Sample records for age spectra show

  1. Seasonal Variations of Stratospheric Age Spectra in GEOSCCM

    NASA Technical Reports Server (NTRS)

    Li, Feng; Waugh, Darryn; Douglass, Anne R.; Newman, Paul A.; Pawson, Steven; Stolarski, Richard S.; Strahan, Susan E.; Nielsen, J. Eric

    2011-01-01

    There are many pathways for an air parcel to travel from the troposphere to the stratosphere, each of which takes different time. The distribution of all the possible transient times, i.e. the stratospheric age spectrum, contains important information on transport characteristics. However, it is computationally very expensive to compute seasonally varying age spectra, and previous studies have focused mainly on the annual mean properties of the age spectra. To date our knowledge of the seasonality of the stratospheric age spectra is very limited. In this study we investigate the seasonal variations of the stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). We introduce a method to significantly reduce the computational cost for calculating seasonally dependent age spectra. Our simulations show that stratospheric age spectra in GEOSCCM have strong seasonal cycles and the seasonal cycles change with latitude and height. In the lower stratosphere extratropics, the average transit times and the most probable transit times in the winter/early spring spectra are more than twice as old as those in the summer/early fall spectra. But the seasonal cycle in the subtropical lower stratosphere is nearly out of phase with that in the extratropics. In the middle and upper stratosphere, significant seasonal variations occur in the sUbtropics. The spectral shapes also show dramatic seasonal change, especially at high latitudes. These seasonal variations reflect the seasonal evolution of the slow Brewer-Dobson circulation (with timescale of years) and the fast isentropic mixing (with timescale of days to months).

  2. A Comparison of the Age-Spectra from Data Assimilation Models

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, Anne R.; Zhu, Zheng-Xin; Pawson, Steven; Einaudi, Franco (Technical Monitor)

    2002-01-01

    We use kinematic and diabatic back trajectory calculations, driven by winds from a general circulation model (GCM) and two different data assimilation systems (DAS), to compute the age spectrum at three latitudes in the lower stratosphere. The age-spectra are compared to chemical transport model (CTM) calculations, and the mean ages from all of these studies are compared to observations. The age spectra computed using the GCM winds show a reasonably well-isolated tropics in good agreement with observations; however, the age spectra determined from the DAS differ from the GCM spectra. For the diabatic trajectory calculations, the age spectrum is too broad as a result of too much exchange between the tropics and mid-latitudes. The age spectrum determined using the kinematic trajectory calculation is less broad and lacks an age offset; both of these features are due to excessive vertical dispersion of parcels. The tropical and mid-latitude mean age difference between the diabatically and kinematically determined age-spectra is about one year, the former being older. The CTM calculation of the age spectrum using the DAS winds shows the same dispersive characteristics of the kinematic trajectory calculation. These results suggest that the current DAS products will not give realistic trace gas distributions for long integrations; they also help explain why the mean ages determined in a number of previous DAS driven CTM's are too young compared with observations. Finally, we note trajectory-generated age spectra show significant age anomalies correlated with the seasonal cycles, and these anomalies can be linked to year-to-year variations in the tropical heating rate. These anomalies are suppressed in the CTM spectra suggesting that the CTM transport is too diffusive.

  3. MR Spectra of Normal Adult Testes and Variations with Age: Preliminary Observations.

    PubMed

    Tsili, Athina C; Astrakas, Loukas G; Ntorkou, Alexandra; Giannakis, Dimitrios; Stavrou, Sotirios; Maliakas, Vasilios; Sofikitis, Nikolaos; Argyropoulou, Maria I

    2016-07-01

    The aim was to determine the proton MR (1H-MR) spectra of normal adult testes and variations with age. Forty-one MR spectra of normal testes, including 16 testes from men aged 20-39 years (group I) and 25 testes from men aged 40-69 years (group II), were analyzed. A single-voxel point-resolved spectroscopy sequence (PRESS), with TR/TE: 2000/25 ms was used. The volume of interest was placed to include the majority of normal testicular parenchyma. Association between normalized metabolite concentrations, defined as ratios of the calculated metabolite concentrations relative to creatine concentration, and age was assessed. Quantified metabolites of the spectra were choline (Cho), creatine (Cr), myo-inositol (mI), scyllo-inositol, taurine, lactate, GLx compound, glucose, lipids, and macromolecules resonating at 0.9 ppm (LM09), around 20 ppm (LM20), and at 13 ppm (LM13). Most prominent peaks were Cho, Cr, mI, and lipids. A weak negative correlation between mI and age (P = 0.015) was observed. Higher normalized concentrations of Cho (P = 0.03), mI (P = 0.08), and LM13 (P = 0.05) were found in group I than in group II. 1H-MR spectra of a normal adult testis showed several metabolite peaks. A decrease of levels of Cho, mI, and LM13 was observed with advancing age. • Single-voxel PRESS MRS of a normal testis is feasible. • 1H-MR spectra of a normal testis showed several metabolite peaks. • Most prominent peaks were Cho, Cr, mI, and lipids. • A decrease of Cho, mI, and LM13 was seen with advancing age.

  4. Fourier transform infrared reflectance spectra of latent fingerprints: a biometric gauge for the age of an individual.

    PubMed

    Hemmila, April; McGill, Jim; Ritter, David

    2008-03-01

    To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.

  5. Long-Term Changes in Stratospheric Age Spectra in the 21st Century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)

    NASA Technical Reports Server (NTRS)

    Li, Feng; Waugh, Darryn W.; Douglass, Anne R.; Newman, Paul A.; Strahan, Susan E.; Ma, Jun; Nielsen, J. Eric; Liang, Qing

    2012-01-01

    In this study we investigate the long-term variations in the stratospheric age spectra using simulations of the 21st century with the Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM). Our purposes are to characterize the long-term changes in the age spectra and identify processes that cause the decrease of the mean age in a warming climate. Changes in the age spectra in the 21st century simulations are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to the decrease of tail of the age spectra and the decrease of the old air masses. The weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the main age. Long-term changes in the stratospheric isentropic mixing are investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is outweighed by the increase of the residual circulation. The impacts of the long-term changes in the age spectra on long-lived chemical traces are also investigated. 37 2

  6. Reddening and age for 13 southern Galactic open clusters determined from integrated spectra

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Clariá, J. J.; Bica, E.; Dutra, C. M.; Torres, M. C.

    2001-10-01

    In this study we present flux-calibrated integrated spectra in the range 3800-6800 Å for 13 concentrated open clusters with Galactic longitudes between 219deg and 316deg, nine of which have not been previously studied. Using the equivalent widths of the Balmer lines and comparing the cluster spectra with template spectra of Magellanic Clouds and Galactic star clusters with known parameters, we derive both foreground interstellar reddening values and age. For nine clusters these two parameters have been determined for the first time, while for the rest of the sample the results show good agreement with previous studies. The present analysis indicates four very young (Hogg 11, NGC 5606, vdB-RN 80 and Pismis 17), seven moderately young (ESO 429-SC13, Hogg 3, Hogg 12, Haffner 7, BH 87, NGC 2368 and Bochum 12) and two intermediate-age (Berkeley 75 and NGC 2635) open clusters. The derived foreground interstellar reddening values are in the range 0.00 <= E(B-V) <= 0.38. The age and reddening distributions of the present sample of relatively faint open clusters match those of open clusters with known parameters in a 90deg sector centered at l = 270deg. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  7. Dual regression physiological modeling of resting-state EPI power spectra: Effects of healthy aging.

    PubMed

    Viessmann, Olivia; Möller, Harald E; Jezzard, Peter

    2018-02-02

    Aging and disease-related changes in the arteriovasculature have been linked to elevated levels of cardiac cycle-induced pulsatility in the cerebral microcirculation. Functional magnetic resonance imaging (fMRI), acquired fast enough to unalias the cardiac frequency contributions, can be used to study these physiological signals in the brain. Here, we propose an iterative dual regression analysis in the frequency domain to model single voxel power spectra of echo planar imaging (EPI) data using external recordings of the cardiac and respiratory cycles as input. We further show that a data-driven variant, without external physiological traces, produces comparable results. We use this framework to map and quantify cardiac and respiratory contributions in healthy aging. We found a significant increase in the spatial extent of cardiac modulated white matter voxels with age, whereas the overall strength of cardiac-related EPI power did not show an age effect. Copyright © 2018. Published by Elsevier Inc.

  8. Integrated J- and H-band spectra of globular clusters in the LMC: implications for stellar population models and galaxy age dating

    NASA Astrophysics Data System (ADS)

    Lyubenova, M.; Kuntschner, H.; Rejkuba, M.; Silva, D. R.; Kissler-Patig, M.; Tacconi-Garman, L. E.

    2012-07-01

    Context. The rest-frame near-IR spectra of intermediate age (1-2 Gyr) stellar populations are dominated by carbon based absorption features offering a wealth of information. Yet, spectral libraries that include the near-IR wavelength range do not sample a sufficiently broad range of ages and metallicities to allow for accurate calibration of stellar population models and thus the interpretation of the observations. Aims: In this paper we investigate the integrated J- and H-band spectra of six intermediate age and old globular clusters in the Large Magellanic Cloud (LMC). Methods: The observations for six clusters were obtained with the SINFONI integral field spectrograph at the ESO VLT Yepun telescope, covering the J (1.09-1.41 μm) and H-band (1.43-1.86 μm) spectral range. The spectral resolution is 6.7 Å in J and 6.6 Å in H-band (FWHM). The observations were made in natural seeing, covering the central 24″ × 24″ of each cluster and in addition sampling the brightest eight red giant branch and asymptotic giant branch (AGB) star candidates within the clusters' tidal radii. Targeted clusters cover the ages of ~1.3 Gyr (NGC 1806, NGC 2162), 2 Gyr (NGC 2173) and ~13 Gyr (NGC 1754, NGC 2005, NGC 2019). Results.H-band C2 and K-band 12CO (2-0) feature strengths for the LMC globular clusters are compared to the models of Maraston (2005). C2 is reasonably well reproduced by the models at all ages, while 12CO (2-0) shows good agreement for older (age ≥ 2 Gyr) populations, but the younger (1.3 Gyr) globular clusters do not follow the models. We argue that this is due to the fact that the empirical calibration of the models relies on only a few Milky Way carbon star spectra, which show different 12CO (2-0) index strengths than the LMC stars. The C2 absorption feature strength correlates strongly with age. It is present essentially only in populations that have 1-2 Gyr old stars, while its value is consistent with zero for older populations. The distinct spectral

  9. Interpretation of 40Ar/39Ar Age-spectra in Low-grade Polymetamorphic Rocks: The Importance of Petrologic constraints

    NASA Astrophysics Data System (ADS)

    Kunk, M. J.

    2007-12-01

    40Ar/39Ar age-spectra of white micas from low-grade polymetamorphic terranes can be difficult to interpret, because these low-grade rocks frequently have multiple generations of cleavage-forming white mica that grew at temperatures below their closure for diffusion of argon (~350°C). Under such conditions, each generation of cleavage-forming white mica will retain its original growth age. In addition, rocks from metamorphic terranes can also contain populations of detrital and diagenetic white micas which also have distinct ages associated with them. A final complication, frequently found in these low-grade polymetamorphic samples is the presence of inseparable, intergrown chlorite and the problems with associated 39Ar recoil during irradiation of the samples, prior to sample analysis. The shapes of 40Ar/39Ar age spectra of white micas separated from such samples are frequently complex and are quite variable in shape. Some age spectra show a steady increase in age with increase in the temperature of release, while others have sigmoidal or saddle-shaped patterns. The age of most of the steps in such age spectra are mixtures of the various age populations of white mica in the sample, and as such are geologically meaningless. Nonetheless, useful constraints on the ages of at least some events recorded in these complex low-grade polymetamorphic rocks can be discerned with the help of petrographic observations, and by placing the results in a spatial context to test for reproducibility and/or the occurrence of meaningful patterns. If no chlorite is present and the sample contains no detrital white mica, an estimate of the maximum age of the youngest component and the minimum age of the oldest cleavage forming white mica populations can frequently be discerned. If the sample contains detrital white mica, a minimum age for its cooling or crystallization can be estimated. The presence of a small amount of intimately intergrown chlorite masks the age of the youngest white

  10. Star clusters: age, metallicity and extinction from integrated spectra

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Cid Fernandes, Roberto

    2010-01-01

    Integrated optical spectra of star clusters in the Magellanic Clouds and a few Galactic globular clusters are fitted using high-resolution spectral models for single stellar populations. The goal is to estimate the age, metallicity and extinction of the clusters, and evaluate the degeneracies among these parameters. Several sets of evolutionary models that were computed with recent high-spectral-resolution stellar libraries (MILES, GRANADA, STELIB), are used as inputs to the starlight code to perform the fits. The comparison of the results derived from this method and previous estimates available in the literature allow us to evaluate the pros and cons of each set of models to determine star cluster properties. In addition, we quantify the uncertainties associated with the age, metallicity and extinction determinations resulting from variance in the ingredients for the analysis.

  11. Non-LTE Stellar Population Synthesis of Globular Clusters Using Synthetic Integrated Light Spectra. I. Constructing the IL Spectra

    NASA Astrophysics Data System (ADS)

    Young, Mitchell. E.; Short, C. Ian

    2017-02-01

    We present an investigation of the globular cluster population synthesis method of McWilliam & Bernstein, focusing on the impact of non-LTE (NLTE) modeling effects and color-magnitude diagram (CMD) discretization. Johnson-Cousins-Bessel U - B, B-V, V-I, and J-K colors are produced for 96 synthetic integrated light (IL) spectra with two different discretization prescriptions and three degrees of NLTE treatment. These color values are used to compare NLTE- and LTE-derived population ages. Relative contributions of different spectral types to the IL spectra for different wavebands are measured. IL NLTE spectra are shown to be more luminous in the UV and optical than LTE spectra, but show stronger absorption features in the IR. The main features showing discrepancies between NLTE and LTE IL spectra may be attributed to light metals, primarily Fe I, Ca I, and Ti I, as well as TiO molecular bands. Main-sequence stars are shown to have negligible NLTE effects at IR wavelengths compared to more evolved stars. Photometric color values are shown to vary at the millimagnitude level as a function of CMD discretization. Finer CMD sampling for the upper main sequence and turnoff, base of the red giant branch, and the horizontal branch minimizes this variation. Differences in ages derived from LTE and NLTE IL spectra are found to range from 0.55 to 2.54 Gyr, comparable to the uncertainty in GC ages derived from color indices with observational uncertainties of 0.01 mag, the limiting precision of the Harris catalog.

  12. Age-related changes in long-term average spectra of children's voices.

    PubMed

    Sergeant, Desmond; Welch, Graham Frederick

    2008-11-01

    This paper forms part of a larger study into the nature of singing development in children. The focus here is on an investigation of age-related changes in long-term average spectra (LTAS). Three hundred and twenty children in age groups 4-11 years learned a song. Each child was then digitally recorded singing alone. LTAS curves were calculated from the recordings of each voice and perceived age was estimated by a panel of independent judges. Progressive statistically significant changes were observed in the LTAS as a function of increasing age of the children. These took the form of increases in spectral energy in all frequencies below 5.75 kHz, with concomitant reductions of energy in frequency regions above this point. Increases with age were also found in overall intensity levels of the vocal products. Four experienced listeners audited the voice samples and made estimates of the children's ages. The level of accuracy of age-estimates was remarkably high for children in the youngest age groups, but was reduced with voice samples from older children. Maturation and developing competence of the vocal system, both in growth of lung capacity and at a laryngeal level, are implicated in the generation of age-related spectral changes. Perceived child singer age appears to be less closely related to spectral characteristics (as defined within LTAS) with increasing age of children.

  13. Argon-40/Argon-39 Age Spectra of Apollo 17 Highlands Breccia Samples by Laser Step Heating and the Age of the Serenitatis Basin

    NASA Technical Reports Server (NTRS)

    Dalrymple, G. Brent; Ryder, Graham

    1996-01-01

    We have obtained high-resolution (21-63 steps) Ar-40/Ar-39 age spectra using a continuous laser system on 19 submilligram samples of melt rocks and clasts from Apollo 17 samples collected from the pre-Imbrian highlands in the easternmost part of the Serenitatis basin. The samples include poikilitic melt rocks inferred to have been formed in the Serenitatis basin-forming impact, aphanitic melt rock whose compositions vary and whose provenance is uncertain, and granulite, gabbro, and melt clasts. Three of the poikilitic melts have similar age spectrum plateau ages (72395,96, 3893 +/- 16 Ma (2sigma); 72535,7, 3887 +/- 16 Ma; 76315,150, 3900 +/- 16 Ma) with a weighted mean age of 3893 +/- 9 Ma, which we interpret as the best age for the Serenitatis basin- forming impact. Published Ar-40/Ar-39 age spectrum ages of Apollo 17 poikilitic melts are consistent with our new age but are much less precise. Two poikilitic melts did not give plateaus and the maxima in their age spectra indicate ages of greater than or equal to 3869 Ma (72558,7) and greater than or equal to 3743 Ma (77135,178). Plateau ages of two poikilitic melts and two gabbro clasts from 73155 range from 3854 +/- 16 Ma to 3937 +/- 16 Ma and have probably been affected by the ubiquitous (older?) clasts and by post- formation heating (impact) events. Plateau ages from two of the aphanitic melt 'blobs' and two granulites in sample 72255 fall in the narrow range of 3850 q 16 Ma to 3869 q 16 Ma with a weighted mean of 3862 +/- 8 Ma. Two of the aphanitic melt blobs from 72255 have ages of 3883 +/- 16 Ma and greater than or equal to 3894 Ma, whereas a poikilitic melt clast (of different composition from the 'Serenitatis' melts) has an age of 3835 +/- 16 Ma, which is the upper limit for the accretion of 72255. These data suggest that either the aphanitic melts vary in age, as is also suggested by their varying chemical compositions, or they formed in the 72255 accretionary event about 3.84-3.85 Ga and older relict

  14. Integrated K-band spectra of old and intermediate-age globular clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Lyubenova, M.; Kuntschner, H.; Rejkuba, M.; Silva, D. R.; Kissler-Patig, M.; Tacconi-Garman, L. E.; Larsen, S. S.

    2010-02-01

    Current stellar population models have arguably the largest uncertainties in the near-IR wavelength range, partly due to a lack of large and well calibrated empirical spectral libraries. In this paper we present a project whose aim it is to provide the first library of luminosity weighted integrated near-IR spectra of globular clusters to be used to test the current stellar population models and serve as calibrators for future ones. Our pilot study presents spatially integrated K-band spectra of three old (≥10 Gyr) and metal poor ([Fe/H] ~ -1.4), and three intermediate age (1-2 Gyr) and more metal rich ([Fe/H] ~ - 0.4) globular clusters in the LMC. We measured the line strengths of the Na I, Ca I and 12CO (2-0) absorption features. The Na I index decreases with increasing age and decreasing metallicity of the clusters. The DCO index, used to measure the 12CO (2-0) line strength, is significantly reduced by the presence of carbon-rich TP-AGB stars in the globular clusters with age ~1 Gyr. This is in contradiction to the predictions of the stellar population models of Maraston (2005, MNRAS, 362, 799). We find that this disagreement is due to the different CO absorption strength of carbon-rich Milky Way TP-AGB stars used in the models and the LMC carbon stars in our sample. For globular clusters with age ≥ 2 Gyr we find DCO index measurements consistent with the model predictions. Based on observation collected at the ESO Paranal La Silla Observatory, Chile, Prog. ID 078.B-0205.Spectra in FITS format are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A19

  15. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins.

    PubMed

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A

    2014-09-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute a new family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of "mechanism-effect" and "effect-mechanism" relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins.

  16. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM)more » spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.« less

  17. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols.

    PubMed

    Lee, Hyun Ji Julie; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2013-06-04

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of water-soluble SOA generated from two monoterpenes, limonene and α-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ∼100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (∼0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for λexcitation = 420 ± 50 nm and λemission = 475 ± 38 nm. The window of the strongest fluorescence shifted to λexcitation = 320 ± 25 nm and λemission = 425 ± 38 nm for the α-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in primary biological aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  18. Lily Pad Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.

  19. Mössbauer Spectra of Mouse Hearts Reveal Age-dependent Changes in Mitochondrial and Ferritin Iron Levels.

    PubMed

    Wofford, Joshua D; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2017-03-31

    Cardiac function requires continuous high levels of energy, and so iron, a critical player in mitochondrial respiration, is an important component of the heart. Hearts from 57 Fe-enriched mice were evaluated by Mössbauer spectroscopy. Spectra consisted of a sextet and two quadrupole doublets. One doublet was due to residual blood, whereas the other was due to [Fe 4 S 4 ] 2+ clusters and low-spin Fe II hemes, most of which were associated with mitochondrial respiration. The sextet was due to ferritin; there was no evidence of hemosiderin, a ferritin decomposition product. Iron from ferritin was nearly absent in young hearts, but increased steadily with age. EPR spectra exhibited signals similar to those of brain, liver, and human cells. No age-dependent EPR trends were apparent. Hearts from HFE -/- mice with hemochromatosis contained slightly more iron overall than controls, including more ferritin and less mitochondrial iron; these differences typify slightly older hearts, perhaps reflecting the burden due to this disease. HFE -/- livers were overloaded with ferritin but had low mitochondrial iron levels. IRP2 -/- hearts contained less ferritin than controls but normal levels of mitochondrial iron. Hearts of young mice born to an iron-deficient mother contained normal levels of mitochondrial iron and no ferritin; the heart from the mother contained low ferritin and normal levels of mitochondrial iron. High-spin Fe II ions were nearly undetectable in heart samples; these were evident in brains, livers, and human cells. Previous Mössbauer spectra of unenriched diseased human hearts lacked mitochondrial and blood doublets and included hemosiderin features. This suggests degradation of iron-containing species during sample preparation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Simulated aging of lubricant oils by chemometric treatment of infrared spectra: potential antioxidant properties of sulfur structures.

    PubMed

    Amat, Sandrine; Braham, Zeineb; Le Dréau, Yveline; Kister, Jacky; Dupuy, Nathalie

    2013-03-30

    Lubricant oils are complex mixtures of base oils and additives. The evolution of their performance over time strongly depends on its resistance to thermal oxidation. Sulfur compounds revealed interesting antioxidant properties. This study presents a method to evaluate the lubricant oil oxidation. Two samples, a synthetic and a paraffinic base oils, were tested pure and supplemented with seven different sulfur compounds. An aging cell adapted to a Fourier Transform InfraRed (FT-IR) spectrometer allows the continuous and direct analysis of the oxidative aging of base oils. Two approaches were applied to study the oxidation/anti-oxidation phenomena. The first one leads to define a new oxidative spectroscopic index based on a reduced spectral range where the modifications have been noticed (from 3050 to 2750 cm(-1)). The second method is based on chemometric treatments of whole spectra (from 4000 to 400 cm(-1)) to extract underlying information. A SIMPLe-to-use Interactive Self Modeling Analysis (SIMPLISMA) method has been used to identify more precisely the chemical species produced or degraded during the thermal treatment and to follow their evolution. Pure spectra of different species present in oil were obtained without prior information of their existence. The interest of this tool is to supply relative quantitative information reflecting evolution of the relative abundance of the different products over thermal aging. Results obtained by these two ways have been compared to estimate their concordance. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Effects of breed, sex, and age on the variation and ability of fecal near-infrared reflectance spectra to predict the composition of goat diets.

    PubMed

    Walker, J W; Campbell, E S; Lupton, C J; Taylor, C A; Waldron, D F; Landau, S Y

    2007-02-01

    The effects of breed, sex, and age of goats on fecal near-infrared reflectance spectroscopy-predicted percentage juniper in the diet were investigated, as were spectral differences in feces from goats differing in estimated genetic merit for juniper consumption. Eleven goats from each breed, sex, and age combination, representing 2 breeds (Angora and meat-type), 3 sex classifications (female, intact male, and castrated male), and 2 age categories [adult and kid (less than 12 mo of age)] were fed complete, pelleted rations containing 0 or 14% juniper. After 7 d on the same diet, fecal samples were collected for 3 d, and the spectra from the 3 replicate samples were averaged. Fecal samples were assigned to calibration or validation data sets. In a second experiment, Angora and meat goats with high or low estimated genetic merit for juniper consumption were fed the same diet to determine the effect of consumer group on fecal spectra. Feces were scanned in the 1,100- to 2,500-nm range with a scanning reflectance monochromator. Fecal spectra were analyzed for the difference in spectral characteristics and for differences in predicted juniper in the diet using internal and independent calibration equations. Internal calibration had a high precision (R(2) = 0.94), but the precision of independent validations (r(2) = 0.56) was low. Spectral differences were affected by diet, sex, breed, and age (P < 0.04). However, diet was the largest source of variation in spectral differences. Predicted percentage of juniper in the diet also showed that diet was the largest source of variation, accounting for 95% of the variation in predictions from internal calibrations and 51% of the variation in independent validations. Predictions from independent calibrations readily detected differences (P < 0.001) in the percentage of juniper in the 2 diets, and the predicted differences were similar to the actual differences. Predicted juniper in the diet was also affected by sex. Feces from

  2. Timing, rates and spectra of human germline mutation.

    PubMed

    Rahbari, Raheleh; Wuster, Arthur; Lindsay, Sarah J; Hardwick, Robert J; Alexandrov, Ludmil B; Turki, Saeed Al; Dominiczak, Anna; Morris, Andrew; Porteous, David; Smith, Blair; Stratton, Michael R; Hurles, Matthew E

    2016-02-01

    Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations.

  3. Turn-over in pulsar spectra: From young pulsars to millisecond ones

    NASA Astrophysics Data System (ADS)

    Kijak, J.; Lewandowski, W.; Serylak, M.

    2008-02-01

    The evidence for turn-over in young pulsar radio spectra at high frequencies is presented. The frequency at which a spectrum shows the maximum flux density is called the peak frequency. This peak frequency appears to depend on pulsar age and dispersion measure. A possible relation with pulsar age is interesting. Millisecond pulsars, which are very old objects, may show no evidence for spectral turn-over down to 100 MHz. Some studied pulsars with turn-over at high frequencies have been shown to have very interesting interstellar environments. This could suggest that the turn-over phenomenon is associated with the enviromental conditions around the neutron stars, rahter than being related intrinsically with the radio emission mechanism. Although there are no earlier reports of such a connection, a more detailed study on larger sample of pulsars is needed to address this idea more quantitatively. In this context, future observations below 200 MHz using LOFAR will allow us to investigate turn-over in radio pulsar spectra.

  4. Spectra library assisted de novo peptide sequencing for HCD and ETD spectra pairs.

    PubMed

    Yan, Yan; Zhang, Kaizhong

    2016-12-23

    De novo peptide sequencing via tandem mass spectrometry (MS/MS) has been developed rapidly in recent years. With the use of spectra pairs from the same peptide under different fragmentation modes, performance of de novo sequencing is greatly improved. Currently, with large amount of spectra sequenced everyday, spectra libraries containing tens of thousands of annotated experimental MS/MS spectra become available. These libraries provide information of the spectra properties, thus have the potential to be used with de novo sequencing to improve its performance. In this study, an improved de novo sequencing method assisted with spectra library is proposed. It uses spectra libraries as training datasets and introduces significant scores of the features used in our previous de novo sequencing method for HCD and ETD spectra pairs. Two pairs of HCD and ETD spectral datasets were used to test the performance of the proposed method and our previous method. The results show that this proposed method achieves better sequencing accuracy with higher ranked correct sequences and less computational time. This paper proposed an advanced de novo sequencing method for HCD and ETD spectra pair and used information from spectra libraries and significant improved previous similar methods.

  5. Methamphetamine users show greater than normal age-related cortical gray matter loss.

    PubMed

    Nakama, Helenna; Chang, Linda; Fein, George; Shimotsu, Ryan; Jiang, Caroline S; Ernst, Thomas

    2011-08-01

    Methamphetamine (Meth) abuse continues to be a major illicit drug of abuse. Neuroimaging findings suggest that Meth is neurotoxic and may alter various brain structures, but the effect of Meth on the aging brain has not been studied. The aim was to determine regional volumes of cortical gray matter in the brains of adult Meth users versus healthy control subjects, and their interaction with age and Meth-usage variables. Cross-sectional study Magnetic resonance imaging (MRI) Research Center located in a university-affiliated hospital. Thirty-four Meth-dependent subjects (21 men and 13 women; ages 33.1 ± 8.9 years), diagnosed according to DSM-IV criteria, and 31 healthy non-Meth user comparison subjects (23 men and 8 women ages 35.7 ± 8.4 years). Regional gray matter volumes were segmented automatically in all subjects and evaluated in relation to age, using high-resolution MRIs at 3.0 Tesla. After adjustment for the effects of cranium size, the Meth users showed enhanced cortical gray matter volume loss with age in the frontal (analysis of covariance interaction P = 0.02), occipital (interaction P = 0.01), temporal (interaction P < 0.001) and the insular lobes (interaction P = 0.01) compared to controls, independently of Meth-usage patterns. Additionally, Meth users showed smaller gray matter volumes than control subjects in several subregions (dorsolateral prefrontal: P = 0.02; orbitofrontal: P = 0.03; prefrontal: P = 0.047; superior temporal: P = 0.04). Methamphetamine users appear to show increased cortical gray matter loss with age which raises the possibility of accelerated decline in mental functioning. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  6. Ultraviolet Spectra of Two Magnetic White Dwarfs and Ultraviolet Spectra of Subluminous Objects Found in the Kiso Schmidt Survey and Ultraviolet Absorptions in the Spectra of DA White Dwarfds

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1988-01-01

    Research under NASA Grant NAG5-287 has carried out a number of projects in conjunction with the International Ultraviolet Explorer (IUE) satellite. These include: (1) studies of the UV spectra of DA white dwarfs which show quasi-molecular bands of H2 and H2(+); (2) the peculiar star HR6560; (3) the UV spectra of two magnetic white dwarfs that also show the quasi-molecular features; (4) investigations of the UV spectra of subluminous stars, primarily identified from visual wavelength spectroscopy in the Kiso survey of UV excess stars, some of which show interesting metal lines in their UV spectra; and (5) completion of studies of UV spectra of DB stars. The main result of this research has been to further knowledge of the structure and compositions of subluminous stars which helps cast light on their formation and evolution.

  7. Inequality spectra

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-03-01

    Inequality indices are widely applied in economics and in the social sciences as quantitative measures of the socioeconomic inequality of human societies. The application of inequality indices extends to size-distributions at large, where these indices can be used as general gauges of statistical heterogeneity. Moreover, as inequality indices are plentiful, arrays of such indices facilitate high-detail quantification of statistical heterogeneity. In this paper we elevate from arrays of inequality indices to inequality spectra: continuums of inequality indices that are parameterized by a single control parameter. We present a general methodology of constructing Lorenz-based inequality spectra, apply the general methodology to establish four sets of inequality spectra, investigate the properties of these sets, and show how these sets generalize known inequality gauges such as: the Gini index, the extended Gini index, the Rényi index, and hill curves.

  8. IUE spectra of the eclipsing binary NN Serpentis

    NASA Technical Reports Server (NTRS)

    Wood, Janet H.; Marsh, Thomas R.

    1991-01-01

    Low-resolution SWP and LWP IUE spectra are used to fit the temperature and angular radius of the white dwarf in the detached eclipsing binary NN Ser. It is found that the redenning to the system has E(B-V) of 0.05 +/-0.05, the white dwarf temperature is 60,000 +/-10,000 K, and the age of the white dwarf is less than 10 exp 7. The shape of eclipse and the K-magnitude of the secondary star are used to constrain the inclination of the binary and the masses and radii of the two stars. The size of the secondary star relative to its Roche lobe and the age of the white dwarf indicate that mass transfer has not yet occurred and that the system is a precataclysmic variable rather than a cataclysmic variable which has entered the period gap. Fitting the observed magnitude of the sinusoidal modulation with a reprocessing model shows that only when i is approximately equal to 90 deg is the required temperature of the secondary star consistent with these results. For this solution the white dwarf temperature is also consistent with those obtained from the IUE spectra.

  9. [Raman spectra of monkey cerebral cortex tissue].

    PubMed

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  10. Map and table showing isotopic age data in Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Shew, Nora B.; DuBois, G.D.

    1994-01-01

    The source of the data reported here is a compilation of radiometric ages maintained in conjunction with the Alaska Mineral Resource Assessment Program (AMRAP) studies for Alaska. The symbol shape plotted at each location is coded for rock type, whether igneous, metamorphic, or other; the color of the symbol shows the geologic era or period for the Sample(s) at each locale. A list of references for each quadrangle is given to enable the user to find specific information including analytical data for each sample dated within a particular quadrangle. At the scale of this map, the very large number of Samples and the clustering of the samples in limited areas prevented the showing of individual sample numbers on the map.Synthesis and interpretation of any data set requires the user to evaluate the reliability or value of each component of the data set with respect to his or her intended use of the data. For geochronological data, this evaluation must be based on both analytical and geological criteria. Most age determinations are published with calculated estimates of analytical precision, Replicate analyses are infrequently performed; therefore, reported analytical precision is based on estimates of the precision of various components of the analysis and often on an intuitive factor to cover components that may have not been considered. Analytical accuracy is somewhat more difficult to determine; it is not only dependent on the actual measurement, it is also concerned with uncertainties in decay and abundance constants, uncertainties in the isotopic composition and size of the tracer for conventional K-Ar ages, and uncertainties in the Original isotopic composition of the sample, Geologic accuracy of a date is Variable; the interpretation of the meaning of an age determination, is important in the evaluation of its geologic accuracy. Potassium-argon, rubidium-strontium, and uranium-lead age determinations on a single sample can differ widely yet none or all may be

  11. New insight into hydration and aging mechanisms of paper by the line shape analysis of proton NMR spectra

    NASA Astrophysics Data System (ADS)

    Mallamace, D.; Vasi, S.; Missori, M.; Corsaro, C.

    2016-05-01

    The action of water within biological systems is strictly linked either with their physical chemical properties and with their functions. Cellulose is one of the most studied biopolymers due to its biological importance and its wide use in manufactured products. Among them, paper is mainly constituted by an almost equimolar ratio of cellulose and water. Therefore the study of the behavior of water within pristine and aged paper samples can help to shed light on the degradation mechanisms that irremediably act over time and spoil paper. In this work we present Nuclear Magnetic Resonance (NMR) experiments on modern paper samples made of pure cellulose not aged and artificially aged as well as on ancient paper samples made in 1413 in Perpignan (France). The line shape parameters of the proton NMR spectra were studied as a function of the hydration content. Results indicate that water in aged samples is progressively involved in the hydration of the byproducts of cellulose degradation. This enhances the degradation process itself through the progressive consumption of the cellulose amorphous regions.

  12. Constraining Star Formation in Old Stellar Populations from Theoretical Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.

    2007-12-01

    We are calculating stellar spectra using Kurucz codes, Castelli models, and Kurucz laboratory lines plus guesses; but must first finish adjusting gf values to match stars of solar metallicity and higher. We show that even now, 1D LTE spectral calculations fit a wide range of stellar spectra (from A to K types) over 2200 Å-9000Å once gf values are set to optimize them. Moreover, weighted coadditions of spectral calculations can be constructed that match M31 globular clusters over this entire wavelength range. Both stellar and composite grids will be archived on MAST. The age-metallicity degeneracy can be broken, but only with high-quality data, and only if rare stages of stellar evolution are incorporated where necessary.

  13. Soft x-ray absorption spectra of ilmenite family.

    PubMed

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  14. Comparing Ultraviolet Spectra Against Calculations: First Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2003-01-01

    The five-year goal of this effort is to calculate high fidelity mid-UV spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this first year, the emphasis was placed on revising the list of atomic line parameters used to calculate mid-UV spectra. First, new identifications of atomic lines and measurements of their transition probabilities were obtained for lines of the first and second ionization stages of iron-peak elements. Second, observed mid-UV and optical spectra for standard stars were re-analyzed and compared to new calculations, to refine the determination of transition probabilities and to estimate the identity of lines still missing from the laboratory lists. As evidenced by the figures, a dramatic improvement has resulted in the reproduction of the spectra of standard stars by the calculations.

  15. Aged rats show dominant modulation of lower frequency hippocampal theta rhythm during running.

    PubMed

    Li, Jia-Yi; Kuo, Terry B J; Yang, Cheryl C H

    2016-10-01

    Aging causes considerable decline in both physiological and mental functions, particularly cognitive function. The hippocampal theta rhythm (4-12Hz) is related to both cognition and locomotion. Aging-related findings of the frequency and amplitude of hippocampal theta oscillations are inconsistent and occasionally contradictory. This inconsistency may be due to the effects of the sleep/wake state and different frequency subbands being overlooked. We assumed that aged rats have lower responses of the hippocampal theta rhythm during running, which is mainly due to the dominant modulation of theta frequency subbands related to cognition. By simultaneously recording electroencephalography, physical activity (PA), and the heart rate (HR), this experiment explored the theta oscillations before, during, and after treadmill running at a constant speed in 8-week-old (adult) and 60-week-old (middle-aged) rats. Compared with adult rats, the middle-aged rats exhibited lower theta activity in all frequency ranges before running. Running increased the theta frequency (Frq, 4-12Hz), total activity of the whole theta band (total power, TP), activity of the middle theta frequency (MT, 6.5-9.5Hz), and PA in both age groups. However, the middle-aged rats still showed fewer changes in these parameters during the whole running process. After the waking baseline values were substracted, middle-aged rats showed significantly fewer differences in ΔFrq, ΔTP, and ΔMT but significantly more differences in low-frequency theta activity (4.0-6.5Hz) and HR than the adult rats did. Therefore, the decreasing activity and response of the whole theta band in the middle-aged rats resulted in dominant modulation of the middle to lower frequency (4.0-9.5Hz) theta rhythm. The different alterations in the theta rhythm during treadmill running in the two groups may reflect that learning decline with age. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Rogue wave spectra of the Kundu-Eckhaus equation.

    PubMed

    Bayındır, Cihan

    2016-06-01

    In this paper we analyze the rogue wave spectra of the Kundu-Eckhaus equation (KEE). We compare our findings with their nonlinear Schrödinger equation (NLSE) analogs and show that the spectra of the individual rogue waves significantly differ from their NLSE analogs. A remarkable difference is the one-sided development of the triangular spectrum before the rogue wave becomes evident in time. Also we show that increasing the skewness of the rogue wave results in increased asymmetry in the triangular Fourier spectra. Additionally, the triangular spectra of the rogue waves of the KEE begin to develop at earlier stages of their development compared to their NLSE analogs, especially for larger skew angles. This feature may be used to enhance the early warning times of the rogue waves. However, we show that in a chaotic wave field with many spectral components the triangular spectra remain as the main attribute as a universal feature of the typical wave fields produced through modulation instability and characteristic features of the KEE's analytical rogue wave spectra may be suppressed in a realistic chaotic wave field.

  17. EMPCA and Cluster Analysis of Quasar Spectra: Construction and Application to Simulated Spectra

    NASA Astrophysics Data System (ADS)

    Marrs, Adam; Leighly, Karen; Wagner, Cassidy; Macinnis, Francis

    2017-01-01

    Quasars have complex spectra with emission lines influenced by many factors. Therefore, to fully describe the spectrum requires specification of a large number of parameters, such as line equivalent width, blueshift, and ratios. Principal Component Analysis (PCA) aims to construct eigenvectors-or principal components-from the data with the goal of finding a few key parameters that can be used to predict the rest of the spectrum fairly well. Analysis of simulated quasar spectra was used to verify and justify our modified application of PCA.We used a variant of PCA called Weighted Expectation Maximization PCA (EMPCA; Bailey 2012) along with k-means cluster analysis to analyze simulated quasar spectra. Our approach combines both analytical methods to address two known problems with classical PCA. EMPCA uses weights to account for uncertainty and missing points in the spectra. K-means groups similar spectra together to address the nonlinearity of quasar spectra, specifically variance in blueshifts and widths of the emission lines.In producing and analyzing simulations, we first tested the effects of varying equivalent widths and blueshifts on the derived principal components, and explored the differences between standard PCA and EMPCA. We also tested the effects of varying signal-to-noise ratio. Next we used the results of fits to composite quasar spectra (see accompanying poster by Wagner et al.) to construct a set of realistic simulated spectra, and subjected those spectra to the EMPCA /k-means analysis. We concluded that our approach was validated when we found that the mean spectra from our k-means clusters derived from PCA projection coefficients reproduced the trends observed in the composite spectra.Furthermore, our method needed only two eigenvectors to identify both sets of correlations used to construct the simulations, as well as indicating the linear and nonlinear segments. Comparing this to regular PCA, which can require a dozen or more components, or to

  18. Proton, Deuteron and Helion Spectra from Central Au+Au collisions at the AG

    NASA Astrophysics Data System (ADS)

    Baumgart, Stephen

    2002-10-01

    The AGS E895 experiment ran Au+Au collisions at bombarding energies of 2, 4, 6 and 8 AGeV. For central collisions, particle spectra have been measured for pions, kaons, protons, deuterons, and helions. From these spectra, the dN/dy distributions have been determined across a rapidity range from approximately -1.5 to 1.5 at maximum beam energy. Integration of the rapidity densities gives the total yields of each particle species. The final charge of the system can be calculated from the total yields to show that all of the initial charge is accounted for. The conclusions from the analyses of the condensate particle spectra will be presented. Fits to the spectra determine the freeze-out temperatures, radial flow velocities, and chemical potentials. The rapidity density distributions are used to estimate the longitudinal flow. The proton phase space density can be estimated by combining the proton spectra with the gaussian freeze-out radii intrepreted from a coalescence model employing the yields of protons, deuterons, tritons, and helions. Comparisons of the above results will be made to the experimental evidence from SIS, the AGS, the SPS, and RHIC.

  19. The Spitzer Atlas of Stellar Spectra (SASS)

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Song, Inseok; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie

    2010-12-01

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 μm R ~ 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  20. The Spitzer Atlas of Stellar Spectra (SASS)

    NASA Astrophysics Data System (ADS)

    Ardila, D. R.; van Dyk, S. D., Makowiecki, W.; Stauffer, J.; Song, I.; Ro, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.

    2011-11-01

    We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 micron; R about 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, like blue stragglers and certain pulsating variables. All the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, dominated by Hydrogen lines around A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases PAH features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  1. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, themore » spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.« less

  2. Near infrared Raman spectra of Rhizoma dioscoreae

    NASA Astrophysics Data System (ADS)

    Lin, Wenshuo; Chen, Rong; Chen, Guannan; Feng, Sangyuan; Li, Yongzeng; Huang, Zufang; Li, Yongsen

    2008-03-01

    A novel and compact near-infrared (NIR) Raman system is developed using 785-nm diode laser, volume-phase technology holographic system, and NIR intensified charge-coupled device (CCD). Raman spectra and first derivative spectra of Rhizoma Dioscoreae are obtained. Raman spectra of Rhizoma Dioscoreae showed three strong characteristic peaks at 477.4cm -1, 863.9cm -1, and 936.0cm -1. The major ingredients are protein, amino acid, starch, polysaccharides and so on, matched with the known basic biochemical composition of Rhizoma Dioscoreae. In the first derivative spectra of Rhizoma Dioscoreae, distinguishing characteristic peaks appeared at 467.674cm -1, 484.603cm -1, 870.37cm -1, 943.368cm -1. Contrasted with Rhizoma Dioscoreae Raman spectra, in 600cm -1 to 800cm -1, 1000cm -1 to 1400cm -1 regions, changes in Rhizoma Dioscoreae Raman first derivative spectra are represented more clearly than Rhizoma Dioscoreae Raman spectra. So Rhizoma Dioscoreae raman first derivative spectra can be an accurate supplementary analysis method to Rhizoma Dioscoreae Raman spectra.

  3. Aged mice receiving caffeine since adulthood show distinct patterns of anxiety-related behavior.

    PubMed

    Botton, Paulo Henrique S; Pochmann, Daniela; Rocha, Andreia S; Nunes, Fernanda; Almeida, Amanda S; Marques, Daniela M; Porciúncula, Lisiane O

    2017-03-01

    Caffeine is the psychostimulant most consumed worldwide. Anxiogenic effects of caffeine have been described in adult animals with controversial findings about its anxiogenic potential. Besides, the effects of caffeine on anxiety with aging are still poorly known. In this study, adult mice (6months old) started to receive caffeine (0.3 and 1.0mg/mL, drinking water) during 12-14months only in the light cycle and at weekdays. The open field (OF) and elevated plus maze (EPM) testing were used to determine the effects of caffeine on anxiety-related behavior in adult and aged mice (18-20months old). Because aging alters synaptic proteins, we also evaluated SNAP-25 (as a nerve terminals marker), GFAP (as an astrocyte marker) and adenosine A 1 and A 2A receptors levels in the cortex. According to the OF analysis, caffeine did not change both hypolocomotion and anxiety with aging. However, aged mice showed less anxiety behavior in the EPM, but after receiving caffeine (0.3mg/mL) during adulthood they were anxious as adult mice. While SNAP-25 and adenosine A 2A receptors increased with aging, both GFAP and adenosine A 1 receptors were not affected. Caffeine at moderate dose prevented the age-related increase of the SNAP-25, with no effect on adenosine A 2A receptors. The absence of effect for the highest dose suggests that tolerance to caffeine may have developed over time. Aged mice showed high responsiveness to the OF, being difficult to achieve any effect of caffeine. On the other hand this substance sustained the adult anxious behavior over time in a less stressful paradigm, and this effect was coincident with changes in the SNAP-25, suggesting the involvement of this synaptic protein in the ability of caffeine to preserve changes related to emotionality with aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Modelling Stellar Optical and Mid-Ultraviolet Spectra from First Principles

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.; Carney, B. W.; Dorman, B.; Green, E. M.; Landsman, W.; Liebert, J.; O'Connell, R. W.; Rood, R. T.; Schiavon, R. P.

    2004-05-01

    We present comparisons of theoretical and observational high-resolution spectra for a half-dozen stars of a wide range of temperature and abundance, from A star to K giant. These show the fits achieved to date by our ab initio spectral calculations. These comparisons form the first phase of our three-year Hubble Treasury program GO-9455/9974, aimed at providing mid-ultraviolet spectral templates to improve the determination of the age and metallicity of old stellar systems. From matches such as these, we have modified the input atomic-line parameters and guessed the identifications of spectral lines missing from the calculations, as described by Peterson, Dorman, & Rood (2001, ApJ, 559, 372). With this new line list, we now match well the optical spectra of stars of all line strengths. We have begun to calculate a grid of optical indices from the theoretical spectra. In the mid-UV, while the fits at solar abundance are much improved, we are still missing very weak absorption lines near 2650Å and 2900Å. This will be addressed as additional mid-ultraviolet spectra are taken for a larger range of stellar targets during Cycle 13. Support for this work includes grants GO-9455 and GO-9974 from the Hubble Space Telescope Science Institute, and an award from the NASA-OSS Long Term Space Astrophysics program.

  5. Peripheral leukocyte populations and oxidative stress biomarkers in aged dogs showing impaired cognitive abilities.

    PubMed

    Mongillo, Paolo; Bertotto, Daniela; Pitteri, Elisa; Stefani, Annalisa; Marinelli, Lieta; Gabai, Gianfranco

    2015-06-01

    In the present study, the peripheral blood leukocyte phenotypes, lymphocyte subset populations, and oxidative stress parameters were studied in cognitively characterized adult and aged dogs, in order to assess possible relationships between age, cognitive decline, and the immune status. Adult (N = 16, 2-7 years old) and aged (N = 29, older than 8 years) dogs underwent two testing procedures, for the assessment of spatial reversal learning and selective social attention abilities, which were shown to be sensitive to aging in pet dogs. Based on age and performance in cognitive testing, dogs were classified as adult not cognitively impaired (ADNI, N = 12), aged not cognitively impaired (AGNI, N = 19) and aged cognitively impaired (AGCI, N = 10). Immunological and oxidative stress parameters were compared across groups with the Kruskal-Wallis test. AGCI dogs displayed lower absolute CD4 cell count (p < 0.05) than ADNI and higher monocyte absolute count and percentage (p < 0.05) than AGNI whereas these parameters were not different between AGNI and ADNI. AGNI dogs had higher CD8 cell percentage than ADNI (p < 0.05). Both AGNI and AGCI dogs showed lower CD4/CD8 and CD21 count and percentage and higher neutrophil/lymphocyte and CD3/CD21 ratios (p < 0.05). None of the oxidative parameters showed any statistically significant difference among groups. These observations suggest that alterations in peripheral leukocyte populations may reflect age-related changes occurring within the central nervous system and disclose interesting perspectives for the dog as a model for studying the functional relationship between the nervous and immune systems during aging.

  6. Comparing Ultraviolet Spectra against Calculations: Year 2 Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2004-01-01

    The five-year goal of this effort is to calculate high fidelity mid-W spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this second year, the comparison of our calculations against observed high-resolution mid- W spectra was extended to stars as metal-rich as the Sun, and to hotter and cooler stars, further improving the list of atomic line parameters used in the calculations. We also published the application of our calculations based on the earlier list of line parameters to the observed mid-UV and optical spectra of a mildly metal-poor globular cluster in the nearby Andromeda galaxy, Messier 3 1.

  7. Estimating Spectra from Photometry

    NASA Astrophysics Data System (ADS)

    Kalmbach, J. Bryce; Connolly, Andrew J.

    2017-12-01

    Measuring the physical properties of galaxies such as redshift frequently requires the use of spectral energy distributions (SEDs). SED template sets are, however, often small in number and cover limited portions of photometric color space. Here we present a new method to estimate SEDs as a function of color from a small training set of template SEDs. We first cover the mathematical background behind the technique before demonstrating our ability to reconstruct spectra based upon colors and then compare our results to other common interpolation and extrapolation methods. When the photometric filters and spectra overlap, we show that the error in the estimated spectra is reduced by more than 65% compared to the more commonly used techniques. We also show an expansion of the method to wavelengths beyond the range of the photometric filters. Finally, we demonstrate the usefulness of our technique by generating 50 additional SED templates from an original set of 10 and by applying the new set to photometric redshift estimation. We are able to reduce the photometric redshifts standard deviation by at least 22.0% and the outlier rejected bias by over 86.2% compared to original set for z ≤ 3.

  8. Variation of illite/muscovite 40Ar/39Ar age spectra during progressive low-grade metamorphism: an example from the US Cordillera

    NASA Astrophysics Data System (ADS)

    Verdel, Charles; van der Pluijm, Ben A.; Niemi, Nathan

    2012-09-01

    40Ar/39Ar step-heating data were collected from micron to submicron grain-sizes of correlative illite- and muscovite-rich Cambrian pelitic rocks from the western United States that range in metamorphic grade from the shallow diagenetic zone (zeolite facies) to the epizone (greenschist facies). With increasing metamorphic grade, maximum ages from 40Ar/39Ar release spectra decrease, as do total gas ages and retention ages. Previous studies have explained similar results as arising dominantly or entirely from the dissolution of detrital muscovite and precipitation/recrystallization of neo-formed illite. While recognizing the importance of these processes in evaluating our results, we suggest that the inverse correlation between apparent age and metamorphic grade is controlled, primarily, by thermally activated volume diffusion, analogous to the decrease in apparent ages with depth observed for many thermochronometers in borehole experiments. Our results suggest that complete resetting of the illite/muscovite Ar thermochronometer occurs between the high anchizone and epizone, or at roughly 300 °C. This empirical result is in agreement with previous calculations based on muscovite diffusion parameters, which indicate that muscovite grains with radii of 0.05-2 μm should have closure temperatures between 250 and 350 °C. At high anchizone conditions, we observe a reversal in the age/grain-size relationship (the finest grain-size produces the oldest apparent age), which may mark the stage in prograde subgreenschist facies metamorphism of pelitic rocks at which neo-formed illite/muscovite crystallites typically surpass the size of detrital muscovite grains. It is also approximately the stage at which neo-formed illite/muscovite crystallites develop sufficient Ar retentivity to produce geologically meaningful 40Ar/39Ar ages. Results from our sampling transect of Cambrian strata establish a framework for interpreting illite/muscovite 40Ar/39Ar age spectra at different

  9. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer's disease.

    PubMed

    Davies, Danielle S; Ma, Jolande; Jegathees, Thuvarahan; Goldsbury, Claire

    2017-11-01

    Changes in microglia function are involved in Alzheimer's disease (AD) for which ageing is the major risk factor. We evaluated microglial cell process morphologies and their gray matter coverage (arborized area) during ageing and in the presence and absence of AD pathology in autopsied human neocortex. Microglial cell processes were reduced in length, showed less branching and reduced arborized area with aging (case range 52-98 years). This occurred during normal ageing and without microglia dystrophy or changes in cell density. There was a larger reduction in process length and arborized area in AD compared to aged-matched control microglia. In AD cases, on average, 49%-64% of microglia had discontinuous and/or punctate Iba1 labeled processes instead of continuous Iba1 distribution. Up to 16% of aged-matched control microglia displayed discontinuous or punctate features. There was no change in the density of microglial cell bodies in gray matter during ageing or AD. This demonstrates that human microglia show progressive cell process retraction without cell loss during ageing. Additional changes in microglia occur with AD including Iba1 protein puncta and discontinuity. We suggest that reduced microglial arborized area may be an aging-related correlate of AD in humans. These variations in microglial cells during ageing and in AD could reflect changes in neural-glial interactions which are emerging as key to mechanisms involved in ageing and neurodegenerative disease. © 2016 International Society of Neuropathology.

  10. First light: exploring the spectra of high-redshift galaxies in the Renaissance Simulations

    NASA Astrophysics Data System (ADS)

    Barrow, Kirk S. S.; Wise, John H.; Norman, Michael L.; O'Shea, Brian W.; Xu, Hao

    2017-08-01

    We present synthetic observations for the first generations of galaxies in the Universe and make predictions for future deep field observations for redshifts greater than 6. Due to the strong impact of nebular emission lines and the relatively compact scale of H II regions, high-resolution cosmological simulations and a robust suite of analysis tools are required to properly simulate spectra. We created a software pipeline consisting of fsps, hyperion, cloudy and our own tools to generate synthetic IR observations from a fully three-dimensional arrangement of gas, dust, and stars. Our prescription allows us to include emission lines for a complete chemical network and tackle the effect of dust extinction and scattering in the various lines of sight. We provide spectra, 2D binned photon imagery for both HST and JWST IR filters, luminosity relationships, and emission-line strengths for a large sample of high-redshift galaxies in the Renaissance Simulations. Our resulting synthetic spectra show high variability between galactic haloes with a strong dependence on stellar mass, metallicity, gas mass fraction, and formation history. Haloes with the lowest stellar mass have the greatest variability in [O III]/Hβ, [O III], and C III], while haloes with higher masses are seen to show consistency in their spectra and [O III] equivalent widths between 1 and 10 Å. Viewing angle accounted for threefold difference in flux due to the presence of ionized gas channels in a halo. Furthermore, JWST colour plots show a discernible relationship between redshift, colour, and mean stellar age.

  11. Adolescents with current major depressive disorder show dissimilar patterns of age-related differences in ACC and thalamus

    PubMed Central

    Hagan, Cindy C.; Graham, Julia M.E.; Tait, Roger; Widmer, Barry; van Nieuwenhuizen, Adrienne O.; Ooi, Cinly; Whitaker, Kirstie J.; Simas, Tiago; Bullmore, Edward T.; Lennox, Belinda R.; Sahakian, Barbara J.; Goodyer, Ian M.; Suckling, John

    2015-01-01

    Objective There is little understanding of the neural system abnormalities subserving adolescent major depressive disorder (MDD). In a cross-sectional study we compare currently unipolar depressed with healthy adolescents to determine if group differences in grey matter volume (GMV) were influenced by age and illness severity. Method Structural neuroimaging was performed on 109 adolescents with current MDD and 36 healthy controls, matched for age, gender, and handedness. GMV differences were examined within the anterior cingulate cortex (ACC) and across the whole-brain. The effects of age and self-reported depressive symptoms were also examined in regions showing significant main or interaction effects. Results Whole-brain voxel based morphometry revealed no significant group differences. At the whole-brain level, both groups showed a main effect of age on GMV, although this effect was more pronounced in controls. Significant group-by-age interactions were noted: A significant regional group-by-age interaction was observed in the ACC. GMV in the ACC showed patterns of age-related differences that were dissimilar between adolescents with MDD and healthy controls. GMV in the thalamus showed an opposite pattern of age-related differences in adolescent patients compared to healthy controls. In patients, GMV in the thalamus, but not the ACC, was inversely related with self-reported depressive symptoms. Conclusions The depressed adolescent brain shows dissimilar age-related and symptom-sensitive patterns of GMV differences compared with controls. The thalamus and ACC may comprise neural markers for detecting these effects in youth. Further investigations therefore need to take both age and level of current symptoms into account when disaggregating antecedent neural vulnerabilities for MDD from the effects of MDD on the developing brain. PMID:25685707

  12. Adolescents with current major depressive disorder show dissimilar patterns of age-related differences in ACC and thalamus.

    PubMed

    Hagan, Cindy C; Graham, Julia M E; Tait, Roger; Widmer, Barry; van Nieuwenhuizen, Adrienne O; Ooi, Cinly; Whitaker, Kirstie J; Simas, Tiago; Bullmore, Edward T; Lennox, Belinda R; Sahakian, Barbara J; Goodyer, Ian M; Suckling, John

    2015-01-01

    There is little understanding of the neural system abnormalities subserving adolescent major depressive disorder (MDD). In a cross-sectional study we compare currently unipolar depressed with healthy adolescents to determine if group differences in grey matter volume (GMV) were influenced by age and illness severity. Structural neuroimaging was performed on 109 adolescents with current MDD and 36 healthy controls, matched for age, gender, and handedness. GMV differences were examined within the anterior cingulate cortex (ACC) and across the whole-brain. The effects of age and self-reported depressive symptoms were also examined in regions showing significant main or interaction effects. Whole-brain voxel based morphometry revealed no significant group differences. At the whole-brain level, both groups showed a main effect of age on GMV, although this effect was more pronounced in controls. Significant group-by-age interactions were noted: A significant regional group-by-age interaction was observed in the ACC. GMV in the ACC showed patterns of age-related differences that were dissimilar between adolescents with MDD and healthy controls. GMV in the thalamus showed an opposite pattern of age-related differences in adolescent patients compared to healthy controls. In patients, GMV in the thalamus, but not the ACC, was inversely related with self-reported depressive symptoms. The depressed adolescent brain shows dissimilar age-related and symptom-sensitive patterns of GMV differences compared with controls. The thalamus and ACC may comprise neural markers for detecting these effects in youth. Further investigations therefore need to take both age and level of current symptoms into account when disaggregating antecedent neural vulnerabilities for MDD from the effects of MDD on the developing brain.

  13. Like cognitive function, decision making across the life span shows profound age-related changes.

    PubMed

    Tymula, Agnieszka; Rosenberg Belmaker, Lior A; Ruderman, Lital; Glimcher, Paul W; Levy, Ifat

    2013-10-15

    It has long been known that human cognitive function improves through young adulthood and then declines across the later life span. Here we examined how decision-making function changes across the life span by measuring risk and ambiguity attitudes in the gain and loss domains, as well as choice consistency, in an urban cohort ranging in age from 12 to 90 y. We identified several important age-related patterns in decision making under uncertainty: First, we found that healthy elders between the ages of 65 and 90 were strikingly inconsistent in their choices compared with younger subjects. Just as elders show profound declines in cognitive function, they also show profound declines in choice rationality compared with their younger peers. Second, we found that the widely documented phenomenon of ambiguity aversion is specific to the gain domain and does not occur in the loss domain, except for a slight effect in older adults. Finally, extending an earlier report by our group, we found that risk attitudes across the life span show an inverted U-shaped function; both elders and adolescents are more risk-averse than their midlife counterparts. Taken together, these characterizations of decision-making function across the life span in this urban cohort strengthen the conclusions of previous reports suggesting a profound impact of aging on cognitive function in this domain.

  14. Orbital phase dependent IUE spectra of the nova like binary II Arietis

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Sion, E. M.

    1981-01-01

    Nine low dispersion IUE spectra of the nova like binary TT Ari over its 3h17m orbital period were obtained. Four short wave spectra and five long wave spectra exhibit marked changes in line strength and continuum shape with orbital phase. The short wave spectra show the presence in absorption of C III, Lyman alpha, SiIII, NV, SiIV, CIV, HeII, AlIII, and NIV. The CIV shows a P Cygni profile on two of the spectra. Implications of these spectra for the nature of nova like variables are discussed.

  15. Maturation of EEG Power Spectra in Early Adolescence: A Longitudinal Study

    ERIC Educational Resources Information Center

    Cragg, Lucy; Kovacevic, Natasa; McIntosh, Anthony Randal; Poulsen, Catherine; Martinu, Kristina; Leonard, Gabriel; Paus, Tomas

    2011-01-01

    This study investigated the fine-grained development of the EEG power spectra in early adolescence, and the extent to which it is reflected in changes in peak frequency. It also sought to determine whether sex differences in the EEG power spectra reflect differential patterns of maturation. A group of 56 adolescents were tested at age 10 years and…

  16. Spectra of small Koronis family members

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Rivkin, A.; Trilling, D.; Moskovitz, N.

    2014-07-01

    The space-weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites are long-standing problems in asteroid science. Although the visible and near-infrared spectra of S- and Q-type objects qualitatively show the same absorption features and quantitatively show evidence of the same minerals, the S types display increased spectral slopes and muted absorption features compared to the Q types. This spectral mismatch is consistent with the effects of the space weathering process. Binzel et al. provided the missing link between Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to the transition from Q- to S-type spectra. This result implied that size, and therefore age, is related to the relationship between Q- and S-type. The existence of Q-type objects in the main belt was not confirmed until Mothe-Diniz and Nesvorny (2008) found them in young S-type clusters. To investigate the trend from Q to S in the main belt, we examined space weathering within the old main-belt Koronis family using a spectrophotometric survey (Rivkin et al. 2011, Thomas et al. 2011). Rivkin et al. (2011) identified several potential Q-type objects within the Koronis family. Our Q-type candidates were identified using broad-band spectrophotometry and could not be taxonomically classified on that basis alone. We obtained follow-up visible and near-infrared spectral observations of our potential Q-type objects, (26970) Elias, (45610) 2000 DJ_{48}, and (37411) 2001 XF_{152}, using Gemini and Magellan. We will present the results of these spectral follow-up observations. Observations of (26970) Elias demonstrate that the object is more consistent with the average Q-type spectrum than the average S-type spectrum.

  17. Tunneling Spectra of a Quasifreestanding Graphene Monolayer

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Bai, Ke-Ke; Zuo, Wei-Jie; Liu, Yi-Wen; Fu, Zhong-Qiu; Wang, Wen-Xiao; Zhang, Yu; Yin, Long-Jing; Qiao, Jia-Bin; He, Lin

    2018-05-01

    Considering the great success of scanning-tunneling-microscopy (STM) studies of graphene in the past ten years, it is quite surprising to notice that there is still a fundamental contradiction in the reported tunneling spectra of the quasifreestanding graphene monolayer. Many groups observed "V -shaped" spectra with linearly vanishing density of states at the Dirac point, whereas others reported spectra with a gap of ±60 meV pinned to the Fermi level in the quasifreestanding graphene monolayer. Here, we systematically study the two contradicting tunneling spectra of the quasifreestanding graphene monolayer on various substrates in the presence of different magnetic fields and demonstrate that both spectra are the "correct" spectra. However, the V -shaped spectrum exhibits only the contribution of the low-energy Dirac fermions, whereas the gapped spectrum is contributed by both the low-energy Dirac fermions and the high-energy nearly free-electron states due to the existence of the inelastic tunneling process. Our results indicate that interaction with substrates plays a vital role in affecting the spectra of graphene. We also show that it is possible to switch the tunneling spectra between the two distinct features at the nanoscale through voltage pulses applied to the STM tip.

  18. Multispectral processing without spectra.

    PubMed

    Drew, Mark S; Finlayson, Graham D

    2003-07-01

    It is often the case that multiplications of whole spectra, component by component, must be carried out,for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work [J. Opt. Soc. Am. A 11, 1553 (1994)] we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 3 x 3 linear transform that results from a three-component finite-dimensional model [G. Healey and D. Slater, J. Opt. Soc. Am. A 11, 3003 (1994)]. We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting.

  19. Multispectral processing without spectra

    NASA Astrophysics Data System (ADS)

    Drew, Mark S.; Finlayson, Graham D.

    2003-07-01

    It is often the case that multiplications of whole spectra, component by component, must be carried out, for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work J. Opt. Soc. Am. A 11 , 1553 (1994) we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 33 linear transform that results from a three-component finite-dimensional model G. Healey and D. Slater, J. Opt. Soc. Am. A 11 , 3003 (1994). We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting. 2003 Optical Society of America

  20. Proton spectra diagnostics for shock-compression studies

    NASA Astrophysics Data System (ADS)

    Welch, D. R.; Harris, D. B.; Bennish, A. H.; Miley, G. H.

    1984-12-01

    The energy spectra of fusion products escaping long-pulse-length laser-imploded deuterium-tritium filled glass microballoons have been measured with a time-of-flight spectrometer. The D(d,p)T reaction proton energy spectra showed two distinct peaks, indicating two burn phases in the target. The first burn phase is attributed to a spherically converging shock, while the second is attributed to subsequent compression heating. The analysis of these spectra provides the first conclusive proof of significant compression yields in these targets, where approximately half of the yield occurs during the compression burn phase.

  1. Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique.

    PubMed

    Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan

    2015-06-01

    Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.

  2. Simulation of femtosecond two-dimensional electronic spectra of conical intersections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krčmář, Jindřich; Gelin, Maxim F.; Domcke, Wolfgang

    2015-08-21

    We have simulated femtosecond two-dimensional (2D) electronic spectra for an excited-state conical intersection using the wave-function version of the equation-of-motion phase-matching approach. We show that 2D spectra at fixed values of the waiting time provide information on the structure of the vibronic eigenstates of the conical intersection, while the evolution of the spectra with the waiting time reveals predominantly ground-state wave-packet dynamics. The results show that 2D spectra of conical intersection systems differ significantly from those obtained for chromophores with well separated excited-state potential-energy surfaces. The spectral signatures which can be attributed to conical intersections are discussed.

  3. Vibrationally high-resolved electronic spectra of MCl2 (M=C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2(.).

    PubMed

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-05

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M=C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High-resolution 18 CM spectra of OH/IR stars

    NASA Astrophysics Data System (ADS)

    Fix, John D.

    1987-02-01

    High-velocity-resolution, high-signal-to-noise spectra have been obtained for the 18 cm maser emission lines from a number of optically visible OH/IR stars. The spectra have been interpreted in terms of a recent model by Alcock and Ross (1986), in which OH/IR stars lose mass in discrete elements rather than by a continuous wind. Comparison of the observed spectra with synthetic spectra shows that the lines are the composite emission from thousands or tens of thousands of individual elements.

  5. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    NASA Astrophysics Data System (ADS)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  6. PHOTON SPECTRA IN NPL STANDARD RADIONUCLIDE NEUTRON FIELDS.

    PubMed

    Roberts, N J

    2017-09-23

    A HPGe detector has been used to measure the photon spectra from the majority of radionuclide neutron sources in use at NPL (252Cf, 241Am-Be, 241Am-Li, 241Am-B). The HPGe was characterised then modelled to produce a response matrix. The measured pulse height spectra were then unfolded to produce photon fluence spectra. Changes in the photon spectrum with time from a 252Cf source are evident. Spectra from a 2-year-old and 42-year-old 252Cf source are presented showing the change from a continuum to peaks from long-lived isotopes of Cf. Other radionuclide neutron source spectra are also presented and discussed. The new spectra were used to improve the photon to neutron dose equivalent ratios from some earlier work at NPL with GM tubes and EPDs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Statistical properties of Fermi GBM GRBs' spectra

    NASA Astrophysics Data System (ADS)

    Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt

    2018-03-01

    Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.

  8. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements.

    PubMed

    Chavana-Bryant, Cecilia; Malhi, Yadvinder; Wu, Jin; Asner, Gregory P; Anastasiou, Athanasios; Enquist, Brian J; Cosio Caravasi, Eric G; Doughty, Christopher E; Saleska, Scott R; Martin, Roberta E; Gerard, France F

    2017-05-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (P mass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (N mass ) and carbon (C mass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R 2  = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R 2  = 0.07-0.73; %RMSE = 7-38) and multiple (R 2  = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Energetic Proton Spectra Measured by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.

    2017-10-01

    We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

  10. [Experimental study on spectra of compressed air microwave plasma].

    PubMed

    Liu, Yong-Xi; Zhang, Gui-Xin; Wang, Qiang; Hou, Ling-Yun

    2013-03-01

    Using a microwave plasma generator, compressed air microwave plasma was excited under 1 - 5 atm pressures. Under different pressures and different incident microwave power, the emission spectra of compressed air microwave plasma were studied with a spectra measuring system. The results show that continuum is significant at atmospheric pressure and the characteristic will be weakened as the pressure increases. The band spectra intensity will be reduced with the falling of the incident microwave power and the band spectra were still significant. The experimental results are valuable to studying the characteristics of compressed air microwave plasma and the generating conditions of NO active groups.

  11. Non-linear power spectra in the synchronous gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui

    2015-05-01

    We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented inmore » the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.« less

  12. Climatology of tropospheric vertical velocity spectra

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  13. Similarity analysis of spectra obtained via reflectance spectrometry in legal medicine.

    PubMed

    Belenki, Liudmila; Sterzik, Vera; Bohnert, Michael

    2014-02-01

    In the present study, a series of reflectance spectra of postmortem lividity, pallor, and putrefaction-affected skin for 195 investigated cases in the course of cooling down the corpse has been collected. The reflectance spectrometric measurements were stored together with their respective metadata in a MySQL database. The latter has been managed via a scientific information repository. We propose similarity measures and a criterion of similarity that capture similar spectra recorded at corpse skin. We systematically clustered reflectance spectra from the database as well as their metadata, such as case number, age, sex, skin temperature, duration of cooling, and postmortem time, with respect to the given criterion of similarity. Altogether, more than 500 reflectance spectra have been pairwisely compared. The measures that have been used to compare a pair of reflectance curve samples include the Euclidean distance between curves and the Euclidean distance between derivatives of the functions represented by the reflectance curves at the same wavelengths in the spectral range of visible light between 380 and 750 nm. For each case, using the recorded reflectance curves and the similarity criterion, the postmortem time interval during which a characteristic change in the shape of reflectance spectrum takes place is estimated. The latter is carried out via a software package composed of Java, Python, and MatLab scripts that query the MySQL database. We show that in legal medicine, matching and clustering of reflectance curves obtained by means of reflectance spectrometry with respect to a given criterion of similarity can be used to estimate the postmortem interval.

  14. Observations of silicate reststrahlen bands in lunar infrared spectra

    NASA Technical Reports Server (NTRS)

    Potter, A. E., Jr.; Morgan, T. H.

    1982-01-01

    Thermal emission spectra of three lunar sites (Apollo 11, Descartes Formation, and Tycho central peak) are measured in the 8-14 micron spectral range. Transmission and instrument effects are accounted for by forming ratios of the Descartes and Tycho spectra to the Apollo 11 spectrum. The ratio spectra are compared with ratios of published laboratory spectra of returned lunar samples and also with ratio spectra calculated using the Aronson-Emslie (1975) model. The comparisons show pyroxene bands in the Descartes ratio spectrum and plagioclase bands in the Tycho ratio spectrum. The Tycho spectrum is found to be consistent with the existence of fine plagioclase dust (approximately 1 micron) at the rock surface and a higher-than-usual sodium content of the plagioclase.

  15. The mechanical spectra of β-relaxation and spontaneous densification effects in an amorphous polymer

    NASA Astrophysics Data System (ADS)

    Muzeau, Elisabeth; Johari, G. P.

    1990-12-01

    The dynamic mechanical spectra of shear modulus of poly(methyl methacrylate) have been measured at several temperatures over the frequency range 10 -4-1 Hz in order to study localized diffusion of chain segments which appears as β-relaxation. The shape of the spectra of both the real and imaginary components has been analyzed. It is described by a stretched exponential decay function with exponent of 0.18 and it shows nearly 50% change in the modulus over this frequency range. This exponent and the rate of relaxation are remarkably similar to those observed by dielectric methods. A procedure for obtaining the exponent of the decay function and the relaxation strength of the β-process has been outlined. The strength of the β-relaxation, or equivalently the number of molecular segments undergoing a thermally activated localized diffusion, decreases on structural relaxation during the isothermal ageing, and the magnitude of the modulus increases. Qualitatively speaking, these effects seem comparable to the effects of an increase in density that normally occurs with decrease in temperature or increase in pressure, and demonstrate that isothermal ageing causes collapse of "soft sites" in a rigid amorphous matrix.

  16. The mid-infrared transmission spectra of Antarctic ureilites

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    1993-01-01

    The mid-IR (4000-450/cm; 2.5-22.2 microns) transmission spectra of seven Antarctic ureilites and 10 Antarctic H-5 ordinary chondrites are presented. The ureilite spectra show a number of absorption bands, the strongest of which is a wide, complex feature centered near 1000/cm (10 microns) due to Si-O stretching vibrations in silicates. The profiles and positions of the substructure in this feature indicate that Mg-rich olivines and pyroxenes are the main silicates responsible. The relative abundances of these two minerals, as inferred from the spectra, show substantial variation from meteorite to meteorite, but generally indicate olivine is the most abundant (olivine:pyroxene = 60:40 to 95:5). Both the predominance of olivine and the variable olivine-to-pyroxene ratio are consistent with the known composition and heterogeneity of ureilites. The H-5 ordinary chondrites spanned a range of weathering classes and were used to provide a means of addressing the extent to which the ureilite spectra may have been altered by weathering processes. It was found that, while weathering of these meteorites produces some weak bands due to the formation of small amounts of carbonates and hydrates, the profile of the main silicate feature has been little affected by Antarctic exposure in the meteorites studied here. The mid-IR ureilite spectra provide an additional means of testing potential asteroidal parent bodies for the ureilites.

  17. Perception of Stop Onset Spectra in Chinese Children with Phonological Dyslexia

    ERIC Educational Resources Information Center

    Liu, Wenli; Yue, Guoan

    2012-01-01

    The ability to identify stop consonants from brief onset spectra was compared between a group of Chinese children with phonological dyslexia (the PD group, with a mean age of 10 years 4 months) and a group of chronological age-matched control children. The linguistic context, which included vowels and speakers, and durations of stop onset spectra…

  18. Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode

    NASA Astrophysics Data System (ADS)

    Link, Paul Karl; Fanning, C. Mark; Beranek, Luke P.

    2005-12-01

    Detrital-zircon age-spectra effectively define provenance in Holocene and Neogene fluvial sands from the Snake River system of the northern Rockies, U.S.A. SHRIMP U-Pb dates have been measured for forty-six samples (about 2700 zircon grains) of fluvial and aeolian sediment. The detrital-zircon age distributions are repeatable and demonstrate predictable longitudinal variation. By lumping multiple samples to attain populations of several hundred grains, we recognize distinctive, provenance-defining zircon-age distributions or "barcodes," for fluvial sedimentary systems of several scales, within the upper and middle Snake River system. Our detrital-zircon studies effectively define the geochronology of the northern Rocky Mountains. The composite detrital-zircon grain distribution of the middle Snake River consists of major populations of Neogene, Eocene, and Cretaceous magmatic grains plus intermediate and small grain populations of multiply recycled Grenville (˜950 to 1300 Ma) grains and Yavapai-Mazatzal province grains (˜1600 to 1800 Ma) recycled through the upper Belt Supergroup and Cretaceous sandstones. A wide range of older Paleoproterozoic and Archean grains are also present. The best-case scenario for using detrital-zircon populations to isolate provenance is when there is a point-source pluton with known age, that is only found in one location or drainage. We find three such zircon age-populations in fluvial sediments downstream from the point-source plutons: Ordovician in the southern Beaverhead Mountains, Jurassic in northern Nevada, and Oligocene in the Albion Mountains core complex of southern Idaho. Large detrital-zircon age-populations derived from regionally well-defined, magmatic or recycled sedimentary, sources also serve to delimit the provenance of Neogene fluvial systems. In the Snake River system, defining populations include those derived from Cretaceous Atlanta lobe of the Idaho batholith (80 to 100 Ma), Eocene Challis Volcanic Group and

  19. THz spectra of cortisone and the related medicine

    NASA Astrophysics Data System (ADS)

    Ma, Shihua; Ge, Min; Liu, Guifeng; Song, Xiyu; Zhang, Peng; Wang, Wenfeng

    2009-07-01

    THz-TDS are used to study four kinds of drug: cortisone, hydrocortisone, prednisone and prednisolone. The THz spectra of them are obtained and analyzed from 0.2 - 1.6 THz. The experimental results shows the four samples have the different THz spectra. Cortisone has a peak at 1.5 THz and a broad absorption peak at 0.96 THz, while hydrocortisone has a weak absorption peak that lies at 1.27 THz. At the same time the prednisone has the stronger absorption peaks than the others, and its two peaks shows at 1.24 THz and 1.5 THz. Prednisolone has a weak broad peak at 1.43 THz. The results of the theoretical calculation were performed using Gaussian 03 software with Density Functional Theory at the basis set of 6-31+G (d, p). The theoretical vibrational frequencies are compared with the experimental results, and the deviations are discussed. The THz spectra of the medicine show THz technique may be help to distinguish some different chemical bond and functional group.

  20. LSD-based analysis of high-resolution stellar spectra

    NASA Astrophysics Data System (ADS)

    Tsymbal, V.; Tkachenko, A.; Van, Reeth T.

    2014-11-01

    We present a generalization of the method of least-squares deconvolution (LSD), a powerful tool for extracting high S/N average line profiles from stellar spectra. The generalization of the method is effected by extending it towards the multiprofile LSD and by introducing the possibility to correct the line strengths from the initial mask. We illustrate the new approach by two examples: (a) the detection of astroseismic signatures from low S/N spectra of single stars, and (b) disentangling spectra of multiple stellar objects. The analysis is applied to spectra obtained with 2-m class telescopes in the course of spectroscopic ground-based support for space missions such as CoRoT and Kepler. Usually, rather high S/N is required, so smaller telescopes can only compete successfully with more advanced ones when one can apply a technique that enables a remarkable increase in the S/N of the spectra which they observe. Since the LSD profiles have a potential for reconstruction what is common in all the spectral profiles, it should have a particular practical application to faint stars observed with 2-m class telescopes and whose spectra show remarkable LPVs.

  1. Stellar parametrization from Gaia RVS spectra

    NASA Astrophysics Data System (ADS)

    Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.

    2016-01-01

    found for A-type stars, while the log(g) derivation is more accurate (errors of 0.07 and 0.12 dex at GRVS = 12.6 and 13.4, respectively). For the faintest stars, with GRVS≳ 13-14, a Teff input from the spectrophotometric-derived parameters will allow the final GSP-Spec parametrization to be improved. Conclusions: The reported results, while neglecting possible mismatches between synthetic and real spectra, show that the contribution of the RVS-based stellar parameters will be unique in the brighter part of the Gaia survey, which allows for crucial age estimations and accurate chemical abundances. This will constitute a unique and precious sample, providing many pieces of the Milky Way history puzzle with unprecedented precision and statistical relevance.

  2. Do NIR spectra collected from laboratory-reared mosquitoes differ from those collected from wild mosquitoes?

    USDA-ARS?s Scientific Manuscript database

    Do near infrared spectra from lab-reared mosquitoes differ from spectra from wild mosquitoes? Near infrared spectroscopy (NIRS) can classify the age of lab-reared mosquitoes as younger or older than seven days with accuracy greater than 80%. Hence, it has been proposed in several studies as a comple...

  3. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    PubMed

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Ages of LMC star clusters using ASAD2

    NASA Astrophysics Data System (ADS)

    Asa'd, Randa S.; Vazdekis, Alexandre; Zeinelabdin, Sami

    2016-04-01

    We use ASAD2, the new version of ASAD (Analyzer of Spectra for Age Determination), to obtain the age and reddening of 27 Large Magellanic Cloud (LMC) clusters from full fitting of integrated spectra using different statistical methods [χ2 and Kolmogorov-Smirnov (KS) test] and a set of stellar population models including GALAXEV and MILES. We show that our results are in good agreement with the colour-magnitude diagram (CMD) ages for both models, and that metallicity does not affect the age determination for the full spectrum fitting method regardless of the model used for ages with log (age/year) < 9. We discuss the results obtained by the two statistical results for both GALAXEV and MILES versus three factors: age, signal-to-noise ratio and resolution (full width at half maximum). The predicted reddening values when using the χ2 minimization method are within the range found in the literature for resolved clusters (I.e. <0.35); however the KS test can predict E(B - V) higher values. The sharp spectrum transition originated at ages around the supergiants contribution, at either side of the AGB peak around log (age/year) 9.0 and log (age/year) 7.8 are limiting our ability to provide values in agreement with the CMD estimates and as a result the reddening determination is not accurate. We provide the detailed results of four clusters spanning a wide range of ages. ASAD2 is a user-friendly program available for download on the Web and can be immediately used at http://randaasad.wordpress.com/asad-package/.

  5. FAST INVERSION OF SOLAR Ca II SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, C.; Choudhary, D. P.; Rezaei, R.

    We present a fast (<<1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ∼ –3 and increases to valuesmore » of 2.5 and 4 at log τ = –6 in the quiet Sun and the umbra, respectively.« less

  6. Soil emissivity and reflectance spectra measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobrino, Jose A.; Mattar, Cristian; Pardo, Pablo

    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 {mu}m with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer andmore » converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.« less

  7. A Pipeline for the Analysis of APOGEE Spectra Based on Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Arfon Williams, Rob; Bosley, Corinne; Jones, Hayden; Schiavon, Ricardo P.; Allende-Prieto, Carlos; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia M. L.; Nguyen, Duy; Feuillet, Diane; Frinchaboy, Peter M.; García Pérez, Ana; Hasselquist, Sten; Hayden, Michael R.; Hearty, Fred R.; Holtzman, Jon A.; Johnson, Jennifer; Majewski, Steven R.; Meszaros, Szabolcs; Nidever, David L.; Shetrone, Matthew D.; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas William; Wilson, John C.; Zasowski, Gail

    2015-01-01

    The Apache Point Galactic Evolution Experiment (APOGEE) forms part of the third Sloan Digital Sky Survey and has obtained high resolution, high signal-to-noise infrared spectra for ~1.3 x 105 stars across the galactic bulge, disc and halo. From these, stellar parameters are derived together with abundances for various elements using the APOGEE Stellar Parameters and Chemical Abundance Pipeline (ASPCAP). In this poster we report preliminary results from application of an alternative stellar parameters and abundances pipeline, based on measurements of equivalent widths of absorption lines in APOGEE spectra. The method is based on a sequential grid inversion algorithm, originally designed for the derivation of ages and elemental abundances of stellar populations from line indices in their integrated spectra. It allows for the rapid processing of large spectroscopic data sets from both current and future surveys, such as APOGEE and APOGEE 2, and it is easily adaptable for application to other very large data sets that are being/will be generated by other massive surveys of the stellar populations of the Galaxy. It will also allow the cross checking of ASPCAP results using an independent method. In this poster we present preliminary results showing estimates of effective temperature and iron abundance [Fe/H] for a subset of the APOGEE sample, comparing with DR12 numbers produced by the ASPCAP pipeline.

  8. Spectra of Baroclinic Inertia-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1996-01-01

    Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.

  9. Supernova spectra below strong circumstellar interaction

    NASA Astrophysics Data System (ADS)

    Leloudas, G.; Hsiao, E. Y.; Johansson, J.; Maeda, K.; Moriya, T. J.; Nordin, J.; Petrushevska, T.; Silverman, J. M.; Sollerman, J.; Stritzinger, M. D.; Taddia, F.; Xu, D.

    2015-02-01

    We construct spectra of supernovae (SNe) interacting strongly with a circumstellar medium (CSM) by adding SN templates, a black-body continuum, and an emission-line spectrum. In a Monte Carlo simulation we vary a large number of parameters, such as the SN type, brightness and phase, the strength of the CSM interaction, the extinction, and the signal to noise ratio (S/N) of the observed spectrum. We generate more than 800 spectra, distribute them to ten different human classifiers, and study how the different simulation parameters affect the appearance of the spectra and their classification. The SNe IIn showing some structure over the continuum were characterized as "SNe IInS" to allow for a better quantification. We demonstrate that the flux ratio of the underlying SN to the continuum fV is the single most important parameter determining whether a spectrum can be classified correctly. Other parameters, such as extinction, S/N, and the width and strength of the emission lines, do not play a significant role. Thermonuclear SNe get progressively classified as Ia-CSM, IInS, and IIn as fV decreases. The transition between Ia-CSM and IInS occurs at fV ~ 0.2-0.3. It is therefore possible to determine that SNe Ia-CSM are found at the (un-extincted) magnitude range -19.5 >M> -21.6, in very good agreement with observations, and that the faintest SN IIn that can hide a SN Ia has M = -20.1. The literature sample of SNe Ia-CSM shows an association with 91T-like SNe Ia. Our experiment does not support that this association can be attributed to a luminosity bias (91T-like being brighter than normal events). We therefore conclude that this association has real physical origins and we propose that 91T-like explosions result from single degenerate progenitors that are responsible for the CSM. Despite the spectroscopic similarities between SNe Ibc and SNe Ia, the number of misclassifications between these types was very small in our simulation and mostly at low S/N. Combined with

  10. Spectral classification with the International Ultraviolet Explorer: An atlas of B-type spectra

    NASA Technical Reports Server (NTRS)

    Rountree, Janet; Sonneborn, George

    1993-01-01

    New criteria for the spectral classification of B stars in the ultraviolet show that photospheric absorption lines in the 1200-1900A wavelength region can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a 2-D system consistent with the optical MK system. This atlas illustrates a large number of such spectra at the scale used for classification. These spectra provide a dense matrix of standard stars, and also show the effects of rapid stellar rotation and stellar winds on the spectra and their classification. The observational material consists of high-dispersion spectra from the International Ultraviolet Explorer archives, resampled to a resolution of 0.25 A, uniformly normalized, and plotted at 10 A/cm. The atlas should be useful for the classification of other IUE high-dispersion spectra, especially for stars that have not been observed in the optical.

  11. Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading

    PubMed Central

    Thorpe, Chavaunne T.; Riley, Graham P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R. C.

    2014-01-01

    Some tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), act as energy stores, stretching and recoiling to increase efficiency during locomotion. Our previous observations of rotation in response to applied strain in SDFT fascicles suggest a helical structure, which may provide energy-storing tendons with a greater ability to extend and recoil efficiently. Despite this specialization, energy-storing tendons are prone to age-related tendinopathy. The aim of this study was to assess the effect of cyclic fatigue loading (FL) on the microstructural strain response of SDFT fascicles from young and old horses. The data demonstrate two independent age-related mechanisms of fatigue failure; in young horses, FL caused low levels of matrix damage and decreased rotation. This suggests that loading causes alterations to the helix substructure, which may reduce their ability to recoil and recover. By contrast, fascicles from old horses, in which the helix is already compromised, showed greater evidence of matrix damage and suffer increased fibre sliding after FL, which may partially explain the age-related increase in tendinopathy. Elucidation of helix structure and the precise alterations occurring owing to both ageing and FL will help to develop appropriate preventative and repair strategies for tendinopathy. PMID:24402919

  12. [The NIR spectra based variety discrimination for single soybean seed].

    PubMed

    Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng

    2010-12-01

    With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.

  13. The Mid-Infrared Transmission Spectra of Antarctic Ureilites

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    1993-01-01

    The mid-infrared (4000-450 1/cm; 2.5-22.2 micron) transmission spectra of seven Antarctic ureilites and 10 Antarctic H-5 ordinary chondrites are presented. The ureilite spectra show a number of absorption bands, the strongest of which is a wide, complex feature centered near 1000 1/cm (10 micron) due to Si-O stretching vibrations in silicates. The profiles and positions of the substructure in this feature indicate that Mg-rich olivines and pyroxenes are the main silicates responsible. The relative abundances of these two minerals, as inferred from the spectra, show substantial variation from meteorite to meteorite, but generally indicate olivine is the most abundant (olivine:pyroxene = 60:40 to 95:5). Both the predominance of olivine and the variable olivine-to-pyroxene ratio are consistent with the known composition and heterogeneity of ureilites. The H-5 ordinary chondrites spanned a range of weathering classes and were used to provide a means of addressing the extent to which the ureilite spectra may have been altered by weathering processes. It was found that, while weathering of these meteorites produces some weak bands due to the formation of small amounts of carbonates and hydrates, the profile of the main silicate feature has been little affected by Antarctic exposure in the meteorites studied here. The mid-infrared ureilite spectra provide an additional means of testing potential asteroidal parent bodies for the ureilites. At present, the best candidates include the subset of S-type asteroids having low albedos and weak absorption features in the near infrared.

  14. Fascicles and the interfascicular matrix show decreased fatigue life with ageing in energy storing tendons.

    PubMed

    Thorpe, Chavaunne T; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2017-07-01

    Tendon is composed of rope-like fascicles bound together by interfascicular matrix (IFM). The IFM is critical for the function of energy storing tendons, facilitating sliding between fascicles to allow these tendons to cyclically stretch and recoil. This capacity is required to a lesser degree in positional tendons. We have previously demonstrated that both fascicles and IFM in energy storing tendons have superior fatigue resistance compared with positional tendons, but the effect of ageing on the fatigue properties of these different tendon subunits has not been determined. Energy storing tendons become more injury-prone with ageing, indicating reduced fatigue resistance, hence we tested the hypothesis that the decline in fatigue life with ageing in energy storing tendons would be more pronounced in the IFM than in fascicles. We further hypothesised that tendon subunit fatigue resistance would not alter with ageing in positional tendons. Fascicles and IFM from young and old energy storing and positional tendons were subjected to cyclic fatigue testing until failure, and mechanical properties were calculated. The results show that both IFM and fascicles from the SDFT exhibit a similar magnitude of reduced fatigue life with ageing. By contrast, the fatigue life of positional tendon subunits was unaffected by ageing. The age-related decline in fatigue life of tendon subunits in energy storing tendons is likely to contribute to the increased risk of injury in aged tendons. Full understanding of the mechanisms resulting in this reduced fatigue life will aid in the development of treatments and interventions to prevent age-related tendinopathy. Understanding the effect of ageing on tendon-structure function relationships is crucial for the development of effective preventative measures and treatments for age-related tendon injury. In this study, we demonstrate for the first time that the fatigue resistance of the interfascicular matrix decreases with ageing in energy

  15. Deriving temperature, mass, and age of evolved stars from high-resolution spectra. Application to field stars and the open cluster IC 4651

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; Pasquini, L.; Girardi, L.; Frasca, A.; da Silva, L.; Setiawan, J.; Marilli, E.; Hatzes, A. P.; Catalano, S.

    2007-12-01

    Aims:We test our capability of deriving stellar physical parameters of giant stars by analysing a sample of field stars and the well studied open cluster IC 4651 with different spectroscopic methods. Methods: The use of a technique based on line-depth ratios (LDRs) allows us to determine with high precision the effective temperature of the stars and to compare the results with those obtained with a classical LTE abundance analysis. Results: (i) For the field stars we find that the temperatures derived by means of the LDR method are in excellent agreement with those found by the spectral synthesis. This result is extremely encouraging because it shows that spectra can be used to firmly derive population characteristics (e.g., mass and age) of the observed stars. (ii) For the IC 4651 stars we use the determined effective temperature to derive the following results. a) The reddening E(B-V) of the cluster is 0.12±0.02, largely independent of the color-temperature calibration used. b) The age of the cluster is 1.2±0.2 Gyr. c) The typical mass of the analysed giant stars is 2.0±0.2~M⊙. Moreover, we find a systematic difference of about 0.2 dex in log g between spectroscopic and evolutionary values. Conclusions: We conclude that, in spite of known limitations, a classical spectroscopic analysis of giant stars may indeed result in very reliable stellar parameters. We caution that the quality of the agreement, on the other hand, depends on the details of the adopted spectroscopic analysis. Based on observations collected at the ESO telescopes at the Paranal and La Silla Observatories, Chile.

  16. Simulation of Infrared Spectra of Carbonaceous Grains

    NASA Astrophysics Data System (ADS)

    Dadswell, G.; Duley, W. W.

    1997-02-01

    Random covalent network (RCN) theory is applied to describe the infrared spectroscopic properties of carbonaceous solids with compositions containing a mixture of aromatic, aliphatic, and diamond-like hydrocarbons. Application of this technique to carbonaceous dust is equivalent to the synthesis of solids whose structure and bonding satisfy stoicheometry while minimizing strain energy. The result involves a range of compositions compatible with carbon bonding and the hydrogen concentration incorporated in the network. In general, only a limited range of compositions is available rather than the infinite number of possible compositions expected without the inclusion of these constraints. When compositions have been defined in this way, infrared spectra may be synthesized for comparison with astronomical spectra of interstellar carbonaceous solids. Such spectra contain components corresponding to absorption by CHn groups in which n = 1-3. We find, however, that additional spectral features, not included in our simple chemical model, must be present also in dust. We give plots of such spectra in the 3100-2800 cm-1 (3.2-3.6 μm) region for comparison with infrared spectra of interstellar dust. We have also developed an RCN formalism that incorporates oxygen into the carbon network as OH groups, and we show that this inclusion introduces a strong additional absorption band in the 3300 cm-1 (3.0 μm) region.

  17. Two-dimensional energy spectra in a high Reynolds number turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Chandran, Dileep; Baidya, Rio; Monty, Jason; Marusic, Ivan

    2016-11-01

    The current study measures the two-dimensional (2D) spectra of streamwise velocity component (u) in a high Reynolds number turbulent boundary layer for the first time. A 2D spectra shows the contribution of streamwise (λx) and spanwise (λy) length scales to the streamwise variance at a given wall height (z). 2D spectra could be a better tool to analyse spectral scaling laws as it is devoid of energy aliasing errors that could be present in one-dimensional spectra. A novel method is used to calculate the 2D spectra from the 2D correlation of u which is obtained by measuring velocity time series at various spanwise locations using hot-wire anemometry. At low Reynolds number, the shape of the 2D spectra at a constant energy level shows λy √{ zλx } behaviour at larger scales which is in agreement with the literature. However, at high Reynolds number, it is observed that the square-root relationship gradually transforms into a linear relationship (λy λx) which could be caused by the large packets of eddies whose length grows proportionately to the growth of its width. Additionally, we will show that this linear relationship observed at high Reynolds number is consistent with attached eddy predictions. The authors gratefully acknowledge the support from the Australian Research Council.

  18. Peptide Identification by Database Search of Mixture Tandem Mass Spectra*

    PubMed Central

    Wang, Jian; Bourne, Philip E.; Bandeira, Nuno

    2011-01-01

    In high-throughput proteomics the development of computational methods and novel experimental strategies often rely on each other. In certain areas, mass spectrometry methods for data acquisition are ahead of computational methods to interpret the resulting tandem mass spectra. Particularly, although there are numerous situations in which a mixture tandem mass spectrum can contain fragment ions from two or more peptides, nearly all database search tools still make the assumption that each tandem mass spectrum comes from one peptide. Common examples include mixture spectra from co-eluting peptides in complex samples, spectra generated from data-independent acquisition methods, and spectra from peptides with complex post-translational modifications. We propose a new database search tool (MixDB) that is able to identify mixture tandem mass spectra from more than one peptide. We show that peptides can be reliably identified with up to 95% accuracy from mixture spectra while considering only a 0.01% of all possible peptide pairs (four orders of magnitude speedup). Comparison with current database search methods indicates that our approach has better or comparable sensitivity and precision at identifying single-peptide spectra while simultaneously being able to identify 38% more peptides from mixture spectra at significantly higher precision. PMID:21862760

  19. De novo peptide sequencing using CID and HCD spectra pairs.

    PubMed

    Yan, Yan; Kusalik, Anthony J; Wu, Fang-Xiang

    2016-10-01

    In tandem mass spectrometry (MS/MS), there are several different fragmentation techniques possible, including, collision-induced dissociation (CID) higher energy collisional dissociation (HCD), electron-capture dissociation (ECD), and electron transfer dissociation (ETD). When using pairs of spectra for de novo peptide sequencing, the most popular methods are designed for CID (or HCD) and ECD (or ETD) spectra because of the complementarity between them. Less attention has been paid to the use of CID and HCD spectra pairs. In this study, a new de novo peptide sequencing method is proposed for these spectra pairs. This method includes a CID and HCD spectra merging criterion and a parent mass correction step, along with improvements to our previously proposed algorithm for sequencing merged spectra. Three pairs of spectral datasets were used to investigate and compare the performance of the proposed method with other existing methods designed for single spectrum (HCD or CID) sequencing. Experimental results showed that full-length peptide sequencing accuracy was increased significantly by using spectra pairs in the proposed method, with the highest accuracy reaching 81.31%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spectra from pair-equilibrium plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1984-01-01

    A numerical model of relativistic nonmagnetized plasma with uniform temperature and electron density distributions is considered, and spectra from plasma in pair equilibrium are studied. A range of dimensionless temperature (T) greater than about 0.2 is considered. The spectra from low pair density plasmas in pair equilibrium vary from un-Comptonized bremsstrahlung spectra at Thomson cross section tau(N) much less than one to Comptonized bremsstrahlung spectra with tau(N) over one. For high pair density plasmas the spectra are flat for T greater than about one, and have broad intensity peaks at energy roughly equal to 3T for T less than one. In the latter region the total luminosity is approximately twice the annihilation luminosity. All spectra are flat in the X-ray region, in contradiction to observed AGN spectra. For dimensionless luminosity greater than about 100, the cooling time becomes shorter than the Thomson time.

  1. LINEAGE TRACING AGED MOUSE KIDNEYS SHOWS LOWER NUMBER OF CELLS OF RENIN LINEAGE AND REDUCED RESPONSIVENESS TO RAAS INHIBITION.

    PubMed

    Hamatani, Hiroko; Eng, Diana G; Kaverina, Natalya V; Gross, Kenneth W; Freedman, Benjamin; Pippin, Jeffrey W; Shankland, Stuart J

    2018-02-07

    Blocking the renin-angiotensin-aldosterone system (RAAS) remains a mainstay of therapy in hypertension and glomerular diseases. With the population aging, our understanding of renin producing cells in kidneys with advanced age is more critical than ever. Accordingly, we administered tamoxifen to Ren1cCreERxRs-tdTomato-R mice to permanently fate map cells of renin lineage (CoRL). The number of Td-tomato labeled CoRL decreased significantly in aged mice (24m of age) compared to young mice (3.5m of age), as did renin mRNA levels. To determine if aged CoRL responded less to RAAS blockade, enalapril and losartan were administered over 25d following uninephrectomy in young and aged mice. The number of CoRL increased in young mice in response to enalapril and losartan. However, this was significantly lower in aged mice compared to young mice due to limited proliferation, but not recruitment. Gene expression analysis of laser captured CoRL showed a substantial increase in mRNA levels for pro-apoptotic and pro-senescence genes, and an increase in a major pro-senescence protein on immunostaining. These results show that CoRL are lower in aged mice, and do not respond to RAAS inhibition to the same extent as young mice.

  2. The diversity of soft X-ray spectra in quasars

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Wilkes, B. J.; Tananbaum, H.

    1985-01-01

    Soft X-ray spectra for three quasars obtained with the Einstein Imaging Proportional Counter covering the 0.1-4.0 keV band are reported. Power-law fits to these spectra have best-fit energy indices of 1.2 +0.6 or -0.2, for the quasar NAB 0205 + 024, 0.6 +0.3 or -0.2 for the quasar B2 1028 + 313, and 2.2 + or -0.4 for the quasar PG 1211 + 143. None of the quasars shows any evidence for a column density of cold matter in excess of the galactic values. The derived spectra demonstrate that there is no single universal power law slope for quasar X-ray spectra. The implications of these results for the X-ray background, X-ray continuum emission mechanisms, and the production of the optical/UV emission lines are briefly discussed.

  3. Comparative analysis of characteristic electron energy loss spectra and inelastic scattering cross-section spectra of Fe

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2016-05-01

    The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.

  4. Power spectra at radio frequency of lightning return stroke waveforms

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.

    1989-01-01

    The power spectra of the wideband (10 Hz to 100 kHz) magnetic field signals in a number of lightning return strokes (primarily first return strokes) measured during a lightning storm which occurred in Lindau, West Germany in August, 1984 have been calculated. The RF magnetic field data were obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks appearing in the spectra of many of the waveforms. An enhancement of power at frequencies of about 60-70 kHz is often seen in the spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.

  5. Comparing aging of graphite/LiFePO4 cells at 22 °C and 55 °C - Electrochemical and photoelectron spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Hellqvist Kjell, Maria; Malmgren, Sara; Ciosek, Katarzyna; Behm, Mårten; Edström, Kristina; Lindbergh, Göran

    2013-12-01

    Accelerated aging at elevated temperature is commonly used to test lithium-ion battery lifetime, but the effect of an elevated temperature is still not well understood. If aging at elevated temperature would only be faster, but in all other respects equivalent to aging at ambient temperature, cells aged to end-of-life (EOL) at different temperatures would be very similar. The present study compares graphite/LiFePO4-based cells either cycle- or calendar-aged to EOL at 22 °C and 55 °C. Cells cycled at the two temperatures show differences in electrochemical impedance spectra as well as in X-ray photoelectron spectroscopy (XPS) spectra. These results show that lithium-ion cell aging is a complex set of processes. At elevated temperature, the aging is accelerated in process-specific ways. Furthermore, the XPS results of cycle-aged samples indicate increased deposition of oxygenated LiPF6 decomposition products in both the negative and positive electrode/electrolyte interfaces. The decomposition seems more pronounced at elevated temperature, and largely accelerated by cycling, which could contribute to the observed cell impedance increase.

  6. ELM: AN ALGORITHM TO ESTIMATE THE ALPHA ABUNDANCE FROM LOW-RESOLUTION SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bu, Yude; Zhao, Gang; Kumar, Yerra Bharat

    We have investigated a novel methodology using the extreme learning machine (ELM) algorithm to determine the α abundance of stars. Applying two methods based on the ELM algorithm—ELM+spectra and ELM+Lick indices—to the stellar spectra from the ELODIE database, we measured the α abundance with a precision better than 0.065 dex. By applying these two methods to the spectra with different signal-to-noise ratios (S/Ns) and different resolutions, we found that ELM+spectra is more robust against degraded resolution and ELM+Lick indices is more robust against variation in S/N. To further validate the performance of ELM, we applied ELM+spectra and ELM+Lick indices to SDSSmore » spectra and estimated α abundances with a precision around 0.10 dex, which is comparable to the results given by the SEGUE Stellar Parameter Pipeline. We further applied ELM to the spectra of stars in Galactic globular clusters (M15, M13, M71) and open clusters (NGC 2420, M67, NGC 6791), and results show good agreement with previous studies (within 1σ). A comparison of the ELM with other widely used methods including support vector machine, Gaussian process regression, artificial neural networks, and linear least-squares regression shows that ELM is efficient with computational resources and more accurate than other methods.« less

  7. ELM: an Algorithm to Estimate the Alpha Abundance from Low-resolution Spectra

    NASA Astrophysics Data System (ADS)

    Bu, Yude; Zhao, Gang; Pan, Jingchang; Bharat Kumar, Yerra

    2016-01-01

    We have investigated a novel methodology using the extreme learning machine (ELM) algorithm to determine the α abundance of stars. Applying two methods based on the ELM algorithm—ELM+spectra and ELM+Lick indices—to the stellar spectra from the ELODIE database, we measured the α abundance with a precision better than 0.065 dex. By applying these two methods to the spectra with different signal-to-noise ratios (S/Ns) and different resolutions, we found that ELM+spectra is more robust against degraded resolution and ELM+Lick indices is more robust against variation in S/N. To further validate the performance of ELM, we applied ELM+spectra and ELM+Lick indices to SDSS spectra and estimated α abundances with a precision around 0.10 dex, which is comparable to the results given by the SEGUE Stellar Parameter Pipeline. We further applied ELM to the spectra of stars in Galactic globular clusters (M15, M13, M71) and open clusters (NGC 2420, M67, NGC 6791), and results show good agreement with previous studies (within 1σ). A comparison of the ELM with other widely used methods including support vector machine, Gaussian process regression, artificial neural networks, and linear least-squares regression shows that ELM is efficient with computational resources and more accurate than other methods.

  8. Towards a full reference library of MS(n) spectra. Testing of a library containing 3126 MS2 spectra of 1743 compounds.

    PubMed

    Milman, Boris L

    2005-01-01

    A library consisting of 3766 MS(n) spectra of 1743 compounds, including 3126 MS2 spectra acquired mainly using ion trap (IT) and triple-quadrupole (QqQ) instruments, was composed of numerous collections/sources. Ionization techniques were mainly electrospray ionization and also atmospheric pressure chemical ionization and chemical ionization. The library was tested for the performance in identification of unknowns, and in this context this work is believed to be the largest of all known tests of product-ion mass spectral libraries. The MS2 spectra of the same compounds from different collections were in turn divided into spectra of 'unknown' and reference compounds. For each particular compound, library searches were performed resulting in selection by taking into account the best matches for each spectral collection/source. Within each collection/source, replicate MS2 spectra differed in the collision energy used. Overall, there were up to 950 search results giving the best match factors and their ranks in corresponding hit lists. In general, the correct answers were obtained as the 1st rank in up to 60% of the search results when retrieved with (on average) 2.2 'unknown' and 6.2 reference replicates per compound. With two or more replicates of both 'unknown' and reference spectra (the average numbers of replicates were 4.0 and 7.8, respectively), the fraction of correct answers in the 1st rank increased to 77%. This value is close to the performance of established electron ionization mass spectra libraries (up to 79%) found by other workers. The hypothesis that MS2 spectra better match reference spectra acquired using the same type of tandem mass spectrometer (IT or QqQ) was neither strongly proved nor rejected here. The present work shows that MS2 spectral libraries containing sufficiently numerous different entries for each compound are sufficiently efficient for identification of unknowns and suitable for use with different tandem mass spectrometers. 2005 John

  9. A simple model for strong ground motions and response spectra

    USGS Publications Warehouse

    Safak, Erdal; Mueller, Charles; Boatwright, John

    1988-01-01

    A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.

  10. Testing Dissipative Magnetosphere Model Light Curves and Spectra with Fermi Pulsars

    NASA Technical Reports Server (NTRS)

    Brambilla, Gabriele; Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes

    2015-01-01

    We explore the emission properties of a dissipative pulsar magnetosphere model introduced by Kalapotharakos et al. comparing its high-energy light curves and spectra, due to curvature radiation, with data collected by the Fermi LAT. The magnetosphere structure is assumed to be near the force-free solution. The accelerating electric field, inside the light cylinder (LC), is assumed to be negligible, while outside the LC it rescales with a finite conductivity (sigma). In our approach we calculate the corresponding high-energy emission by integrating the trajectories of test particles that originate from the stellar surface, taking into account both the accelerating electric field components and the radiation reaction forces. First, we explore the parameter space assuming different value sets for the stellar magnetic field, stellar period, and conductivity. We show that the general properties of the model are in a good agreement with observed emission characteristics of young gamma-ray pulsars, including features of the phase-resolved spectra. Second, we find model parameters that fit each pulsar belonging to a group of eight bright pulsars that have a published phase-resolved spectrum. The sigma values that best describe each of the pulsars in this group show an increase with the spin-down rate (E? ) and a decrease with the pulsar age, expected if pair cascades are providing the magnetospheric conductivity. Finally, we explore the limits of our analysis and suggest future directions for improving such models.

  11. First-principles study of the infrared spectra of the ice Ih (0001) surface

    DOE PAGES

    Pham, T. Anh; Huang, P.; Schwegler, E.; ...

    2012-08-22

    Here, we present a study of the infrared (IR) spectra of the (0001) deuterated ice surface based on first-principles molecular dynamics simulations. The computed spectra show a good agreement with available experimental IR measurements. We identified the bonding configurations associated with specific features in the spectra, allowing us to provide a detailed interpretation of IR signals. We computed the spectra of several proton ordered and disordered models of the (0001) surface of ice, and we found that IR spectra do not appear to be a sensitive probe of the microscopic arrangement of protons at ice surfaces.

  12. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study.

    PubMed

    Imperatori, Claudio; Farina, Benedetto; Quintiliani, Maria Isabella; Onofri, Antonio; Castelli Gattinara, Paola; Lepore, Marta; Gnoni, Valentina; Mazzucchi, Edoardo; Contardi, Anna; Della Marca, Giacomo

    2014-10-01

    The aim of the present study was to explore the modifications of EEG power spectra and EEG connectivity of resting state (RS) condition in patients with post-traumatic stress disorder (PTSD). Seventeen patients and seventeen healthy subjects matched for age and gender were enrolled. EEG was recorded during 5min of RS. EEG analysis was conducted by means of the standardized Low Resolution Electric Tomography software (sLORETA). In power spectra analysis PTSD patients showed a widespread increase of theta activity (4.5-7.5Hz) in parietal lobes (Brodmann Area, BA 7, 4, 5, 40) and in frontal lobes (BA 6). In the connectivity analysis PTSD patients also showed increase of alpha connectivity (8-12.5Hz) between the cortical areas explored by Pz-P4 electrode. Our results could reflect the alteration of memory systems and emotional processing consistently altered in PTSD patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Electronic spectra and DFT calculations of some pyrimido[1,2-a]benzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Elshakre, Mohamed E.; Moustafa, H.; Hassaneen, Huwaida. M. E.; Moussa, Abdelrahim. Z.

    2015-06-01

    Ground state properties of 2,4-diphenyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine, compound 1, and its derivatives are investigated experimentally and theoretically in Dioxane and DMF. The calculations show that all the studied compounds (1-7) are non-planar, resulting in a significant impact on the electronic and structural properties. The ground state properties of compounds 1-7 at B3LYP/6-311G (d, p) show that compound 5 has the lowest EHOMO, ELUMO, and ΔE indicating highest reactivity. Compound 7 is found to have the highest polarity. The observed UV spectra in Dioxane and DMF of compounds 1-4 show 2 bands, while compounds 5-7 show 4 bands in both solvents. Band maxima (λmax) and intensities of the spectra are found to have solvent dependence reflected as blue and red shifts. The theoretical spectra computed at TD-B3LYP/6-311G (d, p) in gas phase, Dioxane and DMF indicate a good agreement with the observed spectra.

  14. Dynamics in terahertz semiconductor microcavity: quantum noise spectra

    NASA Astrophysics Data System (ADS)

    Jabri, H.; Eleuch, H.

    2018-05-01

    We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.

  15. Gravitational effects on planetary neutron flux spectra

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Drake, D. M.; O'dell, R. D.; Brinkley, F. W.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  16. Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age.

    PubMed

    Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Jantsch, Michael F; Loidl, Josef; Jantsch, Verena

    2010-03-15

    From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans.

  17. Mutations in Caenorhabditis elegans him-19 Show Meiotic Defects That Worsen with Age

    PubMed Central

    Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M.; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Loidl, Josef; Jantsch, Verena

    2010-01-01

    From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans. PMID:20071466

  18. Reionization through Trickery: How to Find the True FUV Spectra of z>6 Quasars

    NASA Astrophysics Data System (ADS)

    O'Dowd, Matthew; Schiminovich, D.; Webster, R. L.; Haiman, Z.

    2011-01-01

    Studies of absorption in the vicinity of z > 6 quasars will enable characterization of the final stages of the epoch of reionization, and measurement of the last remnants of the neutral fraction from the cosmic dark ages. Before this can happen, we will need to know the intrinsic shape of the rest-frame FUV spectrum of luminous quasars, and in particular of the Lyman-Alpha emission line. To date, such measurements have only been possible for local, low luminosity quasars and Seyferts whose FUV spectra are not strongly absorbed in the IGM. These AGN are poor models of their high-luminosity cousins, and the BELR physics driving the Ly-alpha line may be very different. I will outline two approaches to measuring the true, unabsorbed FUV spectra of luminous quasars. First, by observing differential microlensing of strongly lensed quasars at z > 3, I will show how we can algebraically reconstruct the true FUV spectrum, and recover the absorption spectrum and measure the proximity effect to boot. Second, by targeting a narrow redshift range at z 1, we can identify a subsample of luminous quasars that have avoided significant absorption, but are nonetheless genuine analogs of our z > 6 quasars. I will show some preliminary GALEX data of these quasars.

  19. Dating star clusters in the Small Magellanic Cloud by means of integrated spectra

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Clariá, J. J.; Bica, E.; Dutra, C. M.

    2002-10-01

    In this study flux-calibrated integrated spectra in the range (3600-6800) Å are presented for 16 concentrated star clusters in the Small Magellanic Cloud (SMC), approximately half of which constitute unstudied objects. We have estimated ages and foreground interstellar reddening values from the comparison of the line strengths and continuum distribution of the cluster spectra with those of template cluster spectra with known parameters. Most of the sample clusters are young blue clusters (6-50 Myr), while L 28, NGC 643 and L 114 are found to be intermediate-age clusters (1-6 Gyr). One well known SMC cluster (NGC 416) was observed for comparison purposes. The sample includes clusters in the surroundings and main body of the SMC, and the derived foreground reddening values are in the range 0.00 <= E(B-V) <= 0.15. The present data also make up a cluster spectral library at SMC metallicity. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  20. Electronic spectra of astrophysically interesting cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, John P., E-mail: j.p.maier@unibas.ch; Rice, Corey A., E-mail: j.p.maier@unibas.ch; Mazzotti, Fabio J., E-mail: j.p.maier@unibas.ch

    2015-01-22

    The electronic spectra of polyacetylene cations were recorded at 20K in the laboratory in an ion trap instrument. These can then be compared with diffuse interstellar band (DIB) absorptions. Examination of recently published data shows that the attribution of a weak DIB at ∼506.9 nm to diacetylene cation is not justified. Study of the higher excited electronic states of polyacetylene cations shows that their widths can still be sufficiently narrow for consideration as DIB carriers.

  1. Using indirect covariance spectra to identify artifact responses in unsymmetrical indirect covariance calculated spectra.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Blinov, Kirill A; Williams, Antony J

    2008-02-01

    Several groups of authors have reported studies in the areas of indirect and unsymmetrical indirect covariance NMR processing methods. Efforts have recently focused on the use of unsymmetrical indirect covariance processing methods to combine various discrete two-dimensional NMR spectra to afford the equivalent of the much less sensitive hyphenated 2D NMR experiments, for example indirect covariance (icv)-heteronuclear single quantum coherence (HSQC)-COSY and icv-HSQC-nuclear Overhauser effect spectroscopy (NOESY). Alternatively, unsymmetrical indirect covariance processing methods can be used to combine multiple heteronuclear 2D spectra to afford icv-13C-15N HSQC-HMBC correlation spectra. We now report the use of responses contained in indirect covariance processed HSQC spectra as a means for the identification of artifacts in both indirect covariance and unsymmetrical indirect covariance processed 2D NMR spectra. Copyright (c) 2007 John Wiley & Sons, Ltd.

  2. Analysis of Earthquake Source Spectra in Salton Trough

    NASA Astrophysics Data System (ADS)

    Chen, X.; Shearer, P. M.

    2009-12-01

    Previous studies of the source spectra of small earthquakes in southern California show that average Brune-type stress drops vary among different regions, with particularly low stress drops observed in the Salton Trough (Shearer et al., 2006). The Salton Trough marks the southern end of the San Andreas Fault and is prone to earthquake swarms, some of which are driven by aseismic creep events (Lohman and McGuire, 2007). In order to learn the stress state and understand the physical mechanisms of swarms and slow slip events, we analyze the source spectra of earthquakes in this region. We obtain Southern California Seismic Network (SCSN) waveforms for earthquakes from 1977 to 2009 archived at the Southern California Earthquake Center (SCEC) data center, which includes over 17,000 events. After resampling the data to a uniform 100 Hz sample rate, we compute spectra for both signal and noise windows for each seismogram, and select traces with a P-wave signal-to-noise ratio greater than 5 between 5 Hz and 15 Hz. Using selected displacement spectra, we isolate the source spectra from station terms and path effects using an empirical Green’s function approach. From the corrected source spectra, we compute corner frequencies and estimate moments and stress drops. Finally we analyze spatial and temporal variations in stress drop in the Salton Trough and compare them with studies of swarms and creep events to assess the evolution of faulting and stress in the region. References: Lohman, R. B., and J. J. McGuire (2007), Earthquake swarms driven by aseismic creep in the Salton Trough, California, J. Geophys. Res., 112, B04405, doi:10.1029/2006JB004596 Shearer, P. M., G. A. Prieto, and E. Hauksson (2006), Comprehensive analysis of earthquake source spectra in southern California, J. Geophys. Res., 111, B06303, doi:10.1029/2005JB003979.

  3. DFT studies of the vibrational spectra of salicylic acid and related compounds

    USDA-ARS?s Scientific Manuscript database

    Compounds that exhibit intra- and intermolecular hydrogen bonds can have infrared and Raman spectra that show evidences of these hydrogen bonds. In modeling the vibrational spectra of such compounds, the addition of explicit hydrogen bonding species (e.g. solvent molecules) can often improve agreeme...

  4. DETERMINING AGES OF APOGEE GIANTS WITH KNOWN DISTANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuillet, Diane K.; Holtzman, Jon; Bovy, Jo

    2016-01-20

    We present a sample of 705 local giant stars observed using the New Mexico State University 1 m telescope with the Sloan Digital Sky Survey-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph, for which we estimate stellar ages and the local star formation history (SFH). The high-resolution (R ∼ 22,500), near infrared (1.51–1.7 μm) APOGEE spectra provide measurements of stellar atmospheric parameters (temperature, surface gravity, [M/H], and [α/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 30%. For giants, the relativelymore » rapid evolution up the red giant branch allows the age to be constrained by the mass. We examine methods of estimating age using both the mass–age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant SFH. To improve the SFH prior, we use a hierarchical modeling approach to constrain the parameters of the model SFH using the age probability distribution functions of the data. The results of an α-dependent Gaussian SFH model show a clear age–[α/M] relation at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we determine ages for individual stars. The resulting age–metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ∼0.5 dex spread in metallicity across most ages. For stars with ages ≲1 Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars.« less

  5. Two-photon absorption spectra of carotenoids compounds

    NASA Astrophysics Data System (ADS)

    Vivas, Marcelo Gonçalves; Silva, Daniel Luiz; Boni, Leonardo de; Zalesny, Robert; Bartkowiak, Wojciech; Mendonca, Cleber Renato

    2011-05-01

    Carotenoids are biosynthetic organic pigments that constitute an important class of one-dimensional π-conjugated organic molecules with enormous potential for application in biophotonic devices. In this context, we studied the degenerate two-photon absorption (2PA) cross-section spectra of two carotenoid compounds (β-carotene and β-apo-8'-carotenal) employing the conventional and white-light-continuum Z-scan techniques and quantum chemistry calculations. Because carotenoids coexist at room temperature as a mixture of isomers, the 2PA spectra reported here are due to samples containing a distribution of isomers, presenting distinct conjugation length and conformation. We show that these compounds present a defined structure on the 2PA spectra, that peaks at 650 nm with an absorption cross-section of approximately 5000 GM, for both compounds. In addition, we observed a 2PA band at 990 nm for β-apo-8'-carotenal, which was attributed to a overlapping of 11Bu+-like and 21Ag--like states, which are strongly one- and two-photon allowed, respectively. Spectroscopic parameters of the electronic transitions to singlet-excited states, which are directly related to photophysical properties of these compounds, were obtained by fitting the 2PA spectra using the sum-over-states approach. The analysis and interpretations of the 2PA spectra of the investigated carotenoids were supported by theoretical predictions of one- and two-photon transitions carried out using the response functions formalism within the density functional theory framework, using the long-range corrected CAM-B3LYP functional.

  6. Comparative Modelling of the Spectra of Cool Giants

    NASA Technical Reports Server (NTRS)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.; hide

    2012-01-01

    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.

  7. Recording 2-D Nutation NQR Spectra by Random Sampling Method

    PubMed Central

    Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw

    2010-01-01

    The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution. PMID:20949121

  8. Molecule signatures in photoluminescence spectra of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Feierabend, Maja; Berghäuser, Gunnar; Selig, Malte; Brem, Samuel; Shegai, Timur; Eigler, Siegfried; Malic, Ermin

    2018-01-01

    Monolayer transition metal dichalcogenides (TMDs) show an optimal surface-to-volume ratio and are thus promising candidates for novel molecule sensor devices. It was recently predicted that a certain class of molecules exhibiting a large dipole moment can be detected through the activation of optically inaccessible (dark) excitonic states in absorption spectra of tungsten-based TMDs. In this paper, we investigate the molecule signatures in photoluminescence spectra in dependence of a number of different experimentally accessible quantities, such as excitation density, temperature, as well as molecular characteristics including the dipole moment and its orientation, molecule-TMD distance, molecular coverage, and distribution. We show that under certain optimal conditions even room-temperature detection of molecules can be achieved.

  9. Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging.

    PubMed

    Santarpia, Joshua L; Pan, Yong-Le; Hill, Steven C; Baker, Neal; Cottrell, Brian; McKee, Laura; Ratnesar-Shumate, Shanna; Pinnick, Ronald G

    2012-12-31

    A laboratory system for exposing aerosol particles to ozone and rapidly measuring the subsequent changes in their single-particle fluorescence is reported. The system consists of a rotating drum chamber and a single-particle fluorescence spectrometer (SPFS) utilizing excitation at 263 nm. Measurements made with this system show preliminary results on the ultra-violet laser-induced-fluorescence (UV-LIF) spectra of single aerosolized particles of Yersinia rohdei, and of MS2 (bacteriophage) exposed to ozone. When bioparticles are exposed in the chamber the fluorescence emission peak around 330 nm: i) decreases in intensity relative to that of the 400-550 nm band; and ii) shifts slightly toward shorter-wavelengths (consistent with further drying of the particles). In these experiments, changes were observed at exposures below the US Environmental Protection Agency (EPA) limits for ozone.

  10. Solar Energetic Particle Spectra

    NASA Astrophysics Data System (ADS)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  11. ExoCross: Spectra from molecular line lists

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Al-Refaie, Ahmed; Tennyson, Jonathan

    2018-03-01

    ExoCross generates spectra and thermodynamic properties from molecular line lists in ExoMol, HITRAN, or several other formats. The code is parallelized and also shows a high degree of vectorization; it works with line profiles such as Doppler, Lorentzian and Voigt and supports several broadening schemes. ExoCross is also capable of working with the recently proposed method of super-lines. It supports calculations of lifetimes, cooling functions, specific heats and other properties. ExoCross converts between different formats, such as HITRAN, ExoMol and Phoenix, and simulates non-LTE spectra using a simple two-temperature approach. Different electronic, vibronic or vibrational bands can be simulated separately using an efficient filtering scheme based on the quantum numbers.

  12. Polarization effects in cutaneous autofluorescent spectra

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Angelova, L.; Jeliazkova, Al.; Genova, Ts.; Pavlova, E.; Troyanova, P.; Avramov, L.

    2014-05-01

    Used polarized light for fluorescence excitation one could obtain response related to the anisotropy features of extracellular matrix. The fluorophore anisotropy is attenuated during lesions' growth and level of such decrease could be correlated with the stage of tumor development. Our preliminary investigations are based on in vivo point-by-point measurements of excitation-emission matrices (EEM) from healthy volunteers skin on different ages and from different anatomical places using linear polarizer and analyzer for excitation and emission light detected. Measurements were made using spectrofluorimeter FluoroLog 3 (HORIBA Jobin Yvon, France) with fiber-optic probe in steady-state regime using excitation in the region of 280-440 nm. Three different situations were evaluated and corresponding excitation-emission matrices were developed - with parallel and perpendicular positions for linear polarizer and analyzer, and without polarization of excitation and fluorescence light detected from a forearm skin surface. The fluorescence spectra obtained reveal differences in spectral intensity, related to general attenuation, due to filtering effects of used polarizer/analyzer couple. Significant spectral shape changes were observed for the complex autofluorescence signal detected, which correlated with collagen and protein cross-links fluorescence, that could be addressed to the tissue extracellular matrix and general condition of the skin investigated, due to morphological destruction during lesions' growth. A correlation between volunteers' age and the fluorescence spectra detected was observed during our measurements. Our next step is to increase developed initial database and to evaluate all sources of intrinsic fluorescent polarization effects and found if they are significantly altered from normal skin to cancerous state of the tissue, this way to develop a non-invasive diagnostic tool for dermatological practice.

  13. The 8-13 micron spectra of comets and the composition of silicate grains

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.; Lynch, David K.; Russell, Ray W.

    1994-01-01

    We have analyzed the existing spectra of seven comets which show an emission feature at 7.8-13 micrometers. Most have been converted to a common calibration, taking into account the SiO feature in late-type standard stars. The spectra are compared with spectra of the Trapezium, interplanetary dust particles (IDPs), laboratory mineral samples, and small particle emission models. The emission spectra show a variety of shapes; there is no unique 'cometary silicate'. A peak at 11.20-11.25 micrometers, indicative of small crystalline olivine particles, is seen in only three comets of this sample, P/Halley, Bradfield 1987 XXIX, and Levy 1990 XX. The widths of the emission features range from 2.6 to 4.1 micrometers (FWHM). To explain the differing widths and the broad 9.8 micrometers maximum, glassy silicate particles, including both pyroxene and olivine compositions, are the most plausible candidates. Calculations of emission models confirm that small grains of glassy silicate well mixed with carbonaceous material are plausible cometary constituents. No single class of chondritic aggregate IDPs exhibits spectra closely matching the comet spectra. A mixture of IDP spectra, particularly the glass-rich aggregates, approximately matches the spectra of comets P/Halley, Levy, and Bradfield 1987 XXIX. Yet, if comets are simply a mix of IDP types, it is puzzling that the classes of IDPs are so distinct. None of the comet spectra match the spectrum of the Trapezium. Thus, the mineralogy of the cometary silicates is not the same as that of the interstellar medium. The presence of a component of crystalline silicates in comets may be evidence of mixing between high- and low-temperature regions in the solar nebula.

  14. Connecting infrared spectra with plant traits to identify species

    NASA Astrophysics Data System (ADS)

    Buitrago, Maria F.; Skidmore, Andrew K.; Groen, Thomas A.; Hecker, Christoph A.

    2018-05-01

    Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4-16.0 μm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves' spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified species-specific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 μm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing.

  15. Iterative fitting method for the evaluation and quantification of PAES spectra

    NASA Astrophysics Data System (ADS)

    Zimnik, Samantha; Hackenberg, Mathias; Hugenschmidt, Christoph

    2017-01-01

    The elemental composition of surfaces is of great importance for the understanding of many surface processes such as catalysis. For a reliable analysis and a comparison of results, the quantification of the measured data is indispensable. Positron annihilation induced Auger Electron Spectroscopy (PAES) is a spectroscopic technique that measures the elemental composition with outstanding surface sensitivity, but up to now, no standardized evaluation procedure for PAES spectra is available. In this paper we present a new approach for the evaluation of PAES spectra of compounds, using the spectra obtained for the pure elements as reference. The measured spectrum is then fitted by a linear combination of the reference spectra by varying their intensities. The comparison of the results of the fitting routine with a calculation of the full parameter range shows an excellent agreement. We present the results of the new analysis method to evaluate the PAES spectra of sub-monolayers of Ni on a Pd substrate.

  16. An application of deep learning in the analysis of stellar spectra

    NASA Astrophysics Data System (ADS)

    Fabbro, S.; Venn, K. A.; O'Briain, T.; Bialek, S.; Kielty, C. L.; Jahandar, F.; Monty, S.

    2018-04-01

    Spectroscopic surveys require fast and efficient analysis methods to maximize their scientific impact. Here, we apply a deep neural network architecture to analyse both SDSS-III APOGEE DR13 and synthetic stellar spectra. When our convolutional neural network model (StarNet) is trained on APOGEE spectra, we show that the stellar parameters (temperature, gravity, and metallicity) are determined with similar precision and accuracy as the APOGEE pipeline. StarNet can also predict stellar parameters when trained on synthetic data, with excellent precision and accuracy for both APOGEE data and synthetic data, over a wide range of signal-to-noise ratios. In addition, the statistical uncertainties in the stellar parameter determinations are comparable to the differences between the APOGEE pipeline results and those determined independently from optical spectra. We compare StarNet to other data-driven methods; for example, StarNet and the Cannon 2 show similar behaviour when trained with the same data sets; however, StarNet performs poorly on small training sets like those used by the original Cannon. The influence of the spectral features on the stellar parameters is examined via partial derivatives of the StarNet model results with respect to the input spectra. While StarNet was developed using the APOGEE observed spectra and corresponding ASSET synthetic data, we suggest that this technique is applicable to other wavelength ranges and other spectral surveys.

  17. An atlas of ultraviolet spectra of star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bohlin, R. C.; Calzetti, D.; Panagia, N.; Wyse, Rosemary F. G.

    1993-01-01

    A systematic study is presented of the UV spectra of star-forming galaxies of different morphological type and activity class using a sample drawn from a uniformly reduced IUE data set. The spectra for a wide variety of galaxies, including normal spiral, LINER, starburst, blue compact, blue compact dwarf, and Seyfert 2 galaxies, are presented in the form of spectral energy distributions to demonstrate the overall characteristics according to morphology and activity class and in the form of absolute flux distributions to better show the absorption and emission features of individual objects. The data support the picture based on UV spectra of the Orbiting Astronomical Observatory and of the Astronautical Netherlands Satellite that spiral galaxies of later Hubble class have more flux at the shortest UV wavelengths than do spiral galaxies of earlier Hubble class.

  18. Calculation of ground vibration spectra from heavy military vehicles

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  19. Molecules-in-molecules fragment-based method for the calculation of chiroptical spectra of large molecules: Vibrational circular dichroism and Raman optical activity spectra of alanine polypeptides.

    PubMed

    Jose, K V Jovan; Raghavachari, Krishnan

    2016-12-01

    The molecules-in-molecules (MIM) fragment-based method has recently been adapted to evaluate the chiroptical (vibrational circular dichroism [VCD] and Raman optical activity [ROA]) spectra of large molecules such as peptides. In the MIM-VCD and MIM-ROA methods, the relevant higher energy derivatives of the parent molecule are assembled from the corresponding derivatives of smaller fragment subsystems. In addition, the missing long-range interfragment interactions are accounted at a computationally less expensive level of theory (MIM2). In this work we employed the MIM-VCD and MIM-ROA fragment-based methods to explore the evolution of the chiroptical spectroscopic characteristics of 3 10 -helix, α-helix, β-hairpin, γ-turn, and β-extended conformers of gas phase polyalanine (chain length n = 6-14). The different conformers of polyalanine show distinctive features in the MIM chiroptical spectra and the associated spectral intensities increase with evolution of system size. For a better understanding the site-specific effects on the vibrational spectra, isotopic substitutions were also performed employing the MIM method. An increasing redshift with the number of isotopically labeled 13 C=O functional groups in the peptide molecule was seen. For larger polypeptides, we implemented the two-step-MIM model to circumvent the high computational expense associated with the evaluation of chiroptical spectra at a high level of theory using large basis sets. The chiroptical spectra of α-(alanine) 20 polypeptide obtained using the two-step-MIM model, including continuum solvation effects, show good agreement with the full calculations and experiment. This benchmark study suggests that the MIM-fragment approach can assist in predicting and interpreting chiroptical spectra of large polypeptides. © 2016 Wiley Periodicals, Inc.

  20. Fine structure in RF spectra of lightning return stroke wave forms

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.

    1988-01-01

    The power spectra of the wide-band (10 Hz to 100 kHz) magnetic-field signals for a number of lightning return strokes measured during a thunderstorm which occurred in Lindau in August, 1984 have been calculated. The RF magnetic field data are obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. Each return stroke data stream is passed through an adaptive filter designed to whiten its spectrum. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks in the spectra of many of the waveforms. A peak at f of about 60-70 kHz is often seen in the power spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.

  1. Electronic and Vibrational Spectra of InP Quantum Dots Formed by Sequential Ion Implantation

    NASA Technical Reports Server (NTRS)

    Hall, C.; Mu, R.; Tung, Y. S.; Ueda, A.; Henderson, D. O.; White, C. W.

    1997-01-01

    We have performed sequential ion implantation of indium and phosphorus into silica combined with controlled thermal annealing to fabricate InP quantum dots in a dielectric host. Electronic and vibrational spectra were measured for the as-implanted and annealed samples. The annealed samples show a peak in the infrared spectra near 320/cm which is attributed to a surface phonon mode and is in good agreement with the value calculated from Frolich's theory of surface phonon polaritons. The electronic spectra show the development of a band near 390 nm that is attributed to quantum confined InP.

  2. Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence

    NASA Astrophysics Data System (ADS)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-06-01

    Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.

  3. Excitation spectra of liquid iron up to superhigh temperatures

    NASA Astrophysics Data System (ADS)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Brazhkin, V. V.

    2017-08-01

    Investigation of excitation spectra of liquids is one of the hot test topics nowadays. In particular, recent experimental works showed that liquid metals can demonstrate transverse excitations and positive sound dispersion. However, the theoretical description of these experimental observations is still missing. Here we report a molecular dynamics study of excitation spectra of liquid iron. We compare the results with available experimental data to justify the method. After that we perform calculations for high temperatures to find the location of the Frenkel line introduced in our previous works.

  4. Lightning spectra at 100,000 fps

    NASA Astrophysics Data System (ADS)

    McHarg, M. G.; Harley, J.; Haaland, R. K.; Edens, H. E.; Stenbaek-Nielsen, H.

    2016-12-01

    A fundamental understanding of lightning can be inferred from the spectral emissions resulting from the leader and return stroke channel. We examine an event recorded at 00:58:07 on 19 July 2015 at Langmuir Laboratory. We recorded lightning spectra using a 100 line per mm grating in front of a Phantom V2010 camera with an 85mm Nikon lens recording at 100,000 frames per second. Coarse resolution spectra (approximately 5nm resolution) are produced from approximately 400 nm to 800 nm for each frame. Electric field data from the Langmuir Electric Field Array for the 03:19:19 event show 10 V/m changes in the electric field associated with multiple return strokes visible in the spectral data. We used the spectral data to compare temperatures at the top, middle and bottom of the lightning channel. Lightning Mapping Array data at Langmuir for the 00:58:07 event show a complex flash extending 10 km in the East-West plane and 6 km in the North-South plane. The imagery data imply that this is a bolt-from-the-blue event.

  5. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing.

    PubMed

    Nashiro, Kaoru; Sakaki, Michiko; Braskie, Meredith N; Mather, Mara

    2017-06-01

    Correlations in activity across disparate brain regions during rest reveal functional networks in the brain. Although previous studies largely agree that there is an age-related decline in the "default mode network," how age affects other resting-state networks, such as emotion-related networks, is still controversial. Here we used a dual-regression approach to investigate age-related alterations in resting-state networks. The results revealed age-related disruptions in functional connectivity in all 5 identified cognitive networks, namely the default mode network, cognitive-auditory, cognitive-speech (or speech-related somatosensory), and right and left frontoparietal networks, whereas such age effects were not observed in the 3 identified emotion networks. In addition, we observed age-related decline in functional connectivity in 3 visual and 3 motor/visuospatial networks. Older adults showed greater functional connectivity in regions outside 4 out of the 5 identified cognitive networks, consistent with the dedifferentiation effect previously observed in task-based functional magnetic resonance imaging studies. Both reduced within-network connectivity and increased out-of-network connectivity were correlated with poor cognitive performance, providing potential biomarkers for cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Resonant Raman and FTIR spectra of carbon doped GaN

    NASA Astrophysics Data System (ADS)

    Ito, S.; Kobayashi, H.; Araki, K.; Suzuki, K.; Sawaki, N.; Yamashita, K.; Honda, Y.; Amano, H.

    2015-03-01

    Intentionally carbon (C) doped (0 0 0 1)GaN was grown using C2H2 on a sapphire substrate by metalorganic vapor phase epitaxy. Optical spectra of the heavily doped samples were investigated at room temperature. In Raman spectra excited by the 325 nm line of a He-Cd laser, multiple LO phonon scattering signals up to 7th order were observed, and the A1(LO) phonon energy was determined to be 737.5 cm-1 (91.45 meV). In infrared reflectance spectra, on the other hand, a local vibration mode was found at 777.5 cm-1, which is attributed to a Ga-C bond in the GaN matrix suggesting that the C sits on an N site (CN). In spite of the strong suggestion of CN, the samples did not show p-type conduction. Possible origin of the carrier compensation is discussed in relation to the enhancement of defect related yellow luminescence in the photoluminescence spectra.

  7. The Tc Trend In The Zetta Reticuli System: N Spectra - N Trends.

    NASA Astrophysics Data System (ADS)

    Adibekyan, V.; Figueira, P.; Delgado Mena, E.; Sousa, S. G.; Santos, N. C.; González Hernández; , I.; Israelian, G.

    2017-10-01

    It is suggested that the chemical abundance trend with the condensation temperature, Tc , can be a signature of rocky planet formation or accretion. Recently, a strong Tc trend was reported in the Zetta Reticuli binary system (Saffe et al., 2016), where ζ2 Ret Ret shows a deficit of refractory elements relative to its companion (ζ1 Ret). This depletion was explained by the presence of a debris disk around ζ2 Ret. Later, Adibekyan et al. (2016b) confirmed the significance of the trend, however, casted doubts on the interpretation proposed. Using three individual highest quality spectra for each star, they found that the Tc trends depend on the individual spectra (three spectra of each star were used) used in the analaysis. In the current work we re-evaluated the presence and variability of the Tc trend in this system using a larger number of individual spectra. In total, 62 spectra of ζ2 Ret and 31 spectra of ζ1 Ret was used. Our results confirm the word of caution issued by Adibekyan et al. (2016b) that nonphysical factors can be at the root of the T c trends for the cases of individual spectra.

  8. Comparison of strong-motion spectra with teleseismic spectra for three magnitude 8 subduction-zone earthquakes

    NASA Astrophysics Data System (ADS)

    Houston, Heidi; Kanamori, Hiroo

    1990-08-01

    A comparison of strong-motion spectra and teleseismic spectra was made for three Mw 7.8 to 8.0 earthquakes: the 1985 Michoacan (Mexico) earthquake, the 1985 Valparaiso (Chile) earthquake, and the 1983 Akita-Oki (Japan) earthquake. The decay of spectral amplitude with the distance from the station was determined, considering different measures of distance from a finite fault, and it was found to be different for these three events. The results can be used to establish empirical relations between the observed spectra and the half-space responses depending on the distance and the site condition, making it possible to estimate strong motions from source spectra determined from teleseismic records.

  9. Fluorescence Spectra of Highlighter Inks

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.; King, Damon

    2018-01-01

    Fluorescence spectra excited by laser pointers have been the subject of several papers in TPT. These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by fluorescent emission. Here we examine the fluorescence spectra of highlighter inks using green and violet laser pointers. We use an RSpec Explorer spectrometer to obtain spectra and compare the emission spectra of blue, green, yellow, orange, pink, and purple highlighters. The website Compound Interest details the chemical composition of highlighter inks; in addition, the site discusses how some base dye colors can be combined to produce the variety commercially available colors. Spectra obtained in this study were qualitatively consistent with the Compound Interest site. We discuss similarities and differences between various highlighter colors and conclude with the relevance of such studies to physics students.

  10. Partitioning Ocean Wave Spectra Obtained from Radar Observations

    NASA Astrophysics Data System (ADS)

    Delaye, Lauriane; Vergely, Jean-Luc; Hauser, Daniele; Guitton, Gilles; Mouche, Alexis; Tison, Celine

    2016-08-01

    2D wave spectra of ocean waves can be partitioned into several wave components to better characterize the scene. We present here two methods of component detection: one based on watershed algorithm and the other based on a Bayesian approach. We tested both methods on a set of simulated SWIM data, the Ku-band real aperture radar embarked on the CFOSAT (China- France Oceanography Satellite) mission which launch is planned mid-2018. We present the results and the limits of both approaches and show that Bayesian method can also be applied to other kind of wave spectra observations as those obtained with the radar KuROS, an airborne radar wave spectrometer.

  11. An RGB approach to extraordinary spectra

    NASA Astrophysics Data System (ADS)

    Grusche, Sascha; Theilmann, Florian

    2015-09-01

    After Newton had explained a series of ordinary spectra and Goethe had pointed out its complementary counterpart, Nussbaumer discovered a series of extraordinary spectra which are geometrically identical and colourwise analogous to Newton’s and Goethe’s spectra. To understand the geometry and colours of extraordinary spectra, the wavelength composition is explored with filters and spectroscopic setups. Visualized in a dispersion diagram, the wavelength composition is interpreted in terms of additive colour mixing. Finally, all spectra are simulated as the superposition of red, green, and blue images that are shifted apart. This RGB approach makes it easy to understand the complex relationship between wavelengths and colours.

  12. Interpretation of comet spectra

    NASA Technical Reports Server (NTRS)

    Arpigny, C.

    1976-01-01

    The spectra of comets are discussed by considering successively a number of molecules that have been studied recently: CN, CH, C2, C3, OH, CH(+). The first two of this list, CN and CH, have been analyzed in greatest detail. A classification of the spectra of cometary heads is introduced.

  13. Age determination of 15 old to intermediate-age small Magellanic cloud star clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, M. C.; Clariá, J. J.; Piatti, A. E.

    2014-04-01

    We present color-magnitude diagrams in the V and I bands for 15 star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work, wherein we derived cluster radial velocities and metallicities from calcium II infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. Inmore » particular, three of these clusters, L4, L6, and L110, turn out to be among the oldest SMC clusters known, with ages of 7.9 ± 1.1, 8.7 ± 1.2, and 7.6 ± 1.0 Gyr, respectively, helping to fill a possible 'SMC cluster age gap'. Using the current ages and metallicities from Parisi et al., we analyze the age distribution, age gradient, and age-metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr, and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than we had derived in Parisi et al., where we simply took ages available in the literature. Additionally, clusters younger than ∼4 Gyr now show better agreement with the bursting model of Pagel and Tautvaišienė, but we confirm that this model is not a good representation of the AMR during the intermediate/old period. A more complicated model is needed to explain the SMC chemical evolution in that period.« less

  14. Photoluminescence and gain/absorption spectra of a driven-dissipative electron-hole-photon condensate

    NASA Astrophysics Data System (ADS)

    Hanai, Ryo; Littlewood, Peter B.; Ohashi, Yoji

    2018-06-01

    We investigate theoretically nonequilibrium effects on photoluminescence and gain/absorption spectra of a driven-dissipative exciton-polariton condensate, by employing the combined Hartree-Fock-Bogoliubov theory with the generalized random phase approximation extended to the Keldysh formalism. Our calculated photoluminescence spectra is in semiquantitative agreement with experiments, where features such as a blue shift of the emission from the condensate, the appearance of the dispersionless feature of a diffusive Goldstone mode, and the suppression of the dispersive profile of the mode are obtained. We show that the nonequilibrium nature of the exciton-polariton condensate strongly suppresses the visibility of the Bogoliubov dispersion in the negative energy branch (ghost branch) in photoluminescence spectra. We also show that the trace of this branch can be captured as a hole burning effect in gain/absorption spectra. Our results indicate that the nonequilibrium nature of the exciton-polariton condensate strongly reduces quantum depletion, while a scattering channel to the ghost branch is still present.

  15. Classifying galaxy spectra at 0.5 < z < 1 with self-organizing maps

    NASA Astrophysics Data System (ADS)

    Rahmani, S.; Teimoorinia, H.; Barmby, P.

    2018-05-01

    The spectrum of a galaxy contains information about its physical properties. Classifying spectra using templates helps elucidate the nature of a galaxy's energy sources. In this paper, we investigate the use of self-organizing maps in classifying galaxy spectra against templates. We trained semi-supervised self-organizing map networks using a set of templates covering the wavelength range from far ultraviolet to near infrared. The trained networks were used to classify the spectra of a sample of 142 galaxies with 0.5 < z < 1 and the results compared to classifications performed using K-means clustering, a supervised neural network, and chi-squared minimization. Spectra corresponding to quiescent galaxies were more likely to be classified similarly by all methods while starburst spectra showed more variability. Compared to classification using chi-squared minimization or the supervised neural network, the galaxies classed together by the self-organizing map had more similar spectra. The class ordering provided by the one-dimensional self-organizing maps corresponds to an ordering in physical properties, a potentially important feature for the exploration of large datasets.

  16. Clustering and Filtering Tandem Mass Spectra Acquired in Data-Independent Mode

    NASA Astrophysics Data System (ADS)

    Pak, Huisong; Nikitin, Frederic; Gluck, Florent; Lisacek, Frederique; Scherl, Alexander; Muller, Markus

    2013-12-01

    Data-independent mass spectrometry activates all ion species isolated within a given mass-to-charge window ( m/z) regardless of their abundance. This acquisition strategy overcomes the traditional data-dependent ion selection boosting data reproducibility and sensitivity. However, several tandem mass (MS/MS) spectra of the same precursor ion are acquired during chromatographic elution resulting in large data redundancy. Also, the significant number of chimeric spectra and the absence of accurate precursor ion masses hamper peptide identification. Here, we describe an algorithm to preprocess data-independent MS/MS spectra by filtering out noise peaks and clustering the spectra according to both the chromatographic elution profiles and the spectral similarity. In addition, we developed an approach to estimate the m/z value of precursor ions from clustered MS/MS spectra in order to improve database search performance. Data acquired using a small 3 m/z units precursor mass window and multiple injections to cover a m/z range of 400-1400 was processed with our algorithm. It showed an improvement in the number of both peptide and protein identifications by 8 % while reducing the number of submitted spectra by 18 % and the number of peaks by 55 %. We conclude that our clustering method is a valid approach for data analysis of these data-independent fragmentation spectra. The software including the source code is available for the scientific community.

  17. Laboratory mid-IR spectra of equilibrated and igneous meteorites. Searching for observables of planetesimal debris

    NASA Astrophysics Data System (ADS)

    de Vries, B. L.; Skogby, H.; Waters, L. B. F. M.; Min, M.

    2018-06-01

    Meteorites contain minerals from Solar System asteroids with different properties (like size, presence of water, core formation). We provide new mid-IR transmission spectra of powdered meteorites to obtain templates of how mid-IR spectra of asteroidal debris would look like. This is essential for interpreting mid-IR spectra of past and future space observatories, like the James Webb Space Telescope. First we present new transmission spectra of powdered ordinary chondrite, pallasite and HED meteorites and then we combine them with already available transmission spectra of chondrites in the literature, giving a total set of 64 transmission spectra. In detail we study the spectral features of minerals in these spectra to obtain measurables used to spectroscopically distinguish between meteorite groups. Being able to differentiate between dust from different meteorite types means we can probe properties of parent bodies, like their size, if they were wet or dry and if they are differentiated (core formation) or not. We show that the transmission spectra of wet and dry chondrites, carbonaceous and ordinary chondrites and achondrite and chondrite meteorites are distinctly different in a way one can distinguish in astronomical mid-IR spectra. Carbonaceous chondrites type < 3 (aqueously altered) show distinct features of hydrated silicates (hydrosilicates) compared to the olivine and pyroxene rich ordinary chondrites (dry and equilibrated meteorites). Also the iron concentration of the olivine in carbonaceous chondrites differs from ordinary chondrites, which can be probed by the wavelength peak position of the olivine spectral features. The transmission spectra of chondrites (not differentiated) are also strongly different from the achondrite HED meteorites (meteorites from differentiated bodies like 4 Vesta), where the latter show much stronger pyroxene signatures. The two observables that spectroscopically separate the different meteorites groups (and thus the different

  18. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  19. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    PubMed

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution.

  20. A tunable laser system for precision wavelength calibration of spectra

    NASA Astrophysics Data System (ADS)

    Cramer, Claire

    2010-02-01

    We present a novel laser-based wavelength calibration technique that improves the precision of astronomical spectroscopy, and solves a calibration problem inherent to multi-object spectroscopy. We have tested a prototype with the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method uses of spectra from ThAr hollow-cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We also present results from studies of globular clusters, and explain how the calibration technique can aid in stellar age determinations, studies of young stars, and searches for dark matter clumping in the galactic halo. )

  1. Machine Learning Method for Pattern Recognition in Volcano Seismic Spectra

    NASA Astrophysics Data System (ADS)

    Radic, V.; Unglert, K.; Jellinek, M.

    2016-12-01

    Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as Self-Organizing Maps (SOM), Principal Component Analysis (PCA) and clustering methods can help to quickly and automatically identify important patterns related to impending eruptions. In this study we develop and evaluate an algorithm applied on a set of synthetic volcano seismic spectra as well as observed spectra from Kılauea Volcano, Hawai`i. Our goal is to retrieve a set of known spectral patterns that are associated with dominant phases of volcanic tremor before, during, and after periods of volcanic unrest. The algorithm is based on training a SOM on the spectra and then identifying local maxima and minima on the SOM 'topography'. The topography is derived from the first two PCA modes so that the maxima represent the SOM patterns that carry most of the variance in the spectra. Patterns identified in this way reproduce the known set of spectra. Our results show that, regardless of the level of white noise in the spectra, the algorithm can accurately reproduce the characteristic spectral patterns and their occurrence in time. The ability to rapidly classify spectra of volcano seismic data without prior knowledge of the character of the seismicity at a given volcanic system holds great potential for real time or near-real time applications, and thus ultimately for eruption forecasting.

  2. Automatic classification of spectra from the Infrared Astronomical Satellite (IRAS)

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John; Self, Matthew; Taylor, William; Goebel, John; Volk, Kevin; Walker, Helen

    1989-01-01

    A new classification of Infrared spectra collected by the Infrared Astronomical Satellite (IRAS) is presented. The spectral classes were discovered automatically by a program called Auto Class 2. This program is a method for discovering (inducing) classes from a data base, utilizing a Bayesian probability approach. These classes can be used to give insight into the patterns that occur in the particular domain, in this case, infrared astronomical spectroscopy. The classified spectra are the entire Low Resolution Spectra (LRS) Atlas of 5,425 sources. There are seventy-seven classes in this classification and these in turn were meta-classified to produce nine meta-classes. The classification is presented as spectral plots, IRAS color-color plots, galactic distribution plots and class commentaries. Cross-reference tables, listing the sources by IRAS name and by Auto Class class, are also given. These classes show some of the well known classes, such as the black-body class, and silicate emission classes, but many other classes were unsuspected, while others show important subtle differences within the well known classes.

  3. Synchrotron Spectra of Short-Period Pulsars

    NASA Astrophysics Data System (ADS)

    Malov, I. F.

    2001-02-01

    A model with synchrotron radiation near the light cylinder is proposed to explain the observed spectra of short-period pulsars (P≤0.1 s). These spectra can be described if a power-law energy distribution of the emitting electrons with exponent γ=2 8 is assumed. For most pulsars, the peak frequency νm is below 10 MHz. The νm(γ) dependence is derived, and shows that the peak frequencies for pulsars with spectral indices α<1.5 may fall in the observable range. In particular, νm may be νm ˜ 100 MHz for PSR J0751 + 1807 and PSR J1640 + 2224. The observed radio spectrum of Geminga (PSR J0633 + 1746) can be described by a synchrotron model with a monoenergetic or Maxwellian distribution of relativistic electrons and a small angle β between the spin axis and magnetic moment (β ˜ 10°).

  4. [Study on the effect of solar spectra on the retrieval of atmospheric CO2 concentration using high resolution absorption spectra].

    PubMed

    Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li

    2011-06-01

    Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.

  5. SEARCHING FOR EXTRATERRESTRIAL INTELLIGENCE SIGNALS IN ASTRONOMICAL SPECTRA, INCLUDING EXISTING DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borra, Ermanno F., E-mail: borra@phy.ulaval.ca

    The main purpose of this article is to make astronomers aware that Searches for Extraterrestrial Intelligence (SETIs) can be carried out by analyzing standard astronomical spectra, including those they have already taken. Simplicity is the outstanding advantage of a search in spectra. The spectra can be analyzed by simple eye inspection or a few lines of code that uses Fourier transform software. Theory, confirmed by published experiments, shows that periodic signals in spectra can be easily generated by sending light pulses separated by constant time intervals. While part of this article, like all articles on SETIs, is highly speculative themore » basic physics is sound. In particular, technology now available on Earth could be used to send signals having the required energy to be detected at a target located 1000 lt-yr away. Extraterrestrial Intelligence (ETI) could use these signals to make us aware of their existence. For an ETI, the technique would also have the advantage that the signals could be detected both in spectra and searches for intensity pulses like those currently carried out on Earth.« less

  6. Use of mutation spectra analysis software.

    PubMed

    Rogozin, I; Kondrashov, F; Glazko, G

    2001-02-01

    The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. Copyright 2001 Wiley-Liss, Inc.

  7. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  8. Spectra of clinical CT scanners using a portable Compton spectrometer.

    PubMed

    Duisterwinkel, H A; van Abbema, J K; van Goethem, M J; Kawachimaru, R; Paganini, L; van der Graaf, E R; Brandenburg, S

    2015-04-01

    Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  9. pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.

    PubMed

    Zhou, Xie-Xuan; Zeng, Wen-Feng; Chi, Hao; Luo, Chunjie; Liu, Chao; Zhan, Jianfeng; He, Si-Min; Zhang, Zhifei

    2017-12-05

    In tandem mass spectrometry (MS/MS)-based proteomics, search engines rely on comparison between an experimental MS/MS spectrum and the theoretical spectra of the candidate peptides. Hence, accurate prediction of the theoretical spectra of peptides appears to be particularly important. Here, we present pDeep, a deep neural network-based model for the spectrum prediction of peptides. Using the bidirectional long short-term memory (BiLSTM), pDeep can predict higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer and higher-energy collision dissociation MS/MS spectra of peptides with >0.9 median Pearson correlation coefficients. Further, we showed that intermediate layer of the neural network could reveal physicochemical properties of amino acids, for example the similarities of fragmentation behaviors between amino acids. We also showed the potential of pDeep to distinguish extremely similar peptides (peptides that contain isobaric amino acids, for example, GG = N, AG = Q, or even I = L), which were very difficult to distinguish using traditional search engines.

  10. Comparison of reflectance spectra of sound and carious enamel

    NASA Astrophysics Data System (ADS)

    Analoui, Mostafa; Ando, Masatoshi; Stookey, George K.

    2000-03-01

    Development of dental caries is associated with the loss of minerals and change in the enamel structure. In this study, we have measured and compared reflectance spectra of sound and carious enamel, to investigate its utility in detection and analysis of dental caries. One hundred twenty, 3-mm diameter human enamel cores, with no sign of fluorosis, tetracycline stain, hypoplasia, fracture and restorations, were prepared. The enamel surfaces then were ground and polished. Specimens were placed on a fitted holder with either black or white color for background, with no fluorescence. The baseline spectra were measured using a spectrophotometer with enclosed diffused illumination. Spectra measured from 380 to 780 nm at 5 nm intervals. All measurements were corrected to compensate for the spectrum of illumination. The specimens were divided into two groups and exposed to a demineralizing solution, for 48 and 96 hours, respectively. Reflectance spectra of specimens were measured following lesion induction. All specimens were sectioned and analyzed by transverse microradiography (TMR), where lesion depth and mineral loss ((Delta) Z) were measured. Dimensionality of multi-spectral data was reduced through its conversion to L*a*b* color coordinates and principal component analysis (PCA). Multiple linear regression analysis showed low correlation between L*a*b* and lesion depth and mineral loss. PCA analysis showed higher correlation coefficient, compared to L*a*b*. Preliminary results of this study suggest that multi-spectral measurement and analysis of the tooth surface could be useful in predicting the depth and severity of an early carious lesion.

  11. Temperature dependence of Fe/++/ crystal field spectra - Implications to mineralogical mapping of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Sung, C.-M.; Singer, R. B.; Parkin, K. M.; Burns, R. G.; Osborne, M.

    1977-01-01

    Results are reported of Fe(++) crystal field spectral measurements for olivines and pyroxenes up to 400 C. The results are correlated with crystal structure data at elevated temperatures, and the validity of remote-sensed identifications of minerals on hot surfaces of the moon and Mercury is assessed. Two techniques were used to obtain spectra of minerals at elevated temperatures using a spectrophotometer. One employed a diamond cell assembly or a specially designed sample holder to measure polarized absorption spectra of heated single crystals. For the other technique, a sample holder was designed to attach to a diffuse reflectance accessory to produce reflectance spectra of heated powdered samples. Polarized absorption spectra of forsterite at 20-400 C are shown in a graph. Other graphs show the temperature dependence of Fe(++) crystal field bands in olivines, the diffuse reflectance spectra of olivine at 40-400 C, the polarization absorption spectra of orthopyroxene at 30-400 C, the diffuse reflectance spectra of pigeonite at 40-400 C, and unpolarized absorption spectra of lunar pyroxene from Apollo 15 rock 15058.

  12. Pax6 interacts with Iba1 and shows age-associated alterations in brain of aging mice.

    PubMed

    Maurya, Shashank Kumar; Mishra, Rajnikant

    2017-07-01

    The Pax6, a transcriptional regulator and multifunctional protein, has been found critical for neurogenesis, neuro-degeneration, mental retardation, neuroendocrine tumors, glioblastoma and astrocytomas. The age-associated alteration in the expression of Pax6 in neuron and glia has also been observed in the immunologically privileged brain. Therefore, it is presumed that Pax6 may modulate brain immunity by activation of microglia either directly interacting with genes or proteins of microglia or indirectly though inflammation associated with neurodegeneration. This report describes evaluation of expression, co-localization and interactions of Pax6 with Ionized binding protein1 (Iba1) in brain of aging mice by Immunohistochemistry, Chromatin Immuno-precipitation (ChIP) and Co-immunoprecipitation (Co-IP), respectively. The co-localization of Pax6 with Iba1 was observed in the cerebellum, cerebral cortex, hippocampus, midbrain and olfactory lobe. The Pax6 and Iba1 also interact physically. The age-dependent alteration in their expression and co-localization were also observed in mice. Results indicate Pax6-dependent activities of Iba1 in the remodelling of microglia during immunological surveillance of the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. FBRDLR: Fast blind reconstruction approach with dictionary learning regularization for infrared microscopy spectra

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Liu, Hai; Chen, Zengzhao; Chen, Yingying; Wang, Shengming; Liu, Zhi; Zhang, Hao

    2018-05-01

    Infrared (IR) spectra are the fingerprints of the molecules, and the spectral band location closely relates to the structure of a molecule. Thus, specimen identification can be performed based on IR spectroscopy. However, spectrally overlapping components prevent the specific identification of hyperfine molecular information of different substances. In this paper, we propose a fast blind reconstruction approach for IR spectra, which is based on sparse and redundant representations over a dictionary. The proposed method recovers the spectrum with the discrete wavelet transform dictionary on its content. The experimental results demonstrate that the proposed method is superior because of the better performance when compared with other state-of-the-art methods. The method the authors used remove the instrument aging issue to a large extent, thus leading the reconstruction IR spectra a more convenient tool for extracting features of an unknown material and interpreting it.

  14. Reanalysis of Tyrannosaurus rex Mass Spectra.

    PubMed

    Bern, Marshall; Phinney, Brett S; Goldberg, David

    2009-09-01

    Asara et al. reported the detection of collagen peptides in a 68-million-year-old Tyrannosaurus rex bone by shotgun proteomics. This finding has been called into question as a possible statistical artifact. We reanalyze Asara et al.'s tandem mass spectra using a different search engine and different statistical tools. Our reanalysis shows a sample containing common laboratory contaminants, soil bacteria, and bird-like hemoglobin and collagen.

  15. Reanalysis of Tyrannosaurus rex Mass Spectra

    PubMed Central

    Bern, Marshall; Phinney, Brett S.; Goldberg, David

    2009-01-01

    Asara et al. reported the detection of collagen peptides in a 68-million-year-old T. rex bone by shotgun proteomics. This finding has been called into question as a possible statistical artifact. We reanalyze Asara et al.'s tandem mass spectra using a different search engine and different statistical tools. Our reanalysis shows a sample containing common laboratory contaminants, soil bacteria, and bird-like hemoglobin and collagen. PMID:19603827

  16. Effects of sample preparation on the infrared reflectance spectra of powders

    NASA Astrophysics Data System (ADS)

    Brauer, Carolyn S.; Johnson, Timothy J.; Myers, Tanya L.; Su, Yin-Fong; Blake, Thomas A.; Forland, Brenda M.

    2015-05-01

    While reflectance spectroscopy is a useful tool for identifying molecular compounds, laboratory measurement of solid (particularly powder) samples often is confounded by sample preparation methods. For example, both the packing density and surface roughness can have an effect on the quantitative reflectance spectra of powdered samples. Recent efforts in our group have focused on developing standard methods for measuring reflectance spectra that accounts for sample preparation, as well as other factors such as particle size and provenance. In this work, the effect of preparation method on sample reflectivity was investigated by measuring the directional-hemispherical spectra of samples that were hand-loaded as well as pressed into pellets using an integrating sphere attached to a Fourier transform infrared spectrometer. The results show that the methods used to prepare the sample can have a substantial effect on the measured reflectance spectra, as do other factors such as particle size.

  17. Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.

    2017-12-01

    Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular

  18. Effectiveness of Spectral Similarity Measures to Develop Precise Crop Spectra for Hyperspectral Data Analysis

    NASA Astrophysics Data System (ADS)

    Chauhan, H.; Krishna Mohan, B.

    2014-11-01

    The present study was undertaken with the objective to check effectiveness of spectral similarity measures to develop precise crop spectra from the collected hyperspectral field spectra. In Multispectral and Hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to select precise crop spectra from the set of field spectra. Conventionally crop spectra are developed after rejecting outliers based only on broad-spectrum analysis. Here a successful attempt has been made to develop precise crop spectra based on spectral similarity. As unevaluated data usage leads to uncertainty in the image classification, it is very crucial to evaluate the data. Hence, notwithstanding the conventional method, the data precision has been performed effectively to serve the purpose of the present research work. The effectiveness of developed precise field spectra was evaluated by spectral discrimination measures and found higher discrimination values compared to spectra developed conventionally. Overall classification accuracy for the image classified by field spectra selected conventionally is 51.89% and 75.47% for the image classified by field spectra selected precisely based on spectral similarity. KHAT values are 0.37, 0.62 and Z values are 2.77, 9.59 for image classified using conventional and precise field spectra respectively. Reasonable higher classification accuracy, KHAT and Z values shows the possibility of a new approach for field spectra selection based on spectral similarity measure.

  19. Comparison of measured electron energy spectra for six matched, radiotherapy accelerators.

    PubMed

    McLaughlin, David J; Hogstrom, Kenneth R; Neck, Daniel W; Gibbons, John P

    2018-05-01

    This study compares energy spectra of the multiple electron beams of individual radiotherapy machines, as well as the sets of spectra across multiple matched machines. Also, energy spectrum metrics are compared with central-axis percent depth-dose (PDD) metrics. A lightweight, permanent magnet spectrometer was used to measure energy spectra for seven electron beams (7-20 MeV) on six matched Elekta Infinity accelerators with the MLCi2 treatment head. PDD measurements in the distal falloff region provided R 50 and R 80-20 metrics in Plastic Water ® , which correlated with energy spectrum metrics, peak mean energy (PME) and full-width at half maximum (FWHM). Visual inspection of energy spectra and their metrics showed whether beams on single machines were properly tuned, i.e., FWHM is expected to increase and peak height decrease monotonically with increased PME. Also, PME spacings are expected to be approximately equal for 7-13 MeV beams (0.5-cm R 90 spacing) and for 13-16 MeV beams (1.0-cm R 90 spacing). Most machines failed these expectations, presumably due to tolerances for initial beam matching (0.05 cm in R 90 ; 0.10 cm in R 80-20 ) and ongoing quality assurance (0.2 cm in R 50 ). Also, comparison of energy spectra or metrics for a single beam energy (six machines) showed outlying spectra. These variations in energy spectra provided ample data spread for correlating PME and FWHM with PDD metrics. Least-squares fits showed that R 50 and R 80-20 varied linearly and supralinearly with PME, respectively; however, both suggested a secondary dependence on FWHM. Hence, PME and FWHM could serve as surrogates for R 50 and R 80-20 for beam tuning by the accelerator engineer, possibly being more sensitive (e.g., 0.1 cm in R 80-20 corresponded to 2.0 MeV in FWHM). Results of this study suggest a lightweight, permanent magnet spectrometer could be a useful beam-tuning instrument for the accelerator engineer to (a) match electron beams prior to beam commissioning

  20. An analysis of scattered light in low dispersion IUE spectra

    NASA Technical Reports Server (NTRS)

    Basri, G.; Clarke, J. T.; Haisch, B. M.

    1985-01-01

    A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.

  1. [A New Distance Metric between Different Stellar Spectra: the Residual Distribution Distance].

    PubMed

    Liu, Jie; Pan, Jing-chang; Luo, A-li; Wei, Peng; Liu, Meng

    2015-12-01

    Distance metric is an important issue for the spectroscopic survey data processing, which defines a calculation method of the distance between two different spectra. Based on this, the classification, clustering, parameter measurement and outlier data mining of spectral data can be carried out. Therefore, the distance measurement method has some effect on the performance of the classification, clustering, parameter measurement and outlier data mining. With the development of large-scale stellar spectral sky surveys, how to define more efficient distance metric on stellar spectra has become a very important issue in the spectral data processing. Based on this problem and fully considering of the characteristics and data features of the stellar spectra, a new distance measurement method of stellar spectra named Residual Distribution Distance is proposed. While using this method to measure the distance, the two spectra are firstly scaled and then the standard deviation of the residual is used the distance. Different from the traditional distance metric calculation methods of stellar spectra, when used to calculate the distance between stellar spectra, this method normalize the two spectra to the same scale, and then calculate the residual corresponding to the same wavelength, and the standard error of the residual spectrum is used as the distance measure. The distance measurement method can be used for stellar classification, clustering and stellar atmospheric physical parameters measurement and so on. This paper takes stellar subcategory classification as an example to test the distance measure method. The results show that the distance defined by the proposed method is more effective to describe the gap between different types of spectra in the classification than other methods, which can be well applied in other related applications. At the same time, this paper also studies the effect of the signal to noise ratio (SNR) on the performance of the proposed method

  2. Double-Resonance Facilitated Decomposion of Emission Spectra

    NASA Astrophysics Data System (ADS)

    Kato, Ryota; Ishikawa, Haruki

    2016-06-01

    Emission spectra provide us with rich information about the excited-state processes such as proton-transfer, charge-transfer and so on. In the cases that more than one excited states are involved, emission spectra from different excited states sometimes overlap and a decomposition of the overlapped spectra is desired. One of the methods to perform a decomposition is a time-resolved fluorescence technique. It uses a difference in time evolutions of components involved. However, in the gas-phase, a concentration of the sample is frequently too small to carry out this method. On the other hand, double-resonance technique is a very powerful tool to discriminate or identify a common species in the spectra in the gas-phase. Thus, in the present study, we applied the double-resonance technique to resolve the overlapped emission spectra. When transient IR absorption spectra of the excited state are available, we can label the population of the certain species by the IR excitation with a proper selection of the IR wavenumbers. Thus, we can obtain the emission spectra of labeled species by subtracting the emission spectra with IR labeling from that without IR. In the present study, we chose the charge-transfer emission spectra of cyanophenyldisilane (CPDS) as a test system. One of us reported that two charge-transfer (CT) states are involved in the intramolecular charge-transfer (ICT) process of CPDS-water cluster and recorded the transient IR spectra. As expected, we have succeeded in resolving the CT emission spectra of CPDS-water cluster by the double resonance facilitated decomposion technique. In the present paper, we will report the details of the experimental scheme and the results of the decomposition of the emission spectra. H. Ishikawa, et al., Chem. Phys. Phys. Chem., 9, 117 (2007).

  3. Ultraviolet Spectra of Two Magnetic White Dwarfs and Ultraviolet Spectra of Subluminous Objects Found in the Kiso Schmidt Survey

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1987-01-01

    Low resolution International Ultraviolet Explorer (IUE) spectroscopic observations of two magnetic white dwarfs BPM25114 and K813-14 were obtained using both the SWP and LWP cameras. The first object has an observed magnetic field of 4 x 10(7) Gauss and the second has one of 3 x 10(7) Gauss. Both objects have overall spectral energy distributions appropriate for cool DA white dwarfs with T(eff) near 10,000 K and accordingly show strong lambda lambda 1400 and 1600 absorption in their spectra. Compared to non-magnetic DA white dwarfs of comparable effective temperature, there are some differences in the profiles, presumably produced by the magnetic fields in these objects. In addition, the ultraviolet spectra of a number of hot subluminous stars in the Kiso Schmidt survey were observed.

  4. Thermal aging effect of vanadyl acetylacetonate precursor for deposition of VO{sub 2} thin films with thermochromic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jung-Hoon; Nam, Sang-Hun; Kim, Donguk

    Highlights: • 7 day aged VO(acac){sub 2} sol shows enhanced adhesivity on the SiO{sub 2} compared with non-aged sol. • The aging process has significantly affected the morphologies of VO{sub 2} films. • From the FT-IR spectra, thermal aging process provides the deformation of precursor. • The metal insulator transition (MIT) efficiency (ΔT{sub at2000} {sub nm}) reached a maximum value of 51% at 7 day aging. • Thermal aging process could shorten the aging time of sol solution. - Abstract: Thermochromic properties of vanadium dioxide (VO{sub 2}) have been studied extensively due to their IR reflection applications in energy smartmore » windows. In this paper, we studied the optical switching property of VO{sub 2} thin film, depending on the thermal aging time of the vanadyl acetylacetonate (VO(acac){sub 2}) precursor. We found the alteration of the IR spectra of the precursor by tuning the aging time as well as heat treatments of the precursor. An aging effect of vanadium precursor directly affects the morphologies, optical switching property and crystallinity of VO{sub 2} films. The optimum condition was achieved at the 7 day aging time with metal insulator transition (MIT) efficiency of 50%.« less

  5. Doppler-shifting effects on frequency spectra of gravity waves observed near the summer mesopause at high latitude

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Wang, Ding-Yi

    1991-01-01

    Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.

  6. The WAGGS project - I. The WiFeS Atlas of Galactic Globular cluster Spectra

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Pastorello, Nicola; Bellstedt, Sabine; Alabi, Adebusola; Cerulo, Pierluigi; Chevalier, Leonie; Fraser-McKelvie, Amelia; Penny, Samantha; Foster, Caroline; McDermid, Richard M.; Schiavon, Ricardo P.; Villaume, Alexa

    2017-07-01

    We present the WiFeS Atlas of Galactic Globular cluster Spectra, a library of integrated spectra of Milky Way and Local Group globular clusters. We used the WiFeS integral field spectrograph on the Australian National University 2.3 m telescope to observe the central regions of 64 Milky Way globular clusters and 22 globular clusters hosted by the Milky Way's low-mass satellite galaxies. The spectra have wider wavelength coverage (3300-9050 Å) and higher spectral resolution (R = 6800) than existing spectral libraries of Milky Way globular clusters. By including Large and Small Magellanic Cloud star clusters, we extend the coverage of parameter space of existing libraries towards young and intermediate ages. While testing stellar population synthesis models and analysis techniques is the main aim of this library, the observations may also further our understanding of the stellar populations of Local Group globular clusters and make possible the direct comparison of extragalactic globular cluster integrated light observations with well-understood globular clusters in the Milky Way. The integrated spectra are publicly available via the project website.

  7. Distinguishing Vaccinium Species by Chemical Fingerprinting Based on NMR Spectra, Validated with Spectra Collected in Different Laboratories

    PubMed Central

    Markus, Michelle A.; Ferrier, Jonathan; Luchsinger, Sarah M.; Yuk, Jimmy; Cuerrier, Alain; Balick, Michael J.; Hicks, Joshua M.; Killday, K. Brian; Kirby, Christopher W.; Berrue, Fabrice; Kerr, Russell G.; Knagge, Kevin; Gödecke, Tanja; Ramirez, Benjamin E.; Lankin, David C.; Pauli, Guido F.; Burton, Ian; Karakach, Tobias K.; Arnason, John T.; Colson, Kimberly L.

    2014-01-01

    A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R2 = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product. PMID:24963620

  8. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kijak, J.; Basu, R.; Lewandowski, W.

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physicalmore » parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.« less

  9. Fourier transform spectra of quantum dots

    NASA Astrophysics Data System (ADS)

    Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.

    2009-09-01

    Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.

  10. Fourier transform spectra of quantum dots

    NASA Astrophysics Data System (ADS)

    Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.

    2010-05-01

    Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.

  11. Hemoglobin spectra affect measurement of tissue oxygen saturation

    NASA Astrophysics Data System (ADS)

    Ostojic, Daniel; Kleiser, Stefan; Nasseri, Nassim; Isler, Helene; Scholkmann, Felix; Karen, Tanja; Wolf, Martin

    2018-02-01

    Tissue oxygen saturation (StO2) is a valuable clinical parameter e.g. for intensive care applications or monitoring during surgery. Studies showed that near-infrared spectroscopy (NIRS) based tissue oximeters of different brands give systematically different readings of StO2. Usually these readings are linearly correlated and therefore StO2 readings from one instrument can easily be converted to those of another instrument. However, it is interesting to understand why there is this difference. One reason may be that different brands employ different spectra of hemoglobin. The aim here was to investigate how these different absorption spectra of hemoglobin affect the StO2 readings. Therefore, we performed changes in StO2 in a phantom experiment with real human hemoglobin at three different concentrations (26.5, 45 and 70 μM): desaturation by yeast consuming the oxygen and re-saturation by bubbling oxygen gas. The partial pressure of O2 in the liquid changed from at least 10 kPa to 0 kPa and ISS OxiplexTS, a frequency-domain NIRS instrument, was used to monitor changes of StO2. When we employed two different absorption spectra for hemoglobin, StO2 values were comparable in the normal physiological range. However, particularly at high and low StO2 values, a difference of >6% between these two spectra were noticed. Such a difference of >6% is substantial and relevant for medical applications. This may partly explain why different brands of NIRS instruments provide different StO2 readings. The hemoglobin spectra are therefore a factor to be considered for future developments and applications of NIRS oximeters.

  12. Effect of Nanoparticles on the Morphology, Thermal, and Electrical Properties of Low-Density Polyethylene after Thermal Aging

    PubMed Central

    Wang, Youyuan; Zhang, Zhanxi; Xiao, Kun

    2017-01-01

    This paper investigates the morphology, thermal, and electrical properties of LDPE (low-density polyethylene)-based nanocomposites after thermal aging. The FTIR (Fourier transform infrared spectroscopy) spectra results show that thermo-oxidative reactions occur in neat LDPE and LDPE/SiO2 nanocomposites when the aging time is 35 days and in LDPE/MgO nanocomposites when the aging time is 77 days. Specifically, LDPE/MgO nanocomposites delay the appearance of thermo-oxidative reactions, showing anti-thermal aging ability. Furthermore, nanocomposites present lower onset degradation temperature than neat LDPE, showing better thermal stabilization. With regard to the electrical properties, nanocomposites maintain the ability to suppress space charge accumulation after thermal aging. Additionally, in comparison with SiO2 nanocomposites and neat LDPE, the permittivity of LDPE/MgO nanocomposites changes slightly after thermal aging. It is concluded that LDPE/MgO nanocomposites have better insulation properties than neat LDPE after thermal aging, which may be caused by the interface introduced by the nanoparticles. PMID:29023428

  13. Effect of Nanoparticles on the Morphology, Thermal, and Electrical Properties of Low-Density Polyethylene after Thermal Aging.

    PubMed

    Wang, Youyuan; Wang, Can; Zhang, Zhanxi; Xiao, Kun

    2017-10-12

    This paper investigates the morphology, thermal, and electrical properties of LDPE (low-density polyethylene)-based nanocomposites after thermal aging. The FTIR (Fourier transform infrared spectroscopy) spectra results show that thermo-oxidative reactions occur in neat LDPE and LDPE/SiO₂ nanocomposites when the aging time is 35 days and in LDPE/MgO nanocomposites when the aging time is 77 days. Specifically, LDPE/MgO nanocomposites delay the appearance of thermo-oxidative reactions, showing anti-thermal aging ability. Furthermore, nanocomposites present lower onset degradation temperature than neat LDPE, showing better thermal stabilization. With regard to the electrical properties, nanocomposites maintain the ability to suppress space charge accumulation after thermal aging. Additionally, in comparison with SiO₂ nanocomposites and neat LDPE, the permittivity of LDPE/MgO nanocomposites changes slightly after thermal aging. It is concluded that LDPE/MgO nanocomposites have better insulation properties than neat LDPE after thermal aging, which may be caused by the interface introduced by the nanoparticles.

  14. Aging fingerprints in combustion particles

    NASA Astrophysics Data System (ADS)

    Zelenay, V.; Mooser, R.; Tritscher, T.; Křepelová, A.; Heringa, M. F.; Chirico, R.; Prévôt, A. S. H.; Weingartner, E.; Baltensperger, U.; Dommen, J.; Watts, B.; Raabe, J.; Huthwelker, T.; Ammann, M.

    2011-05-01

    Soot particles can significantly influence the Earth's climate by absorbing and scattering solar radiation as well as by acting as cloud condensation nuclei. However, despite their environmental (as well as economic and political) importance, the way these properties are affected by atmospheric processing is still a subject of discussion. In this work, soot particles emitted from two different cars, a EURO 2 transporter, a EURO 3 passenger vehicle, and a wood stove were investigated on a single-particle basis. The emitted exhaust, including the particulate and the gas phase, was processed in a smog chamber with artificial solar radiation. Single particle specimens of both unprocessed and aged soot were characterized using x-ray absorption spectroscopy and scanning electron microscopy. Comparison of the spectra from the unprocessed and aged soot particles revealed changes in the carbon functional group content, such as that of carboxylic carbon, which can be ascribed to both the condensation of secondary organic compounds on the soot particles and oxidation of primary soot particles upon photochemical aging. Changes in the morphology and size of the single soot particles were also observed upon aging. Furthermore, we show that the soot particles take up water in humid environments and that their water uptake capacity increases with photochemical aging.

  15. Regional Modeling and Power Spectra of Mercury's Crustal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Plattner, A. M.; Johnson, C. L.

    2018-05-01

    Mercury's crustal magnetic field and magnetic power spectra for select regions show distinct patterns for regions without magnetized impact craters, regions with magnetized impact craters, and the region north of Caloris.

  16. MixGF: Spectral Probabilities for Mixture Spectra from more than One Peptide*

    PubMed Central

    Wang, Jian; Bourne, Philip E.; Bandeira, Nuno

    2014-01-01

    In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30–390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra. PMID:25225354

  17. Age-related disappearance of Mayer-like heart rate waves

    NASA Technical Reports Server (NTRS)

    Jarisch, W. R.; Ferguson, J. J.; Shannon, R. P.; Wei, J. Y.; Goldberger, A. L.

    1987-01-01

    The effect of age on the principal spectral components of heart rate obtained immediately after passive upright tilt was investigated in human subjects who underwent a 60-deg tilt over 9 sec. Two groups were examined, the first of which consisting of healthy male subjects aged 22-26 years, while the second was comprised of subjects aged 65-84 years on no medication; radiograms were recorded continuously beginning just prior to tilt until 3 min posttilt. The results of spectral analysis showed that elderly subjects did not exhibit the Mayer-like heart rate waves (the 0.07-0.09 Hz oscillations) that were present in the spectra of young subjects immediately after passive upright tilt. The findings are consistent with the concept of a 'dysautonomia of aging'. It is suggested that postural stress testing with spectral analysis of heart rate fluctuations may provide a useful way of assessing physiologic vs chronologic age.

  18. Effects of Sample Preparation on the Infrared Reflectance Spectra of Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauer, Carolyn S.; Johnson, Timothy J.; Myers, Tanya L.

    2015-05-22

    While reflectance spectroscopy is a useful tool in identifying molecular compounds, laboratory measurement of solid (particularly powder) samples often is confounded by sample preparation methods. For example, both the packing density and surface roughness can have an effect on the quantitative reflectance spectra of powdered samples. Recent efforts in our group have focused on developing standard methods for measuring reflectance spectra that accounts for sample preparation, as well as other factors such as particle size and provenance. In this work, the effect of preparation method on sample reflectivity was investigated by measuring the directional-hemispherical spectra of samples that were hand-packedmore » as well as pressed into pellets using an integrating sphere attached to a Fourier transform infrared spectrometer. The results show that the methods used to prepare the sample have a substantial effect on the measured reflectance spectra, as do other factors such as particle size.« less

  19. Fluorescence spectra of blood plasma treated with ultraviolet irradiation in vivo

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Maslova, T. O.

    2010-09-01

    We have studied the fluorescence spectra of blood plasma from patients with acute coronary syndrome, and also the effect of therapeutic doses of in vivo ultraviolet blood irradiation (UBI) on the spectra. We have established that the maxima in the fluorescence spectra of the original plasma samples, obtained from unirradiated blood, are located in the wavelength interval 330-340 nm, characteristic for the fluorescence of tryptophan residues. In extracorporeal UBI ( λ = 254 nm), we observed changes in the shape and also both a blue and a red shift in the maxima of the fluorescence spectra, differing in magnitude for blood plasma samples from different patients in the test group. We show that UBI-initiated changes in the fluorescence spectra of the plasma depend on the original pathological disturbances of metabolite levels, and also on the change in the oxygen-transport function of the blood and the acid-base balance, affecting the oxidative stability of the plasma. We have concluded that UV irradiation, activating buffer systems in the blood, has an effect on the universal and specific interactions of the tryptophan residue with the amino acid residues and water surrounding it.

  20. Theory of Parabolic Arcs in Interstellar Scintillation Spectra

    NASA Astrophysics Data System (ADS)

    Cordes, James M.; Rickett, Barney J.; Stinebring, Daniel R.; Coles, William A.

    2006-01-01

    Interstellar scintillation (ISS), observed as time variation in the intensity of a compact radio source, is caused by small-scale structure in the electron density of the interstellar plasma. Dynamic spectra of ISS show modulation in radio frequency and time. Here we relate the (two-dimensional) power spectrum of the dynamic spectrum-the secondary spectrum-to the scattered image of the source. Recent work has identified remarkable parabolic arcs in secondary spectra. Each point in a secondary spectrum corresponds to interference between points in the scattered image with a certain Doppler shift and a certain delay. The parabolic arc corresponds to the quadratic relation between differential Doppler shift and delay through their common dependence on scattering angle. We show that arcs will occur in all media that scatter significant power at angles larger than the rms angle. Thus, effects such as source diameter, steep spectra, and dissipation scales, which truncate high angle scattering, also truncate arcs. Arcs are equally visible in simulations of nondispersive scattering. They are enhanced by anisotropic scattering when the spatial structure is elongated perpendicular to the velocity. In weak scattering the secondary spectrum is directly mapped from the scattered image, and this mapping can be inverted. We discuss additional observed phenomena including multiple arcs and reverse arclets oriented oppositely to the main arc. These phenomena persist for many refractive scattering times, suggesting that they are due to large-scale density structures, rather than low-frequency components of Kolmogorov turbulence.

  1. Monte Carlo Simulation of X-Ray Spectra in Mammography and Contrast-Enhanced Digital Mammography Using the Code PENELOPE

    NASA Astrophysics Data System (ADS)

    Cunha, Diego M.; Tomal, Alessandra; Poletti, Martin E.

    2013-04-01

    In this work, the Monte Carlo (MC) code PENELOPE was employed for simulation of x-ray spectra in mammography and contrast-enhanced digital mammography (CEDM). Spectra for Mo, Rh and W anodes were obtained for tube potentials between 24-36 kV, for mammography, and between 45-49 kV, for CEDM. The spectra obtained from the simulations were analytically filtered to correspond to the anode/filter combinations usually employed in each technique (Mo/Mo, Rh/Rh and W/Rh for mammography and Mo/Cu, Rh/Cu and W/Cu for CEDM). For the Mo/Mo combination, the simulated spectra were compared with those obtained experimentally, and for spectra for the W anode, with experimental data from the literature, through comparison of distribution shape, average energies, half-value layers (HVL) and transmission curves. For all combinations evaluated, the simulated spectra were also compared with those provided by different models from the literature. Results showed that the code PENELOPE provides mammographic x-ray spectra in good agreement with those experimentally measured and those from the literature. The differences in the values of HVL ranged between 2-7%, for anode/filter combinations and tube potentials employed in mammography, and they were less than 5% for those employed in CEDM. The transmission curves for the spectra obtained also showed good agreement compared to those computed from reference spectra, with average relative differences less than 12% for mammography and CEDM. These results show that the code PENELOPE can be a useful tool to generate x-ray spectra for studies in mammography and CEDM, and also for evaluation of new x-ray tube designs and new anode materials.

  2. A method to reproduce alpha-particle spectra measured with semiconductor detectors.

    PubMed

    Timón, A Fernández; Vargas, M Jurado; Sánchez, A Martín

    2010-01-01

    A method is proposed to reproduce alpha-particle spectra measured with silicon detectors, combining analytical and computer simulation techniques. The procedure includes the use of the Monte Carlo method to simulate the tracks of alpha-particles within the source and in the detector entrance window. The alpha-particle spectrum is finally obtained by the convolution of this simulated distribution and the theoretical distributions representing the contributions of the alpha-particle spectrometer to the spectrum. Experimental spectra from (233)U and (241)Am sources were compared with the predictions given by the proposed procedure, showing good agreement. The proposed method can be an important aid for the analysis and deconvolution of complex alpha-particle spectra. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. A novel statistical approach shows evidence for multi-system physiological dysregulation during aging.

    PubMed

    Cohen, Alan A; Milot, Emmanuel; Yong, Jian; Seplaki, Christopher L; Fülöp, Tamàs; Bandeen-Roche, Karen; Fried, Linda P

    2013-03-01

    Previous studies have identified many biomarkers that are associated with aging and related outcomes, but the relevance of these markers for underlying processes and their relationship to hypothesized systemic dysregulation is not clear. We address this gap by presenting a novel method for measuring dysregulation via the joint distribution of multiple biomarkers and assessing associations of dysregulation with age and mortality. Using longitudinal data from the Women's Health and Aging Study, we selected a 14-marker subset from 63 blood measures: those that diverged from the baseline population mean with age. For the 14 markers and all combinatorial sub-subsets we calculated a multivariate distance called the Mahalanobis distance (MHBD) for all observations, indicating how "strange" each individual's biomarker profile was relative to the baseline population mean. In most models, MHBD correlated positively with age, MHBD increased within individuals over time, and higher MHBD predicted higher risk of subsequent mortality. Predictive power increased as more variables were incorporated into the calculation of MHBD. Biomarkers from multiple systems were implicated. These results support hypotheses of simultaneous dysregulation in multiple systems and confirm the need for longitudinal, multivariate approaches to understanding biomarkers in aging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication.

    PubMed

    Compton, L A; Johnson, W C

    1986-05-15

    Inverse circular dichroism (CD) spectra are presented for each of the five major secondary structures of proteins: alpha-helix, antiparallel and parallel beta-sheet, beta-turn, and other (random) structures. The fraction of the each secondary structure in a protein is predicted by forming the dot product of the corresponding inverse CD spectrum, expressed as a vector, with the CD spectrum of the protein digitized in the same way. We show how this method is based on the construction of the generalized inverse from the singular value decomposition of a set of CD spectra corresponding to proteins whose secondary structures are known from X-ray crystallography. These inverse spectra compute secondary structure directly from protein CD spectra without resorting to least-squares fitting and standard matrix inversion techniques. In addition, spectra corresponding to the individual secondary structures, analogous to the CD spectra of synthetic polypeptides, are generated from the five most significant CD eigenvectors.

  5. Ghrelin receptor (GHS-R1A) agonists show potential as interventive agents during aging.

    PubMed

    Smith, Roy G; Sun, Yuxiang; Jiang, Hong; Albarran-Zeckler, Rosie; Timchenko, Nikolai

    2007-11-01

    Administration of an orally active agonist (MK-0677) of the growth hormone secretagogue receptor (GHS-R1a) to elderly subjects restored the amplitude of endogenous episodic growth hormone (GH) release to that of young adults. Functional benefits include increased lean mass and bone density and modest improvements in strength. In old mice, a similar agonist partially restored function to the thymus and reduced tumor cell growth and metastasis. Treatment of old mice with the endogenous GHS-R1a agonist ghrelin restored a young liver phenotype. The mechanism involves inhibition of cyclin D3:cdk4/cdk6 activity and increased protein phosphatase-2A (PP2A) activity in liver nuclei, which stabilizes the dephosphorylated form of the transcription factor C/EBPalpha preventing the age-dependent formation of the C/EBPalpha-Rb-E2F4-Brm nuclear complex. By inhibiting formation of this complex, repression of E2F target genes is de-repressed and C/EBPalpha regulated expression of Pepck, a regulator of gluconeogenesis, is normalized, thereby restoring a young liver phenotype. In the brain, aging is associated with decline in dopamine function. We investigated the potential neuromodulatory role of GHS-R1a on dopamine action. Neurons were identified in the hippocampus, cortex, substantia nigra, and ventral tegmental areas that coexpressed GHS-R1a and dopamine receptor subtype-1 (D1R). Cell culture studies showed that, in the presence of ghrelin and dopamine, GHS-R and D1R form heterodimers, which modified G-protein signal transduction resulting in amplification of dopamine signaling. We speculate that aging is associated with deficient endogenous ghrelin signaling that can be rescued by intervention with GHS-R1a agonists to improve quality of life and maintain independence.

  6. Variations in the Infrared Spectra of Wüstite with Defects and Disorder

    NASA Astrophysics Data System (ADS)

    Koike, C.; Matsuno, J.; Chihara, H.

    2017-08-01

    The presence of FeO particles in circumstellar space has been suggested based on the observation of a mysterious 21 μm emission band. However, the complete infrared spectra of FeO have not been obtained so far; hence, data of the infrared (IR) spectra of FeO need to be investigated. We prepared synthetic and commercial samples of FeO, which were obtained by crushing bulk samples, annealing iron oxalate dihydrate ({{FeC}}2{{{O}}}4\\cdot 2{{{H}}}2{{O}}), and mechanical milling of a powder mixture comprising (Fe and {{Fe}}2{{{O}}}3) particles with different milling times. We present a new study on the IR spectra of these samples, and show that these spectra changed according to defects and disorders. Furthermore, FeO particles are very sensitive to oxygen fugacity and temperature. The spectra of FeO particles were compared with the unidentified observed feature. It may be difficult for FeO particles to exist alone in the ISM and circumstellar space. This may be connected to the problem of missing iron in the ISM.

  7. Titan solar occultation observations reveal transit spectra of a hazy world.

    PubMed

    Robinson, Tyler D; Maltagliati, Luca; Marley, Mark S; Fortney, Jonathan J

    2014-06-24

    High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan's atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration's (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88-5 μm at a resolution of 12-18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan's haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1-10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA's James Webb Space Telescope.

  8. High resolution power spectra of daily Zurich sunspot numbers

    NASA Technical Reports Server (NTRS)

    Euler, H. C., Jr.

    1973-01-01

    High resolution power spectra of 77 years of Zurich daily sunspot numbers were computed using various lags and data point intervals. Major harmonic peaks of the approximately 124-month period showed up strongly as well as the 27-day solar rotational period.

  9. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  10. FSFE: Fake Spectra Flux Extractor

    NASA Astrophysics Data System (ADS)

    Bird, Simeon

    2017-10-01

    The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

  11. Low-energy Spectra of Gamma-Ray Bursts from Cooling Electrons

    NASA Astrophysics Data System (ADS)

    Geng, Jin-Jun; Huang, Yong-Feng; Wu, Xue-Feng; Zhang, Bing; Zong, Hong-Shi

    2018-01-01

    The low-energy spectra of gamma-ray bursts’ (GRBs) prompt emission are closely related to the energy distribution of electrons, which is further regulated by their cooling processes. We develop a numerical code to calculate the evolution of the electron distribution with given initial parameters, in which three cooling processes (i.e., adiabatic, synchrotron, and inverse Compton cooling) and the effect of a decaying magnetic field are coherently considered. A sequence of results is presented by exploring the plausible parameter space for both the fireball and the Poynting flux–dominated regime. Different cooling patterns for the electrons can be identified, and they are featured by a specific dominant cooling mechanism. Our results show that the hardening of the low-energy spectra can be attributed to the dominance of synchrotron self-Compton cooling within the internal shock model or to decaying synchrotron cooling within the Poynting flux–dominated jet scenario. These two mechanisms can be distinguished by observing the hard low-energy spectra of isolated short pulses in some GRBs. The dominance of adiabatic cooling can also lead to hard low-energy spectra when the ejecta is moving at an extreme relativistic speed. The information from the time-resolved low-energy spectra can help to probe the physical characteristics of the GRB ejecta via our numerical results.

  12. Airborne gamma-ray spectra processing: Extracting photopeaks.

    PubMed

    Druker, Eugene

    2018-07-01

    The acquisition of information from the airborne gamma-ray spectra is based on the ability to evaluate photopeak areas in regular spectra from natural and other sources. In airborne gamma-ray spectrometry, extraction of photopeaks of radionuclides from regular one-second spectra is a complex problem. In the region of higher energies, difficulties are associated with low signal level, i.e. low count rates, whereas at lower energies difficulties are associated with high noises due to a high signal level. In this article, a new procedure is proposed for processing the measured spectra up to and including the extraction of evident photopeaks. The procedure consists of reducing the noise in the energy channels along the flight lines, transforming the spectra into the spectra of equal resolution, removing the background from each spectrum, sharpening the details, and transforming the spectra back to the original energy scale. The resulting spectra are better suited for examining and using the photopeaks. No assumptions are required regarding the number, locations, and magnitudes of photopeaks. The procedure does not generate negative photopeaks. The resolution of the spectrometer is used for the purpose. The proposed methodology, apparently, will contribute also to study environmental problems, soil characterization, and other near-surface geophysical methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Quantum Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    1992-01-01

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (i) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems--This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential -energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (ii) Explicit time-dependent formulation of photoabsorption processes --Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  14. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    PubMed

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  15. Reflection spectra of solids of planetary interest

    NASA Technical Reports Server (NTRS)

    Sill, G. T.; Carm, O.

    1973-01-01

    This paper reproduces the spectra of solids which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra (some at low temperature) are included for various sulfides relevant to the planet Jupiter. Meteorite and coal spectra are also included to illustrate dark carbon compounds.

  16. Residual Inhibition Functions Overlap Tinnitus Spectra and the Region of Auditory Threshold Shift

    PubMed Central

    Moffat, Graeme; Baumann, Michael; Ward, Lawrence M.

    2008-01-01

    Animals exposed to noise trauma show augmented synchronous neural activity in tonotopically reorganized primary auditory cortex consequent on hearing loss. Diminished intracortical inhibition in the reorganized region appears to enable synchronous network activity that develops when deafferented neurons begin to respond to input via their lateral connections. In humans with tinnitus accompanied by hearing loss, this process may generate a phantom sound that is perceived in accordance with the location of the affected neurons in the cortical place map. The neural synchrony hypothesis predicts that tinnitus spectra, and heretofore unmeasured “residual inhibition functions” that relate residual tinnitus suppression to the center frequency of masking sounds, should cover the region of hearing loss in the audiogram. We confirmed these predictions in two independent cohorts totaling 90 tinnitus subjects, using computer-based tools designed to assess the psychoacoustic properties of tinnitus. Tinnitus spectra and residual inhibition functions for depth and duration increased with the amount of threshold shift over the region of hearing impairment. Residual inhibition depth was shallower when the masking sounds that were used to induce residual inhibition showed decreased correspondence with the frequency spectrum and bandwidth of the tinnitus. These findings suggest that tinnitus and its suppression in residual inhibition depend on processes that span the region of hearing impairment and not on mechanisms that enhance cortical representations for sound frequencies at the audiometric edge. Hearing thresholds measured in age-matched control subjects without tinnitus implicated hearing loss as a factor in tinnitus, although elevated thresholds alone were not sufficient to cause tinnitus. PMID:18712566

  17. Determining Reflectance Spectra of Surfaces and Clouds on Exoplanets

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Strait, Talia E.

    2013-03-01

    Planned missions will spatially resolve temperate terrestrial planets from their host star. Although reflected light from such a planet encodes information about its surface, it has not been shown how to establish surface characteristics of a planet without assuming known surfaces to begin with. We present a reanalysis of disk-integrated, time-resolved, multiband photometry of Earth obtained by the Deep Impact spacecraft as part of the EPOXI Mission of Opportunity. We extract reflectance spectra of clouds, ocean, and land without a priori knowledge of the numbers or colors of these surfaces. We show that the inverse problem of extracting surface spectra from such data is a novel and extreme instance of spectral unmixing, a well-studied problem in remote sensing. Principal component analysis is used to determine an appropriate number of model surfaces with which to interpret the data. Shrink-wrapping a simplex to the color excursions of the planet yields a conservative estimate of the planet's endmember spectra. The resulting surface maps are unphysical, however, requiring negative or larger-than-unity surface coverage at certain locations. Our "rotational unmixing" supersedes the endmember analysis by simultaneously solving for the surface spectra and their geographical distributions on the planet, under the assumption of diffuse reflection and known viewing geometry. We use a Markov Chain Monte Carlo to determine best-fit parameters and their uncertainties. The resulting albedo spectra are similar to clouds, ocean, and land seen through a Rayleigh-scattering atmosphere. This study suggests that future direct-imaging efforts could identify and map unknown surfaces and clouds on exoplanets.

  18. MixGF: spectral probabilities for mixture spectra from more than one peptide.

    PubMed

    Wang, Jian; Bourne, Philip E; Bandeira, Nuno

    2014-12-01

    In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30-390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Distinguishing Vaccinium species by chemical fingerprinting based on NMR spectra, validated with spectra collected in different laboratories.

    PubMed

    Markus, Michelle A; Ferrier, Jonathan; Luchsinger, Sarah M; Yuk, Jimmy; Cuerrier, Alain; Balick, Michael J; Hicks, Joshua M; Killday, K Brian; Kirby, Christopher W; Berrue, Fabrice; Kerr, Russell G; Knagge, Kevin; Gödecke, Tanja; Ramirez, Benjamin E; Lankin, David C; Pauli, Guido F; Burton, Ian; Karakach, Tobias K; Arnason, John T; Colson, Kimberly L

    2014-06-01

    A method was developed to distinguish Vaccinium species based on leaf extracts using nuclear magnetic resonance spectroscopy. Reference spectra were measured on leaf extracts from several species, including lowbush blueberry (Vaccinium angustifolium), oval leaf huckleberry (Vaccinium ovalifolium), and cranberry (Vaccinium macrocarpon). Using principal component analysis, these leaf extracts were resolved in the scores plot. Analysis of variance statistical tests demonstrated that the three groups differ significantly on PC2, establishing that the three species can be distinguished by nuclear magnetic resonance. Soft independent modeling of class analogies models for each species also showed discrimination between species. To demonstrate the robustness of nuclear magnetic resonance spectroscopy for botanical identification, spectra of a sample of lowbush blueberry leaf extract were measured at five different sites, with different field strengths (600 versus 700 MHz), different probe types (cryogenic versus room temperature probes), different sample diameters (1.7 mm versus 5 mm), and different consoles (Avance I versus Avance III). Each laboratory independently demonstrated the linearity of their NMR measurements by acquiring a standard curve for chlorogenic acid (R(2) = 0.9782 to 0.9998). Spectra acquired on different spectrometers at different sites classifed into the expected group for the Vaccinium spp., confirming the utility of the method to distinguish Vaccinium species and demonstrating nuclear magnetic resonance fingerprinting for material validation of a natural health product. Georg Thieme Verlag KG Stuttgart · New York.

  20. The gut microbiota in young and middle-aged rats showed different responses to chicken protein in their diet.

    PubMed

    Zhu, Yingying; Li, He; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-11-25

    Meat protein in the diet has been shown to be beneficial for the growth of Lactobacillus in the caecum of growing rats; however, it is unknown whether gut microbiota in middle-aged animals have the same responses to meat protein diets. This study compared the composition of the gut microbiota between young and middle-aged rats after being fed 17.7% chicken protein diet for 14 days. Feces were collected on day 0 and day 14 from young rats (4 weeks old) and middle-aged rats (64 weeks old) fed with 17.7% chicken protein diets. The composition of the gut bacteria was analyzed by sequencing the V4-V5 region of the 16S ribosomal RNA gene. The results showed that the composition of the gut microbiota was significantly different between young and middle-aged rats on both day 0 and day 14. The percentage of Firmicutes decreased for middle-aged rats (72.1% versus 58.1% for day 0 and day 14, respectively) but increased for young rats (41.5 versus 57.7% for day 0 and day 14, respectively). The percentage of Bacteroidetes increased to 31.2% (20.5% on day 0) for middle-aged rats and decreased to 29.6% (41.3% on day 0) for young rats. The relative abundance of the beneficial genus Lactobacillus increased in response to the intake of chicken protein in the young group, while it had the opposite effect in the middle-aged group. The results of our study demonstrated that 17.7% chicken protein diet promoted the beneficial genus Lactobacillus in young rats, but the opposite effect were found in the middle-aged group. To evaluate the linkage between diet and host health, age effect should be considered in the future studies.

  1. A catalog of 0.2 A resolution far-ultraviolet stellar spectra measured with Copernicus

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; Jenkins, E. B.

    1977-01-01

    Spectra between 1000 and 1450 A for 60 O- and B-type stars observed by Copernicus at 0.2-A resolution are presented in three forms: tables containing the numerical data, plots showing renormalized spectra, and synthetic photographic spectra. The data have been corrected for all instrument effects of importance for the photometric accuracy except fluctuations in continuum level caused by small variations in spacecraft guidance. Spectrometer sensitivity curves are provided for use in converting to absolute fluxes. It is expected that this catalog will be of use for research on many aspects of stellar UV spectra, including spectral classification, line identification, abundance determinations, spectrum synthesis, model atmosphere calculations, flux distributions, bolometric corrections, stellar winds, and mass loss.

  2. Experimental investigation of instability in optical and morphological properties of percolated gold thin film during ambient aging

    NASA Astrophysics Data System (ADS)

    Sudheer, Mukherjee, C.; Rai, S. K.; Rai, V. N.; Srivastava, A. K.

    2018-04-01

    Instability in morphological and optical properties of sputtered grown percolated gold (Au) film has been experimentally investigated during ambient aging. Optical absorbance of the film recorded at various stage of aging shows huge variation in the spectra. A schematic is drawn to explain aging-assist evolution in the morphology (dewetting) and correlated with the variation in optical properties. The validity of model is confirmed by X-ray reflectivity (XRR) techniques, performed for both as-deposited and aged samples. Furthermore, change in the color of Au thin film with aging also seen in the photographic images of the samples that also support the absorbance and XRR results.

  3. Quantitative Comparison of Tandem Mass Spectra Obtained on Various Instruments

    NASA Astrophysics Data System (ADS)

    Bazsó, Fanni Laura; Ozohanics, Oliver; Schlosser, Gitta; Ludányi, Krisztina; Vékey, Károly; Drahos, László

    2016-08-01

    The similarity between two tandem mass spectra, which were measured on different instruments, was compared quantitatively using the similarity index (SI), defined as the dot product of the square root of peak intensities in the respective spectra. This function was found to be useful for comparing energy-dependent tandem mass spectra obtained on various instruments. Spectral comparisons show the similarity index in a 2D "heat map", indicating which collision energy combinations result in similar spectra, and how good this agreement is. The results and methodology can be used in the pharma industry to design experiments and equipment well suited for good reproducibility. We suggest that to get good long-term reproducibility, it is best to adjust the collision energy to yield a spectrum very similar to a reference spectrum. It is likely to yield better results than using the same tuning file, which, for example, does not take into account that contamination of the ion source due to extended use may influence instrument tuning. The methodology may be used to characterize energy dependence on various instrument types, to optimize instrumentation, and to study the influence or correlation between various experimental parameters.

  4. Quantum noise spectra for periodically driven cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Aranas, E. B.; Akram, M. Javed; Malz, Daniel; Monteiro, T. S.

    2017-12-01

    A growing number of experimental setups in cavity optomechanics exploit periodically driven fields. However, such setups are not amenable to analysis by using simple, yet powerful, closed-form expressions of linearized optomechanics, which have provided so much of our present understanding of experimental optomechanics. In the present paper, we formulate a method to calculate quantum noise spectra in modulated optomechanical systems, which we analyze, compare, and discuss with two other recently proposed solutions: we term these (i) frequency-shifted operators, (ii) Floquet [Phys. Rev. A 94, 023803 (2016), 10.1103/PhysRevA.94.023803], and (iii) iterative analysis [New J. Phys. 18, 113021 (2016), 10.1088/1367-2630/18/11/113021]. We prove that (i) and (ii) yield equivalent noise spectra and find that (iii) is an analytical approximation to (i) for weak modulations. We calculate the noise spectra of a doubly modulated system describing experiments of levitated particles in hybrid electro-optical traps. We show excellent agreement with Langevin stochastic simulations in the thermal regime and predict squeezing in the quantum regime. Finally, we reveal how otherwise-inaccessible spectral components of a modulated system can be measured in heterodyne detection through an appropriate choice of modulation frequencies.

  5. Towards de novo identification of metabolites by analyzing tandem mass spectra.

    PubMed

    Böcker, Sebastian; Rasche, Florian

    2008-08-15

    Mass spectrometry is among the most widely used technologies in proteomics and metabolomics. Being a high-throughput method, it produces large amounts of data that necessitates an automated analysis of the spectra. Clearly, database search methods for protein analysis can easily be adopted to analyze metabolite mass spectra. But for metabolites, de novo interpretation of spectra is even more important than for protein data, because metabolite spectra databases cover only a small fraction of naturally occurring metabolites: even the model plant Arabidopsis thaliana has a large number of enzymes whose substrates and products remain unknown. The field of bio-prospection searches biologically diverse areas for metabolites which might serve as pharmaceuticals. De novo identification of metabolite mass spectra requires new concepts and methods since, unlike proteins, metabolites possess a non-linear molecular structure. In this work, we introduce a method for fully automated de novo identification of metabolites from tandem mass spectra. Mass spectrometry data is usually assumed to be insufficient for identification of molecular structures, so we want to estimate the molecular formula of the unknown metabolite, a crucial step for its identification. The method first calculates all molecular formulas that explain the parent peak mass. Then, a graph is build where vertices correspond to molecular formulas of all peaks in the fragmentation mass spectra, whereas edges correspond to hypothetical fragmentation steps. Our algorithm afterwards calculates the maximum scoring subtree of this graph: each peak in the spectra must be scored at most once, so the subtree shall contain only one explanation per peak. Unfortunately, finding this subtree is NP-hard. We suggest three exact algorithms (including one fixed parameter tractable algorithm) as well as two heuristics to solve the problem. Tests on real mass spectra show that the FPT algorithm and the heuristics solve the problem

  6. Linear Energy Transfer (LET) spectra of cosmic radiation in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Watts, J. W., Jr.; Akopova, A. B.; Magradze, N. V.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.

    1995-01-01

    Integral linear energy transfer (LET) spectra of cosmic radiation (CR) particles were measured on five Cosmos series spacecraft in low Earth orbit (LEO). Particular emphasis is placed on results of the Cosmos 1887 biosatellite which carried a set of joint U.S.S.R.-U.S.A. radiation experiments involving passive detectors that included thermoluminescent detectors (TLD's), plastic nuclear track detectors (PNTD's), fission foils, nuclear photo-emulsions, etc. which were located both inside and outside the spacecraft. Measured LET spectra are compared with those theoretically calculated. Results show that there is some dependence of LET spectra on orbital parameters. The results are used to estimate the CR quality factor (QF) for the COSMOS 1887 mission.

  7. Coherent manipulation of spontaneous emission spectra in coupled semiconductor quantum well structures.

    PubMed

    Chen, Aixi

    2014-11-03

    In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.

  8. Analytical investigation of different mathematical approaches utilizing manipulation of ratio spectra

    NASA Astrophysics Data System (ADS)

    Osman, Essam Eldin A.

    2018-01-01

    This work represents a comparative study of different approaches of manipulating ratio spectra, applied on a binary mixture of ciprofloxacin HCl and dexamethasone sodium phosphate co-formulated as ear drops. The proposed new spectrophotometric methods are: ratio difference spectrophotometric method (RDSM), amplitude center method (ACM), first derivative of the ratio spectra (1DD) and mean centering of ratio spectra (MCR). The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitations and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision.

  9. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography.

    PubMed

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.

  10. Measurement of CIB power spectra over large sky areas from Planck HFI maps

    NASA Astrophysics Data System (ADS)

    Mak, Daisy Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine

    2017-04-01

    We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission High frequency instrument data at 353, 545 and 857 GHz over 20 000 deg2. We use techniques similar to those applied for the cosmological analysis of Planck, subtracting dust emission at the power spectrum level. Our analysis gives stable solutions for the CIB power spectra with increasing sky coverage up to about 50 per cent of the sky. These spectra agree well with H I-cleaned spectra from Planck measured on much smaller areas of sky with low Galactic dust emission. At 545 and 857 GHz, our CIB spectra agree well with those measured from Herschel data. We find that the CIB spectra at ℓ ≳ 500 are well fitted by a power-law model for the clustered CIB, with a shallow index γcib = 0.53 ± 0.02. This is consistent with the CIB results at 217 GHz from the cosmological parameter analysis of Planck. We show that a linear combination of the 545 and 857 GHz Planck maps is dominated by the CIB fluctuations at multipoles ℓ ≳ 300.

  11. Imprints of explosion conditions on late-time spectra of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Diamond, Tiara R.

    Type Ia supernovae (SNe Ia) play a vital role in the discrimination of different cosmological models. These events have been shown to be standardizable based on properties of their light curves during the early-time photospheric phase. However, the distribution of types of progenitor system, the explosion trigger, and the physics of the explosion are still an active topic of discussion. The details of the progenitors and explosion may provide insight into the variation seen in Type Ia supernova light curves and spectra, and therefore, allow for additional methods of standardization among the group. Late-time near-infrared spectral observations for SNe Ia show numerous strong emission features of forbidden line transitions of cobalt and iron, tracing the central distribution of iron-group burning products. As the spectrum ages, the cobalt features fade as expected from the decay of 56Co to 56Fe. This work will show that the strong and isolated [Fe II] emission line at 1.644 mum provides a unique tool to analyze near-infrared spectra of SNe Ia. Several new methods of analysis will be demonstrated to determine some of the initial conditions of the system. The initial central density, rhoc, and the extent of mixing in the central regions of the explosion have signatures in the line profiles of late-time spectra. An embedded magnetic field, B, of the white dwarf can be determined using the evolution of the lines profiles. Currently magnetic field effects are not included in the hydrodynamics and radiation transport of simulations of SNe Ia. Normalization of spectra to the 1.644 mum line allows separation of features produced by stable versus unstable isotopes of iron group elements. Implications for potential progenitor systems, explosion mechanisms, and the origins and morphology of magnetic fields in SNe Ia, in addition to limitations of the method, are discussed. Observations of the late-time near-infrared emission spectrum at multiple epochs allow for the first ever

  12. Titan solar occultation observations reveal transit spectra of a hazy world

    PubMed Central

    Robinson, Tyler D.; Maltagliati, Luca; Marley, Mark S.; Fortney, Jonathan J.

    2014-01-01

    High-altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world, Titan, to clarify how high-altitude hazes influence transit spectra. We use solar occultation observations of Titan’s atmosphere from the Visual and Infrared Mapping Spectrometer aboard National Aeronautics and Space Administration’s (NASA) Cassini spacecraft to generate transit spectra. Data span 0.88–5 μm at a resolution of 12–18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan’s haze affects its transit spectrum. Our spectra show strong methane-absorption features, and weaker features due to other gases. Most importantly, the data demonstrate that high-altitude hazes can severely limit the atmospheric depths probed by transit spectra, bounding observations to pressures smaller than 0.1–10 mbar, depending on wavelength. Unlike the usual assumption made when modeling and interpreting transit observations of potentially hazy worlds, the slope set by haze in our spectra is not flat, and creates a variation in transit height whose magnitude is comparable to those from the strongest gaseous-absorption features. These findings have important consequences for interpreting future exoplanet observations, including those from NASA’s James Webb Space Telescope. PMID:24876272

  13. Analysis of TOF-SIMS spectra from fullerene compounds

    NASA Astrophysics Data System (ADS)

    Kato, N.; Yamashita, Y.; Iida, S.; Sanada, N.; Kudo, M.

    2008-12-01

    We analyzed TOF-SIMS spectra obtained from three different size of fullerenes (C 60, C 70 and C 84) by using Ga +, Au + and Au 3+ primary ion beams and investigated the fragmentation patterns, the enhancement of secondary ion yields and the restraint of fragmentation by using cluster primary ion beams compared with monoatomic primary ion beams. In the TOS-SIMS spectra from C 70 and C 84, it was found that a fragment ion, identified as C 60+ ( m/ z = 720), showed a relatively high intensity compared with that of other fragment ions related to C 2 depletion. It was also found that the Au 3+ bombardment caused intensity enhancement of intact molecules (C 60+, C 70+ and C 84+) and restrained the fragmentation due to C 2 depletion.

  14. Comparison of Spectra Optia and COBE Spectra apheresis systems' performances for red blood cell exchange procedures.

    PubMed

    Kim, Jaehyup; Joseph, Ranjit; Matevosyan, Karen; Sarode, Ravi

    2016-12-01

    Spectra Optia (Terumo BCT, Lakewood, CO) was FDA approved for red blood cell exchange (RBCx) procedures in January 2014 and is expected to replace COBE spectra (Terumo BCT) very soon in the USA. The performance characteristics of these devices for Isovolemic Hemodilution (IHD-RBCx) procedure were compared in this study. A total of 114 IHD-RBCx procedures from 19 patients were analyzed. For every patient, three procedures on each device with similar pre-procedure hematocrits were compared. Pre and post procedure laboratory parameters compared were hemoglobin S (HbS), hematocrits (Hct), platelet counts and fraction of cells remaining (FCR). Statistical analysis was performed using t-test adjusted by the Holm-Bonferroni method to reduce family-wise error rate. There were no significant differences between these two devices in regards to HbS, Hct, FCR and platelet counts (p = > 0.05). However, rinseback volume (124.2 ± 8.9 ml) and normal saline replacement volume during IHD phase (296.1 ± 97.2 ml) were lower in Spectra Optia as compared to COBE Spectra (337 ± 33.8 ml and 326.6 ± 105.2 ml, p value <0.001 and 0.030 respectively). Spectra Optia had a longer run time (107.1 ± 15.9 min vs 123.8 ± 19.6 min, p value <0.001) overall. Performance characteristics of Spectra Optia for HbS, Hct and FCR were similar to COBE Spectra for IHD-RBCx. IHD-RBCx procedure on Optia required less normal saline replacement volume and rinse back volume but with overall longer procedure run time. Copyright © 2016. Published by Elsevier Ltd.

  15. Transmission effects in unfolding electronic-vibrational electron-molecule energy-loss spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shiyang; Khakoo, Murtadha A.; Johnson, Paul V.

    2006-03-15

    The results of an investigation concerning the sensitivity of conventional unfolding methods applied to electronic-vibrational electron-energy-loss spectra to the transmission efficiency of electron spectrometers are presented. This investigation was made in an effort to understand differences in the differential cross sections for excitation of low-lying electronic states determined experimentally by various groups using electronic-vibrational energy-loss spectra of N{sub 2}. In these experiments, very similar spectral unfolding methods were used, which relied on similar Franck-Condon factors. However, the overall analyses of the electron scattering spectra (by the individual groups) resulted in large differences among the differential cross sections determined from thesemore » energy-loss spectra. The transmission response of the experimental apparatus to different-energy scattered electrons has often been discussed as a key factor that caused these disagreements. The present investigation shows in contrast that the effect of transmission is smaller than that required to independently explain such differences, implying that other systematic effects are responsible for the existing differences between measurements.« less

  16. Galactic cosmic ray abundances and spectra behind defined shielding.

    PubMed

    Heinrich, W; Benton, E V; Wiegel, B; Zens, R; Rusch, G

    1994-10-01

    LET spectra have been measured for lunar missions and for several near Earth orbits ranging from 28 degrees to 83 degrees inclination. In some of the experiments the flux of GCR was determined separately from contributions caused by interactions in the detector material. Results of these experiments are compared to model calculations. The general agreement justifies the use of the model to calculate GCR fluxes. The magnitude of variations caused by solar modulation, geomagnetic shielding, and shielding by matter determined from calculated LET spectra is generally in agreement with experimental data. However, more detailed investigations show that there are some weak points in modeling solar modulation and shielding by material. These points are discussed in more detail.

  17. X ray spectra of X Per. [oso-8 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  18. Observational and theoretical spectra of supernovae

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig; Swartz, Douglas A.; Harkness, Robert P.

    1993-05-01

    HeI somewhat after maximum. SN Ic events require a considerable depletion, if not absence, of helium. Calculations of the nebular phase after about 200 days show that the optical spectra of SN Ib/c will not reveal HeI even if helium is present. The spectra at that phase are rather insensitive to variations in the mass and composition. The similarity of the optical spectra of SN Ib and Ic events at late times thus does not mean that they are physically very similar. Observations of the HeI λ10 830 line could provide a good diagnostic of the atmospheric composition of Sn Ib and SN Ic.

  19. Observational and theoretical spectra of supernovae

    NASA Astrophysics Data System (ADS)

    Craig Wheeler, J.; Swartz, Douglas A.; Harkness, Robert P.

    1993-05-01

    of HeI somewhat after maximum. SN Ic events require a considerable depletion, if not absence, of helium. Calculations of the nebular phase after about 200 days show that the optical spectra of SN Ib/c will not reveal HeI even if helium is present. The spectra at that phase are rather insensitive to variations in the mass and composition. The similarity of the optical spectra of SN Ib and Ic events at late times thus does not mean that they are physically very similar. Observations of the HeI λ10 830 line could provide a good diagnostic of the atmospheric composition of Sn Ib and SN Ic.

  20. Effect of solvents on the fluorescence spectra of bacterial luciferase

    NASA Astrophysics Data System (ADS)

    Sukovataya, Irina E.; Tyulkova, Natalya A.; Kaykova, Elisaveta V.

    2006-08-01

    Bacteria luciferases catalyze the oxidation reaction of the long-chain aliphatic aldehyde and reduced flavinmononucleotide involving molecular oxygen to a respective fatty acid emitting light quanta in the visible spectrum. Fluorescence emission of luciferases from Photobacterium leiognathi dissolved in organic solvent-water mixtures was investigated. Methanol, acetone, dimethyl sulfoxide and formamide were used as organic solvents. As the methanol and acetone concentration is increased the emission maximum peak is decrease. In contrast, with dimethyl sulfoxide and formamide addition induced a increasing of the emission maximum intensity. The values of wavelength maximum (λ max) at the addition of this solvent can shows the spectra shifted to the red by about 12 nm. These increasing in the fluorescence intensity and in the λ max may be due to luciferase denaturation, resulting from the more intensive contact of chromospheres of luciferase with the solvent. At all used concentrations of methanol, acetone and formamide the shape of the fluorescence spectra was not changed. These studies demonstrate that the luciferase tryptophan fluorescence is sensitive to changes of physical-chemical property of enzyme environment. A comparison of activation/inactivation and fluorescence spectra of luciferase in methanol or acetone solutions shows that the extent of inactivation is larger than the extent of fluorescence changes at the same methanol or acetone concentration.

  1. Extending a Tandem Mass Spectral Library to Include MS2 Spectra of Fragment Ions Produced In-Source and MSn Spectra.

    PubMed

    Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E

    2017-11-01

    Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS 2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS 3 and MS 4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS 1 scans for an analyte acquired during an infusion experiment. The MS 2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS 2 spectra of the original precursors and of the in-source fragments as well as the MS n spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before. Graphical Abstract ᅟ.

  2. Tunneling spectra for electrons in the lowest Landau level

    NASA Astrophysics Data System (ADS)

    Burnell, F. J.; Simon, Steven H.

    2010-03-01

    The recently developed experimental technique of time dependent capacitance spectroscopy [1] allows for measurements of high-resolution tunneling spectra of 2DEGs in the quantum Hall regime, giving a detailed probe of the single particle spectral function (electron addition and subtraction spectra). These experiments show a number of interesting features including Landau level structure, exchange enhanced Zeeman energy, Coulomb gap physics, effects of fractional quantization, as well as several key features that remain to be explained. While there has been some prior theoretical work[2] towards explaining low energy Coulomb gap features of tunneling spectra found in much earlier tunneling experiments [3], the new experiments[1] have uncovered physics outside of the prior theoretical explanations. Building on a number of these prior theoretical works, we investigate theoretically the expected tunneling spectra for electrons in low Landau levels, including the effects of electron spin and coupling to collective modes. [1] O. E. Dial, R.C. Ashoori, L.N. Pfeiffer, and K.W. West, Nature 448, 176-179 (2007) ; O. E. Dial et al, unpublished. [2] I. Aleiner et al, Phys. Rev. Lett 74 3435; (1994) S. R. E. Yang and A. MacDonald PRL 70 4110 (1993); S. He, P.M. Platzman, and B. I. Halperin, PRL 71 777 (1993). [3] J. P. Eisenstein et al, Phy. Rev. Lett. 69, 3804 (1992).

  3. Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions

    NASA Astrophysics Data System (ADS)

    McCann, Kathleen; Laane, Jaan

    2008-11-01

    The Raman and infrared spectra of dipicolinic acid (DPA) and dinicotinic acid (DNic) and their salts (CaDPA, Na 2DPA, and CaDNic) have been recorded and the spectra have been assigned. Ab initio and DFT calculations were carried out to predict the structures and vibrational spectra and were compared to the experimental results. Because of extensive intermolecular hydrogen bonding in the crystals of these molecules, the calculated structures and spectra for the individual molecules agree only moderately well with the experimental values. Theoretical calculations were also carried out for DPA dimers and DPA·2H 2O to better understand the intermolecular interactions. The spectra do show that DPA and its calcium salt, which are present in anthrax spores, can be distinguished from the very similar DNic and CaDNic.

  4. The spectra of WC9 stars: evolution and dust formation

    NASA Astrophysics Data System (ADS)

    Williams, P. M.; Crowther, P. A.; van der Hucht, K. A.

    2015-05-01

    We present analyses of new optical spectra of three WC9 stars, WR 88, WR 92 and WR 103 to test the suggestion that they exemplify an evolutionary sequence amongst the WC9 stars. The spectrum of WR 88 shows conspicuous lines of N III and N IV, leading to classification as a transitional WN8o/WC9 star. The three stars show a sequence of increasing O II and O III line strengths, confirming and extending earlier studies. The spectra were analysed using CMFGEN models, finding greater abundances of oxygen and carbon in WR 103 than in WR 92 and, especially, in WR 88. Of the three stars, only WR 103 makes circumstellar dust. We suggest that oxygen itself does not enhance this process but that it is its higher carbon abundance that allows WR 103 to make dust.

  5. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  6. Pattern recognition and classification of vibrational spectra by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Yang, Husheng

    1999-10-01

    A drawback of current open-path Fourier transform infrared (OP/FT-IR) systems is that they need a human expert to determine those compounds that may be quantified from a given spectrum. In this study, three types of artificial neural networks were used to alleviate this problem. Firstly, multi-layer feed-forward neural networks were used to automatically recognize compounds in an OP/FT-IR spectrum. Each neural network was trained to recognize one compound in the presence of up to ten interferents in an OP/FT-IR spectrum. The networks were successfully used to recognize five alcohols and two chlorinated compounds in field-measured controlled-release OP/FT-IR spectra of mixtures of these compounds. It has also been demonstrated that a neural network could correctly identify a spectrum in the presence of an interferent that was not included in the training set and could also reject interferents it has not seen before. Secondly, the possibility of using one- and two- dimensional Kohonen self-organizing maps (SOMs) to recognize similarities in low-resolution vapor-phase infrared spectra without any additional information has been investigated. Both full-range reference spectra and open-path window reference spectra were used to train the networks and the trained networks were then used to classify the reference spectra into several groups. The results showed that the SOMs obtained from the two different training sets were quite different, and it is more appropriate to use the second SOM in OP/FT-IR spectrometry. Thirdly, vapor-phase FT-IR reference spectra of five alcohols along with four baseline spectra were encoded as prototype vectors for a Hopfield network. Inclusion of the baseline spectra allowed the network to classify spectra as unknowns, when the reference spectra of these compounds were not stored as prototype vectors in the network. The network could identify each of the 5 alcohols correctly even in the presence of noise and interfering compounds. Finally

  7. Atmospheric circulations required for thick high-altitude clouds and featureless transit spectra

    NASA Astrophysics Data System (ADS)

    Wang, H.; Wordsworth, R. D.

    2017-12-01

    The transmission spectra of exoplanet GJ 1214b and GJ 436b are featureless as measured by current instruments. According to the measured density of these planets, we have reason to believe these planets have atmospheres, and the spectroscopy features of the atmospheres are unexpectedly not shown in the transit spectra. An explanation is high-altitude clouds or hazes are optically thick enough to make the transit spectra flat in the current observed wavelength range. We analyze the atmospheric circulations and vertical mixing that are crucial for the possible existence of the thick high-altitude clouds. We perform a series of GCM simulations with different atmospheric compositions and planetary parameters to reveal the conditions that are required for showing featureless spectra, and study the dynamical processes. We also study the role of cloud particles with different sizes, compositions and spectral characteristics with a radiative transfer model and cloud physics models. Varying the compositions and sizes of the cloud particles results in different requirements for the atmospheric circulations.

  8. Roto-translational Raman spectra of pairs of hydrogen molecules from first principles.

    PubMed

    Gustafsson, Magnus; Frommhold, Lothar; Li, Xiaoping; Hunt, K L C

    2009-04-28

    We calculate the collision-induced, roto-translational, polarized, and depolarized Raman spectra of pairs of H(2) molecules. The Schrodinger equation of H(2)-H(2) scattering in the presence of a weak radiation field is integrated in the close-coupled scheme. This permits the accounting for the anisotropy of the intermolecular potential energy surface and thereby it includes mixing of polarizability components. The static polarizability invariants, trace and anisotropy, of two interacting H(2) molecules were obtained elsewhere [Li et al., J. Chem. Phys. 126, 214302 (2007)] from first principles. Here we report the associated spherical tensor components which, along with the potential surface, are input in the calculation of the supramolecular Raman spectra. Special attention is paid to the interferences in the wings of the rotational S(0)(0) and S(0)(1) lines of the H(2) molecule. The calculated Raman pair spectra show reasonable consistency with existing measurements of the polarized and depolarized Raman spectra of pairs of H(2) molecules.

  9. Spectra of M Asteroids V1.0

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Clark, B. E.; Migliorini, A.; Ockert-Bell, M.

    2011-08-01

    This data set contains reduced composite visual and near-infrared spectra of thirty M-type asteroids, observed over the years 2004-2008 and presented in Fornasier et al. (2010). The spectra were taken with the Dolores and NICS instruments at the Telescopio Nationale Galileo (TNG) in La Palma, with the EMMI and SOFI instruments at the ESO New Technology Telescope (NTT) in Chile, and with the SPeX instrument at the Infrared Telescope Facility (IRTF) in Hawaii. The individual spectra from the various instruments used to produce the composite spectra are also included.

  10. Turbulence spectra in the noise source regions of the flow around complex surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D. R.

    1983-01-01

    The complex turbulent flow around three complex surfaces was measured in detail with a hot wire. The measured data include extensive spatial surveys of the mean velocity and turbulence intensity and measurements of the turbulence spectra and scale length at many locations. The publication of the turbulence data is completed by reporting a summary of the turbulence spectra that were measured within the noise source locations of the flow. The results suggest some useful simplifications in modeling the very complex turbulent flow around complex surfaces for aeroacoustic predictive models. The turbulence spectra also show that noise data from scale models of moderate size can be accurately scaled up to full size.

  11. SpecTracer: A Python-Based Interactive Solution for Echelle Spectra Reduction

    NASA Astrophysics Data System (ADS)

    Romero Matamala, Oscar Fernando; Petit, Véronique; Caballero-Nieves, Saida Maria

    2018-01-01

    SpecTracer is a newly developed interactive solution to reduce cross dispersed echelle spectra. The use of widgets saves the user the steep learning curves of currently available reduction software. SpecTracer uses well established image processing techniques based on IRAF to succesfully extract the stellar spectra. Comparisons with other reduction software, like IRAF, show comparable results, with the added advantages of ease of use, platform independence and portability. This tool can obtain meaningful scientific data and serve also as a training tool, especially for undergraduates doing research, in the procedure for spectroscopic analysis.

  12. Unfolding neutron spectra from simulated response of thermoluminescence dosimeters inside a polyethylene sphere using GRNN neural network

    NASA Astrophysics Data System (ADS)

    Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.

    2017-07-01

    Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.

  13. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    NASA Astrophysics Data System (ADS)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  14. UV irradiation-induced Raman spectra changes in lead silicate glasses

    NASA Astrophysics Data System (ADS)

    Jia, Hongzhi; Chen, Guanghui; Wang, Wencheng

    2006-12-01

    The Raman spectra for a series of lead silicate glasses with different PbO content before and after irradiation with different energy density by the frequency-quadrupled output of a Q-switched YAG laser (266 nm, 10 Hz repetition rate) were measured. The intensity of Pb-O band near 140 cm -1 in the Raman spectra decreases after UV irradiation and no new band appears in the Raman spectra. Exposed to the UV beam with high energy density (150 mJ/cm 2), although the total dose is smaller than the dose with low energy density (50 mJ/cm 2), the intensity of the 140 cm -1 band drops heavilier than exposed to the UV beam with low energy density. This shows that the UV irradiation can cause the broken of Pb-O bond in lead silicate glasses and the broken of Pb-O bond is related to the energy density of UV beam.

  15. The far-ultraviolet spectra and geometric albedos of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.; Feldman, P. D.

    1982-01-01

    Spectra and geometric albedoes in the range 1200 to 1940 A are compiled for Jupiter and Saturn on the basis of IUE observations. The spectra of both planets are dominated by H Lyman-alpha emission line at 1216 A, although absorption bands of C2H2 are apparent at longer wavelengths, particularly in the spectrum of Saturn, and the C I line at 1657 A is also observed. Geometric albedoes show emission features corresponding to the weak H2 Lyman and Werner bands around 1230-1280 A, auroral Lyman band emission, C I emission, and C2H2 absorption from 1600 to 1900 A. A model of atmospheric absorption in homogeneously mixed atmospheres of H2 and trace molecular absorbers is then presented and fit to the Jupiter albedo, resulting in a predicted atmosphere containing C2H2 and an unidentified molecular or particulate absorber. Finally, north-south maps of Jupiter continuum emission show limb darkening, and a comparison of equatorial and polar spectra indicates a polar increase in C2H2 absorption and weaker polar H2 emissions than previously reported.

  16. Creating semiconductor metafilms with designer absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate thatmore » near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.« less

  17. The composite load spectra project

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H.; Kurth, R. E.

    1990-01-01

    Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.

  18. Spectra Handling from AIRS and IRIS for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Lau, M.; Aumann, H. H.; Yung, Y. L.

    2010-12-01

    model shows consistent spectra for both clear sky and low cloud with both AIRS and IRIS by introducing water vapor in the model. The model results indicate the CO2 and CH4 increase which is consistent with the IPCC report. Due to the broad emission range of the water vapor in the troposphere, it plays a significant role in the model simulations.

  19. The structure of BPS spectra

    NASA Astrophysics Data System (ADS)

    Longhi, Pietro

    In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for

  20. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography*

    PubMed Central

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553

  1. Frequency-selective quantitation of short-echo time 1H magnetic resonance spectra

    NASA Astrophysics Data System (ADS)

    Poullet, Jean-Baptiste; Sima, Diana M.; Van Huffel, Sabine; Van Hecke, Paul

    2007-06-01

    Accurate and efficient filtering techniques are required to suppress large nuisance components present in short-echo time magnetic resonance (MR) spectra. This paper discusses two powerful filtering techniques used in long-echo time MR spectral quantitation, the maximum-phase FIR filter (MP-FIR) and the Hankel-Lanczos Singular Value Decomposition with Partial ReOrthogonalization (HLSVD-PRO), and shows that they can be applied to their more complex short-echo time spectral counterparts. Both filters are validated and compared through extensive simulations. Their properties are discussed. In particular, the capability of MP-FIR for dealing with macromolecular components is emphasized. Although this property does not make a large difference for long-echo time MR spectra, it can be important when quantifying short-echo time spectra.

  2. Advanced Models of Accretion Disk Atmospheres and Spectra for Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Wade, Richard A.

    1997-01-01

    This work led to the development of code for fitting models to data, and to an understanding of the nature of the models which enabled a more rapid search of 'parameter space' for optimal fits to spectral data sets. The code was used to find optimal fits to IUE spectra of quiescent dwarf novae that have been reported to show evidence for the white dwarf. The models consisted of a white dwarf component and an accretion disk with boundary conditions appropriate for the choice of the white dwarf. The preliminary work has strengthened the initial impression that accretion disk spectra can mimic the appearance of white dwarf spectra in the short-wavelength ultraviolet, so that additional constraints (such as distance) are needed to distinguish to two cases.

  3. Measurements of the Martian Gamma/Neutron Spectra with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Brinza, D.; Weigle, E.; Boettcher, S.; Burmeister, S.; Guo, J.; Martin-Garcia, C.; Boehm, E.; Posner, A.; Rafkin, S. C.; Kortmann, O.

    2013-12-01

    The Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover curiosity measures the energetic charged and neutral particle spectra and the radiation dose rate on the Martian surface. An important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, which possess a high biological effectiveness. In contrast to charged particles, neutrons and gamma rays are generally only measured indirectly. Their measurement is the result of a complex convolution of the incident particle spectrum with the measurement process. We apply an inversion method to calculate the gamma/neutron spectra from the RAD neutral particle measurements. Here we show first measurements of the Martian gamma/neutron spectra and compare them to theoretical predictions. We find that the shape of the gamma spectrum is very similar to the predicted one, but with a ~50% higher intensity. The measured neutron spectrum agrees well with prediction up to ~100 MeV, but shows a considerably increased intensity for higher energies. The measured neutron spectrum translates into a radiation dose rate of 25 μGy/day and a dose equivalent rate of 106 μSv/day. This corresponds to 10% of the total surface dose rate, and 15% of the biological relevant surface dose equivalent rate on Mars. Measuring the Martian neutron spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat. The contribution of neutrons to the dose equivalent increases considerably with shielding thickness, so our measurements provide an important figure to mitigate cancer risk.

  4. Monitoring bruise age using visible diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    McMurdy, John W.; Duffy, Susan; Crawford, Gregory P.

    2007-02-01

    The ability to determine the age of a bruise of unknown age mechanism is important in matters of domestic and child abuse and forensics. While physicians are asked to make clinical judgment on the age of a bruise using color and tenderness, studies have shown that a physicians estimate is highly inaccurate and in cases no better than chance alone. We present here the temporal progression of reflection spectrum collected from accidentally inflicted contusions in adult and child study participants with a synopsis of the observed phenomena. Reflection spectra collected using a portable fiber optic reflection spectrometer can track the increase in extravasated hemoglobin from trauma caused blood vessel rupture and subsequent removal of this hemoglobin occurring concurrent with an increase in the absorption attributed to the breakdown product bilirubin. We hypothesize that this time dependent pattern can be used to determine the age of an unknown bruise in an individual provided rate constant information for the patient can be determined in a controlled calibration bruise. Using reflection spectra to estimate bruise age can provide a rapid and noninvasive method to improve the ability of physicians in dating the age of a contusion.

  5. Spatially Resolved Mid-IR Spectra from Meteorites; Linking Composition, Crystallographic Orientation and Spectra on the Micro-Scale

    NASA Astrophysics Data System (ADS)

    Stephen, N. R.

    2016-08-01

    IR spectroscopy is used to infer composition of extraterrestrial bodies, comparing bulk spectra to databases of separate mineral phases. We extract spatially resolved meteorite-specific spectra from achondrites with respect to zonation and orientation.

  6. Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Nitrogen Substitution

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP/4-31G approach is used to compute the harmonic frequencies of substituted naphthalene, anthracene, and their cations. The substitutions include cyano (CN), aminio (NH2), imino (NH), and replacement of a CH group by a nitrogen atom. All unique sites are considered, namely 1 and 2 for naphthalene and 1, 2, and 9 for an'tracene, except for the imino, where only 2-iminonaphthalene is studied. The IR spectra of these substituted species are compared with those of the unsubstituted molecules. The addition of a CN group does not significantly affect the spectra except to add the CN stretching frequency. Replacing a CH group by N has only a small effect on the IR spectra. The addition of the NH2 group dramatically affects the neutral spectra, giving it much of the character of the cation spectra. However, the neutral 2-irrinonaphthalene spectra looks more like that of naphthalene than like the 2-aminonaphthalene spectra.

  7. Childhood central adiposity at ages 5 and 9 shows consistent relationship with that of the maternal grandmother but not other grandparents.

    PubMed

    Somerville, R; Khalil, H; Segurado, R; Mehegan, J; Viljoen, K; Heinen, M; Murrin, C; Kelleher, C C

    2018-05-09

    The importance of a life course approach to childhood obesity has been emphasized; however, few studies can prospectively investigate relationships in three-generation families. To prospectively investigate the relationship between grandparental and grandchild waist circumference (WC) at ages 5 and 9 down maternal and paternal lines. At baseline in the Lifeways Cross-Generation Cohort, 1094 children were born to 1082 mothers; 585 were examined at age 5 and 298 at age 9. Of the total 589 children with measured WC, data were also available from 745 grandparents. Child WC was standardized for age and sex, and theory-based hierarchical linear regression was used. Maternal grandmother (MGM) WC was predictive of grandchild WC at both time points. At age 5, grandchild's standardized birth weight (B = 0.266, p = 0.001), mother's means tested eligibility for free medical care (B = 1.029, p = 0.001) and grandchild seeing maternal grandparents daily (B = 0.312, p = 0.048) were significant alongside MGM WC (B = 0.015, p = 0.019). At age 9, only MGM WC (B = 0.022, p = 0.033) and mother's WC (B = 0.032, p = 0.005) were significant. Mediation analysis with mother's WC showed significant direct relationship of MGM and grandchild WC. This prospective cross-generational cohort shows consistent patterns of association between MGM and grandchild WC, not seen in other grandparental lineages. © 2018 World Obesity Federation.

  8. Quality of clinical brain tumor MR spectra judged by humans and machine learning tools.

    PubMed

    Kyathanahally, Sreenath P; Mocioiu, Victor; Pedrosa de Barros, Nuno; Slotboom, Johannes; Wright, Alan J; Julià-Sapé, Margarida; Arús, Carles; Kreis, Roland

    2018-05-01

    To investigate and compare human judgment and machine learning tools for quality assessment of clinical MR spectra of brain tumors. A very large set of 2574 single voxel spectra with short and long echo time from the eTUMOUR and INTERPRET databases were used for this analysis. Original human quality ratings from these studies as well as new human guidelines were used to train different machine learning algorithms for automatic quality control (AQC) based on various feature extraction methods and classification tools. The performance was compared with variance in human judgment. AQC built using the RUSBoost classifier that combats imbalanced training data performed best. When furnished with a large range of spectral and derived features where the most crucial ones had been selected by the TreeBagger algorithm it showed better specificity (98%) in judging spectra from an independent test-set than previously published methods. Optimal performance was reached with a virtual three-class ranking system. Our results suggest that feature space should be relatively large for the case of MR tumor spectra and that three-class labels may be beneficial for AQC. The best AQC algorithm showed a performance in rejecting spectra that was comparable to that of a panel of human expert spectroscopists. Magn Reson Med 79:2500-2510, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. An unbalanced spectra classification method based on entropy

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-bao; Zhao, Wen-juan

    2017-05-01

    How to solve the problem of distinguishing the minority spectra from the majority of the spectra is quite important in astronomy. In view of this, an unbalanced spectra classification method based on entropy (USCM) is proposed in this paper to deal with the unbalanced spectra classification problem. USCM greatly improves the performances of the traditional classifiers on distinguishing the minority spectra as it takes the data distribution into consideration in the process of classification. However, its time complexity is exponential with the training size, and therefore, it can only deal with the problem of small- and medium-scale classification. How to solve the large-scale classification problem is quite important to USCM. It can be easily obtained by mathematical computation that the dual form of USCM is equivalent to the minimum enclosing ball (MEB), and core vector machine (CVM) is introduced, USCM based on CVM is proposed to deal with the large-scale classification problem. Several comparative experiments on the 4 subclasses of K-type spectra, 3 subclasses of F-type spectra and 3 subclasses of G-type spectra from Sloan Digital Sky Survey (SDSS) verify USCM and USCM based on CVM perform better than kNN (k nearest neighbor) and SVM (support vector machine) in dealing with the problem of rare spectra mining respectively on the small- and medium-scale datasets and the large-scale datasets.

  10. Spectra of Earth-like Planets through Geological Evolution around FGKM Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.

    2018-02-01

    Future observations of terrestrial exoplanet atmospheres will occur for planets at different stages of geological evolution. We expect to observe a wide variety of atmospheres and planets with alternative evolutionary paths, with some planets resembling Earth at different epochs. For an Earth-like atmospheric time trajectory, we simulate planets from the prebiotic to the current atmosphere based on geological data. We use a stellar grid F0V to M8V ({T}{eff}=7000–2400 K) to model four geological epochs of Earth's history corresponding to a prebiotic world (3.9 Ga), the rise of oxygen at 2.0 Ga and at 0.8 Ga, and the modern Earth. We show the VIS–IR spectral features, with a focus on biosignatures through geological time for this grid of Sun-like host stars and the effect of clouds on their spectra. We find that the observability of biosignature gases reduces with increasing cloud cover and increases with planetary age. The observability of the visible O2 feature for lower concentrations will partly depend on clouds, which, while slightly reducing the feature, increase the overall reflectivity, and thus the detectable flux of a planet. The depth of the IR ozone feature contributes substantially to the opacity at lower oxygen concentrations, especially for the high near-UV stellar environments around F stars. Our results are a grid of model spectra for atmospheres representative of Earth's geological history to inform future observations and instrument design and are available online at http://carlsaganinstitute.org/data/.

  11. Large-area measurements of CIB power spectra with Planck HFI maps

    NASA Astrophysics Data System (ADS)

    Mak, D. S. Y.; Challinor, A.; Efstathiou, G.; Lagache, G.

    We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission HFI data at 353, 545, and 857 GHz over 20 000 square degrees. Unlike previous Planck measurements of the CIB power spectra, we do not rely on external HI data to remove Galactic dust emission from the Planck maps. Instead, we model the Galactic emission at the level of the power spectra, using templates constructed directly from the Planck data by exploiting the statistical isotropy of all extragalactic emission components. This allows us to work at the full resolution of Planck over large sky areas. We construct a likelihood based on the measured spectra (for multipoles 50 <= l <= 2500) using analytic covariance matrices that account for masking and the realistic instrumental noise properties. The results of an MCMC exploration of this likelihood are presented, based on simple parameterised models of the CIB power that arises from clustering of infrared galaxies. We explore simultaneously the parameters describing the clustered power, the Poisson power levels, and the amplitudes of the Galactic power spectrum templates across the six frequency (cross-)spectra. The best-fit model provides a good fit to all spectra. As an example, Fig. 1 compares the measured auto spectra at 353, 545, and 857 GHz over 40% of the sky to the power in the best-fit model. We find that the power in the CIB anisotropies from galaxy clustering is roughly equal to the Poisson power at multipoles l =2000 (the clustered power dominates on larger scales), and that our dust-cleaned CIB spectra are in good agreement with previous Planck and Herschel measurements. A key feature of our analysis is that it allows one to make many internal consistency tests. We show that our results are stable to data selection and choice of survey area, demonstrating both our ability to remove Galactic dust power to high accuracy and the statistical isotropy of the CIB signal.

  12. Spectra of Cas A's Highest Velocity Ejecta

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.; Milisavljevic, Dan

    2010-08-01

    The young age and close distance of the Galactic supernova remnant Cassiopeia A (Cas A) make it perhaps our best case study and clearest look at the explosion dynamics of a core-collapse supernova (CCSN). Interestingly, Cas A exhibits two nearly opposing streams of high velocity ejecta or `jets' in its NE and SW regions racing outward at speeds more than twice that of the main shell. The nature of these jets, however, and their possible association with an aspherical supernova explosion mechanism is controversial. A handful of existing low-resolution spectra of outer knots in the NE jet display chemical abundances hinting at an origin from the S-Si-Ca- Ar rich layer deep inside the progenitor. If these abundances could be firmly established in both the NE and SW jets, it would be very strong evidence in support of a highly asymmetrical explosion engine for Cas A's progenitor and, in turn, for CCSNe in general. We request KPNO 4m telescope + MARS time to obtain high quality multi-object spectroscopy of Cas A's highest velocity ejecta to measure their nitrogen, sulfur, oxygen, calcium, and argon abundances. These spectra will be analyzed with the metal-rich shock models of J. Raymond and then compared to current sets of CCSN models paying particular attention to knot composition vs. ejection velocity and ejecta mixing.

  13. Fluorescence Spectra of Individual Flowing Airborne Biological Particles Measured in Real Time

    DTIC Science & Technology

    2001-02-01

    and fungal spores ( Aspergillus versicolor, ATCC 9577). B. subtilis var. niger (lyophilized cells) and E. herbicola were grown by streak- ing onto...Excitation Figure 7 shows fluorescence spectra of B. subtilis var. niger vegetative cells and fungal spores ( Aspergillus versicolor), both 5 µm in diameter...µm-diam clusters of B. subtilis var. niger spores, and B. subtilis var. niger vegetative cells ……………………………………… 10 5. Fluorescence spectra of starved

  14. An alternative hypothesis for high-T 40Ar/39Ar age spectrum discordance in polyphase extraterrestrial materials

    NASA Astrophysics Data System (ADS)

    Cassata, W. S.; Shuster, D. L.; Renne, P. R.; Weiss, B. P.

    2009-12-01

    A common feature observed in 40Ar/39Ar age spectra of extraterrestrial (ET) rocks is a conspicuous decrease in the ages of high temperature extractions relative to lower temperature steps and a correlated increase in Ca/K, often succeeded by a monotonic increase in ages. This feature is routinely attributed to recoil-implanted 39Ar from a potassium (K)-rich donor phase into a K-poor receptor phase (e.g., 1,2). While 39Ar recoil redistribution is undoubtedly manifested in many terrestrial and ET 40Ar/39Ar whole-rock age spectra, it cannot easily explain the magnitude of high release temperature 40Ar*/39ArK anomalies observed in Martian meteorites ALH 84001 and Nakhla, as well as other course-grained meteorites and lunar rocks. Depending on the aliquot and sample, 50 - 100% of the pyroxene release spectra in ALH 84001 and Nakhla appear strongly perturbed to lower ages. As the mean recoil distance of 39Ar ~0.1 µm, the recoil hypothesis demands that a high-K phase be ubiquitously distributed amongst sub-micron to micron sized pyroxene crystals to account for the observed pyroxene age spectra. However, in both Nakhla and ALH 84001, pyroxene is often completely isolated from high-K phases and individual grains commonly exceed 100 µm in diameter. 40Ar/39Ar analyses of pyroxene-bearing terrestrial basalts, wherein fine-grained pyroxene and plagioclase are intimately adjoined, show that recoil-implanted 39Ar into pyroxene produces much less precipitous anomalies in 40Ar*/39ArK, as predicted by the recoil lengthscale. An alternative hypothesis is that whole-rock age spectra of ET samples with anomalously low ages at high temperatures may reflect diffusive 40Ar distributions within considerably degassed pyroxene grains. Owing to apparent differences in activation energies between glass and/or plagioclase and pyroxene, 40Ar may diffuse more rapidly from pyroxene under certain high-temperature conditions (i.e., above the temperature at which the extrapolated Ar Arrhenius

  15. First Infrared Predissociation Spectra of He-TAGGED Protonated Primary Alcohols at 4 K

    NASA Astrophysics Data System (ADS)

    Stoffels, Alexander; Redlich, Britta; Oomens, J.; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Thorwirth, Sven; Schlemmer, Stephan

    2015-06-01

    Cryogenic multipole ion traps have become popular devices in the development of sensitive action-spectroscopic techniques. The low ion temperature leads to enhanced spectral resolution, and less congested spectra. In the early 2000s, a 22-pole ion trap was coupled to the Free-Electron Laser for Infrared eXperiments (FELIX), yielding infrared Laser Induced Reaction (LIR) spectra of the molecular ions C_2H_2+ and CH_5+. This pioneering work showed the great opportunities combining cold mass-selected molecular ions with widely tunable broadband IR radiation. In the past year a cryogenic (T>3.9 K) 22-pole ion trap designed and built in Cologne (FELion) has been successfully coupled to FELIX, which in its current configuration provides continuously tunable infrared radiation from 3 μm to 150 μm, hence allowing to probe characteristic vibrational spectra in the so-called "fingerprint region" with a sufficient spectral energy density also allowing for multiple photon processes (IR-MPD). Here we present the first infrared predissociation spectra of He-tagged protonated methanol and ethanol (MeOH_2+/EtOH_2+) stored at 4 K. These vibrational spectra were recorded with both a commercial OPO and FELIX, covering a total spectral range from 3700 wn to 550 wn at a spectral resolution of a few wn. The H-O-H stretching and bending modes clearly distinguish the protonated alcohols from their neutral analoga. For EtOH_2+, also IR-MPD spectra of the bare ion could be recorded. The symmetric and antisymmetric H-O-H stretching bands at around 3 μm show no significant shift within the given spectral resolution in comparison to those recorded with He predissociation, indicating a rather small perturbation caused by the attached He. The vibrational bands were assigned using quantum-chemical calculations on different levels of theory. The computed frequencies correspond favorably to the experimental spectra. Subsequent high resolution measurements could lead to a better structural

  16. PEPSI deep spectra. II. Gaia benchmark stars and other M-K standards

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Ilyin, I.; Weber, M.

    2018-04-01

    Context. High-resolution échelle spectra confine many essential stellar parameters once the data reach a quality appropriate to constrain the various physical processes that form these spectra. Aim. We provide a homogeneous library of high-resolution, high-S/N spectra for 48 bright AFGKM stars, some of them approaching the quality of solar-flux spectra. Our sample includes the northern Gaia benchmark stars, some solar analogs, and some other bright Morgan-Keenan (M-K) spectral standards. Methods: Well-exposed deep spectra were created by average-combining individual exposures. The data-reduction process relies on adaptive selection of parameters by using statistical inference and robust estimators. We employed spectrum synthesis techniques and statistics tools in order to characterize the spectra and give a first quick look at some of the science cases possible. Results: With an average spectral resolution of R ≈ 220 000 (1.36 km s-1), a continuous wavelength coverage from 383 nm to 912 nm, and S/N of between 70:1 for the faintest star in the extreme blue and 6000:1 for the brightest star in the red, these spectra are now made public for further data mining and analysis. Preliminary results include new stellar parameters for 70 Vir and α Tau, the detection of the rare-earth element dysprosium and the heavy elements uranium, thorium and neodymium in several RGB stars, and the use of the 12C to 13C isotope ratio for age-related determinations. We also found Arcturus to exhibit few-percent Ca II H&K and Hα residual profile changes with respect to the KPNO atlas taken in 1999. Based on data acquired with PEPSI using the Large Binocular Telescope (LBT) and the Vatican Advanced Technology Telescope (VATT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT

  17. Anisotropic spectra of acoustic type turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, E.; P.N. Lebedev Physical Institute, 53 Leninsky Ave., 119991 Moscow; Krasnoselskikh, V.

    2008-06-15

    The problem of spectra for acoustic type of turbulence generated by shocks being randomly distributed in space is considered. It is shown that for turbulence with a weak anisotropy, such spectra have the same dependence in k-space as the Kadomtsev-Petviashvili spectrum: E(k){approx}k{sup -2}. However, the frequency spectrum has always the falling {approx}{omega}{sup -2}, independent of anisotropy. In the strong anisotropic case the energy distribution relative to wave vectors takes anisotropic dependence, forming in the large-k region spectra of the jet type.

  18. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargent, B. A.; Forrest, W.; Watson, Dan M.

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seenmore » in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.« less

  19. Zircon age-temperature-compositional spectra in plutonic rocks

    DOE PAGES

    Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie; ...

    2017-08-23

    We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less

  20. Zircon age-temperature-compositional spectra in plutonic rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie

    We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less

  1. Extreme ultraviolet spectra of multiply charged tungsten ions

    NASA Astrophysics Data System (ADS)

    Mita, Momoe; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Nakamura, Nobuyuki

    2017-11-01

    We present extreme ultraviolet spectra of multiply charged tungsten ions observed with an electron beam ion trap. The observed spectra are compared with previous experimental results and theoretical spectra obtained with a collisional radiative model.

  2. Laser Induced Chlorophyll Fluorescence Spectra of Cajanus Cajan L Plant Growing Under Cadmium Stress

    NASA Astrophysics Data System (ADS)

    Gopal, Ram; Pandey, J. K.

    2010-06-01

    Laser-induced Chlorophyll fluorescence (LICF) spectra of Cajanus cajan L leaves treated with different concentrations of Cd (0.05, 0.5 and 1 mM) are recorded at 10 and 20 days after first treatment of cadmium. LICF spectra are recorded in the region of 650-780 nm using violet diode laser (405 nm). LICF spectra of plant leaves show two maxima near 685 and 730nm. Fluorescence induction kinetics (FIK) curve are recorded at 685 and 730 nm with red diode laser (635 nm) for excitation. The fluorescence intensity ratios (FIR) F685/F730 are calculated from LICF spectra and vitality index (Rfd) are determined from FIK curve. FIR and Rfd value are good stress indicator of plant health. These parameters along with chlorophyll content are used to analyze the effect of Cd on wheat plants. The result indicates that higher concentrations of Cd hazardous for photosynthetic activity and health of Arhar plants. The lower concentration of 0.05 mM shows stimulatory response up to 10 days while after 20 days this concentration also shows inhibitory response. R. Gopal, K. B. Mishra, M. Zeeshan, S. M. Prasad, and M. M. Joshi Curr. Sci., 83, 880, 2002 K. B. Mishra and R. Gopal Int. J. Rem. Sen., 29, 157, 2008 R. Maurya, S. M. Prasad, and R. Gopal J. Photochem. Photobio. C: Photochem. Rev., 9, 29, 2008

  3. Quantitative analysis of dinuclear manganese(II) EPR spectra

    NASA Astrophysics Data System (ADS)

    Golombek, Adina P.; Hendrich, Michael P.

    2003-11-01

    A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me 3TACN) 2Mn(II) 2(μ-OAc) 3]BPh 4 ( 1) (Me 3TACN= N, N', N''-trimethyl-1,4,7-triazacyclononane; OAc=acetate 1-; BPh 4=tetraphenylborate 1-) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50 K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2 K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined ( J=-1.5±0.3 cm-1; H ex=-2J S1· S2) and found to be in agreement with a previous

  4. Mössbauer spectra of white micas from the Central Western Carpathians Mountains

    NASA Astrophysics Data System (ADS)

    Sitek, J.; Sulák, M.; Putiš, M.; Tóth, I.

    2010-03-01

    Potassium white micas from the rocks included into Cretaceous deformation zones (ca. 100-70 Ma in age) of the Central Western Carpathians were investigated by Mössbauer spectroscopy. White micas formed during a polystage evolution and changing P-T conditions of their crystallization in crustal-scale shear zones. We found criteria for distinguishing generations of celadonite-poor (muscovitic) and celadonite-rich (phengitic) white micas using Mössbauer spectroscopy. This method revealed contrasting spectra characterized by typical quadrupole doublets corresponding to Fe2+ Fe3+ contents in white micas. They are in the range of 2.9-3.0 mm/s for phengite, and 2.6-2.7 mm/s for muscovite. Mössbauer spectra reflect well the chemical changes in white mica aggregates, especially of those close to the end-member muscovite and (alumino-)celadonite compositions.

  5. A closer look at 40Ar/39Ar systematics of illite, recoil, retention ages, total gas ages, and a new correction method

    NASA Astrophysics Data System (ADS)

    Fitz-Diaz, E.; Hall, C. M.; van der Pluijm, B.

    2013-12-01

    fractions of S1, S2 and S3, respectively: 46-49, 36-43 and 40-52 My) and RA (54-64, 47-52 and 53-54 My. XCA calculations produce tighter constrained ranges (53-57, 45.5-48.5 and 49-52 My) with an overall average 51.1Ma×3.9 My. In the ICT vs. apparent age plot, authigenic illite grains show a greater slope that is in general slightly positive for TGA, slightly negative for RA, but close to zero for XCA. In the ICT vs. XCA plot thinner crystallites shows more dispersion than thicker ones. In order to test if such dispersion in the age of the finer/thinner illite is due to a different formation history in each site or the result of retention capability, degassing spectra were modeled for site XCA averages and overall XCA average. The modeling shows that local site ages best match the measured spectra, instead of a single age for the combined sites. The closeness between experimental and artificial degassing patterns also supports the hypothesis that each sample preserves a single age population. All illite grains in these samples grew progressively during folding in a time window that is constrained by the three sites. Small and large grains represent the same population in each sample, representing progressive degrees of grain growth (Ostwald ripening).

  6. Mid-infrared spectra of comet nuclei

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.

    2017-03-01

    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  7. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2012-02-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate

  8. Doppler spectra of airborne ultrasound forward scattered by the rough surface of open channel turbulent water flows.

    PubMed

    Dolcetti, Giulio; Krynkin, Anton

    2017-11-01

    Experimental data are presented on the Doppler spectra of airborne ultrasound forward scattered by the rough dynamic surface of an open channel turbulent flow. The data are numerically interpreted based on a Kirchhoff approximation for a stationary random water surface roughness. The results show a clear link between the Doppler spectra and the characteristic spatial and temporal scales of the water surface. The decay of the Doppler spectra is proportional to the velocity of the flow near the surface. At higher Doppler frequencies the measurements show a less steep decrease of the Doppler spectra with the frequency compared to the numerical simulations. A semi-empirical equation for the spectrum of the surface elevation in open channel turbulent flows over a rough bed is provided. The results of this study suggest that the dynamic surface of open channel turbulent flows can be characterized remotely based on the Doppler spectra of forward scattered airborne ultrasound. The method does not require any equipment to be submerged in the flow and works remotely with a very high signal to noise ratio.

  9. SPEXTRA: Optimal extraction code for long-slit spectra in crowded fields

    NASA Astrophysics Data System (ADS)

    Sarkisyan, A. N.; Vinokurov, A. S.; Solovieva, Yu. N.; Sholukhova, O. N.; Kostenkov, A. E.; Fabrika, S. N.

    2017-10-01

    We present a code for the optimal extraction of long-slit 2D spectra in crowded stellar fields. Its main advantage and difference from the existing spectrum extraction codes is the presence of a graphical user interface (GUI) and a convenient visualization system of data and extraction parameters. On the whole, the package is designed to study stars in crowded fields of nearby galaxies and star clusters in galaxies. Apart from the spectrum extraction for several stars which are closely located or superimposed, it allows the spectra of objects to be extracted with subtraction of superimposed nebulae of different shapes and different degrees of ionization. The package can also be used to study single stars in the case of a strong background. In the current version, the optimal extraction of 2D spectra with an aperture and the Gaussian function as PSF (point spread function) is proposed. In the future, the package will be supplemented with the possibility to build a PSF based on a Moffat function. We present the details of GUI, illustrate main features of the package, and show results of extraction of the several interesting spectra of objects from different telescopes.

  10. Near infrared reflectance spectra: Applications to problems in asteroid-meteorite relationships

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Chamberlin, Alan B.

    1992-01-01

    An observing program designed to search for evidence of ordinary chondrite parent bodies near the 3:1 Kirkwood Gap was carried out in 1985 and 1986. Studies by Wisdom (1985), Wetherill (1985), and subsequent work by Milani et al. (1989) indicate that the 3:1 Kirkwood gap is the most probable source region for the majority of ordinary chondrite meteorites. The diversity of the reflectance spectra among this small data set is surprising. Early work by Gaffey and McCord (1978) showed that the inner region of the main asteroid belt is dominated by high albedo objects with mafic silicate surfaces. One would expect to see mostly spectra with 1- and 2-micron absorption bands based on this earlier work. Only 5 (of 12) spectra have these expected features. The distribution of taxonomic types presented by Gradie and Tedesco (1982) is in most cases a useful simplification of the compositional structure of the asteroid belt. The range of spectral characteristics seen with higher resolution in the near-IR has not been previously reported and is not represented in the standard asteroid taxonomy. Near-IR spectra contain valuable mineralogical information which enhances knowledge of the composition and structure of asteroids.

  11. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  12. Can We Infer Ocean Dynamics from Altimeter Wavenumber Spectra?

    NASA Technical Reports Server (NTRS)

    Richman, James; Shriver, Jay; Arbic, Brian

    2012-01-01

    The wavenumber spectra of sea surface height (SSH) and kinetic energy (KE) have been used to infer the dynamics of the ocean. When quasi-geostrophic dynamics (QG) or surface quasi-geostrophic (SQG) turbulence dominate and an inertial subrange exists, a steep SSH wavenumber spectrum is expected with k-5 for QG turbulence and a flatter k-11/3 for SQG turbulence. However, inspection of the spectral slopes in the mesoscale band of 70 to 250 km shows that the altimeter wavenumber slopes typically are much flatter than the QG or SQG predictions over most of the ocean. Comparison of the altimeter wavenumber spectra with the spectra estimated from the output of an eddy resolving global ocean circulation model (the Hybrid Coordinate Ocean Model, HYCOM, at 1/25 resolution), which is forced by high frequency winds and includes the astronomical forcing of the sun and the moon, suggests that the flatter slopes of the altimeter may arise from three possible sources, the presence of internal waves, the lack of an inertial subrange in the 70 to 250 km band and noise or submesoscales at small scales. When the wavenumber spectra of SSH and KE are estimated near the internal tide generating regions, the resulting spectra are much flatter than the expectations of QG or SQG theory. If the height and velocity variability are separated into low frequency (periods greater than 2 days) and high frequency (periods less than a day), then a different pattern emerges with a relatively flat wavenumber spectrum at high frequency and a steeper wavenumber spectrum at low frequency. The stationary internal tides can be removed from the altimeter spectrum, which steepens the spectral slopes in the energetic internal wave regions. Away from generating regions where the internal waves

  13. The Lithium Depletion Boundary and the Age of the Hyades Cluster

    NASA Astrophysics Data System (ADS)

    Martín, Eduardo L.; Lodieu, Nicolas; Pavlenko, Yakiv; Béjar, Víctor J. S.

    2018-03-01

    Determination of the lithium depletion boundary (LDB), i.e., the observational limit below which the cores of very low-mass objects do not reach high enough temperatures for Li destruction, has been used to obtain ages for several open clusters and stellar associations younger than 200 Myr—which until now has been considered the practical upper limit on the range of applicability of this method. In this work, we show that the LDB method can be extended to significant older ages than previously thought. Intermediate resolution optical spectra of six L-type candidate members in the Hyades cluster obtained using Optical System for Imaging and Low Resolution Integrated Spectroscopy at the 10.4 m Gran Telescopio Canarias are presented. The {Li} {{I}} 670.8 nm resonance doublet is clearly detected only in the two faintest and coolest of these objects, which are classified as L3.5 to L4 brown dwarf (BD) cluster members with luminosities around 10‑4 solar. Lithium depletion factors are estimated for our targets with the aid of synthetic spectra and they are compared with predictions from evolutionary models. An LDB age of 650 ± 70 Myr for the Hyades provides a consistent description of our data using a set of state-of-the-art evolutionary models for BDs calculated by Baraffe et al. Based on data obtained at the Gran Telescopio Canarias.

  14. Comparison of species-resolved energy spectra from ACE EPAM and Van Allen Probes RBSPICE

    NASA Astrophysics Data System (ADS)

    Patterson, J.; Manweiler, J. W.; Armstrong, T. P.; Lanzerotti, L. J.; Gerrard, A. J.; Gkioulidou, M.

    2013-12-01

    We present a comparison between energy spectra measured by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument and the Van Allen Probe Ion Composition Experiment (RBSPICE) for two significant and distinct events in early 2013. The first is an impulsive solar particle event on March 17th. While intense, this event presented no significant surprises in terms of its composition or anisotropy characteristics, thus providing a good baseline for response of the trapped radiation belts as observed by the Van Allen Probes. The second solar event occurred late May 22nd and early May 23rd. This event has a much greater concentration of medium and heavy ions than the St. Patrick's Day event, as well as having very peculiar energy spectra with evidence of two distinct populations. During the St. Patrick's Day Event, the energy spectra for helium, carbon, oxygen, neon, silicon, and iron all show the same spectral power law slope -3.1. The event shows strong anisotropy with intensities differing by a factor of four for both protons and Z>1 ions. The late May event also has strong anisotropy, and in the same directions as the St. Patrick's Day Event, but with very different composition and energy spectra. The spectra are much harder with power law spectral slopes of -0.5. Additionally, there is a significant spectral bump at 3 MeV/nuc for helium that is not present in the spectra of the heavier ions. The intensities of the heavier ions, however, show an increase that is an order of magnitude greater than the increase seen for helium. The March 17 RBSPICE observations show multiple injection events lasting for less than an hour each during the Van Allen Probes B apogees. These injections are seen in protons as well as Helium and only somewhat observed in Oxygen. Spectral slopes for the observations range from approximately -5 during quiet times to double peaked events with a spectral slope of approximately -2 at the beginning of the injection

  15. Astrophysics Meets Atomic Physics: Fe I Line Identifications and Templates for Old Stellar Populations from Warm and Hot Stellar UV Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth

    2017-08-01

    Imaging surveys from the ultraviolet to the infrared are recording ever more distant astronomical sources. Needed to interpret them are high-resolution ultraviolet spectral templates at all metallicities for both old and intermediate-age stars, and the atomic physics data essential to model their spectra. To this end we are proposing new UV spectra of four warm and hot stars spanning a wide range of metallicity. These will provide observational templates of old and young metal-poor turnoff stars, and the laboratory source for the identification of thousands of lines of neutral iron that appear in stellar spectra but are not identified in laboratory spectra. By matching existing and new stellar spectra to calculations of energy levels, line wavelengths, and gf-values, Peterson & Kurucz (2015) and Peterson, Kurucz, & Ayres (2017) identified 124 Fe I levels with energies up to 8.4eV. These provided 3000 detectable Fe I lines from 1600A to 5.4mu, and yielded empirical gf-values for 640 of these. Here we propose high-resolution UV spectra reaching 1780A for the first time at the turnoff, to detect and identify the strongest Fe I lines at 1800 - 1850A. This should add 250 new Fe I levels. These spectra, plus one at lower resolution reaching 1620A, will also provide empirical UV templates for turnoff stars at high redshifts as well as low. This is essential to deriving age and metallicity independently for globular clusters and old galaxies out to z 3. It will also improve abundances of trace elements in metal-poor stars, constraining nucleosynthesis at early epochs and aiding the reconstruction of the populations of the Milky Way halo and of nearby globular clusters.

  16. Methane absorption in the visible spectra of the outer planets and Titan

    NASA Technical Reports Server (NTRS)

    Owen, T.; Cess, R. D.

    1975-01-01

    New spectra of Jupiter, Saturn, and Titan show weak methane bands in the region below 6000 A which have been known for many years in the spectra of Uranus and Neptune. Adopting the known abundance of methane on Jupiter, we have used a band model to determine CH4 abundances and broadening pressures for the other objects. The results indicate high values of the CH4 to H2 concentration ratio for Uranus and Neptune; for Titan, a surface pressure in excess of 1 atm is implied.

  17. Ionization potential depression and optical spectra in a Debye plasma model

    NASA Astrophysics Data System (ADS)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  18. Infrared reflectance spectra (2. 2-15. mu. m) of plagioclase feldspars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, D.B.; Salisbury, J.W.

    Laboratory results show that (1) the Christiansen frequency (CF) feature in mid-infrared reflectance spectra of powders can be used to accurately distinguish plagioclase composition, and (2) the wavelength position of the CF is not affected by vitrification of the plagioclase. Although the CF position does not distinguish glass from crystalline forms of plagioclase, other features (combination-tone, overtone, restrahlen bands) in the mid-IR spectra of plagioclase can be used for that purpose. These results have important implications for application of thermal emission spectroscopy to mapping the surface composition of regolith-covered planetary bodies like the Moon, Mars, and asteroids.

  19. Soft X-ray properties of Seyfert galaxies. I - Spectra

    NASA Technical Reports Server (NTRS)

    Kruper, J. S.; Canizares, C. R.; Urry, C. M.

    1990-01-01

    Results are presented from a study of soft X-ray spectra of 75 Seyfert galaxies observed by the Einstein Observatory IPC. The spectra in this sample (mostly high-luminosity Seyfert type 1s) are found to be consistent with a single power-law index alpha = 81. The AGN spectra observed with the IPC are compared with those from higher energy experiments, where AGN spectra have power law indices alpha = 0.7. It is found that the IPC spectra are systematically steeper than the HEAO 1 A-2 spectra of the same Seyfert galaxies, indicating a flattening toward higher energies.

  20. Path spectra derived from inversion of source and site spectra for earthquakes in Southern California

    NASA Astrophysics Data System (ADS)

    Klimasewski, A.; Sahakian, V. J.; Baltay, A.; Boatwright, J.; Fletcher, J. B.; Baker, L. M.

    2017-12-01

    A large source of epistemic uncertainty in Ground Motion Prediction Equations (GMPEs) is derived from the path term, currently represented as a simple geometric spreading and intrinsic attenuation term. Including additional physical relationships between the path properties and predicted ground motions would produce more accurate and precise, region-specific GMPEs by reclassifying some of the random, aleatory uncertainty as epistemic. This study focuses on regions of Southern California, using data from the Anza network and Southern California Seismic network to create a catalog of events magnitude 2.5 and larger from 1998 to 2016. The catalog encompasses regions of varying geology and therefore varying path and site attenuation. Within this catalog of events, we investigate several collections of event region-to-station pairs, each of which share similar origin locations and stations so that all events have similar paths. Compared with a simple regional GMPE, these paths consistently have high or low residuals. By working with events that have the same path, we can isolate source and site effects, and focus on the remaining residual as path effects. We decompose the recordings into source and site spectra for each unique event and site in our greater Southern California regional database using the inversion method of Andrews (1986). This model represents each natural log record spectra as the sum of its natural log event and site spectra, while constraining each record to a reference site or Brune source spectrum. We estimate a regional, path-specific anelastic attenuation (Q) and site attenuation (t*) from the inversion site spectra and corner frequency from the inversion event spectra. We then compute the residuals between the observed record data, and the inversion model prediction (event*site spectra). This residual is representative of path effects, likely anelastic attenuation along the path that varies from the regional median attenuation. We examine the

  1. Cross spectra between temperature and pressure in a constant area duct downstream of a combustor

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Wasserbauer, C. A.; Krejsa, E. A.

    1983-01-01

    The feasibility of measuring pressure temperature cross spectra and coherence and temperature-temperature cross spectra and coherence at spatially separated points along with pressure and temperature auto-spectra in a combustion rig was investigated. The measurements were made near the inlet and exit of a 6.44 m long duct attached to a J-47 combustor. The fuel used was Jet A. The cross spectra and coherence measurements show the pressure and temperature fluctuations correlate best at low frequencies. At the inlet the phenomena controlling the phase relationship between pressure and temperature could not be identified. However, at the duct exit the phase angle of the pressure is related to the phase angle of the temperature by the convected flow time delay.

  2. The AMBRE project: Parameterisation of FGK-type stars from the ESO:HARPS archived spectra

    NASA Astrophysics Data System (ADS)

    De Pascale, M.; Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.

    2014-10-01

    Context. The AMBRE project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA). It has been established to determine the stellar atmospheric parameters of the archived spectra of four ESO spectrographs. Aims: The analysis of the ESO:HARPS archived spectra for the determination of their atmospheric parameters (effective temperature, surface gravity, global metallicities, and abundance of α-elements over iron) is presented. The sample being analysed (AMBRE:HARPS) covers the period from 2003 to 2010 and is comprised of 126 688 scientific spectra corresponding to ~17 218 different stars. Methods: For the analysis of the AMBRE:HARPS spectral sample, the automated pipeline developed for the analysis of the AMBRE:FEROS archived spectra has been adapted to the characteristics of the HARPS spectra. Within the pipeline, the stellar parameters are determined by the MATISSE algorithm, which has been developed at OCA for the analysis of large samples of stellar spectra in the framework of galactic archaeology. In the present application, MATISSE uses the AMBRE grid of synthetic spectra, which covers FGKM-type stars for a range of gravities and metallicities. Results: We first determined the radial velocity and its associated error for the ~15% of the AMBRE:HARPS spectra, for which this velocity had not been derived by the ESO:HARPS reduction pipeline. The stellar atmospheric parameters and the associated chemical index [α/Fe] with their associated errors have then been estimated for all the spectra of the AMBRE:HARPS archived sample. Based on key quality criteria, we accepted and delivered the parameterisation of 93 116 (74% of the total sample) spectra to ESO. These spectra correspond to ~10 706 stars; each are observed between one and several hundred times. This automatic parameterisation of the AMBRE:HARPS spectra shows that the large majority of these stars are cool main-sequence dwarfs with metallicities

  3. Multifractal spectra in shear flows

    NASA Technical Reports Server (NTRS)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  4. Electronic absorption spectra of hydrogenated protonated naphthalene and proflavine

    NASA Astrophysics Data System (ADS)

    Bonaca, A.; Bilalbegović, G.

    2011-09-01

    We study hydrogenated cations of two polycyclic hydrocarbon molecules as models of hydrogenated organic species that form in the interstellar medium. Optical spectra of the hydrogenated naphthalene cation Hn-C10H+8 for n= 1, 2 and 10, as well as the astrobiologically interesting hydrogenated proflavine cation Hn-C13H11N+3 for n= 1 and 14, are calculated. The pseudopotential time-dependent density functional theory is used. It is found that the fully hydrogenated proflavine cation H14-C13H11N+3 shows a broad spectrum in which the positions of individual lines are almost lost. The positions, shapes and intensities of lines change in hydronaphthalene and hydroproflavine cations, showing that hydrogen additions induce substantially different optical spectra in comparison with base polycyclic hydrocarbon cations. One calculated line in the visible spectrum of H10-C10H+8 and one in the visible spectrum of H-C13H11N+3 are close to the measured diffuse interstellar bands. We also present the positions of near-ultraviolet lines.

  5. Unassigned MS/MS Spectra: Who Am I?

    PubMed

    Pathan, Mohashin; Samuel, Monisha; Keerthikumar, Shivakumar; Mathivanan, Suresh

    2017-01-01

    Recent advances in high resolution tandem mass spectrometry (MS) has resulted in the accumulation of high quality data. Paralleled with these advances in instrumentation, bioinformatics software have been developed to analyze such quality datasets. In spite of these advances, data analysis in mass spectrometry still remains critical for protein identification. In addition, the complexity of the generated MS/MS spectra, unpredictable nature of peptide fragmentation, sequence annotation errors, and posttranslational modifications has impeded the protein identification process. In a typical MS data analysis, about 60 % of the MS/MS spectra remains unassigned. While some of these could attribute to the low quality of the MS/MS spectra, a proportion can be classified as high quality. Further analysis may reveal how much of the unassigned MS spectra attribute to search space, sequence annotation errors, mutations, and/or posttranslational modifications. In this chapter, the tools used to identify proteins and ways to assign unassigned tandem MS spectra are discussed.

  6. A sensitive continuum analysis method for gamma ray spectra

    NASA Technical Reports Server (NTRS)

    Thakur, Alakh N.; Arnold, James R.

    1993-01-01

    In this work we examine ways to improve the sensitivity of the analysis procedure for gamma ray spectra with respect to small differences in the continuum (Compton) spectra. The method developed is applied to analyze gamma ray spectra obtained from planetary mapping by the Mars Observer spacecraft launched in September 1992. Calculated Mars simulation spectra and actual thick target bombardment spectra have been taken as test cases. The principle of the method rests on the extraction of continuum information from Fourier transforms of the spectra. We study how a better estimate of the spectrum from larger regions of the Mars surface will improve the analysis for smaller regions with poorer statistics. Estimation of signal within the continuum is done in the frequency domain which enables efficient and sensitive discrimination of subtle differences between two spectra. The process is compared to other methods for the extraction of information from the continuum. Finally we explore briefly the possible uses of this technique in other applications of continuum spectra.

  7. Radiation Belt Electron Energy Spectra Characterization and Evolution Based on the Van Allen Probes Measurements

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Blum, L. W.; Schiller, Q. A.; Leonard, T. W.; Elkington, S. R.

    2017-12-01

    The electron energy spectra, as an important characteristic of radiation belt electrons, provide valuable information on the physical mechanisms affecting different electron populations. Based on the measurements of 30 keV - 10 MeV electrons from MagEIS and REPT instruments on the Van Allen Probes, case studies and statistical analysis of the radiation belt electron energy spectra characterization and evolution have been performed. Generally the radiation belt electron energy spectra can be represented by one of the three types of distributions: exponential, power law, and bump-on-tail. Statistical analysis shows that the exponential spectra are usually dominant in the outer radiation belt; as the geomagnetic storms occur, energy spectra in the outer belt soften at first due to injection of lower-energy electrons and loss of higher-energy electrons, and gradually get harder due to loss of lower-energy electrons and delayed enhancement of higher energy electron fluxes. Power law spectra generally dominate the inner belt and higher L region (L>6) during injections. Bump-on-tail spectra commonly exist inside the plasmasphere following the geomagnetic storms and/or the compression of plasmasphere, while the energy of flux maxima is usually 1.8 MeV as the bump-on-tail spectra form and gradually moves to higher energies as the spectra evolve, with the ratio of flux maxima to minima up to >10. Detailed event study indicates that the appearance of bump-on-tail spectra are mainly due to energy-dependent losses caused by the plasmaspheric hiss wave scattering, while the disappearance of these spectra can be attributed to fast flux enhancements of lower-energy electrons during storms.

  8. Reflection spectra of solids of planetary interest

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1973-01-01

    The spectra of solids are reproduced which might be found on the surfaces of planetary bodies or as solid condensates in the upper planetary atmosphere. Among these are spectra of various iron compounds of interest in the study of the clouds of Venus. Other spectra are included of various sulfides, some at low temperature, relevant to the planet Jupiter. Meteorite and coal abstracts are also included, to illustrate dark carbon compounds.

  9. Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Bugaev, Edgar; Klimai, Peter

    2011-11-01

    We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian.

  10. Modeling and measuring extravascular hemoglobin: aging contusions

    NASA Astrophysics Data System (ADS)

    Lines, Collin; Kim, Oleg; Duffy, Susan; Alber, Mark; Crawford, Gregory P.

    2011-07-01

    Medical expertise is frequently elicited to aid in determining the age and the cause of the trauma or injury. Child protection and law enforcement frequently rely on the physical assessment of the trauma which involves delineating intentional from unintentional types of trauma. Recent studies have shown that current methods to assess the age of traumatic injuries are highly inaccurate and do not give reasonable predictions. Hemoglobin is one of the strongest chromophores in human tissues. Transport of hemoglobin and its breakdown products in tissue determines the spectrophotometric characteristics of the skin and its variations in time. Therefore, measurements of diffuse reflective spectra of the skin allow noninvasive screening. This paper reviews potential transmission and diffusive reflection spectroscopy based techniques and predictive and quantitative modeling methods assisting in efficient retrieval of the age of extravascular contusions. This paper then presents a novel Monte Carlo technique for 3D photon tracking and blood transport model. In future studies, clinically obtained spectra will be used to validate the model as well as fine-tune coefficients for absorption. It is the goal of this study to develop a model that would allow a non-invasive, accurate determination of the age of a bruise.

  11. Model based recovery of histological parameters starting from reflectance spectra of the colon

    NASA Astrophysics Data System (ADS)

    Hidovic-Rowe, Dzena; Claridge, Ela

    2005-06-01

    Colon cancer alters the tissue macro-architecture. Changes include increase in blood content and distortion of the collagen matrix, which affect the reflectance spectra of the colon and its colouration. We have developed a physics-based model for predicting colon tissue spectra. The colon structure is represented by three layers: mucosa, submucosa and smooth muscle. Each layer is represented by parameters defining its optical properties: molar concentration and absorption coefficients of haemoglobins, describing absorption of light; size and density of collagen fibres; refractive index of the medium and collagen fibres, describing light scattering; and layer thicknesses. Spectra were calculated using the Monte Carlo method. The output of the model was compared to experimental data comprising 50 spectra acquired in vivo from normal tissue. The extracted histological parameters showed good agreement with known values. An experiment was carried out to study the differences between normal and abnormal tissue. These were characterised by increased blood content and decreased collagen density, which is consistent with known differences between normal and abnormal tissue. This suggests that histological quantities of the colon could be computed from its reflectance spectra. The method is likely to have diagnostic value in the early detection of colon cancer.

  12. Spectrum syntheses of high-resolution integrated light spectra of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Shetrone, Matthew; Venn, Kim; McWilliam, Andrew; Dotter, Aaron

    2013-09-01

    Spectrum syntheses for three elements (Mg, Na and Eu) in high-resolution integrated light spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006 and M15 are presented, along with calibration syntheses of the solar and Arcturus spectra. Iron abundances in the target clusters are also derived from integrated light equivalent width analyses. Line profiles in the spectra of these five globular clusters are well fitted after careful consideration of the atomic and molecular spectral features, providing levels of precision that are better than equivalent width analyses of the same integrated light spectra, and that are comparable to the precision in individual stellar analyses. The integrated light abundances from the 5528 and 5711 Å Mg I lines, the 6154 and 6160 Å Na I lines, and the 6645 Å Eu II line fall within the observed ranges from individual stars; however, these integrated light abundances do not always agree with the average literature abundances. Tests with the second parameter clusters M3, M13 and NGC 7006 show that assuming an incorrect horizontal branch morphology is likely to have only a small ( ≲ 0.06 dex) effect on these Mg, Na and Eu abundances. These tests therefore show that integrated light spectrum syntheses can be applied to unresolved globular clusters over a wide range of metallicities and horizontal branch morphologies. Such high precision in integrated light spectrum syntheses is valuable for interpreting the chemical abundances of globular cluster systems around other galaxies.

  13. Contribution to the study of turbulence spectra

    NASA Technical Reports Server (NTRS)

    Dumas, R.

    1979-01-01

    An apparatus suitable for turbulence measurement between ranges of 1 to 5000 cps and from 6 to 16,000 cps was developed and is described. Turbulence spectra downstream of the grills were examined with reference to their general characteristics, their LF qualities, and the effects of periodic turbulence. Medium and HF are discussed. Turbulence spectra in the boundary layers are similarly examined, with reference to their fluctuations at right angles to the wall, and to lateral fluctuations. Turbulence spectra in a boundary layer with suction to the wall is discussed. Induced turbulence, and turbulence spectra at high Reynolds numbers. Calculations are presented relating to the effect of filtering on the value of the correlations in time and space.

  14. First-Principles Predictions of Near-Edge X-ray Absorption Fine Structure Spectra of Semiconducting Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gregory M.; Patel, Shrayesh N.; Pemmaraju, C. D.

    The electronic structure and molecular orientation of semiconducting polymers in thin films determine their ability to transport charge. Methods based on near-edge X-ray absorption fine structure (NEXAFS) spectroscopy can be used to probe both the electronic structure and microstructure of semiconducting polymers in both crystalline and amorphous films. However, it can be challenging to interpret NEXAFS spectra on the basis of experimental data alone, and accurate, predictive calculations are needed to complement experiments. Here, we show that first-principles density functional theory (DFT) can be used to model NEXAFS spectra of semiconducting polymers and to identify the nature of transitions inmore » complicated NEXAFS spectra. Core-level X-ray absorption spectra of a set of semiconducting polymers were calculated using the excited electron and core-hole (XCH) approach based on constrained-occupancy DFT. A comparison of calculations on model oligomers and periodic structures with experimental data revealed the requirements for accurate prediction of NEXAFS spectra of both conjugated homopolymers and donor–acceptor polymers. The NEXAFS spectra predicted by the XCH approach were applied to study molecular orientation in donor–acceptor polymers using experimental spectra and revealed the complexity of using carbon edge spectra in systems with large monomeric units. The XCH approach has sufficient accuracy in predicting experimental NEXAFS spectra of polymers that it should be considered for design and analysis of measurements using soft X-ray techniques, such as resonant soft X-ray scattering and scanning transmission X-ray microscopy.« less

  15. Hadron Spectra in p+p Collisions at Rhic and Lhc Energies

    NASA Astrophysics Data System (ADS)

    Khandai, P. K.; Sett, P.; Shukla, P.; Singh, V.

    2013-06-01

    We present the systematic analysis of transverse momentum (pT) spectra of identified hadrons in p+p collisions at Relativistic Heavy Ion Collider (√ {s} = 62.4 and 200 GeV) and at Large Hadron Collider (LHC) energies (√ {s} = 0.9, 2.76 and 7.0 TeV) using phenomenological fit functions. We review various forms of Hagedorn and Tsallis distributions and show their equivalence. We use Tsallis distribution which successfully describes the spectra in p+p collisions using two parameters, Tsallis temperature T which governs the soft bulk spectra and power n which determines the initial production in partonic collisions. We obtain these parameters for pions, kaons and protons as a function of center-of-mass energy (√ {s}). It is found that the parameter T has a weak but decreasing trend with increasing √ {s}. The parameter n decreases with increasing √ {s} which shows that production of hadrons at higher energies are increasingly dominated by point like qq scatterings. Another important observation is with increasing √ {s}, the separation between the powers for protons and pions narrows down hinting that the baryons and mesons are governed by same production process as one moves to the highest LHC energy.

  16. The role of symmetry in neural networks and their Laplacian spectra.

    PubMed

    de Lange, Siemon C; van den Heuvel, Martijn P; de Reus, Marcel A

    2016-11-01

    Human and animal nervous systems constitute complexly wired networks that form the infrastructure for neural processing and integration of information. The organization of these neural networks can be analyzed using the so-called Laplacian spectrum, providing a mathematical tool to produce systems-level network fingerprints. In this article, we examine a characteristic central peak in the spectrum of neural networks, including anatomical brain network maps of the mouse, cat and macaque, as well as anatomical and functional network maps of human brain connectivity. We link the occurrence of this central peak to the level of symmetry in neural networks, an intriguing aspect of network organization resulting from network elements that exhibit similar wiring patterns. Specifically, we propose a measure to capture the global level of symmetry of a network and show that, for both empirical networks and network models, the height of the main peak in the Laplacian spectrum is strongly related to node symmetry in the underlying network. Moreover, examination of spectra of duplication-based model networks shows that neural spectra are best approximated using a trade-off between duplication and diversification. Taken together, our results facilitate a better understanding of neural network spectra and the importance of symmetry in neural networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Intellectual Disabilities and Power Spectra Analysis during Sleep: A New Perspective on Borderline Intellectual Functioning

    ERIC Educational Resources Information Center

    Esposito, M.; Carotenuto, M.

    2014-01-01

    Background: The role of sleep in cognitive processes has been confirmed by a growing number of reports for all ages of life. Analysing sleep electroencephalogram (EEG) spectra may be useful to study cortical organisation in individuals with Borderline Intellectual Functioning (BIF), as seen in other disturbances even if it is not considered a…

  18. Computer simulation of backscattering spectra from paint

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Silva, T. F.

    2017-09-01

    To study the role of lateral non-homogeneity on backscattering analysis of paintings, a simplified model of paint consisting of randomly distributed spherical pigment particles embedded in oil/binder has been developed. Backscattering spectra for lead white pigment particles in linseed oil have been calculated for 3 MeV H+ at a scattering angle of 165° for pigment volume concentrations ranging from 30 vol.% to 70 vol.% using the program STRUCTNRA. For identical pigment volume concentrations the heights and shapes of the backscattering spectra depend on the diameter of the pigment particles: This is a structural ambiguity for identical mean atomic concentrations but different lateral arrangement of materials. Only for very small pigment particles the resulting spectra are close to spectra calculated supposing atomic mixing and assuming identical concentrations of all elements. Generally, a good fit can be achieved when evaluating spectra from structured materials assuming atomic mixing of all elements and laterally homogeneous depth distributions. However, the derived depth profiles are inaccurate by a factor of up to 3. The depth range affected by this structural ambiguity ranges from the surface to a depth of roughly 0.5-1 pigment particle diameters. Accurate quantitative evaluation of backscattering spectra from paintings therefore requires taking the correct microstructure of the paint layer into account.

  19. Getting It Right Matters: Climate Spectra and Their Estimation

    NASA Astrophysics Data System (ADS)

    Privalsky, Victor; Yushkov, Vladislav

    2018-06-01

    In many recent publications, climate spectra estimated with different methods from observed, GCM-simulated, and reconstructed time series contain many peaks at time scales from a few years to many decades and even centuries. However, respective spectral estimates obtained with the autoregressive (AR) and multitapering (MTM) methods showed that spectra of climate time series are smooth and contain no evidence of periodic or quasi-periodic behavior. Four order selection criteria for the autoregressive models were studied and proven sufficiently reliable for 25 time series of climate observations at individual locations or spatially averaged at local-to-global scales. As time series of climate observations are short, an alternative reliable nonparametric approach is Thomson's MTM. These results agree with both the earlier climate spectral analyses and the Markovian stochastic model of climate.

  20. Multivariate classification of the infrared spectra of cell and tissue samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haaland, D.M.; Jones, H.D.; Thomas, E.V.

    1997-03-01

    Infrared microspectroscopy of biopsied canine lymph cells and tissue was performed to investigate the possibility of using IR spectra coupled with multivariate classification methods to classify the samples as normal, hyperplastic, or neoplastic (malignant). IR spectra were obtained in transmission mode through BaF{sub 2} windows and in reflection mode from samples prepared on gold-coated microscope slides. Cytology and histopathology samples were prepared by a variety of methods to identify the optimal methods of sample preparation. Cytospinning procedures that yielded a monolayer of cells on the BaF{sub 2} windows produced a limited set of IR transmission spectra. These transmission spectra weremore » converted to absorbance and formed the basis for a classification rule that yielded 100{percent} correct classification in a cross-validated context. Classifications of normal, hyperplastic, and neoplastic cell sample spectra were achieved by using both partial least-squares (PLS) and principal component regression (PCR) classification methods. Linear discriminant analysis applied to principal components obtained from the spectral data yielded a small number of misclassifications. PLS weight loading vectors yield valuable qualitative insight into the molecular changes that are responsible for the success of the infrared classification. These successful classification results show promise for assisting pathologists in the diagnosis of cell types and offer future potential for {ital in vivo} IR detection of some types of cancer. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}« less

  1. On the Widths of Bands in the Infrared Spectra of Oxyanions.

    PubMed

    Griffiths, Peter R; Eastman Fries, Brandy; Weakley, Andrew T

    2018-01-01

    It is well known that the antisymmetric stretching (ν 3 ) band in the mid-infrared spectra of oxyanion salts is usually very broad, whereas all the other fundamental bands are narrow. In this paper, we propose that the underlying cause of the increased width is the effect of the very high absorption index of this band for samples prepared with a range of particle sizes. When oxyanion salts are ground, the diameter of the resulting particles usually varies from less than 100 nm to about 2 µm. While the peak absorbance of the ν 3 band of the smaller particles (diameter < 200 nm) is less than 1, that of the larger particles can be as high as 6. We show that the average transmittance of these particles leads to a significant band broadening, especially when there are small voids in the resulting sample. Although the effect is always seen in the spectra of alkali halide disks and mineral oil mulls, it is also seen in diffuse reflection and attenuated total reflection (ATR) spectra. Because the depth of penetration of infrared radiation below 1500 cm -1 is less than 1 µm for ATR spectra measured with a germanium internal reflection element (IRE), the width of the ν 3 band is lower than that of ATR spectra measured with an IRE of lower refractive index such as diamond on zinc selenide.

  2. Excitation Spectra and Brightness Optimization of Two-Photon Excited Probes

    PubMed Central

    Mütze, Jörg; Iyer, Vijay; Macklin, John J.; Colonell, Jennifer; Karsh, Bill; Petrášek, Zdeněk; Schwille, Petra; Looger, Loren L.; Lavis, Luke D.; Harris, Timothy D.

    2012-01-01

    Two-photon probe excitation data are commonly presented as absorption cross section or molecular brightness (the detected fluorescence rate per molecule). We report two-photon molecular brightness spectra for a diverse set of organic and genetically encoded probes with an automated spectroscopic system based on fluorescence correlation spectroscopy. The two-photon action cross section can be extracted from molecular brightness measurements at low excitation intensities, while peak molecular brightness (the maximum molecular brightness with increasing excitation intensity) is measured at higher intensities at which probe photophysical effects become significant. The spectral shape of these two parameters was similar across all dye families tested. Peak molecular brightness spectra, which can be obtained rapidly and with reduced experimental complexity, can thus serve as a first-order approximation to cross-section spectra in determining optimal wavelengths for two-photon excitation, while providing additional information pertaining to probe photostability. The data shown should assist in probe choice and experimental design for multiphoton microscopy studies. Further, we show that, by the addition of a passive pulse splitter, nonlinear bleaching can be reduced—resulting in an enhancement of the fluorescence signal in fluorescence correlation spectroscopy by a factor of two. This increase in fluorescence signal, together with the observed resemblance of action cross section and peak brightness spectra, suggests higher-order photobleaching pathways for two-photon excitation. PMID:22385865

  3. Automation of peak-tracking analysis of stepwise perturbed NMR spectra.

    PubMed

    Banelli, Tommaso; Vuano, Marco; Fogolari, Federico; Fusiello, Andrea; Esposito, Gennaro; Corazza, Alessandra

    2017-02-01

    We describe a new algorithmic approach able to automatically pick and track the NMR resonances of a large number of 2D NMR spectra acquired during a stepwise variation of a physical parameter. The method has been named Trace in Track (TINT), referring to the idea that a gaussian decomposition traces peaks within the tracks recognised through 3D mathematical morphology. It is capable of determining the evolution of the chemical shifts, intensity and linewidths of each tracked peak.The performances obtained in term of track reconstruction and correct assignment on realistic synthetic spectra were high above 90% when a noise level similar to that of experimental data were considered. TINT was applied successfully to several protein systems during a temperature ramp in isotope exchange experiments. A comparison with a state-of-the-art algorithm showed promising results for great numbers of spectra and low signal to noise ratios, when the graduality of the perturbation is appropriate. TINT can be applied to different kinds of high throughput chemical shift mapping experiments, with quasi-continuous variations, in which a quantitative automated recognition is crucial.

  4. Effect of lensing non-Gaussianity on the CMB power spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Antony; Pratten, Geraint, E-mail: antony@cosmologist.info, E-mail: geraint.pratten@gmail.com

    2016-12-01

    Observed CMB anisotropies are lensed, and the lensed power spectra can be calculated accurately assuming the lensing deflections are Gaussian. However, the lensing deflections are actually slightly non-Gaussian due to both non-linear large-scale structure growth and post-Born corrections. We calculate the leading correction to the lensed CMB power spectra from the non-Gaussianity, which is determined by the lensing bispectrum. Assuming no primordial non-Gaussianity, the lowest-order result gives ∼ 0.3% corrections to the BB and EE polarization spectra on small-scales. However we show that the effect on EE is reduced by about a factor of two by higher-order Gaussian lensing smoothing,more » rendering the total effect safely negligible for the foreseeable future. We give a simple analytic model for the signal expected from skewness of the large-scale lensing field; the effect is similar to a net demagnification and hence a small change in acoustic scale (and therefore out of phase with the dominant lensing smoothing that predominantly affects the peaks and troughs of the power spectrum).« less

  5. Properties of Martian Hematite at Meridiani Planum by Simultaneous Fitting of Mars Mossbauer Spectra

    NASA Technical Reports Server (NTRS)

    Agresti, D. G.; Fleischer, I.; Klingelhoefer, G.; Morris, R. V.

    2010-01-01

    temperature dependence of certain parameters. By examining different fitting models, we demonstrate an improved fit for martian hematite modeled with two sextets rather than as a single sextet, and show that outcrop and spherule hematite are distinct. For outcrop, the weaker sextet indicates a Morin transition typical of well-crystallized and chemically pure hematite, while most of the outcrop hematite remains in a weakly ferromagnetic state at all temperatures. For spherule spectra, both sextets are consistent with weakly ferromagnetic hematite with no Morin transition. For both hematites, there is evidence for a range of particle sizes.

  6. Wetting effect on optical sum frequency generation (SFG) spectra of D-glucose, D-fructose, and sucrose

    NASA Astrophysics Data System (ADS)

    Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori

    2015-03-01

    We report a sum frequency generation (SFG) spectroscopy study of D-glucose, D-fructose and sucrose in the Csbnd H stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of D-glucose changed from that of α-D-glucose into those of α-D-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-D-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the Csbnd H stretching vibration region near 3000 cm-1.

  7. Wetting effect on optical sum frequency generation (SFG) spectra of d-glucose, d-fructose, and sucrose.

    PubMed

    Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori

    2015-03-05

    We report a sum frequency generation (SFG) spectroscopy study of d-glucose, d-fructose and sucrose in the CH stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of d-glucose changed from that of α-d-glucose into those of α-d-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-d-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the CH stretching vibration region near 3000cm(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Local Time Variation of Water Vapor on Mars using TES Aerobraking Spectra

    NASA Astrophysics Data System (ADS)

    AlShamsi, M. R.; AlJanaahi, A. A.; Smith, M. D.; Altunaiji, E. S.; Edwards, C. S.

    2016-12-01

    During the Mars Global Surveyor (MGS) aerobraking phase, the spacecraft was in a large elliptical orbit that enabled the Thermal Emission Spectrometer (TES) instrument to sample many local times of Mars. The observed TES aerobraking spectra during that phase cover the time range between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. These TES aerobraking spectra have never been analyzed to study local time variations on Mars. Through radiative transfer modeling of the spectra, surface and atmospheric temperature, dust and water ice optical depth, and water vapor were retrieved. Specifically, the water vapor retrievals during aerobraking have similar seasonal and latitudinal trends to those in other Mars years observed by TES. These retrievals show somewhat higher water vapor during the morning hours (09:00-12:00) than in the afternoon (12:00-17:00) during southern summer (Ls=270°-330°) and little variation as a function of local time for southern fall (Ls=0°-30°). These retrievals show water vapor has a positive correlation with surface pressure (or negative correlation with altitude) indicating that water vapor is mixed in the lowest 10-20 km.

  9. On the Spectral Variance of MGS TES Spectra in the 300-500 cm-1 Range

    NASA Astrophysics Data System (ADS)

    Altieri, F.; Bellucci, G.

    2001-11-01

    The Thermal Emission Spectrometer (TES) aboard NASA mission Mars Global Surveyor (MGS) is collecting 200 - 1600 cm-1 thermal emission spectra since September 1997. The principal purpose of TES is to determine and map the Mars surface composition. Spectral features directly ascribable to surface minerals have been identified in the 300 - 500 cm-1 spectral range. Outcrops of hematite have been localized in Sinus Meridiani, Aram Chaos and Valles Marineris [1, 2] and areas with olivine have been individuated in Nili Fossae and in other limited regions [3]. On the other hand, TES spectra show, in general, significant variance between 300 and 500 cm-1; this variance is not directly attributable to surface mineralogical components. In this study we report some examples of spectra with typical hematite and olivine bands and spectra with a different spectral contrast. The spectral masking effect of a dust layer is suggested to explain this behaviour. Spectra characterized by hematite features have been localized also inside a crater near Baldet Crater. The MOC narrow-angle image M02-0039 acquired on the same area shows dark layers at the crater bottom. References: [1] Christensen P. R., et al., JGR, 105, 9623-9642, 2000. [2] Christensen P. R., et al., JGR, in press., 2001. [3] Hoefen T. M. and Clark R. N., LPS XXXII, 2049, 2001.

  10. Transient Spectra in TDDFT: Corrections and Correlations

    NASA Astrophysics Data System (ADS)

    Parkhill, John; Nguyen, Triet

    We introduce an atomistic, all-electron, black-box electronic structure code to simulate transient absorption (TA) spectra and apply it to simulate pyrazole and a GFP chromophore derivative. The method is an application of OSCF2, our dissipative extension of time-dependent density functional theory. We compare our simulated spectra directly with recent ultra-fast spectroscopic experiments, showing that they are usefully predicted. We also relate bleaches in the TA signal to Fermi-blocking which would be missed in a simplified model. An important ingredient in the method is the stationary-TDDFT correction scheme recently put forwards by Fischer, Govind, and Cramer which allows us to overcome a limitation of adiabatic TDDFT. We demonstrate that OSCF2 is able to predict both the energies of bleaches and induced absorptions, as well as the decay of the transient spectrum, with only the molecular structure as input. With remaining time we will discuss corrections which resolve the non-resonant behavior of driven TDDFT, and correlated corrections to mean-field dynamics.

  11. Vδ2+ and α/ß T cells show divergent trajectories during human aging.

    PubMed

    Tan, Crystal Tze Ying; Wistuba-Hamprecht, Kilian; Xu, Weili; Nyunt, Ma Schwe Zin; Vasudev, Anusha; Lee, Bernett Teck Kwong; Pawelec, Graham; Puan, Kia Joo; Rotzschke, Olaf; Ng, Tze Pin; Larbi, Anis

    2016-07-19

    Chronological aging and a variety of stressors are driving forces towards immunosenescence. While much attention was paid to the main T cell component, α/β T cells, few studies concentrate on the impact of age on γ/δ T cells' characteristics. The latter are important players of adaptive immunity but also have features associated with innate immunity. Vδ2+ are the main component of γ/δ while Vδ1+ T cells expand upon Cytomegalovirus (CMV) infection and with age. The Vδ2+ T cells are not influenced by persistent infections but do contribute to immunosurveillance against bacterial pathogens. Here, we focus on Vδ2+ T cells and report that their composition and functionality is not altered in older adults. We have performed a side-by-side comparison of α/β and Vδ2 cells by using two robust markers of T cell replicative history and cell differentiation (CD28 and CD27), and cytokine secretion (IFN-γ and TNF-α). Significant differences in Vδ2 versus α/β homeostasis, as well as phenotypic and functional changes emerged. However, the data strongly suggest a sustained functionality of the Vδ2 population with age, independently of the challenge. This suggests differential trajectories towards immunosenescence in α/β and Vδ2+ T cells, most likely explained by their intrinsic functions.

  12. Blue spectra of Kalb-Ramond axions and fully anisotropic string cosmologies

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    1999-03-01

    The inhomogeneities associated with massless Kalb-Ramond axions can be amplified not only in isotropic (four-dimensional) string cosmological models but also in the fully anisotropic case. If the background geometry is isotropic, the axions (which are not part of the homogeneous background) develop outside the horizon, the growing modes leading, ultimately, to logarithmic energy spectra which are ``red'' in frequency and increase at large distance scales. We show that this conclusion can be avoided not only in the case of higher dimensional backgrounds with contracting internal dimensions but also in the case of string cosmological scenarios which are completely anisotropic in four dimensions. In this case the logarithmic energy spectra turn out to be ``blue'' in frequency and, consequently, decreasing at large distance scales. We elaborate on anisotropic dilaton-driven models and we argue that, incidentally, the background models leading to blue (or flat) logarithmic energy spectra for axionic fluctuations are likely to be isotropized by the effect of string tension corrections.

  13. Relevance of Light Spectra to Growth of the Rearing Tiger Puffer Takifugu rubripes

    PubMed Central

    Kim, Byeong-Hoon; Hur, Sung-Pyo; Hur, Sang-Woo; Lee, Chi-Hoon; Lee, Young-Don

    2016-01-01

    In fish, light (photoperiod, intensity and spectra) is main regulator in many physiological actions includinggrowth. We investigate the effect of light spectra on the somatic growth and growth-related gene expression in the rearing tiger puffer. Fish was reared under different light spectra (blue, green and red) for 8 weeks. Fish body weight and total length were promoted when reared under green light condition than red light condition. Expression of somatostatins (ss1 and ss2) in brain were showed higher expression under red light condition than green light condition. The ss3 mRNA was observed only higher expression in blue light condition. Expression of growth hormone (gh) in pituitary was detected no different levels between experimental groups. However, the fish of green light condition group was showed more high weight gain and feed efficiency than other light condition groups. Our present results suggest that somatic growth of tiger puffer is induced under green light condition because of inhibiting ss mRNA expression in brain by effect of green wavelength. PMID:27294208

  14. Study on the behavior and mechanism of polycarbonate with hot-water aging

    NASA Astrophysics Data System (ADS)

    Kong, L. P.; Zhao, Y. X.; Zhou, C. H.; Huang, Y. H.; Tang, M.; Gao, J. G.

    2016-07-01

    The present work was concerned with hot-water aging behavior and mechanism of Bisphenol A polycarbonate (PC) used as food and packaging materials. It indicated that with the aging time prolonged, PC sample had internal defects and the mechanical properties of PC materials changed not too much, molecular weight decreased, thermal stability declined. Phenolic hydroxyl absorption intensity enhanced in IR spectra and the maximum absorption wavelength red shift of benzene in UV-Vis spectra, the level of BPA increased. The color change of PC sample was not apparent.

  15. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringholm, Magnus; Ruud, Kenneth; Bast, Radovan

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields,more » reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.« less

  16. [Discrimination of Red Tide algae by fluorescence spectra and principle component analysis].

    PubMed

    Su, Rong-guo; Hu, Xu-peng; Zhang, Chuan-song; Wang, Xiu-lin

    2007-07-01

    Fluorescence discrimination technology for 11 species of the Red Tide algae at genus level was constructed by principle component analysis and non-negative least squares. Rayleigh and Raman scattering peaks of 3D fluorescence spectra were eliminated by Delaunay triangulation method. According to the results of Fisher linear discrimination, the first principle component score and the second component score of 3D fluorescence spectra were chosen as discriminant feature and the feature base was established. The 11 algae species were tested, and more than 85% samples were accurately determinated, especially for Prorocentrum donghaiense, Skeletonema costatum, Gymnodinium sp., which have frequently brought Red tide in the East China Sea. More than 95% samples were right discriminated. The results showed that the genus discriminant feature of 3D fluorescence spectra of Red Tide algae given by principle component analysis could work well.

  17. Martian neutron leakage spectra

    NASA Astrophysics Data System (ADS)

    Drake, D. M.; Feldman, W. C.; Jakosky, B. M.

    1988-06-01

    A high-energy nucleon-meson transport code is used to calculate energy spectra of Martian leakage neutrons. Four calculations are used to simulate a uniform surface layer containing various amounts of water, different burial depths of a 50 percent water layer underneath a 1 percent water layer, changing atmospheric pressure, and a thick carbon dioxide ice sheet overlying a "dirty" water ice sheet. Calculated spectra at energies less than about 1000 eV were fitted by a superposition of thermal and epithermal functions having four free parameters, two of which (thermal and epithermal amplitudes) were found to vary systematically and to specify uniquely the configuration in each of the series. Parameter variations depend on the composition of the assumed surface layers through the average atomic mass and the macroscopic scattering and absorption cross sections. It is concluded that measurements of leakage neutron spectra should allow determination of the hydrogen content of surface layers buried to depths up to about 100 g/sq. cm and determination of the thickness of a polar dry ice cap up to a thickness of about 250 g/sq. cm.

  18. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  19. Differential dpa calculations with SPECTRA-PKA

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Sublet, J.-Ch.

    2018-06-01

    The processing code SPECTRA-PKA produces energy spectra of primary atomic recoil events (or primary knock-on atoms, PKAs) for any material composition exposed to an irradiation spectrum. Such evaluations are vital inputs for simulations aimed at understanding the evolution of damage in irradiated material, which is generated in cascade displacement events initiated by PKAs. These PKA spectra present the full complexity of the input (to SPECTRA-PKA) nuclear data-library evaluations of recoil events. However, the commonly used displacements per atom (dpa) measure, which is an integral measure over all possible recoil events of the displacement damage dose, is still widely used and has many useful applications - as both a comparative and correlative quantity. This paper describes the methodology employed that allows the SPECTRA-PKA code to evaluate dpa rates using the energy-dependent recoil (PKA) cross section data used for the PKA distributions. This avoids the need for integral displacement kerma cross sections and also provides new insight into the relative importance of different reaction channels (and associated different daughter residual and emitted particles) to the total integrated dpa damage dose. Results are presented for Fe, Ni, W, and SS316. Fusion dpa rates are compared to those in fission, highlighting the increased contribution to damage creation in the former from high-energy threshold reactions.

  20. XRD-based 40Ar/39Ar age correction for fine-grained illite, with application to folded carbonates in the Monterrey Salient (northern Mexico)

    NASA Astrophysics Data System (ADS)

    Fitz-Díaz, Elisa; Hall, Chris M.; van der Pluijm, Ben A.

    2016-05-01

    of retention capability, degassing spectra were modeled for site XCA averages and overall XCA average. Modeling shows that local site age average best match the measured spectra, instead of a global average age, indicating that illite growth reflects local deformation, and is not the result of regional metamorphism. Modeling also shows that Ar-degassing spectra are very sensitive to grain size, such that age interpretation based on Ar-plateaus is meaningless for most fine-grained clays.

  1. Comparison of remotely sensed continental-shelf wave spectra with spectra computed by using a wave refraction computer model

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1976-01-01

    An initial attempt was made to verify the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave refraction model. The model was used to simulate refraction occurring during a continental-shelf remote sensing experiment conducted on August 17, 1973. Simulated wave spectra compared favorably, in a qualitative sense, with the experimental spectra. However, it was observed that most of the wave energy resided at frequencies higher than those for which refraction and shoaling effects were predicted, In addition, variations among the experimental spectra were so small that they were not considered statistically significant. In order to verify the refraction model, simulation must be performed in conjunction with a set of significantly varying spectra in which a considerable portion of the total energy resides at frequencies for which refraction and shoaling effects are likely.

  2. Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Jercinovic, Michael J.; Terry, Michael P.

    1999-11-01

    High-resolution X-ray mapping and dating of monazite on the electron microprobe are powerful geochronological tools for structural, metamorphic, and tectonic analysis. X-ray maps commonly show complex Th, U, and Pb zoning that reflects monazite growth and overgrowth events. Age maps constructed from the X-ray maps simplify the zoning and highlight age domains. Microprobe dating offers a rapid, in situ method for estimating ages of mapped domains. Application of these techniques has placed new constraints on the tectonic history of three areas. In western Canada, age mapping has revealed multiphase monazite, with older cores and younger rims, included in syntectonic garnet. Microprobe ages show that tectonism occurred ca. 1.9 Ga, 700 m.y. later than mylonitization in the adjacent Snowbird tectonic zone. In New Mexico, age mapping and dating show that the dominant fabric and triple-point metamorphism occurred during a 1.4 Ga reactivation, not during the 1.7 Ga Yavapai-Mazatzal orogeny. In Norway, monazite inclusions in garnet constrain high-pressure metamorphism to ca. 405 Ma, and older cores indicate a previously unrecognized component of ca. 1.0 Ga monazite. In all three areas, microprobe dating and age mapping have provided a critical textural context for geochronologic data and a better understanding of the complex age spectra of these multistage orogenic belts.

  3. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2017-12-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  4. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2018-06-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  5. Comparative modelling of the spectra of cool giants⋆⋆⋆

    NASA Astrophysics Data System (ADS)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W.; Maldonado, J.; Merle, T.; Peterson, R.; Plez, B.; Short, C. I.; Wahlgren, G. M.; Worley, C.; Aringer, B.; Bladh, S.; de Laverny, P.; Goswami, A.; Mora, A.; Norris, R. P.; Recio-Blanco, A.; Scholz, M.; Thévenin, F.; Tsuji, T.; Kordopatis, G.; Montesinos, B.; Wing, R. F.

    2012-11-01

    Context. Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims: We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods: Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results: We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions: Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are. Based on observations obtained at the Bernard Lyot Telescope (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory, which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France.Tables 6-11 are only available in electronic form at http://www.aanda.orgThe spectra of stars 1 to 4 used in the experiment presented here are only availalbe at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  6. Identifying Broadband Rotational Spectra with Neural Networks

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  7. New composite spectra of Mars, 0.4-5.7 μm

    USGS Publications Warehouse

    Erard, Stephane; Calvin, Wendy M.

    1997-01-01

    About 15 areas were observed in the equatorial regions of Mars by the infrared spectrometers IRS (Mariner 6 and 7) and ISM (Phobos-2). The comparison between the spectra shows a remarkable consistency between two data sets acquired 20 years apart and calibrated independently. This similarity demonstrates the accuracy of ISM calibration above 2 μm, except for a possible stray light contribution above 2.6 μm, on the order of ∼1–2% of the solar flux at 2.7 μm. Most differences in spectral shapes are related to differences in spectral/spatial resolution and viewing geometries. No important variation in surface properties is detected, except for a spot in southern Arabia Terra which has a much deeper hydration feature in IRS spectra; differences in viewing geometries and spatial resolutions do not seem to account for this difference that could result from shifting or dehydration of surface materials. Composite spectra of several types of bright and dark materials are computed by modeling the thermal emission and are completed with telescopic spectra in the visible range. Modeled reflectance in the 3.0–5.7 μm range is consistent with basalts and palagonites. The bright regions and analog palagonite spectra are different from hematite in this range, but resemble several phyllosilicates. We infer that (1) although hematite dominates the spectra in the 0.4- to 2.5-μm range, the silicate-clay host is spectrally active beyond 3 μm and can be identified from this domain; (2) phyllosilicates such as montmorillonite or smectite may be abundant components of the martian soils, although the domain below 3 μm lacks the characteristic features of the most usual terrestrial clay minerals.

  8. Laboratory absorption spectra of molecules at interstellar cloud temperatures - First measurements on CO at about 97 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Yoshino, K.; Stark, G.; Ito, K.; Stevens, M. H.

    1991-01-01

    In the 91-100 nm spectral region, where absorption of photons by interstellar CO usually leads to dissociation, laboratory spectra obtained at 295 K show that most CO bands are both overlapped and perturbed. Reliable band oscillator strengths cannot be extracted from such spectra. As a consequence, synthetic extreme-ultraviolet absorption spectra for CO at the low temperatures that prevail in interstellar clouds are uncertain. A supersonic expansion technique has been used to cool CO to 30 K and three bands in the 97-nm region have been studied with high spectral resolution. The measured spectrum at 30 K is in reasonable agreement with some published modeled spectra, but the ratios of integrated cross sections are somewhat different from those determined from low resolution spectra obtained at 295 K, in which the bands are blended.

  9. Pinus taeda L. wood property calibrations based on variable numbers of near infrared spectra per core and cores per plantation

    Treesearch

    Laurence R. Schimleck; Justin A. Tyson; David Jones; Gary F. Peter; Richard F. Daniels; Alexander III Clark

    2007-01-01

    Near infrared (NIR) spectroscopy provides a rapid, non-destructive method for the estimation of several wood properties of increment cores. MR spectra are collected from adjacent sections of the same core; however, not all spectra are required for calibration purposes as spectra from the same core are autocorrelated. Previously, we showed that wood property...

  10. On the inclusion of the hydrogen dimer in the analysis of Voyager IRIS spectra

    NASA Technical Reports Server (NTRS)

    Carlson, Barbara E.; Ma, Qiancheng; Lacis, Andrew

    1992-01-01

    Empirical formulas are fitted to existing theoretical absorption spectra of H2-H2 pairs in the far-infrared allowing the inclusion of dimer absorption, parameterized with the height dependence of the para-hydrogen profile, in the calculations. Comparison between synthetic and Voyager IRIS spectra shows that once the dimer absorption is included it is now possible to reproduce the hydrogen portion of the IRIS spectrum to within the precision of the measurements.

  11. LET spectra measurements from the STS-35 CPDs

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Linear energy transfer (LET) spectra derived form automated track analysis system (ATAS) track parameter measurements for crew passive dosimeters (CPD's) flown with the astronauts on STS-35 are plotted. The spread between the seven individual spectra is typical of past manual measurements of sets of CPD's. This difference is probably due to the cumulative net shielding variations experienced by the CPD's as the astronauts carrying them went about their activities on the Space Shuttle. The STS-35 mission was launched on Dec. 2, 1990, at 28.5 degrees inclination and 352-km altitude. This is somewhat higher than the nominal 300-km flights and the orbit intersects more of the high intensity trapped proton region in the South Atlantic Anomaly (SAA). However, in comparison with APD spectra measured on earlier lower altitude missions (STS-26, -29, -30, -32), the flux spectra are all roughly comparable. This may be due to the fact that the STS-35 mission took place close to solar maximum (Feb. 1990), or perhaps to shielding differences. The corresponding dose and dose equivalent spectra for this mission are shown. The effect of statistical fluctuations at the higher LET values, where track densities are small, is very noticeable. This results in an increased spread within the dose rate and dose equivalent rate spectra, as compared to the flux spectra. The contribution to dose and dose equivalent per measured track is much greater in the high LET region and the differences, though numerically small, are heavily weighted in the integral spectra. The optimum measurement and characterization of the high LET tails of the spectra represent an important part of the research into plastic nuclear track detector (PNTD) response. The integral flux, dose rate, dose equivalent rate and mission dose equivalent for the seven astronauts are also given.

  12. SpectraPLOT, Visualization Package with a User-Friendly Graphical Interface

    NASA Astrophysics Data System (ADS)

    Sebald, James; Macfarlane, Joseph; Golovkin, Igor

    2017-10-01

    SPECT3D is a collisional-radiative spectral analysis package designed to compute detailed emission, absorption, or x-ray scattering spectra, filtered images, XRD signals, and other synthetic diagnostics. The spectra and images are computed for virtual detectors by post-processing the results of hydrodynamics simulations in 1D, 2D, and 3D geometries. SPECT3D can account for a variety of instrumental response effects so that direct comparisons between simulations and experimental measurements can be made. SpectraPLOT is a user-friendly graphical interface for viewing a wide variety of results from SPECT3D simulations, and applying various instrumental effects to the simulated images and spectra. We will present SpectraPLOT's ability to display a variety of data, including spectra, images, light curves, streaked spectra, space-resolved spectra, and drilldown plasma property plots, for an argon-doped capsule implosion experiment example. Future SpectraPLOT features and enhancements will also be discussed.

  13. Far-ultraviolet absorption spectra of quasars: How to find missing hot gas and metals

    NASA Technical Reports Server (NTRS)

    Verner, D. A.; Tytler, David; Barthel, P. D.

    1994-01-01

    We show that some high-redshift QSO absorption systems that reveal only the H I Lyman series lines at wavelengths visible from the ground maybe a new class of ultra-high-ionization metal line systems, with metal lines in the far-UV region which is now being explored with satellites. At high temperatures or in intense radiation fields metal systems will not show the usual C IV absorption, and O VI will become the most prominent metal absorber. At still higher ionization, O IV also becomes weak and the strongest metal lines are from Ne VIII, Mg X and Si XII, which have doublets in the rangs 500-800 A. Hence very high ionization metal systems will not show metal lines in existing spectra. Recent X-ray observations show that galaxy halos contain hot gas, so we predict that far-UV spectra of QSOs will also show this gas.

  14. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    NASA Astrophysics Data System (ADS)

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  15. Two-Component Fitting of Coronal-Hole and Quiet-Sun He I 1083 Spectra

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Malanushenko, Elena V.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present reduction techniques and first results for detailed fitting of solar spectra obtained with the NASA/National Solar Observatory Spectromagnetograph (NASA/NSO SPM over a 2 nm bandpass centered on the He 1 1083 nm line. The observation for this analysis was a spectra-spectroheliogram obtained at the NSO/Kitt Peak Vacuum Telescope (KPVT) on 00 Apr 17 at 21:46 UT spanning an area of 512 x 900 arc-seconds; the field of view included a coronal hole near disk center as well as surrounding quiet sun. Since the He I line is very weak and blended with nearby solar and telluric lines, accurate determination of the continuum intensity as a function of wavelength is crucial. We have modified the technique of Malanushenko {\\it et al.) (1992; {\\it AA) (\\bf 259), 567) to tie regions of continuua and the wings of spectral lines which show little variation over the image to standard reference spectra such as the NSO Fourier Transform Spectrometer atlas (Wallace {\\it et al). 1993; NSO Tech Report \\#93-001). We performed detailed least-squares fits of spectra from selected areas, accounting for all the known telluric and solar absorbers in the spectral bandpass. The best physically consistent fits to the Helium lines were obtained with Gaussian profiles from two components (one ''cool'', characteristic of the upper chromosphere; one ''hot'', representing the cool transition region at 2-3 x 10$^{4)$ K). In the coronal hole, the transition-region component, shifted by 6-7 km/s to the blue, is mildly dominant, consistent with mass outflow as suggested by Dupree {\\it et all. (1996; {\\it Ap. J.}-{\\bf 467), 121). In quiet-sun spectra there is less evidence of outward flow, and the chromospheric component is more important. All our fitted spectra show a very weak unidentified absorption feature at 1082.880 nm in the red wing of the nearby Si I line.

  16. Electronic absorption spectra of chromium-bearing sapphirine

    NASA Astrophysics Data System (ADS)

    Langer, K.; Platonov, A. N.; Matsuk, S. S.; Andrut, M.

    1994-05-01

    Violet, non-pleochroic and greenish-blue, pleochroic chromium-substituted sapphirines were found in corundum-bearing spinel-websterite xenolites from the Yakutian kimberlite pipes Noyabrskaya (N) and Sludyanka (Sl), respectively. The crystallochemical formulae of sapphirine crystals from such xenolites were determined by EMP to be (Mg3.40Fe0.23Al3.25Cr0.16)[6] Al{1.00/[6]}[O2/Al4.53Si1.47O18] (N) and (Mg2.53Fe0.55 Mn0.04Ti{0.03/4+}Al3.55Cr{0.08/3+})[6]Al{1.00/[16]}[O2/Al4.28Si1.73O18] (Sl). Single crystal spectra in the range 35000 6000 cm1- showed a slightly polarization dependent absorption edge near 3200 cm1- (N) or 30000 cm1- (Sl) and unpolarized bands at 25300 and 17300 cm1-, typical of spin-allowed transitions, derived from 4A2g→4T1g and 4A2g→4T2g, of Cr3+ in octahedral sites, with point symmetry C1, of the structure. Another weak band at 23000 cm-1 in the sapphirine-N spectra is attributed to low symmetry splitting of the excited 4T1 (F)-State of Cr3+. These assignments lead to crystal field parameters Dq=1730cm-1 and B= 685cm-1 of Cr3+ in sapphirine. Crystallochemical and spectroscopic arguments suggest that Cr3+ subsitutes for Al in the M(1) or M(8) sites of the sapphirine structure. In addition to Cr3+-transitions, spectra of Sl exhibit weak dd-bands of Fe2+ at 10000 and 7700 cm1-, which are unpolarized in consistency with the C1 site symmetry of the octahedra in the structure. Spectra of Sl show also prominent, broad bands (Δv1/2˜-5000 cm1-) at 15000 and 11000 cm1-, which occur in E//Y(//b) and E//Z(//c=12°) only and exhibit an intensity ratio αY∶αz close to 1∶3. This result, the large half width, as well as band energy — MM distance considerations suggest that these bands originate from Fe2+[6]-Fe3+[6] charge-transfer transitions in wall octahedra M(1)M(2), M(6)M(7) etc., forming MM vectors of 30° with the c-axis. The lack of Fe2+-Fe3+ charge-transfer bands in sapphirine N might indicate a lower oxygen fugacity during the formation of

  17. Action Spectra for Nitrate and Nitrite Assimilation in Blue-Green Algae 1

    PubMed Central

    Serrano, Aurelio; Losada, Manuel

    1988-01-01

    Action spectra for the assimilation of nitrate and nitrite have been obtained for several blue-green algae (cyanobacteria) with different accessory pigment composition. The action spectra for both nitrate and nitrite utilization by nitrate-grown Anacystis nidulans L-1402-1 cells exhibited a clear peak at about 620 nanometers, corresponding to photosystem II (PSII) C-phycocyanin absorption, the contribution of chlorophyll a (Chl a) being barely detectable. The action spectrum for nitrate reduction by a nitrite reductase mutant of A. nidulans R2 was very similar. All these action spectra resemble the fluorescence excitation spectrum of cell suspensions of the microalgae monitored at 685 nanometers—the fluorescence band of Chl a in PSII. In contrast, the action spectrum for nitrite utilization by nitrogen-starved A. nidulans cells, which are depleted of C-phycocyanin, showed a maximum near 680 nanometers, attributable to Chl a absorption. The action spectrum for nitrite utilization by Calothrix sp. PCC 7601 cells, which contain both C-phycoerythrin and C-phycocyanin as PSII accessory pigments, presented a plateau in the region from 550 to 630 nanometers. In this case, there was also a clear parallelism between the action spectrum and the fluorescence excitation spectrum, which showed two overlapped peaks with maxima at 562 and 633 nanometers. The correlation observed between the action spectra for both nitrate and nitrite assimilation and the light-harvesting pigment content of the blue-green algae studied strongly suggests that phycobiliproteins perform a direct and active role in these photosynthetic processes. PMID:16666041

  18. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Impact of Fission Neutron Energies on Reactor Antineutrino Spectra

    NASA Astrophysics Data System (ADS)

    Hermanek, Keith; Littlejohn, Bryce; Gustafson, Ian

    2017-09-01

    Recent measurements of the reactor antineutrino spectra (Double Chooz, Reno, and Daya Bay) have shown a discrepancy in the 5-7 MeV region when compared to current theoretical models (Vogel and Huber-Mueller). There are numerous theories pertaining to this antineutrino anomaly, including theories that point to new physics beyond the standard model. In the paper ``Possible Origins and Implications of the Shoulder in Reactor Neutrino Spectra'' by A. Hayes et al., explanations for this anomaly are suggested. One theory is that there are interactions from fast and epithermal incident neutrons which are significant enough to create more events in the 5-7 MeV by a noticeable amount. In our research, we used the Oklo software network created by Dan Dwyer. This generates ab initio antineutrino and beta decay spectra based on standard fission yield databases ENDF, JENDL, JEFF, and the beta decay transition database ENSDF-6. Utilizing these databases as inputs, we show with reasonable assumptions one can prove contributions of fast and epithermal neutrons is less than 3% in the 5-7 MeV region. We also discovered rare isotopes are present in beta decay chains but not well measured and have no corresponding database information, and studied its effect onto the spectrum.

  20. EPR spectra induced by gamma-irradiation of some dry medical herbs

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Lagunov, O.; Dimov, K.

    2009-04-01

    The radiation-induced EPR spectra in some medical herbs are reported. The samples studied are: (i) leaves of nettle, common balm, peppermint and thyme; (ii) stalks of common balm, thyme, milfoil, yarrow and marigold; (iii) blossoms of yarrow and marigold; (iv) blossoms and leaves of hawthorn and tutsan; and (v) roots of common valerian, nettle, elecampane (black and white), restharrows and carlina. Before irradiation all samples exhibit one weak anisotropic singlet EPR line with effective g-value of 2.0050±0.0002. The radiation-induced spectra fall into three groups. EPR spectra of irradiated blossoms of yarrow and marigold, stalks of common balm, thyme, tutsan and yarrow as well as roots of common valerian, nettle and elecampane (black and white) show "cellulose-like" EPR spectrum typical for irradiated plants. It is characterized by one intense central line with g=2.0050±0.0005 and two weak satellite lines situated ca. 30 G left and right to it. EPR spectra of gamma-irradiated restharrows and carlina are complex. They may be represented by one triplet corresponding to the "cellulose-like" EPR spectrum, one relatively intense singlet, situated in the center of the spectrum, and five weak additional satellite lines left and right to the center. The last spectrum was assigned as "carbohydrate-like" type. Only one intense EPR singlet with g=2.0048±0.0005 was recorded after irradiation of leaves of nettle and common balm. The lifetime of the radiation-induced EPR spectra was followed for a period of 3 months.

  1. Interpretation of the Near-IR Spectra of the Kuiper Belt Object

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz; Cady-Pereira, Karen; Brown, Michael E.; Stansberry, John A.

    2007-01-01

    Visible and near-IR observations of the Kuiper Belt Object (136472) 2005 FY(9) have indicated the presence of unusually long (1 cm or more) optical path lengths in a layer of methane ice. Using microphysical and radiative transfer modeling, we show that even at the frigid temperatures in the outer reaches of the solar system, a slab of low porosity methane ice can indeed form by pressureless sintering of micron-sized grains, and it can qualitatively reproduce the salient features of the measured spectra. A good semiquantitative match with the near-IR spectra can be obtained with a realistic slab model, provided the spectra are scaled to a visible albedo of 0.6, at the low end of the values currently estimated from Spitzer thermal measurements. Consistent with previous modeling studies, matching spectra scaled to higher albedos requires the incorporation of strong backscattering effects. The albedo may become better constrained through an iterative application of the slab model to the analysis of the thermal measurements from Spitzer and the visible/near-IR reflectance spectra. The slab interpretation offers two falsifiable predictions (1) Absence of an opposition surge, which is commonly attributed to the fluffiness of the optical surface. This prediction is best testable with a spacecraft, as Earth-based observations at true opposition will not be possible until early next century. (2) Unlikelihood of the simultaneous occurrence of very long spectroscopic path lengths in both methane and nitrogen ice on the surface of any Kuiper Belt Object, as the more volatile nitrogen would hinder densification in methane ice.

  2. Computer Processing Of Tunable-Diode-Laser Spectra

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  3. Interstellar lines in the spectra of four stars

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.

    1979-01-01

    Observations of optical interstellar absorption lines arising from Na I, K I, and/or Ca II are reported in the spectra of HD 72127, Iota(1) Sco, 102 Her, and 6 Cas. Line components showing strikingly large Ca II/Na I ratios are found toward HD 72127 and are verified for 102 Her. The absorption toward Iota(1) Sco and 6 Cas illustrates features of the local galactic distribution of interstellar gas.

  4. Disk-averaged synthetic spectra of Mars

    NASA Technical Reports Server (NTRS)

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-01-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  5. Disk-averaged synthetic spectra of Mars.

    PubMed

    Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-08-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  6. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    PubMed Central

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  7. Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Methyl Substitution and Loss of H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP approach, in conjunction with the 4-31G basis set, is used to compute the harmonic frequencies of 1- and 2-methylnaphthalene, 1-, 2-, and 9-methylanthracene, and their cations. The IR spectra of the methyl substituted species are very similar to the parent spectra, except for the addition of the methyl C-H stretch at lower frequency than the aromatic C-H stretch. The loss of a single hydrogen from naphthalene, anthracene, and their cations is shown to have a very small effect on the IR spectra. Loss of a methyl hydrogen from 1- or 2-methylnaphthalene, or their cations, is shown to shift the side group C-H frequencies from below aromatic hydrogen stretching frequencies to above them. The loss of IT from 2-methylenenaphthalene shows only a small shift in the side group C-H stretching frequency.

  8. Skew projection of echo-detected EPR spectra for increased sensitivity and resolution

    NASA Astrophysics Data System (ADS)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-06-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five.

  9. Age determination of bottled Chinese rice wine by VIS-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Haiyan; Lin, Tao; Ying, Yibin; Pan, Xingxiang

    2006-10-01

    The feasibility of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining wine age (1, 2, 3, 4, and 5 years) of Chinese rice wine was investigated. Samples of Chinese rice wine were analyzed in 600 mL square brown glass bottles with side length of approximately 64 mm at room temperature. VIS-NIR spectra of 100 bottled Chinese rice wine samples were collected in transmission mode in the wavelength range of 350-1200 nm by a fiber spectrometer system. Discriminant models were developed based on discriminant analysis (DA) together with raw, first and second derivative spectra. The concentration of alcoholic degree, total acid, and °Brix was determined to validate the NIR results. The calibration result for raw spectra was better than that for first and second derivative spectra. The percentage of samples correctly classified for raw spectra was 98%. For 1-, 2-, and 3-year-old sample groups, the sample were all correctly classified, and for 4- and 5-year-old sample groups, the percentage of samples correctly classified was 92.9%, respectively. In validation analysis, the percentage of samples correctly classified was 100%. The results demonstrated that VIS-NIR spectroscopic technique could be used as a non-invasive, rapid and reliable method for predicting wine age of bottled Chinese rice wine.

  10. C III spectra in WC Wolf-Rayet stars - Does collisional excitation dominate?

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1993-01-01

    A direct comparison of the spectra emitted by an improved collisionally excited C III atomic model, with observations of C III spectra in Wolf-Rayet WC stars, shows agreement for UV, visible, and near-infrared lines including lines usually considered to be recombination lines. The agreement implies high-density and temperature source conditions corresponding to log (Ne Te) is greater than 16 as a lower limit, whereas most current modeling assumes log (Ne Te) is less than 15.5. This raises questions concerning the photoionization/recombination assumptions on which most WR modeling is based. Recent models are discussed from this point of view.

  11. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra.

    PubMed

    Vilas, F; Gaffey, M J

    1989-11-10

    Absorption features having depths up to 5% are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  12. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Gaffey, Michael J.

    1989-01-01

    Absorption features having depths up to 5 percent are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  13. Flexural isostasy: Constraints from gravity and topography power spectra

    NASA Astrophysics Data System (ADS)

    Watts, Tony; Moore, James

    2017-04-01

    We have used the spherical harmonic coefficients that describe the EGM2008 gravity and topography model (Pavlis et al. 2010) to quantify the role of flexural isostasy in contributing to Earth's gravity and topography. Power spectra show that the gravity effect of the topography and its flexural compensation contributes significantly to the observed free-air gravity anomaly field for degree 33-180, which corresponds approximately to wavelengths of 220-1200 km. The best fit is for an elastic thickness of the lithosphere, Te, of 34.0±4.0 km. Smaller values of Te, under-predict while high values of Te, over-predict the observed gravity spectra. The best fit value is a global average and so it is reasonable to speculate that regions exist where Te is both lower and higher. This is confirmed in studies of selected regions such as the Hawaiian-Emperor seamount chain and the Ganges-Himalaya foreland fold and thrust belt where we show that flexural isostatic anomalies are near zero in regions where Te approaches 34 km (e.g. Hawaiian ridge) and of large amplitude in regions of lower (e.g. Emperor) and higher Te (e.g. Ganges-Himalaya). Plate flexure may be significant at higher (180-441) and lower (12-33) degrees, but topography appears either uncompensated or fully compensated at these degrees, irrespective of the actual Te. Nevertheless, all isostatic models under-predict the observed gravity spectra at degree <12 and so we interpret the low order Earth's gravity field as caused by non-isostatic processes due to dynamic motions such as those associated with mantle convection.

  14. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  15. Experimental Investigation of Spectra of Dynamical Maps and their Relation to non-Markovianity

    NASA Astrophysics Data System (ADS)

    Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Meng, Yu; Li, Zhi-Peng; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2018-02-01

    The spectral theorem of von Neumann has been widely applied in various areas, such as the characteristic spectral lines of atoms. It has been recently proposed that dynamical evolution also possesses spectral lines. As the most intrinsic property of evolution, the behavior of these spectra can, in principle, exhibit almost every feature of this evolution, among which the most attractive topic is non-Markovianity, i.e., the memory effects during evolution. Here, we develop a method to detect these spectra, and moreover, we experimentally examine the relation between the spectral behavior and non-Markovianity by engineering the environment to prepare dynamical maps with different non-Markovian properties and then detecting the dynamical behavior of the spectral values. These spectra will lead to a witness for essential non-Markovianity. We also experimentally verify another simplified witness method for essential non-Markovianity. Interestingly, in both cases, we observe the sudden transition from essential non-Markovianity to something else. Our work shows the role of the spectra of evolution in the studies of non-Makovianity and provides the alternative methods to characterize non-Markovian behavior.

  16. The spectroscopic (FTIR, FT-Raman and UV-Vis spectra), DFT and normal coordinate computations of m-nitromethylbenzoate

    NASA Astrophysics Data System (ADS)

    Gnanasambandan, T.; Gunasekaran, S.; Seshadri, S.

    2013-08-01

    A combined experimental and theoretical study on molecular structure, vibrational spectra, NBO and UV-spectral analysis of m-nitromethylbenzoate (MNMB) has been reported in the present work. The FT-IR solid phase (4000-400 cm-1) and FT-Raman spectra (3500-100 cm-1) of MNMB was recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of MNMB in the ground-state have been calculated by using the density functional method B3LYP with 6-31G (d,p) and 6-31+G(d,p) basis sets. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). Stability of the molecule arising from hyperconjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ∗ antibonding orbitals and E(2) energies confirms the occurrence of ICT (Intra-molecular Charge Transfer) within the molecule. The UV spectrum was measured in ethyl acetate solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) result complements the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Finally the calculation results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra.

  17. WIDE-BAND SPECTRA OF GIANT RADIO PULSES FROM THE CRAB PULSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikami, Ryo; Asano, Katsuaki; Tanaka, Shuta J.

    2016-12-01

    We present the results of the simultaneous observation of giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse phases, respectively. A few GRPs detected at both 0.3 and 8.4 GHz are the most wide-band samples ever reported. In the frequency range from 0.3 to 2.2 GHz, we find that about 70% or more of the GRP spectra are consistent with single power laws and their spectral indices are distributed from −4 to −1. Wemore » also find that a significant number of GRPs have such a hard spectral index (approximately −1) that the fluence at 0.3 GHz is below the detection limit (“dim-hard” GRPs). Stacking light curves of such dim-hard GRPs at 0.3 GHz, we detect consistent enhancement compared to the off-GRP light curve. Our samples show apparent correlations between the fluences and the spectral hardness, which indicates that more energetic GRPs tend to show softer spectra. Our comprehensive studies on the GRP spectra are useful materials to verify the GRP model of fast radio bursts in future observations.« less

  18. Nonlinear optical and electroabsorption spectra of polydiacetylene crystals and films

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, D.; Soos, Z. G.

    1996-01-01

    Vibronic structure of nonlinear optical (NLO) coefficients is developed within the Condon approximation, displaced harmonic oscillators, and crude adiabatic states. The displacements of backbone modes of conjugated polymers are taken from vibrational data on the ground and 1B excited state. NLO resonances are modeled by three excitations and transition moments taken from Pariser-Parr-Pople (PPP) theory and optimized to polydiacetylene (PDA) spectra in crystals and films, with blue-shifted 1B exciton. The joint analysis of third-harmonic-generation, two-photon absorption, and nondegenerate four-wave-mixing spectra of PDA crystals and films shows weak two-photon absorption to 2A below 1B, leading to overlapping resonances in the THG spectrum, strong two-photon absorption to an nA state some 35% above 1B, and weak Raman resonances in nondegenerate FWM spectra. The full π-π* spectrum contributes to Stark shifts and field-induced transitions, as shown by PPP results for PDA oligomers. The Stark shift dominates high-resolution electroabsorption (EA) spectra of PDA crystals below 10 K. The close correspondence between EA and the first-derivative I'(ω) of the linear absorption above the 1B exciton in PDA crystals provides an experimental separation of vibrational and electronic contributions that limits any even-parity state in this 0.5 eV interval. An oscillator-strength sum rule is applied to the convergence of PDA oligomers with increasing length, N, and the crystal oscillator strengths are obtained without adjustable parameters. The sum rule for the 1B exciton implies large transition moments to higher-energy Ag states, whose locations in recent models are contrasted to PPP results. Joint analysis of NLO and EA spectra clarifies when a few electronic excitations are sufficient, distinguishes between vibrational and electronic contributions, and supports similar π-electron interactions in conjugated molecules and polymers.

  19. Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Bakes, E. L. O.

    2000-01-01

    We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.

  20. Cleaning HI Spectra Contaminated by GPS RFI

    NASA Astrophysics Data System (ADS)

    Sylvia, Kamin; Hallenbeck, Gregory L.; Undergraduate ALFALFA Team

    2016-01-01

    The NUDET systems aboard GPS satellites utilize radio waves to communicate information regarding surface nuclear events. The system tests appear in spectra as RFI (radio frequency interference) at 1381MHz, which contaminates observations of extragalactic HI (atomic hydrogen) signals at 50-150 Mpc. Test durations last roughly 20-120 seconds and can occur upwards of 30 times during a single night of observing. The disruption essentially renders the corresponding HI spectra useless.We present a method that automatically removes RFI in HI spectra caused by these tests. By capitalizing on the GPS system's short test durations and predictable frequency appearance we are able to devise a method of identifying times containing compromised data records. By reevaluating the remaining data, we are able to recover clean spectra while sacrificing little in terms of sensitivity to extragalactic signals. This method has been tested on 500+ spectra taken by the Undergraduate ALFALFA Team (UAT), in which it successfully identified and removed all sources of GPS RFI. It will also be used to eliminate RFI in the upcoming Arecibo Pisces-Perseus Supercluster Survey (APPSS).This work has been supported by NSF grant AST-1211005.

  1. Detection of advanced glycation end products (AGEs) on human skin by in vivo confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, A. A.; Pereira, L.; Ali, S. M.; Pizzol, C. D.; Tellez, C. A.; Favero, P. P.; Santos, L.; da Silva, V. V.; Praes, C. E. O.

    2016-03-01

    The aging process involves the reduction in the production of the major components of skin tissue. During intrinsic aging and photoaging processes, in dermis of human skin, fibroblasts become senescent and have decreased activity, which produce low levels of collagen. Moreover, there is accumulation of advanced glycation end products (AGEs). AGEs have incidence in the progression of age-related diseases, principally in diabetes mellitus and in Alzheimer's diseases. AGEs causes intracellular damage and/or apoptosis leading to an increase of the free radicals, generating a crosslink with skin proteins and oxidative stress. The aim of this study is to detect AGEs markers on human skin by in vivo Confocal Raman spectroscopy. Spectra were obtained by using a Rivers Diagnostic System, 785 nm laser excitation and a CCD detector from the skin surface down to 120 μm depth. We analyzed the confocal Raman spectra of the skin dermis of 30 women volunteers divided into 3 groups: 10 volunteers with diabetes mellitus type II, 65-80 years old (DEW); 10 young healthy women, 20-33 years old (HYW); and 10 elderly healthy women, 65-80 years old (HEW). Pentosidine and glucosepane were the principally identified AGEs in the hydroxyproline and proline Raman spectral region (1000-800 cm-1), in the 1.260-1.320 cm-1 region assignable to alpha-helical amide III modes, and in the Amide I region. Pentosidine and glucosepane calculated vibrational spectra were performed through Density Functional Theory using the B3LYP functional with 3-21G basis set. Difference between the Raman spectra of diabetic elderly women and healthy young women, and between healthy elderly women and healthy young women were also obtained with the purpose of identifying AGEs Raman bands markers. AGEs peaks and collagen changes have been identified and used to quantify the glycation process in human skin.

  2. IDEOS: Fitting Infrared Spectra from Dusty Galaxies

    NASA Astrophysics Data System (ADS)

    Viola, Vincent; Rupke, D.

    2014-01-01

    We fit models to heavily obscured infrared spectra taken by the Spitzer Space Telescope and prepare them for cataloguing in the Infrared Database of Extragalactic Observables from Spitzer (IDEOS). When completed, IDEOS will contain homogeneously measured mid-infrared spectroscopic observables of more than 4200 galaxies beyond the Local Group. The software we use, QUESTFit, models the spectra using up to three extincted blackbodies (including silicate, water ice, and hydrocarbon absorption) and PAH templates. We present results from a sample of the approximately 200 heavily obscured spectra that will be present in IDEOS.

  3. Systolic Processor Array For Recognition Of Spectra

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Peterson, John C.

    1995-01-01

    Spectral signatures of materials detected and identified quickly. Spectral Analysis Systolic Processor Array (SPA2) relatively inexpensive and satisfies need to analyze large, complex volume of multispectral data generated by imaging spectrometers to extract desired information: computational performance needed to do this in real time exceeds that of current supercomputers. Locates highly similar segments or contiguous subsegments in two different spectra at time. Compares sampled spectra from instruments with data base of spectral signatures of known materials. Computes and reports scores that express degrees of similarity between sampled and data-base spectra.

  4. Component spectra extraction from terahertz measurements of unknown mixtures.

    PubMed

    Li, Xian; Hou, D B; Huang, P J; Cai, J H; Zhang, G X

    2015-10-20

    The aim of this work is to extract component spectra from unknown mixtures in the terahertz region. To that end, a method, hard modeling factor analysis (HMFA), was applied to resolve terahertz spectral matrices collected from the unknown mixtures. This method does not require any expertise of the user and allows the consideration of nonlinear effects such as peak variations or peak shifts. It describes the spectra using a peak-based nonlinear mathematic model and builds the component spectra automatically by recombination of the resolved peaks through correlation analysis. Meanwhile, modifications on the method were made to take the features of terahertz spectra into account and to deal with the artificial baseline problem that troubles the extraction process of some terahertz spectra. In order to validate the proposed method, simulated wideband terahertz spectra of binary and ternary systems and experimental terahertz absorption spectra of amino acids mixtures were tested. In each test, not only the number of pure components could be correctly predicted but also the identified pure spectra had a good similarity with the true spectra. Moreover, the proposed method associated the molecular motions with the component extraction, making the identification process more physically meaningful and interpretable compared to other methods. The results indicate that the HMFA method with the modifications can be a practical tool for identifying component terahertz spectra in completely unknown mixtures. This work reports the solution to this kind of problem in the terahertz region for the first time, to the best of the authors' knowledge, and represents a significant advance toward exploring physical or chemical mechanisms of unknown complex systems by terahertz spectroscopy.

  5. Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra.

    PubMed

    Czerski, J; Colomb, W; Cannataro, F; Sarkar, S K

    2018-01-25

    The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics. Photoluminescence excitation spectra, where excitation is varied and emission is detected at a fixed wavelength, allows hyperspectral imaging with a single emission filter for high signal-to-background ratio without any moving optics on the emission side. We report a high throughput method for measuring the photoluminescence excitation spectra of individual fluorophores using a tunable supercontinuum laser and prism-type total internal reflection fluorescence microscope. We used the system to measure and sort the photoluminescence excitation spectra of individual Alexa dyes, fluorescent nanodiamonds (FNDs), and fluorescent polystyrene beads. We used a Gaussian mixture model with maximum likelihood estimation to objectively separate the spectra. Finally, we spectroscopically identified different species of fluorescent nanodiamonds with overlapping spectra and characterized the heterogeneity of fluorescent nanodiamonds of varying size. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  6. An examination of the damage tolerance enhancement of carbon/epoxy using an outer lamina of spectra (R)

    NASA Technical Reports Server (NTRS)

    Lance, D. G.; Nettles, A. T.

    1991-01-01

    Low velocity instrumented impact testing was utilized to examine the effects of an outer lamina of ultra-high molecular weight polyethylene (Spectra) on the damage tolerance of carbon epoxy composites. Four types of 16-ply quasi-isotropic panels (0, +45, 90, -45) were tested. Some panels contained no Spectra, while others had a lamina of Spectra bonded to the top (impacted side), bottom, or both sides of the composite plates. The specimens were impacted with energies up to 8.5 J. Force time plots and maximum force versus impact energy graphs were generated for comparison purposes. Specimens were also subjected to cross-sectional analysis and compression after impact tests. The results show that while the Spectra improved the maximum load that the panels could withstand before fiber breakage, the Spectra seemingly reduced the residual strength of the composites.

  7. Phylogenetic Distribution of Leaf Spectra and Optically Derived Functional Traits in the American Oaks

    NASA Astrophysics Data System (ADS)

    Cavender-Bares, J.; Meireles, J. E.; Couture, J. J.; Kaproth, M.; Townsend, P. A.

    2015-12-01

    Detecting functional traits of species, genotypes and phylogenetic lineages is critical in monitoring functional biodiversity remotely. We examined the phylogenetic distribution of leaf spectra across the American Oaks for 35 species under greenhouse conditions as well as genetic variation in leaf spectra across Central American populations of a single species grown in common gardens in Honduras. We found significant phylogenetic signal in the leaf spectra (Blomberg's K > 1.0), indicating similarity in spectra among close relatives. Across species, full range leaf spectra were used in a Partial Least Squares Discriminant Analysis (PLS-DA) that allowed species calibration (kappa statistic = 0.55). Validation of the model used to detect species (kappa statistic = 0.4) indicated reasonably good detection of individual species within the same the genus. Among four populations from Belize, Costa Rica, Honduras, and Mexico within a single species (Quercus oleoides), leaf spectra were also able to differentiate populations. Ordination of population-level data using dissimilarities of predicted foliar traits, including leaf mass per area (LMA), lignin content, fiber content, chlorophyll a+b, and C:N ratio in genotypes in either watered or unwatered conditions showed significant differentiation among populations and treatments. These results provide promise for remote detection and differentiation of plant functional traits among plant phylogenetic lineages and genotypes, even among closely related populations and species.

  8. Lightning electromagnetic radiation field spectra in the interval from 0. 2 to 20 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willett, J.C.; Bailey, J.C.; Leteinturier, C.

    1990-11-20

    Average energy spectral densities are presented for the fast transitions in most of the components that produce large radiation field impulses from cloud-to-ground lightning; first and subsequent return strokes; stepped, dart-stepped, and 'chaotic' leaders; and 'characteristic' cloud pulses. A disagreement in the previous literature about the spectral energy radiated by return strokes at high frequencies is noted and explained. The authors show that the spectral amplitudes are not seriously distorted by propagation over less than 35 km of seawater, although as much as 45 km of such propagation does appear to produce significant attenuation above about 10 MHz. First andmore » subsequent return strokes produce identical spectra between 0.2 and 20 MHz. The spectra of stepped and dart-stepped leader steps are nearly identical and are very similar to that of characteristic pulses. The spectra of leader steps also match return stroke spectra above 2-3 MHz after the former are increased by about 7 dB. The shapes of individual spectra do not depend on their amplitude, so the shapes of the average spectra are probably not distorted by the trigger thresholds used in the data acquisition. Return strokes are the strongest sources of radiation from cloud-to-ground lightning in the 0.2- to 20-MHz frequency range, although certain intracloud processes are stronger radiators above 8 MHz.« less

  9. Correlation between grade of pearlite spheroidization and laser induced spectra

    NASA Astrophysics Data System (ADS)

    Yao, Shunchun; Dong, Meirong; Lu, Jidong; Li, Jun; Dong, Xuan

    2013-12-01

    Laser induced breakdown spectroscopy (LIBS) which is used traditionally as a spectrochemical analytical technique was employed to analyze the grade of pearlite spheroidization. Three 12Cr1MoV steel specimens with different grades of pearlite spheroidization were ablated to produce plasma by pulse laser at 266 nm. In order to determine the optimal temporal condition and plasma parameters for correlating the grade of pearlite spheroidization and laser induced spectra, a set of spectra at different delays were analyzed by the principal component analysis method. Then, the relationship between plasma temperature, intensity ratios of ionic to atomic lines and grade of pearlite spheroidization was studied. The analysis results show that the laser induced spectra of different grades of pearlite spheroidization can be readily identifiable by principal component analysis in the range of 271.941-289.672 nm with 1000 ns delay time. It is also found that a good agreement exists between the Fe ionic to atomic line ratios and the tensile strength, whereas there is no obvious difference in the plasma temperature. Therefore, LIBS may be applied not only as a spectrochemical analytical technique but also as a new way to estimate the grade of pearlite spheroidization.

  10. A comparison of somatic mutational spectra in healthy study populations from Russia, Sweden and USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noori, P; Hou, S; Jones, I M

    Comparison of mutation spectra at the hypoxanthine-phosphoribosyl transferase (HPRT) gene of peripheral blood T lymphocytes may provide insight into the aetiology of somatic mutation contributing to carcinogenesis and other diseases. To increase knowledge of mutation spectra in healthy people, we have analyzed HPRT mutant T-cells of 50 healthy Russians originally recruited as controls for a study of Chernobyl clean-up workers (Jones et al. Radiation Res. 158, 2002, 424). Reverse transcriptase polymerase chain reactions and DNA sequencing identified 161 independent mutations among 176 thioguanine resistant mutants. Forty (40) mutations affected splicing mechanisms and 27 deletions or insertions of 1 to 60more » nucleotides were identified. Ninety four (94) single base substitutions were identified, including 62 different mutations at 55 different nucleotide positions, of which 19 had not previously been reported in human T-cells. Comparison of this base substitution spectrum with mutation spectra in a USA (Burkhart-Schultz et al. Carcinogenesis 17, 1996, 1871) and two Swedish populations (Podlutsky et al, Carcinogenesis 19, 1998, 557, Podlutsky et al. Mutation Res. 431, 1999, 325) revealed similarity in the type, frequency and distribution of mutations in the four spectra, consistent with aetiologies inherent in human metabolism. There were 15-19 identical mutations in the three pair-wise comparisons of Russian with USA and Swedish spectra. Intriguingly, there were 21 mutations unique to the Russian spectrum, and comparison by the Monte Carlo method of Adams and Skopek (J. Mol. Biol. 194, 1987, 391) indicated that the Russian spectrum was different from both Swedish spectra (P=0.007, 0.002) but not different from the USA spectrum (P=0.07), when Bonferroni correction for multiple comparisons was made (p < 0.008 required for significance). Age and smoking did not account for these differences. Other factors causing mutational differences need to be explored.« less

  11. Rainbow-Like Spectra with a CD: An Active-Learning Exercise

    ERIC Educational Resources Information Center

    Planinsic, G.

    2008-01-01

    Rainbow-like spectra, produced by reflexive diffraction of white light on a CD, offer a spectacular visual effect as well as an excellent classroom opportunity for students to learn how physics works. In this paper we show that building a coherent qualitative explanation can be a challenging task that requires students to combine gained knowledge…

  12. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-03-07

    We present results for a simulated inelastic electron-tunneling spectra (IETS) from calculations using the "gDFTB" code. The geometric and electronic structure is obtained from calculations using a local-basis density-functional scheme, and a nonequilibrium Green's function formalism is employed to deal with the transport aspects of the problem. The calculated spectrum of octanedithiol on gold(111) shows good agreement with experimental results and suggests further details in the assignment of such spectra. We show that some low-energy peaks, unassigned in the experimental spectrum, occur in a region where a number of molecular modes are predicted to be active, suggesting that these modes are the cause of the peaks rather than a matrix signal, as previously postulated. The simulations also reveal the qualitative nature of the processes dominating IETS. It is highly sensitive only to the vibrational motions that occur in the regions of the molecule where there is electron density in the low-voltage conduction channel. This result is illustrated with an examination of the predicted variation of IETS with binding site and alkane chain length.

  13. VizieR Online Data Catalog: KIC 8462852 GTC spectra (Deeg+, 2018)

    NASA Astrophysics Data System (ADS)

    Deeg, H. J.; Alonso, R.; Nespral, D.; Boyajian, T.

    2018-01-01

    Spectra obtained in the follow-up of KIC 8462852 (Boyajian's star) with OSIRIS at the GTC telescope. These spectra have been reduced as described in the paper and are contained in two directories, for target and comparison spectra: sp_target contains spectra of the target star (KIC 8462852) sp_compar contains spectra of the comparison star (KIC 8462763) At each pointing of the GTC, a sequence of 10-45 spectra was generated. The individual spectra are named: tpXXYY.dat for the target spectra and cpXXYY.dat for the comparison spectra, where XX is the pointing number, and YY is a sequence number. The format of each spectrum file is a two-column ascii file: Wavelength (Angstrom) | Flux (arbitrary units)) The files times_pXX.dat correspond to each of the pointings and contain the times of mid-exposure of each spectrum, in the HJD_UTC-2400000 framework. These times apply to both target and comparison spectra and are ordered by increasing sequence number. There are a total of 516 spectra of the target and 516 spectra of the comparison. (19 data files).

  14. Investigation of relations between skin cancer lesions' images and their fluorescent spectra

    NASA Astrophysics Data System (ADS)

    Pavlova, P.; Borisova, E.; Avramov, L.; Petkova, El.; Troyanova, P.

    2010-03-01

    This investigation is based on images obtained from healthy tissue and skin cancer lesions and their fluorescent spectra of cutaneous lesions derived after optical stimulation. Our analyses show that the lesions’ spectra of are different of those, obtained from normal tissue and the differences depend on the type of cancer. We use a comparison between these “healthy” and “unhealthy” spectra to define forms of variations and corresponding diseases. However, the value of the emitted light varies not only between the patients, but also depending on the position of the tested area inside of one lesion. These variations could be result from two reasons: different degree of damaging and different thickness of the suspicious lesion area. Regarded to the visible image of the lesion, it could be connected with the chroma of colour of the tested area and the lesion homogeneity that corresponds to particular disease. For our investigation, images and spectra of three non-melanoma cutanous malignant tumors are investigated, namely—basal cell carcinoma, squamous cell carcinoma, and keratoacanthoma. The images were processed obtaining the chroma by elimination of the background—healthy tissue, and applying it as a basic signal for transformation from RGB to Lab colorimetric model. The chroma of the areas of emission is compared with the relative value of fluorescence spectra. Specific spectral features are used to develop hybrid diagnostic algorithm (including image and spectral features) for differentiation of these three kinds of malignant cutaneous pathologies.

  15. Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Cohen, Y.; Des Marais, D. J.

    1987-01-01

    We studied adaptation to spectral light distribution in undisturbed benthic communities of cyanobacterial mats growing in hypersaline ponds at Guerrero Negro, Baja California, Mexico. Microscale measurements of oxygen photosynthesis and action spectra were performed with microelectrodes; spectral radiance was measured with fiber-optic microprobes. The spatial resolution of all measurements was 0.1 mm, and the spectral resolution was 10 to 15 nm. Light attenuation spectra showed absorption predominantly by chlorophyll a (Chl a) (430 and 670 nm), phycocyanin (620 nm), and carotenoids (440 to 500 nm). Blue light (450 nm) was attenuated 10-fold more strongly than red light (600 nm). The action spectra of the surface film of diatoms accordingly showed activity over the whole spectrum, with maxima for Chl a and carotenoids. The underlying dense Microcoleus population showed almost exclusively activity dependent upon light harvesting by phycobilins at 550 to 660 nm. Maximum activity was at 580 and 650 nm, indicating absorption by phycoerythrin and phycocyanin as well as by allophycocyanin. Very little Chl a-dependent activity could be detected in the cyanobacterial action spectrum, even with additional 600-nm light to excite photosystem II. The depth distribution of photosynthesis showed detectable activity down to a depth of 0.8 to 2.5 mm, where the downwelling radiant flux at 600 nm was reduced to 0.2 to 0.6% of the surface flux.

  16. RM-CLEAN: RM spectra cleaner

    NASA Astrophysics Data System (ADS)

    Heald, George

    2017-08-01

    RM-CLEAN reads in dirty Q and U cubes, generates rmtf based on the frequencies given in an ASCII file, and cleans the RM spectra following the algorithm given by Brentjens (2007). The output cubes contain the clean model components and the CLEANed RM spectra. The input cubes must be reordered with mode=312, and the output cubes will have the same ordering and thus must be reordered after being written to disk. RM-CLEAN runs as a MIRIAD (ascl:1106.007) task and a Python wrapper is included with the code.

  17. Electronic Spectra from Molecular Dynamics: A Simple Approach.

    DTIC Science & Technology

    1983-10-01

    82.30.Cr. 33.20K. S2.40.1s The authors provided phototypeset copy for this paper using REFER TlL EON, TOFF On UNIX I ELECTRONIC SPECTRA FROM MOLECULAR...Alamos National Laboratory Los Alamos, NM 87545 I. INTRODUCTION In this paper we show how molecular dynamics can be used in a simple manner to com...could equally use Monte Carlo or explicit integration over coordinates to compute equilibrium electronic absorption bands. How- ever, molecular

  18. Diffuse emission and pathological Seyfert spectra

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    In this annual ROSAT status report, the diffuse emission and spectra from Seyfert galaxies are examined. Three papers are presented and their contents include the soft x-ray properties and spectra of a binary millisecond pulsar, the PSPC and HRI observations of a Starburst/Seyfert 2 Galaxy, and an analysis of the possibility of x-ray luminous starbursts in the Einstein Medium Sensitivity Survey.

  19. The spectra of reducible matrices over complete commutative idempotent semifields and their spectral lattices

    NASA Astrophysics Data System (ADS)

    José Valverde-Albacete, Francisco; Peláez-Moreno, Carmen

    2016-02-01

    Previous work has shown a relation between L-valued extensions of Formal Concept Analysis and the spectra of some matrices related to L-valued contexts. To clarify this relation, we investigated elsewhere the nature of the spectra of irreducible matrices over idempotent semifields in the framework of dioids, naturally ordered semirings, that encompass several of those extensions. This initial work already showed many differences with respect to their counterparts over incomplete idempotent semifields, in what concerns the definition of the spectrum and the eigenvectors. Considering special sets of eigenvectors also brought out complete lattices in the picture and we argue that such structure may be more important than standard eigenspace structure for matrices over completed idempotent semifields. In this paper, we complete that investigation in the sense that we consider the spectra of reducible matrices over completed idempotent semifields and dioids, giving, as a result, a constructive solution to the all-eigenvectors problem in this setting. This solution shows that the relation of complete lattices to eigenspaces is even tighter than suspected.

  20. QCD-inspired spectra from Blue's functions

    NASA Astrophysics Data System (ADS)

    Nowak, Maciej A.; Papp, Gábor; Zahed, Ismail

    1996-02-01

    We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.

  1. Effects of chirp on two-dimensional Fourier transform electronic spectra.

    PubMed

    Tekavec, Patrick F; Myers, Jeffrey A; Lewis, Kristin L M; Fuller, Franklin D; Ogilvie, Jennifer P

    2010-05-24

    We examine the effect that pulse chirp has on the shape of two- dimensional electronic spectra through calculations and experiments. For the calculations we use a model two electronic level system with a solvent interaction represented by a simple Gaussian correlation function and compare the resulting spectra to experiments carried out on an organic dye molecule (Rhodamine 800). Both calculations and experiments show that distortions due to chirp are most significant when the pulses used in the experiment have different amounts of chirp, introducing peak shape asymmetry that could be interpreted as spectrally dependent relaxation. When all pulses have similar chirp the distortions are reduced but still affect the anti-diagonal symmetry of the peak shapes and introduce negative features that could be interpreted as excited state absorption.

  2. New low-resolution spectrometer spectra for IRAS sources

    NASA Astrophysics Data System (ADS)

    Volk, Kevin; Kwok, Sun; Stencel, R. E.; Brugel, E.

    1991-12-01

    Low-resolution spectra of 486 IRAS point sources with Fnu(12 microns) in the range 20-40 Jy are presented. This is part of an effort to extract and classify spectra that were not included in the Atlas of Low-Resolution Spectra and represents an extension of the earlier work by Volk and Cohen which covers sources with Fnu(12 microns) greater than 40 Jy. The spectra have been examined by eye and classified into nine groups based on the spectral morphology. This new classification scheme is compared with the mechanical classification of the Atlas, and the differences are noted. Oxygen-rich stars of the asymptotic giant branch make up 33 percent of the sample. Solid state features dominate the spectra of most sources. It is found that the nature of the sources as implied by the present spectral classification is consistent with the classifications based on broad-band colors of the sources.

  3. SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Miller, Victor A.; Mitchell Spearrin, R.; Strand, Christopher L.

    2017-10-01

    SpectraPlot is a web-based application for simulating spectra of atomic and molecular gases. At the time this manuscript was written, SpectraPlot consisted of four primary tools for calculating: (1) atomic and molecular absorption spectra, (2) atomic and molecular emission spectra, (3) transition linestrengths, and (4) blackbody emission spectra. These tools currently employ the NIST ASD, HITRAN2012, and HITEMP2010 databases to perform line-by-line simulations of spectra. SpectraPlot employs a modular, integrated architecture, enabling multiple simulations across multiple databases and/or thermodynamic conditions to be visualized in an interactive plot window. The primary objective of this paper is to describe the architecture and spectroscopic models employed by SpectraPlot in order to provide its users with the knowledge required to understand the capabilities and limitations of simulations performed using SpectraPlot. Further, this manuscript discusses the accuracy of several underlying approximations used to decrease computational time, in particular, the use of far-wing cutoff criteria.

  4. Photoelectron spectra of some antibiotic building blocks: 2-azetidinone and thiazolidine-carboxylic acid.

    PubMed

    Ahmed, Marawan; Ganesan, Aravindhan; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C

    2012-08-23

    X-ray photoelectron spectra of the core and valence levels of the fundamental building blocks of β-lactam antibiotics have been investigated and compared with theoretical calculations. The spectra of the compounds 2-azetidinone and the 2- and 4-isomers of thiazolidine-carboxylic acid are interpreted in the light of theoretical calculations. The spectra of the two isomers of thiazolidine-carboxylic acid are rather similar, as expected, but show clear effects due to isomerization. Both isomers are analogues of proline, which is well-known to populate several low energy conformers in the gas phase. We have investigated the low energy conformers of thiazolidine-4-carboxylic acid theoretically in more detail and find some spectroscopic evidence that multiple conformers may be present. The measured valence levels are assigned for all three compounds, and the character of the frontier orbitals is identified and analyzed.

  5. Children's Understanding of Showing Off.

    ERIC Educational Resources Information Center

    Bennett, Mark; Yeeles, Caroline

    1990-01-01

    Interviews 46 British children, ages 8 to 11, to test their understanding of showing off. Confirms prediction that younger childrens' understanding of motivation for showing off is based on psychological determinants and that 11-year-olds' understanding focuses on interpersonal determinants. Also discusses children's understanding of emotional…

  6. The Thermal Emission and Albedo of Super-Earths with Flat Transmission Spectra

    NASA Astrophysics Data System (ADS)

    Morley, Caroline; Fortney, Jonathan; Marley, Mark

    2014-11-01

    Vast resources have been dedicated to characterizing the handful of planets with radii between Earth’s and Neptune’s that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain the atmospheric composition. Here, we present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break these degeneracies and constrain the atmospheric composition. Of the ~four small planets studied to date, all have radii in the near-IR consistent with being constant in wavelength. This suggests either that these planets all have higher mean molecular weight atmospheres than expected for hydrogen-dominated bulk compositions, or that the atmospheres of small planets are consistently enshrouded in thick hazes and clouds. For the particularly well-studied planet GJ 1214b, the measurements made using HST/WFC3 can rule out atmospheres with high mean molecular weights, leaving clouds as the sole explanation for the flat transmission spectrum. We showed in Morley et al. 2013 that these clouds and hazes can be made of salts and sulfides, which condense in the upper atmosphere of a cool H-rich atmosphere like GJ 1214b, or made of photochemical hazes such as soots, which result from methane photodissociation and subsequent carbon chemistry. Here, we explore how clouds thick enough to obscure the transmission spectrum change both thermal emission spectra and albedo spectra. These observations are complementary to transmission spectra measurements. Thermal emission probes deeper layers of the atmosphere, potentially below the high haze layer obscuring the transmission spectra; albedo spectra probe reflected starlight largely from the cloud particles themselves. Crucially, these complementary observations of planets with flat transmission spectra may allow us to break the degeneracies between cloud materials, cloud height and longitude, and

  7. The Thermal Emission and Albedo of Super-Earths with Flat Transmission Spectra

    NASA Astrophysics Data System (ADS)

    Morley, Caroline; Fortney, Jonathan J.; Marley, Mark

    2015-01-01

    Vast resources have been dedicated to characterizing the handful of planets with radii between Earth's and Neptune's that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain the atmospheric composition. Here, we present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break these degeneracies and constrain the atmospheric composition.Of the ~five small planets studied to date, four have radii in the near-IR consistent with being constant in wavelength. This suggests either that these planets all have higher mean molecular weight atmospheres than expected for hydrogen-dominated bulk compositions, or that the atmospheres of small planets are consistently enshrouded in thick hazes and clouds. For the particularly well-studied planet GJ 1214b, the measurements made using HST/WFC3 can rule out atmospheres with high mean molecular weights, leaving clouds as the sole explanation for the flat transmission spectrum. We showed in Morley et al. 2013 that these clouds and hazes can be made of salts and sulfides, which condense in the upper atmosphere of a cool H-rich atmosphere like GJ 1214b, or made of photochemical hazes such as soots, which result from methane photodissociation and subsequent carbon chemistry. Here, we explore how clouds thick enough to obscure the transmission spectrum change both thermal emission spectra and albedo spectra. These observations are complementary to transmission spectra measurements. Thermal emission probes deeper layers of the atmosphere, potentially below the high haze layer obscuring the transmission spectra; albedo spectra probe reflected starlight largely from the cloud particles themselves. Crucially, these complementary observations of planets with flat transmission spectra may allow us to break the degeneracies between cloud materials, cloud height and longitude, and

  8. Evaluation of burst-mode LDA spectra with implications

    NASA Astrophysics Data System (ADS)

    Velte, Clara; George, William

    2009-11-01

    Burst-mode LDA spectra, as described in [1], are compared to spectra obtained from corresponding HWA measurements using the FFT in a round jet and cylinder wake experiment. The phrase ``burst-mode LDA'' refers to an LDA which operates with at most one particle present in the measuring volume at a time. Due to the random sampling and velocity bias of the LDA signal, the Direct Fourier Transform with accompanying weighting by the measured residence times was applied to obtain a correct interpretation of the spectral estimate. Further, the self-noise was removed as described in [2]. In addition, resulting spectra from common interpolation and uniform resampling techniques are compared to the above mentioned estimates. The burst-mode LDA spectra are seen to concur well with the HWA spectra up to the emergence of the noise floor, caused mainly by the intermittency of the LDA signal. The interpolated and resampled counterparts yield unphysical spectra, which are buried in frequency dependent noise and step noise, except at very high LDA data rates where they perform well up to a limited frequency.[4pt] [1] Buchhave, P. PhD Thesis, SUNY/Buffalo, 1979.[0pt] [2] Velte, C.M. PhD Thesis, DTU/Copenhagen, 2009.

  9. Infrared reflectance spectra (4-12 micron) of lunar samples

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.

    1991-01-01

    Presented here are infrared reflectance spectra of a typical set of Apollo samples to illustrate spectral character in the mid-infrared (4 to 12 microns) of lunar materials and how the spectra varies among three main forms: soil, breccia, and igneous rocks. Reflectance data, to a close approximation, are the inverse of emission spectra; thus, for a given material the spectral reflectance (R) at any given wavelength is related to emission (E) by 1 - R equals E. Therefore, one can use reflectance spectra of lunar samples to predict how emission spectra of material on the lunar surface will appear to spectrometers on orbiting spacecraft or earthbound telescopes. Spectra were measured in the lab in dry air using a Fourier Transform Infrared spectrometer. Shown here is only the key portion (4 to 12 microns) of each spectrum relating to the principal spectral emission region for sunlit lunar materials and to where the most diagnostic spectral features occur.

  10. Quantification of HCl from high-resolution, ground-based, infrared solar spectra in the 3000 per cm region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Murcray, D. G.

    1986-01-01

    Recent ground-based infrared solar spectra at 0.02 per cm resolution in the 3000 per cm region have been analyzed for the atmospheric content of HCl. Nonlinear spectral least-squares fitting applied to spectra obtained at several zenith angles shows little sensitivity of the results to tropospheric HCl but provides an accurate measurement of the total column amount.

  11. Hey Teacher, Your Personality's Showing!

    ERIC Educational Resources Information Center

    Paulsen, James R.

    1977-01-01

    A study of 30 fourth, fifth, and sixth grade teachers and 300 of their students showed that a teacher's age, sex, and years of experience did not relate to students' mathematics achievement, but that more effective teachers showed greater "freedom from defensive behavior" than did less effective teachers. (DT)

  12. Modeling and measurements of XRD spectra of extended solids under high pressure

    NASA Astrophysics Data System (ADS)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  13. Dynamic molecular structure retrieval from low-energy laser-induced electron diffraction spectra

    NASA Astrophysics Data System (ADS)

    Vu, Dinh-Duy T.; Phan, Ngoc-Loan T.; Hoang, Van-Hung; Le, Van-Hoang

    2017-12-01

    A recently developed quantitative rescattering theory showed that a laser-free elastic cross section can be separated from laser-induced electron diffraction (LIED) spectra. Based upon this idea, Blaga et al investigated the possibility of reconstructing molecular structure from LIED spectra (2012 Nature 483 7388). In the above study, an independent atoms model (IAM) was used to interpret high-energy electron-molecule collisions induced by a mid-infrared laser. Our research aims to extend the application range of this structural retrieval method to low-energy spectra induced by more common near-infrared laser sources. The IAM is insufficient in this case, so we switch to a more comprehensive model—the multiple scattering (MS) theory. From the original version concerning only neutral targets, we upgrade the model so that it is compatible with electron-ion collisions at low energy. With available LIED experiment data of CO2 and O2, the upgraded MS is shown to be greatly effective as a tool for molecular imaging from spectra induced by a near-infrared laser. The captured image is at about 2 fs after the ionization, shorter than the period 4-6 fs by using the mid-infrared laser in Blaga’s experiment.

  14. Energy spectra of X-ray clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Avni, Y.

    1976-01-01

    A procedure for estimating the ranges of parameters that describe the spectra of X-rays from clusters of galaxies is presented. The applicability of the method is proved by statistical simulations of cluster spectra; such a proof is necessary because of the nonlinearity of the spectral functions. Implications for the spectra of the Perseus, Coma, and Virgo clusters are discussed. The procedure can be applied in more general problems of parameter estimation.

  15. Vibrational spectra of ketamine hydrochloride and 3, 4-methylenedioxymethamphetamine in terahertz range

    NASA Astrophysics Data System (ADS)

    Wang, Guangqin; Shen, Jingling; Jia, Yan

    2007-07-01

    The terahertz spectrum of ketamine hydrochloride at room temperature, in the range of 0.2-2.6THz, has been measured by terahertz time-domain spectroscopy (TDS). Full-geometry optimizations and frequency calculations using the density functional theory (DFT) are also applied to predict the absorption spectra of ketamine hydrochloride and 3, 4-methylenedioxymethamphetamine (MDMA). The results of the simulation show qualitative agreement with the experimental data especially for MDMA, and the observed spectra features are assigned based on the DFT calculation. The results suggest that use of the terahertz TDS technique can be an effective method for the detection and inspection of illicit drugs.

  16. [The UV-Vis spectra and substituent effect of organoimido derivatives of polyoxometalates].

    PubMed

    Li, Qiang; Wei, Yong-ge; Wang, Yuan; Guo, Hong-you

    2005-06-01

    In the presence of a carbodiimine, i.e. DCC, a series of organoimido derivatives of polyoxometalates have been synthesized via the reaction of [alpha-Mo8O26]4- with aromatic amines and its hydrochloride salt. Elemental analysis, IR, 1H-NMR and UV-Vis spectra were used to characterize those hybrids, in particular their UV-Vis spectra have been studied. The results show that typical metal-ligand charge transfer (MLCT) transitions occur in the organic-inorganic hybrid molecules. There is a good linear relationship between the shift of UV-Vis absorptions (delta lamda max) and conjugation effect of the p-substituted group (sigmaR).

  17. Two-dimensional electronic spectra of the photosynthetic apparatus of green sulfur bacteria

    NASA Astrophysics Data System (ADS)

    Kramer, Tobias; Rodriguez, Mirta

    2017-03-01

    Advances in time resolved spectroscopy have provided new insight into the energy transmission in natural photosynthetic complexes. Novel theoretical tools and models are being developed in order to explain the experimental results. We provide a model calculation for the two-dimensional electronic spectra of Cholorobaculum tepidum which correctly describes the main features and transfer time scales found in recent experiments. From our calculation one can infer the coupling of the antenna chlorosome with the environment and the coupling between the chlorosome and the Fenna-Matthews-Olson complex. We show that environment assisted transport between the subunits is the required mechanism to reproduce the experimental two-dimensional electronic spectra.

  18. ACCELERATED FITTING OF STELLAR SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-07-20

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating amore » sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.« less

  19. The first observation of Carbon-13 spin noise spectra

    PubMed Central

    Schlagnitweit, Judith; Müller, Norbert

    2012-01-01

    We demonstrate the first 13C NMR spin noise spectra obtained without any pulse excitation by direct detection of the randomly fluctuating noise from samples in a cryogenically cooled probe. Noise power spectra were obtained from 13C enriched methanol and glycerol samples at 176 MHz without and with 1H decoupling, which increases the sensitivity without introducing radio frequency interference with the weak spin noise. The multiplet amplitude ratios in 1H coupled spectra indicate that, although pure spin noise prevails in these spectra, the influence of absorbed circuit noise is still significant at the high concentrations used. In accordance with the theory heteronuclear Overhauser enhancements are absent from the 1H-decoupled 13C spin noise spectra. PMID:23041799

  20. Analysis of Atmospheric Trace Constituents from High Resolution Infrared Balloon-Borne and Ground-Based Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Recent results and ongoing studies of high resolution solar absorption spectra will be presented. The analysis of these spectra is aimed at the identification and quantification of trace constituents important in atmospheric chemistry of the stratosphere and upper troposphere. Analysis of balloon-borne and ground-based spectra obtained at 0.0025/ cm covering the 700-2200/ cm interval will be presented. Results from ground-based 0.02/ cm solar spectra, from several locations such as Denver, South Pole, M. Loa, and New Zealand will also be shown. The 0.0025/ cm spectra show many new spectroscopic features. The analysis of these spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of trace constituents quantification. The combination of the recent balloon flights, with earlier flights data since 1978 at 0.02/ cm resolution, provides trends analysis of several stratospheric trace species. Results for COF2, F22, SF6, and other species will be presented. Analysis of several ground-based solar spectra provides trends for HCl, HF and other species. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra will be presented. These are extended for the analysis of the ground-based spectra to be obtained by the high resolution interferometers of the Network for Detection of Stratospheric Change (NDSC). Progress or the University of Denver studies for the NDSC will be presented. This will include intercomparison of solar spectra and trace gases retrievals obtained from simultaneous scans by the high resolution (0.0025/ cm) interferometers of BRUKER and BOMEM.

  1. Mid-Infrared Silicate Dust Features in Seyfert 1 Spectra

    NASA Astrophysics Data System (ADS)

    Thompson, Grant D.; Levenson, N. A.; Sirocky, M. M.; Uddin, S.

    2007-12-01

    Silicate dust emission dominates the mid-infrared spectra of galaxies, and the dust produces two spectral features, at 10 and 18 μm. These features' strengths (in emission or absorption) and peak wavelengths reveal the geometry of the dust distribution, and they are sensitive to the dust composition. We examine mid-infrared spectra of 32 Seyfert 1 active galactic nuclei (AGN), observed with the Infrared Spectrograph aboard the Spitzer Space Telescope. In the spectra, we typically find the shorter-wavelength feature in emission, at an average peak wavelength of 10.0 μm, although it is known historically as the "9.7 μm" feature. In addition, peak wavelength increases with feature strength. The 10 and 18 μm feature strengths together are sensitive to the dust geometry surrounding the central heating engine. Numerical calculations of radiative transfer distinguish between clumpy and smooth distributions, and we find that the surroundings of these AGN (the obscuring "tori" of unified AGN schemes) are clumpy. Polycyclic aromatic hydrocarbon (PAH) features are associated with star formation, and we find strong PAH emission (luminosity ≥ 1042 erg/s) in only four sources, three of which show independent evidence for starbursts. We will explore the effects of luminosity on dust geometry and chemistry in a comparison sample of quasars. We acknowledge work supported by the NSF under grant number 0237291.

  2. NLTE Effects in Globular Cluster Integrated Light Spectra and Photometric Colors

    NASA Astrophysics Data System (ADS)

    Young, Mitchell; Short, C. Ian

    2017-01-01

    Our overall goal is to investigate the effect that modelling the atmospheres and spectra of Galactic globular cluster (GGCs) members in non-local thermodynamic equilibrium (NLTE) has on the integrated light (IL) spectrum, and the derivation of GGC ages and metallicities ([Fe/H] values) from IL photometric color and spectrum fitting. We create synthetic GGC populations and associated colour-magnitude diagrams (CMDs) using the Kroupa initial mass function (Kroupa, P., 2001, MNRAS, 322, 231-246) and the Teramo isochrones (Pietrinferni, A. et al, 2004, ApJ, 612, 168-190) with ages ranging from 9 to 15 Gyr, and [Fe/H] = -1.49 to -0.66 with α = +0.4. We investigate the dependence of predicted LTE and NLTE colors on the method and resolution of CMD discretization, and on the definition of representative stellar parameters in a discretized CMD.

  3. A time-resolved current method and TSC under vacuum conditions of SEM: Trapping and detrapping processes in thermal aged XLPE insulation cables

    NASA Astrophysics Data System (ADS)

    Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.

    2017-03-01

    Thermal aging of cross-linked polyethylene (XLPE) can cause serious concerns in the safety operation in high voltage system. To get a more detailed picture on the effect of thermal aging on the trapping and detrapping process of XLPE in the melting temperature range, Thermal Stimulated Current (TSC) have been implemented in a Scanning Electron Microscope (SEM) with a specific arrangement. The XLPE specimens are molded and aged at two temperatures (120 °C and 140 °C) situated close to the melting temperature of the material. The use of SEM allows us to measure both leakage and displacement currents induced in samples under electron irradiation. The first represents the conduction process of XLPE and the second gives information on the trapping of charges in the bulk of the material. TSC associated to the SEM leads to show spectra of XLPE discharge under thermal stimulation using both currents measured after electron irradiation. It was found that leakage current in the charging process may be related to the physical defects resulting in crystallinity variation under thermal aging. However the trapped charge can be affected by the carbonyl groups resulting from the thermo-oxidation degradation and the disorder in the material. It is evidenced from the TSC spectra of unaged XLPE that there is no detrapping charge under heat stimulation. Whereas the presence of peaks in the TSC spectra of thermally aged samples indicates that there is some amount of trapped charge released by heating. The detrapping behavior of aged XLPE is supported by the supposition of the existence of two trap levels: shallow traps and deep traps. Overall, physico-chemical reactions under thermal aging at high temperatures leads to the enhancement of shallow traps density and changes in range of traps depth. These changes induce degradation of electrical properties of XLPE.

  4. Statistical averaging of marine magnetic anomalies and the aging of oceanic crust.

    USGS Publications Warehouse

    Blakely, R.J.

    1983-01-01

    Visual comparison of Mesozoic and Cenozoic magnetic anomalies in the North Pacific suggests that older anomalies contain less short-wavelength information than younger anomalies in this area. To test this observation, magnetic profiles from the North Pacific are examined from crust of three ages: 0-2.1, 29.3-33.1, and 64.9-70.3Ma. For each time period, at least nine profiles were analyzed by 1) calculating the power density spectrum of each profile, 2) averaging the spectra together, and 3) computing a 'recording filter' for each time period by assuming a hypothetical seafloor model. The model assumes that the top of the source is acoustic basement, the source thickness is 0.5km, and the time scale of geomagnetic reversals is according to Ness et al. (1980). The calculated power density spectra of the three recording filters are complex in shape but show an increase of attenuation of short-wavelength information as the crust ages. These results are interpreted using a multilayer model for marine magnetic anomalies in which the upper layer, corresponding to pillow basalt of seismic layer 2A, acts as a source of noise to the magnetic anomalies. As the ocean crust ages, this noisy contribution by the pillow basalts becomes less significant to the anomalies. Consequently, magnetic sources below layer 2A must be faithful recorders of geomagnetic reversals.-AuthorPacific power density spectrum

  5. Tetrahedral hydrocarbon nanoparticles in space: X-ray spectra

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.; Maksimović, A.; Valencic, L. A.

    2018-06-01

    It has been proposed, or confirmed, that diamond nanoparticles exist in various environments in space: close to active galactic nuclei, in the vicinity of supernovae and pulsars, in the interior of several planets in the Solar system, in carbon planets, and other exoplanets, carbon-rich stars, meteorites, in X-ray active Herbig Ae/Be stars, and in the interstellar medium. Using density functional theory methods, we calculate the carbon K-edge X-ray absorption spectrum of two large tetrahedral nanodiamonds: C26H32 and C51H52. We also study and test our methods on the astrophysical molecule CH4, the smallest C-H tetrahedral structure. A possible detection of nanodiamonds from X-ray spectra by future telescopes, such as the project Arcus, is proposed. Simulated spectra of the diffuse interstellar medium using Cyg X-2 as a source show that nanodiamonds studied in this work can be detected by Arcus, a high-resolution X-ray spectrometer mission selected by NASA for a Phase A concept study.

  6. Silicon K-edge XANES spectra of silicate minerals

    NASA Astrophysics Data System (ADS)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  7. Analysis of the FF Aqr spectra

    NASA Astrophysics Data System (ADS)

    Shimanskaya, N. N.; Bikmaev, I. F.; Shimansky, V. V.

    2011-07-01

    We determine the atmospheric parameters of the secondary in the close binary system FF Aqr and analyze its chemical composition. A series of high-resolution spectra are taken at different orbital phases using the coude echelle spectrometer of the 1.5-m Russian-Turkish Telescope (RTT150). We show that the absorption line intensity of heavy elements varies with phase due to the spotty nature of the cool component. We determine the abundances of heavy elements in the star's atmosphere by modelling the synthetic spectra and performing a differential analysis of the chemical composition of FF Aqr relative to the solar composition. Our analysis of the averaged spectrum of FF Aqr yielded 539 abundance estimates for 21 chemical elements. We found the metallicity of the star ([ Fe/H] = -0.11 ± 0.08) to be close solar, in agreement with the hypothesis that FF Aqr should belong to the Galactic disk. The inferred chemical composition of the objects exhibits no anomalous abundances of the α-, r-, and s-process elements like those earlier found in other systems (IN Com, LW Hya, V471 Tau). The lack of such anomalies in FF Aqr must be due to the fact that the elements heavier than 16 O cannot be synthesized in the core of the primary during the last stages of its evolution.

  8. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.

    PubMed

    Liu, Xiaowen; Dekker, Lennard J M; Wu, Si; Vanduijn, Martijn M; Luider, Theo M; Tolić, Nikola; Kou, Qiang; Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira; Paša-Tolić, Ljiljana; Pevzner, Pavel A

    2014-07-03

    There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.

  9. Far-infrared reflectance spectra of optical black coatings

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1983-01-01

    Far-infrared specular reflectance spectra of six optically black coatings near normal incidence are presented. The spectra were obtained using nine bandpass transmission filters in the wavelength range between 12 and 300 microns. Data on the construction, thickness, and rms surface roughness of the coatings are also presented. The chemical composition of two coatings can be distinguished from that of the others by a strong absorption feature between 20 and 40 microns which is attributed to amorphous silicate material. Inverse relationships between these spectra and coating roughness and thickness are noted and lead to development of a reflecting-layer model for the measured reflectance. The model is applied to the spectra of several coatings whose construction falls within its constraints.

  10. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  11. Expert System for Analysis of Spectra in Nuclear Metrology

    NASA Astrophysics Data System (ADS)

    Petrović, Ivan; Petrović, V.; Krstić, D.; Nikezić, D.; Bočvarski, V.

    In this paper is described an expert system (ES) developed in order to enable the analysis of emission spectra, which are obtained by measurements of activities of radioactive elements, i.e., isotopes, actually cesium. In the structure of those spectra exists two parts: first on lower energies, which originates from the Compton effect, and second on higher energies, which contains the photopeak. The aforementioned ES is made to perform analysis of spectra in whole range of energies. Analysis of those spectra is very interesting because of the problem of environmental contamination by radio nuclides.

  12. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  13. Monte Carlo turbulence simulation using rational approximations to von Karman spectra

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1986-01-01

    Turbulence simulation is computationally much simpler using rational spectra, but turbulence falls off as f exp -5/3 in frequency ranges of interest to aircraft response and as predicted by von Karman's model. Rational approximations to von Karman spectra should satisfy three requirements: (1) the rational spectra should provide a good approximation to the von Karman spectra in the frequency range of interest; (2) for stability, the resulting rational transfer function should have all its poles in the left half-plane; and (3) at high frequencies, the rational spectra must fall off as an integer power of frequency, and since the -2 power is closest to the -5/3 power, the rational approximation should roll off as the -2 power at high frequencies. Rational approximations to von Karman spectra that satisfy these three criteria are presented, along with spectra from simulated turbulence. Agreement between the spectra of the simulated turbulence and von Karman spectra is excellent.

  14. Microearthquake spectra from the Anza, California, seismic network: site response and source scaling

    USGS Publications Warehouse

    Frankel, Arthur D.; Wennerberg, Leif

    1989-01-01

    We analyzed spectra of local microearthquakes recorded by the Anza, California, seismic network to isolate the effects of site response and to investigate the scaling of source parameters for small earthquakes. Spectra of microearthquakes (M < 2; Mo< 1019 dyne-cm) at Anza have shapes characteristic of the receiver sites and are generally independent of the source region. Thus, the site response is a major conditioner of the observed spectral shape. To remove the effects of site response from the spectra of a M ∼ 3 event and isolate its source spectrum, we divided by the spectra of an adjacent aftershock used as an empirical Green's function event. The spectral ratios indicate that the apparent corner frequencies of small earthquakes (Mo < 1019dyne-cm) observed at even the high-fmax stations on hard rock are much lower than the source corner frequencies. The spectral ratios are consistent with stress drop remaining constant with decreasing seismic moment, for events with moments as small as 1018 dyne-cm. The spectral ratios display remarkable agreement between sites which showed vast differences in their original spectra, indicating that the spectral division effectively removed the site response. The source spectrum of the M ∼ 3 event has a high-frequency spectral fall-off of about ω−2. An apparent dependence of high-frequency fall-off with seismic moment in the original spectra can also be explained by the effects of site response. The difference between the P- and S-wave corner frequencies and high-frequency roll-offs in the observed spectra for these events is the result of the site response and is not a source property. The shapes of the spectra of microearthquakes at Anza can largely be explained by attenuation at shallow depth with a frequency-independent Q. For some sites, near-surface resonances are also apparent in the spectra of microearthquakes. It is indicated by t* values determined for each site that Qp ∼ Qsfor the shallow

  15. Aging is associated with an expansion of CD49fhi mammary stem cells that show a decline in function and increased transformation potential

    PubMed Central

    Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Zhang, Fuchuang; Gu, Xiang; Wu, Anqi; Wang, Danhan; Chen, Yuanhong; Bandyopadhyay, Abhik; Yeh, I-Tien; Daniel, Benjamin J.; Chen, Yidong; Zou, Yi; Rebel, Vivienne L.; Walter, Christi A.; Lu, Jianxin; Huang, Changjiang; Sun, Lu-Zhe

    2016-01-01

    Breast cancer incidence increases during aging, yet the mechanism of age-associated mammary tumorigenesis is unclear. Mammary stem cells are believed to play an important role in breast tumorigenesis, but how their function changes with age is unknown. We compared mammary epithelial cells isolated from young and old mammary glands of different cohorts of C57BL6/J and BALB/c mice, and our findings revealed that old mammary glands were characterized by increased basal cell pool comprised of mostly CD49fhi cells, altered luminal-to-basal cell ratio, and irregular ductal morphology. More interestingly, basal stem cells in old mice were increased in frequency, but showed a functional decline of differentiation and increased neoplastic transformation potential. Gene signature enrichment analysis revealed a significant enrichment of a luminal cell gene expression signature in the basal stem cell-enriched population from old mice, suggesting some luminal cells were expressing basal markers. Immunofluorescence staining confirmed the presence of luminal cells with high CD49f expression in hyperplastic lesions implicating these cells as undergoing luminal to basal phenotypic changes during aging. Whole transcriptome analysis showed elevated immune and inflammatory responses in old basal stem cells and stromal cells, which may be the underlying cause for increased CD49fhi basal-like cells in aged glands. PMID:27852980

  16. Aging is associated with an expansion of CD49fhi mammary stem cells that show a decline in function and increased transformation potential.

    PubMed

    Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Zhang, Fuchuang; Gu, Xiang; Wu, Anqi; Wang, Danhan; Chen, Yuanhong; Bandyopadhyay, Abhik; Yeh, I-Tien; Daniel, Benjamin J; Chen, Yidong; Zou, Yi; Rebel, Vivienne L; Walter, Christi A; Lu, Jianxin; Huang, Changjiang; Sun, Lu-Zhe

    2016-11-15

    Breast cancer incidence increases during aging, yet the mechanism of age-associated mammary tumorigenesis is unclear. Mammary stem cells are believed to play an important role in breast tumorigenesis, but how their function changes with age is unknown. We compared mammary epithelial cells isolated from young and old mammary glands of different cohorts of C57BL6/J and BALB/c mice, and our findings revealed that old mammary glands were characterized by increased basal cell pool comprised of mostly CD49f hi cells, altered luminal-to-basal cell ratio, and irregular ductal morphology. More interestingly, basal stem cells in old mice were increased in frequency, but showed a functional decline of differentiation and increased neoplastic transformation potential. Gene signature enrichment analysis revealed a significant enrichment of a luminal cell gene expression signature in the basal stem cell-enriched population from old mice, suggesting some luminal cells were expressing basal markers. Immunofluorescence staining confirmed the presence of luminal cells with high CD49f expression in hyperplastic lesions implicating these cells as undergoing luminal to basal phenotypic changes during aging. Whole transcriptome analysis showed elevated immune and inflammatory responses in old basal stem cells and stromal cells, which may be the underlying cause for increased CD49f hi basal-like cells in aged glands.

  17. FT-IR and FT-Raman spectra of cimetidine and its metallocomplexes

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Proniewicz, L. M.

    1999-11-01

    We present vibrational spectra of three stable, well-reproducible, polymorphic forms of cimetidine ( cim), a drug which is a powerful histamine H 2-receptor antagonist used in the treatment of peptic ulcer and the Zollinger-Ellison syndrome. Assignments of Raman and IR bands are made using semiempirical methods: MNDO, AM1 and PM3. We also describe the synthesis of Me( cim) 2(ClO 4) 2, where Me=Cu(II), Cd(II), Co(II) and Ni(II), and present their vibrational data. We show that the obtained complexes are isostructural, however a metal ion that occupies a center of octahedral unit introduces some distortions that can be seen in the spectra. We also make tentative assignment of metal-ligand stretching modes observed in low frequency range.

  18. FTS Spectra from the Mayall 4-m Telescope, 1975-1995

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Hinkle, Kenneth H.; Young, Michael; Dennis, Harold; Gopu, Arvind; Henschel, Robert; Hayashi, Soichi

    2017-01-01

    The complete archive of spectra obtained with the Fourier Transform Spectrometers in use at the Mayall 4m telescope at the Kitt Peak National Observatory from 1975 through 1995 is now available to the community. The archive is hosted at Indiana University Bloomington, and includes nearly 10,000 individual spectra of more than 800 different astronomical sources. The FTS produced spectra in the wavelength regime from roughly 0.9 to 5 microns (11,000 to 2000 cm-1), mostly at relatively high spectral resolution. The archive can be searched to identify specific spectra of interest, and the spectra can be viewed online and downloaded in FITS format for analysis. Once a spectrum of interest has been identified, all spectra taken on the same date are provided to allow users to identify appropriate hot star spectra for telluric line division.The archive can be accessed on the web at https://sparc.sca.iu.edu.

  19. Efficient Computation of Difference Vibrational Spectra in Isothermal-Isobaric Ensemble.

    PubMed

    Joutsuka, Tatsuya; Morita, Akihiro

    2016-11-03

    Difference spectroscopy between two close systems is widely used to augment its selectivity to the different parts of the observed system, though the molecular dynamics calculation of tiny difference spectra would be computationally extraordinary demanding by subtraction of two spectra. Therefore, we have proposed an efficient computational algorithm of difference spectra without resorting to the subtraction. The present paper reports our extension of the theoretical method in the isothermal-isobaric (NPT) ensemble. The present theory expands our applications of analysis including pressure dependence of the spectra. We verified that the present theory yields accurate difference spectra in the NPT condition as well, with remarkable computational efficiency over the straightforward subtraction by several orders of magnitude. This method is further applied to vibrational spectra of liquid water with varying pressure and succeeded in reproducing tiny difference spectra by pressure change. The anomalous pressure dependence is elucidated in relation to other properties of liquid water.

  20. Background noise spectra of global seismic stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefitsmore » those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.« less

  1. Retrieval of complex χ(2) parts for quantitative analysis of sum-frequency generation intensity spectra

    PubMed Central

    Hofmann, Matthias J.; Koelsch, Patrick

    2015-01-01

    Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility χ(2)2. A conventional SFG intensity measurement does not grant access to the complex parts of χ(2) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ(2) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ(2) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods. PMID:26450297

  2. Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra

    PubMed Central

    Shewaramani, Sonal; Finn, Thomas J.; Kassen, Rees; Rainey, Paul B.

    2017-01-01

    Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. PMID:28103245

  3. Theoretical studies on absorption, emission, and resonance Raman spectra of Coumarin 343 isomers

    NASA Astrophysics Data System (ADS)

    Wu, Wenpeng; Cao, Zexing; Zhao, Yi

    2012-03-01

    The vibrationally resolved spectral method and quantum chemical calculations are employed to reveal the structural and spectral properties of Coumarin 343 (C343), an ideal candidate for organic dye photosensitizers, in vacuum and solution. The results manifest that the ground-state energies are dominantly determined by different placements of hydrogen atom in carboxylic group of C343 conformations. Compared to those in vacuum, the electronic absorption spectra in methanol solvent show a hyperchromic property together with the redshift and blueshift for the neutral C343 isomers and their deprotonated anions, respectively. From the absorption, emission, and resonance Raman spectra, it is found that the maximal absorption and emission come from low-frequency modes whereas the high-frequency modes have high Raman activities. The detailed spectra are further analyzed for the identification of the conformers and understanding the potential charge transfer mechanism in their photovoltaic applications.

  4. Ages of Massive Galaxies at 0.5 > z > 2.0 from 3D-HST Rest-frame Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Franx, Marijn; van Dokkum, Pieter; Whitaker, Katherine E.; Skelton, Rosalind E.; Brammer, Gabriel; Nelson, Erica; Maseda, Michael; Momcheva, Ivelina; Kriek, Mariska; Labbé, Ivo; Lundgren, Britt; Rix, Hans-Walter

    2016-05-01

    We present low-resolution near-infrared stacked spectra from the 3D-HST survey up to z = 2.0 and fit them with commonly used stellar population synthesis models: BC03, FSPS10 (Flexible Stellar Population Synthesis), and FSPS-C3K. The accuracy of the grism redshifts allows the unambiguous detection of many emission and absorption features and thus a first systematic exploration of the rest-frame optical spectra of galaxies up to z = 2. We select massive galaxies ({log}({M}*/{M}⊙ )\\gt 10.8), we divide them into quiescent and star-forming via a rest-frame color-color technique, and we median-stack the samples in three redshift bins between z = 0.5 and z = 2.0. We find that stellar population models fit the observations well at wavelengths below the 6500 Å rest frame, but show systematic residuals at redder wavelengths. The FSPS-C3K model generally provides the best fits (evaluated with χ 2 red statistics) for quiescent galaxies, while BC03 performs the best for star-forming galaxies. The stellar ages of quiescent galaxies implied by the models, assuming solar metallicity, vary from 4 Gyr at z ˜ 0.75 to 1.5 Gyr at z ˜ 1.75, with an uncertainty of a factor of two caused by the unknown metallicity. On average, the stellar ages are half the age of the universe at these redshifts. We show that the inferred evolution of ages of quiescent galaxies is in agreement with fundamental plane measurements, assuming an 8 Gyr age for local galaxies. For star-forming galaxies, the inferred ages depend strongly on the stellar population model and the shape of the assumed star-formation history.

  5. Reflectance spectra of Fe(2+)-Mg(2+) disordered pyroxenes: Implications to remote-sensed spectra of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Besancon, James R.; Pratt, Stephen F.

    1991-01-01

    The reflectance spectra of Fe(2+)-Mg(2+) disordered orthopyroxenes are relevant to surfaces of terrestrial planets onto which basaltic magma has been extruded. If cooling rates of basalt lava flows were fast, equilibrium iron intersite partitioning may not have been achieved so that abnormal enrichments of Fe(2+) ions in M1 sites would occur. The two intense pyroxene Fe(2+) site CF bands in the 1 micron and 2 micron regions would continue to dominate the the reflectance spectra so that the pyroxene composition and structure type would be readily identified in telescopic spectral profiles. However, abnormal intensification of the Fe(2+)/M1 site CF band at 1.20 microns could lead to the false identification of olivine in remote sensed spectra because in pyroxene-olivine mixtures the inflection around 1.20 microns is the only spectral feature for detecting the presence of olivine. The identification of iron-bearing plagioclase feldspars, too, would be obscured by the pyroxene Fe(2+)/M1 site CF band at 1.20 microns. Such interference would be a major problem if in situ reflectance spectra could be measured on the surface of Venus where ambient temperatures are as high as 475 C. Disordering of Fe(2+) and Mg(2+) ions comparable to that in the orthopyroxenes used in this spectral chemical study might be expected in low Ca pyroxenes occurring on the Venusian surface. Researchers conclude that Fe(2+)/M1 site spectral features need to be carefully assessed in remote-sensed spectra before deductions are made about the presence of olivine on planetary surfaces.

  6. Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV).

    PubMed

    Genkawa, Takuma; Shinzawa, Hideyuki; Kato, Hideaki; Ishikawa, Daitaro; Murayama, Kodai; Komiyama, Makoto; Ozaki, Yukihiro

    2015-12-01

    2.29%. Additional evaluation of SRSNV was carried out using diffuse reflection NIR spectra of marzipan and corn samples, and PLSR models based on SRSNV spectra showed good prediction results. These evaluation results indicate that SRSNV is effective in baseline correction of diffuse reflection NIR spectra and provides regression models with good prediction accuracy.

  7. The anharmonic quartic force field infrared spectra of five non-linear polycyclic aromatic hydrocarbons: Benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene

    NASA Astrophysics Data System (ADS)

    Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.

    2016-08-01

    The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.

  8. The anharmonic quartic force field infrared spectra of five non-linear polycyclic aromatic hydrocarbons: Benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene.

    PubMed

    Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M

    2016-08-28

    The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.

  9. BET, thermal degradation, and FTIR spectras of triazine polyamine polymers.

    PubMed

    Can, Mustafa

    2017-04-01

    Here we show effect of the polyamine polymer chain length to BET isotherms. According to IUPAC classification [1], all three polymers are fitting type 1 physical adsorption isotherm with H3 hysteresis (except for EDA having H2 hysteresis). Moreover, TG and TGA analysis of polymers triazine-ethylenediamine (EDA) and triazine-triethylenetetramine (TETA) are provided. Due to the similarities of the structure, main decomposition temperatures are close to each other (between 593 K and 873 K). In order to understand change of FTIR spectra with adsorption and stripping Au(III), fresh, Au(III) adsorbed and recycled spectras of polymers measured. For further discussions about the effect of chain length to adsorption of Au(III) onto triazine polyamine polymer particles "Au (III) Uptake by Triazine Polyamine Polymers: Mechanism, Kinetic and Equilibrium Studies" Can et al. [2] (article in press).

  10. Effects of target fragmentation on evaluation of LET spectra from space radiations: implications for space radiation protection studies

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Badhwar, G. D.

    1996-01-01

    We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (> 100 keV/micrometer) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (> 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.

  11. On signatures of clouds in exoplanetary transit spectra

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku

    2017-11-01

    Transmission spectra of exoplanetary atmospheres have been used to infer the presence of clouds/hazes. Such inferences are typically based on spectral slopes in the optical deviant from gaseous Rayleigh scattering or low-amplitude spectral features in the infrared. We investigate three observable metrics that could allow constraints on cloud properties from transmission spectra, namely the optical slope, the uniformity of this slope and condensate features in the infrared. We derive these metrics using model transmission spectra considering Mie extinction from a wide range of condensate species, particle sizes and scaleheights. First, we investigate possible degeneracies among the cloud properties for an observed slope. We find, for example, that spectra with very steep optical slopes suggest sulphide clouds (e.g. MnS, ZnS, Na2S) in the atmospheres. Secondly, (non)uniformities in optical slopes provide additional constraints on cloud properties, e.g. MnS, ZnS, TiO2 and Fe2O3 have significantly non-uniform slopes. Thirdly, infrared spectra provide an additional powerful probe into cloud properties, with SiO2, Fe2O3, Mg2SiO4 and MgSiO3 bearing strong infrared features observable with James Webb Space Telescope. We investigate observed spectra of eight hot Jupiters and discuss their implications. In particular, no single or composite condensate species considered here conforms to the steep and non-uniform optical slope observed for HD 189733b. Our work highlights the importance of the three above metrics to investigate cloud properties in exoplanetary atmospheres using high-precision transmission spectra and detailed cloud models. We make our Mie scattering data for condensates publicly available to the community.

  12. Automatic frequency and phase alignment of in vivo J-difference-edited MR spectra by frequency domain correlation.

    PubMed

    Wiegers, Evita C; Philips, Bart W J; Heerschap, Arend; van der Graaf, Marinette

    2017-12-01

    J-difference editing is often used to select resonances of compounds with coupled spins in 1 H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.

  13. The Role of Exotic Molecules In Model Exoplanet Spectra

    NASA Astrophysics Data System (ADS)

    Chang, Caroline; Iyer, Nandini; Morley, Caroline; Fortney, Jonathan J.

    2016-01-01

    We present the absorption signatures of 21 elemental and molecular species normally found in observed planetary spectra. Fifty model exoplanet spectra that span temperatures from 400 to 2000 K, gravities from 100 to 1000 m/s2, and are 0.3-3 times solar metallicity composition are obtained by converting the pressure-temperature profiles through publicly available radiative transfer code (DISORT), assuming chemical equilibrium conditions. We explore the dependency of an individual specie's effect on a spectrum in the near-IR by removing its equilibrium abundance or enriching the specie's abundance. While testing for the individual effect of each species, it is found that the temperature is a key property for identifying absorption features in this diverse set of model spectra. Strong and abundant absorbers such as CO and CH4 are not as prevalent in high temperature models over 1200 K as H2O at 0.9-2.2 and 2.3-4.1 microns. In addition, we investigate the vertical mixing and disequilibrium of CO and CH4 and find features of these carbon species at 3.3-4.2 and 4.3-5.0 microns across all models. Trace species such as NH3 and Na exhibit prevalent signatures in cold planets (~400-800 K) at the 1-1.1, 1.3-1.5, and 1.6-1.8 micron ranges. A consistent PH3 feature is identified for 400 K spectra at 4-4.8 microns. In our hot model spectra with temperatures greater than 1400 K, TiO shows more significant absorption features than VO, suggesting that these molecules potentially play separate roles in determining thermal inversions. Hydrocarbons such as C2H2 with abundances higher than 10-4 exhibit prevalent absorption features at ~4.2-4.5 microns, indicating that photochemical reactions may be needed to further enrich these abundances. A table of these signatures at their respective temperatures, gravities, and metallicities is presented here. This research presented here was conducted by high-school students under the auspices of the University of California Santa Cruz's Science

  14. Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales

    NASA Technical Reports Server (NTRS)

    Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.

  15. Effect of Temperature on Jet Velocity Spectra

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  16. Symmetry adapted cluster-configuration interaction calculation of the photoelectron spectra of famous biological active steroids

    NASA Astrophysics Data System (ADS)

    Abyar, Fatemeh; Farrokhpour, Hossein

    2014-11-01

    The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.

  17. Kinetic damping in the spectra of the spherical impedance probe

    NASA Astrophysics Data System (ADS)

    Oberrath, J.

    2018-04-01

    The impedance probe is a measurement device to measure plasma parameters, such as electron density. It consists of one electrode connected to a network analyzer via a coaxial cable and is immersed into a plasma. A bias potential superposed with an alternating potential is applied to the electrode and the response of the plasma is measured. Its dynamical interaction with the plasma in an electrostatic, kinetic description can be modeled in an abstract notation based on functional analytic methods. These methods provide the opportunity to derive a general solution, which is given as the response function of the probe–plasma system. It is defined by the matrix elements of the resolvent of an appropriate dynamical operator. Based on the general solution, a residual damping for vanishing pressure can be predicted and can only be explained by kinetic effects. In this paper, an explicit response function of the spherical impedance probe is derived. Therefore, the resolvent is determined by its algebraic representation based on an expansion in orthogonal basis functions. This allows one to compute an approximated response function and its corresponding spectra. These spectra show additional damping due to kinetic effects and are in good agreement with former kinetically determined spectra.

  18. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    PubMed

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  19. Chandra Observations of Associates of η Carinae. II. Spectra

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; Schlegel, Eric M.; Waldron, Wayne L.; Seward, Frederick D.; Krauss, Miriam I.; Nichols, Joy; Wolk, Scott J.

    2004-09-01

    The low-resolution X-ray spectra around η Car covering Trumpler 16 and part of Trumpler 14 have been extracted from a Chandra CCD ACIS image. Various analysis techniques have been applied to the spectra based on their count rates. The spectra with the greatest number of counts (HD 93162 = WR 25, HD 93129 AB, and HD 93250) have been fitted with a wind model, which uses several components with different temperatures and depths in the wind. Weaker spectra have been fitted with Raymond-Smith models. The weakest spectra are simply intercompared with strong spectra. In general, fits produce reasonable parameters based on knowledge of the extinction from optical studies and on the range of temperatures for high- and low-mass stars. Direct comparisons of spectra confirm the consistency of the fitting results and also hardness ratios for cases of unusually large extinction in the clusters. The spectra of the low-mass stars are harder than the more massive stars. Stars in the sequence evolving from the main sequence (HD 93250) through the system containing the O supergiant (HD 93129 AB) and then through the Wolf-Rayet stage (HD 93162), presumably ending in the extreme example of η Car, share the property of being unusually luminous and hard in X-rays. For these X-ray-luminous stars, their high mass and evolutionary status (from the very last stages of the main sequence and beyond) is the common feature. Their binary status is mixed, and their magnetic status is still uncertain. Based on observations made with the Chandra X-Ray Observatory.

  20. Clustering analysis of line indices for LAMOST spectra with AstroStat

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Xin; Sun, Wei-Min; Yan, Qi

    2018-06-01

    The application of data mining in astronomical surveys, such as the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey, provides an effective approach to automatically analyze a large amount of complex survey data. Unsupervised clustering could help astronomers find the associations and outliers in a big data set. In this paper, we employ the k-means method to perform clustering for the line index of LAMOST spectra with the powerful software AstroStat. Implementing the line index approach for analyzing astronomical spectra is an effective way to extract spectral features for low resolution spectra, which can represent the main spectral characteristics of stars. A total of 144 340 line indices for A type stars is analyzed through calculating their intra and inter distances between pairs of stars. For intra distance, we use the definition of Mahalanobis distance to explore the degree of clustering for each class, while for outlier detection, we define a local outlier factor for each spectrum. AstroStat furnishes a set of visualization tools for illustrating the analysis results. Checking the spectra detected as outliers, we find that most of them are problematic data and only a few correspond to rare astronomical objects. We show two examples of these outliers, a spectrum with abnormal continuumand a spectrum with emission lines. Our work demonstrates that line index clustering is a good method for examining data quality and identifying rare objects.

  1. A New Characterization of the Compton Process in the ULX Spectra

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Nakazawa, K.; Makishima, K.

    2015-07-01

    Ultra Luminous X-ray sources (ULXs) are unusually luminous point sources located at arms of spiral galaxies, and are candidates for the intermediate mass black holes (Makishima+2000). Their spectra make transition betweens power-law shapes (PL state) and convex shapes (disk-like state). The latter state can be explained with either the multi-color disk (MCD)+thermal Comptonization (THC) model or a Slim disk model (Watari+2000). We adopt the former modeling, because it generally gives physically more reasonable parameters (Miyawaki+2009). To characterize the ULXs spectra with a unified way, we applied the MCD+THC model to several datasets of ULXs obtained by Suzaku, XMM-Newton, and Nu-Star. The model well explains all the spectra, in terms of cool disk (T_{in}˜0.2 keV), and a cool thick (T_{e}˜2 keV, τ ˜10) corona. The derived parameters can be characterized by two new parameters. One is Q≡ T_{e}/T_{in} which describes balance between the Compton cooling and gravitational heating of the corona, while the other is f≡ L_{raw}/L_{tot}, namely, the directly-visible (without Comptonization) MCD luminosity. Then, the PL state spectra have been found to show Q˜10 and f˜0.7, while those of the disk-like state Q˜ 3 and f≤0.01. Thus, the two states are clearly separated in terms of Q and f.

  2. Solvent effect on the vibrational spectra of Carvedilol.

    PubMed

    Billes, Ferenc; Pataki, Hajnalka; Unsalan, Ozan; Mikosch, Hans; Vajna, Balázs; Marosi, György

    2012-09-01

    Carvedilol (CRV) is an important medicament for heart arrhythmia. The aim of this work was the interpretation of its vibrational spectra with consideration on the solvent effect. Infrared and Raman spectra were recorded in solid state as well in solution. The experimental spectra were evaluated using DFT quantum chemical calculations computing the optimized structure, atomic net charges, vibrational frequencies and force constants. The same calculations were done for the molecule in DMSO and aqueous solutions applying the PCM method. The calculated force constants were scaled to the experimentally observed solid state frequencies. The characters of the vibrational modes were determined by their potential energy distributions. Solvent effects on the molecular properties were interpreted. Based on these results vibrational spectra were simulated. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Iron lines in model disk spectra of Galactic black hole binaries

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Madej, J.; Konorski, P.; SaḐowski, A.

    2011-03-01

    Context. We present angle-dependent, broad-band intensity spectra from accretion disks around black holes of 10 M⊙. In our computations disks are assumed to be slim, which means that the radial advection is taken into account while computing the effective temperature of the disk. Aims: We attempt to reconstruct continuum and line spectra of X-ray binaries in soft state, i.e. dominated by the disk component of multitemperature shape. We follow how the iron-line complex depends on the external irradiation, an accretion rate, and a black hole spin. Methods: Full radiative transfer is solved including effects of Compton scattering, free-free and all important bound-free transitions of 10 main elements. We assume the LTE equation of state. Moreover, we include here the fundamental series of iron lines from helium-like and hydrogen-like ions, and fluorescent Kα and Kβ lines from low ionized iron. We consider two cases: nonrotating black hole, and black hole rotating with almost maximum spin a = 0.98, and obtain spectra for five accretion disks from hard X-rays to the infrared. Results: In nonirradiated disks, resonance lines from He-like and H-like iron appear mostly in absorption. Such disk spectra exhibit limb darkening in the whole energy range. External irradiation causes that iron resonance lines appear in emission. Furthermore, depending on disk effective temperature, fluorescent iron Kα and Kβ lines are present in disk emitting spectra. All models with irradiation exhibit limb brightening in their X-ray reflected continua. Conclusions: We show that the disk around stellar black hole itself is hot enough to produce strong-absorption resonance lines of iron. Emission lines can only be observed if heating by external X-rays dominates thermal processess in a hot disk atmosphere. Irradiated disks are usually brighter in X-ray continuum when seen edge on, and fainter when seen face on.

  4. First-principles calculations of phonons and Raman and infrared spectra in Cd-IV-N2 compounds

    NASA Astrophysics Data System (ADS)

    Lyu, Sai; Lambrecht, Walter R. L.

    2018-05-01

    A first-principles study of the phonons at the zone center in Cd-IV-N2 compounds is presented with IV = Si, Ge, Sn. The calculations are performed for the most likely Pbn21 crystal structure, after showing that it is indeed lower in total energy compared to the closely related Pmc21 structure. The normal mode frequencies are calculated using density functional perturbation theory and symmetry labeled. The longitudinal optical-transverse optical splittings are determined using the Born effective charges which are also reported. These are used to simulate polarized Raman spectra for different scattering configurations as well as the infrared absorption and reflection spectra. The mode frequencies are found to decrease from Si to Ge to Sn as group-IV cation. The spectra show a wide variety of number of prominent peaks and relative intensities in spite of the great similarities of these three materials. Phonon densities of states and their analysis in atom by atom contributions are also reported.

  5. Analysis of near infrared spectra for age-grading of wild populations of Anopheles gambiae.

    PubMed

    Krajacich, Benjamin J; Meyers, Jacob I; Alout, Haoues; Dabiré, Roch K; Dowell, Floyd E; Foy, Brian D

    2017-11-07

    Understanding the age-structure of mosquito populations, especially malaria vectors such as Anopheles gambiae, is important for assessing the risk of infectious mosquitoes, and how vector control interventions may impact this risk. The use of near-infrared spectroscopy (NIRS) for age-grading has been demonstrated previously on laboratory and semi-field mosquitoes, but to date has not been utilized on wild-caught mosquitoes whose age is externally validated via parity status or parasite infection stage. In this study, we developed regression and classification models using NIRS on datasets of wild An. gambiae (s.l.) reared from larvae collected from the field in Burkina Faso, and two laboratory strains. We compared the accuracy of these models for predicting the ages of wild-caught mosquitoes that had been scored for their parity status as well as for positivity for Plasmodium sporozoites. Regression models utilizing variable selection increased predictive accuracy over the more common full-spectrum partial least squares (PLS) approach for cross-validation of the datasets, validation, and independent test sets. Models produced from datasets that included the greatest range of mosquito samples (i.e. different sampling locations and times) had the highest predictive accuracy on independent testing sets, though overall accuracy on these samples was low. For classification, we found that intramodel accuracy ranged between 73.5-97.0% for grouping of mosquitoes into "early" and "late" age classes, with the highest prediction accuracy found in laboratory colonized mosquitoes. However, this accuracy was decreased on test sets, with the highest classification of an independent set of wild-caught larvae reared to set ages being 69.6%. Variation in NIRS data, likely from dietary, genetic, and other factors limits the accuracy of this technique with wild-caught mosquitoes. Alternative algorithms may help improve prediction accuracy, but care should be taken to either maximize

  6. Nuclear Neutrino Spectra in Late Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Misch, G. Wendell; Sun, Yang; Fuller, George

    2018-05-01

    Neutrinos are the principle carriers of energy in massive stars, beginning from core carbon burning and continuing through core collapse and after the core bounce. In fact, it may be possible to detect neutrinos from nearby pre-supernova stars. Therefore, it is of great interest to understand the neutrino energy spectra from these stars. Leading up to core collapse, beginning around core silicon burning, nuclei become dominant producers of neutrinos, particularly at high neutrino energy, so a systematic study of nuclear neutrino spectra is desirable. We have done such a study, and we present our sd-shell model calculations of nuclear neutrino energy spectra for nuclei in the mass number range A = 21 - 35. Our study includes neutrinos produced by charged lepton capture, charged lepton emission, and neutral current nuclear deexcitation. Previous authors have tabulated the rates of charged current nuclear weak interactions in astrophysical conditions, but the present work expands on this not only by providing neutrino energy spectra, but also by including the heretofore untabulated neutral current de-excitation neutrino pairs.

  7. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    NASA Astrophysics Data System (ADS)

    Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.

    2016-08-01

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  8. Cosmic ray proton spectra at low rigidities

    NASA Technical Reports Server (NTRS)

    Seo, E. S.; Ormes, J. F.; Streitmatter, R. E.; Lloyd-Evans, J.; Jones, W. V.

    1990-01-01

    The cosmic ray proton rigidity spectra have been investigated with data collected in the Low Energy Antiproton (LEAP) balloon flight experiment flown from Prince Albert, Canada in 1987. The LEAP apparatus was designed to measure antiprotons using a superconducting magnet spectrometer with ancillary scintillator, time-of-flight, and liquid Cherenkov detectors. After reaching float altitude the balloon drifted south and west to higher geomagnetic cutoffs. The effect of the changing geomagnetic cutoff on the observed spectra was observed during analysis of the proton data along the balloon trajectory. This is the first measurement of the primary and splash albedo spectra over a wide rigidity range (few hundred MV to about 100 GV) with a single instrument.

  9. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  10. Raman spectroscopy combined with principle component analysis to investigate the aging of high energy materials

    NASA Astrophysics Data System (ADS)

    Farhadian, A. H.; Kavosh Tehrani, M.; Keshavarz, M. H.; Darbani, S. M. R.

    2017-07-01

    This paper attempts to investigate the possibility of using Raman spectroscopy for aged solid composite propellants. Propellant samples was prepared and aged by an accelerated mechanism in three different temperatures (50, 60 and 70 °C) and times. In the Raman spectrum of the unaged sample, vibrational modes of all structural substances consisting of hydroxyl-terminated polybutadiene as a binder, ammonium perchlorate (AP) as an oxidizer and aluminum as a metal fuel were observed. Comparison of the spectra of the aged samples shows the changes of several peaks with increasing aging times. The important changes are the elimination of NH3+ mode and intensity reduction of CH2 modes, which can be attributed to oxidative cross linking phenomena due to AP decomposition in the chemical structure. Intensity ratios of C-C, C=C and CH2 have been changed with aging and cross linking so that C=C bonds are converted into C-C bonds, as well as the intensity of CH2 modes, was decreased. A principle component analysis method is implemented in order to use all ranges of the spectrum and better discrimination of the samples, which show good results.

  11. 2D fluorescence spectra measurement of six kinds of bioagents simulants by short range Lidar

    NASA Astrophysics Data System (ADS)

    Sanpedro, Man

    2018-02-01

    Pantoea agglomerans (Pan), Staphylococcus aureus (Sta), Bacillus globigii (BG) and Escherichia coli (EH), these four kinds of bioagents simulants of were cultured and then their growth curves were measured, the generation time was 0.99h, 0.835h, 1.07h and 1.909h, respectively. A small short range fluorescence lidar working at wavelengths of 266nm and 355nm was designed and used to measure the two-dimensional fluorescence spectra of bioagents simulants in the amino acid segment and NADH segment, respectively. In a controllable fluorescence measurement chamber, the two-dimensional fluorescence spectra of vegetative liquid bacterial aerosols as well as BSA and OVA, two protein toxinic simulants were measured with a resolution of 4nm. The two-dimensional fluorescence spectral shape of Pan, Sta, EH and BG, BSA and OVA were consistent with the standard fluorescent component tryptophan in the amino acid band with FWHM of 60nm, but the central wavelength of the fluorescence spectra of these simulants blue/purple shifted obviously as affected by the external biochemical environment, concentration and ratio of different bacterial internal fluorophores, so the energy level between the excited state and the ground state of the fluorescence molecule increased. Differently, weak NADH fluorescence spectra with 100nm FWHM inside the four vegetative bacteria aerosols were detected, but Rayleigh scattering, Raman scattering contribution of water, nitrogen in the fluorescence spectra could not be effectively extracted. The second - order derivative fluorescence spectra of four simulants showed that the high - order processing and recognition of the fluorescence spectra was feasible.

  12. AVIRIS spectra of California wetlands

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1988-01-01

    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.

  13. Analysis of spectra of V471 Tau and HD 115404

    NASA Astrophysics Data System (ADS)

    Shimansky, V. V.; Bikmaev, I. F.; Shimanskaya, N. N.

    2011-10-01

    We analyze the chemical composition of the atmospheres of a single K-type star HD 115404 and the secondary component of the V471 Tau variable. We use the technique of modeling of synthetic spectra to analyze the high-resolution spectra of these stars, taken with the RTT 150 Russian-Turkish telescope and find the abundances of 23 and 17 elements in the atmospheres of HD 115404 and V471 Tau, respectively. We demonstrate the lack of composition anomalies in the HD 115404 and show it to be consistent with the published data, inferred from equivalent widths of spectral lines. We find the abundances of 15 elements from Na to Ba to be consistent with the metallicity of the atmosphere of V471 Tau ([Fe/H] = -0.22 ± 0.12dex), which differs significantly from the average metallicity of the Hyades cluster. We show the existence of strong carbon and oxygen overabundances (by more than 1dex) due to the enrichment of the secondary by the nucleosynthesis products during the common-envelope stage of the system. On the whole, we demonstrate that V471 Tau and the other precataclysmic variables share similar composition anomalies.

  14. Primary Cosmic-Ray Spectra in the Knee Region

    NASA Astrophysics Data System (ADS)

    Ter-Antonyan, Samvel V.; Biermann, P. L.

    2003-07-01

    Using EAS inverse approach and KASCADE EAS data the primary energy spectra for different primary nuclei at energies 1015 - 1017 eV are obtained in the framework of multi-comp onent model of primary cosmic ray origin and QGSJET and SIBYLL interaction models. The rigidity-dep endent behavior of spectra is the same for two interaction models. The extrap olation of the obtained primary spectra in a 1017 - 1018 eV energy range displays a presence of the extragalactic component of primary cosmic rays.

  15. Multifractal spectra of laser Doppler flowmetry signals in healthy and sleep apnea syndrome subjects

    NASA Astrophysics Data System (ADS)

    Buard, Benjamin; Trzepizur, Wojciech; Mahe, Guillaume; Chapeau-Blondeau, François; Rousseau, David; Gagnadoux, Frédéric; Abraham, Pierre; Humeau, Anne

    2009-07-01

    Laser Doppler flowmetry (LDF) signals give a peripheral view of the cardiovascular system. To better understand the possible modifications brought by sleep apnea syndrome (SAS) in LDF signals, we herein propose to analyze the complexity of such signals in obstructive SAS subjects, and to compare the results with those obtained in healthy subjects. SAS is a pathology that leads to a drop in the parasympathetic tone associated with an increase in the sympathetic tone in awakens SAS patients. Nine men with obstructive SAS and nine healthy men participated awaken in our study and LDF signals were recorded in the forearm. In our work, complexity of LDF signals is analyzed through the computation and analysis of their multifractal spectra. The multifractal spectra are estimated by first estimating the discrete partition function of the signals, then by determining their Renyi exponents with a linear regression, and finally by computing their Legendre transform. The results show that, at rest, obstructive SAS has no or little impact on the multifractal spectra of LDF signals recorded in the forearm. This study shows that the physiological modifications brought by obstructive SAS do not modify the complexity of LDF signals when recorded in the forearm.

  16. Effect of exact Coulomb-exchange calculations on band-head spectra of odd-proton nuclei

    NASA Astrophysics Data System (ADS)

    Koh, Meng-Hock; Nurhafiza, Mohamad Nor

    2017-10-01

    Previous calculations of band-head energy spectra of odd-mass heavy nuclei in the Hartree-Fock-plus-Bardeen-Cooper-Schrieffer (HF-BCS) framework showed that the agreement with data is better for odd-neutron as compared to odd-proton nuclei. The reason for a poorer agreement with data for the latter have been ascribed to the possible usage of the Slater approximation in calculating the Coulomb-exchange term. In this work, we report the effect of exact Coulomb-exchange calculations on band-head energy spectra of two odd-proton nuclei (namely 237Np and 241Am) as compared to the results obtained using the Slater approximation. We performed self-consistent blocking calculations while taking the breaking of time-reversal symmetry at the mean-field level into account due to the unpaired nucleon. The SkM* and SIII parametrizations of the Skyrme interaction have been employed to approximate the effective nucleon-nucleon interaction while a seniority force is used for the pairing channel. Contrary to what was expected, our preliminary results show no improvement on the band-head spectra as compared to data when the Coulomb-exchange term is calculated exactly.

  17. Acceleration spectra for subduction zone earthquakes

    USGS Publications Warehouse

    Boatwright, J.; Choy, G.L.

    1989-01-01

    We estimate the source spectra of shallow earthquakes from digital recordings of teleseismic P wave groups, that is, P+pP+sP, by making frequency dependent corrections for the attenuation and for the interference of the free surface. The correction for the interference of the free surface assumes that the earthquake radiates energy from a range of depths. We apply this spectral analysis to a set of 12 subduction zone earthquakes which range in size from Ms = 6.2 to 8.1, obtaining corrected P wave acceleration spectra on the frequency band from 0.01 to 2.0 Hz. Seismic moment estimates from surface waves and normal modes are used to extend these P wave spectra to the frequency band from 0.001 to 0.01 Hz. The acceleration spectra of large subduction zone earthquakes, that is, earthquakes whose seismic moments are greater than 1027 dyn cm, exhibit intermediate slopes where u(w)???w5/4 for frequencies from 0.005 to 0.05 Hz. For these earthquakes, spectral shape appears to be a discontinuous function of seismic moment. Using reasonable assumptions for the phase characteristics, we transform the spectral shape observed for large earthquakes into the time domain to fit Ekstrom's (1987) moment rate functions for the Ms=8.1 Michoacan earthquake of September 19, 1985, and the Ms=7.6 Michoacan aftershock of September 21, 1985. -from Authors

  18. VizieR Online Data Catalog: DIB and NaD spectra of 3 nearby stars (Kohl+, 2016)

    NASA Astrophysics Data System (ADS)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-05-01

    The present data collection contains coadded spectra of tau Boo, HD 33608 and alpha CrB. This data was used to obtain the equivalent widths of interstellar features. The spectra show the wavelength regions around the Na D lines and around 5780Å. The latter location corresponds to a wavelength range where a strong diffuse interstellar band (DIB) is found in the spectrum of the early-type supergiant HD 183143. Each single spectrum has been corrected for telluric absorption and the wavelength axis has been shifted to the barycentric reference frame. However, the data has not been corrected for radial velocity of the star. The spectra have been acquired at the 1.2m Tigre telescope located in La Luz, Mexico. The spectral resolution of the HEROS spectrograph is 20000. A detailed description of the spectra is given in the aforementioned paper. (2 data files).

  19. A robust automatic phase correction method for signal dense spectra

    NASA Astrophysics Data System (ADS)

    Bao, Qingjia; Feng, Jiwen; Chen, Li; Chen, Fang; Liu, Zao; Jiang, Bin; Liu, Chaoyang

    2013-09-01

    A robust automatic phase correction method for Nuclear Magnetic Resonance (NMR) spectra is presented. In this work, a new strategy combining ‘coarse tuning' with ‘fine tuning' is introduced to correct various spectra accurately. In the ‘coarse tuning' procedure, a new robust baseline recognition method is proposed for determining the positions of the tail ends of the peaks, and then the preliminary phased spectra are obtained by minimizing the objective function based on the height difference of these tail ends. After the ‘coarse tuning', the peaks in the preliminary corrected spectra can be categorized into three classes: positive, negative, and distorted. Based on the classification result, a new custom negative penalty function used in the step of ‘fine tuning' is constructed to avoid the negative peak points in the spectra excluded in the negative peaks and distorted peaks. Finally, the fine phased spectra can be obtained by minimizing the custom negative penalty function. This method is proven to be very robust for it is tolerant to low signal-to-noise ratio, large baseline distortion and independent of the starting search points of phasing parameters. The experimental results on both 1D metabonomics spectra with over-crowded peaks and 2D spectra demonstrate the high efficiency of this automatic method.

  20. Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.

    PubMed

    Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg

    2017-11-03

    In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.

  1. Summary of LET spectra and dose measurements on ten STS missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A comparison of linear energy transfer (LET) spectra measurements made with plastic nuclear track detectors (PNTD's) from area passive dosimeters (APD's), was made for ten different STS missions under similar shielding. The results show that integral flux, dose rate and equivalent dose rate values follow a general increase with respect to increasing orbital inclination and altitude but that there are large variations from a simple relationship. This is to be expected since it has been shown that Shuttle attitude variations, combined with the anisotropic particle flux at the South Atlantic Anomaly (SAA), can result in differences of a factor of 2 in dose rate inside the Shuttle (Badhwar et al., 1995). Solar cycle and shielding differences also result in variations in radiation dose between STS missions. Spaceflight dosimeters from the STS missions are also being used in the development of a method for increasing LET spectra measurement accuracy by extending LET measurements to particle tracks of ranges 10-80 microns. Refinements in processing and measurement techniques for the flight PNTD's have yielded increased detection efficiencies for the short tracks when LET spectra determined by using the standard and refined methods were intercompared.

  2. Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Wilbert, Stefan; Jessen, Wilko

    This paper introduces a concept for global tilted irradiance (GTI) subordinate standard spectra to supplement the current standard spectra used in solar photovoltaic applications as defined in ASTM G173 and IEC60904. The proposed subordinate standard spectra correspond to atmospheric conditions and tilt angles that depart significantly from the main standard spectrum, and they can be used to more accurately represent various local conditions. For the definition of subordinate standard spectra cases with an elevation 1.5 km above sea level, the question arises whether the air mass should be calculated including a pressure correction or not. This study focuses on themore » impact of air mass used in standard spectra, and it uses data from 29 locations to examine which air mass is most appropriate for GTI and direct normal irradiance (DNI) spectra. Overall, it is found that the pressure-corrected air mass of 1.5 is most appropriate for DNI spectra. For GTI, a non-pressure-corrected air mass of 1.5 was found to be more appropriate.« less

  3. Absorption spectra of PTCDI: A combined UV-Vis and TD-DFT study

    NASA Astrophysics Data System (ADS)

    Oltean, Mircea; Calborean, Adrian; Mile, George; Vidrighin, Mihai; Iosin, Monica; Leopold, Loredana; Maniu, Dana; Leopold, Nicolae; Chiş, Vasile

    2012-11-01

    Absorption spectra of PTCDI (3,4,9,10-perylene-tetracarboxylic-diimide) have been investigated in chloroform, N,N'-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). While no signature of assembled PTCDI molecules is observed in chloroform solution, distinct bands assigned to their aggregation have been identified in DMF and DMSO solutions. PTCDI monomers show very similar absorption patterns in chloroform and DMSO solutions. Experimental data, including the vibronic structure of the absorption spectra were explained based on the Franck-Condon approximation and quantum chemical results obtained at PBE0-DCP/6-31+G(d,p) level of theory. Geometry optimization of the first excited state leads to a nice agreement between the calculated adiabatic transition energies and experimental data.

  4. Variable selection based on clustering analysis for improvement of polyphenols prediction in green tea using synchronous fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi

    2018-04-01

    Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.

  5. Variable selection based on clustering analysis for improvement of polyphenols prediction in green tea using synchronous fluorescence spectra.

    PubMed

    Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi

    2018-03-13

    Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.

  6. Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA)

    National Institute of Standards and Technology Data Gateway

    SRD 100 Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA) (PC database for purchase)   This database has been designed to facilitate quantitative interpretation of Auger-electron and X-ray photoelectron spectra and to improve the accuracy of quantitation in routine analysis. The database contains all physical data needed to perform quantitative interpretation of an electron spectrum for a thin-film specimen of given composition. A simulation module provides an estimate of peak intensities as well as the energy and angular distributions of the emitted electron flux.

  7. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2011-10-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra in the m/z range 12-250 showing Pearson's r values >0.94 for the correlations between the different SOA types after 5 h of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxidized OA (SV-OOA) observed in the ambient aerosol. The atomic O : C ratios were found to be in the range of 0.25-0.55 with no major increase during the first 5 h of aging. On average, the diesel SOA showed the lowest O : C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions based on their carbon number revealed that the SOA source with the highest O : C ratio had the largest fraction of small ions. Fragment ions containing up to 3 carbon atoms accounted for 66%, 68%, 72% and 76% of the organic spectrum of the SOA produced by the diesel car, wood burner, α-pinene and

  8. Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Chandran, Dileep; Baidya, Rio; Monty, Jason P.; Marusic, Ivan

    2017-09-01

    Here we report the measurements of two-dimensional (2-D) spectra of the streamwise velocity ($u$) in a high Reynolds number turbulent boundary layer. A novel experiment employing multiple hot-wire probes was carried out at friction Reynolds numbers ranging from 2400 to 26000. Taylor's frozen turbulence hypothesis is used to convert temporal-spanwise information into a 2-D spatial spectrum which shows the contribution of streamwise ($\\lambda_x$) and spanwise ($\\lambda_y$) length scales to the streamwise variance at a given wall height ($z$). At low Reynolds numbers, the shape of the 2-D spectra at a constant energy level shows $\\lambda_y/z \\sim (\\lambda_x/z)^{1/2}$ behaviour at larger scales, which is in agreement with the existing literature at a matched Reynolds number obtained from direct numerical simulations. However, at high Reynolds numbers, it is observed that the square-root relationship tends towards a linear relationship ($\\lambda_y \\sim \\lambda_x$) as required for self-similarity and predicted by the attached eddy hypothesis.

  9. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R., E-mail: peterson@ucolick.org

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imagingmore » Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.« less

  10. New Fe I Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R.

    2017-04-01

    The Fe I spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson & Kurucz identified Fe I lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe I excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe I. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H-band. The predicted gf values suggest that an additional 3700 Fe I lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe I levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  11. Obtaining high-resolution velocity spectra using weighted semblance

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Saleh; Kahoo, Amin Roshandel; Porsani, Milton J.; Kalateh, Ali Nejati

    2017-02-01

    Velocity analysis employs coherency measurement along a hyperbolic or non-hyperbolic trajectory time window to build velocity spectra. Accuracy and resolution are strictly related to the method of coherency measurements. Semblance, the most common coherence measure, has poor resolution velocity which affects one's ability to distinguish and pick distinct peaks. Increase the resolution of the semblance velocity spectra causes the accuracy of estimated velocity for normal moveout correction and stacking is improved. The low resolution of semblance spectra depends on its low sensitivity to velocity changes. In this paper, we present a new weighted semblance method that ensures high-resolution velocity spectra. To increase the resolution of semblance spectra, we introduce two weighting functions based on the first to second singular values ratio of the time window and the position of the seismic wavelet in the time window to the semblance equation. We test the method on both synthetic and real field data to compare the resolution of weighted and conventional semblance methods. Numerical examples with synthetic and real seismic data indicate that the new proposed weighted semblance method provides higher resolution than conventional semblance and can separate the reflectors which are mixed in the semblance spectrum.

  12. Guide to solar reference spectra and irradiance models

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    The international standard for determining solar irradiances was published by the International Standards Organization (ISO) in May 2007. The document, ISO 21348 Space Environment (natural and artificial) - Process for determining solar irradiances, describes the process for representing solar irradiances. We report on the next progression of standards work, i.e., the development of a guide that identifies solar reference spectra and irradiance models for use in engineering design or scientific research. This document will be produced as an AIAA Guideline and ISO Technical Report. It will describe the content of the reference spectra and models, uncertainties and limitations, technical basis, data bases from which the reference spectra and models are formed, publication references, and sources of computer code for reference spectra and solar irradiance models, including those which provide spectrally-resolved lines as well as solar indices and proxies and which are generally recognized in the solar sciences. The document is intended to assist aircraft and space vehicle designers and developers, heliophysicists, geophysicists, aeronomers, meteorologists, and climatologists in understanding available models, comparing sources of data, and interpreting engineering and scientific results based on different solar reference spectra and irradiance models.

  13. [Investigation of typical melamine urinary stones using infrared spectra].

    PubMed

    Si, Min-Zhen; Li, Qing-Yun; Liu, Ren-Ming; Kang, Yi-Pu; Wang, Kun-Hua; Zhang, Zhi-Guo

    2010-02-01

    A typical melamine kidney stone confirmed by some medicine expert was collected from the first people's hospital of Yunnan. The kidney stone was adequately determined by PE corporation spectra 100(with resolution of 1 cm(-1)). The stone samples for FTIR analysis were prepared using the KBr pellet technique, where 2 mg of the pretreated stone powder was mixed with 200 mg of analytical grade KBr using an agate pestle and mortar. The digital spectrum was then scanned in the mid-infrared region from 4 000 to 400 cm(-1) at room temperature. The appearing bands between 4 000 and 2 000 cm(-1) were 3 487, 3 325, 3 162 and 2 788 cm(-1), those between 1 700 and 1 000 cm(-1) were 1 694, 1 555, 1 383, 1 340, 1 189 and 1 122 cm(-1), and those between 1 000 and 400 cm(-1) were 993, 782, 748, 709, 624, 585, 565 and 476 cm(-1). It was found that the main constituent of calculi showed few comparability with cat kidney stone, which was from cats that died after consuming the contaminated food, and confirmed that these deposits were primarily composed of melamine and cyanuric acid compared to the IR spectra of calculi in literature. It was also found that the main constituent of calculi showed few comparability with popular kidney stone by comparison with the IR spectra of calculi in literature. The spectrum of calculi was 50% respectively similar with melamine and uric acid as compared with the IR spectrum. It was found that the main constituent of calculi was melamine itself and uric acid as compared with the IR spectra of calculi and melamine: (1 : 1), because the spectrum of calculi was 83. 3% similar to melamine and uric acid (1 : 1). The appearing bands of melamine and uric acid (1 : 1) between 4 000 and 2 000 cm(-1) were 3 469, 3 419, 3 333, 3 132, 3 026, 2 827 cm(-1), those between 1 700 and 1 000 cm(-1) were 1 696, 1 656, 1 555, 1 489, 1 439, 1 350, 1 311, 1 198, 1 124 and 1 028 cm(-1), and those between 1 000 and 400 cm(-1) were 993, 878, 814, 784, 745, 708, 619, 577 and

  14. Young adult survivors of childhood acute lymphoblastic leukemia show evidence of chronic inflammation and cellular aging.

    PubMed

    Ariffin, Hany; Azanan, Mohamad Shafiq; Abd Ghafar, Sayyidatul Syahirah; Oh, Lixian; Lau, Kee Hie; Thirunavakarasu, Tharshanadhevasheri; Sedan, Atiqah; Ibrahim, Kamariah; Chan, Adelyne; Chin, Tong Foh; Liew, Fong Fong; Jeyamogan, Shareni; Rosli, Erda Syerena; Baharudin, Rashidah; Yap, Tsiao Yi; Skinner, Roderick; Lum, Su Han; Hainaut, Pierre

    2017-11-01

    Large epidemiologic studies have reported the premature onset of age-related conditions, such as ischemic heart disease and diabetes mellitus, in childhood cancer survivors, decades earlier than in their peers. The authors investigated whether young adult survivors of childhood acute lymphoblastic leukemia (ALL) have a biologic phenotype of cellular ageing and chronic inflammation. Plasma inflammatory cytokines were measured using a cytometric bead array in 87 asymptomatic young adult survivors of childhood ALL (median age, 25 years; age range, 18-35 years) who attended annual follow-up clinic and compared with healthy, age-matched and sex-matched controls. Leukocyte telomere length (LTL) was measured using Southern blot analysis. Survivors had significant elevation of plasma interleukin-2 (IL-2), IL-10, IL-17a, and high-sensitivity C-reactive protein levels (all P < .05). A raised high-sensitivity C-reactive protein level (>0.8 mg/dL) was related to increased odds of having metabolic syndrome (odds ratio, 7.256; 95% confidence interval, 1.501-35.074). Survivors also had significantly shorter LTL compared with controls (median, 9866 vs 10,392 base pairs; P = .021). Compared with published data, LTL in survivors was similar to that in healthy individuals aged 20 years older. Survivors who received cranial irradiation had shorter LTL compared with those who had not (P = .013). Asymptomatic young adult survivors of childhood ALL demonstrate a biologic profile of chronic inflammation and telomere attrition, consistent with an early onset of cellular processes that drive accelerated aging. These processes may explain the premature development of age-related chronic conditions in childhood cancer survivors. Understanding their molecular basis may facilitate targeted interventions to disrupt the accelerated aging process and its long-term impact on overall health. Cancer 2017;123:4207-4214. © 2017 American Cancer Society. © 2017 American Cancer Society.

  15. Comparison of new and existing algorithms for the analysis of 2D radioxenon beta gamma spectra

    DOE PAGES

    Deshmukh, Nikhil; Prinke, Amanda; Miller, Brian; ...

    2017-01-13

    The aim of this study is to compare radioxenon beta–gamma analysis algorithms using simulated spectra with experimentally measured background, where the ground truth of the signal is known. We believe that this is among the largest efforts to date in terms of the number of synthetic spectra generated and number of algorithms compared using identical spectra. We generate an estimate for the minimum detectable counts for each isotope using each algorithm. The paper also points out a conceptual model to put the various algorithms into a continuum. Finally, our results show that existing algorithms can be improved and some newermore » algorithms can be better than the ones currently used.« less

  16. Comparison of new and existing algorithms for the analysis of 2D radioxenon beta gamma spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, Nikhil; Prinke, Amanda; Miller, Brian

    2017-01-13

    The aim of this paper is to compare radioxenon beta-gamma analysis algorithms using simulated spectra with experimentally measured background, where the ground truth of the signal is known. We believe that this is among the largest efforts to date in terms of the number of synthetic spectra generated and number of algorithms compared using identical spectra. We generate an estimate for the Minimum Detectable Counts (MDC) for each isotope using each algorithm. The paper also points out a conceptual model to put the various algorithms into a continuum. Our results show that existing algorithms can be improved and some newermore » algorithms can be better than the currently used ones.« less

  17. Raman spectra of single cells with autofluorescence suppression by modulated wavelength excitation

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Dochow, Sebastian; Bergner, Norbert; Clement, Joachim H.; Praveen, Bavishna B.; Mazilu, Michael; Marchington, Rob; Dholakia, Kishan; Popp, Jürgen

    2012-01-01

    Raman spectroscopy is a non-invasive technique offering great potential in the biomedical field for label-free discrimination between normal and tumor cells based on their biochemical composition. First, this contribution describes Raman spectra of lymphocytes after drying, in laser tweezers, and trapped in a microfluidic environment. Second, spectral differences between lymphocytes and acute myeloid leukemia cells (OCI-AML3) are compared for these three experimental conditions. Significant similarities of difference spectra are consistent with the biological relevance of the spectral features. Third, modulated wavelength Raman spectroscopy has been applied to this model system to demonstrate background suppression. Here, the laser excitation wavelength of 785 nm was modulated with a frequency of 40 mHz by 0.6 nm. 40 spectra were accumulated with an exposure time of 5 seconds each. These data were subjected to principal component analysis to calculate modulated Raman signatures. The loading of the principal component shows characteristics of first derivatives with derivative like band shapes. The derivative of this loading corresponds to a pseudo-second derivative spectrum and enables to determine band positions.

  18. Spectra of variations and cosmic ray anisotropy during GLE of June 11, 1991

    NASA Astrophysics Data System (ADS)

    Kravtsova, Marina; Sdobnov, Valeriy

    2015-03-01

    We have studied variation spectra and cosmic-ray (CR) anisotropy, using the ground-based and satellite observations of the CR intensity on the worldwide network of stations during the ground level enhancement (GLE) of June 11, 1991. The spectrographic global survey has been used. Variation spectra of primary CRs at different moments of the event are presented. Note that the CR variation spectra during this period are not described by a power or an exponential function of particle rigidity. The maximum rigidity, up to which the protons were accelerated on June 11, 1991, was ~2.8 GV (06:00 UT; i.e., two hours after GLE started). We show relative variations in the CR intensity in the geocentric solar ecliptic coordinate system during certain periods of the event under study. On June 11, 1991, the bidirectional anisotropy dominated in the distribution of particles with rigidity of 4 GV and 10 GV, which implies that the Earth passed the loop-like IMF structure.

  19. [Micro-Raman and fluorescence spectra of several agrochemicals].

    PubMed

    Xiao, Yi-lin; Zhang, Peng-xiang; Qian, Xiao-fan

    2004-05-01

    Raman and fluorescence spectra from several agrochemicals were measured, which are sold for the use in vegetables, fruits and grains. Characteristic vibration Raman peaks from some of the agrochemicals were recorded, hence the spectra can be used for their identification. Other marketed agrochemicals demonstrated strong fluorescence under 514.5 nm excitation. It was found that the fluorescence spectra of the agrochemicals are very different. According to these results one can detect the trace amount of agrochemicals left on the surface of fruits, vegetables and grains in situ and conveniently.

  20. Circular dichroism spectra of uridine derivatives: ChiraSac study.

    PubMed

    Miyahara, Tomoo; Nakatsuji, Hiroshi; Wada, Takehiko

    2014-04-24

    The experimental circular dichroism (CD) spectra of uridine and NH2-uridine that were different in the intensity and shape were studied in the light of the ChiraSac method. The theoretical CD spectra at several different conformations using the symmetry-adapted-cluster configuration-interaction (SAC-CI) theory largely depended on the conformational angle, but those of the anti-conformers and the Boltzmann average reproduced the experimentally obtained CD spectra of both uridine and NH2-uridine. The differences in the CD spectra between the two uridine derivatives were analyzed by using the angle θ between the electric transition dipole moment (ETDM) and the magnetic transition dipole moment (MTDM).