test to compare the means of gray matter (GM) and white matter (WM) volume alterations among the four groups. We observed different patterns in both the global and regional GM and WM alterations in the young and older groups with respect to gender. At the global level, we observed significant influences of age and gender on global brain volumes. At the regional level, the older subjects showed a widespread reduction in GM volume in regions of the frontal, insular, and cingulate cortices compared to the young subjects in both genders. Compared to the young subjects, the older subjects showed a widespread WM decline prominently in the thalamic radiations, in addition to increased WM in pericentral and occipital areas. Knowledge of these observed brain volume differences and changes may contribute to the elucidation of mechanisms underlying aging as well as age-related brain atrophy and disease. PMID:29344423

  16. Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans.

    PubMed

    Leinwand, Sarah G; Yang, Claire J; Bazopoulou, Daphne; Chronis, Nikos; Srinivasan, Jagan; Chalasani, Sreekanth H

    2015-09-22

    Chemosensory neurons extract information about chemical cues from the environment. How is the activity in these sensory neurons transformed into behavior? Using Caenorhabditis elegans, we map a novel sensory neuron circuit motif that encodes odor concentration. Primary neurons, AWC(ON) and AWA, directly detect the food odor benzaldehyde (BZ) and release insulin-like peptides and acetylcholine, respectively, which are required for odor-evoked responses in secondary neurons, ASEL and AWB. Consistently, both primary and secondary neurons are required for BZ attraction. Unexpectedly, this combinatorial code is altered in aged animals: odor-evoked activity in secondary, but not primary, olfactory neurons is reduced. Moreover, experimental manipulations increasing neurotransmission from primary neurons rescues aging-associated neuronal deficits. Finally, we correlate the odor responsiveness of aged animals with their lifespan. Together, these results show how odors are encoded by primary and secondary neurons and suggest reduced neurotransmission as a novel mechanism driving aging-associated sensory neural activity and behavioral declines.

  17. Declines with Age in Childhood Asthma Symptoms and Health Care Use: An Adjustment for Evaluations

    ERIC Educational Resources Information Center

    Ko, Yi-An; Song, Peter X. K.; Clark, Noreen M.

    2014-01-01

    Rationale: Asthma is a variable condition with an apparent tendency for a natural decline in asthma symptoms and health care use occurring as children age. As a result, asthma interventions using a pre-post design may overestimate the intervention effect when no proper control group is available. Objectives: Investigate patterns of natural decline…

  18. Efficiency of electronically monitored amblyopia treatment between 5 and 16 years of age: new insight into declining susceptibility of the visual system.

    PubMed

    Fronius, Maria; Cirina, Licia; Ackermann, Hanns; Kohnen, Thomas; Diehl, Corinna M

    2014-10-01

    The notion of a limited, early period of plasticity of the visual system has been challenged by more recent research demonstrating functional enhancement even into adulthood. In amblyopia ("lazy eye") it is still unclear to what extent the reduced effect of treatment after early childhood is due to declining plasticity or lower compliance with prescribed patching. The aim of this study was to determine the dose-response relationship and treatment efficiency from acuity gain and electronically recorded patching dose rates, and to infer from these parameters on a facet of age dependence of functional plasticity related to occlusion for amblyopia. The Occlusion Dose Monitor was used to record occlusion in 27 participants with previously untreated strabismic and/or anisometropic amblyopia aged between 5.4 and 15.8 (mean 9.2) years during 4months of conventional treatment. Group data showed improvement of acuity throughout the age span, but significantly more in patients younger than 7years despite comparable patching dosages. Treatment efficiency declined with age, with the most pronounced effects before the age of 7years. Thus, electronic recording allowed this first quantitative insight into occlusion treatment spanning the age range from within to beyond the conventional age for patching. Though demonstrating improvement in over 7year old patients, it confirmed the importance of early detection and treatment of amblyopia. Treatment efficiency is presented as a tool extending insight into age-dependent functional plasticity of the visual system, and providing a basis for comparisons of effects of patching vs. emerging alternative treatment approaches for amblyopia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Age-related nomograms for antral follicle count and anti-Mullerian hormone for subfertile Chinese women in Singapore.

    PubMed

    Loy, See Ling; Cheung, Yin Bun; Fortier, Marielle Valerie; Ong, Chiou Li; Tan, Heng Hao; Nadarajah, Sadhana; Chan, Jerry Kok Yen; Viardot-Foucault, Veronique

    2017-01-01

    Antral follicle count (AFC) and anti-Mullerian hormone (AMH) are known as the most reliable markers of a woman's ovarian reserve and are related to age. There is currently no specific local age-related centile charts for AFC and AMH. Therefore, we aim to examine the relationship between AFC and AMH with age and construct age-related nomograms among a subfertile Asian population. This is a study involving Chinese women who had their AFC and AMH measured as part of their subfertility screening from December 2010 until November 2014 in KK Women's and Children's Hospital, Singapore. Ordinary least squares regression analysis was used to estimate the relationship of AFC and AMH with age, while age-related AFC and AMH nomograms for the 3rd, 10th, 25th, 50th, 75th, 90th and 97th percentiles were produced using the lambda-mu-sigma method. A total of 1,009 women, aged 26 to 44 year-old, were included. On average, the AFC and AMH decreased respectively by 0.79 follicle (95% confidence interval -0.93, -0.64) and 0.38 ng/mL (95% confidence interval -0.43, -0.32) per year of age. The age-related nomograms of AFC showed an approximately linear pattern, inversely correlated with age, regardless of the percentile. For AMH, the pattern is linear for the 75th percentile and below but shows a slightly accelerating decline for the 90th and 97th percentile. Overall, there were large inter-individual variations in AFC and AMH up to about 40 year-old. The declines of AFC and AMH over age are mostly linear among subfertile Chinese women in Singapore. The age-related AFC and AMH nomograms could be used as a reference chart by fertility practitioners. However, future validation with longitudinal data is required.

  20. Functional correlates of brain aging: beta and gamma frequency band responses to age-related cortical changes.

    PubMed

    Christov, Mario; Dushanova, Juliana

    2016-01-01

    The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.

  1. Age-related differences in brain activity in the subsequent memory paradigm: a meta-analysis.

    PubMed

    Maillet, David; Rajah, M Natasha

    2014-09-01

    Healthy aging is associated with declines in episodic memory. This reduction is thought to be due in part to age-related differences in encoding-related processes. In the current study, we performed an activation likelihood estimation meta-analysis of functional magnetic resonance imaging (fMRI) studies assessing age-related differences in the neural correlates of episodic encoding. Only studies using the subsequent memory paradigm were included. We found age-related under-recruitment of occipital and fusiform cortex, but over-recruitment in a set of regions including bilateral middle/superior frontal gyri, anterior medial frontal gyrus, precuneus and left inferior parietal lobe. We demonstrate that all of the regions consistently over-recruited by older adults during successful encoding exhibit either direct overlap, or occur in close vicinity to regions consistently involved in unsuccessful encoding in young adults. We discuss the possibility that this overall pattern of age-related differences represents an age-related shift in focus: away from perceptual details, and toward evaluative and personal thoughts and feelings during memory tasks. We discuss whether these age-related differences in brain activation benefit performance in older adults, and additional considerations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies.

    PubMed

    Sarker, Marjana Rahman; Franks, Susan F

    2018-04-21

    Processes such as aberrant redox signaling and chronic low-grade systemic inflammation have been reported to modulate age-associated pathologies such as cognitive impairment. Curcumin, the primary therapeutic component of the Indian spice, Turmeric (Curcuma longa), has long been known for its strong anti-inflammatory and antioxidant activity attributable to its unique molecular structure. Recently, an interest in this polyphenol as a cognitive therapeutic for the elderly has emerged. The purpose of this paper is to critically review preclinical and clinical studies that have evaluated the efficacy of curcumin in ameliorating and preventing age-associated cognitive decline and address the translational progress of preclinical to clinical efficacy. PubMed, semantic scholar, and Google scholar searches were used for preclinical studies; and clinicaltrials.gov , the Australian and New Zealand clinical trials registry, and PubMed search were used to select relevant completed clinical studies. Results from preclinical studies consistently demonstrate curcumin and its analogues to be efficacious for various aspects of cognitive impairment and processes that contribute to age-associated cognitive impairment. Results of published clinical studies, while mixed, continue to show promise for curcumin's use as a therapeutic for cognitive decline but overall remain inconclusive at this time. Both in vitro and in vivo studies have found that curcumin can significantly decrease oxidative stress, systemic inflammation, and obstruct pathways that activate transcription factors that augment these processes. Future clinical studies would benefit from including evaluation of peripheral and cerebrospinal fluid biomarkers of dementia and behavioral markers of cognitive decline, as well as targeting the appropriate population.

  3. Age-Related Changes of Adaptive and Neuropsychological Features in Persons with Down Syndrome

    PubMed Central

    Ghezzo, Alessandro; Salvioli, Stefano; Solimando, Maria Caterina; Palmieri, Alice; Chiostergi, Chiara; Scurti, Maria; Lomartire, Laura; Bedetti, Federica; Cocchi, Guido; Follo, Daniela; Pipitone, Emanuela; Rovatti, Paolo; Zamberletti, Jessica; Gomiero, Tiziano; Castellani, Gastone; Franceschi, Claudio

    2014-01-01

    Down Syndrome (DS) is characterised by premature aging and an accelerated decline of cognitive functions in the vast majority of cases. As the life expectancy of DS persons is rapidly increasing, this decline is becoming a dramatic health problem. The aim of this study was to thoroughly evaluate a group of 67 non-demented persons with DS of different ages (11 to 66 years), from a neuropsychological, neuropsychiatric and psychomotor point of view in order to evaluate in a cross-sectional study the age-related adaptive and neuropsychological features, and to possibly identify early signs predictive of cognitive decline. The main finding of this study is that both neuropsychological functions and adaptive skills are lower in adult DS persons over 40 years old, compared to younger ones. In particular, language and short memory skills, frontal lobe functions, visuo-spatial abilities and adaptive behaviour appear to be the more affected domains. A growing deficit in verbal comprehension, along with social isolation, loss of interest and greater fatigue in daily tasks, are the main features found in older, non demented DS persons evaluated in our study. It is proposed that these signs can be alarm bells for incipient dementia, and that neuro-cognitive rehabilitation and psycho-pharmacological interventions must start as soon as the fourth decade (or even earlier) in DS persons, i.e. at an age where interventions can have the greatest efficacy. PMID:25419980

  4. Changes in growth-related kinases in head, neck and limb muscles with age.

    PubMed

    Rahnert, Jill A; Luo, Qingwei; Balog, Edward M; Sokoloff, Alan J; Burkholder, Thomas J

    2011-04-01

    Sarcopenia coincides with declines in several systemic processes that signal through the MAP kinase and Akt-mTOR-p70S6k cascades typically associated with muscle growth. Effects of aging on these pathways have primarily been examined in limb muscles, which experience substantial activity and neural changes in addition to systemic hormonal and metabolic changes. Head and neck muscles are reported to undergo reduced sarcopenia and disuse with age relative to limb muscles, suggesting muscle activity may contribute to maintaining mass with age. However many head and neck muscles derive from embryonic branchial arches, rather than the somites from which limb muscles originate, suggesting that developmental origin may be important. This study compares the expression and phosphorylation of MAP kinase and mTOR networks in head, neck, tongue, and limb muscles from 8- and 26-month old F344 rats to test the hypothesis that physical activity and developmental origin contribute to preservation of muscle mass with age. Phosphorylation of p38 was exaggerated in aged branchial arch muscles. Phosphorylation of ERK and p70S6k T421/S424 declined with age only in the biceps brachii. Expression of p70S6k declined in all head and neck, tongue and limb muscles although no change in phosphorylation of p70S6k on T389 could be resolved. A systemic change that results in a loss of p70S6k protein expression may reduce the capacity to respond to acute hypertrophic stimuli, while the exaggerated p38 signaling in branchial arch muscles may reflect more active muscle remodeling. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Changes in growth-related kinases in head, neck and limb muscles with age

    PubMed Central

    Rahnert, Jill A.; Luo, Qingwei; Balog, Edward M.; Sokoloff, Alan J.; Burkholder, Thomas J.

    2010-01-01

    Sarcopenia coincides with declines in several systemic processes that signal through the MAP kinase and Akt-mTOR-p70S6k cascades typically associated with muscle growth. Effects of aging on these pathways have primarily been examined in limb muscles, which experience substantial activity and neural changes in addition to systemic hormonal and metabolic changes. Head and neck muscles are reported to undergo reduced sarcopenia and disuse with age relative to limb muscles, suggesting muscle activity may contribute to maintaining mass with age. However many head and neck muscles derive from embryonic branchial arches, rather than the somites from which limb muscles originate, suggesting that developmental origin may be important. This study compares the expression and phosphorylation of MAP kinase and mTOR networks in head, neck, tongue, and limb muscles from 8- and 26-month old F344 rats to test the hypothesis that physical activity and developmental origin contribute to preservation of muscle mass with age. Phosphorylation of p38 was exaggerated in aged branchial arch muscles. Phosphorylation of ERK and p70S6k T421/S424 declined with age only in the biceps brachii. Expression of p70S6k declined in all head and neck, tongue and limb muscles although no change in phosphorylation of p70S6k on T389 could be resolved. A systemic change that results in a loss of p70S6k protein expression may reduce the capacity to respond to acute hypertrophic stimuli, while the exaggerated p38 signaling in branchial arch muscles may reflect more active muscle remodeling. PMID:21095226

  6. Relations of age and personality dimensions to cognitive ability factors.

    PubMed

    Costa, P T; Fozard, J L; McCrae, R R; Bosśe, R

    1976-11-01

    The relation between three cognitive ability factors - Information Processing Ability (IPA), Manual Dexterity (MD), and Pattern Analysis Capability (PAC) - and three personality dimensions - Anxiety, Extraversion, and Openness to Experience - were examined in three age groups. Subjects were 969 male volunteers ranging in age from 25 to 82. Subjects high in anixety scored lower on all three cognitive factors; subjects open to experience scored higher on IPA and PAC; and introverted subjects scored higher on PAC. Most of these effects remained when the education and socio-economic status were held constant in covariance analyses. Older subjects performed less well than younger ones on MD and PAC, but not on IPA. While personality has some influence on cognitive performance, the declines with age in performance on some cognitive tasks are not mediated by personality.

  7. Carotid disease at age 73 and cognitive change from age 70 to 76 years: A longitudinal cohort study

    PubMed Central

    Allerhand, Michael; Eadie, Elizabeth; Thomas, Avril; Corley, Janey; Pattie, Alison; Taylor, Adele; Shenkin, Susan D; Cox, Simon; Gow, Alan; Starr, John M; Deary, Ian J

    2016-01-01

    Cognitive decline and carotid artery atheroma are common at older ages. In community-dwelling subjects, we assessed cognition at ages 70, 73 and 76 and carotid Doppler ultrasound at age 73, to determine whether carotid stenosis was related to cognitive decline. We used latent growth curve models to examine associations between four carotid measures (internal carotid artery stenosis, velocity, pulsatility and resistivity indices) and four cognitive ability domains (memory, visuospatial function, crystallised intelligence, processing speed) adjusted for cognitive ability at age 11, current age, gender and vascular risk factors. Amongst 866 participants, carotid stenosis (median 12.96%) was not associated with cognitive abilities at age 70 or cognitive decline from age 70 to 76. Increased ICA pulsatility and resistivity indices were associated with slower processing speed (both P < 0.001) and worse visuospatial function (P = 0.036, 0.031, respectively) at age 70, and declining crystallised intelligence from ages 70 to 76 (P = 0.008, 0.006, respectively). The findings suggest that vascular stiffening, rather than carotid luminal narrowing, adversely influences cognitive ageing and provides a potential target for ameliorating age-related cognitive decline. PMID:28155579

  8. Carotid disease at age 73 and cognitive change from age 70 to 76 years: A longitudinal cohort study.

    PubMed

    Wardlaw, Joanna M; Allerhand, Michael; Eadie, Elizabeth; Thomas, Avril; Corley, Janey; Pattie, Alison; Taylor, Adele; Shenkin, Susan D; Cox, Simon; Gow, Alan; Starr, John M; Deary, Ian J

    2017-08-01

    Cognitive decline and carotid artery atheroma are common at older ages. In community-dwelling subjects, we assessed cognition at ages 70, 73 and 76 and carotid Doppler ultrasound at age 73, to determine whether carotid stenosis was related to cognitive decline. We used latent growth curve models to examine associations between four carotid measures (internal carotid artery stenosis, velocity, pulsatility and resistivity indices) and four cognitive ability domains (memory, visuospatial function, crystallised intelligence, processing speed) adjusted for cognitive ability at age 11, current age, gender and vascular risk factors. Amongst 866 participants, carotid stenosis (median 12.96%) was not associated with cognitive abilities at age 70 or cognitive decline from age 70 to 76. Increased ICA pulsatility and resistivity indices were associated with slower processing speed (both P < 0.001) and worse visuospatial function ( P = 0.036, 0.031, respectively) at age 70, and declining crystallised intelligence from ages 70 to 76 ( P = 0.008, 0.006, respectively). The findings suggest that vascular stiffening, rather than carotid luminal narrowing, adversely influences cognitive ageing and provides a potential target for ameliorating age-related cognitive decline.

  9. Like cognitive function, decision making across the life span shows profound age-related changes.

    PubMed

    Tymula, Agnieszka; Rosenberg Belmaker, Lior A; Ruderman, Lital; Glimcher, Paul W; Levy, Ifat

    2013-10-15

    It has long been known that human cognitive function improves through young adulthood and then declines across the later life span. Here we examined how decision-making function changes across the life span by measuring risk and ambiguity attitudes in the gain and loss domains, as well as choice consistency, in an urban cohort ranging in age from 12 to 90 y. We identified several important age-related patterns in decision making under uncertainty: First, we found that healthy elders between the ages of 65 and 90 were strikingly inconsistent in their choices compared with younger subjects. Just as elders show profound declines in cognitive function, they also show profound declines in choice rationality compared with their younger peers. Second, we found that the widely documented phenomenon of ambiguity aversion is specific to the gain domain and does not occur in the loss domain, except for a slight effect in older adults. Finally, extending an earlier report by our group, we found that risk attitudes across the life span show an inverted U-shaped function; both elders and adolescents are more risk-averse than their midlife counterparts. Taken together, these characterizations of decision-making function across the life span in this urban cohort strengthen the conclusions of previous reports suggesting a profound impact of aging on cognitive function in this domain.

  10. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    PubMed Central

    2010-01-01

    Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family. PMID:20637089

  11. ARTs and the problematic conceptualisation of declining reproduction.

    PubMed

    Majumdar, Anindita

    2018-01-01

    The routinisation of assisted reproduction in India has led to its proliferation and the easy identification of infertility. However, clinical and popular discourse tends to focus primarily on age-related deficiencies in reproduction. Here, both the "dangers" of declining reproduction as well as the facilitation of delayed reproduction are areas of focus and eulogisation. Bringing together the diverse elements of the medico-social conversation, the aim of this commentary is to examine the ways in which the ARTs are used to make sense of declining reproduction.

  12. Neuroanatomical and Cognitive Mediators of Age-Related Differences in Episodic Memory

    PubMed Central

    Head, Denise; Rodrigue, Karen M.; Kennedy, Kristen M.; Raz, Naftali

    2009-01-01

    Aging is associated with declines in episodic memory. In this study, the authors used a path analysis framework to explore the mediating role of differences in brain structure, executive functions, and processing speed in age-related differences in episodic memory. Measures of regional brain volume (prefrontal gray and white matter, caudate, hippocampus, visual cortex), executive functions (working memory, inhibitory control, task switching, temporal processing), processing speed, and episodic memory were obtained in a sample of young and older adults. As expected, age was linked to reduction in regional brain volumes and cognitive performance. Moreover, neural and cognitive factors completely mediated age differences in episodic memory. Whereas hippocampal shrinkage directly affected episodic memory, prefrontal volumetric reductions influenced episodic memory via limitations in working memory and inhibitory control. Age-related slowing predicted reduced efficiency in temporal processing, working memory, and inhibitory control. Lastly, poorer temporal processing directly affected episodic memory. No direct effects of age on episodic memory remained once these factors were taken into account. These analyses highlight the value of a multivariate approach with the understanding of complex relationships in cognitive and brain aging. PMID:18590361

  13. Education and Cognitive Decline in Older Americans: Results From the AHEAD Sample

    PubMed Central

    Alley, Dawn; Suthers, Kristen; Crimmins, Eileen

    2009-01-01

    Although education is consistently related to better cognitive performance, findings on the relationship between education and age-associated cognitive change have been conflicting. Using measures of multiple cognitive domains from four waves of the Asset and Health Dynamics of the Oldest Old study, a representative sample of Americans aged 70 years and older, the authors performed growth curve modeling to examine the relationships between education, initial cognitive score, and the rate of decline in cognitive function. More years of education were linked to better initial performance on each of the cognitive tests, and higher levels of education were linked to slower decline in mental status. However, more education was unrelated to the rate of decline in working memory, and education was associated with somewhat faster cognitive decline on measures of verbal memory. These findings highlight the role of early-life experiences not only in long-term cognitive performance but also in old-age cognitive trajectories. PMID:19830260

  14. Decline in male circumcision in South Korea.

    PubMed

    Kim, DaiSik; Koo, Sung-Ae; Pang, Myung-Geol

    2012-12-11

    To investigate the changing circumcision rate in South Korea in the last decade and to propose underlying causes for this change, in the context of the present fluctuating world-wide trends in circumcision. From 2009 to 2011, 3,296 South Korean males (or their parents) aged 0-64 years were asked about their circumcision status, their age at circumcision, and their information level regarding circumcision. We employed non-probability sampling considering the sensitive questions on the study theme. Currently the age-standardized circumcision rate for South Korean males aged 14-29 is found to be 75.8%. In an earlier study performed in 2002, the rate for the same age group was 86.3%. Of particular interest, males aged 14-16 show a circumcision rate of 56.4%, while the same age group 10 years ago displayed a much higher percentage, at 88.4%. In addition, the extraordinarily high circumcision rate of 95.2% found 10 years ago for the 17-19 age group is now reduced to 74.4%. Interestingly, of the circumcised males, the percentage circumcised in the last decade was only 25.2%; i.e., the majority of the currently circumcised males had undergone the operation prior to 2002, indicating that the actual change in the last decade is far greater. Consistent with this conjecture, the 2002 survey showed that the majority of circumcised males (75.7%) had undergone the operation in the decade prior to that point. Focusing on the flagship age group of 14-16, this drop suggests that, considering the population structure of Korean males, approximately one million fewer circumcision operations have been performed in the last decade relative to the case of non-decline. This decline is strongly correlated with the information available through internet, newspapers, lectures, books, and television: within the circumcised population, both the patients and their parents had less prior knowledge regarding circumcision, other than information obtained from person to person by oral communication

  15. Everyday Technology Use Related to Activity Involvement Among People in Cognitive Decline.

    PubMed

    Hedman, Annicka; Nygård, Louise; Kottorp, Anders

    We investigated how everyday technology use related to activity involvement over 5 yr in people with mild cognitive impairment. Thirty-seven older adults with mild cognitive impairment were evaluated regarding everyday technology use and involvement in activities over time. Information on diagnostic changes was collected from medical files. Linear mixed-effects models were used in data analysis. Ability to use everyday technology showed a significant effect on activity involvement (p = .007) beyond the effects of time, diagnostic change, and age. Decreases in number of everyday technologies used (p < .001) and share of accessible and relevant everyday technologies used (p = .04) were associated with decreasing activity involvement. However, these two aspects did not reinforce each other. When monitoring activity involvement in clients with cognitive decline, health care professionals should take into account clients' ability to use everyday technologies and the amount of everyday technologies they use. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  16. Preservation of Cognitive Function by Lepidium meyenii (Maca) Is Associated with Improvement of Mitochondrial Activity and Upregulation of Autophagy-Related Proteins in Middle-Aged Mouse Cortex

    PubMed Central

    Guo, Shan-Shan; Gao, Xiao-Fang; Gu, Yan-Rong

    2016-01-01

    Maca has been used as a foodstuff and a traditional medicine in the Andean region for over 2,000 years. Recently the neuroprotective effects of maca also arouse interest of researchers. Decrease in mitochondrial function and decline in autophagy signaling may participate in the process of age-related cognitive decline. This study aimed to investigate if maca could improve cognitive function of middle-aged mice and if this effect was associated with improvement of mitochondrial activity and modulation of autophagy signaling in mouse cortex. Fourteen-month-old male ICR mice received maca powder administered by gavage for five weeks. Maca improved cognitive function, motor coordination, and endurance capacity in middle-aged mice, accompanied by increased mitochondrial respiratory function and upregulation of autophagy-related proteins in cortex. Our findings suggest that maca is a newly defined nutritional plant which can improve mitochondrial function and upregulate autophagy-related proteins and may be an effective functional food for slowing down age-related cognitive decline. PMID:27648102

  17. Preservation of Cognitive Function by Lepidium meyenii (Maca) Is Associated with Improvement of Mitochondrial Activity and Upregulation of Autophagy-Related Proteins in Middle-Aged Mouse Cortex.

    PubMed

    Guo, Shan-Shan; Gao, Xiao-Fang; Gu, Yan-Rong; Wan, Zhong-Xiao; Lu, A-Ming; Qin, Zheng-Hong; Luo, Li

    2016-01-01

    Maca has been used as a foodstuff and a traditional medicine in the Andean region for over 2,000 years. Recently the neuroprotective effects of maca also arouse interest of researchers. Decrease in mitochondrial function and decline in autophagy signaling may participate in the process of age-related cognitive decline. This study aimed to investigate if maca could improve cognitive function of middle-aged mice and if this effect was associated with improvement of mitochondrial activity and modulation of autophagy signaling in mouse cortex. Fourteen-month-old male ICR mice received maca powder administered by gavage for five weeks. Maca improved cognitive function, motor coordination, and endurance capacity in middle-aged mice, accompanied by increased mitochondrial respiratory function and upregulation of autophagy-related proteins in cortex. Our findings suggest that maca is a newly defined nutritional plant which can improve mitochondrial function and upregulate autophagy-related proteins and may be an effective functional food for slowing down age-related cognitive decline.

  18. Hematopoiesis and aging. V. A decline in hematocrit occurs in all aging female B6D2F1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, D.R.; Patrene, K.

    Longitudinal studies of hematocrits were done in aging B6D2F1 female mice at 54, 64, 91, 105 and 115 weeks of age. A modest decline in hematocrit was observed in 41/42 mice; we have previously shown that the decreased hematocrit of aged as compared to young mice is due to an expansion of plasma volume. Mice which died spontaneously after 91 weeks had lower hematocrits at 91 weeks and 105 weeks than did those which survived to 115 weeks. At each time interval, a sub-group of mice was killed and uptake of /sup 59/Fe into blood, foreleg, spleen and liver wasmore » studied and total nucleated cells per humerus was determined. The results were generally compatible with the thesis that aging mice maintain normal rates of erythropoiesis under basal conditions. Thus, it would appear that a decrease in hematocrit can be considered an expected part of the aging process in this mouse.« less

  19. Age- and sex-related characteristics of tonic GABA currents in the rat substantia nigra pars reticulata.

    PubMed

    Chudomel, O; Hasson, H; Bojar, M; Moshé, S L; Galanopoulou, A S

    2015-04-01

    Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age- and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved.

  20. IQ as moderator of terminal decline in perceptual and motor speed, spatial, and verbal ability: Testing the cognitive reserve hypothesis in a population-based sample followed from age 70 until death.

    PubMed

    Thorvaldsson, Valgeir; Skoog, Ingmar; Johansson, Boo

    2017-03-01

    Terminal decline (TD) refers to acceleration in within-person cognitive decline prior to death. The cognitive reserve hypothesis postulates that individuals with higher IQ are able to better tolerate age-related increase in brain pathologies. On average, they will exhibit a later onset of TD, but once they start to decline, their trajectory is steeper relative to those with lower IQ. We tested these predictions using data from initially nondemented individuals (n = 179) in the H70-study repeatedly measured at ages 70, 75, 79, 81, 85, 88, 90, 92, 95, 97, 99, and 100, or until death, on cognitive tests of perceptual-and-motor-speed and spatial and verbal ability. We quantified IQ using the Raven's Coloured Progressive Matrices (RCPM) test administrated at age 70. We fitted random change point TD models to the data, within a Bayesian framework, conditioned on IQ, age of death, education, and sex. In line with predictions, we found that 1 additional standard deviation on the IQ scale was associated with a delay in onset of TD by 1.87 (95% highest density interval [HDI; 0.20, 4.08]) years on speed, 1.96 (95% HDI [0.15, 3.54]) years on verbal ability, but only 0.88 (95% HDI [-0.93, 3.49]) year on spatial ability. Higher IQ was associated with steeper rate of decline within the TD phase on measures of speed and verbal ability, whereas results on spatial ability were nonconclusive. Our findings provide partial support for the cognitive reserve hypothesis and demonstrate that IQ can be a significant moderator of cognitive change trajectories in old age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Gender difference and age-related changes in performance at the long-distance duathlon.

    PubMed

    Rüst, Christoph A; Knechtle, Beat; Knechtle, Patrizia; Pfeifer, Susanne; Rosemann, Thomas; Lepers, Romuald; Senn, Oliver

    2013-02-01

    The differences in gender- and the age-related changes in triathlon (i.e., swimming, cycling, and running) performances have been previously investigated, but data are missing for duathlon (i.e., running, cycling, and running). We investigated the participation and performance trends and the gender difference and the age-related decline in performance, at the "Powerman Zofingen" long-distance duathlon (10-km run, 150-km cycle, and 30-km run) from 2002 to 2011. During this period, there were 2,236 finishers (272 women and 1,964 men, respectively). Linear regression analyses for the 3 split times, and the total event time, demonstrated that running and cycling times were fairly stable during the last decade for both male and female elite duathletes. The top 10 overall gender differences in times were 16 ± 2, 17 ± 3, 15 ± 3, and 16 ± 5%, for the 10-km run, 150-km cycle, 30-km run and the overall race time, respectively. There was a significant (p < 0.001) age effect for each discipline and for the total race time. The fastest overall race times were achieved between the 25- and 39-year-olds. Female gender and increasing age were associated with increased performance times when additionally controlled for environmental temperatures and race year. There was only a marginal time period effect ranging between 1.3% (first run) and 9.8% (bike split) with 3.3% for overall race time. In accordance with previous observations in triathlons, the age-related decline in the duathlon performance was more pronounced in running than in cycling. Athletes and coaches can use these findings to plan the career in long-distance duathletes with the age of peak performance between 25 and 39 years for both women and men.

  2. Perturbations in growth trajectory due to early diet affect age-related deterioration in performance.

    PubMed

    Lee, Who-Seung; Monaghan, Pat; Metcalfe, Neil B

    2016-04-01

    Fluctuations in early developmental conditions can cause changes in growth trajectories that subsequently affect the adult phenotype. Here, we investigated whether compensatory growth has long-term consequences for patterns of senescence.Using three-spined sticklebacks ( Gasterosteus aculeatus ), we show that a brief period of dietary manipulation in early life affected skeletal growth rate not only during the manipulation itself, but also during a subsequent compensatory phase when fish caught up in size with controls.However, this growth acceleration influenced swimming endurance and its decline over the course of the breeding season, with a faster decline in fish that had undergone faster growth compensation.Similarly, accelerated growth led to a more pronounced reduction in the breeding period (as indicated by the duration of sexual ornamentation) over the following two breeding seasons, suggesting faster reproductive senescence. Parallel experiments showed a heightened effect of accelerated growth on these age-related declines in performance if the fish were under greater time stress to complete their compensation prior to the breeding season.Compensatory growth led to a reduction in median life span of 12% compared to steadily growing controls. While life span was independent of the eventual adult size attained, it was negatively correlated with the age-related decline in swimming endurance and sexual ornamentation.These results, complementary to those found when growth trajectories were altered by temperature rather than dietary manipulations, show that the costs of accelerated growth can last well beyond the time over which growth rates differ and are affected by the time available until an approaching life-history event such as reproduction.

  3. Ascorbic Acid and the Brain: Rationale for the Use against Cognitive Decline

    PubMed Central

    Harrison, Fiona E.; Bowman, Gene L.; Polidori, Maria Cristina

    2014-01-01

    This review is focused upon the role of ascorbic acid (AA, vitamin C) in the promotion of healthy brain aging. Particular attention is attributed to the biochemistry and neuronal metabolism interface, transport across tissues, animal models that are useful for this area of research, and the human studies that implicate AA in the continuum between normal cognitive aging and age-related cognitive decline up to Alzheimer’s disease. Vascular risk factors and comorbidity relationships with cognitive decline and AA are discussed to facilitate strategies for advancing AA research in the area of brain health and neurodegeneration. PMID:24763117

  4. Cognitive Decline in Patients with Chronic Hydrocephalus and Normal Aging: ‘Growing into Deficits’

    PubMed Central

    de Beer, Marlijn H.; Scheltens, Philip

    2016-01-01

    Background/Aim To explore the theory of ‘growing into deficits’, a concept known from developmental neurology, in a series of cases with chronic hydrocephalus (CH). Methods Patients were selected from the Amsterdam Dementia Cohort and underwent extensive dementia screening. Results Twelve patients with CH were selected, in whom Alzheimer's disease was considered unlikely, based on biomarker information and follow-up. Mean Mini-Mental State Examination score was 24 (range 7-30). Most patients were functioning on a level of mild dementia [Clinical Dementia Rating score of 0.5 in 8/11 (66.7%) patients]. On neuropsychological examination, memory and executive functions, as well as processing speed were most frequently impaired. Conclusion In our opinion, the theory of ‘growing into deficits’ shows a parallel with the clinical course of CH and normal aging when Alzheimer's disease was considered very unlikely, because most of these patients were functioning well for a very large part of their lives. The altered cerebrospinal fluid dynamics might make the brain more vulnerable to aging-related changes, leading to a faster cognitive decline in CH patients compared to healthy subjects, especially in case of concomitant brain damage such as traumatic brain injury or meningitis. PMID:27920793

  5. Causes, effects and connectivity changes in MS-related cognitive decline.

    PubMed

    Rimkus, Carolina de Medeiros; Steenwijk, Martijn D; Barkhof, Frederik

    2016-01-01

    Cognitive decline is a frequent but undervalued aspect of multiple sclerosis (MS). Currently, it remains unclear what the strongest determinants of cognitive dysfunction are, with grey matter damage most directly related to cognitive impairment. Multi-parametric studies seem to indicate that individual factors of MS-pathology are highly interdependent causes of grey matter atrophy and permanent brain damage. They are associated with intermediate functional effects (e.g. in functional MRI) representing a balance between disconnection and (mal) adaptive connectivity changes. Therefore, a more comprehensive MRI approach is warranted, aiming to link structural changes with functional brain organization. To better understand the disconnection syndromes and cognitive decline in MS, this paper reviews the associations between MRI metrics and cognitive performance, by discussing the interactions between multiple facets of MS pathology as determinants of brain damage and how they affect network efficiency.

  6. Height-related growth declines in ponderosa pine are not due to carbon limitation.

    PubMed

    Sala, Anna; Hoch, Günter

    2009-01-01

    Decreased gas exchange as trees grow tall has been proposed to explain age-related growth declines in trees. We examined changes of mobile carbon stores (starch, sugars and lipids) with tree height in ponderosa pine (Pinus ponderosa) at two sites differing in water availability, and tested the following hypotheses: (1) carbon supply does not become increasingly limited as trees grow tall; rather, the concentration of mobile carbon compounds increases with tree height reflecting greater reductions of carbon sink activities relative to carbon assimilation; and (2) increases of stored mobile carbon compounds with tree height are greater in drier sites. Height-related growth reductions were associated with significant increases of non-structural carbohydrates (NSC) and lipid concentrations in all tissues in the upper canopy and of NSC in the bole. Lipid concentrations in the bole decreased with tree height, but such decrease is not necessarily inconsistent with non-limiting carbon supply in tall trees. Furthermore, we found stronger increases of mobile carbon stores with tree height at the dry site relative to the moist site. Our results provide first direct evidence that carbon supply does not limit growth in tall trees and that decreases of water availability might negatively impact growth processes more than net-photosynthesis.

  7. Auditory white noise reduces age-related fluctuations in balance.

    PubMed

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans

    PubMed Central

    Leinwand, Sarah G; Yang, Claire J; Bazopoulou, Daphne; Chronis, Nikos; Srinivasan, Jagan; Chalasani, Sreekanth H

    2015-01-01

    Chemosensory neurons extract information about chemical cues from the environment. How is the activity in these sensory neurons transformed into behavior? Using Caenorhabditis elegans, we map a novel sensory neuron circuit motif that encodes odor concentration. Primary neurons, AWCON and AWA, directly detect the food odor benzaldehyde (BZ) and release insulin-like peptides and acetylcholine, respectively, which are required for odor-evoked responses in secondary neurons, ASEL and AWB. Consistently, both primary and secondary neurons are required for BZ attraction. Unexpectedly, this combinatorial code is altered in aged animals: odor-evoked activity in secondary, but not primary, olfactory neurons is reduced. Moreover, experimental manipulations increasing neurotransmission from primary neurons rescues aging-associated neuronal deficits. Finally, we correlate the odor responsiveness of aged animals with their lifespan. Together, these results show how odors are encoded by primary and secondary neurons and suggest reduced neurotransmission as a novel mechanism driving aging-associated sensory neural activity and behavioral declines. DOI: http://dx.doi.org/10.7554/eLife.10181.001 PMID:26394000

  9. Longitudinal attentional engagement rescues mice from age-related cognitive declines and cognitive inflexibility

    PubMed Central

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm maze task that required the mice to remember and operate on two sets of overlapping guidance (spatial) cues. As previously reported, this training resulted in an immediate (at 4 mo of age) improvement in the animals' aggregate performance across a battery of five learning tasks. Subsequently, these animals received an additional 3 d of working memory training at 3-wk intervals for 15 mo (totaling 66 training sessions), and at 18 mo of age were assessed on a selective attention task, a second set of learning tasks, and variations of those tasks that required the animals to modify the previously learned response. Both attentional and learning abilities (on passive avoidance, active avoidance, and reinforced alternation tasks) were impaired in aged animals that had not received working memory training. Likewise, these aged animals exhibited consistent deficits when required to modify a previously instantiated learned response (in reinforced alternation, active avoidance, and spatial water maze). In contrast, these attentional, learning, and perseverative deficits were attenuated in aged animals that had undergone lifelong working memory exercise. These results suggest that general impairments of learning, attention, and cognitive flexibility may be mitigated by a cognitive exercise regimen that requires chronic attentional engagement. PMID:21521768

  10. Longitudinal attentional engagement rescues mice from age-related cognitive declines and cognitive inflexibility.

    PubMed

    Matzel, Louis D; Light, Kenneth R; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm maze task that required the mice to remember and operate on two sets of overlapping guidance (spatial) cues. As previously reported, this training resulted in an immediate (at 4 mo of age) improvement in the animals' aggregate performance across a battery of five learning tasks. Subsequently, these animals received an additional 3 d of working memory training at 3-wk intervals for 15 mo (totaling 66 training sessions), and at 18 mo of age were assessed on a selective attention task, a second set of learning tasks, and variations of those tasks that required the animals to modify the previously learned response. Both attentional and learning abilities (on passive avoidance, active avoidance, and reinforced alternation tasks) were impaired in aged animals that had not received working memory training. Likewise, these aged animals exhibited consistent deficits when required to modify a previously instantiated learned response (in reinforced alternation, active avoidance, and spatial water maze). In contrast, these attentional, learning, and perseverative deficits were attenuated in aged animals that had undergone lifelong working memory exercise. These results suggest that general impairments of learning, attention, and cognitive flexibility may be mitigated by a cognitive exercise regimen that requires chronic attentional engagement.

  11. Ageing-related stereotypes in memory: When the beliefs come true.

    PubMed

    Bouazzaoui, Badiâa; Follenfant, Alice; Ric, François; Fay, Séverine; Croizet, Jean-Claude; Atzeni, Thierry; Taconnat, Laurence

    2016-01-01

    Age-related stereotype concerns culturally shared beliefs about the inevitable decline of memory with age. In this study, stereotype priming and stereotype threat manipulations were used to explore the impact of age-related stereotype on metamemory beliefs and episodic memory performance. Ninety-two older participants who reported the same perceived memory functioning were divided into two groups: a threatened group and a non-threatened group (control). First, the threatened group was primed with an ageing stereotype questionnaire. Then, both groups were administered memory complaints and memory self-efficacy questionnaires to measure metamemory beliefs. Finally, both groups were administered the Logical Memory task to measure episodic memory, for the threatened group the instructions were manipulated to enhance the stereotype threat. Results indicated that the threatened individuals reported more memory complaints and less memory efficacy, and had lower scores than the control group on the logical memory task. A multiple mediation analysis revealed that the stereotype threat effect on the episodic memory performance was mediated by both memory complaints and memory self-efficacy. This study revealed that stereotype threat impacts belief in one's own memory functioning, which in turn impairs episodic memory performance.

  12. Shared and Unique Genetic and Environmental Influences on Aging-Related Changes in Multiple Cognitive Abilities

    ERIC Educational Resources Information Center

    Tucker-Drob, Elliot M.; Reynolds, Chandra A.; Finkel, Deborah; Pedersen, Nancy L.

    2014-01-01

    Aging-related declines occur in many different domains of cognitive function during middle and late adulthood. However, whether a global dimension underlies individual differences in changes in different domains of cognition and whether global genetic influences on cognitive changes exist is less clear. We addressed these issues by applying…

  13. Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety

    PubMed Central

    Clewett, David; Bachman, Shelby; Mather, Mara

    2014-01-01

    Objective A current neuroanatomical model of anxiety posits that greater structural connectivity between the amygdala and ventral prefrontal cortex (vPFC) facilitates regulatory control over the amygdala and helps reduce anxiety. However, some neuroimaging studies have reported contradictory findings, demonstrating a positive rather than negative association between trait anxiety and amygdala-vPFC white matter integrity. To help reconcile these findings, we tested the regulatory hypothesis of anxiety circuitry using aging as a model of white matter decline in the amygdala-vPFC pathway. Methods We used probabilistic tractography to trace connections between the amygdala and vPFC in 21 younger, 18 middle-aged, and 15 healthy older adults. The resulting tract estimates were used to extract three indices of white-matter integrity: fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD). The relationship between these amygdala-vPFC structural connectivity measures and age and State-Trait Anxiety Inventory (STAI) scores were assessed. Results The tractography results revealed age-related decline in the FA (p = .005) and radial diffusivity (p = .002) of the amygdala-vPFC pathway. Contrary to the regulatory hypothesis, we found a positive rather than negative association between trait anxiety and right amygdala-vPFC FA (p = .01). Conclusion These findings argue against the notion that greater amygdala-vPFC structural integrity facilitates better anxiety outcomes in healthy adults. Instead, our results suggest that white matter degeneration in this network relates to lower anxiety in older adults. PMID:24635708

  14. Age-related changes in selective attention and perceptual load during visual search.

    PubMed

    Madden, David J; Langley, Linda K

    2003-03-01

    Three visual search experiments were conducted to test the hypothesis that age differences in selective attention vary as a function of perceptual load (E. A. Maylor & N. Lavie, 1998). Under resource-limited conditions (Experiments 1 and 2), the distraction from irrelevant display items generally decreased as display size (perceptual load) increased. This perceptual load effect was similar for younger and older adults, contrary to the findings of Maylor and Lavie. Distraction at low perceptual loads appeared to reflect both general and specific inhibitory mechanisms. Under more data-limited conditions (Experiment 3), an age-related decline in selective attention was evident, but the age difference was not attributable to capacity limitations as predicted by the perceptual load theory.

  15. Reversal of age-related learning deficiency by the vertebrate PACAP and IGF-1 in a novel invertebrate model of aging: the pond snail (Lymnaea stagnalis).

    PubMed

    Pirger, Zsolt; Naskar, Souvik; László, Zita; Kemenes, György; Reglődi, Dóra; Kemenes, Ildikó

    2014-11-01

    With the increase of life span, nonpathological age-related memory decline is affecting an increasing number of people. However, there is evidence that age-associated memory impairment only suspends, rather than irreversibly extinguishes, the intrinsic capacity of the aging nervous system for plasticity (1). Here, using a molluscan model system, we show that the age-related decline in memory performance can be reversed by administration of the pituitary adenylate cyclase activating polypeptide (PACAP). Our earlier findings showed that a homolog of the vertebrate PACAP38 and its receptors exist in the pond snail (Lymnaea stagnalis) brain (2), and it is both necessary and instructive for memory formation after reward conditioning in young animals (3). Here we show that exogenous PACAP38 boosts memory formation in aged Lymnaea, where endogenous PACAP38 levels are low in the brain. Treatment with insulin-like growth factor-1, which in vertebrates was shown to transactivate PACAP type I (PAC1) receptors (4) also boosts memory formation in aged pond snails. Due to the evolutionarily conserved nature of these polypeptides and their established role in memory and synaptic plasticity, there is a very high probability that they could also act as "memory rejuvenating" agents in humans. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.

  16. Feasibility and validity of mobile cognitive testing in the investigation of age-related cognitive decline.

    PubMed

    Schweitzer, Pierre; Husky, Mathilde; Allard, Michèle; Amieva, Hélène; Pérès, Karine; Foubert-Samier, Alexandra; Dartigues, Jean-François; Swendsen, Joel

    2017-09-01

    Mobile cognitive testing may be used to help characterize subtle deficits at the earliest stages of cognitive decline. Despite growing interest in this approach, comprehensive information concerning its feasibility and validity has been lacking in elderly samples. Over a one-week period, this study applied mobile cognitive tests of semantic memory, episodic memory and executive functioning in a cohort of 114 elderly non-demented community residents. While the study acceptance rate was moderate (66%), the majority of recruited individuals met minimal compliance thresholds and responded to an average of 82% of the repeated daily assessments. Missing data did not increase over the course of the study, but practice effects were observed for several test scores. However, even when controlling for practice effects, traditional neuropsychological tests were significantly associated with mobile cognitive test scores. In particular, the Isaacs Set Test was associated with mobile assessments of semantic memory (γ = 0.084, t = 5.598, p < 0.001), the Grober and Buschke with mobile assessments of episodic memory (γ = 0.069, t = 3.156, p < 0.01, and the Weschler symbol coding with mobile assessments of executive functioning (γ = 0.168, t = 4.562, p < 0.001). Mobile cognitive testing in the elderly may provide complementary and potentially more sensitive data relative to traditional neuropsychological assessment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Masking Period Patterns & Forward Masking for Speech-Shaped Noise: Age-related effects

    PubMed Central

    Grose, John H.; Menezes, Denise C.; Porter, Heather L.; Griz, Silvana

    2015-01-01

    Objective The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to non-simultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Design Participants included younger (n = 11), middle-aged (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions, and assessed how well the temporal window fits accounted for these data. Results The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. Conclusions This study demonstrated an age-related increase in susceptibility to non-simultaneous masking, supporting the hypothesis that exacerbated non-simultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data suggesting an association between susceptibility to forward masking and speech understanding in modulated noise. PMID:26230495

  18. Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies

    PubMed Central

    Arvanitakis, Z.; Yu, L.; Boyle, P. A.; Leurgans, S. E.; Bennett, D. A.

    2012-01-01

    Lewy bodies are common in the ageing brain and often co-occur with Alzheimer’s disease pathology. There is little known regarding the independent role of Lewy body pathology in cognition impairment, decline and fluctuations in community-dwelling older persons. We examined the contribution of Lewy body pathology to dementia, global cognition, cognitive domains, cognitive decline and fluctuations in 872 autopsied subjects (mean age = 87.9 years) from the Rush Religious Order Study (n = 491) and Memory and Aging Project (n = 381) longitudinal community-based clinical–pathological studies. Dementia was based on a clinical evaluation; annual cognitive performance tests were used to create a measure of global cognition and five cognitive domains. Lewy body type was determined by using α-synuclein immunostained sections of substantia nigra, limbic and neocortical regions. Statistical models included multiple regression models for dementia and cognition and mixed effects models for decline. Cognitive fluctuations were estimated by comparing standard deviations of individual residuals from mean trajectories of decline in those with and without Lewy bodies. All models controlled for age, sex, education, Alzheimer’s disease pathology and infarcts. One hundred and fifty-seven subjects (18%) exhibited Lewy body pathology (76 neocortical-type, 54 limbic-type and 27 nigra-predominant). One hundred and three (66%) subjects with Lewy body pathology had a pathologic diagnosis of Alzheimer’s disease. Neocortical-type, but not nigral-predominant or limbic-type Lewy body pathology was related to an increased odds of dementia (odds ratio = 3.21; 95% confidence interval = 1.78–5.81) and lower cognition (P < 0.001) including episodic memory function (P < 0.001) proximate to death. Neocortical-type Lewy body pathology was also related to a faster decline in global cognition (P < 0.001), decline in all five specific cognitive domains (all P-values < 0.001), and to fluctuations in

  19. [Decline in renal function in old age : Part of physiological aging versus age-related disease].

    PubMed

    Braun, F; Brinkkötter, P T

    2016-08-01

    The incidence and prevalence of chronic renal disease (CKD) in elderly patients are continuously increasing worldwide. Loss of renal function is not only considered to be part of the aging process itself but also reflects the multimorbidity of many geriatric patients. Calculating the glomerular filtration rate using specific algorithms validated for the elderly population and measuring the amount of proteinuria allow an estimation of renal function in elderly patients with high accuracy. Chronic renal failure has many clinical consequences and not only results in a delayed excretion of toxins cleared by the kidneys but also affects hematogenesis, water and electrolyte balance as well as mineral bone metabolism. Furthermore, CKD directly leads to and aggravates geriatric syndromes and in particular the onset of frailty. Therapeutic strategies to halt progression of CKD not only comprise treatment of the underlying disease but also efficient blood pressure and diabetic control and the avoidance of nephrotoxic medications.

  20. Age-related increase of resting metabolic rate in the human brain

    PubMed Central

    Peng, Shin-Lei; Dumas, Julie A.; Park, Denise C.; Liu, Peiying; Filbey, Francesca M.; McAdams, Carrie J.; Pinkham, Amy E.; Adinoff, Bryon; Zhang, Rong; Lu, Hanzhang

    2014-01-01

    With age, many aspects of the brain structure undergo a pronounced decline, yet individuals generally function well until advanced old age. There appear to be several compensatory mechanisms in brain aging, but their precise nature is not well characterized. Here we provide evidence that the brain of older adults expends more energy when compared to younger adults, as manifested by an age-related increase (P=0.03) in cerebral metabolic rate of oxygen (CMRO2) (N=118, men=56, ages 18 to 74). We further showed that, before the mean menopausal age of 51 years old, female and male groups have similar rates of CMRO2 increase (P=0.015) and there was no interaction between age and sex effects (P=0.85). However, when using data from the entire age range, women have a slower rate of CMRO2 change when compared to men (P<0.001 for age × sex interaction term). Thus, menopause and estrogen level may have played a role in this sex difference. Our data also revealed a possible circadian rhythm of CMRO2 in that brain metabolic rate is greater at noon than in the morning (P=0.02). This study reveals a potential neurobiological mechanism for age-related compensation in brain function and also suggests a sex-difference in its temporal pattern. PMID:24814209

  1. Terminal decline and practice effects in older adults without dementia: the MoVIES project.

    PubMed

    Dodge, Hiroko H; Wang, Chia-Ning; Chang, Chung-Chou H; Ganguli, Mary

    2011-08-23

    To track cognitive change over time in dementia-free older adults and to examine terminal cognitive decline. A total of 1,230 subjects who remained free from dementia over 14 years of follow-up were included in a population-based epidemiologic cohort study. First, we compared survivors and decedents on their trajectories of 5 cognitive functions (learning, memory, language, psychomotor speed, executive functions), dissociating practice effects which can mask clinically significant decline from age-associated cognitive decline. We used longitudinal mixed-effects models with penalized linear spline. Second, limiting the sample to 613 subjects who died during follow-up, we identified the inflection points at which the rate of cognitive decline accelerated, in relation to time of death, controlling for practice effects. We used mixed-effects model with a change point. Age-associated cognitive trajectories were similar between decedents and survivors without dementia. However, substantial differences were observed between the trajectories of practice effects of survivors and decedents, resembling those usually observed between normal and mildly cognitively impaired elderly. Executive and language functions showed the earliest terminal declines, more than 9 years prior to death, independent of practice effects. Terminal cognitive decline in older adults without dementia may reflect presymptomatic disease which does not cross the clinical threshold during life. Alternatively, cognitive decline attributed to normal aging may itself represent underlying neurodegenerative or vascular pathology. Although we cannot conclude definitively from this study, the separation of practice effects from age-associated decline could help identify preclinical dementia.

  2. Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life.

    PubMed

    Trombetti, A; Reid, K F; Hars, M; Herrmann, F R; Pasha, E; Phillips, E M; Fielding, R A

    2016-02-01

    This 3-year longitudinal study among older adults showed that declining muscle mass, strength, power, and physical performance are independent contributing factors to increased fear of falling, while declines of muscle mass and physical performance contribute to deterioration of quality of life. Our findings reinforce the importance of preserving muscle health with advancing age. The age-associated loss of skeletal muscle quantity and function are critical determinants of independent physical functioning in later life. Longitudinal studies investigating how decrements in muscle components of sarcopenia impact fear of falling (FoF) and quality of life (QoL) in older adults are lacking. Twenty-six healthy older subjects (age, 74.1 ± 3.7; Short Physical Performance Battery (SPPB) score ≥10) and 22 mobility-limited older subjects (age, 77.2 ± 4.4; SPPB score ≤9) underwent evaluations of lower extremity muscle size and composition by computed tomography, strength and power, and physical performance at baseline and after 3-year follow-up. The Falls Efficacy Scale (FES) and Short Form-36 questionnaire (SF-36) were also administered at both timepoints to assess FoF and QoL, respectively. At 3-year follow-up, muscle cross-sectional area (CSA) (p < 0.013) and power decreased (p < 0.001), while intermuscular fat infiltration increased (p < 0.001). These decrements were accompanied with a longer time to complete 400 m by 22 ± 46 s (p < 0.002). Using linear mixed-effects regression models, declines of muscle CSA, strength and power, and SPPB score were associated with increased FES score (p < 0.05 for each model). Reduced physical component summary score of SF-36 over follow-up was independently associated with decreased SPPB score (p < 0.020), muscle CSA (p < 0.046), and increased 400 m walk time (p < 0.003). In older adults with and without mobility limitations, declining muscle mass, strength, power, and physical

  3. Age-related changes in human vestibulo-ocular reflexes: Sinusoidal rotation and caloric tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.; Schoenhoff, M. B.

    1989-01-01

    The dynamic response properties of horizontal vestibulo-ocular reflex (VOR) were characterized in 216 human subjects ranging in age from 7 to 81 years. The object of this cross-sectional study was to determine the effects of aging on VOR dynamics, and to identify the distributions of parameters which describe VOR responses to caloric and to sinusoidal rotational stimuli in a putatively normal population. Caloric test parameters showed no consistent trend with age. Rotation test parameters showed declining response amplitude and slightly less compensatory response phase with increasing age. The magnitudes of these changes were not large relative to the variability within the population. The age-related trends in VOR were not consistent with the anatomic changes in the periphery reported by others which showed an increasing rate of peripheral hair cell and nerve fiber loss in subjects over 55 years. The poor correlation between physiological and anatomical data suggest that adaptive mechanisms in the central nervous system are important in maintaining the VOR.

  4. Bipolar patients with vascular risk display a steeper age-related negative slope in inhibitory performance but not processing speed: A preliminary study

    PubMed Central

    Dev, Sheena I.; Eyler, Lisa T.

    2017-01-01

    Objective Bipolar disorder (BD) is associated with cognitive deficits, yet little is known about associations between cognition, vascular risk (VR) and age in this population. This study investigated whether BD patients with VR demonstrate stronger apparent age-related decline in inhibitory performance and processing speed (PS). Methods A full medical history was obtained for 34 euthymic BD and 41 healthy comparison (HC) individuals. The Delis-Kaplan Executive Functions Color Word Interference Subtests was administered to all participants to assess for inhibitory performance (condition 3) and PS (condition 1 and 2). VR positive (VRPos) and VR negative (VRNeg) groups were created based on the presence of one or more VR factors. Results VRPos-BD participants demonstrated significantly worse inhibitory performance with older age, while age and inhibition were not significantly related in the VRPOS-HC group or in those who were VRNeg. The same was not true for PS. Conclusion BD patients with VR may also be at risk for greater decline in inhibitory performance, but not PS, with age. Longitudinal studies are needed to further investigate the contributions of VR to cognitive decline among older BD patients. PMID:28041763

  5. Masking Period Patterns and Forward Masking for Speech-Shaped Noise: Age-Related Effects.

    PubMed

    Grose, John H; Menezes, Denise C; Porter, Heather L; Griz, Silvana

    2016-01-01

    The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to nonsimultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Participants included younger (n = 11), middle-age (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions and assessed how well the temporal window fits accounted for these data. The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. This study demonstrated an age-related increase in susceptibility to nonsimultaneous masking, supporting the hypothesis that exacerbated nonsimultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data, suggesting an association between susceptibility to forward masking and speech understanding in modulated noise.

  6. Effects of Self-Paced Encoding and Practice on Age-Related Deficits in Binding Three Features

    ERIC Educational Resources Information Center

    Kinjo, Hikari

    2010-01-01

    Although much literature suggests that the age-related decline in episodic memory could be due to difficulties in binding features of information, previous studies focused mainly on memory of paired associations rather than memory of multiple bound features. In reality, however, there are many situations that require binding multiple features…

  7. Age-Related Changes in Visual Temporal Order Judgment Performance: Relation to Sensory and Cognitive Capacities

    PubMed Central

    Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry

    2010-01-01

    Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. PMID:20580644

  8. Age-related changes in visual temporal order judgment performance: Relation to sensory and cognitive capacities.

    PubMed

    Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry

    2010-08-06

    Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Calorie restriction (CR) and CR mimetics for the prevention and treatment of age-related eye disorders.

    PubMed

    Kawashima, Motoko; Ozawa, Yoko; Shinmura, Ken; Inaba, Takaaki; Nakamura, Shigeru; Kawakita, Tetsuya; Watanabe, Mitsuhiro; Tsubota, Kazuo

    2013-10-01

    The morbidity of ocular diseases, including macular degeneration, diabetic retinopathy, and dry eye disease, has been gradually increasing worldwide. Because these diseases develop from age-associated ocular dysfunctions, interventions against the aging process itself may be a promising strategy for their management. Among the several approaches to interrupt aging processes, calorie restriction (CR) has been shown to recover and/or slow age-related functional declines in various organs, including the eye. Here, we review interventions against the aging process as potential therapeutic approaches to age-related ocular diseases. The effects of CR and CR mimetics in animal models of age-related eye diseases are explored. Furthermore, we discuss the possibilities of expanding this research to prospective studies to elucidate the molecular mechanisms by which CR and/or CR mimetics preserve ocular functions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Insulin-like growth factor 2 rescues aging-related memory loss in rats.

    PubMed

    Steinmetz, Adam B; Johnson, Sarah A; Iannitelli, Dylan E; Pollonini, Gabriella; Alberini, Cristina M

    2016-08-01

    Aging is accompanied by declines in memory performance, and particularly affects memories that rely on hippocampal-cortical systems, such as episodic and explicit. With aged populations significantly increasing, the need for preventing or rescuing memory deficits is pressing. However, effective treatments are lacking. Here, we show that the level of the mature form of insulin-like growth factor 2 (IGF-2), a peptide regulated in the hippocampus by learning, required for memory consolidation and a promoter of memory enhancement in young adult rodents, is significantly reduced in hippocampal synapses of aged rats. By contrast, the hippocampal level of the immature form proIGF-2 is increased, suggesting an aging-related deficit in IGF-2 processing. In agreement, aged compared to young adult rats are deficient in the activity of proprotein convertase 2, an enzyme that likely mediates IGF-2 posttranslational processing. Hippocampal administration of the recombinant, mature form of IGF-2 rescues hippocampal-dependent memory deficits and working memory impairment in aged rats. Thus, IGF-2 may represent a novel therapeutic avenue for preventing or reversing aging-related cognitive impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Depressive Mood and Testosterone Related to Declarative Verbal Memory Decline in Middle-Aged Caregivers of Children with Eating Disorders.

    PubMed

    Romero-Martínez, Ángel; Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2016-03-04

    Caring for children diagnosed with a chronic psychological disorder such as an eating disorder (ED) can be used as a model of chronic stress. This kind of stress has been reported to have deleterious effects on caregivers' cognition, particularly in verbal declarative memory of women caregivers. Moreover, high depressive mood and variations in testosterone (T) levels moderate this cognitive decline. The purpose of this study was to characterize whether caregivers of individuals with EDs (n = 27) show declarative memory impairments compared to non-caregivers caregivers (n = 27), using for this purpose a standardized memory test (Rey's Auditory Verbal Learning Test). Its purpose was also to examine the role of depressive mood and T in memory decline. Results showed that ED caregivers presented high depressive mood, which was associated to worse verbal memory performance, especially in the case of women. In addition, all caregivers showed high T levels. Nonetheless, only in the case of women caregivers did T show a curvilinear relationship with verbal memory performance, meaning that the increases of T were associated to the improvement in verbal memory performance, but only up to a certain point, as after such point T continued to increase and memory performance decreased. Thus, chronic stress due to caregiving was associated to disturbances in mood and T levels, which in turn was associated to verbal memory decline. These findings should be taken into account in the implementation of intervention programs for helping ED caregivers cope with caregiving situations and to prevent the risk of a pronounced verbal memory decline.

  12. Age doesn’t matter: Memory complaints are related to negative affect throughout adulthood

    PubMed Central

    Rowell, Shaina F.; Green, Jennifer S.; Teachman, Bethany A.; Salthouse, Timothy A.

    2016-01-01

    Objectives Memory complaints are present in adults of all ages but are only weakly related to objective memory deficits, raising the question of what their presence may indicate. In older adults, memory complaints are moderately related to negative affect, but there is little research examining this relationship in young and middle-aged adults. This study examined whether memory complaints and negative affect were similarly related across the adult lifespan and in adults with varying levels of objective memory performance. Method The sample included 3,798 healthy adults aged 18 to 99, and was divided into five groups: young, middle-aged, young-old, old-old, and oldest-old adults. Participants completed questionnaire measures of memory complaints and negative affect (neuroticism and depressive and anxiety symptoms), in addition to lab measures of objective memory. Results Using structural equation models, we found that the relationship between memory complaints and negative affect was moderate in all the age groups, and there was no evidence for moderation by objective memory. Conclusion For adults of all ages, perceived memory decline may be distressing and/or negative affect may lead to negative self-evaluations of memory. PMID:26305735

  13. Aging-Related Systemic Manifestations in COPD Patients and Cigarette Smokers

    PubMed Central

    Boyer, Laurent; Marcos, Elisabeth; Margarit, Laurent; Le Corvoisier, Philippe; Vervoitte, Laetitia; Hamidou, Leila; Frih, Lamia; Audureau, Etienne; Covali-Noroc, Ala; Andujar, Pascal; Saakashvili, Zakaria; Lino, Anne; Ghaleh, Bijan; Hue, Sophie; Derumeaux, Geneviève; Housset, Bruno; Dubois-Randé, Jean-Luc; Boczkowski, Jorge; Maitre, Bernard; Adnot, Serge

    2015-01-01

    Rationale Chronic obstructive pulmonary disease (COPD) is often associated with age-related systemic abnormalities that adversely affect the prognosis. Whether these manifestations are linked to the lung alterations or are independent complications of smoking remains unclear. Objectives To look for aging-related systemic manifestations and telomere shortening in COPD patients and smokers with minor lung destruction responsible for a decline in the diffusing capacity for carbon monoxide (DLCO) corrected for alveolar volume (KCO). Methods Cross-sectional study in 301 individuals (100 with COPD, 100 smokers without COPD, and 101 nonsmokers without COPD). Measurements and Main Results Compared to control smokers, patients with COPD had higher aortic pulse-wave velocity (PWV), lower bone mineral density (BMD) and appendicular skeletal muscle mass index (ASMMI), and shorter telomere length (TL). Insulin resistance (HOMA-IR) and glomerular filtration rate (GFR) were similar between control smokers and COPD patients. Smokers did not differ from nonsmokers for any of these parameters. However, smokers with normal spirometry but low KCO had lower ASMMI values compared to those with normal KCO. Moreover, female smokers with low KCO, had lower BMD and shorter TL compared to those with normal KCO. Conclusions Aging-related abnormalities in patients with COPD are also found in smokers with minor lung dysfunction manifesting as a KCO decrease. Decreased KCO might be useful, particularly among women, for identifying smokers at high risk for aging-related systemic manifestations and telomere shortening. PMID:25785739

  14. Decline in cognitive function and risk of elder self-neglect: finding from the Chicago Health Aging Project.

    PubMed

    Dong, XinQi; Simon, Melissa A; Wilson, Robert S; Mendes de Leon, Carlos F; Rajan, K Bharat; Evans, Denis A

    2010-12-01

    To examine the longitudinal association between decline in cognitive function and risk of elder self-neglect in a community-dwelling population. Prospective population-based study. Geographically defined community in Chicago. Community-dwelling subjects reported to the social services agency from 1993 to 2005 for self-neglect who also participated in the Chicago Health Aging Project (CHAP). Of the 5,519 participants in CHAP, 1,017 were reported to social services agency for suspected elder self-neglect from 1993 to 2005. Social services agency identified reported elder self-neglect. The primary predictor was decline in cognitive function assessed using the Mini-Mental State Examination (MMSE), the Symbol Digit Modalities Test (Executive Function), and immediate and delayed recall of the East Boston Memory Test (Episodic Memory). An index of global cognitive function scores was derived by averaging z-scores of all tests. Outcome of interest was elder self-neglect. Logistic and linear regression models were used to assess these longitudinal associations. After adjusting for potential confounding factors, decline in global cognitive function, MMSE score, and episodic memory were not independently associated with greater risk of reported and confirmed elder self-neglect. Decline in executive function was associated with greater risk of reported and confirmed elder self-neglect. Decline in global cognitive function was associated with greater risk of greater self-neglect severity (parameter estimate=0.76, standard error=0.31, P=.01). Decline in executive function was associated with risk of reported and confirmed elder self-neglect. Decline in global cognitive function was associated with risk of greater self-neglect severity. © 2010, Copyright the Authors. Journal compilation © 2010, The American Geriatrics Society.

  15. Age-related quantitative and qualitative changes in decision making ability.

    PubMed

    Isella, Valeria; Mapelli, Cristina; Morielli, Nadia; Pelati, Oriana; Franceschi, Massimo; Appollonio, Ildebrando Marco

    2008-01-01

    The "frontal aging hypothesis" predicts that brain senescence affects predominantly the prefrontal regions. Preliminary evidence has recently been gathered in favour of an age-related change in a typically frontal process, i.e. decision making, using the Iowa Gambling Task (IGT), but overall findings have been conflicting. Following the traditional scoring method, coupled with a qualitative analysis, in the present study we compared IGT performance of 40 young (mean age: 27.9+/-4.7) and 40 old (mean age: 65.4+/-8.6) healthy adults and of 18 patients affected by frontal lobe dementia of mild severity (mean age: 65.1+/-7.4, mean MMSE score: 24.1+/-3.9). Quantitative findings support the notion that decision making ability declines with age; moreover, it approximates the impairment observed in executive dysfunction due to neurodegeneration. Results of the qualitative analysis did not reach statistical significance for the motivational and learning decision making components considered, but approached significance for the attentional component for elderly versus young normals, suggesting a possible decrease in the ability to maintain sustained attention during complex and prolonged tasks as the putative deficit underlying impaired decision making in normal aging.

  16. Age-Related Decline and Diagnostic Performance of More and Less Prevalent Clinical Cases

    ERIC Educational Resources Information Center

    St-Onge, Christina; Landry, Marjolaine; Xhignesse, Marianne; Voyer, Gilles; Tremblay-Lavoie, Stéphanie; Mamede, Sílvia; Schmidt, Henk; Rikers, Remy

    2016-01-01

    Since cognitive abilities have been shown to decrease with age, it is expected that older physicians would not perform as well as their younger counterparts on clinical cases unless their expertise can counteract the cognitive effects of aging. However, studies on the topic have shown contradictory results. This study aimed to further investigate…

  17. Age-related differences in tongue-palate pressures for strength and swallowing tasks.

    PubMed

    Fei, Tiffany; Polacco, Rebecca Cliffe; Hori, Sarah E; Molfenter, Sonja M; Peladeau-Pigeon, Melanie; Tsang, Clemence; Steele, Catriona M

    2013-12-01

    The tongue plays a key role in the generation of pressures for transporting liquids and foods through the mouth in swallowing. Recent studies suggest that there is an age-related decline in tongue strength in healthy adults. However, whether age-related changes occur in tongue pressures generated for the purpose of swallowing remains unclear. Prior literature in this regard does not clearly explore the influence of task on apparent age-related differences in tongue pressure amplitudes. Furthermore, differences attributable to variations across individuals in strength, independent of age, have not clearly been elucidated. In this study, our goal was to clarify whether older adults have reduced tongue-palate pressures during maximum isometric, saliva swallowing, and water swallowing tasks, while controlling for individual variations in strength. Data were collected from 40 healthy younger adults (under age 40) and 38 healthy mature adults (over age 60). As a group, the mature participants had significantly lower maximum isometric pressures (MIPs). Swallowing pressures differed significantly by task, with higher pressures seen in saliva swallows than in water swallows. Age-group differences were not seen in swallowing pressures. Consideration of MIP as a covariate in the analysis of swallowing pressures revealed significant correlations between strength and swallowing pressures in the older participant group. Age-group differences were evident only when strength was considered in the model, suggesting that apparent age-related differences are, in fact, explained by differences in strength, which tends to be lower in healthy older adults. Our results show no evidence of independent differences in swallowing pressures attributable to age.

  18. Longitudinal Attentional Engagement Rescues Mice from Age-Related Cognitive Declines and Cognitive Inflexibility

    ERIC Educational Resources Information Center

    Matzel, Louis D.; Light, Kenneth R.; Wass, Christopher; Colas-Zelin, Danielle; Denman-Brice, Alexander; Waddel, Adam C.; Kolata, Stefan

    2011-01-01

    Learning, attentional, and perseverative deficits are characteristic of cognitive aging. In this study, genetically diverse CD-1 mice underwent longitudinal training in a task asserted to tax working memory capacity and its dependence on selective attention. Beginning at 3 mo of age, animals were trained for 12 d to perform in a dual radial-arm…

  19. Spontaneous Age-Related Neurite Branching in C. elegans

    PubMed Central

    Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia

    2011-01-01

    The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377

  20. Experimental evaluation of work capacity as related to chronological and physiological aging.

    DOT National Transportation Integrated Search

    1963-09-01

    Research statistics has establish the fact that physical work capacity declines as a consequence of aging. The question has been raised, however, if this decline is the inevitable result of senescence or merely due to change in living habits. Great n...