Sample records for age-related neuronal loss

  1. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    PubMed Central

    2010-01-01

    Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family. PMID:20637089

  2. Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1.

    PubMed

    Tachibana, Masaya; Shinohara, Mitsuru; Yamazaki, Yu; Liu, Chia-Chen; Rogers, Justin; Bu, Guojun; Kanekiyo, Takahisa

    2016-03-01

    Apolipoprotein E (apoE) plays a critical role in maintaining synaptic integrity by transporting cholesterol to neurons through the low-density lipoprotein receptor related protein-1 (LRP1). Bexarotene, a retinoid X receptor (RXR) agonist, has been reported to have potential beneficial effects on cognition by increasing brain apoE levels and lipidation. To investigate the effects of bexarotene on aging-related synapse loss and the contribution of neuronal LRP1 to the pathway, forebrain neuron-specific LRP1 knockout (nLrp1(-/-)) and littermate control mice were administered with bexarotene-formulated diet (100mg/kg/day) or control diet at the age of 20-24 months for 8 weeks. Upon bexarotene treatment, levels of brain apoE and ATP-binding cassette sub-family A member 1 (ABCA1) were significantly increased in both mice. While levels of PSD95, glutamate receptor 1 (GluR1), and N-methyl-d-aspartate receptor NR1 subunit (NR1), which are key postsynaptic proteins that regulate synaptic plasticity, were decreased with aging, they were restored by bexarotene treatment in the brains of control but not nLrp1(-/-) mice. These results indicate that the beneficial effects of bexarotene on synaptic integrity depend on the presence of neuronal LRP1. However, we also found that bexarotene treatment led to the activation of glial cells, weight loss and hepatomegaly, which are likely due to hepatic failure. Taken together, our results demonstrate that apoE-targeted treatment through the RXR pathway has a potential beneficial effect on synapses during aging; however, the therapeutic application of bexarotene requires extreme caution due to its toxic side effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Age-Related Neurodegeneration and Memory Loss in Down Syndrome

    PubMed Central

    Lockrow, Jason P.; Fortress, Ashley M.; Granholm, Ann-Charlotte E.

    2012-01-01

    Down syndrome (DS) is a condition where a complete or segmental chromosome 21 trisomy causes variable intellectual disability, and progressive memory loss and neurodegeneration with age. Many research groups have examined development of the brain in DS individuals, but studies on age-related changes should also be considered, with the increased lifespan observed in DS. DS leads to pathological hallmarks of Alzheimer's disease (AD) by 40 or 50 years of age. Progressive age-related memory deficits occurring in both AD and in DS have been connected to degeneration of several neuronal populations, but mechanisms are not fully elucidated. Inflammation and oxidative stress are early events in DS pathology, and focusing on these pathways may lead to development of successful intervention strategies for AD associated with DS. Here we discuss recent findings and potential treatment avenues regarding development of AD neuropathology and memory loss in DS. PMID:22545043

  4. Vulnerable Parkin Loss-of-Function Drosophila Dopaminergic Neurons Have Advanced Mitochondrial Aging, Mitochondrial Network Loss and Transiently Reduced Autophagosome Recruitment.

    PubMed

    Cackovic, Juliana; Gutierrez-Luke, Susana; Call, Gerald B; Juba, Amber; O'Brien, Stephanie; Jun, Charles H; Buhlman, Lori M

    2018-01-01

    Selective degeneration of substantia nigra dopaminergic (DA) neurons is a hallmark pathology of familial Parkinson's disease (PD). While the mechanism of degeneration is elusive, abnormalities in mitochondrial function and turnover are strongly implicated. An Autosomal Recessive-Juvenile Parkinsonism (AR-JP) Drosophila melanogaster model exhibits DA neurodegeneration as well as aberrant mitochondrial dynamics and function. Disruptions in mitophagy have been observed in parkin loss-of-function models, and changes in mitochondrial respiration have been reported in patient fibroblasts. Whether loss of parkin causes selective DA neurodegeneration in vivo as a result of lost or decreased mitophagy is unknown. This study employs the use of fluorescent constructs expressed in Drosophila DA neurons that are functionally homologous to those of the mammalian substantia nigra. We provide evidence that degenerating DA neurons in parkin loss-of-function mutant flies have advanced mitochondrial aging, and that mitochondrial networks are fragmented and contain swollen organelles. We also found that mitophagy initiation is decreased in park ( Drosophila parkin/PARK2 ortholog) homozygous mutants, but autophagosome formation is unaffected, and mitochondrial network volumes are decreased. As the fly ages, autophagosome recruitment becomes similar to control, while mitochondria continue to show signs of damage, and climbing deficits persist. Interestingly, aberrant mitochondrial morphology, aging and mitophagy initiation were not observed in DA neurons that do not degenerate. Our results suggest that parkin is important for mitochondrial homeostasis in vulnerable Drosophila DA neurons, and that loss of parkin-mediated mitophagy may play a role in degeneration of relevant DA neurons or motor deficits in this model.

  5. Dual-energy precursor and nuclear erythroid-related factor 2 activator treatment additively improve redox glutathione levels and neuron survival in aging and Alzheimer mouse neurons upstream of reactive oxygen species.

    PubMed

    Ghosh, Debolina; LeVault, Kelsey R; Brewer, Gregory J

    2014-01-01

    To determine whether glutathione (GSH) loss or increased reactive oxygen species (ROS) are more important to neuron loss, aging, and Alzheimer's disease (AD), we stressed or boosted GSH levels in neurons isolated from aging 3xTg-AD neurons compared with those from age-matched nontransgenic (non-Tg) neurons. Here, using titrating with buthionine sulfoximine, an inhibitor of γ-glutamyl cysteine synthetase (GCL), we observed that GSH depletion increased neuronal death of 3xTg-AD cultured neurons at increasing rates across the age span, whereas non-Tg neurons were resistant to GSH depletion until old age. Remarkably, the rate of neuron loss with ROS did not increase in old age and was the same for both genotypes, which indicates that cognitive deficits in the AD model were not caused by ROS. Therefore, we targeted for neuroprotection activation of the redox sensitive transcription factor, nuclear erythroid-related factor 2 (Nrf2) by 18 alpha glycyrrhetinic acid to stimulate GSH synthesis through GCL. This balanced stimulation of a number of redox enzymes restored the lower levels of Nrf2 and GCL seen in 3xTg-AD neurons compared with those of non-Tg neurons and promoted translocation of Nrf2 to the nucleus. By combining the Nrf2 activator together with the NADH precursor, nicotinamide, we increased neuron survival against amyloid beta stress in an additive manner. These stress tests and neuroprotective treatments suggest that the redox environment is more important for neuron survival than ROS. The dual neuroprotective treatment with nicotinamide and an Nrf2 inducer indicates that these age-related and AD-related changes are reversible. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons.

    PubMed

    Ghosh, Debolina; Levault, Kelsey R; Brewer, Gregory J

    2014-08-01

    Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg-AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg-AD neurons. We also observed an age-dependent loss of gene expression of key redox-dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age-related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age-related declines in NAD(P)H. Our data indicate that in aging and more so in AD-like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Life and death of neurons in the aging brain

    NASA Technical Reports Server (NTRS)

    Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    Neurodegenerative disorders are characterized by extensive neuron death that leads to functional decline, but the neurobiological correlates of functional decline in normal aging are less well defined. For decades, it has been a commonly held notion that widespread neuron death in the neocortex and hippocampus is an inevitable concomitant of brain aging, but recent quantitative studies suggest that neuron death is restricted in normal aging and unlikely to account for age-related impairment of neocortical and hippocampal functions. In this article, the qualitative and quantitative differences between aging and Alzheimer's disease with respect to neuron loss are discussed, and age-related changes in functional and biochemical attributes of hippocampal circuits that might mediate functional decline in the absence of neuron death are explored. When these data are viewed comprehensively, it appears that the primary neurobiological substrates for functional impairment in aging differ in important ways from those in neurodegenerative disorders such as Alzheimer's disease.

  8. Age-associated loss of selectivity in human olfactory sensory neurons

    PubMed Central

    Rawson, Nancy E.; Gomez, George; Cowart, Beverly J.; Kriete, Andres; Pribitkin, Edmund; Restrepo, Diego

    2011-01-01

    We report a cross-sectional study of olfactory impairment with age based on both odorant-stimulated responses of human olfactory sensory neurons (OSNs) and tests of olfactory threshold sensitivity. A total of 621 OSNs from 440 subjects in two age groups of younger ( 45 years) and older (≥60 years) subjects were investigated using fluorescence intensity ratio fura-2 imaging. OSNs were tested for responses to two odorant mixtures, as well as to subsets of and individual odors in those mixtures. Whereas cells from younger donors were highly selective in the odorants to which they responded, cells from older donors were more likely to respond to multiple odor stimuli, despite a loss in these subjects’ absolute olfactory sensitivity, suggesting a loss of specificity. This degradation in peripheral cellular specificity may impact odor discrimination and olfactory adaptation in the elderly. It is also possible that chronic adaptation as a result of reduced specificity contributes to observed declines in absolute sensitivity. PMID:22074806

  9. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    PubMed

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Pathological changes in hippocampal neuronal circuits underlie age-associated neurodegeneration and memory loss: positive clue toward SAD.

    PubMed

    Moorthi, P; Premkumar, P; Priyanka, R; Jayachandran, K S; Anusuyadevi, M

    2015-08-20

    Among vertebrates hippocampus forms the major component of the brain in consolidating information from short-term memory to long-term memory. Aging is considered as the major risk factor for memory impairment in sporadic Alzheimer's disease (SAD) like pathology. Present study thus aims at investigating whether age-specific degeneration of neuronal-circuits in hippocampal formation (neural-layout of Subiculum-hippocampus proper-dentate gyrus (DG)-entorhinal cortex (EC)) results in cognitive impairment. Furthermore, the neuroprotective effect of Resveratrol (RSV) was attempted to study in the formation of hippocampal neuronal-circuits. Radial-Arm-Maze was conducted to evaluate hippocampal-dependent spatial and learning memory in control and experimental rats. Nissl staining of frontal cortex (FC), subiculum, hippocampal-proper (CA1→CA2→CA3→CA4), DG, amygdala, cerebellum, thalamus, hypothalamus, layers of temporal and parietal lobe of the neocortex were examined for pathological changes in young and aged wistar rats, with and without RSV. Hippocampal trisynaptic circuit (EC layerII→DG→CA3→CA1) forming new memory and monosynaptic circuit (EC→CA1) that strengthen old memories were found disturbed in aged rats. Loss of Granular neuron observed in DG and polymorphic cells of CA4 can lead to decreased mossy fibers disturbing neural-transmission (CA4→CA3) in perforant pathway. Further, intensity of nissl granules (stratum lacunosum moleculare (SLM)-SR-SO) of CA3 pyramidal neurons was decreased, disturbing the communication in schaffer collaterals (CA3-CA1) during aging. We also noticed disarranged neuronal cell layer in Subiculum (presubiculum (PrS)-parasubiculum (PaS)), interfering output from hippocampus to prefrontal cortex (PFC), EC, hypothalamus, and amygdala that may result in interruption of thought processes. We conclude from our observations that poor memory performance of aged rats as evidenced through radial arm maze (RAM) analysis was due to the

  11. No reduction with ageing of the number of myenteric neurons in benzalkonium chloride treated rats.

    PubMed

    Garcia, S B; Demarzo, M M P; Vinhadeli, W S; Llorach-Velludo, M A; Zoteli, J; Herrero, C F P S; Zucoloto, S

    2002-10-04

    The number of myenteric neurons may be reduced by topical serosal application of benzalkonium chloride (BAC). We studied the effects of ageing in the population of neurons that survive after the application of BAC. Ten treated and ten control animals were killed at intervals of 2, 6, 12 and 18 months after the surgery. We performed myenteric neurons counting in serially cut histological preparations of the descending colon. The control animals revealed a continuous loss of myenteric neurons number with increasing of age. Interestingly, contrary to control animals, the BAC-treated rats presented no neuron loss with ageing at any experimental time. The reasons for their survival with ageing could be related to a neuroplasticity phenomenon.

  12. Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging.

    PubMed

    Albayram, Onder; Alferink, Judith; Pitsch, Julika; Piyanova, Anastasia; Neitzert, Kim; Poppensieker, Karola; Mauer, Daniela; Michel, Kerstin; Legler, Anne; Becker, Albert; Monory, Krisztina; Lutz, Beat; Zimmer, Andreas; Bilkei-Gorzo, Andras

    2011-07-05

    Brain aging is associated with cognitive decline that is accompanied by progressive neuroinflammatory changes. The endocannabinoid system (ECS) is involved in the regulation of glial activity and influences the progression of age-related learning and memory deficits. Mice lacking the Cnr1 gene (Cnr1(-/-)), which encodes the cannabinoid receptor 1 (CB1), showed an accelerated age-dependent deficit in spatial learning accompanied by a loss of principal neurons in the hippocampus. The age-dependent decrease in neuronal numbers in Cnr1(-/-) mice was not related to decreased neurogenesis or to epileptic seizures. However, enhanced neuroinflammation characterized by an increased density of astrocytes and activated microglia as well as an enhanced expression of the inflammatory cytokine IL-6 during aging was present in the hippocampus of Cnr1(-/-) mice. The ongoing process of pyramidal cell degeneration and neuroinflammation can exacerbate each other and both contribute to the cognitive deficits. Deletion of CB1 receptors from the forebrain GABAergic, but not from the glutamatergic neurons, led to a similar neuronal loss and increased neuroinflammation in the hippocampus as observed in animals lacking CB1 receptors in all cells. Our results suggest that CB1 receptor activity on hippocampal GABAergic neurons protects against age-dependent cognitive decline by reducing pyramidal cell degeneration and neuroinflammation.

  13. Why do hair cells and spiral ganglion neurons in the cochlea die during aging?

    PubMed Central

    Perez, Philip; Bao, Jianxin

    2011-01-01

    Age-related decline of cochlear function is mainly due to the loss of hair cells and spiral ganglion neurons (SGNs). Recent findings clearly indicate that survival of these two cell types during aging depends on genetic and environmental interactions, and this relationship is seen at the systemic, tissue, cellular, and molecular levels. At cellular and molecular levels, age-related loss of hair cells and SGNs can occur independently, suggesting distinct mechanisms for the death of each during aging. This mechanistic independence is also observed in the loss of medial olivocochlear efferent innervation and outer hair cells during aging, pointing to a universal independent cellular mechanism for age-related neuronal death in the peripheral auditory system. While several molecular signaling pathways are implicated in the age-related loss of hair cells and SGNs, studies with the ability to locally modify gene expression in these cell types are needed to address whether these signaling pathways have direct effects on hair cells and SGNs during aging. Finally, the issue of whether age-related loss of these cells occurs via typical apoptotic pathways requires further examination. As new studies in the field of aging reshape the framework for exploring these underpinnings, understanding of the loss of hair cells and SGNs associated with age and the interventions that can treat and prevent these changes will result in dramatic benefits for an aging population. PMID:22396875

  14. Neuronal glycogen synthesis contributes to physiological aging

    PubMed Central

    Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora’s disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. PMID:25059425

  15. Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity

    PubMed Central

    Lin, Ai-Ling; Coman, Daniel; Jiang, Lihong; Rothman, Douglas L; Hyder, Fahmeed

    2014-01-01

    Caloric restriction (CR) prolongs lifespan and retards many detrimental effects of aging, but its effect on brain mitochondrial function and neuronal activity—especially in healthy aging—remains unexplored. Here we measured rates of neuronal glucose oxidation and glutamate–glutamine neurotransmitter cycling in young control, old control (i.e., healthy aging), and old CR rats using in vivo nuclear magnetic resonance spectroscopy. We found that, compared with the young control, neuronal energy production and neurotransmission rates were significantly reduced in healthy aging, but were preserved in old CR rats. The results suggest that CR mitigated the age-related deceleration of brain physiology. PMID:24984898

  16. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: Relationship with spatial impairment

    PubMed Central

    Bañuelos, C.; LaSarge, C. L.; McQuail, J. A.; Hartman, J. J.; Gilbert, R. J.; Ormerod, B. K.; Bizon, J. L.

    2013-01-01

    Both cholinergic and GABAergic projections from the rostral basal forebrain have been implicated in hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in co-distributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase (ChAT) immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 (GAD67) immunopositive) neurons, and total (NeuN immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline. PMID:22817834

  17. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage.

    PubMed

    He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen

    2014-11-15

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that

  18. Neuronal glycogen synthesis contributes to physiological aging.

    PubMed

    Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J

    2014-10-01

    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons

    PubMed Central

    Russell, Theron A.; Ito, Masafumi; Ito, Mika; Yu, Richard N.; Martinson, Fred A.; Weiss, Jeffrey; Jameson, J. Larry

    2003-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder caused by mutations in the arginine vasopressin (AVP) precursor. The pathogenesis of FNDI is proposed to involve mutant protein–induced loss of AVP-producing neurons. We established murine knock-in models of two different naturally occurring human mutations that cause FNDI. A mutation in the AVP signal sequence [A(–1)T] is associated with a relatively mild phenotype or delayed presentation in humans. This mutation caused no apparent phenotype in mice. In contrast, heterozygous mice expressing a mutation that truncates the AVP precursor (C67X) exhibited polyuria and polydipsia by 2 months of age and these features of DI progressively worsened with age. Studies of the paraventricular and supraoptic nuclei revealed induction of the chaperone protein BiP and progressive loss of AVP-producing neurons relative to oxytocin-producing neurons. In addition, Avp gene products were not detected in the neuronal projections, suggesting retention of WT and mutant AVP precursors within the cell bodies. In summary, this murine model of FNDI recapitulates many features of the human disorder and demonstrates that expression of the mutant AVP precursor leads to progressive neuronal cell loss. PMID:14660745

  20. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons

    PubMed Central

    Morsci, Natalia S.; Hall, David H.

    2016-01-01

    Aging is associated with cognitive decline and increasing risk of neurodegeneration. Perturbation of mitochondrial function, dynamics, and trafficking are implicated in the pathogenesis of several age-associated neurodegenerative diseases. Despite this fundamental importance, the critical understanding of how organismal aging affects lifetime neuronal mitochondrial maintenance remains unknown, particularly in a physiologically relevant context. To address this issue, we performed a comprehensive in vivo analysis of age-associated changes in mitochondrial morphology, density, trafficking, and stress resistance in individual Caenorhabditis elegans neurons throughout adult life. Adult neurons display three distinct stages of increase, maintenance, and decrease in mitochondrial size and density during adulthood. Mitochondrial trafficking in the distal neuronal processes declines progressively with age starting from early adulthood. In contrast, long-lived daf-2 mutants exhibit delayed age-associated changes in mitochondrial morphology, constant mitochondrial density, and maintained trafficking rates during adulthood. Reduced mitochondrial load at late adulthood correlates with decreased mitochondrial resistance to oxidative stress. Revealing aging-associated changes in neuronal mitochondria in vivo is an essential precedent that will allow future elucidation of the mechanistic causes of mitochondrial aging. Thus, our study establishes the critical foundation for the future analysis of cellular pathways and genetic and pharmacological factors regulating mitochondrial maintenance in aging- and disease-relevant conditions. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans as a model, we address long-standing questions: How does aging affect neuronal mitochondrial morphology, density, trafficking, and oxidative stress resistance? Are these age-related changes amenable to genetic manipulations that slow down the aging process? Our study illustrates that mitochondrial

  1. Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington's disease.

    PubMed

    Nana, Alissa L; Kim, Eric H; Thu, Doris C V; Oorschot, Dorothy E; Tippett, Lynette J; Hogg, Virginia M; Synek, Beth J; Roxburgh, Richard; Waldvogel, Henry J; Faull, Richard L M

    2014-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls. The results clearly demonstrate a widespread loss of total neurons and pyramidal cells across all cortical regions studied, except for the primary visual cortex. Importantly, the results show that cell loss is remarkably variable both within and between Huntington's disease cases. The results also show that neuronal loss in the primary sensory and secondary visual cortices relate to Huntington's disease motor symptom profiles, and neuronal loss across the associational cortices in the frontal, parietal and temporal lobes is related to both Huntington's disease motor and to mood symptom profiles. This finding considerably extends a previous study (Thu et al., Brain, 2010; 133:1094-1110) which showed that neuronal loss in the primary motor cortex was related specifically to the motor symptom profiles while neuronal loss in the anterior cingulate cortex was related specifically to mood symptom profiles. The extent of cortical cell loss in the current study was generally related to the striatal neuropathological grade, but not to CAG repeat length on the HTT gene. Overall our findings show that Huntington's disease is characterized by a heterogeneous pattern of neuronal cell loss across the entire cerebrum which varies with symptom profile.

  2. Selective alterations of neurons and circuits related to early memory loss in Alzheimer's disease.

    PubMed

    Llorens-Martín, Maria; Blazquez-Llorca, Lidia; Benavides-Piccione, Ruth; Rabano, Alberto; Hernandez, Felix; Avila, Jesus; DeFelipe, Javier

    2014-01-01

    A progressive loss of episodic memory is a well-known clinical symptom that characterizes Alzheimer's disease (AD). The beginning of this loss of memory has been associated with the very early, pathological accumulation of tau and neuronal degeneration observed in the entorhinal cortex (EC). Tau-related pathology is thought to then spread progressively to the hippocampal formation and other brain areas as the disease progresses. The major cortical afferent source of the hippocampus and dentate gyrus is the EC through the perforant pathway. At least two main circuits participate in the connection between EC and the hippocampus; one originating in layer II and the other in layer III of the EC giving rise to the classical trisynaptic (ECII → dentate gyrus → CA3 → CA1) and monosynaptic (ECIII → CA1) circuits. Thus, the study of the early pathological changes in these circuits is of great interest. In this review, we will discuss mainly the alterations of the granule cell neurons of the dentate gyrus and the atrophy of CA1 pyramidal neurons that occur in AD in relation to the possible differential alterations of these two main circuits.

  3. Neural Alterations in Acquired Age-Related Hearing Loss

    PubMed Central

    Mudar, Raksha A.; Husain, Fatima T.

    2016-01-01

    Hearing loss is one of the most prevalent chronic health conditions in older adults. Growing evidence suggests that hearing loss is associated with reduced cognitive functioning and incident dementia. In this mini-review, we briefly examine literature on anatomical and functional alterations in the brains of adults with acquired age-associated hearing loss, which may underlie the cognitive consequences observed in this population, focusing on studies that have used structural and functional magnetic resonance imaging, diffusion tensor imaging, and event-related electroencephalography. We discuss structural and functional alterations observed in the temporal and frontal cortices and the limbic system. These neural alterations are discussed in the context of common cause, information-degradation, and sensory-deprivation hypotheses, and we suggest possible rehabilitation strategies. Although, we are beginning to learn more about changes in neural architecture and functionality related to age-associated hearing loss, much work remains to be done. Understanding the neural alterations will provide objective markers for early identification of neural consequences of age-associated hearing loss and for evaluating benefits of intervention approaches. PMID:27313556

  4. Neuroendocrine control of reproductive aging: roles of GnRH neurons.

    PubMed

    Yin, Weiling; Gore, Andrea C

    2006-03-01

    The process of reproductive senescence in many female mammals, including humans, is characterized by a gradual transition from regular reproductive cycles to irregular cycles to eventual acyclicity, and ultimately a loss of fertility. In the present review, the role of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons is considered in this context. GnRH neurons provide the primary driving force upon the other levels of the reproductive axis. With respect to aging, GnRH cells undergo changes in biosynthesis, processing and release of the GnRH decapeptide. GnRH neurons also exhibit morphologic and ultrastructural alterations that appear to underlie these biosynthetic properties. Thus, functional and morphologic changes in the GnRH neurosecretory system may play causal roles in the transition to acyclicity. In addition, GnRH neurons are regulated by numerous inputs from neurotransmitters, neuromodulators and glia. The relationship among GnRH cells and their inputs at the cell body (thereby affecting GnRH biosynthesis) and the neuroterminal (thereby affecting GnRH neurosecretion) is crucial to the function of the GnRH system, with age-related changes in these relationships contributing to the reproductive senescent process. Therefore, the aging hypothalamus is characterized by changes intrinsic to the GnRH cell, as well as its regulatory inputs, which summate to contribute to a loss of reproductive competence in aging females.

  5. Long-Term Moderate Exercise Rescues Age-Related Decline in Hippocampal Neuronal Complexity and Memory.

    PubMed

    Tsai, Sheng-Feng; Ku, Nai-Wen; Wang, Tzu-Feng; Yang, Yan-Hsiang; Shih, Yao-Hsiang; Wu, Shih-Ying; Lee, Chu-Wan; Yu, Megan; Yang, Ting-Ting; Kuo, Yu-Min

    2018-05-07

    Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. Young (3 months), middle-aged (9-12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline. © 2018 S. Karger AG, Basel.

  6. Age-related susceptibility to epileptogenesis and neuronal loss in male Fischer rats exposed to soman and treated with medical countermeasures.

    PubMed

    Marrero-Rosado, Brenda; Rossetti, Franco; Rice, Matthew W; Moffett, Mark C; Lee, Robyn; Stone, Michael F; Lumley, Lucille A

    2018-03-27

    Elderly individuals compose a large percentage of the world population; however, few studies have addressed the efficacy of current medical countermeasures (MCM) against the effects of chemical warfare nerve agent exposure in aged populations. We evaluated the efficacy of the anticonvulsant diazepam in an old adult rat model of soman (GD) poisoning and compared the toxic effects to those observed in young adult rats when anticonvulsant treatment is delayed. After determining their respective median lethal dose (LD50) of GD, we exposed young adult and old adult rats to an equitoxic 1.2 LD50 dose of GD followed by treatment with atropine sulfate and the oxime HI-6 at one minute after exposure, and diazepam at 30 minutes after seizure onset. Old adult rats that presented with status epilepticus were more susceptible to developing spontaneous recurrent seizures (SRS). Neuropathological analysis revealed that in rats of both age groups that developed SRS, there was a significant reduction in the density of mature neurons in the piriform cortex, thalamus, and amygdala, with more pronounced neuronal loss in the thalamus of old adult rats compared to young adult rats. Furthermore, old adult rats displayed a reduced density of cells expressing glutamic acid decarboxylase 67, a marker of GABAergic interneurons, in the basolateral amygdala and piriform cortex, and a reduction of astrocyte activation in the piriform cortex. Our observations demonstrate the reduced effectiveness of current MCM in an old adult animal model of GD exposure and strongly suggest the need for countermeasures that are more tailored to the vulnerabilities of an aging population.

  7. Ganglion Cell Loss and Age-Related Visual Loss: A Cortical Pooling Analysis

    PubMed Central

    SCHMIDT, LAURA A.; LY-SCHROEDER, EMILY; SWANSON, WILLIAM H.

    2006-01-01

    Purpose To evaluate the ability of the cortical pooling model to predict the effects of random, mild ganglion cell loss, we compared the predictions of the model with the age-related loss and variability in achromatic and chromatic contrast sensitivity. Methods The relative sensitivity to small (0.5°) and large (3.0°) stimuli was compared in older (mean = 67 years, n = 27) and younger (mean = 23 years, n = 32) adults. Contrast sensitivity for modulations along the luminance, equiluminant L-cone, and equiluminant S-cone axes was assessed at the fovea and at four peripheral locations (12°). Results When the stimuli were large, threshold measurements obtained from all participants were reliable and well within the range of modulations along the chromatic axes that could be produced by the phosphors of the CRT. For the large stimuli, neither long- nor short-term variability increased as a function of age. Increasing the size of the stimulus did not decrease the magnitude of the age-related losses when the stimulus was chromatic, and visual losses observed with large chromatic stimuli were not different from those obtained with small achromatic stimuli. Moreover, chromatic contrast sensitivity assessments identified significant visual losses in four individuals who were not identified by achromatic contrast sensitivity assessments and only missed identifying one individual with significant losses in achromatic contrast sensitivity. Conclusions The declines in achromatic and chromatic sensitivity as a function of age (0.4 – 0.7 dB per decade) were similar to those obtained in previous studies of achromatic and chromatic perimetry and are consistent with the loss of retinal ganglion cells reported in histologic studies. The results of this study are consistent with the predictions the cortical pooling model makes for both variability and contrast sensitivity. These findings emphasize that selective visual impairments do not necessarily reflect preferential damage to

  8. Parkin absence accelerates microtubule aging in dopaminergic neurons.

    PubMed

    Cartelli, Daniele; Amadeo, Alida; Calogero, Alessandra Maria; Casagrande, Francesca Vittoria Marialuisa; De Gregorio, Carmelita; Gioria, Mariarosa; Kuzumaki, Naoko; Costa, Ilaria; Sassone, Jenny; Ciammola, Andrea; Hattori, Nobutaka; Okano, Hideyuki; Goldwurm, Stefano; Roybon, Laurent; Pezzoli, Gianni; Cappelletti, Graziella

    2018-01-01

    Loss-of-function caused by mutations in the parkin gene (PARK2) lead to early-onset familial Parkinson's disease. Recently, mechanistic studies proved the ability of parkin in regulating mitochondria homeostasis and microtubule (MT) stability. Looking at these systems during aging of PARK2 knockout mice, we found that loss of parkin induced an accelerated (over)acetylation of MT system both in dopaminergic neuron cell bodies and fibers, localized in the substantia nigra and corpus striatum, respectively. Interestingly, in PARK2 knockout mice, changes of MT stability preceded the alteration of mitochondria transport. Moreover, in-cell experiments confirmed that loss of parkin affects mitochondria mobility and showed that this defect depends on MT system as it is rescued by paclitaxel, a well-known MT-targeted agent. Furthermore, both in PC12 neuronal cells and in patients' induced pluripotent stem cell-derived midbrain neurons, we observed that parkin deficiencies cause the fragmentation of stable MTs. Therefore, we suggest that parkin acts as a regulator of MT system during neuronal aging, and we endorse the hypothesis that MT dysfunction may be crucial in the pathogenesis of Parkinson's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Recent advances in the study of age-related hearing loss - A Mini-Review

    PubMed Central

    Kidd, Ambrose R; Bao, Jianxin

    2013-01-01

    Hearing loss is a common age-associated affliction that can result from the loss of hair cells and spiral ganglion neurons (SGNs) in the cochlea. Although hair cells and SGNs are typically lost in the same cochlea, recent analysis suggests that they can occur independently, via unique mechanisms. Research has identified both environmental and genetic factors that contribute to degeneration of cochlear cells. Additionally, molecular analysis has identified multiple cell signaling mechanisms that likely contribute to pathological changes that result in hearing deficiencies. These analyses should serve as useful primers for future work, including genomic and proteomic analysis, to elucidate the mechanisms driving cell loss in the aging cochlea. Significant progress in this field has occurred in the past decade. As our understanding of aging-induced cochlear changes continues to improve, our ability to offer medical intervention will surely benefit the growing elderly population. PMID:22710288

  10. Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease

    PubMed Central

    Llorens-Martín, Maria; Blazquez-Llorca, Lidia; Benavides-Piccione, Ruth; Rabano, Alberto; Hernandez, Felix; Avila, Jesus; DeFelipe, Javier

    2014-01-01

    A progressive loss of episodic memory is a well-known clinical symptom that characterizes Alzheimer’s disease (AD). The beginning of this loss of memory has been associated with the very early, pathological accumulation of tau and neuronal degeneration observed in the entorhinal cortex (EC). Tau-related pathology is thought to then spread progressively to the hippocampal formation and other brain areas as the disease progresses. The major cortical afferent source of the hippocampus and dentate gyrus is the EC through the perforant pathway. At least two main circuits participate in the connection between EC and the hippocampus; one originating in layer II and the other in layer III of the EC giving rise to the classical trisynaptic (ECII → dentate gyrus → CA3 → CA1) and monosynaptic (ECIII → CA1) circuits. Thus, the study of the early pathological changes in these circuits is of great interest. In this review, we will discuss mainly the alterations of the granule cell neurons of the dentate gyrus and the atrophy of CA1 pyramidal neurons that occur in AD in relation to the possible differential alterations of these two main circuits. PMID:24904307

  11. Minocycline reduces neuroinflammation but does not ameliorate neuron loss in a mouse model of neurodegeneration

    PubMed Central

    Cheng, Shanshan; Hou, Jinxing; Zhang, Chen; Xu, Congyu; Wang, Long; Zou, Xiaoxia; Yu, Huahong; Shi, Yun; Yin, Zhenyu; Chen, Guiquan

    2015-01-01

    Minocycline is a broad-spectrum tetracycline antibiotic. A number of preclinical studies have shown that minocycline exhibits neuroprotective effects in various animal models of neurological diseases. However, it remained unknown whether minocycline is effective to prevent neuron loss. To systematically evaluate its effects, minocycline was used to treat Dicer conditional knockout (cKO) mice which display age-related neuron loss. The drug was given to mutant mice prior to the occurrence of neuroinflammation and neurodegeneration, and the treatment had lasted 2 months. Levels of inflammation markers, including glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule1 (Iba1) and interleukin6 (IL6), were significantly reduced in minocycline-treated Dicer cKO mice. In contrast, levels of neuronal markers and the total number of apoptotic cells in Dicer cKO mice were not affected by the drug. In summary, inhibition of neuroinflammation by minocycline is insufficient to prevent neuron loss and apoptosis. PMID:26000566

  12. Conditional loss of progranulin in neurons is not sufficient to cause neuronal ceroid lipofuscinosis-like neuropathology in mice.

    PubMed

    Petkau, Terri L; Blanco, Jake; Leavitt, Blair R

    2017-10-01

    Progranulin deficiency due to heterozygous null mutations in the GRN gene is a common cause of familial frontotemporal lobar degeneration (FTLD), while homozygous loss-of-function GRN mutations cause neuronal ceroid lipofuscinosis (NCL). Aged progranulin-knockout mice display highly exaggerated lipofuscinosis, microgliosis, and astrogliosis, as well as mild cell loss in specific brain regions. Progranulin is a secreted glycoprotein expressed in both neurons and microglia, but not astrocytes, in the brain. We generated conditional progranulin-knockout mice that lack progranulin in nestin-expressing cells (Nes-cKO mice), which include most neurons as well as astrocytes. We confirmed near complete knockout of progranulin in neurons in Nes-cKO mice, while microglial progranulin levels remained similar to that of wild-type animals. Overall brain progranulin levels were reduced by about 50% in Nes-cKO, and no Grn was detected in primary Nes-cKO neurons. Nes-cKO mice aged to 12months did not display any increase in lipofuscin deposition, microgliosis, or astrogliosis in the four brain regions examined, though increases were observed for most of these measures in Grn-null animals. We conclude that neuron-specific loss of progranulin is not sufficient to cause similar neuropathological changes to those seen in constitutive Grn-null animals. Our results suggest that increased lipofuscinosis and gliosis in Grn-null animals are not caused by intrinsic progranulin deficiency in neurons, and that microglia-derived progranulin may be sufficient to maintain neuronal health and homeostasis in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Current concepts in age-related hearing loss: Epidemiology and mechanistic pathways

    PubMed Central

    Yamasoba, Tatsuya; Lin, Frank R.; Someya, Shinichi; Kashio, Akinori; Sakamoto, Takashi; Kondo, Kenji

    2013-01-01

    Age-related hearing loss (AHL), also known as presbycusis, is a universal feature of mammalian aging and is characterized by a decline of auditory function, such as increased hearing thresholds and poor frequency resolution. The primary pathology of AHL includes the hair cells, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. A growing body of evidence in animal studies has suggested that cumulative effect of oxidative stress could induce damage to macromolecules such as mitochondrial DNA (mtDNA) and that the resulting accumulation of mtDNA mutations/deletions and decline of mitochondrial function play an important role in inducing apoptosis of the cochlear cells, thereby the development of AHL. Epidemiological studies have demonstrated four categories of risk factors of AHL in humans: cochlear aging, environment such as noise exposure, genetic predisposition, and health co-morbidities such as cigarette smoking and atherosclerosis. Genetic investigation has identified several putative associating genes, including those related to antioxidant defense and atherosclerosis. Exposure to noise is known to induce excess generation of reactive oxygen species (ROS) in the cochlea, and cumulative oxidative stress can be enhanced by relatively hypoxic situations resulting from the impaired homeostasis of cochlear blood supply due to atherosclerosis, which could be accelerated by genetic and co-morbidity factors. Antioxidant defense system may also be influenced by genetic backgrounds. These may explain the large variations of the onset and extent of AHL among elderly subjects. PMID:23422312

  14. Loss of neuronal 3D chromatin organization causes transcriptional and behavioural deficits related to serotonergic dysfunction.

    PubMed

    Ito, Satomi; Magalska, Adriana; Alcaraz-Iborra, Manuel; Lopez-Atalaya, Jose P; Rovira, Victor; Contreras-Moreira, Bruno; Lipinski, Michal; Olivares, Roman; Martinez-Hernandez, Jose; Ruszczycki, Blazej; Lujan, Rafael; Geijo-Barrientos, Emilio; Wilczynski, Grzegorz M; Barco, Angel

    2014-07-18

    The interior of the neuronal cell nucleus is a highly organized three-dimensional (3D) structure where regions of the genome that are linearly millions of bases apart establish sub-structures with specialized functions. To investigate neuronal chromatin organization and dynamics in vivo, we generated bitransgenic mice expressing GFP-tagged histone H2B in principal neurons of the forebrain. Surprisingly, the expression of this chimeric histone in mature neurons caused chromocenter declustering and disrupted the association of heterochromatin with the nuclear lamina. The loss of these structures did not affect neuronal viability but was associated with specific transcriptional and behavioural deficits related to serotonergic dysfunction. Overall, our results demonstrate that the 3D organization of chromatin within neuronal cells provides an additional level of epigenetic regulation of gene expression that critically impacts neuronal function. This in turn suggests that some loci associated with neuropsychiatric disorders may be particularly sensitive to changes in chromatin architecture.

  15. Cumulative Lead Exposure and Age-related Hearing Loss: The VA Normative Aging Study

    PubMed Central

    Park, Sung Kyun; Elmarsafawy, Sahar; Mukherjee, Bhramar; Spiro, Avron; Vokonas, Pantel S.; Nie, Huiling; Weisskopf, Marc G.; Schwartz, Joel; Hu, Howard

    2010-01-01

    Although lead has been associated with hearing loss in occupational settings and in children, little epidemiologic research has been conducted on the impact of cumulative lead exposure on age-related hearing loss in the general population. We determined whether bone lead levels, a marker of cumulative lead exposure, are associated with decreased hearing ability in 448 men from the Normative Aging Study, seen between 1962 and 1996 (2,264 total observations). Air conduction hearing thresholds were measured at 0.25 to 8 kHz and pure tone averages (PTA) (mean of 0.5, 1, 2 and 4 kHz) were computed. Tibia and patella lead levels were measured using K x-ray fluorescence between 1991 and 1996. In cross-sectional analyses, after adjusting for potential confounders including occupational noise, patella lead levels were significantly associated with poorer hearing thresholds at 2, 3, 4, 6 and 8 kHz and PTA. The odds of hearing loss significantly increased with patella lead levels. We also found significant positive associations between tibia lead and the rate change in hearing thresholds at 1, 2, and 8 kHz and PTA in longitudinal analyses. Our results suggest that chronic low-level lead exposure may be an important risk factor for age-related hearing loss and reduction of lead exposure could help prevent or delay development of age-related hearing loss. PMID:20638461

  16. Influence of age-related changes in nitric oxide synthase-expressing neurons in the rat supraoptic nucleus on inhibition of salivary secretion.

    PubMed

    Tanaka, Takehiko; Tamada, Yoshitaka; Suwa, Fumihiko

    2008-02-01

    Age-related inhibition of salivary secretion has been demonstrated in rats, and the nitric oxide (NO) present in the supraoptic nucleus (SON) and the medial septal area has been reported to play an inhibitory role in the regulation of salivary secretion. In the present study, we investigated the age-related changes occurring in the NO synthase (NOS)-expressing neurons in the SON, which is related to the production of NO, and discussed the interrelation between the age-related changes in the NOS-expressing neurons and the age-related inhibition of salivary secretion. Nissl staining and reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry were performed for young adult and aged rats. Quantitative analysis was also performed using the Nissl-stained and NADPH-d-positive neurons. Although the numbers of the Nissl-stained neurons did not change, significant age-related increases were detected in cell number, cell size and reactive density of the NADPH-d-positive neurons. Therefore, the production of NO in the SON neurons increased with age. We concluded that the age-related increase in the NO in the SON might be a factor that contributes to the age-related inhibition of salivary secretion.

  17. Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression.

    PubMed

    Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F; Buss, Eric W; Richter, Hannah; Oh, M Matthew; Nicholson, Daniel A; Disterhoft, John F

    2015-09-23

    Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29-32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K(+) channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K(+) channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. Significance statement: Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with

  18. Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression

    PubMed Central

    Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F.; Buss, Eric W.; Richter, Hannah; Oh, M. Matthew

    2015-01-01

    Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29–32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K+ channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K+ channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. SIGNIFICANCE STATEMENT Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with

  19. Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys

    NASA Technical Reports Server (NTRS)

    Gazzaley, A. H.; Thakker, M. M.; Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    The perforant path, which consists of the projection from the layer II neurons of the entorhinal cortex to the outer molecular layer of the dentate gyrus, is a critical circuit involved in learning and memory formation. Accordingly, disturbances in this circuit may contribute to age-related cognitive deficits. In a previous study, we demonstrated a decrease in N-methyl-D-aspartate receptor subunit 1 immunofluorescence intensity in the outer molecular layer of aged macaque monkeys. In this study, we used the optical fractionator, a stereological method, to determine if a loss of layer II neurons occurred in the same animals in which the N-methyl-D-aspartate receptor subunit 1 alteration was observed. Our results revealed no significant differences in the number of layer II neurons between juvenile, young adult, and aged macaque monkeys. These results suggest that the circuit-specific decrease in N-methyl-D-aspartate receptor subunit 1 reported previously occurs in the absence of structural compromise of the perforant path, and thus may be linked to an age-related change in the physiological properties of this circuit.

  20. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases

    PubMed Central

    Kalyani, Rita Rastogi; Corriere, Mark; Ferrucci, Luigi

    2014-01-01

    The term sarcopenia refers to the loss of muscle mass that occurs with ageing. On the basis of study results showing that muscle mass is only moderately related to functional outcomes, international working groups have proposed that loss of muscle strength or physical function should also be included in the definition. Irrespective of how sarcopenia is defined, both low muscle mass and poor muscle strength are clearly highly prevalent and important risk factors for disability and potentially mortality in individuals as they age. Many chronic diseases, in addition to ageing, could also accelerate decrease of muscle mass and strength, and this effect could be a main underlying mechanism by which chronic diseases cause physical disability. In this Review, we address both age-related and disease-related muscle loss, with a focus on diabetes and obesity but including other disease states, and potential common mechanisms and treatments. Development of treatments for age-related and disease-related muscle loss might improve active life expectancy in older people, and lead to substantial health-care savings and improved quality of life. PMID:24731660

  1. Nutrient-rich meat proteins in offsetting age-related muscle loss.

    PubMed

    Phillips, Stuart M

    2012-11-01

    From a health perspective, an underappreciated consequence of the normal aging process is the impacts that the gradual loss of skeletal muscle mass, termed sarcopenia, has on health beyond an effect on locomotion. Sarcopenia, refers to the loss of muscle mass, and associated muscle weakness, which occurs in aging and is thought to proceed at a rate of approximately 1% loss per year. However, periods of inactivity due to illness or recovery from orthopedic procedures such as hip or knee replacement are times of accelerated sarcopenic muscle loss from which it may be more difficult for older persons to recover. Some of the consequences of age-related sarcopenia are easy to appreciate such as weakness and, eventually, reduced mobility; however, other lesser recognized consequences include, due to the metabolic role the skeletal muscle plays, an increased risk for poor glucose control and a predisposition toward weight gain. What we currently know is that two stimuli can counter this age related muscle loss and these are physical activity, specifically resistance exercise (weightlifting), and nutrition. The focus of this paper is on the types of dietary protein that people might reasonably consume to offset sarcopenic muscle loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Multiregional Age-Associated Reduction of Brain Neuronal Reserve Without Association With Neurofibrillary Degeneration or β-Amyloidosis.

    PubMed

    Wegiel, Jerzy; Flory, Michael; Kuchna, Izabela; Nowicki, Krzysztof; Yong Ma, Shuang; Wegiel, Jarek; Badmaev, Eulalia; Silverman, Wayne P; de Leon, Mony; Reisberg, Barry; Wisniewski, Thomas

    2017-06-01

    Increase in human life expectancy has resulted in the rapid growth of the elderly population with minimal or no intellectual deterioration. The aim of this stereological study of 10 structures and 5 subdivisions with and without neurofibrillary degeneration in the brains of 28 individuals 25-102-years-old was to establish the pattern of age-associated neurodegeneration and neuronal loss in the brains of nondemented adults and elderly. The study revealed the absence of significant neuronal loss in 7 regions and topographically selective reduction of neuronal reserve over 77 years in 8 brain structures including the entorhinal cortex (EC) (-33.3%), the second layer of the EC (-54%), cornu Ammonis sector 1 (CA1) (-28.5%), amygdala, (-45.8%), thalamus (-40.5%), caudate nucleus (-35%), Purkinje cells (-48.3%), and neurons in the dentate nucleus (40.1%). A similar rate of neuronal loss in adults and elderly, without signs of accelerating neuronal loss in agers or super-agers, appears to indicate age-associated brain remodeling with significant reduction of neuronal reserve in 8 brain regions. Multivariate analysis demonstrates the absence of a significant association between neuronal loss and the severity of neurofibrillary degeneration and β-amyloidosis, and a similar rate of age-associated neuronal loss in structures with and without neurofibrillary degeneration. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  3. Age-related Changes in Lateral Entorhinal and CA3 Neuron Allocation Predict Poor Performance on Object Discrimination

    PubMed Central

    Maurer, Andrew P.; Johnson, Sarah A.; Hernandez, Abbi R.; Reasor, Jordan; Cossio, Daniela M.; Fertal, Kaeli E.; Mizell, Jack M.; Lubke, Katelyn N.; Clark, Benjamin J.; Burke, Sara N.

    2017-01-01

    Age-related memory deficits correlate with dysfunction in the CA3 subregion of the hippocampus, which includes both hyperactivity and overly rigid activity patterns. While changes in intrinsic membrane currents and interneuron alterations are involved in this process, it is not known whether alterations in afferent input to CA3 also contribute. Neurons in layer II of the lateral entorhinal cortex (LEC) project directly to CA3 through the perforant path, but no data are available regarding the effects of advanced age on LEC activity and whether these activity patterns update in response to environmental change. Furthermore, it is not known the extent to which age-related deficits in sensory discrimination relate to the inability of aged CA3 neurons to update in response to new environments. Young and aged rats were pre-characterized on a LEGO© object discrimination task, comparable to behavioral tests in humans in which CA3 hyperactivity has been linked to impairments. The cellular compartment analysis of temporal activity with fluorescence in situ hybridization for the immediate-early gene Arc was then used to identify the principal cell populations that were active during two distinct epochs of random foraging in different environments. This approach enabled the extent to which rats could discriminate two similar objects to be related to the ability of CA3 neurons to update across different environments. In both young and aged rats, there were animals that performed poorly on the LEGO object discrimination task. In the aged rats only, however, the poor performers had a higher percent of CA3 neurons that were active during random foraging in a novel environment, but this is not related to the ability of CA3 neurons to remap when the environment changed. Afferent neurons to CA3 in LEC, as identified with the retrograde tracer choleratoxin B (CTB), also showed a higher percentage of cells that were positive for Arc mRNA in aged poor performing rats. This suggests

  4. Disparate Changes in Plasma and Brainstem Cytokine Levels in Adult and Ageing Rats Associated with Age-Related Changes in Facial Motor Neuron Number, Snout Muscle Morphology, and Exploratory Behavior.

    PubMed

    Katharesan, Viythia; Lewis, Martin David; Vink, Robert; Johnson, Ian Paul

    2016-01-01

    An overall increase in inflammatory cytokines with age in both the blood and the central nervous system (CNS) has been proposed to explain many aspects of ageing, including decreased motor function and neurodegeneration. This study tests the hypothesis that age-related increases in inflammatory cytokines in the blood and CNS lead to facial motor neuron degeneration. Groups of 3-5 female Sprague-Dawley rats aged 3, 12-18, and 24 months were used. Twelve cytokines interleukin (IL)-1α, IL-β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, tumor necrosis factor-α (TNFα), interferon-γ, and granulocyte macrophage-colony stimulating factor were measured in blood plasma and compared with those in the brainstem after first flushing blood from its vessels. The open-field test was used to measure exploratory behavior, and the morphology of the peripheral target muscle of facial motor neurons quantified. Total numbers of facial motor neurons were determined stereologically in separate groups of 3- and 24-month-old rats. Ageing rats showed a significant 30-42% decrease in blood plasma (peripheral) concentrations of IL-12p70 and TNFα and a significant 43-49% increase in brainstem (central) concentrations of IL-1α, IL-2, IL-4, IL-10, and TNFα. They also showed significant reductions in motor neuron number in the right but not left facial nucleus, reduced exploratory behavior, and increase in peripheral target muscle size. Marginal age-related facial motoneuronal loss occurs in the ageing rat and is characterized by complex changes in the inflammatory signature, rather than a general increase in inflammatory cytokines.

  5. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss.

    PubMed

    Bellantuono, Ilaria; Aldahmash, Abdullah; Kassem, Moustapha

    2009-04-01

    Marrow stromal cells (MSC) are thought to be stem cells with osteogenic potential and therefore responsible for the repair and maintenance of the skeleton. Age related bone loss is one of the most prevalent diseases in the elder population. It is controversial whether MSC undergo a process of aging in vivo, leading to decreased ability to form and maintain bone homeostasis with age. In this review we summarize evidence of MSC involvement in age related bone loss and suggest new emerging targets for intervention.

  6. Conditional forebrain inactivation of nicastrin causes progressive memory impairment and age-related neurodegeneration.

    PubMed

    Tabuchi, Katsuhiko; Chen, Guiquan; Südhof, Thomas C; Shen, Jie

    2009-06-03

    Loss of presenilin function in adult mouse brains causes memory loss and age-related neurodegeneration. Since presenilin possesses gamma-secretase-dependent and -independent activities, it remains unknown which activity is required for presenilin-dependent memory formation and neuronal survival. To address this question, we generated postnatal forebrain-specific nicastrin conditional knock-out (cKO) mice, in which nicastrin, a subunit of gamma-secretase, is inactivated selectively in mature excitatory neurons of the cerebral cortex. nicastrin cKO mice display progressive impairment in learning and memory and exhibit age-dependent cortical neuronal loss, accompanied by astrocytosis, microgliosis, and hyperphosphorylation of the microtubule-associated protein Tau. The neurodegeneration observed in nicastrin cKO mice likely occurs via apoptosis, as evidenced by increased numbers of apoptotic neurons. These findings demonstrate an essential role of nicastrin in the execution of learning and memory and the maintenance of neuronal survival in the brain and suggest that presenilin functions in memory and neuronal survival via its role as a gamma-secretase subunit.

  7. Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy

    PubMed Central

    Noda, Teppei; Meas, Steven J.; Nogami, Jumpei; Amemiya, Yutaka; Uchi, Ryutaro; Ohkawa, Yasuyuki; Nishimura, Koji; Dabdoub, Alain

    2018-01-01

    Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs). The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs. PMID:29492404

  8. Age-related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain Snitrosylation that increase myofibril degradation and sarcopenia

    PubMed Central

    Samengo, Giuseppina; Avik, Anna; Fedor, Brian; Whittaker, Daniel; Myung, Kyu H.; Wehling-Henricks, Michelle; Tidball, James G.

    2013-01-01

    Summary Sarcopenia, the age-related loss of muscle mass, is a highly-debilitating consequence of aging. In this investigation, we show sarcopenia is greatly reduced by muscle-specific over-expression of calpastatin, the endogenous inhibitor of calcium-dependent proteases (calpains). Further, we show that calpain cleavage of specific structural and regulatory proteins in myofibrils is prevented by covalent modification of calpain by nitric oxide (NO) through S-nitrosylation. We find that calpain in adult, non-sarcopenic muscles is S-nitrosylated but that aging leads to loss of S-nitrosylation, suggesting that reduced S-nitrosylation during aging leads to increased calpain-mediated proteolysis of myofibrils. Further, our data show that muscle aging is accompanied by loss of neuronal nitric oxide synthase (nNOS), the primary source of muscle NO, and that expression of a muscle-specific nNOS transgene restores calpain S-nitrosylation in aging muscle and prevents sarcopenia. Together, the findings show that in vivo reduction of calpain S-nitrosylation in muscle may be an important component of sarcopenia, indicating that modulation of NO can provide a therapeutic strategy to slow muscle loss during old age. PMID:22950758

  9. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment.

    PubMed

    Hermann, Petra M; Watson, Shawn N; Wildering, Willem C

    2014-01-01

    The aging brain undergoes a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (per)oxidation of membrane lipids and activation of phospholipase A2 (PLA2) enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the biology of cognitive aging we portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.

  10. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons

    PubMed Central

    Yang, Shi-Bing; Tien, An-Chi; Boddupalli, Gayatri; Xu, Allison W.; Jan, Yuh Nung; Jan, Lily Yeh

    2012-01-01

    Summary The prevalence of obesity in older people is the leading cause of metabolic syndromes. Central neurons serving as homeostatic sensors for bodyweight control include hypothalamic neurons that express pro-opiomelanocortin (POMC) or neuropeptide-Y (NPY) and agouti-related protein (AgRP). Here we report an age-dependent increase of mammalian target of rapamycin (mTOR) signaling in POMC neurons that elevates the ATP-sensitive potassium (KATP) channel activity cell-autonomously to silence POMC neurons. Systemic or intracerebral administration of the mTOR inhibitor rapamycin causes weight loss in old mice. Intracerebral rapamycin infusion into old mice enhances the excitability and neurite projection of POMC neurons, thereby causing a reduction of food intake and bodyweight. Conversely, young mice lacking the mTOR negative regulator TSC1 in POMC neurons, but not those lacking TSC1 in NPY/AgRP neurons, were obese. Our study reveals that an increase in mTOR signaling in hypothalamic POMC neurons contributes to age-dependent obesity. PMID:22884327

  11. Age-Related Hearing Loss: Quality of Care for Quality of Life

    ERIC Educational Resources Information Center

    Li-Korotky, Ha-Sheng

    2012-01-01

    Age-related hearing loss (ARHL), known as presbycusis, is characterized by progressive deterioration of auditory sensitivity, loss of the auditory sensory cells, and central processing functions associated with the aging process. ARHL is the third most prevalent chronic condition in older Americans, after hypertension and arthritis, and is a…

  12. A Ser75-to-Asp phospho-mimicking mutation in Src accelerates ageing-related loss of retinal ganglion cells in mice.

    PubMed

    Kashiwagi, Kenji; Ito, Sadahiro; Maeda, Shuichiro; Kato, Goro

    2017-12-01

    Src knockout mice show no detectable abnormalities in central nervous system (CNS) post-mitotic neurons, likely reflecting functional compensation by other Src family kinases. Cdk1- or Cdk5-dependent Ser75 phosphorylation in the amino-terminal Unique domain of Src, which shares no homology with other Src family kinases, regulates the stability of active Src. To clarify the roles of Src Ser75 phosphorylation in CNS neurons, we established two types of mutant mice with mutations in Src: phospho-mimicking Ser75Asp (SD) and non-phosphorylatable Ser75Ala (SA). In ageing SD/SD mice, retinal ganglion cell (RGC) number in whole retinas was significantly lower than that in young SD/SD mice in the absence of inflammation and elevated intraocular pressure, resembling the pathogenesis of progressive optic neuropathy. By contrast, SA/SA mice and wild-type (WT) mice exhibited no age-related RGC loss. The age-related retinal RGC number reduction was greater in the peripheral rather than the mid-peripheral region of the retina in SD/SD mice. Furthermore, Rho-associated kinase activity in whole retinas of ageing SD/SD mice was significantly higher than that in young SD/SD mice. These results suggest that Src regulates RGC survival during ageing in a manner that depends on Ser75 phosphorylation.

  13. Alterations in striatal dopamine catabolism precede loss of substantia nigra neurons in a mouse model of Juvenile Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Weimer, Jill M.; Benedict, Jared W.; Elshatory, Yasser M.; Short, Douglas W.; Ramirez-Montealegre, Denia; Ryan, Deborah A.; Alexander, Noreen A.; Federoff, Howard J.; Cooper, Jonathan D.; Pearce, David A.

    2016-01-01

    Batten disease, or juvenile neuronal ceroid lipofuscinosis (JNCL), results from mutations in the CLN3 gene. This disorder presents clinically around the age of five years with visual deficits progressing to include seizures, cognitive impairment, motor deterioration, hallucinations, and premature death by the third to forth decade of life. The motor deficits include coordination and gait abnormalities, myoclonic jerks, inability to initiate movements, and spasticity. Previous work from our laboratory has identified an early reduction in catechol-O-methyltransferase (COMT), an enzyme responsible for the efficient degradation of dopamine. Alterations in the kinetics of dopamine metabolism could cause the accumulation of undegraded or unsequestered dopamine leading to the formation of toxic dopamine intermediates. We report an imbalance in the catabolism of dopamine in three month Cln3-/- mice persisting through nine months of age that may be causal to oxidative damage within the striatum at nine months of age. Combined with the previously reported inflammatory changes and loss of post-synaptic D1α receptors, this could facilitate cell loss in striatal projection regions and underlie a general locomotion deficit that becomes apparent at twelve months of age in Cln3-/- mice. This study provides evidence for early changes in the kinetics of COMT in the Cln3-/- mouse striatum, affecting the turnover of dopamine, likely leading to neuron loss and motor deficits. These data provide novel insights into the basis of motor deficits in JNCL and how alterations in dopamine catabolism may result in oxidative damage and localized neuronal loss in this disorder. PMID:17617387

  14. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function

    PubMed Central

    Issa, Abdul-Raouf; Seugnet, Laurent; Klarsfeld, André

    2017-01-01

    Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila. PMID:28072817

  15. Aging in Sensory and Motor Neurons Results in Learning Failure in Aplysia californica.

    PubMed

    Kempsell, Andrew T; Fieber, Lynne A

    2015-01-01

    The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.

  16. The neural consequences of age-related hearing loss

    PubMed Central

    Peelle, Jonathan E.; Wingfield, Arthur

    2016-01-01

    During hearing, acoustic signals travel up the ascending auditory pathway from the cochlea to auditory cortex; efferent connections provide descending feedback. In human listeners, although auditory and cognitive processing have sometimes been viewed as separate domains, a growing body of work suggests they are intimately coupled. Here we review the effects of hearing loss on neural systems supporting spoken language comprehension, beginning with age-related physiological decline. We suggest that listeners recruit domain general executive systems to maintain successful communication when the auditory signal is degraded, but that this compensatory processing has behavioral consequences: even relatively mild levels of hearing loss can lead to cascading cognitive effects that impact perception, comprehension, and memory, leading to increased listening effort during speech comprehension. PMID:27262177

  17. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.

    PubMed

    Das, Melanie M; Avalos, Pablo; Suezaki, Patrick; Godoy, Marlesa; Garcia, Leslie; Chang, Christine D; Vit, Jean-Philippe; Shelley, Brandon; Gowing, Genevieve; Svendsen, Clive N

    2016-06-01

    Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Is the relative increase in income inequality related to tooth loss in middle-aged adults?

    PubMed

    Goulart, Mariél de Aquino; Vettore, Mario Vianna

    2016-01-01

    To assess whether Brazilian middle-aged adults living in cities that experienced a relative increase on income inequality were more likely to have severe tooth loss and lack a functional dentition. Data on Brazilian adults aged 35-44 years from state capitals and Federal District from the 2010 Brazilian Oral Health Survey (SBBrasil 2010) were analyzed. Clinically assessed tooth loss outcomes were severe tooth loss (<9 remaining natural teeth) and lack of functional dentition (<21 natural teeth). Income inequality was assessed by Gini Index in 1991, 2000, and 2003 using tertiles of distribution. Variation in Gini Index was assessed by changes in the tertiles distribution between years. Multilevel logistic regression models were used to estimate odds ratios (ORs) and 95 percent confidence intervals (95 percent CI) between variation in income inequality and tooth loss outcomes adjusting for individual socio-demographic characteristics. Prevalence of severe tooth loss and lack of functional dentition was 4.8 percent and 21.2 percent, respectively. Individuals living in cities with moderate and high increase in income inequality between 1991 and 2003 were more likely to have severe tooth loss and lack a functional dentition in 2010 compared with those living in cities with stable income inequality in the same period. Relationships between low family income and both tooth loss outcomes were significantly attenuated by relative increases in income inequality. Relative increases in income inequality were significantly associated with severe tooth loss and lack of a functional dentition in Brazilian middle-aged adults. © 2015 American Association of Public Health Dentistry.

  19. C. elegans model of neuronal aging

    PubMed Central

    Peng, Chiu-Ying; Chen, Chun-Hao; Hsu, Jiun-Min

    2011-01-01

    Aging of the nervous system underlies the behavioral and cognitive decline associated with senescence. Understanding the molecular and cellular basis of neuronal aging will therefore contribute to the development of effective treatments for aging and age-associated neurodegenerative disorders. Despite this pressing need, there are surprisingly few animal models that aim at recapitulating neuronal aging in a physiological context. We recently developed a C. elegans model of neuronal aging, and showed that age-dependent neuronal defects are regulated by insulin signaling. We identified electrical activity and epithelial attachment as two critical factors in the maintenance of structural integrity of C. elegans touch receptor neurons. These findings open a new avenue for elucidating the molecular mechanisms that maintain neuronal structures during the course of aging. PMID:22446530

  20. Loss of aPKCλ in Differentiated Neurons Disrupts the Polarity Complex but Does Not Induce Obvious Neuronal Loss or Disorientation in Mouse Brains

    PubMed Central

    Yamanaka, Tomoyuki; Tosaki, Asako; Kurosawa, Masaru; Akimoto, Kazunori; Hirose, Tomonori; Ohno, Shigeo; Hattori, Nobutaka; Nukina, Nobuyuki

    2013-01-01

    Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation. PMID:24391875

  1. The role of hormones, cytokines and heat shock proteins during age-related muscle loss.

    PubMed

    Lee, Claire E; McArdle, Anne; Griffiths, Richard D

    2007-10-01

    Ageing is associated with a progressive decline of muscle mass, strength, and quality, a condition known as sarcopenia. Due to the progressive ageing of western populations, age-related sarcopenia is a major public health problem. Several possible mechanisms for age-related muscle atrophy have been described; however the precise contribution of each is unknown. Age-related muscle loss is thought to be a multi-factoral process composed of events such as physical activity, nutritional intake, oxidative stress, inflammatory insults and hormonal changes. There is a need for a greater understanding of the loss of muscle mass with age as this could have a dramatic impact on the elderly and critically ill if this research leads to maintenance or improvement in functional ability. This review aims to outline the process of skeletal muscle degeneration with ageing, normal and aberrant skeletal muscle regeneration, and to address recent research on the effects of gender and sex steroid hormones during the process of age-related muscle loss.

  2. Age-related hearing impairment and the triad of acquired hearing loss

    PubMed Central

    Yang, Chao-Hui; Schrepfer, Thomas; Schacht, Jochen

    2015-01-01

    Understanding underlying pathological mechanisms is prerequisite for a sensible design of protective therapies against hearing loss. The triad of age-related, noise-generated, and drug-induced hearing loss displays intriguing similarities in some cellular responses of cochlear sensory cells such as a potential involvement of reactive oxygen species (ROS) and apoptotic and necrotic cell death. On the other hand, detailed studies have revealed that molecular pathways are considerably complex and, importantly, it has become clear that pharmacological protection successful against one form of hearing loss will not necessarily protect against another. This review will summarize pathological and pathophysiological features of age-related hearing impairment (ARHI) in human and animal models and address selected aspects of the commonality (or lack thereof) of cellular responses in ARHI to drugs and noise. PMID:26283913

  3. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    PubMed

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  4. Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis.

    PubMed

    Kielar, Catherine; Maddox, Lucy; Bible, Ellen; Pontikis, Charlie C; Macauley, Shannon L; Griffey, Megan A; Wong, Michael; Sands, Mark S; Cooper, Jonathan D

    2007-01-01

    Infantile neuronal ceroid lipofuscinosis (INCL) is caused by deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). We have investigated the onset and progression of pathological changes in Ppt1 deficient mice (Ppt1-/-) and the development of their seizure phenotype. Surprisingly, cortical atrophy and neuron loss occurred only late in disease progression but were preceded by localized astrocytosis within individual thalamic nuclei and the progressive loss of thalamic neurons that relay different sensory modalities to the cortex. This thalamic neuron loss occurred first within the visual system and only subsequently in auditory and somatosensory relay nuclei or the inhibitory reticular thalamic nucleus. The loss of granule neurons and GABAergic interneurons followed in each corresponding cortical region, before the onset of seizure activity. These findings provide novel evidence for successive neuron loss within the thalamus and cortex in Ppt1-/- mice, revealing the thalamus as an important early focus of INCL pathogenesis.

  5. Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis

    PubMed Central

    Kielar, Catherine; Maddox, Lucy; Bible, Ellen; Pontikis, Charlie C; Macauley, Shannon L; Griffey, Megan A; Wong, Michael; Sands, Mark S; Cooper, Jonathan D

    2007-01-01

    Infantile neuronal ceroid lipofuscinosis (INCL) is caused by deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). We have investigated the onset and progression of pathological changes in Ppt1-deficient mice (Ppt1−/−) and the development of their seizure phenotype. Surprisingly, cortical atrophy and neuron loss occurred only late in disease progression, but were preceded by localized astrocytosis within individual thalamic nuclei and the progressive loss of thalamic neurons that relay different sensory modalities to the cortex. This thalamic neuron loss occurred first within the visual system and only subsequently in auditory and somatosensory relay nuclei or the inhibitory reticular thalamic nucleus. The loss of granule neurons and GABAergic interneurons followed in each corresponding cortical region, before the onset of seizure activity. These findings provide novel evidence for successive neuron loss within the thalamus and cortex in Ppt1−/− mice, revealing the thalamus as an important early focus of INCL pathogenesis. PMID:17046272

  6. Impact of methamphetamine on dopamine neurons in primates is dependent on age: implications for development of Parkinson's disease

    PubMed Central

    Morrow, Bret A.; Roth, Robert H.; Redmond, D. Eugene; Elsworth, John D.

    2011-01-01

    Methamphetamine is a CNS stimulant with limited therapeutic indications, but is widely abused. Short-term exposure to higher doses, or long-term exposure to lower doses, of methamphetamine induces lasting damage to nigrostriatal dopamine neurons in man and animals. Strong evidence indicates that the mechanism for this detrimental effect on dopamine neurons involves oxidative stress exerted by reactive oxygen species. This study investigates the relative susceptibility of dopamine neurons in mid-gestation, young, and adult (not aged) monkeys to 4 treatments with methamphetamine over 2 days. Primate dopamine neurons undergo natural cell death at mid-gestation, and we hypothesized that during this event they are particularly vulnerable to oxidative stress. The results indicated that at mid-gestation and in adults, dopamine neurons were susceptible to methamphetamine-induced damage, as indicated by loss of striatal TH immunoreactivity and dopamine concentration. However, dopamine neurons in young animals appeared totally resistant to the treatment, despite this group having higher brain levels of methamphetamine 3 hours after administration than the adults. As a possible explanation for the protection, striatal GDNF levels were elevated in young animals 1-week after treatment, but not in adults following methamphetamine treatment. Implications of these primate studies are: 1) the susceptibility of dopamine neurons at mid-gestation to methamphetamine warns against the risk of exposing pregnant women to the drug or oxidative stressors, and supports the hypothesis of Parkinson's disease being associated with oxidative stress during development, 2) elucidation of the mechanism of resistance of dopamine neurons in the young animals to methamphetamine-induced oxidative stress may provide targets for slowing or preventing age- or disease-related loss of adult nigrostriatal DA neurons, and 3) the increased striatal production of GDNF in young animals, but not in adults, in

  7. The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson's Disease.

    PubMed

    Schöndorf, David C; Ivanyuk, Dina; Baden, Pascale; Sanchez-Martinez, Alvaro; De Cicco, Silvia; Yu, Cong; Giunta, Ivana; Schwarz, Lukas K; Di Napoli, Gabriele; Panagiotakopoulou, Vasiliki; Nestel, Sigrun; Keatinge, Marcus; Pruszak, Jan; Bandmann, Oliver; Heimrich, Bernd; Gasser, Thomas; Whitworth, Alexander J; Deleidi, Michela

    2018-06-05

    While mitochondrial dysfunction is emerging as key in Parkinson's disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness

    PubMed Central

    Branch, Abigail F.; Navidi, William; Tabuchi, Sawako; Terao, Akira; Yamanaka, Akihiro; Scammell, Thomas E.; Diniz Behn, Cecilia

    2016-01-01

    Study Objectives: Narcolepsy is caused by loss of the orexin (also known as hypocretin) neurons. In addition to the orexin peptides, these neurons release additional neurotransmitters, which may produce complex effects on sleep/wake behavior. Currently, it remains unknown whether the orexin neurons promote the initiation as well as the maintenance of wakefulness, and whether the orexin neurons influence initiation or maintenance of sleep. To determine the effects of the orexin neurons on the dynamics of sleep/wake behavior, we analyzed sleep/wake architecture in a novel mouse model of acute orexin neuron loss. Methods: We used survival analysis and other statistical methods to analyze sleep/wake architecture in orexin-tTA ; TetO diphtheria toxin A mice at different stages of orexin neuron degeneration. Results: Progressive loss of the orexin neurons dramatically reduced survival of long wake bouts, but it also improved survival of brief wake bouts. In addition, with loss of the orexin neurons, mice were more likely to wake during the first 30 sec of nonrapid eye movement sleep and then less likely to return to sleep during the first 60 sec of wakefulness. Conclusions: These findings help explain the sleepiness and fragmented sleep that are characteristic of narcolepsy. Orexin neuron loss impairs survival of long wake bouts resulting in poor maintenance of wakefulness, but this neuronal loss also fragments sleep by increasing the risk of awakening at the beginning of sleep and then reducing the likelihood of quickly returning to sleep. Citation: Branch AF, Navidi W, Tabuchi S, Terao A, Yamanaka A, Scammell TE, Diniz Behn C. Progressive loss of the orexin neurons reveals dual effects on wakefulness. SLEEP 2016;39(2):369–377. PMID:26446125

  9. Cigarette smoking is associated with amplified age-related volume loss in subcortical brain regions.

    PubMed

    Durazzo, Timothy C; Meyerhoff, Dieter J; Yoder, Karmen K; Murray, Donna E

    2017-08-01

    Magnetic resonance imaging studies of cigarette smoking-related effects on human brain structure have primarily employed voxel-based morphometry, and the most consistently reported finding was smaller volumes or lower density in anterior frontal regions and the insula. Much less is known about the effects of smoking on subcortical regions. We compared smokers and non-smokers on regional subcortical volumes, and predicted that smokers demonstrate greater age-related volume loss across subcortical regions than non-smokers. Non-smokers (n=43) and smokers (n=40), 22-70 years of age, completed a 4T MRI study. Bilateral total subcortical lobar white matter (WM) and subcortical nuclei volumes were quantitated via FreeSurfer. In smokers, associations between smoking severity measures and subcortical volumes were examined. Smokers demonstrated greater age-related volume loss than non-smokers in the bilateral subcortical lobar WM, thalamus, and cerebellar cortex, as well as in the corpus callosum and subdivisions. In smokers, higher pack-years were associated with smaller volumes of the bilateral amygdala, nucleus accumbens, total corpus callosum and subcortical WM. Results provide novel evidence that chronic smoking in adults is associated with accelerated age-related volume loss in subcortical WM and GM nuclei. Greater cigarette quantity/exposure was related to smaller volumes in regions that also showed greater age-related volume loss in smokers. Findings suggest smoking adversely affected the structural integrity of subcortical brain regions with increasing age and exposure. The greater age-related volume loss in smokers may have implications for cortical-subcortical structural and/or functional connectivity, and response to available smoking cessation interventions. Published by Elsevier B.V.

  10. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury.

    PubMed

    Martens, Lauren Herl; Zhang, Jiasheng; Barmada, Sami J; Zhou, Ping; Kamiya, Sherry; Sun, Binggui; Min, Sang-Won; Gan, Li; Finkbeiner, Steven; Huang, Eric J; Farese, Robert V

    2012-11-01

    Progranulin (PGRN) is a widely expressed secreted protein that is linked to inflammation. In humans, PGRN haploinsufficiency is a major inherited cause of frontotemporal dementia (FTD), but how PGRN deficiency causes neurodegeneration is unknown. Here we show that loss of PGRN results in increased neuron loss in response to injury in the CNS. When exposed acutely to 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydrophine (MPTP), mice lacking PGRN (Grn⁻/⁻) showed more neuron loss and increased microgliosis compared with wild-type mice. The exacerbated neuron loss was due not to selective vulnerability of Grn⁻/⁻ neurons to MPTP, but rather to an increased microglial inflammatory response. Consistent with this, conditional mutants lacking PGRN in microglia exhibited MPTP-induced phenotypes similar to Grn⁻/⁻ mice. Selective depletion of PGRN from microglia in mixed cortical cultures resulted in increased death of wild-type neurons in the absence of injury. Furthermore, Grn⁻/⁻ microglia treated with LPS/IFN-γ exhibited an amplified inflammatory response, and conditioned media from these microglia promoted death of cultured neurons. Our results indicate that PGRN deficiency leads to dysregulated microglial activation and thereby contributes to increased neuron loss with injury. These findings suggest that PGRN deficiency may cause increased neuron loss in other forms of CNS injury accompanied by neuroinflammation.

  11. Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons

    PubMed Central

    Berthet, Amandine; Margolis, Elyssa B.; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S.; Ahmad, Jawad; Edwards, Robert H.; Sesaki, Hiromi; Huang, Eric J.

    2014-01-01

    Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics—mitochondrial fission—in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate–putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons. PMID:25339743

  12. Negotiating 'positive' aging in the presence of age-related vision loss (ARVL): The shaping and perpetuation of disability.

    PubMed

    McGrath, Colleen; Laliberte Rudman, Debbie; Polgar, Jan; Spafford, Marlee M; Trentham, Barry

    2016-12-01

    While previous research has explored the meaning of positive aging discourses from the perspective of older adults, the perspective of older adults aging with a disability has not been studied. In fact the intersection of aging and disability has been largely underexplored in both social gerontology and disability studies. This critical ethnography engaged ten older adults aging with vision loss in narrative interviews, participant observation sessions, and semi-structured in-depth interviews. The overarching objective was to understand those attributes that older adults with age-related vision loss perceive as being the markers of a 'good old age.' The authors critically examined how these markers, and their disabling effects, are situated in ageist and disablist social assumptions regarding what it means to 'age well'. The participants' descriptions of the markers of a 'good old age' were organized into five main themes: 1) maintaining independence while negotiating help; 2) responding positively to vision loss; 3) remaining active while managing risk; 4) managing expectations to be compliant, complicit, and cooperative and; 5) striving to maintain efficiency. The study findings have provided helpful insights into how the ideas and assumptions that operate in relation to disability and impairment in late life are re-produced among older adults with age-related vision loss and how older adults take on an identity that is consistent with socially embedded norms regarding what it means to 'age well'. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS.

    PubMed

    Turlejski, Kris; Djavadian, Ruzanna

    2002-01-01

    In this chapter we provide an extensive review of 100 years of research on the stability of neurons in the mammalian brain, with special emphasis on humans. Although Cajal formulated the Neuronal Doctrine, he was wrong in his beliefs that adult neurogenesis did not occur and adult neurons are dying throughout life. These two beliefs became accepted "common knowledge" and have shaped much of neuroscience research and provided much of the basis for clinical treatment of age-related brain diseases. In this review, we consider adult neurogenesis from a historical and evolutionary perspective. It is concluded, that while adult neurogenesis is a factor in the dynamics of the dentate gyrus and olfactory bulb, it is probably not a major factor during the life-span in most brain areas. Likewise, the acceptance of neuronal death as an explanation for normal age-related senility is challenged with evidence collected over the last fifty years. Much of the problem in changing this common belief of dying neurons was the inadequacies of neuronal counting methods. In this review we discuss in detail implications of recent improvements in neuronal quantification. We conclude: First, age-related neuronal atrophy is the major factor in functional deterioration of existing neurons and could be slowed down, or even reversed by various pharmacological interventions. Second, in most cases neuronal degeneration during aging is a pathology that in principle may be avoided. Third, loss of myelin and of the white matter is more frequent and important than the limited neuronal death in normal aging.

  14. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    PubMed Central

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  15. Optimal compensation for neuron loss

    PubMed Central

    Barrett, David GT; Denève, Sophie; Machens, Christian K

    2016-01-01

    The brain has an impressive ability to withstand neural damage. Diseases that kill neurons can go unnoticed for years, and incomplete brain lesions or silencing of neurons often fail to produce any behavioral effect. How does the brain compensate for such damage, and what are the limits of this compensation? We propose that neural circuits instantly compensate for neuron loss, thereby preserving their function as much as possible. We show that this compensation can explain changes in tuning curves induced by neuron silencing across a variety of systems, including the primary visual cortex. We find that compensatory mechanisms can be implemented through the dynamics of networks with a tight balance of excitation and inhibition, without requiring synaptic plasticity. The limits of this compensatory mechanism are reached when excitation and inhibition become unbalanced, thereby demarcating a recovery boundary, where signal representation fails and where diseases may become symptomatic. DOI: http://dx.doi.org/10.7554/eLife.12454.001 PMID:27935480

  16. Endoplasmic reticulum stress in wake-active neurons progresses with aging.

    PubMed

    Naidoo, Nirinjini; Zhu, Jingxu; Zhu, Yan; Fenik, Polina; Lian, Jie; Galante, Ray; Veasey, Sigrid

    2011-08-01

    Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  17. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices

    PubMed Central

    Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.

    2011-01-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464

  18. Cellular changes in the enteric nervous system during ageing.

    PubMed

    Saffrey, M Jill

    2013-10-01

    The intrinsic neurons of the gut, enteric neurons, have an essential role in gastrointestinal functions. The enteric nervous system is plastic and continues to undergo changes throughout life, as the gut grows and responds to dietary and other environmental changes. Detailed analysis of changes in the ENS during ageing suggests that enteric neurons are more vulnerable to age-related degeneration and cell death than neurons in other parts of the nervous system, although there is considerable variation in the extent and time course of age-related enteric neuronal loss reported in different studies. Specific neuronal subpopulations, particularly cholinergic myenteric neurons, may be more vulnerable than others to age-associated loss or damage. Enteric degeneration and other age-related neuronal changes may contribute to gastrointestinal dysfunction that is common in the elderly population. Evidence suggests that caloric restriction protects against age-associated loss of enteric neurons, but recent advances in the understanding of the effects of the microbiota and the complex interactions between enteric ganglion cells, mucosal immune system and intestinal epithelium indicate that other factors may well influence ageing of enteric neurons. Much remains to be understood about the mechanisms of neuronal loss and damage in the gut, although there is evidence that reactive oxygen species, neurotrophic factor dysregulation and/or activation of a senescence associated phenotype may be involved. To date, there is no evidence for ongoing neurogenesis that might replace dying neurons in the ageing gut, although small local sites of neurogenesis would be difficult to detect. Finally, despite the considerable evidence for enteric neurodegeneration during ageing, and evidence for some physiological changes in animal models, the ageing gut appears to maintain its function remarkably well in animals that exhibit major neuronal loss, indicating that the ENS has considerable

  19. Age-related differences in body weight loss in response to altered thyroidal status.

    PubMed

    Mooradian, A D

    1990-01-01

    To determine whether age-related differences in body weight loss in hyperthyroidism could be related to caloric intake, the body weight and food consumption of Fischer 344 male rats were monitored every other day for four weeks. Six-month-old (young) rats were compared to 16-month-old rats (intermediate age) and 25-month-old (aged) rats. Hypothyroidism was induced with 0.025% methimazole in the drinking water for four weeks. Hyperthyroidism was induced with triiodothyronine (T3) injections (15 micrograms/100 g body weight i.p.) for the last 10 days of observation. A group of young rats pair fed with aged rats was included as a control group. The body weight changes of aged rats were similar to hypothyroid young rats. An index of T3 catabolic effect was calculated based on the net weight loss and food intake. This index was not different in aged rats compared to young rats. The apparent hypersensitivity of aged rats to T3 as evidenced by excessive weight loss could totally be attributed to decreased caloric intake. It is concluded that aged rats compared to the young are not more sensitive to the overall catabolic effects of thyroid hormones.

  20. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons.

    PubMed

    Berthet, Amandine; Margolis, Elyssa B; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S; Ahmad, Jawad; Edwards, Robert H; Sesaki, Hiromi; Huang, Eric J; Nakamura, Ken

    2014-10-22

    Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons. Copyright © 2014 the authors 0270-6474/14/3414304-14$15.00/0.

  1. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo.

    PubMed

    Kim, Hyung-Wook; Choi, Won-Seok; Sorscher, Noah; Park, Hyung Joon; Tronche, François; Palmiter, Richard D; Xia, Zhengui

    2015-09-01

    Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron

  2. Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL.

    PubMed

    Ojo, Bunmi; Rezaie, Payam; Gabbott, Paul L; Davies, Heather; Colyer, Frances; Cowley, Thelma R; Lynch, Marina; Stewart, Michael G

    2012-07-01

    Altered synaptic morphology, progressive loss of synapses and glial (astrocyte and microglial) cell activation are considered as characteristic hallmarks of aging. Recent evidence suggests that there is a concomitant age-related decrease in expression of the presynaptic protein, synaptophysin, and the neuronal glycoprotein CD200, which, by interacting with its receptor, plays a role in maintaining microglia in a quiescent state. These age-related changes may be indicative of reduced neuroglial support of synapses. FG Loop (FGL) peptide synthesized from the second fibronectin type III module of neural cell adhesion molecule (NCAM), has previously been shown to attenuate age-related glial cell activation, and to 'restore' cognitive function in aged rats. The mechanisms by which FGL exerts these neuroprotective effects remain unclear, but could involve regulation of CD200, modifying glial-synaptic interactions (affecting neuroglial 'support' at synapses), or impacting directly on synaptic function. Light and electron microscopic (EM) analyses were undertaken to investigate whether systemic treatment with FGL (i) alters CD200, synaptophysin (presynaptic) and PSD-95 (postsynaptic) immunohistochemical expression levels, (ii) affects synaptic number, or (iii) exerts any effects on glial-synaptic interactions within young (4 month-old) and aged (22 month-old) rat hippocampus. Treatment with FGL attenuated the age-related loss of synaptophysin immunoreactivity (-ir) within CA3 and hilus (with no major effect on PSD-95-ir), and of CD200-ir specifically in the CA3 region. Ultrastructural morphometric analyses showed that FGL treatment (i) prevented age-related loss in astrocyte-synaptic contacts, (ii) reduced microglia-synaptic contacts in the CA3 stratum radiatum, but (iii) had no effect on the mean number of synapses in this region. These data suggest that FGL mediates its neuroprotective effects by regulating glial-synaptic interaction. Copyright © 2011 Elsevier Inc. All

  3. Age-related reduction in microcolumnar structure correlates with cognitive decline in ventral but not dorsal area 46 of the rhesus monkey.

    PubMed

    Cruz, L; Roe, D L; Urbanc, B; Inglis, A; Stanley, H E; Rosene, D L

    2009-02-18

    The age-related decline in cognitive function that is observed in normal aging monkeys and humans occurs without significant loss of cortical neurons. This suggests that cognitive impairment results from subtle, sub-lethal changes in the cortex. Recently, changes in the structural coherence in mini- or microcolumns without loss of neurons have been linked to loss of function. Here we use a density map method to quantify microcolumnar structure in both banks of the sulcus principalis (prefrontal cortical area 46) of 16 (ventral) and 19 (dorsal) behaviorally tested female rhesus monkeys from 6 to 33 years of age. While total neuronal density does not change with age in either of these banks, there is a significant age-related reduction in the strength of microcolumns in both regions on the order of 40%. This likely reflects a subtle but definite loss of organization in the structure of the cortical microcolumn. The reduction in strength in ventral area 46 correlates with cognitive impairments in learning and memory while the reduction in dorsal area 46 does not. This result is congruent with published data attributing cognitive functions to ventral area 46 that are similar to our particular cognitive battery which does not optimally tap cognitive functions attributed to dorsal area 46. While the exact mechanisms underlying this loss of microcolumnar organization remain to be determined, it is plausible that they reflect age-related alterations in dendritic and/or axonal organization which alter connectivity and may contribute to age-related declines in cognitive performance.

  4. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices.

    PubMed

    Tremblay, Marie-Ève; Zettel, Martha L; Ison, James R; Allen, Paul D; Majewska, Ania K

    2012-04-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical, and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. Copyright © 2012 Wiley Periodicals, Inc.

  5. Age-related hearing loss: quality of care for quality of life.

    PubMed

    Li-Korotky, Ha-Sheng

    2012-04-01

    Age-related hearing loss (ARHL), known as presbycusis, is characterized by progressive deterioration of auditory sensitivity, loss of the auditory sensory cells, and central processing functions associated with the aging process. ARHL is the third most prevalent chronic condition in older Americans, after hypertension and arthritis, and is a leading cause of adult hearing handicaps in the United States. The prevalence of ARHL is expected to rise for the next several decades with the increasing aging Baby Boomer population. Nevertheless, ARHL remains an often undetected, underestimated and neglected condition in the geriatric population due to a slow development process of the disease. If left untreated, the impact of ARHL on patients, significant others, and the society as a whole would be significant. The purpose of this review is to raise the awareness of ARHL, to update our current understanding of ARHL with a focus on age-related deficits in auditory and cognitive processing of speech, and to explore strategies of prevention, identification, amplification, and aural rehabilitation. The ultimate goal is to improve the quality of hearing health care and the overall quality of life of the Baby Boomer generation.

  6. Integrating multiple aspects of mitochondrial dynamics in neurons: Age-related differences and dynamic changes in a chronic rotenone model

    PubMed Central

    Arnold, Beth; Cassady, Steven J.; Van Laar, Victor S.; Berman, Sarah B.

    2010-01-01

    Changes in dynamic properties of mitochondria are increasingly implicated in neurodegenerative diseases, particularly Parkinson’s disease (PD). Static changes in mitochondrial morphology, often under acutely toxic conditions, are commonly utilized as indicators of changes in mitochondrial fission and fusion. However, in neurons, mitochondrial fission and fusion occur in a dynamic system of axonal/dendritic transport, biogenesis and degradation, and thus, likely interact and change over time. We sought to explore this using a chronic neuronal model (nonlethal low-concentration rotenone over several weeks), examining distal neurites, which may give insight into the earliest changes occurring in PD. Using this model, in live primary neurons, we directly quantified mitochondrial fission, fusion, and transport over time and integrated multiple aspects of mitochondrial dynamics, including morphology and growth/mitophagy. We found that rates of mitochondrial fission and fusion change as neurons age. In addition, we found that chronic rotenone exposure initially increased the ratio of fusion to fission, but later, this was reversed. Surprisingly, despite changes in rates of fission and fusion, mitochondrial morphology was minimally affected, demonstrating that morphology can be an inaccurate indicator of fission/fusion changes. In addition, we found evidence of subcellular compartmentalization of compensatory changes, as mitochondrial density increased in distal neurites first, which may be important in PD, where pathology may begin distally. We propose that rotenone-induced early changes such as in mitochondrial fusion are compensatory, accompanied later by detrimental fission. As evidence, in a dopaminergic neuronal model, in which chronic rotenone caused loss of neurites before cell death (like PD pathology), inhibiting fission protected against the neurite loss. This suggests that aberrant mitochondrial dynamics may contribute to the earliest neuropathologic

  7. Atrophy and neuron loss: effects of a protein-deficient diet on sympathetic neurons.

    PubMed

    Gomes, Silvio Pires; Nyengaard, Jens Randel; Misawa, Rúbia; Girotti, Priscila Azevedo; Castelucci, Patrìcia; Blazquez, Francisco Hernandez Javier; de Melo, Mariana Pereira; Ribeiro, Antonio Augusto Coppi

    2009-12-01

    Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (c) 2009 Wiley-Liss, Inc. Copyright 2009 Wiley-Liss, Inc.

  8. Audio-visual speech processing in age-related hearing loss: Stronger integration and increased frontal lobe recruitment.

    PubMed

    Rosemann, Stephanie; Thiel, Christiane M

    2018-07-15

    Hearing loss is associated with difficulties in understanding speech, especially under adverse listening conditions. In these situations, seeing the speaker improves speech intelligibility in hearing-impaired participants. On the neuronal level, previous research has shown cross-modal plastic reorganization in the auditory cortex following hearing loss leading to altered processing of auditory, visual and audio-visual information. However, how reduced auditory input effects audio-visual speech perception in hearing-impaired subjects is largely unknown. We here investigated the impact of mild to moderate age-related hearing loss on processing audio-visual speech using functional magnetic resonance imaging. Normal-hearing and hearing-impaired participants performed two audio-visual speech integration tasks: a sentence detection task inside the scanner and the McGurk illusion outside the scanner. Both tasks consisted of congruent and incongruent audio-visual conditions, as well as auditory-only and visual-only conditions. We found a significantly stronger McGurk illusion in the hearing-impaired participants, which indicates stronger audio-visual integration. Neurally, hearing loss was associated with an increased recruitment of frontal brain areas when processing incongruent audio-visual, auditory and also visual speech stimuli, which may reflect the increased effort to perform the task. Hearing loss modulated both the audio-visual integration strength measured with the McGurk illusion and brain activation in frontal areas in the sentence task, showing stronger integration and higher brain activation with increasing hearing loss. Incongruent compared to congruent audio-visual speech revealed an opposite brain activation pattern in left ventral postcentral gyrus in both groups, with higher activation in hearing-impaired participants in the incongruent condition. Our results indicate that already mild to moderate hearing loss impacts audio-visual speech processing

  9. Acute Seizures in Old Age Leads to a Greater Loss of CA1 Pyramidal Neurons, an Increased Propensity for Developing Chronic TLE and a Severe Cognitive Dysfunction.

    PubMed

    Hattiangady, Bharathi; Kuruba, Ramkumar; Shetty, Ashok K

    2011-02-01

    ability for spatial learning but had memory retrieval dysfunction after AS activity. Thus, AS activity in old age results in a greater loss of hippocampal CA1 pyramidal neurons, an increased propensity for developing robust chronic TLE, and a severe cognitive dysfunction.

  10. Selective neuronal loss in ischemic stroke and cerebrovascular disease

    PubMed Central

    Baron, Jean-Claude; Yamauchi, Hiroshi; Fujioka, Masayuki; Endres, Matthias

    2014-01-01

    As a sequel of brain ischemia, selective neuronal loss (SNL)—as opposed to pannecrosis (i.e. infarction)—is attracting growing interest, particularly because it is now detectable in vivo. In acute stroke, SNL may affect the salvaged penumbra and hamper functional recovery following reperfusion. Rodent occlusion models can generate SNL predominantly in the striatum or cortex, showing that it can affect behavior for weeks despite normal magnetic resonance imaging. In humans, SNL in the salvaged penumbra has been documented in vivo mainly using positron emission tomography and 11C-flumazenil, a neuronal tracer validated against immunohistochemistry in rodent stroke models. Cortical SNL has also been documented using this approach in chronic carotid disease in association with misery perfusion and behavioral deficits, suggesting that it can result from chronic or unstable hemodynamic compromise. Given these consequences, SNL may constitute a novel therapeutic target. Selective neuronal loss may also develop at sites remote from infarcts, representing secondary ‘exofocal' phenomena akin to degeneration, potentially related to poststroke behavioral or mood impairments again amenable to therapy. Further work should aim to better characterize the time course, behavioral consequences—including the impact on neurological recovery and contribution to vascular cognitive impairment—association with possible causal processes such as microglial activation, and preventability of SNL. PMID:24192635

  11. Vitamin K’s role in age-related bone loss: A critical review

    USDA-ARS?s Scientific Manuscript database

    The protective role of vitamin K in age-related bone loss continues to be controversial. The results of observational analyses are inconsistent with respect to associations between vitamin K status and bone, which arguably may be related to the limitations of observational study designs and analyt...

  12. Differential loss of striatal projection neurons in Huntington disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiner, A.; Albin, R.L.; Anderson, K.D.

    1988-08-01

    Huntington disease (HD) is characterized by the loss of striatal projection neurons, which constitute the vast majority of striatal neurons. To determine whether there is differential loss among different populations of striatal projection neurons, the integrity of the axon terminal plexuses arising from the different populations of substance P-containing and enkephalin-containing striatal projection neurons was studied in striatal target areas by immunohistochemistry. Analysis of 17 HD specimens indicated that in early and middle stages of HD, enkephalin-containing neurons projecting to the external segment of the globus pallidus were much more affected than substance P-containing neurons projecting to the internal pallidalmore » segment. Furthermore, substance P-containing neurons projecting to the substantia nigra pars reticulata were more affected than those projecting to the substantia nigra pars compacta. At the most advanced stages of the disease, projections to all striatal target areas were depleted, with the exception of some apparent sparing of the striatal projection to the substantia nigra pars compacta. These finding may explain some of the clinical manifestations and pharmacology of HD. They also may aid in identifying the neural defect underlying HD and provide additional data with which to evaluate current models of HD pathogenesis.« less

  13. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons.

    PubMed

    Calvo-Rodríguez, María; de la Fuente, Carmen; García-Durillo, Mónica; García-Rodríguez, Carmen; Villalobos, Carlos; Núñez, Lucía

    2017-01-31

    Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors of the innate immune system recognizing diverse pathogen-derived and tissue damage-related ligands. It has been suggested that TLR signaling contributes to the pathogenesis of age-related, neurodegenerative diseases, including Alzheimer's disease (AD). AD is associated to oligomers of the amyloid β peptide (Aβo) that cause intracellular Ca 2+ dishomeostasis and neuron cell death in rat hippocampal neurons. Here we assessed the interplay between inflammation and Aβo in long-term cultures of rat hippocampal neurons, an in vitro model of neuron aging and/or senescence. Ca 2+ imaging and immunofluorescence against annexin V and TLR4 were applied in short- and long-term cultures of rat hippocampal neurons to test the effects of TLR4-agonist LPS and Aβo on cytosolic [Ca 2+ ] and on apoptosis as well as on expression of TLR4. LPS increases cytosolic [Ca 2+ ] and promotes apoptosis in rat hippocampal neurons in long-term culture considered aged and/or senescent neurons, but not in short-term cultured neurons considered young neurons. TLR4 antagonist CAY10614 prevents both effects. TLR4 expression in rat hippocampal neurons is significantly larger in aged hippocampal cultures. Treatment of aged hippocampal cultures with Aβo increases TLR4 expression and enhances LPS-induced Ca 2+ responses and neuron cell death. Aging and amyloid β oligomers, the neurotoxin involved in Alzheimer's disease, enhance TLR4 expression as well as LPS-induced Ca 2+ responses and neuron cell death in rat hippocampal neurons aged in vitro.

  14. Effects of Age and Age-Related Hearing Loss on the Brain

    ERIC Educational Resources Information Center

    Tremblay, Kelly; Ross, Bernhard

    2007-01-01

    It is well documented that aging adversely affects the ability to perceive time-varying acoustic cues. Here we review how physiological measures are being used to explore the effects of aging (and concomitant hearing loss) on the neural representation of temporal cues. Also addressed are the implications of current research findings on the…

  15. Lithium Promotes Neuronal Repair and Ameliorates Depression-Like Behavior following Trimethyltin-Induced Neuronal Loss in the Dentate Gyrus

    PubMed Central

    Yoneyama, Masanori; Shiba, Tatsuo; Hasebe, Shigeru; Umeda, Kasumi; Yamaguchi, Taro; Ogita, Kiyokazu

    2014-01-01

    Lithium, a mood stabilizer, is known to ameliorate the stress-induced decrease in hippocampal neurogenesis seen in animal models of stress-related disorders. However, it is unclear whether lithium has beneficial effect on neuronal repair following neuronal damage in neuronal degenerative diseases. Here, we evaluated the effect of in vivo treatment with lithium on the hippocampal neuronal repair in a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampal dentate gyrus (such mice referred to as “impaired animals”) [Ogita et al. (2005) J Neurosci Res 82: 609–621]. The impaired animals had a dramatically increased number of 5-bromo-2′-deoxyuridine (BrdU)-incorporating cells in their dentate gyrus at the initial time window (days 3 to 5 post-TMT treatment) of the self-repair stage. A single treatment with lithium produced no significant change in the number of BrdU-incorporating cells in the dentate granule cell layer and subgranular zone on day 3 post-TMT treatment. On day 5 post-TMT treatment, however, BrdU-incorporating cells were significantly increased in number by lithium treatment for 3 days. Most interestingly, chronic treatment (15 days) with lithium increased the number of BrdU-incorporating cells positive for NeuN or doublecortin in the dentate granule cell layer of the impaired animals, but not in that of naïve animals. The results of a forced swimming test revealed that the chronic treatment with lithium improved the depression-like behavior seen in the impaired animals. Taken together, our data suggest that lithium had a beneficial effect on neuronal repair following neuronal loss in the dentate gyrus through promoted proliferation and survival/neuronal differentiation of neural stem/progenitor cells in the subgranular zone. PMID:24504050

  16. Genetic variation in glia-neuron signalling modulates ageing rate.

    PubMed

    Yin, Jiang-An; Gao, Ge; Liu, Xi-Juan; Hao, Zi-Qian; Li, Kai; Kang, Xin-Lei; Li, Hong; Shan, Yuan-Hong; Hu, Wen-Li; Li, Hai-Peng; Cai, Shi-Qing

    2017-11-08

    The rate of behavioural decline in the ageing population is remarkably variable among individuals. Despite the considerable interest in studying natural variation in ageing rate to identify factors that control healthy ageing, no such factor has yet been found. Here we report a genetic basis for variation in ageing rates in Caenorhabditis elegans. We find that C. elegans isolates show diverse lifespan and age-related declines in virility, pharyngeal pumping, and locomotion. DNA polymorphisms in a novel peptide-coding gene, named regulatory-gene-for-behavioural-ageing-1 (rgba-1), and the neuropeptide receptor gene npr-28 influence the rate of age-related decline of worm mating behaviour; these two genes might have been subjected to recent selective sweeps. Glia-derived RGBA-1 activates NPR-28 signalling, which acts in serotonergic and dopaminergic neurons to accelerate behavioural deterioration. This signalling involves the SIR-2.1-dependent activation of the mitochondrial unfolded protein response, a pathway that modulates ageing. Thus, natural variation in neuropeptide-mediated glia-neuron signalling modulates the rate of ageing in C. elegans.

  17. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila.

    PubMed

    Chihara, Takahiro; Kitabayashi, Aki; Morimoto, Michie; Takeuchi, Ken-ichi; Masuyama, Kaoru; Tonoki, Ayako; Davis, Ronald L; Wang, Jing W; Miura, Masayuki

    2014-06-01

    Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity), we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs), Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.

  18. The beneficial effects of berry fruit on cognitive and neuronal function in aging

    USDA-ARS?s Scientific Manuscript database

    Research has demonstrated, in both human and animals, that cognition decreases with age, to include deficits in processing speed, executive function, memory, and spatial learning. The cause of these functional declines is not entirely understood; however, neuronal losses and the associated changes i...

  19. Inhibition of oxidative stress in cholinergic projection neurons fully rescues aging-associated olfactory circuit degeneration in Drosophila

    PubMed Central

    Loschek, Laura F; La Fortezza, Marco; Friedrich, Anja B; Blais, Catherine-Marie; Üçpunar, Habibe K; Yépez, Vicente A; Lehmann, Martin; Gompel, Nicolas; Gagneur, Julien; Sigrist, Stephan J

    2018-01-01

    Loss of the sense of smell is among the first signs of natural aging and neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Cellular and molecular mechanisms promoting this smell loss are not understood. Here, we show that Drosophila melanogaster also loses olfaction before vision with age. Within the olfactory circuit, cholinergic projection neurons show a reduced odor response accompanied by a defect in axonal integrity and reduction in synaptic marker proteins. Using behavioral functional screening, we pinpoint that expression of the mitochondrial reactive oxygen scavenger SOD2 in cholinergic projection neurons is necessary and sufficient to prevent smell degeneration in aging flies. Together, our data suggest that oxidative stress induced axonal degeneration in a single class of neurons drives the functional decline of an entire neural network and the behavior it controls. Given the important role of the cholinergic system in neurodegeneration, the fly olfactory system could be a useful model for the identification of drug targets. PMID:29345616

  20. A multi-method assessment of bone maintenance and loss in an Imperial Roman population: Implications for future studies of age-related bone loss in the past.

    PubMed

    Beauchesne, Patrick; Agarwal, Sabrina C

    2017-09-01

    One of the hallmarks of contemporary osteoporosis and bone loss is dramatically higher prevalence of loss and fragility in females post-menopause. In contrast, bioarchaeological studies of bone loss have found a greater diversity of age- and sex-related patterns of bone loss in past populations. We argue that the differing findings may relate to the fact that most studies use only a single methodology to quantify bone loss and do not account for the heterogeneity and complexity of bone maintenance across the skeleton and over the life course. We test the hypothesis that bone mass and maintenance in trabecular bone sites versus cortical bone sites will show differing patterns of age-related bone loss, with cortical bone sites showing sex difference in bone loss that are similar to contemporary Western populations, and trabecular bone loss at earlier ages. We investigated this hypothesis in the Imperial Roman population of Velia using three methods: radiogrammetry of the second metacarpal (N = 71), bone histology of ribs (N = 70), and computerized tomography of trabecular bone architecture (N = 47). All three methods were used to explore sex and age differences in patterns of bone loss. The suite of methods utilized reveal differences in the timing of bone loss with age, but all methods found no statistically significant differences in age-related bone loss. We argue that a multi-method approach reduces the influence of confounding factors by building a reconstruction of bone turnover over the life cycle that a limited single-method project cannot provide. The implications of using multiple methods beyond studies of bone loss are also discussed. © 2017 Wiley Periodicals, Inc.

  1. Fluoxetine attenuates the impairment of spatial learning ability and prevents neuron loss in middle-aged APPswe/PSEN1dE9 double transgenic Alzheimer's disease mice.

    PubMed

    Ma, Jing; Gao, Yuan; Jiang, Lin; Chao, Feng-Lei; Huang, Wei; Zhou, Chun-Ni; Tang, Wei; Zhang, Lei; Huang, Chun-Xia; Zhang, Yi; Luo, Yan-Min; Xiao, Qian; Yu, Hua-Rong; Jiang, Rong; Tang, Yong

    2017-04-25

    Selective serotonin reuptake inhibitors (SSRIs) have been reported to increase cognitive performance in some clinical studies of Alzheimer's disease (AD). However, there is a lack of evidence supporting the efficacy of SSRIs as cognition enhancers in AD, and the role of SSRIs as a treatment for AD remains largely unclear. Here, we characterized the impact of fluoxetine (FLX), a well-known SSRI, on neurons in the dentate gyrus (DG) and in CA1 and CA3 of the hippocampus of middle-aged (16 to 17 months old) APPswe/PSEN1dE9 (APP/PS1) transgenic AD model mice. We found that intraperitoneal (i.p.) injection of FLX (10 mg/kg/day) for 5 weeks effectively alleviated the impairment of spatial learning ability in middle-aged APP/PS1 mice as evaluated using the Morris water maze. More importantly, the number of neurons in the hippocampal DG was significantly increased by FLX. Additionally, FLX reduced the deposition of beta amyloid, inhibited GSK-3β activity and increased the level of β-catenin in middle-aged APP/PS1 mice. Collectively, the results of this study indicate that FLX delayed the progression of neuronal loss in the hippocampal DG in middle-aged AD mice, and this effect may underlie the FLX-induced improvement in learning ability. FLX may therefore serve as a promising therapeutic drug for AD.

  2. Fluoxetine attenuates the impairment of spatial learning ability and prevents neuron loss in middle-aged APPswe/PSEN1dE9 double transgenic Alzheimer's disease mice

    PubMed Central

    Ma, Jing; Gao, Yuan; Jiang, Lin; Chao, Feng-lei; Huang, Wei; Zhou, Chun-ni; Tang, Wei; Zhang, Lei; Huang, Chun-xia; Zhang, Yi; Luo, Yan-min; Xiao, Qian; Yu, Hua-rong; Jiang, Rong; Tang, Yong

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRIs) have been reported to increase cognitive performance in some clinical studies of Alzheimer’s disease (AD). However, there is a lack of evidence supporting the efficacy of SSRIs as cognition enhancers in AD, and the role of SSRIs as a treatment for AD remains largely unclear. Here, we characterized the impact of fluoxetine (FLX), a well-known SSRI, on neurons in the dentate gyrus (DG) and in CA1 and CA3 of the hippocampus of middle-aged (16 to 17 months old) APPswe/PSEN1dE9 (APP/PS1) transgenic AD model mice. We found that intraperitoneal (i.p.) injection of FLX (10 mg/kg/day) for 5 weeks effectively alleviated the impairment of spatial learning ability in middle-aged APP/PS1 mice as evaluated using the Morris water maze. More importantly, the number of neurons in the hippocampal DG was significantly increased by FLX. Additionally, FLX reduced the deposition of beta amyloid, inhibited GSK-3β activity and increased the level of β-catenin in middle-aged APP/PS1 mice. Collectively, the results of this study indicate that FLX delayed the progression of neuronal loss in the hippocampal DG in middle-aged AD mice, and this effect may underlie the FLX-induced improvement in learning ability. FLX may therefore serve as a promising therapeutic drug for AD. PMID:28430602

  3. Loss of Neuronal Integrity During Progressive HIV-1 Infection of Humanized Mice

    PubMed Central

    Dash, Prasanta K.; Gorantla, Santhi; Gendelman, Howard E; Knibbe, Jaclyn; Casale, George P; Makarov, Edward; Epstein, Adrian A; Gelbard, Harris A; Boska, Michael D; Poluektova, Larisa Y

    2011-01-01

    Neuronal damage induced by ongoing HIV-1 infection was investigated in humanized NOD/scid-IL-2Rgcnull mice transplanted at birth with human CD34-positive hematopoietic stem cells. Mice infected at 5 months of age and followed for up to 15 weeks maintained significant plasma viral loads and showed reduced numbers of CD4+ T cells. Prospective serial proton magnetic resonance spectroscopy tests showed selective reductions in cortical N-acetyl aspartate in infected animals. Diffusion tensor imaging revealed structural changes in cortical gray matter. Postmortem immunofluorescence brain tissue examinations for neuronal and glial markers, captured by multispectral imaging microscopy and quantified by morphometric and fluorescence emission, showed regional reduction of neuronal soma and synaptic architectures. This was evidenced by loss of microtubule-associated protein 2, synaptophysin and neurofilament antigens. This study is the first, to our knowledge, demonstrating lost neuronal integrity following HIV-1 infection in humanized mice. As such, the model permits studies of the relationships between ongoing viral replication and virus-associated neurodegeneration. PMID:21368026

  4. Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications.

    PubMed

    Glick, Hannah; Sharma, Anu

    2017-01-01

    This review explores cross-modal cortical plasticity as a result of auditory deprivation in populations with hearing loss across the age spectrum, from development to adulthood. Cross-modal plasticity refers to the phenomenon when deprivation in one sensory modality (e.g. the auditory modality as in deafness or hearing loss) results in the recruitment of cortical resources of the deprived modality by intact sensory modalities (e.g. visual or somatosensory systems). We discuss recruitment of auditory cortical resources for visual and somatosensory processing in deafness and in lesser degrees of hearing loss. We describe developmental cross-modal re-organization in the context of congenital or pre-lingual deafness in childhood and in the context of adult-onset, age-related hearing loss, with a focus on how cross-modal plasticity relates to clinical outcomes. We provide both single-subject and group-level evidence of cross-modal re-organization by the visual and somatosensory systems in bilateral, congenital deafness, single-sided deafness, adults with early-stage, mild-moderate hearing loss, and individual adult and pediatric patients exhibit excellent and average speech perception with hearing aids and cochlear implants. We discuss a framework in which changes in cortical resource allocation secondary to hearing loss results in decreased intra-modal plasticity in auditory cortex, accompanied by increased cross-modal recruitment of auditory cortices by the other sensory systems, and simultaneous compensatory activation of frontal cortices. The frontal cortices, as we will discuss, play an important role in mediating cognitive compensation in hearing loss. Given the wide range of variability in behavioral performance following audiological intervention, changes in cortical plasticity may play a valuable role in the prediction of clinical outcomes following intervention. Further, the development of new technologies and rehabilitation strategies that incorporate brain

  5. The PDAPP mouse model of Alzheimer's disease: locus coeruleus neuronal shrinkage.

    PubMed

    German, Dwight C; Nelson, Omar; Liang, Fen; Liang, Chang-Lin; Games, Dora

    2005-11-28

    Alzheimer's disease is characterized by neuronal degeneration in the cerebral cortex and hippocampus and subcortical neuronal degeneration in such nuclei as the locus coeruleus (LC). Transgenic mice overexpressing mutant human amyloid precursor protein V717F, PDAPP mice, develop several Alzheimer's disease-like lesions. The present study sought to determine whether there is also loss of LC noradrenergic neurons or evidence of degenerative changes in these animals. PDAPP hemizygous and wild-type littermate control mice were examined at 23 months of age, at a time when there are numerous amyloid-beta (Abeta) plaques in the neocortex and hippocampus. Tissue sections were stained immunohistochemically with an antibody against tyrosine hydroxylase (TH) to identify LC neurons. Computer imaging procedures were used to count the TH-immunoreactive somata in sections through the rostral-caudal extent of the nucleus. There was no loss of LC neurons in the hemizygous mice. In a second experiment, homozygous PDAPP and wild-type mice were examined, at 2 months and 24 months of age. Again there was no age-related loss of neurons in the homozygous animals. In the portion of the LC where neurons reside that project to the cortex and hippocampus, however, the neurons were decreased in size selectively in the 24-month-old transgenic animals. These data indicate that overt LC cell loss does not occur following abundant overexpression of Abeta peptide. However, the selective size reduction of the LC neuronal population projecting to cortical and hippocampal regions containing Abeta-related neuropathology implies that these cells may be subjected to a retrograde-mediated stress. Copyright 2005 Wiley-Liss, Inc.

  6. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss

    PubMed Central

    Brooks, Cassandra J.; Chan, Yu Man; Anderson, Andrew J.; McKendrick, Allison M.

    2018-01-01

    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information. PMID:29867415

  7. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss.

    PubMed

    Brooks, Cassandra J; Chan, Yu Man; Anderson, Andrew J; McKendrick, Allison M

    2018-01-01

    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information.

  8. Loss of hypocretin (orexin) neurons with traumatic brain injury.

    PubMed

    Baumann, Christian R; Bassetti, Claudio L; Valko, Philipp O; Haybaeck, Johannes; Keller, Morten; Clark, Erika; Stocker, Reto; Tolnay, Markus; Scammell, Thomas E

    2009-10-01

    Chronic, daytime sleepiness is a major, disabling symptom for many patients with traumatic brain injury (TBI), but thus far, its etiology is not well understood. Extensive loss of the hypothalamic neurons that produce the wake-promoting neuropeptide hypocretin (orexin) causes the severe sleepiness of narcolepsy, and partial loss of these cells may contribute to the sleepiness of Parkinson disease and other disorders. We have found that the number of hypocretin neurons is significantly reduced in patients with severe TBI. This observation highlights the often overlooked hypothalamic injury in TBI and provides new insights into the causes of chronic sleepiness in patients with TBI.

  9. Food restriction enhances oxidative status in aging rats with neuroprotective effects on myenteric neuron populations in the proximal colon.

    PubMed

    Schoffen, João Paulo Ferreira; Santi Rampazzo, Ana Paula; Cirilo, Carla Possani; Zapater, Mariana Cristina Umada; Vicentini, Fernando Augusto; Comar, Jurandir Fernando; Bracht, Adelar; Natali, Maria Raquel Marçal

    2014-03-01

    Food restriction may slow the aging process by increasing the levels of antioxidant defenses and reducing cell death. We evaluated the effects of food restriction on oxidative and nutritional status, myenteric cell populations, and the colonic muscle layer in aging rats. Wistar rats were distributed into control groups (7, 12, and 23months of age) and subjected to food restriction (50% of normal diet) beginning at 7months of age. The animals were sacrificed, and blood was collected to evaluate its components and markers of oxidative status, including thiobarbituric acid-reactive substances, reduced glutathione, catalase, glutathione peroxidase, and total antioxidant capacity. The proximal colon was collected to evaluate HuC/D and neuronal nitric oxide synthase (nNOS)-positive and -negative myenteric neurons, S-100 glial cells, and the muscle layer. Age negatively affected oxidative status in the animals, which also increased the levels of total cholesterol, protein, and globulins and increased the thickness of the muscle layer. Aging also reduced the number and hypertrophied glial cell bodies, HuC/D neurons, and nNOS-negative and -positive neurons. An improvement was observed in oxidative status and the levels of total cholesterol and triglycerides with food restriction, which also provided neuroprotection of the intrinsic innervation. However, food restriction accentuated the loss of enteric glia and caused hypertrophy in the muscle layer at 23months. Food restriction improved oxidative and nutritional status in rats and protected HuC/D neurons and nNOS-negative and -positive neurons against neuronal loss. Nevertheless, food restriction caused morphoquantitative changes in glial cell populations, with possible interference with colonic neuromuscular control. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration

    PubMed Central

    Valenzuela, Rita; Costa-Besada, Maria A; Iglesias-Gonzalez, Javier; Perez-Costas, Emma; Villar-Cheda, Begoña; Garrido-Gil, Pablo; Melendez-Ferro, Miguel; Soto-Otero, Ramon; Lanciego, Jose L; Henrion, Daniel; Franco, Rafael; Labandeira-Garcia, Jose L

    2016-01-01

    The renin–angiotensin system (RAS) was initially considered as a circulating humoral system controlling blood pressure, being kidney the key control organ. In addition to the ‘classical' humoral RAS, a second level in RAS, local or tissular RAS, has been identified in a variety of tissues, in which local RAS play a key role in degenerative and aging-related diseases. The local brain RAS plays a major role in brain function and neurodegeneration. It is normally assumed that the effects are mediated by the cell-surface-specific G-protein-coupled angiotensin type 1 and 2 receptors (AT1 and AT2). A combination of in vivo (rats, wild-type mice and knockout mice) and in vitro (primary mesencephalic cultures, dopaminergic neuron cell line cultures) experimental approaches (confocal microscopy, electron microscopy, laser capture microdissection, transfection of fluorescent-tagged receptors, treatments with fluorescent angiotensin, western blot, polymerase chain reaction, HPLC, mitochondrial respirometry and other functional assays) were used in the present study. We report the discovery of AT1 and AT2 receptors in brain mitochondria, particularly mitochondria of dopaminergic neurons. Activation of AT1 receptors in mitochondria regulates superoxide production, via Nox4, and increases respiration. Mitochondrial AT2 receptors are much more abundant and increase after treatment of cells with oxidative stress inducers, and produce, via nitric oxide, a decrease in mitochondrial respiration. Mitochondria from the nigral region of aged rats displayed altered expression of AT1 and AT2 receptors. AT2-mediated regulation of mitochondrial respiration represents an unrecognized primary line of defence against oxidative stress, which may be particularly important in neurons with increased levels of oxidative stress such as dopaminergic neurons. Altered expression of AT1 and AT2 receptors with aging may induce mitochondrial dysfunction, the main risk factor for neurodegeneration

  11. Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man.

    PubMed

    Morris, Rhiannon S; Simon Jones, P; Alawneh, Josef A; Hong, Young T; Fryer, Tim D; Aigbirhio, Franklin I; Warburton, Elizabeth A; Baron, Jean-Claude

    2018-05-09

    Modern ischaemic stroke management involves intravenous thrombolysis followed by mechanical thrombectomy, which allows markedly higher rates of recanalization and penumbral salvage than thrombolysis alone. However, <50% of treated patients eventually enjoy independent life. It is therefore important to identify complementary therapeutic targets. In rodent models, the salvaged penumbra is consistently affected by selective neuronal loss, which may hinder recovery by interfering with plastic processes, as well as by microglial activation, which may exacerbate neuronal death. However, whether the salvaged penumbra in man is similarly affected is still unclear. Here we determined whether these two processes affect the non-infarcted penumbra in man and, if so, whether they are inter-related. We prospectively recruited patients with (i) acute middle-cerebral artery stroke; (ii) penumbra present on CT perfusion obtained <4.5 h of stroke onset; and (iii) early neurological recovery as a marker of penumbral salvage. PET with 11C-flumazenil and 11C-PK11195, as well as MRI to map the final infarct, were obtained at predefined follow-up times. The presence of selective neuronal loss and microglial activation was determined voxel-wise within the MRI normal-appearing ipsilateral non-infarcted zone and surviving penumbra masks, and their inter-relationship was assessed both across and within patients. Dilated infarct contours were consistently excluded to control for partial volume effects. Across the 16 recruited patients, there was reduced 11C-flumazenil and increased 11C-PK11195 binding in the whole ipsilateral non-infarcted zone (P = 0.04 and 0.02, respectively). Within the non-infarcted penumbra, 11C-flumazenil was also reduced (P = 0.001), but without clear increase in 11C-PK11195 (P = 0.18). There was no significant correlation between 11C-flumazenil and 11C-PK11195 in either compartment. This mechanistic study provides direct evidence for the presence of both neuronal

  12. Neuronal dysfunction with aging and its amelioration

    PubMed Central

    ANDO, Susumu

    2012-01-01

    The author focused on the functional decline of synapses in the brain with aging to understand the underlying mechanisms and to ameliorate the deficits. The first attempt was to unravel the neuronal functions of gangliosides so that gangliosides could be used for enhancing synaptic activity. The second attempt was to elicit the neuronal plasticity in aged animals through enriched environmental stimulation and nutritional intervention. Environmental stimuli were revealed neurochemically and morphologically to develop synapses leading to enhanced cognitive function. Dietary restriction as a nutritional intervention restored the altered metabolism of neuronal membranes with aging, providing a possible explanation for the longevity effect of dietary restriction. These results obtained with aging and dementia models of animals would benefit aged people. PMID:22728441

  13. Loss of hypocretin (orexin) neurons with traumatic brain injury

    PubMed Central

    Baumann, Christian R.; Bassetti, Claudio L.; Valko, Philipp O.; Haybaeck, Johannes; Keller, Morten; Clark, Erika; Stocker, Reto; Tolnay, Markus; Scammell, Thomas E.

    2009-01-01

    Chronic, daytime sleepiness is a major, disabling symptom for many patients with traumatic brain injury (TBI), but thus far, its etiology is not well understood. Extensive loss of the hypothalamic neurons that produce the wake-promoting neuropeptide hypocretin (orexin) causes the severe sleepiness of narcolepsy, and partial loss of these cells may contribute to the sleepiness of Parkinson’s disease and other disorders. We have found that the number of hypocretin neurons is significantly reduced in patients with severe TBI. This observation highlights the often overlooked hypothalamic injury in TBI and provides new insights into the causes of chronic sleepiness in patients with TBI. PMID:19847903

  14. Parental Loss and Eating-Related Cognitions and Behaviors in College-Age Women

    ERIC Educational Resources Information Center

    Beam, Minna R.; Servaty-Seib, Heather L.; Mathews, Laura

    2004-01-01

    To examine the eating-related cognitions and behaviors of college-age women who had experienced parental death, parental divorce, or neither loss condition, we recruited 48 women from science and social science departments at a state university in the Southeast. All participants completed the Mizes Anorectic Cognitions Scale (MAC) and the Bulimia…

  15. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.

    PubMed

    Tong, Ling; Strong, Melissa K; Kaur, Tejbeer; Juiz, Jose M; Oesterle, Elizabeth C; Hume, Clifford; Warchol, Mark E; Palmiter, Richard D; Rubel, Edwin W

    2015-05-20

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. Copyright © 2015 the authors 0270-6474/15/357878-14$15.00/0.

  16. Age-related changes in functional postsynaptic nicotinic acetylcholine receptor subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction.

    PubMed

    Christensen, Mark H; Kohlmeier, Kristi A

    2016-03-01

    The earlier an individual initiates cigarette smoking, the higher the likelihood of development of dependency to nicotine, the addictive ingredient in cigarettes. One possible mechanism underlying this higher addiction liability is an ontogenetically differential cellular response induced by nicotine in neurons mediating the reinforcing or euphoric effects of this drug, which could arise from age-related differences in the composition of nicotinic acetylcholine receptor (nAChR) subunits. In the current study, we examined whether the subunit composition of nAChRs differed between neurons within the laterodorsal tegmentum (LDT), a nucleus importantly involved in drug addiction associated behaviours, across two periods of ontogeny in which nicotine-mediated excitatory responses were shown to depend on age. To this end, whole-cell patch-clamp recordings in mouse brain slices from identified LDT neurons, in combination with nAChR subunit-specific receptor antagonists, were conducted. Comparison of the contribution of different nAChR subunits to acetylcholine (ACh)-induced inward currents indicated that the contributions of the β2 and/or β4 and α7 nAChR subunits alter across age. Taken together, we conclude that across a limited ontogenetic period, there is plasticity in the subunit composition of nAChRs in LDT neurons. In addition, our data indicate, for the first time, functional presence of α6 nAChR subunits in LDT neurons within the age ranges studied. Changes in subunit composition of nAChRs across ontogeny could contribute to the age-related differential excitability induced by nicotine. Differences in the subunit composition of nAChRs within the LDT would be expected to contribute to ontogenetic-dependent outflow from the LDT to target regions, which include reward-related circuitry. © 2014 Society for the Study of Addiction.

  17. Arctigenin protects against neuronal hearing loss by promoting neural stem cell survival and differentiation.

    PubMed

    Huang, Xinghua; Chen, Mo; Ding, Yan; Wang, Qin

    2017-03-01

    Neuronal hearing loss has become a prevalent health problem. This study focused on the function of arctigenin (ARC) in promoting survival and neuronal differentiation of mouse cochlear neural stem cells (NSCs), and its protection against gentamicin (GMC) induced neuronal hearing loss. Mouse cochlea was used to isolate NSCs, which were subsequently cultured in vitro. The effects of ARC on NSC survival, neurosphere formation, differentiation of NSCs, neurite outgrowth, and neural excitability in neuronal network in vitro were examined. Mechanotransduction ability demonstrated by intact cochlea, auditory brainstem response (ABR), and distortion product optoacoustic emissions (DPOAE) amplitude in mice were measured to evaluate effects of ARC on GMC-induced neuronal hearing loss. ARC increased survival, neurosphere formation, neuron differentiation of NSCs in mouse cochlear in vitro. ARC also promoted the outgrowth of neurites, as well as neural excitability of the NSC-differentiated neuron culture. Additionally, ARC rescued mechanotransduction capacity, restored the threshold shifts of ABR and DPOAE in our GMC ototoxicity murine model. This study supports the potential therapeutic role of ARC in promoting both NSCs proliferation and differentiation in vitro to functional neurons, thus supporting its protective function in the therapeutic treatment of neuropathic hearing loss in vivo. © 2017 Wiley Periodicals, Inc.

  18. Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson’s disease

    PubMed Central

    Zhang, Lifen; Le, Weidong; Xie, Wenjie; Dani, John A.

    2011-01-01

    The nuclear receptor related 1 (Nurr1) transcription factor contributes to the development and maintenance of dopamine (DA) neurons in the brain. We found that heterozygous Nurr1 knock-out (Nurr1 +/−) influenced the age-dependent decline in the number of DA neurons and influenced DA signaling. We examined the DA marker, tyrosine hydroxylase, using immunohistochemistry, and we measured DA signaling using fast-scan cyclic voltammetry in 3 age groups of wild-type (Nurr1 +/+) and mutant (Nurr1 +/−) mice: 3–6, 9–12, and 15–23 months old. Prior to significant loss of DA neurons and to the onset of parkinsonian symptoms, young Nurr1 +/− mice (3–6 months) exhibited a decrease in peak evoked DA release that was partially countered by a decrease in the rate of DA reuptake. As peak evoked DA release declined with age for both the wild-type and Nurr1 +/− mice, both genotypes manifested decreased DA reuptake. As the DA release fell further with age, decreased DA reuptake eventually could not adequately compensate the Nurr1 +/− mice. The results indicated that Nurr1 deficiency led to impaired DA release even before significant DA neuron loss. PMID:21531044

  19. Age-related memory decline is associated with vascular and microglial degeneration in aged rats.

    PubMed

    Zhang, Rong; Kadar, Tamar; Sirimanne, Ernest; MacGibbon, Alastair; Guan, Jian

    2012-12-01

    The hippocampus processes memory is an early target of aging-related biological and structural lesions, leading to memory decline. With absent neurodegeneration in the hippocampus, which identified in rodent model of normal aging the pathology underlying age-related memory impairment is not complete. The effective glial-vascular networks are the key for maintaining neuronal functions. The changes of glial cells and cerebral capillaries with age may contribute to memory decline. Thus we examined age associated changes in neurons, glial phenotypes and microvasculature in the hippocampus of aged rats with memory decline. Young adult (6 months) and aged (35 months) male rats (Fisher/Norway-Brown) were used. To evaluate memory, four days of acquisition phase of Morris water maze tasks were carried out in both age groups and followed by a probe trial 2 h after the acquisition. The brains were then collected for analysis using immunochemistry. The aged rats showed a delayed latency (p<0.001) and longer swimming path (p<0.001) to locate a hidden platform. They also spent less time in and made delayed and fewer entries into the correct quadrant during the probe trial. Without seen neuronal degeneration, the aged rats with memory impairments have displayed dopamine depletion, profound vascular and microglial degeneration with reduced vascular endothelial growth factor and elevated GFAP expression in the hippocampus. The data indicate the memory decline with age is associated with neuronal dysfunction, possibly due to impaired glial-vascular-neuronal networks, but not neuronal degeneration. Glial and vascular degeneration found in aged rats may represent early event of aging pathology prior to neuronal degeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis

    PubMed Central

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    2016-01-01

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during

  1. Neuronal Function in Male Sprague Dawley Rats During Normal Ageing.

    PubMed

    Idowu, A J; Olatunji-Bello, I I; Olagunju, J A

    2017-03-06

    During normal ageing, there are physiological changes especially in high energy demanding tissues including the brain and skeletal muscles. Ageing may disrupt homeostasis and allow tissue vulnerability to disease. To establish an appropriate animal model which is readily available and will be useful to test therapeutic strategies during normal ageing, we applied behavioral approaches to study age-related changes in memory and motor function as a basis for neuronal function in ageing in male Sprague Dawley rats. 3 months, n=5; 6 months, n=5 and 18 months, n=5 male Sprague Dawley Rats were tested using the Novel Object Recognition Task (NORT) and the Elevated plus Maze (EPM) Test. Data was analyzed by ANOVA and the Newman-Keuls post hoc test. The results showed an age-related gradual decline in exploratory behavior and locomotor activity with increasing age in 3 months, 6 months and 18 months old rats, although the values were not statistically significant, but grooming activity significantly increased with increasing age. Importantly, we established a novel finding that the minimum distance from the novel object was statistically significant between 3 months and 18 months old rats and this may be an index for age-related memory impairment in the NORT. Altogether, we conclude that the male Sprague Dawley rat show age-related changes in neuronal function and may be a useful model for carrying out investigations into the mechanisms involved in normal ageing.

  2. Aging impairs dendrite morphogenesis of newborn neurons and is rescued by 7, 8-dihydroxyflavone.

    PubMed

    Wang, Xiaoting; Romine, Jennifer Lynn; Gao, Xiang; Chen, Jinhui

    2017-04-01

    All aging individuals will develop some degree of decline in cognitive capacity as time progresses. The molecular and cellular mechanisms leading to age-related cognitive decline are still not fully understood. Through our previous research, we discovered that active neural progenitor cells selectively become more quiescent in response to aging, thus leading to the decline of neurogenesis in the aged hippocampus. Here, we further find that aging impaired dendrite development of newborn neurons. Currently, no effective approach is available to increase neurogenesis or promote dendrite development of newborn neurons in the aging brain. We found that systemically administration of 7, 8-dihydroxyflavone (DHF), a small molecule imitating brain-derived neurotrophic factor (BDNF), significantly enhanced dendrite length in the newborn neurons, while it did not promote survival of immature neurons, in the hippocampus of 12-month-old mice. DHF-promoted dendrite development of newborn neurons in the hippocampus may enhance their function in the aging animal leading to a possible improvement in cognition. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Sporadic visual acuity loss in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT).

    PubMed

    Kim, Benjamin J; Ying, Gui-Shuang; Huang, Jiayan; Levy, Nicole E; Maguire, Maureen G

    2014-07-01

    To evaluate transient, large visual acuity (VA) decreases, termed sporadic vision loss, during anti-vascular endothelial growth factor treatment for neovascular age-related macular degeneration (AMD). Cohort within a randomized clinical trial. setting: Comparison of Age-Related Macular Degeneration Treatments Trials (CATT). study population: Total of 1185 CATT patients. main outcome measures: Incidence of sporadic vision loss and odds ratio (OR) for association with patient and ocular factors. Sporadic vision loss was a decline of ≥15 letters from the previous visit, followed by a return at the next visit to no more than 5 letters worse than the visit before the VA loss. There were 143 sporadic vision loss events in 122 of 1185 patients (10.3%). Mean VA at 2 years for those with and without sporadic vision loss was 58.5 (∼20/63) and 68.4 (∼20/40) letters, respectively (P < .001). Among patients treated pro re nata, no injection was given for 27.6% (27/98) of sporadic vision loss events. Multivariate analysis demonstrated that baseline predictors for sporadic vision loss included worse baseline VA (OR 2.92, 95% confidence interval [CI]:1.65-5.17 for ≤20/200 compared with ≥20/40), scar (OR 2.21, 95% CI:1.22-4.01), intraretinal foveal fluid on optical coherence tomography (OR 1.80, 95% CI:1.11-2.91), and medical history of anxiety (OR 1.90, 95% CI:1.12-3.24) and syncope (OR 2.75, 95% CI:1.45-5.22). Refraction decreased the likelihood of sporadic vision loss (OR 0.62, 95%CI: 0.42-0.91). Approximately 10% of CATT patients had sporadic vision loss. Baseline predictors included AMD-related factors and factors independent of AMD. These data are relevant for clinicians in practice and those involved in clinical trials. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Dietary supplementation with fruit polyphenolics ameliorates age-related deficits in behavior and neuronal markers of inflammation and oxidative stress.

    PubMed

    Shukitt-Hale, Barbara; Galli, Rachel L; Meterko, Vanessa; Carey, Amanda; Bielinski, Donna F; McGhie, Tony; Joseph, James A

    2005-03-01

    Dietary supplementation with fruit or vegetable extracts can ameliorate age-related declines in measures of learning, memory, motor performance, and neuronal signal transduction in a rat model. To date, blueberries have proved most effective at improving measures of motor performance, spatial learning and memory, and neuronal functioning in old rats. In an effort to further characterize the bioactive properties of fruits rich in color and correspondingly high in anthocyanins and other polyphenolics, 19-month-old male Fischer rats were fed a well-balanced control diet, or the diet supplemented with 2% extract from either blueberry, cranberry, blackcurrant, or Boysenberry fruit for eight weeks before testing began. The blackcurrant and cranberry diets enhanced neuronal signal transduction as measured by striatal dopamine release, while the blueberry and cranberry diets were effective in ameliorating deficits in motor performance and hippocampal HSP70 neuroprotection; these changes in HSP70 were positively correlated with performance on the inclined screen. It appears that the polyphenols in blueberries and cranberries have the ability to improve muscle tone, strength and balance in aging rats, whereas polyphenols in blueberries, cranberries and blackcurrants have the ability to enhance neuronal functioning and restore the brain's ability to generate a neuroprotective response to stress.

  5. Age related optic nerve axonal loss in adult Brown Norway rats.

    PubMed

    Cepurna, William O; Kayton, Robert J; Johnson, Elaine C; Morrison, John C

    2005-06-01

    The effect of age on the number and morphology of optic nerve axons in adult Brown Norway rats (5-31 months old) (n=29) was examined using transmission electron microscopy (TEM). By manually counting every axon in areas representing 60% of the optic nerve cross-section, we found a significant negative correlation between age and axon count (R(2)=0.18, P<0.05). However, when the oldest animals were omitted, the relationship was no longer statistically significant. Simultaneously, the proportion of spontaneously degenerating axons increased at an exponential rate (R(2)=0.79, P<0.05), with significantly more degeneration in the 31-month group than in 5-month-old animals (ANOVA, P<0.05). This study demonstrates, using quantitative TEM methods, that optic nerve axonal numbers are relatively constant throughout the majority of the adult life of the Brown Norway rat, an increasingly popular strain for glaucoma research. Total axonal loss with aging is substantially less than that reported for other strains. The reduction in axonal numbers and the rate of axonal degeneration do not appear significantly altered until the last few months of life, failing to support some studies that have concluded that optic nerve axon loss in adult rats is linear. However, they do agree with other studies in the rat, and a similar study performed in non-human primate eyes, that concluded that aging changes in the optic nerve and retina follow a complex pattern. Therefore, the impact of animal age must be considered when modeling the course and pathophysiology of experimental glaucomatous optic nerve damage in rats.

  6. Neuron-astrocyte signaling is preserved in the aging brain.

    PubMed

    Gómez-Gonzalo, Marta; Martin-Fernandez, Mario; Martínez-Murillo, Ricardo; Mederos, Sara; Hernández-Vivanco, Alicia; Jamison, Stephanie; Fernandez, Ana P; Serrano, Julia; Calero, Pilar; Futch, Hunter S; Corpas, Rubén; Sanfeliu, Coral; Perea, Gertrudis; Araque, Alfonso

    2017-04-01

    Astrocytes play crucial roles in brain homeostasis and are emerging as regulatory elements of neuronal and synaptic physiology by responding to neurotransmitters with Ca 2+ elevations and releasing gliotransmitters that activate neuronal receptors. Aging involves neuronal and astrocytic alterations, being considered risk factor for neurodegenerative diseases. Most evidence of the astrocyte-neuron signaling is derived from studies with young animals; however, the features of astrocyte-neuron signaling in adult and aging brain remain largely unknown. We have investigated the existence and properties of astrocyte-neuron signaling in physiologically and pathologically aging mouse hippocampal and cortical slices at different lifetime points (0.5 to 20 month-old animals). We found that astrocytes preserved their ability to express spontaneous and neurotransmitter-dependent intracellular Ca 2+ signals from juvenile to aging brains. Likewise, resting levels of gliotransmission, assessed by neuronal NMDAR activation by glutamate released from astrocytes, were largely preserved with similar properties in all tested age groups, but DHPG-induced gliotransmission was reduced in aged mice. In contrast, gliotransmission was enhanced in the APP/PS1 mouse model of Alzheimer's disease, indicating a dysregulation of astrocyte-neuron signaling in pathological conditions. Disruption of the astrocytic IP 3 R2 mediated-signaling, which is required for neurotransmitter-induced astrocyte Ca 2+ signals and gliotransmission, boosted the progression of amyloid plaque deposits and synaptic plasticity impairments in APP/PS1 mice at early stages of the disease. Therefore, astrocyte-neuron interaction is a fundamental signaling, largely conserved in the adult and aging brain of healthy animals, but it is altered in Alzheimer's disease, suggesting that dysfunctions of astrocyte Ca 2+ physiology may contribute to this neurodegenerative disease. GLIA 2017 GLIA 2017;65:569-580. © 2017 Wiley

  7. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease

    PubMed Central

    Nobili, Annalisa; Latagliata, Emanuele Claudio; Viscomi, Maria Teresa; Cavallucci, Virve; Cutuli, Debora; Giacovazzo, Giacomo; Krashia, Paraskevi; Rizzo, Francesca Romana; Marino, Ramona; Federici, Mauro; De Bartolo, Paola; Aversa, Daniela; Dell'Acqua, Maria Concetta; Cordella, Alberto; Sancandi, Marco; Keller, Flavio; Petrosini, Laura; Puglisi-Allegra, Stefano; Mercuri, Nicola Biagio; Coccurello, Roberto; Berretta, Nicola; D'Amelio, Marcello

    2017-01-01

    Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer's disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing. PMID:28367951

  8. Neurobiology of the aging dog.

    PubMed

    Head, Elizabeth

    2011-09-01

    Aged canines naturally accumulate several types of neuropathology that may have links to cognitive decline. On a gross level, significant cortical atrophy occurs with age along with an increase in ventricular volume based on magnetic resonance imaging studies. Microscopically, there is evidence of select neuron loss and reduced neurogenesis in the hippocampus of aged dogs, an area critical for intact learning and memory. The cause of neuronal loss and dysfunction may be related to the progressive accumulation of toxic proteins, oxidative damage, cerebrovascular pathology, and changes in gene expression. For example, aged dogs naturally accumulate human-type beta-amyloid peptide, a protein critically involved with the development of Alzheimer's disease in humans. Further, oxidative damage to proteins, DNA/RNA and lipids occurs with age in dogs. Although less well explored in the aged canine brain, neuron loss, and cerebrovascular pathology observed with age are similar to human brain aging and may also be linked to cognitive decline. Interestingly, the prefrontal cortex appears to be particularly vulnerable early in the aging process in dogs and this may be reflected in dysfunction in specific cognitive domains with age.

  9. Direct Conversion Provides Old Neurons from Aged Donor's Skin.

    PubMed

    Koch, Philipp

    2015-12-03

    Modeling human neuronal aging at a cellular level remains challenging. Human neurons are accessible from iPSCs, but during reprogramming age-associated traits of somatic cells get lost. In this issue of Cell Stem Cell, Mertens et al. (2015) demonstrate that neurons obtained by direct cell conversion retain age-associated transcriptional traits and functional deficits of the donor cell population. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Progressive thalamocortical neuron loss in Cln5 deficient mice: distinct effects in Finnish variant late infantile NCL

    PubMed Central

    von Schantz, Carina; Kielar, Catherine; Hansen, Stine N; Pontikis, Charlie C; Alexander, Noreen A; Kopra, Outi; Jalanko, Anu; Cooper, Jonathan D

    2009-01-01

    Finnish variant LINCL (vLINCLFin) is the result of mutations in the CLN5 gene. To gain insights into the pathological staging of this fatal pediatric disorder, we have undertaken a stereological analysis of the CNS of Cln5 deficient mice (Cln5-/-) at different stages of disease progression. Consistent with human vLINCLFin, these Cln5-/- mice displayed a relatively late onset regional atrophy and generalized cortical thinning and synaptic pathology, preceded by early and localized glial responses within the thalamocortical system. However, in marked contrast to other forms of NCL, neuron loss in Cln5-/- mice began in the cortex and only subsequently occurred within thalamic relay nuclei. Nevertheless, as in other NCL mouse models, this progressive thalamocortical neuron loss was still most pronounced within the visual system. These data provide unexpected evidence for a distinctive sequence of neuron loss in the thalamocortical system of Cln5-/- mice, diametrically opposed to that seen in other forms of NCL. PMID:19385065

  11. Progressive thalamocortical neuron loss in Cln5 deficient mice: Distinct effects in Finnish variant late infantile NCL.

    PubMed

    von Schantz, Carina; Kielar, Catherine; Hansen, Stine N; Pontikis, Charlie C; Alexander, Noreen A; Kopra, Outi; Jalanko, Anu; Cooper, Jonathan D

    2009-05-01

    Finnish variant LINCL (vLINCL(Fin)) is the result of mutations in the CLN5 gene. To gain insights into the pathological staging of this fatal pediatric disorder, we have undertaken a stereological analysis of the CNS of Cln5 deficient mice (Cln5-/-) at different stages of disease progression. Consistent with human vLINCL(Fin), these Cln5-/- mice displayed a relatively late onset regional atrophy and generalized cortical thinning and synaptic pathology, preceded by early and localized glial responses within the thalamocortical system. However, in marked contrast to other forms of NCL, neuron loss in Cln5-/- mice began in the cortex and only subsequently occurred within thalamic relay nuclei. Nevertheless, as in other NCL mouse models, this progressive thalamocortical neuron loss was still most pronounced within the visual system. These data provide unexpected evidence for a distinctive sequence of neuron loss in the thalamocortical system of Cln5-/- mice, diametrically opposed to that seen in other forms of NCL.

  12. PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine.

    PubMed

    Kuo, Shu-Yun; Wu, Chia-Lin; Hsieh, Min-Yen; Lin, Chen-Ta; Wen, Rong-Kun; Chen, Lien-Cheng; Chen, Yu-Hui; Yu, Yhu-Wei; Wang, Horng-Dar; Su, Yi-Ju; Lin, Chun-Ju; Yang, Cian-Yi; Guan, Hsien-Yu; Wang, Pei-Yu; Lan, Tsuo-Hung; Fu, Tsai-Feng

    2015-06-30

    Male sexual desire typically declines with ageing. However, our understanding of the neurobiological basis for this phenomenon is limited by our knowledge of the brain circuitry and neuronal pathways controlling male sexual desire. A number of studies across species suggest that dopamine (DA) affects sexual desire. Here we use genetic tools and behavioural assays to identify a novel subset of DA neurons that regulate age-associated male courtship activity in Drosophila. We find that increasing DA levels in a subset of cells in the PPL2ab neuronal cluster is necessary and sufficient for increased sustained courtship in both young and aged male flies. Our results indicate that preventing the age-related decline in DA levels in PPL2ab neurons alleviates diminished courtship behaviours in male Drosophila. These results may provide the foundation for deciphering the circuitry involved in sexual motivation in the male Drosophila brain.

  13. No association between apolipoprotein E or N-acetyltransferase 2 gene polymorphisms and age-related hearing loss.

    PubMed

    Dawes, Piers; Platt, Hazel; Horan, Michael; Ollier, William; Munro, Kevin; Pendleton, Neil; Payton, Antony

    2015-01-01

    Age-related hearing loss has a genetic component, but there have been limited genetic studies in this field. Both N-acetyltransferase 2 and apolipoprotein E genes have previously been associated. However, these studies have either used small sample sizes, examined a limited number of polymorphisms, or have produced conflicting results. Here we use a haplotype tagging approach to determine association with age-related hearing loss and investigate epistasis between these two genes. Candidate gene association study of a continuous phenotype. We investigated haplotype tagging single nucleotide polymorphisms in the N-acetyltransferase 2 gene and the presence/absence of the apolipoprotein E ε4 allele for association with age-related hearing loss in a cohort of 265 Caucasian elderly volunteers from Greater Manchester, United Kingdom. Hearing phenotypes were generated using principal component analysis of the hearing threshold levels for the better ear (severity, slope, and concavity). Genotype data for the N-acetyltransferase 2 gene was obtained from existing genome-wide association study data from the Illumina 610-Quadv1 chip. Apolipoprotein E genotyping was performed using Sequenom technology. Linear regression analysis was performed using Plink and Stata software. No significant associations (P value, > 0.05) were observed between the N-acetyltransferase 2 or apolipoprotein E gene polymorphisms and any hearing factor. No significant association was observed for epistasis analysis of apolipoprotein E ε4 and the N-acetyltransferase 2 single nucleotide polymorphism rs1799930 (NAT2*6A). We found no evidence to support that either N-acetyltransferase 2 or apolipoprotein E gene polymorphisms are associated with age-related hearing loss in a cohort of 265 elderly volunteers. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Neuronal erythropoietin overexpression is protective against kanamycin-induced hearing loss in mice.

    PubMed

    Bächinger, David; Horvath, Lukas; Eckhard, Andreas; Goosmann, Madeline M; Honegger, Tim; Gassmann, Max; Vogel, Johannes; Naldi, Arianne Monge

    2018-07-01

    Aminoglycosides have detrimental effects on the hair cells of the inner ear, yet these agents indisputably are one of the cornerstones in antibiotic therapy. Hence, there is a demand for strategies to prevent aminoglycoside-induced ototoxicity, which are not available today. In vitro data suggests that the pleiotropic growth factor erythropoietin (EPO) is neuroprotective against aminoglycoside-induced hair cell loss. Here, we use a mouse model with EPO-overexpression in neuronal tissue to evaluate whether EPO could also in vivo protect from aminoglycoside-induced hearing loss. Auditory brainstem response (ABR) thresholds were measured in 12-weeks-old mice before and after treatment with kanamycin for 15 days, which resulted in both C57BL/6 and EPO-transgenic animals in a high-frequency hearing loss. However, ABR threshold shifts in EPO-transgenic mice were significantly lower than in C57BL/6 mice (mean difference in ABR threshold shift 13.6 dB at 32 kHz, 95% CI 3.8-23.4 dB, p = 0.003). Correspondingly, quantification of hair cells and spiral ganglion neurons by immunofluorescence revealed that EPO-transgenic mice had a significantly lower hair cell and spiral ganglion neuron loss than C57BL/6 mice. In conclusion, neuronal overexpression of EPO is protective against aminoglycoside-induce hearing loss, which is in accordance with its known neuroprotective effects in other organs, such as the eye or the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Berry fruit can improve age-associated neuronal and cognitive deficits: from the laboratory to the clinic

    USDA-ARS?s Scientific Manuscript database

    Research has demonstrated, in both human and animals, that cognitive functioning decreases with age, to include deficits in processing speed, executive function, memory, and spatial learning. The cause of these functional declines is not entirely understood; however, neuronal losses and the associat...

  16. The effects of aging on hypoglossal motoneurons in rats.

    PubMed

    Schwarz, Emilie C; Thompson, Jodi M; Connor, Nadine P; Behan, Mary

    2009-03-01

    Aging can result in a loss of neuronal cell bodies and a decrease in neuronal size in some regions of the brain and spinal cord. Motoneuron loss in the spinal cord is thought to contribute to the progressive decline in muscle mass and strength that occurs with age (sarcopenia). Swallowing disorders represent a large clinical problem in elderly persons; however, age-related alterations in cranial motoneurons that innervate muscles involved in swallowing have been understudied. We aimed to determine if age-related alterations occurred in the hypoglossal nucleus in the brainstem. If present, these changes might help explain alterations at the neuromuscular junction and changes in the contractile properties of tongue muscle that have been reported in older rats. We hypothesized that with increasing age there would be a loss of motoneurons and a reduction in neuronal size and the number of primary dendrites associated with each hypoglossal motoneuron. Neurons in the hypoglossal nucleus were visualized with the neuronal marker NeuN in young (9-10 months), middle-aged (24-25 months), and old (32-33 months) male F344/BN rats. Hypoglossal motoneurons were retrograde-labeled with injections of Cholera Toxin beta into the genioglossus muscle of the tongue and visualized using immunocytochemistry. Results indicated that the number of primary dendrites of hypoglossal motoneurons decreased significantly with age, while no age-associated changes were found in the number or size of hypoglossal motoneurons. Loss of primary dendrites could reduce the number of synaptic inputs and thereby impair function.

  17. The Effects of Aging on Hypoglossal Motoneurons in Rats

    PubMed Central

    Schwarz, Emilie C.; Thompson, Jodi M.; Connor, Nadine P.; Behan, Mary

    2008-01-01

    Aging can result in a loss of neuronal cell bodies and a decrease in neuronal size in some regions of the brain and spinal cord. Motoneuron loss in the spinal cord is thought to contribute to the progressive decline in muscle mass and strength that occurs with age (sarcopenia). Swallowing disorders represent a large clinical problem in elderly persons; however, age-related alterations in cranial motoneurons that innervate muscles involved in swallowing have been understudied. We aimed to determine if age-related alterations occurred in the hypoglossal nucleus in the brainstem. If present, these changes might help explain alterations at the neuromuscular junction and changes in the contractile properties of tongue muscle that have been reported in older rats. We hypothesized that with increasing age, there would be a loss of motoneurons and a reduction in neuronal size and the number of primary dendrites associated with each hypoglossal motoneuron. Neurons in the hypoglossal nucleus were visualized with the neuronal marker NeuN in young (9–10 months), middle-aged (24–25 months), and old (32–33 months) male F344/BN rats. Hypoglossal motoneurons were retrograde labeled with injections of Cholera Toxin β into the genioglossus muscle of the tongue and visualized using immunocytochemistry. Results indicated that the number of primary dendrites of hypoglossal motoneurons decreased significantly with age, while no age-associated changes were found in the number or size of hypoglossal motoneurons. Loss of primary dendrites could reduce the number of synaptic inputs and thereby impair function. PMID:18716837

  18. Stereological Investigation of the Effects of Treadmill Running Exercise on the Hippocampal Neurons in Middle-Aged APP/PS1 Transgenic Mice.

    PubMed

    Chao, Fenglei; Jiang, Lin; Zhang, Yi; Zhou, Chunni; Zhang, Lei; Tang, Jing; Liang, Xin; Qi, Yingqiang; Zhu, Yanqing; Ma, Jing; Tang, Yong

    2018-01-01

    The risk of cognitive decline during Alzheimer's disease (AD) can be reduced if physical activity is maintained; however, the specific neural events underlying this beneficial effect are still uncertain. To quantitatively investigate the neural events underlying the effect of running exercise on middle-aged AD subjects, 12-month-old male APP/PS1 mice were randomly assigned to a control group or running group, and age-matched non-transgenic littermates were used as a wild-type group. AD running group mice were subjected to a treadmill running protocol (regular and moderate intensity) for four months. Spatial learning and memory abilities were assessed using the Morris water maze. Hippocampal amyloid plaques were observed using Thioflavin S staining and immunohistochemistry. Hippocampal volume, number of neurons, and number of newborn cells (BrdU+ cells) in the hippocampus were estimated using stereological techniques, and newborn neurons were observed using double-labelling immunofluorescence. Marked neuronal loss in both the CA1 field and dentate gyrus (DG) and deficits in both the neurogenesis and survival of new neurons in the DG of middle-aged APP/PS1 mice were observed. Running exercise could improve the spatial learning and memory abilities, reduce amyloid plaques in the hippocampi, delay neuronal loss, induce neurogenesis, and promote the survival of newborn neurons in the DG of middle-aged APP/PS1 mice. Exercise-induced protection of neurons and adult neurogenesis within the DG might be part of the important structural basis of the improved spatial learning and memory abilities observed in AD mice.

  19. KCNQ Channels Regulate Age-Related Memory Impairment

    PubMed Central

    Cavaliere, Sonia; Malik, Bilal R.; Hodge, James J. L.

    2013-01-01

    In humans KCNQ2/3 heteromeric channels form an M-current that acts as a brake on neuronal excitability, with mutations causing a form of epilepsy. The M-current has been shown to be a key regulator of neuronal plasticity underlying associative memory and ethanol response in mammals. Previous work has shown that many of the molecules and plasticity mechanisms underlying changes in alcohol behaviour and addiction are shared with those of memory. We show that the single KCNQ channel in Drosophila (dKCNQ) when mutated show decrements in associative short- and long-term memory, with KCNQ function in the mushroom body α/βneurons being required for short-term memory. Ethanol disrupts memory in wildtype flies, but not in a KCNQ null mutant background suggesting KCNQ maybe a direct target of ethanol, the blockade of which interferes with the plasticity machinery required for memory formation. We show that as in humans, Drosophila display age-related memory impairment with the KCNQ mutant memory defect mimicking the effect of age on memory. Expression of KCNQ normally decreases in aging brains and KCNQ overexpression in the mushroom body neurons of KCNQ mutants restores age-related memory impairment. Therefore KCNQ is a central plasticity molecule that regulates age dependent memory impairment. PMID:23638087

  20. Long-term treatment with aldosterone slows the progression of age-related hearing loss.

    PubMed

    Halonen, Joshua; Hinton, Ashley S; Frisina, Robert D; Ding, Bo; Zhu, Xiaoxia; Walton, Joseph P

    2016-06-01

    Age-related hearing loss (ARHL), clinically referred to as presbycusis, is one of the three most prevalent chronic medical conditions of our elderly, with the majority of persons over the age of 60 suffering from some degree of ARHL. The progressive loss of auditory sensitivity and perceptual capability results in significant declines in workplace productivity, quality of life, cognition and abilities to communicate effectively. Aldosterone is a mineralocorticoid hormone produced in the adrenal glands and plays a role in the maintenance of key ion pumps, including the Na-K(+)-Cl co-transporter 1 or NKCC1, which is involved in homeostatic maintenance of the endocochlear potential. Previously we reported that aldosterone (1 μM) increases NKCC1 protein expression in vitro and that this up-regulation of NKCC1 was not dose-dependent (dosing range from 1 nM to 100 μM). In the current study we measured behavioral and electrophysiological hearing function in middle-aged mice following long-term systemic treatment with aldosterone. We also confirmed that blood pressure remained stable during treatment and that NKCC1 protein expression was upregulated. Pre-pulse inhibition of the acoustic startle response was used as a functional measure of hearing, and the auditory brainstem response was used as an objective measure of peripheral sensitivity. Long-term treatment with aldosterone improved both behavioral and physiological measures of hearing (ABR thresholds). These results are the first to demonstrate a protective effect of aldosterone on age-related hearing loss and pave the way for translational drug development, using aldosterone as a key component to prevent or slow down the progression of ARHL. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Metabolomics of human brain aging and age-related neurodegenerative diseases.

    PubMed

    Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald

    2014-07-01

    Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.

  2. ASIC1A in neurons is critical for fear-related behaviors.

    PubMed

    Taugher, R J; Lu, Y; Fan, R; Ghobbeh, A; Kreple, C J; Faraci, F M; Wemmie, J A

    2017-11-01

    Acid-sensing ion channels (ASICs) have been implicated in fear-, addiction- and depression-related behaviors in mice. While these effects have been attributed to ASIC1A in neurons, it has been reported that ASICs may also function in nonneuronal cells. To determine if ASIC1A in neurons is indeed required, we generated neuron-specific knockout (KO) mice with floxed Asic1a alleles disrupted by Cre recombinase driven by the neuron-specific synapsin I promoter (SynAsic1a KO mice). We confirmed that Cre expression occurred in neurons, but not all neurons, and not in nonneuronal cells including astrocytes. Consequent loss of ASIC1A in some but not all neurons was verified by western blotting, immunohistochemistry and electrophysiology. We found ASIC1A was disrupted in fear circuit neurons, and SynAsic1a KO mice exhibited prominent deficits in multiple fear-related behaviors including Pavlovian fear conditioning to cue and context, predator odor-evoked freezing and freezing responses to carbon dioxide inhalation. In contrast, in the nucleus accumbens ASIC1A expression was relatively normal in SynAsic1a KO mice, and consistent with this observation, cocaine conditioned place preference (CPP) was normal. Interestingly, depression-related behavior in the forced swim test, which has been previously linked to ASIC1A in the amygdala, was also normal. Together, these data suggest neurons are an important site of ASIC1A action in fear-related behaviors, whereas other behaviors likely depend on ASIC1A in other neurons or cell types not targeted in SynAsic1a KO mice. These findings highlight the need for further work to discern the roles of ASICs in specific cell types and brain sites. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  3. Ferulic acid promotes survival and differentiation of neural stem cells to prevent gentamicin-induced neuronal hearing loss.

    PubMed

    Gu, Lintao; Cui, Xinhua; Wei, Wei; Yang, Jia; Li, Xuezhong

    2017-11-15

    Neural stem cells (NSCs) have exhibited promising potential in therapies against neuronal hearing loss. Ferulic acid (FA) has been widely reported to enhance neurogenic differentiation of different stem cells. We investigated the role of FA in promoting NSC transplant therapy to prevent gentamicin-induced neuronal hearing loss. NSCs were isolated from mouse cochlear tissues to establish in vitro culture, which were then treated with FA. The survival and differentiation of NSCs were evaluated. Subsequently, neurite outgrowth and excitability of the in vitro neuronal network were assessed. Gentamicin was used to induce neuronal hearing loss in mice, in the presence and absence of FA, followed by assessments of auditory brainstem response (ABR) and distortion product optoacoustic emissions (DPOAE) amplitude. FA promoted survival, neurosphere formation and differentiation of NSCs, as well as neurite outgrowth and excitability of in vitro neuronal network. Furthermore, FA restored ABR threshold shifts and DPOAE in gentamicin-induced neuronal hearing loss mouse model in vivo. Our data, for the first time, support potential therapeutic efficacy of FA in promoting survival and differentiation of NSCs to prevent gentamicin-induced neuronal hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Methamphetamine users show greater than normal age-related cortical gray matter loss.

    PubMed

    Nakama, Helenna; Chang, Linda; Fein, George; Shimotsu, Ryan; Jiang, Caroline S; Ernst, Thomas

    2011-08-01

    Methamphetamine (Meth) abuse continues to be a major illicit drug of abuse. Neuroimaging findings suggest that Meth is neurotoxic and may alter various brain structures, but the effect of Meth on the aging brain has not been studied. The aim was to determine regional volumes of cortical gray matter in the brains of adult Meth users versus healthy control subjects, and their interaction with age and Meth-usage variables. Cross-sectional study Magnetic resonance imaging (MRI) Research Center located in a university-affiliated hospital. Thirty-four Meth-dependent subjects (21 men and 13 women; ages 33.1 ± 8.9 years), diagnosed according to DSM-IV criteria, and 31 healthy non-Meth user comparison subjects (23 men and 8 women ages 35.7 ± 8.4 years). Regional gray matter volumes were segmented automatically in all subjects and evaluated in relation to age, using high-resolution MRIs at 3.0 Tesla. After adjustment for the effects of cranium size, the Meth users showed enhanced cortical gray matter volume loss with age in the frontal (analysis of covariance interaction P = 0.02), occipital (interaction P = 0.01), temporal (interaction P < 0.001) and the insular lobes (interaction P = 0.01) compared to controls, independently of Meth-usage patterns. Additionally, Meth users showed smaller gray matter volumes than control subjects in several subregions (dorsolateral prefrontal: P = 0.02; orbitofrontal: P = 0.03; prefrontal: P = 0.047; superior temporal: P = 0.04). Methamphetamine users appear to show increased cortical gray matter loss with age which raises the possibility of accelerated decline in mental functioning. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  5. Enhancing Communication in Adults with Dementia and Age-Related Hearing Loss

    PubMed Central

    Mamo, Sara K.; Oh, Esther; Lin, Frank R.

    2017-01-01

    For many adults with dementia, age-related hearing loss is undiagnosed and/or untreated. Untreated hearing loss can exacerbate common dementia-related behavioral symptoms, such as depression, apathy, agitation. Despite the potential benefits to the individual and the family, pursuing and adopting hearing aids for persons with dementia presents with many challenges. As such, this group of vulnerable older adults is well suited for alternative approaches that adopt an interventional audiology framework. This article reviews alternative hearing care models that we have tested when working with older adults with cognitive impairments. We have found that some individuals show improvements in dementia-related problem behaviors and/or in measures of social engagement after brief aural rehabilitation interventions that provide non-custom amplification. We have developed simple training materials to help family and professional caregivers use communication strategies and non-custom amplification. Providing services that can be integrated into the person's broader dementia care has the potential to improve communication and quality of life for individuals and families. There are opportunities in this population to provide basic, simple strategies and make substantial improvements as long as we adopt approaches that bring the services to the people, instead of bringing the people to us in the audiology clinic. PMID:28522892

  6. Hippocampal Neuron Number Is Unchanged 1 Year After Fractionated Whole-Brain Irradiation at Middle Age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Lei; Molina, Doris P.; Robbins, Michael E.

    2008-06-01

    Purpose: To determine whether hippocampal neurons are lost 12 months after middle-aged rats received a fractionated course of whole-brain irradiation (WBI) that is expected to be biologically equivalent to the regimens used clinically in the treatment of brain tumors. Methods and Materials: Twelve-month-old Fischer 344 X Brown Norway male rats were divided into WBI and control (CON) groups (n = 6 per group). Anesthetized WBI rats received 45 Gy of {sup 137}Cs {gamma} rays delivered as 9 5-Gy fractions twice per week for 4.5 weeks. Control rats were anesthetized but not irradiated. Twelve months after WBI completion, all rats weremore » anesthetized and perfused with paraformaldehyde, and hippocampal sections were immunostained with the neuron-specific antibody NeuN. Using unbiased stereology, total neuron number and the volume of the neuronal and neuropil layers were determined in the dentate gyrus, CA3, and CA1 subregions of hippocampus. Results: No differences in tissue integrity or neuron distribution were observed between the WBI and CON groups. Moreover, quantitative analysis demonstrated that neither total neuron number nor the volume of neuronal or neuropil layers differed between the two groups for any subregion. Conclusions: Impairment on a hippocampal-dependent learning and memory test occurs 1 year after fractionated WBI at middle age. The same WBI regimen, however, does not lead to a loss of neurons or a reduction in the volume of hippocampus.« less

  7. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPHmore » oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to

  8. Reduced mastication stimulates impairment of spatial memory and degeneration of hippocampal neurons in aged SAMP8 mice.

    PubMed

    Onozuka, M; Watanabe, K; Mirbod, S M; Ozono, S; Nishiyama, K; Karasawa, N; Nagatsu, I

    1999-04-24

    The involvement of reduced mastication in senile dementia was evaluated by examining the effect of cutting off the upper molars (molarless) on spatial memory and numbers of hippocampal neurons in aged SAMP8 mice. Molarless mice showed a decrease in both learning ability in a water maze and neuron density in the hippocampal CA1 region compared with control mice. These changes increased the longer the molarless condition persisted. The data suggest a possible link between reduced mastication and hippocampal neuron loss that may be one risk factor for senile impairment of spatial memory. Copyright 1999 Elsevier Science B.V.

  9. Age-related spatial learning impairment is unrelated to spinophilin immunoreactive spine number and protein levels in rat hippocampus.

    PubMed

    Calhoun, Michael E; Fletcher, Bonnie R; Yi, Stella; Zentko, Diana C; Gallagher, Michela; Rapp, Peter R

    2008-08-01

    Age-related impairments in hippocampus-dependent learning and memory tasks are not associated with a loss of hippocampal neurons, but may be related to alterations in synaptic integrity. Here we used stereological techniques to estimate spine number in hippocampal subfields using immunostaining for the spine-associated protein, spinophilin, as a marker. Quantification of the immunoreactive profiles was performed using the optical disector/fractionator technique. Aging was associated with a modest increase in spine number in the molecular layer of the dentate gyrus and CA1 stratum lacunosum-moleculare. By comparison, spinophilin protein levels in the hippocampus, measured by Western blot analysis, failed to differ as a function of age. Neither the morphological nor the protein level data were correlated with spatial learning ability across individual aged rats. The results extend current evidence on synaptic integrity in the aged brain, indicating that a substantial loss of dendritic spines and spinophilin protein in the hippocampus are unlikely to contribute to age-related impairment in spatial learning.

  10. Age-related hearing loss

    MedlinePlus

    ... both physical (not hearing a fire alarm) and psychological (social isolation) problems. The hearing loss may lead ... accountability. A.D.A.M. is among the first to achieve this important distinction for online health ...

  11. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric Aβ and frank neuronal loss

    PubMed Central

    Cohen, Robert M.; Rezai-Zadeh, Kavon; Weitz, Tara M.; Rentsendorj, Altan; Gate, David; Spivak, Inna; Bholat, Yasmin; Vasilevko, Vitaly; Glabe, Charles G.; Breunig, Joshua J.; Rakic, Pasko; Davtyan, Hayk; Agadjanyan, Michael G.; Kepe, Vladimir; Barrio, Jorge; Bannykh, Serguei; Szekely, Christine A.; Pechnick, Robert N.; Town, Terrence

    2013-01-01

    Alzheimer’s disease (AD) is hallmarked by amyloid plaques, neurofibrillary tangles, and widespread cortical neuronal loss (Selkoe, 2001). The ‘amyloid cascade hypothesis’ posits that cerebral amyloid sets neurotoxic events into motion that precipitate Alzheimer dementia (Hardy and Allsop, 1991). Yet, faithful recapitulation of all AD features in widely used transgenic (Tg) mice engineered to overproduce Aβ peptides has been elusive. We have developed a Tg rat model (line TgF344-AD) expressing mutant human amyloid precursor protein (APPsw) and presenilin 1 (PS1ΔE9) genes, each independent causes of early-onset familial AD. TgF344-AD rats manifest age-dependent cerebral amyloidosis that precedes tauopathy, gliosis, apoptotic loss of neurons in the cerebral cortex and hippocampus, and cognitive disturbance. These results demonstrate progressive neurodegeneration of the Alzheimer type in these animals. The TgF344-AD rat fills a critical need for a next-generation animal model to enable basic and translational AD research. PMID:23575824

  12. Life-Long Wheel Running Attenuates Age-Related Fiber Loss in the Plantaris Muscle of Mice: a Pilot Study.

    PubMed

    Suwa, M; Ishioka, T; Kato, J; Komaita, J; Imoto, T; Kida, A; Yokochi, T

    2016-06-01

    The purpose of this study was to investigate whether long-term wheel running would attenuate age-related loss of muscle fiber. Male ICR mice were divided into young (Y, n=12, aged 3 months), old-sedentary (OS, n=5, aged 24 months), and old-exercise (OE, n=6, aged 24 months) groups. The OE group started spontaneous wheel running at 3 months and continued until 24 months of age. Soleus and plantaris muscles were fixed in 4% paraformaldehyde buffer. The fixed muscle was digested in a 50% NaOH solution to isolate single fiber and then fiber number was quantified. The masses of the soleus and plantaris muscles were significantly lower at 24 months than at 3 months of age, and this age-related difference was attenuated by wheel running (P<0.05). Soleus muscle fiber number did not differ among the groups. In the plantaris muscle, the fiber number in the OS group (1 288±92 fibers) was significantly lower than in the Y group (1 874±93 fibers), and this decrease was attenuated in the OE group (1 591±80 fibers) (P<0.05). These results suggest that age-related fiber loss occurs only in the fast-twitch fiber-rich muscle of mice, and that life-long wheel running exercise can prevent this fiber loss. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus.

    PubMed

    Papageorgiou, Ismini E; Valous, Nektarios A; Lahrmann, Bernd; Janova, Hana; Klaft, Zin-Juan; Koch, Arend; Schneider, Ulf C; Vajkoczy, Peter; Heppner, Frank L; Grabe, Niels; Halama, Niels; Heinemann, Uwe; Kann, Oliver

    2018-05-01

    Human mesial temporal lobe epilepsy (MTLE) features subregion-specific hippocampal neurodegeneration and reactive astrogliosis, including up-regulation of the glial fibrillary acidic protein (GFAP) and down-regulation of glutamine synthetase (GS). However, the regional astrocytic expression pattern of GFAP and GS upon MTLE-associated neurodegeneration still remains elusive. We assessed GFAP and GS expression in strict correlation with the local neuronal number in cortical and hippocampal surgical specimens from 16 MTLE patients using immunohistochemistry, stereology and high-resolution image analysis for digital pathology and whole-slide imaging. In the cortex, GS-positive (GS+) astrocytes are dominant in all neuronal layers, with a neuron to GS+ cell ratio of 2:1. GFAP-positive (GFAP+) cells are widely spaced, with a GS+ to GFAP+ cell ratio of 3:1-5:1. White matter astrocytes, on the contrary, express mainly GFAP and, to a lesser extent, GS. In the hippocampus, the neuron to GS+ cell ratio is approximately 1:1. Hippocampal degeneration is associated with a reduction of GS+ astrocytes, which is proportional to the degree of neuronal loss and primarily present in the hilus. Up-regulation of GFAP as a classical hallmark of reactive astrogliosis does not follow the GS-pattern and is prominent in the CA1. Reactive alterations were proportional to the neuronal loss in the neuronal somatic layers (stratum pyramidale and hilus), while observed to a lesser extent in the axonal/dendritic layers (stratum radiatum, molecular layer). We conclude that astrocytic GS is expressed in the neuronal somatic layers and, upon neurodegeneration, is down-regulated proportionally to the degree of neuronal loss. © 2018 Wiley Periodicals, Inc.

  14. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats.

    PubMed

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin

    2017-02-01

    Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.

  15. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis.

    PubMed

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L

    2016-05-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.

  16. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis

    PubMed Central

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D.

    2016-01-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance—replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. Significance This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. PMID:26987353

  17. LOSS OF SESTRIN 2 POTENTIATES THE EARLY ONSET OF AGE-RELATED SENSORY CELL DEGENERATION IN THE COCHLEA

    PubMed Central

    ZHANG, CELIA; SUN, WEI; LI, JI; XIONG, BINBIN; FRYE, MITCHELL D.; DING, DALIAN; SALVI, RICHARD; KIM, MI-JUNG; SOMEYA, SHINICHI; HU, BO HUA

    2017-01-01

    Sestrin 2 (SESN2) is a stress-inducible protein that protects tissues from oxidative stress and delays the aging process. However, its role in maintaining the functional and structural integrity of the cochlea is largely unknown. Here, we report the expression of SESN2 protein in the sensory epithelium, particularly in hair cells. Using C57BL/6J mice, a mouse model of age-related cochlear degeneration, we observed a significant age-related reduction in SESN2 expression in cochlear tissues that was associated with early onset hearing loss and accelerated age-related sensory cell degeneration that progressed from the base toward the apex of the cochlea. Hair cell death occurred by caspase-8 mediated apoptosis. Compared to C57BL/6J control mice, Sesn2 KO mice displayed enhanced expression of proinflammatory genes and activation of basilar membrane macrophages, suggesting that loss of SESN2 function provokes the immune response. Together, these results suggest that Sesn2 plays an important role in cochlear homeostasis and immune responses to stress. PMID:28818524

  18. A neuron-glia interaction involving GABA Transaminase contributes to sleep loss in sleepless mutants

    PubMed Central

    Chen, Wen-Feng; Maguire, Sarah; Sowcik, Mallory; Luo, Wenyu; Koh, Kyunghee; Sehgal, Amita

    2014-01-01

    Sleep is an essential process and yet mechanisms underlying it are not well understood. Loss of the Drosophila quiver/sleepless (qvr/sss) gene increases neuronal excitability and diminishes daily sleep, providing an excellent model for exploring the underpinnings of sleep regulation. Here, we used a proteomic approach to identify proteins altered in sss brains. We report that loss of sleepless post-transcriptionally elevates the CG7433 protein, a mitochondrial γ-aminobutyric acid transaminase (GABAT), and reduces GABA in fly brains. Loss of GABAT increases daily sleep and improves sleep consolidation, indicating that GABAT promotes wakefulness. Importantly, disruption of the GABAT gene completely suppresses the sleep phenotype of sss mutants, demonstrating that GABAT is required for loss of sleep in sss mutants. While SSS acts in distinct populations of neurons, GABAT acts in glia to reduce sleep in sss flies. Our results identify a novel mechanism of interaction between neurons and glia that is important for the regulation of sleep. PMID:24637426

  19. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.

    PubMed

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M

    2012-03-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants

    PubMed Central

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.

    2012-01-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001

  1. Mirror neuron activity associated with social impairments but not age in autism spectrum disorder.

    PubMed

    Enticott, Peter G; Kennedy, Hayley A; Rinehart, Nicole J; Tonge, Bruce J; Bradshaw, John L; Taffe, John R; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2012-03-01

    The neurobiology of autism spectrum disorder (ASD) is not particularly well understood, and biomedical treatment approaches are therefore extremely limited. A prominent explanatory model suggests that social-relating symptoms may arise from dysfunction within the mirror neuron system, while a recent neuroimaging study suggests that these impairments in ASD might reduce with age. Participants with autism spectrum disorder (i.e., DSM-IV autistic disorder or Asperger's disorder) (n = 34) and matched control subjects (n = 36) completed a transcranial magnetic stimulation study in which corticospinal excitability was assessed during the observation of hand gestures. Regression analyses revealed that the ASD group presented with significantly reduced corticospinal excitability during the observation of a transitive hand gesture (relative to observation of a static hand) (p < .05), which indicates reduced putative mirror neuron system activity within ventral premotor cortex/inferior frontal gyrus. Among the ASD group, there was also a negative association between putative mirror neuron activity and self-reported social-relating impairments, but there was no indication that mirror neuron impairments in ASD decrease with age. These data provide general support for the mirror neuron hypothesis of autism; researchers now must clarify the precise functional significance of mirror neurons to truly understand their role in the neuropathophysiology of ASD and to determine whether they should be used as targets for the treatment of ASD.

  2. Characteristics of hyperpolarization-activated cyclic nucleotide-gated channels in dorsal root ganglion neurons at different ages and sizes.

    PubMed

    Hou, Baohua; Chen, Hengling; Qu, Xiangwei; Lin, Xianguang; Luo, Fang; Li, Chenhong

    2015-11-11

    In rat's sensory neurons, hyperpolarization-activated inward currents (Ih) play an essential role in mediating action potentials and contributing to neuronal excitability. Classified by the size of neurons and ages, we studied the Ih and transcription levels of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels using electrophysiology and the single-cell RT-PCR. In voltage-clamp studies, Ih and half-maximal activation voltage (V1/2) changed with age and size. An analysis of all HCN subtypes in dorsal root ganglion (DRG) neurons by single-cell RT-PCR was carried out. HCN1 and HCN3 in medium-small elderly neurons had a weak expression. HCN2 in newborns and HCN4 in elderly rats also had a weak expression. The aim of this study is to examine the age-related Ih and HCN channels subunits in different ages and sizes of DRG neurons. The results would be significant in understanding the physiological and pathophysiological function of different sizes of DRG neurons in different age periods.

  3. Thalamocortical neuron loss and localized astrocytosis in the Cln3Deltaex7/8 knock-in mouse model of Batten disease.

    PubMed

    Pontikis, Charlie C; Cotman, Susan L; MacDonald, Marcy E; Cooper, Jonathan D

    2005-12-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL) is the result of mutations in the Cln3 gene. The Cln3 knock-in mouse (Cln3Deltaex7/8) reproduces the most common Cln3 mutation and we have now characterized the CNS of these mice at 12 months of age. With the exception of the thalamus, Cln3Deltaex7/8 homozygotes displayed no significant regional atrophy, but a range of changes in individual laminar thickness that resulted in variable cortical thinning across subfields. Stereological analysis revealed a pronounced loss of neurons within individual laminae of somatosensory cortex of affected mice and the novel finding of a loss of sensory relay thalamic neurons. These affected mice also exhibited profound astrocytic reactions that were most pronounced in the neocortex and thalamus, but diminished in other brain regions. These data provide the first direct evidence for neurodegenerative and reactive changes in the thalamocortical system in JNCL and emphasize the localized nature of these events.

  4. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits

    PubMed Central

    Schultheis, Patrick J.; Fleming, Sheila M.; Clippinger, Amy K.; Lewis, Jada; Tsunemi, Taiji; Giasson, Benoit; Dickson, Dennis W.; Mazzulli, Joseph R.; Bardgett, Mark E.; Haik, Kristi L.; Ekhator, Osunde; Chava, Anil Kumar; Howard, John; Gannon, Matt; Hoffman, Elizabeth; Chen, Yinhuai; Prasad, Vikram; Linn, Stephen C.; Tamargo, Rafael J.; Westbroek, Wendy; Sidransky, Ellen; Krainc, Dimitri; Shull, Gary E.

    2013-01-01

    Mutations in ATP13A2 (PARK9), encoding a lysosomal P-type ATPase, are associated with both Kufor–Rakeb syndrome (KRS) and neuronal ceroid lipofuscinosis (NCL). KRS has recently been classified as a rare genetic form of Parkinson's disease (PD), whereas NCL is a lysosomal storage disorder. Although the transport activity of ATP13A2 has not been defined, in vitro studies show that its loss compromises lysosomal function, which in turn is thought to cause neuronal degeneration. To understand the role of ATP13A2 dysfunction in disease, we disrupted its gene in mice. Atp13a2−/− and Atp13a2+/+ mice were tested behaviorally to assess sensorimotor and cognitive function at multiple ages. In the brain, lipofuscin accumulation, α-synuclein aggregation and dopaminergic pathology were measured. Behaviorally, Atp13a2−/− mice displayed late-onset sensorimotor deficits. Accelerated deposition of autofluorescent storage material (lipofuscin) was observed in the cerebellum and in neurons of the hippocampus and the cortex of Atp13a2−/− mice. Immunoblot analysis showed increased insoluble α-synuclein in the hippocampus, but not in the cortex or cerebellum. There was no change in the number of dopaminergic neurons in the substantia nigra or in striatal dopamine levels in aged Atp13a2−/− mice. These results show that the loss of Atp13a2 causes sensorimotor impairments, α-synuclein accumulation as occurs in PD and related synucleinopathies, and accumulation of lipofuscin deposits characteristic of NCL, thus providing the first direct demonstration that null mutations in Atp13a2 can cause pathological features of both diseases in the same organism. PMID:23393156

  5. Spontaneous Age-Related Neurite Branching in C. elegans

    PubMed Central

    Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia

    2011-01-01

    The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377

  6. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice.

    PubMed

    Vaughan, Sydney K; Stanley, Olivia L; Valdez, Gregorio

    2017-06-01

    The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Aging-related gains and losses associated with word production in connected speech.

    PubMed

    Dennis, Paul A; Hess, Thomas M

    2016-11-01

    Older adults have been observed to use more nonnormative, or atypical, words than younger adults in connected speech. We examined whether aging-related losses in word-finding abilities or gains in language expertise underlie these age differences. Sixty younger and 60 older adults described two neutral photographs. These descriptions were processed into word types, and textual analysis was used to identify interrupted speech (e.g., pauses), reflecting word-finding difficulty. Word types were assessed for normativeness, with nonnormative word types defined as those used by six (5%) or fewer participants to describe a particular picture. Accuracy and precision ratings were provided by another sample of 48 high-vocabulary younger and older adults. Older adults produced more interrupted and, as predicted, nonnormative words than younger adults. Older adults were more likely than younger adults to use nonnormative language via interrupted speech, suggesting a compensatory process. However, older adults' nonnormative words were more precise and trended for having higher accuracy, reflecting expertise. In tasks offering response flexibility, like connected speech, older adults may be able to offset instances of aging-related deficits by maximizing their expertise in other instances.

  8. Intracellular Aß triggers neuron loss in the cholinergic system of the APP/PS1KI mouse model of Alzheimer's disease.

    PubMed

    Christensen, Ditte Z; Bayer, Thomas A; Wirths, Oliver

    2010-07-01

    Loss of cholinergic neurons in the Nucleus Basalis of Meynert in Alzheimer's disease (AD) patients was one of the first discoveries of neuron loss in AD. Despite an intense focus on the cholinergic system in AD, the reason for this cholinergic neuron loss is yet unknown. In the present study we examined Abeta-induced pathology and neuron loss in the cholinergic system of the bigenic APP/PS1KI mouse model. Expression of the APP transgene was found in ChAT-positive neurons of motor nuclei accompanied by robust intracellular Abeta accumulation, whereas no APP expressing neurons and thus no intracellular Abeta accumulation were found in neither the forebrain or pons complexes, nor in the caudate putamen. This expression pattern was used as a model system to study the effect of intra- and extracellular Abeta accumulation on neuron loss in the cholinergic system. Stereological quantification revealed a loss of ChAT-positive neurons in APP/PS1KI mice only in the motor nuclei Mo5 and 7N accumulating intracellular Abeta. This study supports the hypothesis of intracellular Abeta accumulation as an early pathological alteration contributing to cell death in AD. Copyright 2008 Elsevier Inc. All rights reserved.

  9. Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration

    PubMed Central

    Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi

    2010-01-01

    Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS. PMID:20123860

  10. Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration.

    PubMed

    Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi

    2010-05-01

    Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS.

  11. Age Related Changes in Metabolite Concentrations in the Normal Spinal Cord

    PubMed Central

    Abdel-Aziz, Khaled; Solanky, Bhavana S.; Yiannakas, Marios C.; Altmann, Daniel R.; Wheeler-Kingshott, Claudia A. M.; Thompson, Alan J.; Ciccarelli, Olga

    2014-01-01

    Magnetic resonance spectroscopy (MRS) studies have previously described metabolite changes associated with aging of the healthy brain and provided insights into normal brain aging that can assist us in differentiating age-related changes from those associated with neurological disease. The present study investigates whether age-related changes in metabolite concentrations occur in the healthy cervical spinal cord. 25 healthy volunteers, aged 23–65 years, underwent conventional imaging and single-voxel MRS of the upper cervical cord using an optimised point resolved spectroscopy sequence on a 3T Achieva system. Metabolite concentrations normalised to unsuppressed water were quantified using LCModel and associations between age and spinal cord metabolite concentrations were examined using multiple regressions. A linear decline in total N-Acetyl-aspartate concentration (0.049 mmol/L lower per additional year of age, p = 0.010) and Glutamate-Glutamine concentration (0.054 mmol/L lower per additional year of age, p = 0.002) was seen within our sample age range, starting in the early twenties. The findings suggest that neuroaxonal loss and/or metabolic neuronal dysfunction, and decline in glutamate-glutamine neurotransmitter pool progress with aging. PMID:25310093

  12. Mitochondrial Aging Defects Emerge in Directly Reprogrammed Human Neurons due to Their Metabolic Profile.

    PubMed

    Kim, Yongsung; Zheng, Xinde; Ansari, Zoya; Bunnell, Mark C; Herdy, Joseph R; Traxler, Larissa; Lee, Hyungjun; Paquola, Apua C M; Blithikioti, Chrysanthi; Ku, Manching; Schlachetzki, Johannes C M; Winkler, Jürgen; Edenhofer, Frank; Glass, Christopher K; Paucar, Andres A; Jaeger, Baptiste N; Pham, Son; Boyer, Leah; Campbell, Benjamin C; Hunter, Tony; Mertens, Jerome; Gage, Fred H

    2018-05-29

    Mitochondria are a major target for aging and are instrumental in the age-dependent deterioration of the human brain, but studying mitochondria in aging human neurons has been challenging. Direct fibroblast-to-induced neuron (iN) conversion yields functional neurons that retain important signs of aging, in contrast to iPSC differentiation. Here, we analyzed mitochondrial features in iNs from individuals of different ages. iNs from old donors display decreased oxidative phosphorylation (OXPHOS)-related gene expression, impaired axonal mitochondrial morphologies, lower mitochondrial membrane potentials, reduced energy production, and increased oxidized proteins levels. In contrast, the fibroblasts from which iNs were generated show only mild age-dependent changes, consistent with a metabolic shift from glycolysis-dependent fibroblasts to OXPHOS-dependent iNs. Indeed, OXPHOS-induced old fibroblasts show increased mitochondrial aging features similar to iNs. Our data indicate that iNs are a valuable tool for studying mitochondrial aging and support a bioenergetic explanation for the high susceptibility of the brain to aging. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair.

    PubMed

    Borgesius, Nils Z; de Waard, Monique C; van der Pluijm, Ingrid; Omrani, Azar; Zondag, Gerben C M; van der Horst, Gijsbertus T J; Melton, David W; Hoeijmakers, Jan H J; Jaarsma, Dick; Elgersma, Ype

    2011-08-31

    Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.

  14. Age, circadian rhythms, and sleep loss in flight crews

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Nguyen, DE; Rosekind, Mark R.; Connell, Linda J.

    1993-01-01

    Age-related changes in trip-induced sleep loss, personality, and the preduty temperature rhythm were analyzed in crews from various flight operations. Eveningness decreased with age. The minimum of the baseline temperature rhythm occurred earlier with age. The amplitude of the baseline temperature rhythm declined with age. Average daily percentage sleep loss during trips increased with age. Among crewmembers flying longhaul flight operations, subjects aged 50-60 averaged 3.5 times more sleep loss per day than subjects aged 20-30. These studies support previous findings that evening types and subjects with later peaking temperature rhythms adapt better to shift work and time zone changes. Age and circadian type may be important considerations for duty schedules and fatigue countermeasures.

  15. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss.

    PubMed

    Cohen, Robert M; Rezai-Zadeh, Kavon; Weitz, Tara M; Rentsendorj, Altan; Gate, David; Spivak, Inna; Bholat, Yasmin; Vasilevko, Vitaly; Glabe, Charles G; Breunig, Joshua J; Rakic, Pasko; Davtyan, Hayk; Agadjanyan, Michael G; Kepe, Vladimir; Barrio, Jorge R; Bannykh, Serguei; Szekely, Christine A; Pechnick, Robert N; Town, Terrence

    2013-04-10

    Alzheimer's disease (AD) is hallmarked by amyloid plaques, neurofibrillary tangles, and widespread cortical neuronal loss (Selkoe, 2001). The "amyloid cascade hypothesis" posits that cerebral amyloid sets neurotoxic events into motion that precipitate Alzheimer dementia (Hardy and Allsop, 1991). Yet, faithful recapitulation of all AD features in widely used transgenic (Tg) mice engineered to overproduce Aβ peptides has been elusive. We have developed a Tg rat model (line TgF344-AD) expressing mutant human amyloid precursor protein (APPsw) and presenilin 1 (PS1ΔE9) genes, each independent causes of early-onset familial AD. TgF344-AD rats manifest age-dependent cerebral amyloidosis that precedes tauopathy, gliosis, apoptotic loss of neurons in the cerebral cortex and hippocampus, and cognitive disturbance. These results demonstrate progressive neurodegeneration of the Alzheimer type in these animals. The TgF344-AD rat fills a critical need for a next-generation animal model to enable basic and translational AD research.

  16. An automated compound screening for anti-aging effects on the function of C. elegans sensory neurons.

    PubMed

    Bazopoulou, Daphne; Chaudhury, Amrita R; Pantazis, Alexandros; Chronis, Nikos

    2017-08-24

    Discovery of molecular targets or compounds that alter neuronal function can lead to therapeutic advances that ameliorate age-related neurodegenerative pathologies. Currently, there is a lack of in vivo screening technologies for the discovery of compounds that affect the age-dependent neuronal physiology. Here, we present a high-throughput, microfluidic-based assay for automated manipulation and on-chip monitoring and analysis of stimulus-evoked calcium responses of intact C. elegans at various life stages. First, we successfully applied our technology to quantify the effects of aging and age-related genetic and chemical factors in the calcium transients of the ASH sensory neuron. We then performed a large-scale screen of a library of 107 FDA-approved compounds to identify hits that prevented the age-dependent functional deterioration of ASH. The robust performance of our assay makes it a valuable tool for future high-throughput applications based on in vivo functional imaging.

  17. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease.

    PubMed

    Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie

    2014-05-01

    Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer’s disease

    PubMed Central

    Lim, Andrew S. P.; Ellison, Brian A.; Wang, Joshua L.; Yu, Lei; Schneider, Julie A.; Buchman, Aron S.; Bennett, David A.

    2014-01-01

    Fragmented sleep is a common and troubling symptom in ageing and Alzheimer’s disease; however, its neurobiological basis in many patients is unknown. In rodents, lesions of the hypothalamic ventrolateral preoptic nucleus cause fragmented sleep. We previously proposed that the intermediate nucleus in the human hypothalamus, which has a similar location and neurotransmitter profile, is the homologue of the ventrolateral preoptic nucleus, but physiological data in humans were lacking. We hypothesized that if the intermediate nucleus is important for human sleep, then intermediate nucleus cell loss may contribute to fragmentation and loss of sleep in ageing and Alzheimer’s disease. We studied 45 older adults (mean age at death 89.2 years; 71% female; 12 with Alzheimer’s disease) from the Rush Memory and Aging Project, a community-based study of ageing and dementia, who had at least 1 week of wrist actigraphy proximate to death. Upon death a median of 15.5 months later, we used immunohistochemistry and stereology to quantify the number of galanin-immunoreactive intermediate nucleus neurons in each individual, and related this to ante-mortem sleep fragmentation. Individuals with Alzheimer’s disease had fewer galaninergic intermediate nucleus neurons than those without (estimate −2872, standard error = 829, P = 0.001). Individuals with more galanin-immunoreactive intermediate nucleus neurons had less fragmented sleep, after adjusting for age and sex, and this association was strongest in those for whom the lag between actigraphy and death was <1 year (estimate −0.0013, standard error = 0.0005, P = 0.023). This association did not differ between individuals with and without Alzheimer’s disease, and similar associations were not seen for two other cell populations near the intermediate nucleus. These data are consistent with the intermediate nucleus being the human homologue of the ventrolateral preoptic nucleus. Moreover, they demonstrate that a paucity of

  19. A mouse model of DEPDC5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility.

    PubMed

    Yuskaitis, Christopher J; Jones, Brandon M; Wolfson, Rachel L; Super, Chloe E; Dhamne, Sameer C; Rotenberg, Alexander; Sabatini, David M; Sahin, Mustafa; Poduri, Annapurna

    2018-03-01

    DEPDC5 is a newly identified epilepsy-related gene implicated in focal epilepsy, brain malformations, and Sudden Unexplained Death in Epilepsy (SUDEP). In vitro, DEPDC5 negatively regulates amino acid sensing by the mTOR complex 1 (mTORC1) pathway, but the role of DEPDC5 in neurodevelopment and epilepsy has not been described. No animal model of DEPDC5-related epilepsy has recapitulated the neurological phenotypes seen in patients, and germline knockout rodent models are embryonic lethal. Here, we establish a neuron-specific Depdc5 conditional knockout mouse by cre-recombination under the Synapsin1 promotor. Depdc5 flox/flox -Syn1 Cre (Depdc5cc+) mice survive to adulthood with a progressive neurologic phenotype that includes motor abnormalities (i.e., hind limb clasping) and reduced survival compared to littermate control mice. Depdc5cc+ mice have larger brains with increased cortical neuron size and dysplastic neurons throughout the cortex, comparable to the abnormal neurons seen in human focal cortical dysplasia specimens. Depdc5 results in constitutive mTORC1 hyperactivation exclusively in neurons as measured by the increased phosphorylation of the downstream ribosomal protein S6. Despite a lack of increased mTORC1 signaling within astrocytes, Depdc5cc+ brains show reactive astrogliosis. We observed two Depdc5cc+ mice to have spontaneous seizures, including a terminal seizure. We demonstrate that as a group Depdc5cc+ mice have lowered seizure thresholds, as evidenced by decreased latency to seizures after chemoconvulsant injection and increased mortality from pentylenetetrazole-induced seizures. In summary, our neuron-specific Depdc5 knockout mouse model recapitulates clinical, pathological, and biochemical features of human DEPDC5-related epilepsy and brain malformations. We thereby present an important model in which to study targeted therapeutic strategies for DEPDC5-related conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. I owe you: age-related similarities and differences in associative memory for gains and losses.

    PubMed

    Castel, Alan D; Friedman, Michael C; McGillivray, Shannon; Flores, Cynthia C; Murayama, Kou; Kerr, Tyson; Drolet, Aimee

    2016-09-01

    Older adults often experience associative memory impairments but can sometimes remember important information. The current experiments investigate potential age-related similarities and differences associate memory for gains and losses. Younger and older participants were presented with faces and associated dollar amounts, which indicated how much money the person "owed" the participant, and were later given a cued recall test for the dollar amount. Experiment 1 examined face-dollar amount pairs while Experiment 2 included negative dollar amounts to examine both gains and losses. While younger adults recalled more information relative to older adults, both groups were more accurate in recalling the correct value associated with high-value faces compared to lower-value faces and remembered gist-information about the values. However, negative values (losses) did not have a strong impact on recall among older adults versus younger adults, illustrating important associative memory differences between younger and older adults.

  1. I Owe You: Age-Related Similarities and Differences in Associative Memory for Gains and Losses

    PubMed Central

    Castel, Alan D.; Friedman, Michael C.; McGillivray, Shannon; Flores, Cynthia C.; Murayama, Kou; Kerr, Tyson; Drolet, Aimee

    2016-01-01

    Older adults often experience associative memory impairments but can sometimes remember important information. The current experiments investigate potential age-related similarities and differences associate memory for gains and losses. Younger and older participants were presented with faces and associated dollar amounts, which indicated how much money the person “owed” the participant, and were later given a cued recall test for the dollar amount. Experiment 1 examined face-dollar amount pairs while Experiment 2 included negative dollar amounts to examine both gains and losses. While younger adults recalled more information relative to older adults, both groups were more accurate in recalling the correct value associated with high value faces compared to lower value faces and remembered gist-information about the values. However, negative values (losses) did not have a strong impact on recall among older adults versus younger adults, illustrating important associative memory differences between younger and older adults. PMID:26847137

  2. Morin hydrate promotes inner ear neural stem cell survival and differentiation and protects cochlea against neuronal hearing loss.

    PubMed

    He, Qiang; Jia, Zhanwei; Zhang, Ying; Ren, Xiumin

    2017-03-01

    We aimed to investigate the effect of morin hydrate on neural stem cells (NSCs) isolated from mouse inner ear and its potential in protecting neuronal hearing loss. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and bromodeoxyuridine incorporation assays were employed to assess the effect of morin hydrate on the viability and proliferation of in vitro NSC culture. The NSCs were then differentiated into neurons, in which neurosphere formation and differentiation were evaluated, followed by neurite outgrowth and neural excitability measurements in the subsequent in vitro neuronal network. Mechanotransduction of cochlea ex vivo culture and auditory brainstem responses threshold and distortion product optoacoustic emissions amplitude in mouse ototoxicity model were also measured following gentamicin treatment to investigate the protective role of morin hydrate against neuronal hearing loss. Morin hydrate improved viability and proliferation, neurosphere formation and neuronal differentiation of inner ear NSCs, and promoted in vitro neuronal network functions. In both ex vivo and in vivo ototoxicity models, morin hydrate prevented gentamicin-induced neuronal hearing loss. Morin hydrate exhibited potent properties in promoting growth and differentiation of inner ear NSCs into functional neurons and protecting from gentamicin ototoxicity. Our study supports its clinical potential in treating neuronal hearing loss. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Aging Enables Ca2+ Overload and Apoptosis Induced by Amyloid-β Oligomers in Rat Hippocampal Neurons: Neuroprotection by Non-Steroidal Anti-Inflammatory Drugs and R-Flurbiprofen in Aging Neurons.

    PubMed

    Calvo-Rodríguez, María; García-Durillo, Mónica; Villalobos, Carlos; Núñez, Lucía

    2016-07-22

    The most important risk factor for Alzheimer's disease (AD) is aging. Neurotoxicity in AD has been linked to dyshomeostasis of intracellular Ca2+ induced by small aggregates of the amyloid-β peptide 1-42 (Aβ42 oligomers). However, how aging influences susceptibility to neurotoxicity induced by Aβ42 oligomers is unknown. In this study, we used long-term cultures of rat hippocampal neurons, a model of neuronal in vitro aging, to investigate the contribution of aging to Ca2+ dishomeostasis and neuron cell death induced by Aβ42 oligomers. In addition, we tested whether non-steroidal anti-inflammatory drugs (NSAIDs) and R-flurbiprofen prevent apoptosis acting on subcellular Ca2+ in aged neurons. We found that Aβ42 oligomers have no effect on young hippocampal neurons cultured for 2 days in vitro (2 DIV). However, they promoted apoptosis modestly in mature neurons (8 DIV) and these effects increased dramatically after 13 DIV, when neurons display many hallmarks of in vivo aging. Consistently, cytosolic and mitochondrial Ca2+ responses induced by Aβ42 oligomers increased dramatically with culture age. At low concentrations, NSAIDs and the enantiomer R-flurbiprofen lacking anti-inflammatory activity prevent Ca2+ overload and neuron cell death induced by Aβ42 oligomers in aged neurons. However, at high concentrations R-flurbiprofen induces apoptosis. Thus, Aβ42 oligomers promote Ca2+ overload and neuron cell death only in aged rat hippocampal neurons. These effects are prevented by low concentrations of NSAIDs and R-flurbiprofen acting on mitochondrial Ca2+ overload.

  4. Occlusal disharmony induces spatial memory impairment and hippocampal neuron degeneration via stress in SAMP8 mice.

    PubMed

    Kubo, Kin-ya; Yamada, Yukiko; Iinuma, Mitsuo; Iwaku, Fumihiko; Tamura, Yasuo; Watanabe, Kazuko; Nakamura, Hiroyuki; Onozuka, Minoru

    2007-03-06

    We examined the effect of occlusal disharmony in senescence-accelerated (SAMP8) mice on plasma corticosterone levels, hippocampal neuron number, and spatial performance in the water maze. The bite-raised condition was associated with an accelerated age-related decline in spatial memory, increased plasma corticosterone levels, and a decreased number of neurons in the hippocampal CA3 region. The findings suggest that the bite-raised condition in aged SAMP8 mice induces hippocampal neuron loss, thereby leading to senile memory deficits.

  5. Neuronal loss is an early component of subacute sclerosing panencephalitis.

    PubMed

    Yüksel, Deniz; Diren, Barış; Ulubay, Hakan; Altunbaşak, Sakir; Anlar, Banu

    2014-09-02

    We performed diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) studies in a group of patients with subacute sclerosing panencephalitis (SSPE) in order to estimate the pathologic process underlying the phenotypic variability. Patients with SSPE who had MRI including DTI and MRS examinations were evaluated according to their clinical status as determined by the SSPE Scoring System and their mental age as determined by tests appropriate for age and developmental level. Comparisons of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values and metabolite ratios of frontal periventricular white matter, parieto-occipital periventricular white matter, and globus pallidus in both hemispheres were made between control and SSPE groups, and between SSPE subgroups. Control (n = 18) and SSPE (n = 39) groups differed in all DTI and MRS parameters except FA, choline (Cho), and Cho/creatine (Cr). SSPE cases had higher ADC and lower N-acetylaspartate (NAA), NAA/Cho, and NAA/Cr in all regions of interest, suggesting cell loss. Disease progression rate and neurologic deficit appeared to be associated with the degree of ADC elevation and NAA reduction: the group with severe global deterioration had the lowest NAA (230.75 ± 197.97 in forceps minor), and rapid progression was associated with acute reduction in NAA. The combination of MRS and diffusion MRI findings suggests neuronal loss can be a primary target in rapidly or subacutely progressing SSPE, and preservation or regeneration of axonal structure may be beneficial in chronic cases. © 2014 American Academy of Neurology.

  6. Reprogramming Glia Into Neurons in the Peripheral Auditory System as a Solution for Sensorineural Hearing Loss: Lessons From the Central Nervous System

    PubMed Central

    Meas, Steven J.; Zhang, Chun-Li; Dabdoub, Alain

    2018-01-01

    Disabling hearing loss affects over 5% of the world’s population and impacts the lives of individuals from all age groups. Within the next three decades, the worldwide incidence of hearing impairment is expected to double. Since a leading cause of hearing loss is the degeneration of primary auditory neurons (PANs), the sensory neurons of the auditory system that receive input from mechanosensory hair cells in the cochlea, it may be possible to restore hearing by regenerating PANs. A direct reprogramming approach can be used to convert the resident spiral ganglion glial cells into induced neurons to restore hearing. This review summarizes recent advances in reprogramming glia in the CNS to suggest future steps for regenerating the peripheral auditory system. In the coming years, direct reprogramming of spiral ganglion glial cells has the potential to become one of the leading biological strategies to treat hearing impairment. PMID:29593497

  7. Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice.

    PubMed

    Deng, Y P; Wong, T; Bricker-Anthony, C; Deng, B; Reiner, A

    2013-12-01

    Motor slowing, forebrain white matter loss, and striatal shrinkage have been reported in premanifest Huntington's disease (HD) prior to overt striatal neuron loss. We carried out detailed LM and EM studies in a genetically precise HD mimic, heterozygous Q140 HD knock-in mice, to examine the possibility that loss of corticostriatal and thalamostriatal terminals prior to striatal neuron loss underlies these premanifest HD abnormalities. In our studies, we used VGLUT1 and VGLUT2 immunolabeling to detect corticostriatal and thalamostriatal (respectively) terminals in dorsolateral (motor) striatum over the first year of life, prior to striatal projection neuron pathology. VGLUT1+ axospinous corticostriatal terminals represented about 55% of all excitatory terminals in striatum, and VGLUT2+ axospinous thalamostriatal terminals represented about 35%, with VGLUT1+ and VGLUT2+ axodendritic terminals accounting for the remainder. In Q140 mice, a significant 40% shortfall in VGLUT2+ axodendritic thalamostriatal terminals and a 20% shortfall in axospinous thalamostriatal terminals were already observed at 1 month of age, but VGLUT1+ terminals were normal in abundance. The 20% deficiency in VGLUT2+ thalamostriatal axospinous terminals persisted at 4 and 12 months in Q140 mice, and an additional 30% loss of VGLUT1+ corticostriatal terminals was observed at 12 months. The early and persistent deficiency in thalamostriatal axospinous terminals in Q140 mice may reflect a development defect, and the impoverishment of this excitatory drive to striatum may help explain early motor defects in Q140 mice and in premanifest HD. The loss of corticostriatal terminals at 1 year in Q140 mice is consistent with prior evidence from other mouse models of corticostriatal disconnection early during progression, and can explain both the measurable bradykinesia and striatal white matter loss in late premanifest HD. © 2013.

  8. Age-related striatal BOLD changes without changes in behavioral loss aversion.

    PubMed

    Viswanathan, Vijay; Lee, Sang; Gilman, Jodi M; Kim, Byoung Woo; Lee, Nick; Chamberlain, Laura; Livengood, Sherri L; Raman, Kalyan; Lee, Myung Joo; Kuster, Jake; Stern, Daniel B; Calder, Bobby; Mulhern, Frank J; Blood, Anne J; Breiter, Hans C

    2015-01-01

    Loss aversion (LA), the idea that negative valuations have a higher psychological impact than positive ones, is considered an important variable in consumer research. The literature on aging and behavior suggests older individuals may show more LA, although it is not clear if this is an effect of aging in general (as in the continuum from age 20 and 50 years), or of the state of older age (e.g., past age 65 years). We also have not yet identified the potential biological effects of aging on the neural processing of LA. In the current study we used a cohort of subjects with a 30 year range of ages, and performed whole brain functional MRI (fMRI) to examine the ventral striatum/nucleus accumbens (VS/NAc) response during a passive viewing of affective faces with model-based fMRI analysis incorporating behavioral data from a validated approach/avoidance task with the same stimuli. Our a priori focus on the VS/NAc was based on (1) the VS/NAc being a central region for reward/aversion processing; (2) its activation to both positive and negative stimuli; (3) its reported involvement with tracking LA. LA from approach/avoidance to affective faces showed excellent fidelity to published measures of LA. Imaging results were then compared to the behavioral measure of LA using the same affective faces. Although there was no relationship between age and LA, we observed increasing neural differential sensitivity (NDS) of the VS/NAc to avoidance responses (negative valuations) relative to approach responses (positive valuations) with increasing age. These findings suggest that a central region for reward/aversion processing changes with age, and may require more activation to produce the same LA behavior as in younger individuals, consistent with the idea of neural efficiency observed with high IQ individuals showing less brain activation to complete the same task.

  9. Age-related striatal BOLD changes without changes in behavioral loss aversion

    PubMed Central

    Viswanathan, Vijay; Lee, Sang; Gilman, Jodi M.; Kim, Byoung Woo; Lee, Nick; Chamberlain, Laura; Livengood, Sherri L.; Raman, Kalyan; Lee, Myung Joo; Kuster, Jake; Stern, Daniel B.; Calder, Bobby; Mulhern, Frank J.; Blood, Anne J.; Breiter, Hans C.

    2015-01-01

    Loss aversion (LA), the idea that negative valuations have a higher psychological impact than positive ones, is considered an important variable in consumer research. The literature on aging and behavior suggests older individuals may show more LA, although it is not clear if this is an effect of aging in general (as in the continuum from age 20 and 50 years), or of the state of older age (e.g., past age 65 years). We also have not yet identified the potential biological effects of aging on the neural processing of LA. In the current study we used a cohort of subjects with a 30 year range of ages, and performed whole brain functional MRI (fMRI) to examine the ventral striatum/nucleus accumbens (VS/NAc) response during a passive viewing of affective faces with model-based fMRI analysis incorporating behavioral data from a validated approach/avoidance task with the same stimuli. Our a priori focus on the VS/NAc was based on (1) the VS/NAc being a central region for reward/aversion processing; (2) its activation to both positive and negative stimuli; (3) its reported involvement with tracking LA. LA from approach/avoidance to affective faces showed excellent fidelity to published measures of LA. Imaging results were then compared to the behavioral measure of LA using the same affective faces. Although there was no relationship between age and LA, we observed increasing neural differential sensitivity (NDS) of the VS/NAc to avoidance responses (negative valuations) relative to approach responses (positive valuations) with increasing age. These findings suggest that a central region for reward/aversion processing changes with age, and may require more activation to produce the same LA behavior as in younger individuals, consistent with the idea of neural efficiency observed with high IQ individuals showing less brain activation to complete the same task. PMID:25983682

  10. Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with ATXN2 intermediate repeat expansions.

    PubMed

    Tan, Rachel H; Kril, Jillian J; McGinley, Ciara; Hassani, Mohammad; Masuda-Suzukake, Masami; Hasegawa, Masato; Mito, Remika; Kiernan, Matthew C; Halliday, Glenda M

    2016-02-01

    Despite evidence suggesting that the cerebellum may be targeted in amyotrophic lateral sclerosis (ALS), particularly in cases with repeat expansions in the ATXN2 and C9ORF72 genes, the integrity of cerebellar neurons has yet to be examined. The present study undertakes a histopathological analysis to assess the impact of these repeat expansions on cerebellar neurons and determine whether similar cerebellar pathology occurs in sporadic disease. Purkinje and granule cells were quantified in the vermis and lateral cerebellar hemispheres of ALS cases with repeat expansions in the ATXN2 and C9ORF72 genes, sporadic disease, and sporadic progressive muscular atrophy with only lower motor neuron degeneration. ALS cases with intermediate repeat expansions in the ATXN2 gene demonstrate a significant loss in Purkinje cells in the cerebellar vermis only. Despite ALS cases with expansions in the C9ORF72 gene having the highest burden of inclusion pathology, no neuronal loss was observed in this group. Neuronal numbers were also unchanged in sporadic ALS and sporadic PMA cases. The present study has established a selective loss of Purkinje cells in the cerebellar vermis of ALS cases with intermediate repeat expansions in the ATXN2 gene, suggesting a divergent pathogenic mechanism independent of upper and lower motor neuron degeneration in ALS. We discuss these findings in the context of large repeat expansions in ATXN2 and spinocerebellar ataxia type 2, providing evidence that intermediate repeats in ATXN2 cause significant, albeit less substantial, spinocerebellar damage compared with longer repeats in ATXN2. © 2016 American Neurological Association.

  11. Male sexual behavior is associated with LHRH neuron number in middle-aged rats.

    PubMed

    Tsai, Y F; Tsai, H W; Tai, M Y; Huang, R L; Peng, M T

    1997-11-21

    LHRH administration is reported to facilitate male sexual behavior. The aim of the present study was to investigate whether male sexual behavior is associated with the number of LHRH neurons in the forebrain in middle-aged rats. Male Long-Evans rats (18-19 months) were assigned to three groups on the basis of sexual performance: (1) group MEI consisted of rats showing complete copulatory patterns, including mounts, intromissions and ejaculations, (2) group MI was composed of rats showing mounts and intromissions, but no ejaculation and (3) group NC were non-copulators, i.e. they did not show any copulatory behavior. Young adult rats (4-5 months), displaying sexual behavior, were used as controls. Following the sexual behavior tests, the number of LHRH neurons in the medial septum (MS), organum vasculosum of the lamina terminalis (OVLT), preoptic area (POA) and anterior hypothalamus (AH) was determined by immunocytochemistry. No difference was seen in the total number of LHRH neurons in these combined brain areas between group MIE and young controls. In the three middle-aged groups, the total number of LHRH neurons was greatest in group MIE, less in group MI, and lowest in group NC. In general, a similar trend was seen separately in the MS, OVLT and POA. These results suggest that changes in the number of LHRH neurons in the forebrain, in most cases, are age-related, at least in the middle-aged rats, but they also seem to be associated with male sexual performance.

  12. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells

    PubMed Central

    Long, Dani M.; Giebultowicz, Jadwiga M.

    2018-01-01

    Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demonstrated that the expression of the core clock protein PERIOD (PER) declines in the heads of aged Drosophila melanogaster flies. This age-related decline in PER does not occur in the central pacemaker neurons but has been demonstrated so far in retinal photoreceptors. Besides photoreceptors, clock proteins are also expressed in fly glia, which play important roles in neuronal homeostasis and are further categorized into subtypes based on morphology and function. While previous studies of mammalian glial cells have demonstrated the presence of functional clocks in astrocytes and microglia, it is not known which glial cell types in Drosophila express clock proteins and how their expression may change in aged individuals. Here, we conducted immunocytochemistry experiments to identify which glial subtypes express PER protein suggestive of functional circadian clocks. Glial cell subtypes that showed night-time accumulation and day-time absence in PER consistent with oscillations reported in the pacemaker neurons were selected to compare the level of PER protein between young and old flies. Our data demonstrate that some glial subtypes show rhythmic PER expression and the relative PER levels become dampened with advanced age. Identification of glial cell types that display age-related dampening of PER levels may help to understand the cellular changes that contribute to the loss of homeostasis in the aging brain. PMID:29375400

  13. Differential regulation of NMDA receptor-expressing neurons in the rat hippocampus and striatum following bilateral vestibular loss demonstrated using flow cytometry.

    PubMed

    Benoit, Alice; Besnard, Stephane; Guillamin, Maryline; Philoxene, Bruno; Sola, Brigitte; Le Gall, Anne; Machado, Marie-Laure; Toulouse, Joseph; Hitier, Martin; Smith, Paul F

    2018-06-21

    There is substantial evidence that loss of vestibular function impairs spatial learning and memory related to hippocampal (HPC) function, as well as increasing evidence that striatal (Str) plasticity is also implicated. Since the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor is considered essential to spatial memory, previous studies have investigated whether the expression of HPC NMDA receptors changes following vestibular loss; however, the results have been contradictory. Here we used a novel flow cytometric method to quantify the number of neurons expressing NMDA receptors in the HPC and Str following bilateral vestibular loss (BVL) in rats. At 7 and 30 days post-op., there was a significant increase in the number of HPC neurons expressing NMDA receptors in the BVL animals, compared to sham controls (P ≤ 0.004 and P ≤ 0.0001, respectively). By contrast, in the Str, at 7 days there was a significant reduction in the number of neurons expressing NMDA receptors in the BVL group (P ≤ 0.05); however, this difference had disappeared by 30 days post-op. These results suggest that BVL causes differential changes in the number of neurons expressing NMDA receptors in the HPC and Str, which may be related to its long-term impairment of spatial memory. Copyright © 2018. Published by Elsevier B.V.

  14. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer's disease and neuronal loss.

    PubMed

    Ager, Rahasson R; Davis, Joy L; Agazaryan, Andy; Benavente, Francisca; Poon, Wayne W; LaFerla, Frank M; Blurton-Jones, Mathew

    2015-07-01

    Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder, affecting over 35 million people worldwide. Pathologically, AD is characterized by the progressive accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Together, these pathologies lead to marked neuronal and synaptic loss and corresponding impairments in cognition. Current treatments, and recent clinical trials, have failed to modify the clinical course of AD; thus, the development of novel and innovative therapies is urgently needed. Over the last decade, the potential use of stem cells to treat cognitive impairment has received growing attention. Specifically, neural stem cell transplantation as a treatment for AD offers a novel approach with tremendous therapeutic potential. We previously reported that intrahippocampal transplantation of murine neural stem cells (mNSCs) can enhance synaptogenesis and improve cognition in 3xTg-AD mice and the CaM/Tet-DT(A) model of hippocampal neuronal loss. These promising findings prompted us to examine a human neural stem cell population, HuCNS-SC, which has already been clinically tested for other neurodegenerative disorders. In this study, we provide the first evidence that transplantation of research grade HuCNS-SCs can improve cognition in two complementary models of neurodegeneration. We also demonstrate that HuCNS-SC cells can migrate and differentiate into immature neurons and glia and significantly increase synaptic and growth-associated markers in both 3xTg-AD and CaM/Tet-DTA mice. Interestingly, improvements in aged 3xTg-AD mice were not associated with altered Aβ or tau pathology. Rather, our findings suggest that human NSC transplantation improves cognition by enhancing endogenous synaptogenesis. Taken together, our data provide the first preclinical evidence that human NSC transplantation could be a safe and effective therapeutic approach for treating AD. © 2014 The Authors. Hippocampus

  15. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration.

    PubMed

    Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman

    2015-04-01

    Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss.

    PubMed

    Scekic-Zahirovic, Jelena; Sendscheid, Oliver; El Oussini, Hajer; Jambeau, Mélanie; Sun, Ying; Mersmann, Sina; Wagner, Marina; Dieterlé, Stéphane; Sinniger, Jérome; Dirrig-Grosch, Sylvie; Drenner, Kevin; Birling, Marie-Christine; Qiu, Jinsong; Zhou, Yu; Li, Hairi; Fu, Xiang-Dong; Rouaux, Caroline; Shelkovnikova, Tatyana; Witting, Anke; Ludolph, Albert C; Kiefer, Friedemann; Storkebaum, Erik; Lagier-Tourenne, Clotilde; Dupuis, Luc

    2016-05-17

    FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  17. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study

    PubMed Central

    Tisdall, Martin M.; Girbes, Armand R.; Martinian, Lillian; Thom, Maria; Kitchen, Neil; Smith, Martin

    2011-01-01

    Traumatic brain injury causes diffuse axonal injury and loss of cortical neurons. These features are well recognized histologically, but their in vivo monitoring remains challenging. In vivo cortical microdialysis samples the extracellular fluid adjacent to neurons and axons. Here, we describe a novel neuronal proteolytic pathway and demonstrate the exclusive neuro-axonal expression of Pavlov’s enterokinase. Enterokinase is membrane bound and cleaves the neurofilament heavy chain at positions 476 and 986. Using a 100 kDa microdialysis cut-off membrane the two proteolytic breakdown products, extracellular fluid neurofilament heavy chains NfH476−986 and NfH476−1026, can be quantified with a relative recovery of 20%. In a prospective clinical in vivo study, we included 10 patients with traumatic brain injury with a median Glasgow Coma Score of 9, providing 640 cortical extracellular fluid samples for longitudinal data analysis. Following high-velocity impact traumatic brain injury, microdialysate extracellular fluid neurofilament heavy chain levels were significantly higher (6.18 ± 2.94 ng/ml) and detectable for longer (>4 days) compared with traumatic brain injury secondary to falls (0.84 ± 1.77 ng/ml, <2 days). During the initial 16 h following traumatic brain injury, strong correlations were found between extracellular fluid neurofilament heavy chain levels and physiological parameters (systemic blood pressure, anaerobic cerebral metabolism, excessive brain tissue oxygenation, elevated brain temperature). Finally, extracellular fluid neurofilament heavy chain levels were of prognostic value, predicting mortality with an odds ratio of 7.68 (confidence interval 2.15–27.46, P = 0.001). In conclusion, this study describes the discovery of Pavlov’s enterokinase in the human brain, a novel neuronal proteolytic pathway that gives rise to specific protein biomarkers (NfH476−986 and NfH476−1026) applicable to in vivo monitoring of diffuse

  18. Genetic architecture of epigenetic and neuronal ageing rates in human brain regions

    PubMed Central

    Lu, Ake T.; Hannon, Eilis; Levine, Morgan E.; Crimmins, Eileen M.; Lunnon, Katie; Mill, Jonathan; Geschwind, Daniel H.; Horvath, Steve

    2017-01-01

    Identifying genes regulating the pace of epigenetic ageing represents a new frontier in genome-wide association studies (GWASs). Here using 1,796 brain samples from 1,163 individuals, we carry out a GWAS of two DNA methylation-based biomarkers of brain age: the epigenetic ageing rate and estimated proportion of neurons. Locus 17q11.2 is significantly associated (P=4.5 × 10−9) with the ageing rate across five brain regions and harbours a cis-expression quantitative trait locus for EFCAB5 (P=3.4 × 10−20). Locus 1p36.12 is significantly associated (P=2.2 × 10−8) with epigenetic ageing of the prefrontal cortex, independent of the proportion of neurons. Our GWAS of the proportion of neurons identified two genome-wide significant loci (10q26 and 12p13.31) and resulted in a gene set that overlaps significantly with sets found by GWAS of age-related macular degeneration (P=1.4 × 10−12), ulcerative colitis (P<1.0 × 10−20), type 2 diabetes (P=2.8 × 10−13), hip/waist circumference in men (P=1.1 × 10−9), schizophrenia (P=1.6 × 10−9), cognitive decline (P=5.3 × 10−4) and Parkinson's disease (P=8.6 × 10−3). PMID:28516910

  19. Neurons other than motor neurons in motor neuron disease.

    PubMed

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  20. Tau Positive Neurons Show Marked Mitochondrial Loss and Nuclear Degradation in Alzheimer's Disease.

    PubMed

    Wee, Melissa; Chegini, Fariba; Power, John H T; Majd, Shohreh

    2018-06-12

    Alzheimer's disease (AD) pathology consists of intraneuronal neurofibrillary tangles, made of hyperphosphorylated tau and extracellular accumulation of beta amyloid (Aβ) in Aβ plaques. There is an extensive debate as to which pathology initiates and responsible for cellular loss in AD. Using confocal and light microscopy, post mortem brains from control and AD cases, an antibody to SOD2 as a marker for mitochondria and an antibody to all forms of tau, we analyzed mitochondrial density in tau positive neurons along with nuclear degradation by calculating the raw integrative density. Our findings showed an extensive staining of aggregated tau in cell bodies, dystrophic neurites and neurofilaments in AD with minimal staining in control tissue, along with a marked decrease in mitochondria in tau positive (tau+) neurons. The control or tau negative (tau-) neurons in AD contained an even distribution of mitochondria, which was greatly diminished in tau+ neurons by 40%. There were no significant differences between control and tau- neurons in AD. Tau+ neurons showed marked nuclear degradation which appeared to progress with the extent of tau aggregation. The aggregated tau infiltrated and appeared to break the nuclear envelope with progressively more DNA exiting the nucleus and associating with accumulating of intracellular tau. We report mitochondrial decrease is likely due to a decrease in protein synthesis rather than a redistribution of mitochondria because of decreased axonal transport. We suggest that the decrease in mitochondria and nuclear degradation are key mechanisms for the neuronal loss seen in AD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner.

    PubMed

    Zou, Jia; Zhang, Bo; Gutmann, David H; Wong, Michael

    2017-12-01

    Epilepsy is one of the most prominent symptoms of tuberous sclerosis complex (TSC), a genetic disorder, and may be related to developmental defects resulting from impaired TSC1 or TSC2 gene function in astrocytes and neurons. Inactivation of the Tsc1 gene driven by a glial-fibrillary acidic protein (GFAP) promoter during embryonic brain development leads to widespread pathologic effects on astrocytes and neurons, culminating in severe, progressive epilepsy in mice (Tsc1 GFAP -Cre mice). However, the developmental timing and cellular specificity relevant to epileptogenesis in this model has not been well defined. The present study evaluates the effect of postnatal Tsc1 gene inactivation on pathologic features of astrocytes and neurons and development of epilepsy. An inducible Tsc1 knock-out mouse was created utilizing a tamoxifen-driven GFAP-CreER line (Tsc1 GFAP -Cre ER mice) with TSC1 reduction induced postnatally at 2 and 6 weeks of age, and compared to conventional Tsc1 GFAP -Cre mice with prenatal TSC1 reduction. Western blotting, immunohistochemistry, histology, and video-electroencephalography (EEG) assessed mechanistic target of rapamycin (mTOR) pathway activation, astrogliosis, neuronal organization, and spontaneous seizures, respectively. Tsc1 gene inactivation at 2 weeks of age was sufficient to cause astrogliosis and mild epilepsy in Tsc1 GFAP -Cre ER mice, but the phenotype was much less severe than that observed with prenatal Tsc1 gene inactivation in Tsc1 GFAP -Cre mice. Both astrocytes and neurons were affected by prenatal and postnatal Tsc1 gene activation to a degree similar to the severity of epilepsy, suggesting that both cellular types may contribute to epileptogenesis. These findings support a model in which the developmental timing of TSC1 loss dictates the severity of neuronal and glial abnormalities and resulting epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  2. Likely Age-Related Hearing Loss (Presbycusis) in a Stranded Indo-Pacific Humpback Dolphin (Sousa chinensis).

    PubMed

    Li, Songhai; Wang, Ding; Wang, Kexiong; Hoffmann-Kuhnt, Matthias; Fernando, Nimal; Taylor, Elizabeth A; Lin, Wenzhi; Chen, Jialin; Ng, Timothy

    2016-01-01

    The hearing of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, was measured. The age of this animal was estimated to be ~40 years. The animal's hearing was measured using a noninvasive auditory evoked potential (AEP) method. The results showed that the high-frequency hearing cutoff frequency of the studied dolphin was ~30-40 kHz lower than that of a conspecific younger individual ~13 year old. The lower high-frequency hearing range in the older dolphin was explained as a likely result of age-related hearing loss (presbycusis).

  3. Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases

    PubMed Central

    Li, Yuanyuan; Tollefsbol, Trygve O

    2016-01-01

    Aging is considered as one of the most important developmental processes in organisms and is closely associated with global deteriorations of epigenetic markers such as aberrant methylomic patterns. This altered epigenomic state, referred to ‘epigenetic drift’, reflects deficient maintenance of epigenetic marks and contributes to impaired cellular and molecular functions in aged cells. Epigenetic drift-induced abnormal changes during aging are scantily repaired by epigenetic modulators. This inflexibility in the aged epigenome may lead to an age-related decline in phenotypic plasticity at the cellular and molecular levels due to epigenetic drift. This perspective aims to provide novel concepts for understanding epigenetic effects on the aging process and to provide insights into epigenetic prevention and therapeutic strategies for age-related human disease. PMID:27882781

  4. Retinoid-Related Orphan Receptor β and Transcriptional Control of Neuronal Differentiation.

    PubMed

    Liu, Hong; Aramaki, Michihiko; Fu, Yulong; Forrest, Douglas

    2017-01-01

    The ability to generate neuronal diversity is central to the function of the nervous system. Here we discuss the key neurodevelopmental roles of retinoid-related orphan receptor β (RORβ) encoded by the Rorb (Nr1f2) gene. Recent studies have reported loss of function of the human RORB gene in cases of familial epilepsy and intellectual disability. Principal sites of expression of the Rorb gene in model species include sensory organs, the spinal cord, and brain regions that process sensory and circadian information. Genetic analyses in mice have indicated functions in circadian behavior, vision, and, at the cellular level, the differentiation of specific neuronal cell types. Studies in the retina and sensory areas of the cerebral cortex suggest that this orphan nuclear receptor acts at decisive steps in transcriptional hierarchies that determine neuronal diversity. 2017 Published by Elsevier Inc.

  5. Memory Deficits Are Associated with Impaired Ability to Modulate Neuronal Excitability in Middle-Aged Mice

    ERIC Educational Resources Information Center

    Kaczorowski, Catherine C.; Disterhoft, John F.

    2009-01-01

    Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…

  6. Sporadic Visual Acuity Loss in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT)

    PubMed Central

    Kim, Benjamin J.; Ying, Gui-Shuang; Huang, Jiayan; Levy, Nicole E.; Maguire, Maureen G.

    2014-01-01

    Purpose To evaluate transient, large visual acuity (VA) decreases, termed sporadic vision loss, during anti-vascular endothelial growth factor treatment for neovascular age-related macular degeneration (AMD). Design Cohort within a randomized clinical trial. Methods Setting Comparison of AMD Treatments Trials (CATT). Study Population 1185 CATT patients. Main Outcome Measures incidence of sporadic vision loss and odds ratio (OR) for association with patient and ocular factors. Sporadic vision loss was a decline of ≥ 15 letters from the previous visit, followed by a return at the next visit to no more than 5 letters worse than the visit before the VA loss. Results There were 143 sporadic vision loss events in 122/1185 (10.3%) patients. Mean VA at two years for those with and without sporadic vision loss was 58.5 (~20/63) and 68.4 (~20/40) letters, respectively (P < 0.001). Among patients treated pro re nata, no injection was given for 27.6% (27/98) of sporadic vision loss events. Multivariate analysis demonstrated that baseline predictors for sporadic vision loss included worse baseline VA (OR 2.92, 95%CI:1.65–5.17 for ≤ 20/200 compared with ≥ 20/40), scar (OR 2.21, 95%CI:1.22–4.01), intraretinal foveal fluid on optical coherence tomography (OR 1.80, 95%CI:1.11–2.91), and medical history of anxiety (OR 1.90, 95%CI:1.12–3.24) and syncope (OR 2.75, 95%CI:1.45–5.22). Refraction decreased the likelihood of sporadic vision loss (OR 0.62, 95%CI:0.42–0.91). Conclusions Approximately 10% of CATT patients had sporadic vision loss. Baseline predictors included AMD-related factors and factors independent of AMD. These data are relevant for clinicians in practice and those involved in clinical trials. PMID:24727261

  7. Age differences in emotional responses to monetary losses and gains.

    PubMed

    Bruine de Bruin, Wändi; van Putten, Marijke; van Emden, Robin; Strough, JoNell

    2018-05-01

    People of all ages face events that threaten their well-being, but theories of aging posit that older adults will cope better. In a gamble with randomly assigned losses (vs. gains), older adults reported relatively less negative and more positive emotions than younger adults, especially after losses (vs. gains). Avoiding preoccupation with negative thoughts was more likely among older (vs. younger) adults and was related to less negative emotions after losses (vs. gains). A focus on limited time was associated with more positive emotions across all participants. Our findings may inform interventions that aim to promote emotional well-being across all ages. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Loss of Corticostriatal and Thalamostriatal Synaptic Terminals Precedes Striatal Projection Neuron Pathology in Heterozygous Q140 Huntington’s Disease Mice

    PubMed Central

    Deng, Y.P.; Wong, T.; Bricker-Anthony, C.; Deng, B.; Reiner, A.

    2013-01-01

    Motor slowing, forebrain white matter loss, and striatal shrinkage have been reported in premanifest Huntington’s disease (HD) prior to overt striatal neuron loss. We carried out detailed LM and EM studies in a genetically precise HD mimic, heterozygous Q140 HD knock-in mice, to examine the possibility that loss of corticostriatal and thalamostriatal terminals prior to striatal neuron loss underlies these premanifest HD abnormalities. In our studies, we used VGLUT1 and VGLUT2 immunolabeling to detect corticostriatal and thalamostriatal (respectively) terminals in dorsolateral (motor) striatum over the first year of life, prior to striatal projection neuron pathology. VGLUT1+ axospinous corticostriatal terminals represented about 55% of all excitatory terminals in striatum, and VGLUT2+ axospinous thalamostriatal terminals represented about 35%, with VGLUT1+ and VGLUT2+ axodendritic terminals accounting for the remainder. In Q140 mice, a significant 40% shortfall in VGLUT2+ axodendritic thalamostriatal terminals and a 20% shortfall in axospinous thalamostriatal terminals was already observed at 1 month of age, but VGLUT1+ terminals were normal in abundance. The 20% deficiency in VGLUT2+ thalamostriatal axospinous terminals persisted at 4 and 12 months in Q140 mice, and an additional 30% loss of VGLUT1+ corticostriatal terminals was observed at 12 months. The early and persistent deficiency in thalamostriatal axospinous terminals in Q140 mice may reflect a development defect, and the impoverishment of this excitatory drive to striatum may help explain early motor defects in Q140 mice and in premanifest HD. The loss of corticostriatal terminals at 1 year in Q140 mice is consistent with prior evidence from other mouse models of corticostriatal disconnection early during progression, and can explain both the measurable bradykinesia and striatal white matter loss in late premanifest HD. PMID:23969239

  9. Stable olfactory sensory neuron in vivo physiology during normal aging.

    PubMed

    Kass, Marley D; Czarnecki, Lindsey A; McGann, John P

    2018-05-08

    Normal aging is associated with a number of smell impairments that are paralleled by age-dependent changes in the peripheral olfactory system, including decreases in olfactory sensory neurons (OSNs) and in the regenerative capacity of the epithelium. Thus, an age-dependent degradation of sensory input to the brain is one proposed mechanism for the loss of olfactory function in older populations. Here, we tested this hypothesis by performing in vivo optical neurophysiology in 6-, 12-, 18-, and 24-month-old mice. We visualized odor-evoked neurotransmitter release from populations of OSNs into olfactory bulb glomeruli, and found that these sensory inputs are actually quite stable during normal aging. Specifically, the magnitude and number of odor-evoked glomerular responses were comparable across all ages, and there was no effect of age on the sensitivity of OSN responses to odors or on the neural discriminability of different sensory maps. These results suggest that the brain's olfactory bulbs do not receive deteriorated input during aging and that local bulbar circuitry might adapt to maintain stable nerve input. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons.

    PubMed

    Neuman, Krystina M; Molina-Campos, Elizabeth; Musial, Timothy F; Price, Andrea L; Oh, Kwang-Jin; Wolke, Malerie L; Buss, Eric W; Scheff, Stephen W; Mufson, Elliott J; Nicholson, Daniel A

    2015-11-01

    Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity.

  11. GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility.

    PubMed

    Judson, Matthew C; Wallace, Michael L; Sidorov, Michael S; Burette, Alain C; Gu, Bin; van Woerden, Geeske M; King, Ian F; Han, Ji Eun; Zylka, Mark J; Elgersma, Ype; Weinberg, Richard J; Philpot, Benjamin D

    2016-04-06

    Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs)-all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. GABAergic neuron-specific loss of Ube3a causes Angelman syndrome-like EEG abnormalities and enhances seizure susceptibility

    PubMed Central

    Judson, Matthew C.; Wallace, Michael L.; Sidorov, Michael S.; Burette, Alain C.; Gu, Bin; van Woerden, Geeske M.; King, Ian F.; Han, Ji Eun; Zylka, Mark J.; Elgersma, Ype; Weinberg, Richard J.; Philpot, Benjamin D.

    2016-01-01

    SUMMARY Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs) – all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS. PMID:27021170

  13. Behavioral aging is associated with reduced sensory neuron excitability in Aplysia californica.

    PubMed

    Kempsell, Andrew T; Fieber, Lynne A

    2014-01-01

    Invertebrate models have advantages for understanding the basis of behavioral aging due to their simple nervous systems and short lifespans. The potential usefulness of Aplysia californica in aging research is apparent from its long history of neurobiological research, but it has been underexploited in this model use. Aging of simple reflexes at both single sensory neuron and neural circuit levels was studied to connect behavioral aging to neurophysiological aging. The tail withdrawal reflex (TWR), righting reflex, and biting response were measured throughout sexual maturity in 3 cohorts of hatchery-reared animals of known age. Reflex times increased and reflex amplitudes decreased significantly during aging. Aging in sensory neurons of animals with deficits in measures of the TWR and biting response resulted in significantly reduced excitability in old animals compared to their younger siblings. The threshold for firing increased while the number of action potentials in response to depolarizing current injection decreased during aging in sensory neurons, but not in tail motoneurons. Glutamate receptor-activated responses in sensory neurons also decreased with aging. In old tail motoneurons, the amplitude of evoked EPSPs following tail shock decreased, presumably due to reduced sensory neuron excitability during aging. The results were used to develop stages of aging relevant to both hatchery-reared and wild-caught Aplysia. Aplysia is a viable aging model in which the contributions of differential aging of components of neural circuits may be assessed.

  14. Behavioral aging is associated with reduced sensory neuron excitability in Aplysia californica

    PubMed Central

    Kempsell, Andrew T.; Fieber, Lynne A.

    2014-01-01

    Invertebrate models have advantages for understanding the basis of behavioral aging due to their simple nervous systems and short lifespans. The potential usefulness of Aplysia californica in aging research is apparent from its long history of neurobiological research, but it has been underexploited in this model use. Aging of simple reflexes at both single sensory neuron and neural circuit levels was studied to connect behavioral aging to neurophysiological aging. The tail withdrawal reflex (TWR), righting reflex, and biting response were measured throughout sexual maturity in 3 cohorts of hatchery-reared animals of known age. Reflex times increased and reflex amplitudes decreased significantly during aging. Aging in sensory neurons of animals with deficits in measures of the TWR and biting response resulted in significantly reduced excitability in old animals compared to their younger siblings. The threshold for firing increased while the number of action potentials in response to depolarizing current injection decreased during aging in sensory neurons, but not in tail motoneurons. Glutamate receptor-activated responses in sensory neurons also decreased with aging. In old tail motoneurons, the amplitude of evoked EPSPs following tail shock decreased, presumably due to reduced sensory neuron excitability during aging. The results were used to develop stages of aging relevant to both hatchery-reared and wild-caught Aplysia. Aplysia is a viable aging model in which the contributions of differential aging of components of neural circuits may be assessed. PMID:24847260

  15. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.

    PubMed

    Altschuler, R A; Dolan, D F; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, D C; Miller, R A; Schacht, J

    2015-04-30

    This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Automatic Speech Recognition Predicts Speech Intelligibility and Comprehension for Listeners with Simulated Age-Related Hearing Loss

    ERIC Educational Resources Information Center

    Fontan, Lionel; Ferrané, Isabelle; Farinas, Jérôme; Pinquier, Julien; Tardieu, Julien; Magnen, Cynthia; Gaillard, Pascal; Aumont, Xavier; Füllgrabe, Christian

    2017-01-01

    Purpose: The purpose of this article is to assess speech processing for listeners with simulated age-related hearing loss (ARHL) and to investigate whether the observed performance can be replicated using an automatic speech recognition (ASR) system. The long-term goal of this research is to develop a system that will assist…

  17. CREB Overexpression Ameliorates Age-related Behavioral and Biophysical Deficits

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Wen

    Age-related cognitive deficits are observed in both humans and animals. Yet, the molecular mechanisms underlying these deficits are not yet fully elucidated. In aged animals, a decrease in intrinsic excitability of pyramidal neurons from the CA1 sub-region of hippocampus is believed to contribute to age-related cognitive impairments, but the molecular mechanism(s) that modulate both these factors has yet to be identified. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents has been shown to facilitate cognition, and increase intrinsic excitability of their neurons. However, how CREB changes with age, and how that impacts cognition in aged animals, is not clear. Therefore, we first systematically characterized age- and training-related changes in CREB levels in dorsal hippocampus. At a remote time point after undergoing behavioral training, levels of total CREB and activated CREB (phosphorylated at S133, pCREB) were measured in both young and aged rats. We found that pCREB, but not total CREB was significantly reduced in dorsal CA1 of aged rats. Importantly, levels of pCREB were found to be positively correlated with short-term spatial memory in both young and aged rats i.e. higher pCREB in dorsal CA1 was associated with better spatial memory. These findings indicate that an age-related deficit in CREB activity may contribute to the development of age-related cognitive deficits. However, it was still unclear if increasing CREB activity would be sufficient to ameliorate age-related cognitive, and biophysical deficits. To address this question, we virally overexpressed CREB in CA1, where we found the age-related deficit. Young and aged rats received control or CREB virus, and underwent water maze training. While control aged animals exhibited deficits in long-term spatial memory, aged animals with CREB overexpression performed at levels comparable to young animals. Concurrently, aged neurons

  18. Review on the APP/PS1KI mouse model: intraneuronal Abeta accumulation triggers axonopathy, neuron loss and working memory impairment.

    PubMed

    Bayer, T A; Wirths, O

    2008-02-01

    Accumulating evidence points to an important role of intraneuronal Abeta as a trigger of the pathological cascade of events leading to neurodegeneration and eventually to Alzheimer's disease (AD) with its typical clinical symptoms, like memory impairment and change in personality. As a new concept, intraneuronal accumulation of Abeta instead of extracellular Abeta deposition has been introduced to be the disease-triggering event in AD. The present review compiles current knowledge on the amyloid precursor protein (APP)/PS1KI mouse model with early and massive intraneuronal Abeta42 accumulation: (1) The APP/PS1KI mouse model exhibits early robust brain and spinal cord axonal degeneration and hippocampal CA1 neuron loss. (2) At the same time-point, a dramatic, age-dependent reduced ability to perform working memory and motor tasks is observed. (3) The APP/PS1KI mice are smaller and show development of a thoracolumbar kyphosis, together with an incremental loss of body weight. (4) Onset of the observed behavioral alterations correlates well with robust axonal degeneration in brain and spinal cord and with abundant hippocampal CA1 neuron loss.

  19. The space where aging acts: focus on the GABAergic synapse.

    PubMed

    Rozycka, Aleksandra; Liguz-Lecznar, Monika

    2017-08-01

    As it was established that aging is not associated with massive neuronal loss, as was believed in the mid-20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging-related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging-related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging-induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration.

    PubMed

    Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L

    2017-08-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. The Environmental Production of Disability for Seniors with Age-Related Vision Loss.

    PubMed

    McGrath, Colleen; Laliberte Rudman, Debbie; Spafford, Marlee; Trentham, Barry; Polgar, Jan

    2017-03-01

    To date, attention to the environmental production of disability among older adults with age-related vision loss (ARVL) has been limited. This critical ethnographic study aimed to reveal the ways in which environmental barriers produced and perpetuated disability for 10 older adults with ARVL. A modified version of Carspecken's five-stage approach for critical ethnography was adopted with three methods of data collection used, including a narrative interview, a participant observation session, and a semi-structured, in-depth interview. Findings revealed how disability is shaped for older adults with ARVL when they encounter environmental features that are embedded within an ageist and disablist society. These findings are illustrated via presenting analysis of three commonly discussed activities: shopping, eating, and community mobility. Our discussion suggests that addressing the environmental production of disability requires inclusive social policy, advocacy, and a focus on education in order to develop and sustain age and low-vision-friendly environments.

  2. Opposite patterns of age-associated changes in neurons and glial cells of the thalamus of human brain.

    PubMed

    Guidolin, D; Zunarelli, E; Genedani, S; Trentini, G P; De Gaetani, C; Fuxe, K; Benegiamo, C; Agnati, L F

    2008-06-01

    In an autopsy series of 19 individuals, age-ranged 24-94, a relatively age-spared region, the anterior-ventral thalamus, was analyzed by immunohistochemical techniques to visualize neurons (neurofilament protein), astrocytes (glial fibrillary acidic protein), microglial cells (CD68) and amyloid precursor protein. The pattern of immunoreactivity was determined by surface fractal dimension and lacunarity, the size by the field area (FA) and the spatial uniformity by the uniformity index. From the normalized FA values of immunoreactivity for the four markers studied, a global parameter was defined to give an overall characterization of the age-dependent changes in the glio-neuronal networks. A significant exponential decline of the GP was observed with increasing age. This finding suggests that early in life (age<50 years) an adaptive response might be triggered, involving the glio-neuronal networks in plastic adaptive adjustments to cope with the environmental challenges and the continuous wearing off of the neuronal structures. The slow decay of the GP observed in a later phase (age>70 years) could be due to the non-trophic reserve still available.

  3. A novel approach to rapidly prevent age-related cognitive decline

    PubMed Central

    Adlard, Paul A; Sedjahtera, Amelia; Gunawan, Lydia; Bray, Lisa; Hare, Dominic; Lear, Jessica; Doble, Philip; Bush, Ashley I; Finkelstein, David I; Cherny, Robert A

    2014-01-01

    The loss of cognitive function is a pervasive and often debilitating feature of the aging process for which there are no effective therapeutics. We hypothesized that a novel metal chaperone (PBT2; Prana Biotechnology, Parkville, Victoria, Australia) would enhance cognition in aged rodents. We show here that PBT2 rapidly improves the performance of aged C57Bl/6 mice in the Morris water maze, concomitant with increases in dendritic spine density, hippocampal neuron number and markers of neurogenesis. There were also increased levels of specific glutamate receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-d-aspartate), the glutamate transporter (VGLUT1) and glutamate itself. Markers of synaptic plasticity [calmodulin-dependent protein kinase II (CaMKII) and phosphorylated CaMKII, CREB, synaptophysin] were also increased following PBT2 treatment. We also demonstrate that PBT2 treatment results in a subregion-specific increase in hippocampal zinc, which is increasingly recognized as a potent neuromodulator. These data demonstrate that metal chaperones are a novel approach to the treatment of age-related cognitive decline. PMID:24305557

  4. Age-related obesity and type 2 diabetes dysregulate neuronal associated genes and proteins in humans

    PubMed Central

    Daghighi, Mojtaba; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Sheedfar, Fareeba; Amini, Marzyeh; Mazza, Tommaso; Pazienza, Valerio; Motazacker, Mahdi M.; Mahmoudi, Morteza; De Rooij, Felix W. M.; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-01-01

    Despite numerous developed drugs based on glucose metabolism interventions for treatment of age-related diseases such as diabetes neuropathies (DNs), DNs are still increasing in patients with type 1 or type 2 diabetes (T1D, T2D). We aimed to identify novel candidates in adipose tissue (AT) and pancreas with T2D for targeting to develop new drugs for DNs therapy. AT-T2D displayed 15 (e.g. SYT4 up-regulated and VGF down-regulated) and pancreas-T2D showed 10 (e.g. BAG3 up-regulated, VAV3 and APOA1 down-regulated) highly differentially expressed genes with neuronal functions as compared to control tissues. ELISA was blindly performed to measure proteins of 5 most differentially expressed genes in 41 human subjects. SYT4 protein was upregulated, VAV3 and APOA1 were down-regulated, and BAG3 remained unchanged in 1- Obese and 2- Obese-T2D without insulin, VGF protein was higher in these two groups as well as in group 3- Obese-T2D receiving insulin than 4-lean subjects. Interaction networks analysis of these 5 genes showed several metabolic pathways (e.g. lipid metabolism and insulin signaling). Pancreas is a novel site for APOA1 synthesis. VGF is synthesized in AT and could be considered as good diagnostic, and even prognostic, marker for age-induced diseases obesity and T2D. This study provides new targets for rational drugs development for the therapy of age-related DNs. PMID:26337083

  5. Dendrobium alkaloids prevent Aβ25–35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice

    PubMed Central

    Nie, Jing; Tian, Yong; Zhang, Yu; Lu, Yan-Liu; Li, Li-Sheng

    2016-01-01

    Background Neuronal and synaptic loss is the most important risk factor for cognitive impairment. Inhibiting neuronal apoptosis and preventing synaptic loss are promising therapeutic approaches for Alzheimer’s disease (AD). In this study, we investigate the protective effects of Dendrobium alkaloids (DNLA), a Chinese medicinal herb extract, on β-amyloid peptide segment 25–35 (Aβ25-35)-induced neuron and synaptic loss in mice. Method Aβ25–35(10 µg) was injected into the bilateral ventricles of male mice followed by an oral administration of DNLA (40 mg/kg) for 19 days. The Morris water maze was used for evaluating the ability of spatial learning and memory function of mice. The morphological changes were examined via H&E staining and Nissl staining. TUNEL staining was used to check the neuronal apoptosis. The ultrastructure changes of neurons were observed under electron microscope. Western blot was used to evaluate the protein expression levels of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex. Results DNLA significantly attenuated Aβ25–35-induced spatial learning and memory impairments in mice. DNLA prevented Aβ25–35-induced neuronal loss in the hippocampus and cortex, increased the number of Nissl bodies, improved the ultrastructural injury of neurons and increased the number of synapses in neurons. Furthermore, DNLA increased the protein expression of neurotrophic factors BDNF, CNTF and GDNF in the hippocampus and cortex. Conclusions DNLA can prevent neuronal apoptosis and synaptic loss. This effect is mediated at least in part via increasing the expression of BDNF, GDNF and CNTF in the hippocampus and cortex; improving Aβ-induced spatial learning and memory impairment in mice. PMID:27994964

  6. "Why would I want to go out?": Age-related Vision Loss and Social Participation.

    PubMed

    Laliberte Rudman, Debbie; Gold, Deborah; McGrath, Colleen; Zuvela, Biljana; Spafford, Marlee M; Renwick, Rebecca

    2016-12-01

    Social participation, a key determinant of healthy aging, is often negatively impacted by age-related vision loss (ARVL). This grounded theory study aimed to understand social participation as a process negotiated in everyday life by older adults with ARVL. Interviews, audio diaries, and life space maps were used to collect data with 21 older adults in two Ontario cities. Inductive data analysis resulted in a transactional model of the process of negotiating social participation in context. This model depicts how environmental features and resources, skills and abilities, and risks and vulnerabilities transacted with values and priorities to affect if and how social participation occurred within the context of daily life. The findings point to several ways that research and services addressing the social participation of older adults with ARVL need to expand, particularly in relation to environmental features and resources, risk, and the prioritization of independence.

  7. Loss of Mitochondrial Ndufs4 in Striatal Medium Spiny Neurons Mediates Progressive Motor Impairment in a Mouse Model of Leigh Syndrome.

    PubMed

    Chen, Byron; Hui, Jessica; Montgomery, Kelsey S; Gella, Alejandro; Bolea, Irene; Sanz, Elisenda; Palmiter, Richard D; Quintana, Albert

    2017-01-01

    Inability of mitochondria to generate energy leads to severe and often fatal myoencephalopathies. Among these, Leigh syndrome (LS) is one of the most common childhood mitochondrial diseases; it is characterized by hypotonia, failure to thrive, respiratory insufficiency and progressive mental and motor dysfunction, leading to early death. Basal ganglia nuclei, including the striatum, are affected in LS patients. However, neither the identity of the affected cell types in the striatum nor their contribution to the disease has been established. Here, we used a mouse model of LS lacking Ndufs4 , a mitochondrial complex I subunit, to confirm that loss of complex I, but not complex II, alters respiration in the striatum. To assess the role of striatal dysfunction in the pathology, we selectively inactivated Ndufs4 in the striatal medium spiny neurons (MSNs), which account for over 95% of striatal neurons. Our results show that lack of Ndufs4 in MSNs causes a non-fatal progressive motor impairment without affecting the cognitive function of mice. Furthermore, no inflammatory responses or neuronal loss were observed up to 6 months of age. Hence, complex I deficiency in MSNs contributes to the motor deficits observed in LS, but not to the neural degeneration, suggesting that other neuronal populations drive the plethora of clinical signs in LS.

  8. Association between serum neuron-specific enolase, age, overweight, and structural MRI patterns in 901 subjects.

    PubMed

    Hoffmann, Johanna; Janowitz, Deborah; Van der Auwera, Sandra; Wittfeld, Katharina; Nauck, Matthias; Friedrich, Nele; Habes, Mohamad; Davatzikos, Christos; Terock, Jan; Bahls, Martin; Goltz, Annemarie; Kuhla, Angela; Völzke, Henry; Jörgen Grabe, Hans

    2017-12-08

    Serum neuron-specific enolase (sNSE) is considered a marker for neuronal damage, related to gray matter structures. Previous studies indicated its potential as marker for structural and functional damage in conditions with adverse effects to the brain like obesity and dementia. In the present study, we investigated the putative association between sNSE levels, body mass index (BMI), total gray matter volume (GMV), and magnetic resonance imaging-based indices of aging as well as Alzheimer's disease (AD)-like patterns. sNSE was determined in 901 subjects (499 women, 22-81 years, BMI 18-48 kg/m 2 ), participating in a population-based study (SHIP-TREND). We report age-specific patterns of sNSE levels between males and females. Females showed augmenting, males decreasing sNSE levels associated with age (males: p = 0.1052, females: p = 0.0363). sNSE levels and BMI were non-linearly associated, showing a parabolic association and decreasing sNSE levels at BMI values >25 (p = 0.0056). In contrast to our hypotheses, sNSE levels were not associated with total GMV, aging, or AD-like patterns. Pathomechanisms discussed are: sex-specific hormonal differences, neuronal damage/differentiation, or impaired cerebral glucose metabolism. We assume a sex-dependence of age-related effects to the brain. Further, we propose in accordance to previous studies an actual neuronal damage in the early stages of obesity. However, with progression of overweight, we assume more profound effects of excess body fat to the brain.

  9. Secondhand tobacco smoke exposure differentially alters nucleus tractus solitarius neurons at two different ages in developing non-human primates.

    PubMed

    Sekizawa, Shin-Ichi; Joad, Jesse P; Pinkerton, Kent E; Bonham, Ann C

    2010-01-15

    Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS

  10. Effect of aging on gastric mucosal defense mechanisms: ROS, apoptosis, angiogenesis, and sensory neurons.

    PubMed

    Kang, Jung Mook; Kim, Nayoung; Kim, Joo-Hyon; Oh, Euichaul; Lee, Bong-Yong; Lee, Byoung Hwan; Shin, Cheol Min; Park, Ji Hyun; Lee, Mi Kyoung; Nam, Ryoung Hee; Lee, Hee Eun; Lee, Hye Seung; Kim, Joo Sung; Jung, Hyun Chae; Song, In Sung

    2010-11-01

    Aging changes in the stomach lead to a decreased capacity for tissue repair in response to gastric acid. The aim of this study was to determine the mechanism associated with the increased susceptibility to injury of aging mucosa including reactive oxygen species (5), apoptosis, angiogenesis, and sensory neuron activity. Fischer 344 rats at four different ages (6, 31, 74 wk, and 2 yr of age) were studied. The connective tissue indicators [salt-soluble collagen and sulfated glycosaminoglycan (sGAG)], lipid hydroperoxide (LPO), myeloperoxidase (MPO), and hexosamine were assessed. We also evaluated the expression of early growth response-1 (Egr-1), phosphatase and tension homologue deleted on chromosome 10 (PTEN), caspase-9 (index of apoptosis), VEGF (index of angiogenesis), calcitonin gene-related peptide (CGRP, index of sensory neurons), and neuronal nitric oxide synthase (nNOS). The histological connective tissue area in the lower part of rat gastric mucosa increased with aging, with increase of salt-soluble collagen and sGAG. LPO and MPO in old rats were significantly greater than in the young rats, whereas hexosamine was significantly reduced. The old gastric mucosa had increased expression of Egr-1, PTEN, and caspase-9, whereas the VEGF, CGRP, and nNOS expression were significantly reduced. These results indicate that the lower part of rat gastric mucosa was found to be replaced by connective tissue with accumulation of oxidative products with aging. In addition, impairment of apoptosis, angiogenesis, and sensory neuron activity via the activation of Egr-1 and PTEN might increase the susceptibility of gastric mucosa to injury during aging.

  11. Neuronal Inputs and Outputs of Aging and Longevity

    PubMed Central

    Alcedo, Joy; Flatt, Thomas; Pasyukova, Elena G.

    2013-01-01

    An animal’s survival strongly depends on its ability to maintain homeostasis in response to the changing quality of its external and internal environment. This is achieved through intracellular and intercellular communication within and among different tissues. One of the organ systems that plays a major role in this communication and the maintenance of homeostasis is the nervous system. Here we highlight different aspects of the neuronal inputs and outputs of pathways that affect aging and longevity. Accordingly, we discuss how sensory inputs influence homeostasis and lifespan through the modulation of different types of neuronal signals, which reflects the complexity of the environmental cues that affect physiology. We also describe feedback, compensatory, and feed-forward mechanisms in these longevity-modulating pathways that are necessary for homeostasis. Finally, we consider the temporal requirements for these neuronal processes and the potential role of natural genetic variation in shaping the neurobiology of aging. PMID:23653632

  12. Murine CMV-Induced Hearing Loss Is Associated with Inner Ear Inflammation and Loss of Spiral Ganglia Neurons

    PubMed Central

    Golemac, Mijo; Pugel, Ester Pernjak; Jonjic, Stipan; Britt, William J.

    2015-01-01

    Congenital human cytomegalovirus (HCMV) occurs in 0.5–1% of live births and approximately 10% of infected infants develop hearing loss. The mechanism(s) of hearing loss remain unknown. We developed a murine model of CMV induced hearing loss in which murine cytomegalovirus (MCMV) infection of newborn mice leads to hematogenous spread of virus to the inner ear, induction of inflammatory responses, and hearing loss. Characteristics of the hearing loss described in infants with congenital HCMV infection were observed including, delayed onset, progressive hearing loss, and unilateral hearing loss in this model and, these characteristics were viral inoculum dependent. Viral antigens were present in the inner ear as were CD3+ mononuclear cells in the spiral ganglion and stria vascularis. Spiral ganglion neuron density was decreased after infection, thus providing a mechanism for hearing loss. The lack of significant inner ear histopathology and persistence of inflammation in cochlea of mice with hearing loss raised the possibility that inflammation was a major component of the mechanism(s) of hearing loss in MCMV infected mice. PMID:25875183

  13. Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss.

    PubMed

    Xiong, Hao; Pang, Jiaqi; Yang, Haidi; Dai, Min; Liu, Yimin; Ou, Yongkang; Huang, Qiuhong; Chen, Suijun; Zhang, Zhigang; Xu, Yaodong; Lai, Lan; Zheng, Yiqing

    2015-04-01

    The molecular mechanisms underlying age-related hearing loss are not fully understood, and currently, there is no treatment for this disorder. MicroRNAs have recently been reported to be increasingly associated with age-related diseases and are emerging as promising therapeutic targets. In this study, miR-34a/Sirtuin 1 (SIRT1)/p53 signaling was examined in cochlear hair cells during aging. MiR-34a, p53 acetylation, and apoptosis increased in the cochlea of C57BL/6 mice with aging, whereas an age-related decrease in SIRT1 was observed. In the inner ear HEI-OC1 cell line, miR-34a overexpression inhibited SIRT1, leading to an increase in p53 acetylation and apoptosis. Moreover, miR-34a knockdown increased SIRT1 expression and diminished p53 acetylation, and apoptosis. Additionally, resveratrol, an activator of SIRT1, significantly rescued miR-34a overexpression-induced HEI-OC1 cell death and significantly reduced hearing threshold shifts and hair cell loss in C57BL/6 mice after a 2-month administration. Our results support a link between age-related cochlear hair cell apoptosis and miR-34a/SIRT1/p53 signaling, which may serve as a potential target for age-related hearing loss treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Evidence for Alzheimer’s disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons

    PubMed Central

    Neuman, Krystina M.; Molina-Campos, Elizabeth; Musial, Timothy F.; Price, Andrea L.; Oh, Kwang-Jin; Wolke, Malerie L.; Buss, Eric W.; Scheff, Stephen W.; Mufson, Elliott J.; Nicholson, Daniel A.

    2014-01-01

    Alzheimer’s disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity. PMID:25031178

  15. Ageing enhances alpha-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians.

    PubMed

    Alladi, Phalguni Anand; Mahadevan, Anita; Vijayalakshmi, K; Muthane, Uday; Shankar, S K; Raju, T R

    2010-11-01

    Accumulating evidences suggest that dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc) during ageing and in Parkinson's disease (PD) is linked to neurodegenerative changes like exponential increase in alpha-synuclein expression and protein misfolding. Lewy body formation is also a quintessential observation in neurodegeneration and PD. In experimental models of PD, GRP78 a neuroprotective endoplasmic reticulum (ER) chaperone protein targets misfolded proteins for degradation and prevents release of caspase12 from the ER. Release of active caspase12 and its translocation to the nucleus induces ER mediated apoptosis. The effect of ageing on these proteins in human nigra is not known. We evaluated alpha-synuclein, caspase12, GRP78 and ubiquitin expression in the SNpc of Asian Indians, using immunohistochemistry and stereology. The number of alpha-synuclein and caspase12 immunoreactive neurons increased gradually with age whereas the number of GRP78-labeled neurons remained stable. In contrast, GRP78 protein expression was significantly upregulated with age, while alpha-synuclein and caspase12 increased slightly. An increase in the size and numbers of marinesco bodies was prominent after the sixth decade. The mild increase in alpha-synuclein expression and occurrence of marinesco bodies suggests ageing induced protein misfolding and GRP78 upregulation indicates presence of ER stress. The logarithmic upregulation of GRP78 could even be an indicator of neuroprotective or neuromodulatory response of ER to protein misfolding and initiation of unfolded protein response pathway. Since dopaminergic neurons are preserved in ageing Asian Indians, our study possibly signifies better proteasomal or ER response and partially explains the lower prevalence of PD in them. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews.

    PubMed

    Keuker, Jeanine I H; de Biurrun, Gabriel; Luiten, Paul G M; Fuchs, Eberhard

    2004-01-19

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many characteristics, tree shrews are closer to primates than they are to rodents. Young and aged male tree shrews performed a holeboard spatial memory task, which permits assessment of reference and working memory. Upon completion of the behavioral measurements, we carried out modified stereological analyses of neuronal numbers in various subdivisions of the hippocampus and used the Cavalieri method to calculate the volumes of these subfields. Results showed that the working memory of aged tree shrews was significantly impaired compared with that of young animals, whereas the hippocampus-dependent reference memory remained unchanged by aging. Estimation of the number of neurons revealed preserved neuron numbers in the subiculum, in the subregions CA1, CA2, CA3, and in the hilus of the dentate gyrus. Volume measurements showed no aging-related changes in the volume of any of these hippocampal subregions, or in the molecular and granule cell layers of the dentate gyrus of tree shrews. We conclude that the observed changes in memory performance in aging tree shrews are not accompanied by observable reductions of hippocampal neuron numbers or hippocampal volume, rather, the changes in memory performance are more likely the result of modified subcellular mechanisms that are affected by the aging process. Copyright 2003 Wiley-Liss, Inc.

  17. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging.

    PubMed

    Loos, Ben; Klionsky, Daniel J; Wong, Esther

    2017-09-01

    Accumulation of toxic protein aggregates in the nerve cells is a hallmark of neuronal diseases and brain aging. Mechanisms to enhance neuronal surveillance to improve neuronal proteostasis have a direct impact on promoting neuronal health and forestalling age-related decline in brain function. Autophagy is a lysosomal degradative pathway pivotal for neuronal protein quality control. Different types of autophagic mechanisms participate in protein handling in neurons. Macroautophagy targets misfolded and aggregated proteins in autophagic vesicles to the lysosomes for destruction, while chaperone-mediated autophagy (CMA) degrades specific soluble cytosolic proteins delivered to the lysosomes by chaperones. Dysfunctions in macroautophagy and CMA contribute to proteo- and neuro-toxicity associated with neurodegeneration and aging. Thus, augmenting or preserving both autophagic mechanisms pose significant benefits in delaying physiological and pathological neuronal demises. Recently, life-style interventions that modulate metabolite ketone bodies, energy intake by caloric restriction and energy expenditure by exercise have shown to enhance both autophagy and brain health. However, to what extent these interventions affect neuronal autophagy to promote brain fitness remains largely unclear. Here, we review the functional connections of how macroautophagy and CMA are affected by ketone bodies, caloric restriction and exercise in the context of neurodegeneration. A concomitant assessment of yeast Saccharomyces cerevisiae is performed to reveal the conserved nature of such autophagic responses to substrate perturbations. In doing so, we provide novel insights and integrated evidence for a potential adjuvant therapeutic strategy to intervene in the neuronal decline in neurodegenerative diseases by controlling both macroautophagy and CMA fluxes favorably. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Age-related differences in GABA levels are driven by bulk tissue changes.

    PubMed

    Maes, Celine; Hermans, Lize; Pauwels, Lisa; Chalavi, Sima; Leunissen, Inge; Levin, Oron; Cuypers, Koen; Peeters, Ronald; Sunaert, Stefan; Mantini, Dante; Puts, Nicolaas A J; Edden, Richard A E; Swinnen, Stephan P

    2018-05-02

    Levels of GABA, the main inhibitory neurotransmitter in the brain, can be regionally quantified using magnetic resonance spectroscopy (MRS). Although GABA is crucial for efficient neuronal functioning, little is known about age-related differences in GABA levels and their relationship with age-related changes in brain structure. Here, we investigated the effect of age on GABA levels within the left sensorimotor cortex and the occipital cortex in a sample of 85 young and 85 older adults using the MEGA-PRESS sequence. Because the distribution of GABA varies across different brain tissues, various correction methods are available to account for this variation. Considering that these correction methods are highly dependent on the tissue composition of the voxel of interest, we examined differences in voxel composition between age groups and the impact of these various correction methods on the identification of age-related differences in GABA levels. Results indicated that, within both voxels of interest, older (as compared to young adults) exhibited smaller gray matter fraction accompanied by larger fraction of cerebrospinal fluid. Whereas uncorrected GABA levels were significantly lower in older as compared to young adults, this age effect was absent when GABA levels were corrected for voxel composition. These results suggest that age-related differences in GABA levels are at least partly driven by the age-related gray matter loss. However, as alterations in GABA levels might be region-specific, further research should clarify to what extent gray matter changes may account for age-related differences in GABA levels within other brain regions. © 2018 Wiley Periodicals, Inc.

  19. Adipose-derived stromal cells enhance auditory neuron survival in an animal model of sensory hearing loss.

    PubMed

    Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas

    2017-10-01

    A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Nutrition and age-related eye diseases

    USDA-ARS?s Scientific Manuscript database

    Vision loss among the elderly is an important health problem. Approximately one person in three has some form of vision-reducing eye disease by the age of 65 [1]. Age-related cataract, age-related macular degeneration (AMD), diabetic retinopathy and glaucoma are the major diseases resulting in visu...

  1. Down-regulation of MIF by NFκB under hypoxia accelerated neuronal loss during stroke

    PubMed Central

    Zhang, Si; Zis, Odysseus; Ly, Philip T. T.; Wu, Yili; Zhang, Shuting; Zhang, Mingming; Cai, Fang; Bucala, Richard; Shyu, Woei-Cherng; Song, Weihong

    2014-01-01

    Neuronal apoptosis is one of the major causes of poststroke neurological deficits. Inflammation during the acute phase of stroke results in nuclear translocation of NFκB in affected cells in the infarct area. Macrophage migration inhibitory factor (MIF) promotes cardiomyocyte survival in mice following heart ischemia. However, the role of MIF during stroke remains limited. In this study, we showed that MIF expression is down-regulated by 0.75 ± 0.10-fold of the control in the infarct area in the mouse brains. Two functional cis-acing NFκB response elements were identified in the human MIF promoter. Dual activation of hypoxia and NFκB signaling resulted in significant reduction of MIF promoter activity to 0.86 ± 0.01-fold of the control. Furthermore, MIF reduced caspase-3 activation and protected neurons from oxidative stress- and in vitro ischemia/reperfusion-induced apoptosis. H2O2 significantly induced cell death with 12.81 ± 0.58-fold increase of TUNEL-positive cells, and overexpression of MIF blocked the H2O2-induced cell death. Disruption of the MIF gene in MIF-knockout mice resulted in caspase-3 activation, neuronal loss, and increased infarct development during stroke in vivo. The infarct volume was increased from 6.51 ± 0.74% in the wild-type mice to 9.07 ± 0.66% in the MIF-knockout mice. Our study demonstrates that MIF exerts a neuronal protective effect and that down-regulation of MIF by NFκB-mediated signaling under hypoxia accelerates neuronal loss during stroke. Our results suggest that MIF is an important molecule for preserving a longer time window for stroke treatment, and strategies to maintain MIF expression at physiological level could have beneficial effects for stroke patients.—Zhang, S., Zis, O., Ly, P. T. T., Wu, Y., Zhang, S., Zhang, M., Cai, F., Bucala, R., Shyu, W.-C., Song, W. Down-regulation of MIF by NFκB under hypoxia accelerated neuronal loss during stroke. PMID:24970391

  2. A multivariate analysis of age-related differences in functional networks supporting conflict resolution.

    PubMed

    Salami, Alireza; Rieckmann, Anna; Fischer, Håkan; Bäckman, Lars

    2014-02-01

    Functional neuroimaging studies demonstrate age-related differences in recruitment of a large-scale attentional network during interference resolution, especially within dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). These alterations in functional responses have been frequently observed despite equivalent task performance, suggesting age-related reallocation of neural resources, although direct evidence for a facilitating effect in aging is sparse. We used the multi-source interference task and multivariate partial-least-squares to investigate age-related differences in the neuronal signature of conflict resolution, and their behavioral implications in younger and older adults. There were interference-related increases in activity, involving fronto-parietal and basal ganglia networks that generalized across age. In addition an age-by-task interaction was observed within a distributed network, including DLPFC and ACC, with greater activity during interference in the old. Next, we combined brain-behavior and functional connectivity analyses to investigate whether compensatory brain changes were present in older adults, using DLPFC and ACC as regions of interest (i.e. seed regions). This analysis revealed two networks differentially related to performance across age groups. A structural analysis revealed age-related gray-matter losses in regions facilitating performance in the young, suggesting that functional reorganization may partly reflect structural alterations in aging. Collectively, these findings suggest that age-related structural changes contribute to reductions in the efficient recruitment of a youth-like interference network, which cascades into instantiation of a different network facilitating conflict resolution in elderly people. © 2013. Published by Elsevier Inc. All rights reserved.

  3. Restoration of Motor Defects Caused by Loss of Drosophila TDP-43 by Expression of the Voltage-Gated Calcium Channel, Cacophony, in Central Neurons.

    PubMed

    Lembke, Kayly M; Scudder, Charles; Morton, David B

    2017-09-27

    Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 ortholog TBPH, we previously showed that TBPH-null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony , a Type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of neuromuscular junction physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the neuromuscular junction, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in neuromuscular junction physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects. SIGNIFICANCE STATEMENT TDP-43 dysfunction is a common feature in neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar dementia, and Alzheimer's disease. Loss- and gain-of-function models have shown that neurons are sensitive to TDP-43

  4. Secondhand tobacco smoke exposure differentially alters nucleus tractus solitarius neurons at two different ages in developing non-human primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekizawa, Shin-ichi, E-mail: ssekizawa@ucdavis.ed; Joad, Jesse P.; Pinkerton, Kent E.

    Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3more » or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such

  5. Relating age and hearing loss to monaural, bilateral, and binaural temporal sensitivity1

    PubMed Central

    Gallun, Frederick J.; McMillan, Garnett P.; Molis, Michelle R.; Kampel, Sean D.; Dann, Serena M.; Konrad-Martin, Dawn L.

    2014-01-01

    Older listeners are more likely than younger listeners to have difficulties in making temporal discriminations among auditory stimuli presented to one or both ears. In addition, the performance of older listeners is often observed to be more variable than that of younger listeners. The aim of this work was to relate age and hearing loss to temporal processing ability in a group of younger and older listeners with a range of hearing thresholds. Seventy-eight listeners were tested on a set of three temporal discrimination tasks (monaural gap discrimination, bilateral gap discrimination, and binaural discrimination of interaural differences in time). To examine the role of temporal fine structure in these tasks, four types of brief stimuli were used: tone bursts, broad-frequency chirps with rising or falling frequency contours, and random-phase noise bursts. Between-subject group analyses conducted separately for each task revealed substantial increases in temporal thresholds for the older listeners across all three tasks, regardless of stimulus type, as well as significant correlations among the performance of individual listeners across most combinations of tasks and stimuli. Differences in performance were associated with the stimuli in the monaural and binaural tasks, but not the bilateral task. Temporal fine structure differences among the stimuli had the greatest impact on monaural thresholds. Threshold estimate values across all tasks and stimuli did not show any greater variability for the older listeners as compared to the younger listeners. A linear mixed model applied to the data suggested that age and hearing loss are independent factors responsible for temporal processing ability, thus supporting the increasingly accepted hypothesis that temporal processing can be impaired for older compared to younger listeners with similar hearing and/or amounts of hearing loss. PMID:25009458

  6. Expression Patterns of Odorant Receptors and Response Properties of Olfactory Sensory Neurons in Aged Mice

    PubMed Central

    Lee, Anderson C.; Tian, Huikai; Grosmaitre, Xavier

    2009-01-01

    The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)—2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3–27 months). The cell density for different ORs peaked at different time points and a decline was observed for 6 of 9 ORs at advanced ages. Using patch clamp recordings, we then examined the odorant responses of individual OSNs coexpressing a defined OR (MOR23) and green fluorescent protein. The MOR23 neurons recorded from aged animals maintained a similar sensitivity and dynamic range in response to the cognate odorant (lyral) as those from younger mice. The results indicate that although the cell densities of OSNs expressing certain types of ORs decline at advanced ages, individual OSNs can retain their sensitivity. The implications of these findings in age-related olfactory deterioration are discussed. PMID:19759360

  7. Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice.

    PubMed

    Lee, Anderson C; Tian, Huikai; Grosmaitre, Xavier; Ma, Minghong

    2009-10-01

    The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)-2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3-27 months). The cell density for different ORs peaked at different time points and a decline was observed for 6 of 9 ORs at advanced ages. Using patch clamp recordings, we then examined the odorant responses of individual OSNs coexpressing a defined OR (MOR23) and green fluorescent protein. The MOR23 neurons recorded from aged animals maintained a similar sensitivity and dynamic range in response to the cognate odorant (lyral) as those from younger mice. The results indicate that although the cell densities of OSNs expressing certain types of ORs decline at advanced ages, individual OSNs can retain their sensitivity. The implications of these findings in age-related olfactory deterioration are discussed.

  8. The Relevance of Mouse Models for Investigating Age-Related Bone Loss in Humans

    PubMed Central

    2013-01-01

    Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized. PMID:23689830

  9. Cortical Regulation of Dopamine Depletion-Induced Dendritic Spine Loss in Striatal Medium Spiny Neurons

    PubMed Central

    Neely, M. Diana; Schmidt, Dennis E.; Deutch, Ariel Y.

    2007-01-01

    The proximate cause of Parkinson’s Disease is striatal dopamine depletion. Although no overt toxicity to striatal neurons has been reported in Parkinson’s Disease, one of the consequences of striatal dopamine loss is a decrease in the number of dendritic spines on striatal medium spiny neurons (MSNs). Dendrites of these neurons receive cortical glutamatergic inputs onto the dendritic spine head and dopaminergic inputs from the substantia nigra onto the spine neck. This synaptic arrangement suggests that dopamine gates corticostriatal glutamatergic drive onto spines. Using triple organotypic slice cultures comprised of ventral mesencephalon, striatum, and cortex, we examined the role of the cortex in dopamine depletion-induced dendritic spine loss in MSNs. The striatal dopamine innervation was lesioned by treatment of the cultures with the dopaminergic neurotoxin MPP+ or by removing the mesencephalon. Both MPP+ and mesencephalic ablation decreased MSN dendritic spine density. Analysis of spine morphology revealed that thin spines were preferentially lost after dopamine depletion. Removal of the cortex completely prevented dopamine depletion-induced spine loss. These data indicate that the dendritic remodeling of MSNs seen in parkinsonism occurs secondary to increases in corticostriatal glutamatergic drive, and suggest that modulation of cortical activity may be a useful therapeutic strategy in Parkinson’s Disease. PMID:17888581

  10. A population study of correlates of social participation in older adults with age-related vision loss.

    PubMed

    Cimarolli, Verena R; Boerner, Kathrin; Reinhardt, Joann P; Horowitz, Amy; Wahl, Hans-Werner; Schilling, Oliver; Brennan-Ing, Mark

    2017-01-01

    To examine personal characteristics, disease-related impairment variables, activity limitations, and environmental factors as correlates of social participation in older adults with vision loss guided by the World Health Organization's International Classification of Functioning, Disability and Health Model. Baseline data of a larger longitudinal study. Community-based vision rehabilitation agency. A total of 364 older adults with significant vision impairment due to age-related macular degeneration. In-person interviews assessing social participation (i.e. frequency of social support contacts, social/leisure challenges faced due to vision loss, and of social support provided to others) and hypothesized correlates (e.g. visual acuity test, Functional Vision Screening Questionnaire, ratings of attachment to house and neighborhood, environmental modifications in home). Regression analyses showed that indicators of physical, social, and mental functioning (e.g. better visual function, fewer difficulties with instrumental activities of daily living, fewer depressive symptoms) were positively related to social participation indicators (greater social contacts, less challenges in social/leisure domains, and providing more support to others). Environmental factors also emerged as independent correlates of social participation indicators when functional variables were controlled. That is, participants reporting higher attachment to their neighborhood and better income adequacy reported having more social contacts; and those implementing more environmental strategies were more likely to report greater challenges in social and leisure domains. Better income adequacy and living with more people were related to providing more social support to others. Environmental variables may play a role in the social participation of older adults with age-related macular degeneration.

  11. The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons

    PubMed Central

    Lawal, Hakeem O.; Chang, Hui-Yun; Terrell, Ashley N.; Brooks, Elizabeth S.; Pulido, Dianne; Simon, Anne F.; Krantz, David E.

    2010-01-01

    Dopamine is cytotoxic and may play a role in the development of Parkinson’s disease. However, its interaction with environmental risk factors such as pesticides remains poorly understood. The vesicular monoamine transporter (VMAT) regulates intracellular dopamine content, and we have tested the neuroprotective effects of VMAT in vivo using the model organism Drosophila melanogaster. We find that Drosophila VMAT (dVMAT) mutants contain fewer dopaminergic neurons than wild type, consistent with a developmental effect, and that dopaminergic cell loss in the mutant is exacerbated by the pesticides rotenone and paraquat. Over-expression of DVMAT protein does not increase the survival of animals exposed to rotenone, but blocks the loss of dopaminergic neurons caused by this pesticide. These results are the first to demonstrate an interaction between a VMAT and pesticides in vivo, and provide an important model to investigate the mechanisms by which pesticides and cellular DA may interact to kill dopaminergic cells. PMID:20472063

  12. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons

    PubMed Central

    Woodward, NC; Pakbin, P; Saffari, A; Shirmohammadi, F; Haghani, A; Sioutas, C; Cacciottolo, M; Morgan, TE; Finch, CE

    2017-01-01

    Traffic-related air pollution (TRAP) is associated with lower cognition and reduced white matter volume in older adults, specifically for particulate matter <2.5 μm diameter (PM2.5). Rodents exposed to TRAP have shown microglial activation and neuronal atrophy. We further investigated age differences of TRAP exposure, with focus on hippocampus for neuritic atrophy, white matter degeneration, and microglial activation. Young and middle-aged mice (3 and 18 month female C57BL/6J) were exposed to nanoscale-PM (nPM, <0.2 μm diameter). Young mice showed selective changes in the hippocampal CA1 region, with neurite atrophy (−25%), decreased MBP (−50%), and increased Iba1 (+50%), with dentate gyrus relatively unaffected. Exposure to nPM of young mice decreased GluA1 protein (−40%) and increased TNFa mRNA (10×). Older controls had age changes approximating nPM effects on young, with no response to nPM, suggesting an age ceiling effect. The CA1 selective vulnerability in young mice parallels CA1 vulnerability in Alzheimer’s disease. We propose that TRAP associated human cognitive and white matter changes involve hippocampal responses to nPM that begin at younger ages. PMID:28212893

  13. Adult AMPA GLUA1 receptor subunit loss in 5-HT neurons results in a specific anxiety-phenotype with evidence for dysregulation of 5-HT neuronal activity.

    PubMed

    Weber, Tillmann; Vogt, Miriam A; Gartside, Sarah E; Berger, Stefan M; Lujan, Rafael; Lau, Thorsten; Herrmann, Elke; Sprengel, Rolf; Bartsch, Dusan; Gass, Peter

    2015-05-01

    Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria1(5-HT-/-) mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria1(5-HT-/-) mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior.

  14. A multi-ingredient dietary supplement abolishes large-scale brain cell loss, improves sensory function, and prevents neuronal atrophy in aging mice.

    PubMed

    Lemon, J A; Aksenov, V; Samigullina, R; Aksenov, S; Rodgers, W H; Rollo, C D; Boreham, D R

    2016-06-01

    Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Aging and bone loss: new insights for the clinician

    PubMed Central

    Demontiero, Oddom; Vidal, Christopher

    2012-01-01

    It is well known that the underlying mechanisms of osteoporosis in older adults are different than those associated with estrogen deprivation. Age-related bone loss involves a gradual and progressive decline, which is also seen in men. Markedly increased bone resorption leads to the initial fall in bone mineral density. With increasing age, there is also a significant reduction in bone formation. This is mostly due to a shift from osteoblastogenesis to predominant adipogenesis in the bone marrow, which also has a lipotoxic effect that affects matrix formation and mineralization. We review new evidence on the pathophysiology of age-related bone loss with emphasis upon the mechanism of action of current osteoporosis treatments. New potential treatments are also considered, including therapeutic approaches to osteoporosis in the elderly that focus on the pathophysiology and potential reversal of adipogenic shift in bone. PMID:22870496

  16. A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress

    PubMed Central

    Bou Dib, Peter; Gnägi, Bettina; Daly, Fiona; Sabado, Virginie; Tas, Damla; Glauser, Dominique A.; Meister, Peter; Nagoshi, Emi

    2014-01-01

    Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival. PMID:25340742

  17. Dopamine-Dependent Compensation Maintains Motor Behavior in Mice with Developmental Ablation of Dopaminergic Neurons

    PubMed Central

    DeMaro, Joseph A.; Knoten, Amanda; Hoshi, Masato; Pehek, Elizabeth; Johnson, Eugene M.; Gereau, Robert W.

    2013-01-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function. PMID:24155314

  18. Stimulation of the Rat Subthalamic Nucleus is Neuroprotective Following Significant Nigral Dopamine Neuron Loss

    PubMed Central

    Spieles-Engemann, A. L.; Behbehani, M. M.; Collier, T. J.; Wohlgenant, S. L.; Steece-Collier, K.; Paumier, K.; Daley, B. F.; Gombash, S.; Madhavan, L.; Mandybur, G. T.; Lipton, J.W.; Terpstra, B.T.; Sortwell, C.E.

    2010-01-01

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is efficacious in treating the motor symptoms of Parkinson’s disease (PD). However, the impact of STN-DBS on the progression of PD is unknown. Previous preclinical studies have demonstrated that STN-DBS can attenuate the degeneration of a relatively intact nigrostriatal system from dopamine (DA)-depleting neurotoxins. The present study examined whether STN-DBS can provide neuroprotection in the face of prior significant nigral DA neuron loss similar to PD patients at the time of diagnosis. STN-DBS between two and four weeks after intrastriatal 6-hydroxydopamine (6-OHDA) provided significant sparing of DA neurons in the SN of rats. This effect was not due to inadvertent lesioning of the STN and was dependent upon proper electrode placement. Since STN-DBS appears to have significant neuroprotective properties, initiation of STN-DBS earlier in the course of PD may provide added neuroprotective benefits in addition to its ability to provide symptomatic relief. PMID:20307668

  19. Absence of age-related dopamine transporter loss in current cocaine abusers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.J.; Volkow, N.D.; Fischman, M.

    The brain dopamine (DA) system appears to play a crucial role in the reinforcing properties of cocaine. Using PET we had previously shown significant decreases in DA D2 receptors but no changes in DA transporters (DAT) in detoxified cocaine abusers (>1 month after last cocaine use). This study evaluates DAT availability in current cocaine abusers (15 male and 5 female; age = 36.2{+-}5.3 years old) using PET and [C-11]cocaine, as a DAT ligand, and compares it to that in 18 male and 2 female age matched normal controls. Cocaine abusers had a history of abusing 4.2{+-}2.8 gm /week of cocainemore » for an average of 11.0{+-}4.9 years and their last use of cocaine was 5.4{+-}8 days prior to PET study. DAT availability was obtained using the ratio of the distribution volume in the region of interest (caudate, pulamen) to that in cerebellum which is a function of Bmax./Kd.+1. DAT availability in cocaine abusers did not differ to that in normals (N) (C= 1.78{+-}0.14, N= 1.77{+-}0.13). In addition, there were no differences between the groups in the distribution volume or the Kl (plasma to brain transfer constant) measures for [C-11]cocaine. However, in the normals but not in the abusers striatal DAT availability decreased with age (C: r = -0.07, p = 0.76; N: r = -0.55, p < 0.01). Though this study fails to show group differences in DAT availability between normals and current cocaine abusers it indicates a blunting of the age-related decline in DAT availability in the cocaine abusers. Future studies in older cocaine abusers at different time after detoxification arc required in order to assess if cocaine slows the loss of DAT with age or whether these changes reflect compensation to increased DAT blockade and recover with detoxification.« less

  20. Age-Related Changes in Electroencephalographic Signal Complexity

    PubMed Central

    Zappasodi, Filippo; Marzetti, Laura; Olejarczyk, Elzbieta; Tecchio, Franca; Pizzella, Vittorio

    2015-01-01

    The study of active and healthy aging is a primary focus for social and neuroscientific communities. Here, we move a step forward in assessing electrophysiological neuronal activity changes in the brain with healthy aging. To this end, electroencephalographic (EEG) resting state activity was acquired in 40 healthy subjects (age 16–85). We evaluated Fractal Dimension (FD) according to the Higuchi algorithm, a measure which quantifies the presence of statistical similarity at different scales in temporal fluctuations of EEG signals. Our results showed that FD increases from age twenty to age fifty and then decreases. The curve that best fits the changes in FD values across age over the whole sample is a parabola, with the vertex located around age fifty. Moreover, FD changes are site specific, with interhemispheric FD asymmetry being pronounced in elderly individuals in the frontal and central regions. The present results indicate that fractal dimension well describes the modulations of brain activity with age. Since fractal dimension has been proposed to be related to the complexity of the signal dynamics, our data demonstrate that the complexity of neuronal electric activity changes across the life span of an individual, with a steady increase during young adulthood and a decrease in the elderly population. PMID:26536036

  1. Protective effect of Nrf2-ARE activator isolated from green perilla leaves on dopaminergic neuronal loss in a Parkinson's disease model.

    PubMed

    Masaki, Yuta; Izumi, Yasuhiko; Matsumura, Atsuko; Akaike, Akinori; Kume, Toshiaki

    2017-03-05

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra (SN), and oxidative stress is thought to contribute to the pathogenesis. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway, which is a cellular defense system against oxidative stress, is a promising target for therapeutics aimed at reducing neuronal death in PD. Previously, we have isolated 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC) from green perilla leaves as an activator of the Nrf2-ARE pathway. The present study showed the protective effect of DDC on PD models in vivo and in vitro. In a 6-hydroxydopamine (6-OHDA)-induced hemiparkinson's disease mouse model, intracerebral administration of DDC suppressed the dopaminergic neuronal loss and behavioral dysfunction. DDC upregulated the expression of heme oxygenase-1 (HO-1), one of the ARE-driven antioxidant enzymes, in astrocytes and microglia of the SN. In primary mesencephalic cultures, treatment with DDC also increased the HO-1 expression in astrocytes and microglia. DDC showed a protective effect against 6-OHDA-induced dopaminergic neuronal death, and the effect was suppressed by an HO-1 inhibitor. These results suggest that DDC prevents dopaminergic neurons from oxidative stress by upregulation of glial expression of HO-1. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space.

    PubMed

    Payne, Anthony M; Dodd, Stephen L; Leeuwenburgh, Christiaan

    2003-12-01

    The decline in muscle function is associated with an age-related decrease in muscle mass and an age-related decline in strength. However, decreased strength is not solely due to decreased muscle mass. The age-related decline in muscle-specific force (force/muscle cross-sectional area), a measure of intrinsic muscle function, also contributes to age-related strength decline, and the mechanisms by which this occurs are only partially known. Moreover, changes in the extracellular space could have a profound effect on skeletal muscle function. Life-long calorie restriction in rodents has shown to be a powerful anti-aging intervention. In this study, we examine whether calorie restriction is able to attenuate the loss of muscle function and elevations in extracellular space associated with aging. We hypothesize that calorie restriction attenuates the age-associated decline in specific force and increases in extracellular space. Measurements of in vitro contractile properties of the extensor digitorum longus (type II) and soleus (type I) muscles from 12-mo and 26- to 28-mo-old ad libitum-fed, as well as 27- to 28-mo-old life-long calorie-restricted male Fischer 344 rats, were performed. We found that calorie restriction attenuated the age-associated decline in muscle mass-to-body mass ratio (mg/g) and strength-to-body mass ratio (N/kg) in the extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle (P > 0.05). Importantly, muscle-specific force (N/cm2) in the extensor digitorum longus, but not in the soleus muscle, of the old calorie-restricted rats was equal to that of the young 12-mo-old animals. Moreover, the age-associated increase in extracellular space was reduced in the fast-twitch extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle with calorie restriction. We also found a significant correlation between the extracellular space and the muscle-specific force in the extensor digitorum longus (r = -0.58; P < 0.05) but not in the

  3. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    PubMed

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. An age-related change in susceptibility of rat brain to encephalomyocarditis virus infection

    PubMed Central

    IKEGAMI, HISASHI; TAKEDA, MAKIO; DOI, KUNIO

    1997-01-01

    Rats were inoculated intraperitoneally (i.p.) or intracerebrally (i.c.) with 1 × 104 plaque forming units (PFU)/animal of the D variant of encephalomyocarditis virus (EMC-D) at 2, 4, 7, 14, 28 or 56 days of age for virological and histopathological examination. In the i.p.-inoculation study, neither viral replication nor lesions were detected in the animals inoculated at 28 and 56 days of age. In the animals inoculated when younger than 14 days of age, lesions were restricted to the brain although viral replication was detected in the brain, heart and pancreas. The brain lesions were characterized by acute meningoencephalitis with neuronal necrosis in the cerebral cortex, hippocampus and thalamus, and viral RNA was detected in degenerated and/or intact neurons. In the i.c.-inoculation study, similar age-related changes in susceptibility of rat brain to EMC-D infection were observed, but a minor difference was that viral replication and lesions were still detected in the hippocampus of some animals inoculated at 28 days of age. These results suggest that an age-related decrease in the susceptibility of rat brain to EMC virus infection may reflect an age-related change in the susceptibility of neurons themselves as well as in maturation of the immune system. PMID:9203984

  5. Detection of Early Loss of Color Vision in Age-Related Macular Degeneration - With Emphasis on Drusen and Reticular Pseudodrusen.

    PubMed

    Vemala, Roopa; Sivaprasad, Sobha; Barbur, John L

    2017-05-01

    To evaluate chromatic sensitivity in patients with age-related macular degeneration (AMD) characterized by drusen and reticular pseudodrusen. To investigate whether the severity of color vision loss can distinguish between various stages of AMD and hence be used as an index of progression toward advanced AMD. Chromatic sensitivity was measured by using the Color Assessment and Diagnosis (CAD) test in asymptomatic individuals with early and intermediate AMD and compared to normative data. All study participants had logMAR visual acuity of 0.3 or better. The CAD thresholds measured in eyes with and without reticular pseudodrusen were also compared and related to central macular thickness (CMT). Student's t-test P values < 0.05 were considered significant. All early- and intermediate-AMD eyes (n = 90) had chromatic sensitivity loss in either RG (red/green) or YB (yellow/blue), or both (P < 0.0001) as compared to age-matched normal subjects. The eyes exhibited a range of CAD thresholds affecting both color mechanisms, but YB color thresholds were in general higher than RG thresholds (P < 0.001). Intermediate-AMD patients exhibited large intersubject variability. In general, eyes with reticular pseudodrusen and eyes with CMT < 200 μm had significantly higher CAD thresholds. The anatomic integrity of cone photoreceptors remains relatively unaffected in early and intermediate stages of AMD. The processing of cone signals in the retina can, however, be heavily disrupted with subsequent loss of both YB and RG chromatic sensitivity. The greatest losses were observed in eyes with reticular pseudodrusen.

  6. Age-related alterations in the sarcolemmal environment are attenuated by lifelong caloric restriction and voluntary exercise.

    PubMed

    Hord, Jeffrey M; Botchlett, Rachel; Lawler, John M

    2016-10-01

    Age-related loss of skeletal muscle mass and function, referred to as sarcopenia, is mitigated by lifelong calorie restriction as well as exercise. In aged skeletal muscle fibers there is compromised integrity of the cell membrane that may contribute to sarcopenia. The purpose of this study was to determine if lifelong mild (8%) caloric restriction (CR) and lifelong CR+voluntary wheel running (WR) could ameliorate disruption of membrane scaffolding and signaling proteins during the aging process, thus maintaining a favorable, healthy membrane environment in plantaris muscle fibers. Fischer-344 rats were divided into four groups: 24-month old adults fed ad libitum (OAL); 24-month old on 8% caloric restriction (OCR); 24month old 8% caloric restriction+wheel running (OCRWR); and 6-month old sedentary adults fed ad libitum (YAL) were used to determine age-related changes. Aging resulted in discontinuous membrane expression of dystrophin glycoprotein complex (DGC) proteins: dystrophin and α-syntrophin. Older muscle also displayed decreased content of neuronal nitric oxide synthase (nNOS), a key DGC signaling protein. In contrast, OCR and OCRWR provided significant protection against age-related DGC disruption. In conjunction with the age-related decline in membrane DGC patency, key membrane repair proteins (MG53, dysferlin, annexin A6, and annexin A2) were significantly increased in the OAL plantaris. However, lifelong CR and CRWR interventions were effective at maintaining membrane repair proteins near YAL levels of. OAL fibers also displayed reduced protein content of NADPH oxidase isoform 2 (Nox2) subunits (p67phox and p47phox), consistent with a perturbed sarcolemmal environment. Loss of Nox2 subunits was prevented by lifelong CR and CRWR. Our results are therefore consistent with the hypothesis that lifelong CR and WR are effective countermeasures against age-related alterations in the myofiber membrane environment. Copyright © 2016 Elsevier Inc. All rights

  7. Development and Validation of a Short-Form Adaptation of the Age-Related Vision Loss Scale: The AVL12

    ERIC Educational Resources Information Center

    Horowitz, Amy; Reinhardt, Joann P.; Raykov, Tenko

    2007-01-01

    This article describes the development and evaluation of a short form of the 24-item Adaptation to Age-Related Vision Loss (AVL) scale. The evaluation provided evidence of the reliability and validity of the short form (the AVL12), for significant interindividual differences at the baseline and for individual-level change in AVL scores over time.…

  8. Loss of Nfkb1 leads to early onset aging.

    PubMed

    Bernal, Giovanna M; Wahlstrom, Joshua S; Crawley, Clayton D; Cahill, Kirk E; Pytel, Peter; Liang, Hua; Kang, Shijun; Weichselbaum, Ralph R; Yamini, Bakhtiar

    2014-11-01

    NF-κB is a major regulator of age-dependent gene expression and the p50/NF-κB1 subunit is an integral modulator of NF-κB signaling. Here, we examined Nfkb1-/- mice to investigate the relationship between this subunit and aging. Although Nfkb1-/- mice appear similar to littermates at six months of age, by 12 months they have a higher incidence of several observable age-related phenotypes. In addition, aged Nfkb1-/- animals have increased kyphosis, decreased cortical bone, increased brain GFAP staining and a decrease in overall lifespan compared to Nfkb1+/+. In vitro, serially passaged primary Nfkb1-/- MEFs have more senescent cells than comparable Nfkb1+/+ MEFs. Also, Nfkb1-/- MEFs have greater amounts of phospho-H2AX foci and lower levels of spontaneous apoptosis than Nfkb1+/+, findings that are mirrored in the brains of Nfkb1-/- animals compared to Nfkb1+/+. Finally, in wildtype animals a substantial decrease in p50 DNA binding is seen in aged tissue compared to young. Together, these data show that loss of Nfkb1 leads to early animal aging that is associated with reduced apoptosis and increased cellular senescence. Moreover, loss of p50 DNA binding is a prominent feature of aged mice relative to young. These findings support the strong link between the NF-κB pathway and mammalian aging.

  9. The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation

    PubMed Central

    Sawyer, Andrew J.; Tian, Weiming; Saucier-Sawyer, Jennifer K.; Rizk, Paul J.; Saltzman, W. Mark; Bellamkonda, Ravi; Kyriakides, Themis R.

    2014-01-01

    Intracranial implants elicit neurodegeneration via the foreign body response (FBR) that includes BBB leakage, macrophage/microglia accumulation, and reactive astrogliosis, in addition to neuronal degradation that limit their useful lifespan. Previously, monocyte chemoattractant protein 1 (MCP-1, also CCL2), which plays an important role in monocyte recruitment and propagation of inflammation, was shown to be critical for various aspects of the FBR in a tissue-specific manner. However, participation of MCP-1 in the brain FBR has not been evaluated. Here we examined the FBR to intracortical silicon implants in MCP-1 KO mice at 1, 2, and 8 weeks after implantation. MCP-1 KO mice had a diminished FBR compared to WT mice, characterized by reductions in BBB leakage, macrophage/microglia accumulation, and astrogliosis, and an increased neuronal density. Moreover, pharmacological inhibition of MCP-1 in implant-bearing WT mice maintained the increased neuronal density. To elucidate the relative contribution of microglia and macrophages, bone marrow chimeras were generated between MCP-1 KO and WT mice. Increased neuronal density was observed only in MCP-1 knockout mice transplanted with MCP-1 knockout marrow, which indicates that resident cells in the brain are major contributors. We hypothesized that these improvements are the result of a phenotypic switch of the macrophages/microglia polarization state, which we confirmed using PCR for common activation markers. Our observations suggest that MCP-1 influences neuronal loss, which is integral to the progression of neurological disorders like Alzheimer’s and Parkinson disease, via BBB leakage and macrophage polarization. PMID:24881026

  10. NR2A-Containing NMDARs in the Prefrontal Cortex Are Required for Working Memory and Associated with Age-Related Cognitive Decline.

    PubMed

    McQuail, Joseph A; Beas, B Sofia; Kelly, Kyle B; Simpson, Kailey L; Frazier, Charles J; Setlow, Barry; Bizon, Jennifer L

    2016-12-14

    Working memory, the ability to temporarily maintain representational knowledge, is a foundational cognitive process that can become compromised in aging and neuropsychiatric disease. NMDA receptor (NMDAR) activation in prefrontal cortex (PFC) is necessary for the pyramidal neuron activity believed to enable working memory; however, the distinct biophysical properties and localization of NMDARs containing NR2A and NR2B subunits suggest unique roles for NMDAR subtypes in PFC neural activity and working memory. Experiments herein show that working memory depends on NR2A- but not NR2B-NMDARs in PFC of rats and that NR2A-NMDARs mediate the majority of evoked NMDAR currents on layer 2/3 PFC pyramidal neurons. Moreover, attenuated expression of the NR2A but not the NR2B subunit in PFC associates with naturally occurring working memory impairment in aged rats. Finally, NMDAR currents and working memory are enhanced in aged rats by promoting activation of the NR2A-enriched synaptic pool of PFC NMDARs. These results implicate NR2A-NMDARs in normal working memory and suggest novel treatment strategies for improving working memory in cognitive disorders. Working memory, the ability to hold information "in mind," requires persistent activity of pyramidal neurons in prefrontal cortex (PFC) mediated by NMDA receptor (NMDAR) activation. NMDAR loss in PFC may account for working memory impairments in aging and psychiatric disease. Our studies demonstrate that NMDARs containing the NR2A subunit, but not the NR2B subunit, are required for working memory and that loss of NR2A predicts severity of age-related working memory impairment. The importance of NR2A to working memory is likely due its abundant contribution to pyramidal neuron activity and location at synaptic sites in PFC. This information is useful in designing new therapies to treat working memory impairments by enhancing the function of NR2A-containing NMDARs. Copyright © 2016 the authors 0270-6474/16/3612537-12$15.00/0.

  11. Loss of Cdk5 function in the nucleus accumbens decreases wheel running and may mediate age-related declines in voluntary physical activity.

    PubMed

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Childs, Thomas E; Grigsby, Kolter B; Booth, Frank W

    2017-01-01

    Physical inactivity, which drastically increases with advancing age, is associated with numerous chronic diseases. The nucleus accumbens (the pleasure and reward 'hub' in the brain) influences wheel running behaviour in rodents. RNA-sequencing and subsequent bioinformatics analysis led us to hypothesize a potential relationship between the regulation of dendritic spine density, the molecules involved in synaptic transmission, and age-related reductions in wheel running. Upon completion of follow-up studies, we developed the working model that synaptic plasticity in the nucleus accumbens is central to age-related changes in voluntary running. Testing this hypothesis, inhibition of Cdk5 (comprising a molecule central to the processes described above) in the nucleus accumbens reduced wheel running. The results of the present study show that reductions in synaptic transmission and Cdk5 function are related to decreases in voluntary running behaviour and provide guidance for understanding the neural mechanisms that underlie age-dependent reductions in the motivation to be physically active. Increases in age are often associated with reduced levels of physical activity, which, in turn, associates with the development of numerous chronic diseases. We aimed to assess molecular differences in the nucleus accumbens (NAc) (a specific brain nucleus postulated to influence rewarding behaviour) with respect to wheel running and sedentary female Wistar rats at 8 and 14 weeks of age. RNA-sequencing was used to interrogate transcriptomic changes between 8- and 14-week-old wheel running rats, and select transcripts were later analysed by quantitative RT-PCR in age-matched sedentary rats. Voluntary wheel running was greatest at 8 weeks and had significantly decreased by 12 weeks. From 619 differentially expressed mRNAs, bioinformatics suggested that cAMP-mediated signalling, dopamine- and cAMP-regulated neuronal phosphoprotein of 32 kDa feedback, and synaptic plasticity were

  12. Rostral dorsolateral pontine neurons with sympathetic nerve-related activity.

    PubMed

    Barman, S M; Gebber, G L; Kitchens, H

    1999-02-01

    Spike-triggered averaging, arterial pulse-triggered analysis, and coherence analysis were used to classify rostral dorsolateral pontine (RDLP) neurons into groups whose naturally occurring discharges were correlated to only the 10-Hz rhythm (n = 29), to only the cardiac-related rhythm (n = 15), and to both rhythms (n = 15) in inferior cardiac sympathetic nerve discharge (SND) of urethan-anesthetized cats. Most of the neurons with activity correlated to only the cardiac-related rhythm were located medial to the other two groups of neurons. The firing rates of most RDLP neurons with activity correlated to only the 10-Hz rhythm (9 of 12) or both rhythms (7 of 8) were decreased during baroreceptor reflex-induced inhibition of SND produced by aortic obstruction; thus, they are presumed to be sympathoexcitatory. The firing rates of four of seven RDLP neurons with activity correlated to only the cardiac-related rhythm increased during baroreceptor reflex activation; thus, they may be sympathoinhibitory. We conclude that the RDLP contains a functionally heterogeneous population of neurons with sympathetic nerve-related activity. These neurons could not be antidromically activated by stimulation of the thoracic spinal cord.

  13. Late onset GM2 gangliosidosis presenting with motor neuron disease: an autopsy case.

    PubMed

    Yokoyama, Teruo; Nakamura, Seigo; Horiuchi, Emiko; Ishiyama, Miyako; Kawashima, Rei; Nakamura, Kazuo; Hasegawa, Kazuko; Yagishita, Saburo

    2014-06-01

    Adult-onset GM2 gangliosidosis is very rare and only three autopsy cases have been reported up to now. We report herein an autopsy case of adult-onset GM2 gangliosidosis. The patient developed slowly progressive motor neuron disease-like symptoms after longstanding mood disorder and cognitive dysfunction. He developed gait disturbance and weakness of lower limbs at age 52 years. Because of progressive muscle weakness and atrophy, he became bed-ridden at age 65. At age of 68, he died. His neurological findings presented slight cognitive disturbance, slight manic state, severe muscle weakness, atrophy of four limbs and no extrapyramidal signs and symptoms, and cerebellar ataxia. Neuropathologically, mild neuronal loss and abundant lipid deposits were noted in the neuronal cytoplasm throughout the nervous system, including peripheral autonomic neurons. The most outstanding findings were marked neuronal loss and distended neurons in the anterior horn of the spinal cord, which supports his clinical symptomatology of lower motor neuron disease in this case. The presence of lipofuscin, zebra bodies and membranous cytoplasmic bodies (MCB) and the increase of GM2 ganglioside by biochemistry led to diagnosis of GM2 gangliosidosis. © 2013 Japanese Society of Neuropathology.

  14. Noradrenaline from Locus Coeruleus Neurons Acts on Pedunculo-Pontine Neurons to Prevent REM Sleep and Induces Its Loss-Associated Effects in Rats.

    PubMed

    Khanday, Mudasir Ahmad; Somarajan, Bindu I; Mehta, Rachna; Mallick, Birendra Nath

    2016-01-01

    Normally, rapid eye movement sleep (REMS) does not appear during waking or non-REMS. Isolated, independent studies showed that elevated noradrenaline (NA) levels inhibit REMS and induce REMS loss-associated cytomolecular, cytomorphological, psychosomatic changes and associated symptoms. However, the source of NA and its target in the brain for REMS regulation and function in health and diseases remained to be confirmed in vivo . Using tyrosine hydroxylase (TH)-siRNA and virus-coated TH-shRNA in normal freely moving rats, we downregulated NA synthesis in locus coeruleus (LC) REM-OFF neurons in vivo . These TH-downregulated rats showed increased REMS, which was prevented by infusing NA into the pedunculo-pontine tegmentum (PPT), the site of REM-ON neurons, normal REMS returned after recovery. Moreover, unlike normal or control-siRNA- or shRNA-injected rats, upon REMS deprivation (REMSD) TH-downregulated rat brains did not show elevated Na-K ATPase (molecular changes) expression and activity. To the best of our knowledge, these are the first in vivo findings in an animal model confirming that NA from the LC REM-OFF neurons (1) acts on the PPT REM-ON neurons to prevent appearance of REMS, and (2) are responsible for inducing REMSD-associated molecular changes and symptoms. These observations clearly show neuro-physio-chemical mechanism of why normally REMS does not appear during waking. Also, that LC neurons are the primary source of NA, which in turn causes some, if not many, REMSD-associated symptoms and behavioral changes. The findings are proof-of-principle for the first time and hold potential to be exploited for confirmation toward treating REMS disorder and amelioration of REMS loss-associated symptoms in patients.

  15. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson's disease.

    PubMed

    Kim, Mia; Cho, Ki-Ho; Shin, Mal-Soon; Lee, Jae-Min; Cho, Han-Sam; Kim, Chang-Ju; Shin, Dong-Hoon; Yang, Hyeon Jeong

    2014-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of nigral dopaminergic neurons and a reduction in striatal dopaminergic fibers, which result in tremors, rigidity, bradykinesia and gait disturbance. In addition to motor dysfunction, dementia is a widely recognized symptom of patients with PD. Berberine, an isoquinoline alkaloid isolated from Berberis vulgaris L., is known to exert anxiolytic, analgesic, anti-inflammatory, antipsychotic, antidepressant and anti-amnesic effects. In the present study, we investigated the effects of berberine on short-term memory in relation to dopamine depletion and hippocampal neurogenesis using a mouse model of PD, induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/P) treatment. Mice in the berberine-treated groups were orally administered berberine once a day for a total of 5 weeks. Our results revealed that the injection of MPTP/P induced dopaminergic neuronal death in the substantia nigra and fiber loss in the striatum. This resulted in impaired motor balance and coordination, as assessed by the beam walking test. We further demonstrated that MPTP/P-induced apoptosis in the hippocampus deteriorated short-term memory, as shown by the step-down avoidance task. By contrast, neurogenesis in the hippocampal dentate gyrus, which is a compensatory adaptive response to excessive apoptosis, was increased upon PD induction. However, treatment with berberine enhanced motor balance and coordination by preventing dopaminergic neuronal damage. Treatment with berberine also improved short-term memory by inhibiting apoptosis in the hippocampus. Berberine demonstrated maximal potency at 50 mg/kg. Based on these data, treatment with berberine may serve as a potential therapeutic strategy for the alleviation of memory impairment and motor dysfunction in patients with PD.

  16. Investigations Into Age-related Changes in the Human Mandible.

    PubMed

    Parr, Nicolette M; Passalacqua, Nicholas V; Skorpinski, Katie

    2017-11-01

    While changes in mandibular shape over time are not widely recognized by skeletal biologists, mandibular remodeling and associated changes in gross morphology may result from a number of causes related to mechanical stress such as antemortem tooth loss, changes in bite force, or alterations of masticatory performance. This study investigated the relationship between age-related changes and antemortem tooth loss in adult humans via dry bone measurements. This study examined 10 standard mandibular measurements as well as individual antemortem tooth loss scores using the Eichner Index from a total of 319 female and male individuals with ages ranging from 16 to 99 years. Results indicate that few mandibular measurements exhibited age-related changes, and most were affected by antemortem tooth loss. © 2017 American Academy of Forensic Sciences.

  17. Kids, Candy, Brain and Behavior: Age Differences in Responses to Candy Gains and Losses

    PubMed Central

    Luking, Katherine R; Luby, Joan; Barch, Deanna M

    2014-01-01

    The development of reward-related neural systems, from adolescence through adulthood, has received much recent attention in the developmental neuroimaging literature. However, few studies have investigated behavioral and neural responses to both gains and losses in pre-pubertal child populations. To address this gap in the literature, in the present study healthy children aged 7–11 years and young-adults completed an fMRI card-guessing game using candy pieces delivered post-scan as an incentive. Age differences in behavioral and neural responses to candy gains/losses were investigated. Adults and children displayed similar responses to gains, but robust age differences were observed following candy losses within the caudate, thalamus, insula, and hippocampus. Interestingly, when task behavior was included as a factor in post-hoc mediation analyses, activation following loss within the caudate/thalamus related to task behavior and relationships with age were no longer significant. Conversely, relationships between response to loss and age within the hippocampus and insula remained significant even when controlling for behavior, with children showing heightened loss responses within the dorsal/posterior insula. These results suggest that both age and task behavior influence responses within the extended reward circuitry, and that children seem to be more sensitive than adults to loss feedback particularly within the dorsal/posterior insula. PMID:24534632

  18. Neurodegeneration, neuronal loss, and neurotransmitter changes in the adult guinea pig with perinatal asphyxia.

    PubMed

    Bernert, Guenther; Hoeger, Harald; Mosgoeller, Wilhelm; Stolzlechner, Doris; Lubec, Barbara

    2003-10-01

    There is only limited morphologic information on long-term alterations and neurotransmitter changes after perinatal asphyxia, and no long-term study showing neurodegeneration has been reported so far. We used an animal model for perinatal asphyxia well documented in the rat to investigate the guinea pig as a species highly mature at birth. Cesarean section was performed on full-term pregnant guinea pigs, and pups, still in membranes, were placed into a water bath at 37 degrees C for asphyxia periods from 2 to 4 min. Thereafter pups were given to surrogate mothers and examined at 3 mo of age. We studied brain areas reported to be hypoxia-sensitive. Neurodegeneration was evaluated by fluoro-jade, neuronal loss by Nissl, reactive gliosis by glial fibrillary acidic protein staining, and differentiation by neuroendocrine-specific protein C immunoreactivity. We tested tyrosine hydroxylase, the vesicular monoamine transporter, and dopamine beta-hydroxylase, representing the monoaminergic system; the vesicular acetylcholine transporter; and the excitatory amino acid carrier 1. Neurodegeneration was evident in cerebellum, hippocampal area CA1, and hypothalamus, and neuronal loss could be observed in cerebellum and hypothalamus; gliosis was observed in cerebellum, hippocampus, hypothalamus, and parietal cortex; dedifferentiation was found in hypothalamus and striatum; and monoaminergic, cholinergic, and amino acidergic deficits were shown in several brain regions. The major finding of the present study was that neurodegeneration and dedifferentiation evolved in the guinea pig, a species highly mature at birth. The relevance of this contribution is that a simple animal model of perinatal asphyxia resembling the clinical situation of intrauterine hypoxia-ischemia and presenting with neurodegeneration was characterized.

  19. Characterization of hearing loss in aged type II diabetics

    PubMed Central

    Frisina, Susan T.; Mapes, Frances; Kim, SungHee; Frisina, D. Robert; Frisina, Robert D.

    2009-01-01

    Presbycusis – age-related hearing loss – is the number one communicative disorder and a significant chronic medical condition of the aged. Little is known about how type II diabetes, another prevalent age-related medical condition, and presbycusis interact. The present investigation aimed to comprehensively characterize the nature of hearing impairment in aged type II diabetics. Hearing tests measuring both peripheral (cochlea) and central (brainstem and cortex) auditory processing were utilized. The majority of differences between the hearing abilities of the aged diabetics and their age-matched controls were found in measures of inner ear function. For example, large differences were found in pure-tone audiograms, wideband noise and speech reception thresholds, and otoacoustic emissions. The greatest deficits tended to be at low frequencies. In addition, there was a strong tendency for diabetes to affect the right ear more than the left. One possible interpretation is that as one develops presbycusis, the right ear advantage is lost, and this decline is accelerated by diabetes. In contrast, auditory processing tests that measure both peripheral and central processing showed fewer declines between the elderly diabetics and the control group. Consequences of elevated blood sugar levels as possible underlying physiological mechanisms for the hearing loss are discussed. PMID:16309862

  20. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications for age-related behavioral slowing.

    PubMed

    Insel, Nathan; Patron, Lilian A; Hoang, Lan T; Nematollahi, Saman; Schimanski, Lesley A; Lipa, Peter; Barnes, Carol A

    2012-11-14

    Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30-100 Hz "gamma" oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40-70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials, later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited interspike intervals consistent with a fast (70-100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the average firing rates of the neurons. We propose that an average lengthening of the cortical 15-25 ms gamma cycle is one factor contributing to age-related slowing and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs.

  1. Temporal lobe epilepsy patients with severe hippocampal neuron loss but normal hippocampal volume: Extracellular matrix molecules are important for the maintenance of hippocampal volume.

    PubMed

    Peixoto-Santos, Jose Eduardo; Velasco, Tonicarlo Rodrigues; Galvis-Alonso, Orfa Yineth; Araujo, David; Kandratavicius, Ludmyla; Assirati, Joao Alberto; Carlotti, Carlos Gilberto; Scandiuzzi, Renata Caldo; Santos, Antonio Carlos dos; Leite, Joao Pereira

    2015-10-01

    Hippocampal sclerosis is a common finding in patients with temporal lobe epilepsy (TLE), and magnetic resonance imaging (MRI) studies associate the reduction of hippocampal volume with the neuron loss seen on histologic evaluation. Astrogliosis and increased levels of chondroitin sulfate, a major component of brain extracellular matrix, are also seen in hippocampal sclerosis. Our aim was to evaluate the association between hippocampal volume and chondroitin sulfate, as well as neuronal and astroglial populations in the hippocampus of patients with TLE. Patients with drug-resistant TLE were subdivided, according to hippocampal volume measured by MRI, into two groups: hippocampal atrophy (HA) or normal volume (NV) cases. Hippocampi from TLE patients and age-matched controls were submitted to immunohistochemistry to evaluate neuronal population, astroglial population, and chondroitin sulfate expression with antibodies against neuron nuclei protein (NeuN), glial fibrillary acidic protein (GFAP), and chondroitin sulfate (CS-56) antigens, respectively. Both TLE groups were clinically similar. NV cases had higher hippocampal volume, both ipsilateral and contralateral, when compared to HA. Compared to controls, NV and HA patients had reduced neuron density, and increased GFAP and CS-56 immunopositive area. There was no statistical difference between NV and HA groups in neuron density or immunopositive areas for GFAP and CS-56. Hippocampal volume correlated positively with neuron density in CA1 and prosubiculum, and with immunopositive areas for CS-56 in CA1, and negatively with immunopositive area for GFAP in CA1. Multiple linear regression analysis indicated that both neuron density and CS-56 immunopositive area in CA1 were statistically significant predictors of hippocampal volume. Our findings indicate that neuron density and chondroitin sulfate immunopositive area in the CA1 subfield are crucial for the hippocampal volume, and that chondroitin sulfate is important for

  2. Importance of genetics in fetal alcohol effects: null mutation of the nNOS gene worsens alcohol-induced cerebellar neuronal losses and behavioral deficits

    PubMed Central

    Bonthius, Daniel J.; Winters, Zachary; Karacay, Bahri; Bousquet, Samantha Larimer; Bonthius, Daniel J.

    2014-01-01

    The cerebellum is a major target of alcohol-induced damage in the developing brain. However, the cerebella of some children are much more seriously affected than others by prenatal alcohol exposure. As a consequence of in utero alcohol exposure, some children have substantial reductions in cerebellar volume and corresponding neurodevelopmental problems, including microencephaly, ataxia, and balance deficits, while other children who were exposed to similar alcohol quantities are spared. One factor that likely plays a key role in determining the impact of alcohol on the fetal cerebellum is genetics. However, no specific gene variant has yet been identified that worsens cerebellar function as a consequence of developmental alcohol exposure. Previous studies have revealed that mice carrying a homozygous mutation of the gene for neuronal nitric oxide synthase (nNOS−/− mice) have more severe acute alcohol-induced neuronal losses from the cerebellum than wild type mice. Therefore, the goals of this study were to determine whether alcohol induces more severe cerebellum-based behavioral deficits in nNOS−/− mice than in wild type mice and to determine whether these worsened behavior deficits are associated with worsened cerebellar neuronal losses. nNOS−/− mice and their wild type controls received alcohol (0.0, 2.2, or 4.4 mg/g) daily over postnatal days 4–9. In adulthood, the mice underwent behavioral testing, followed by neuronal quantification. Alcohol caused dose-related deficits in rotarod and balance beam performance in both nNOS−/− and wild type mice. However, the alcohol-induced behavioral deficits were substantially worse in the nNOS−/− mice than in wild type. Likewise, alcohol exposure led to losses of Purkinje cells and cerebellar granule cells in mice of both genotypes, but the cell losses were more severe in the nNOS−/− mice than in wild type. Behavioral performances were correlated with neuronal number in the nNOS−/− mice, but not

  3. Deletion of Pofut1 in Mouse Skeletal Myofibers Induces Muscle Aging-Related Phenotypes in cis and in trans

    PubMed Central

    Zygmunt, Deborah A.; Singhal, Neha; Kim, Mi-Lyang; Cramer, Megan L.; Crowe, Kelly E.; Xu, Rui; Jia, Ying; Adair, Jessica; Martinez-Pena y Valenzuela, Isabel; Akaaboune, Mohammed; White, Peter; Janssen, Paulus M.

    2017-01-01

    ABSTRACT Sarcopenia, the loss of muscle mass and strength during normal aging, involves coordinate changes in skeletal myofibers and the cells that contact them, including satellite cells and motor neurons. Here we show that the protein O-fucosyltransferase 1 gene (Pofut1), which encodes a glycosyltransferase required for NotchR-mediated cell-cell signaling, has reduced expression in aging skeletal muscle. Moreover, premature postnatal deletion of Pofut1 in skeletal myofibers can induce aging-related phenotypes in cis within skeletal myofibers and in trans within satellite cells and within motor neurons via the neuromuscular junction. Changed phenotypes include reduced skeletal muscle size and strength, decreased myofiber size, increased slow fiber (type 1) density, increased muscle degeneration and regeneration in aged muscles, decreased satellite cell self-renewal and regenerative potential, and increased neuromuscular fragmentation and occasional denervation. Pofut1 deletion in skeletal myofibers reduced NotchR signaling in young adult muscles, but this effect was lost with age. Increasing muscle NotchR signaling also reduced muscle size. Gene expression studies point to regulation of cell cycle genes, muscle myosins, NotchR and Wnt pathway genes, and connective tissue growth factor by Pofut1 in skeletal muscle, with additional effects on α dystroglycan glycosylation. PMID:28265002

  4. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain.

    PubMed

    Hill, Robert A; Li, Alice M; Grutzendler, Jaime

    2018-05-01

    Axonal myelin increases neural processing speed and efficiency. It is unknown whether patterns of myelin distribution are fixed or whether myelinating oligodendrocytes are continually generated in adulthood and maintain the capacity for structural remodeling. Using high-resolution, intravital label-free and fluorescence optical imaging in mouse cortex, we demonstrate lifelong oligodendrocyte generation occurring in parallel with structural plasticity of individual myelin internodes. Continuous internode formation occurred on both partially myelinated and unmyelinated axons, and the total myelin coverage along individual axons progressed up to two years of age. After peak myelination, gradual oligodendrocyte death and myelin degeneration in aging were associated with pronounced internode loss and myelin debris accumulation within microglia. Thus, cortical myelin remodeling is protracted throughout life, potentially playing critical roles in neuronal network homeostasis. The gradual loss of internodes and myelin degeneration in aging could contribute significantly to brain pathogenesis.

  5. Enhanced glutamatergic and decreased GABAergic synaptic appositions to GnRH neurons on proestrus in the rat: modulatory effect of aging.

    PubMed

    Khan, Mohammad; De Sevilla, Liesl; Mahesh, Virendra B; Brann, Darrell W

    2010-04-14

    Previous work by our lab and others has implicated glutamate as a major excitatory signal to gonadotropin hormone releasing hormone (GnRH) neurons, with gamma amino butyric acid (GABA) serving as a potential major inhibitory signal. However, it is unknown whether GABAergic and/or glutamatergic synaptic appositions to GnRH neurons changes on the day of the proestrous LH surge or is affected by aging. To examine this question, synaptic terminal appositions on GnRH neurons for VGAT (vesicular GABA transporter) and VGLUT2 (vesicular glutamate transporter-2), markers of GABAergic and glutamatergic synaptic terminals, respectively, was examined by immunohistochemistry and confocal microscopic analysis in young and middle-aged diestrous and proestrous rats. The results show that in young proestrous rats at the time of LH surge, we observed reciprocal changes in the VGAT and VGLUT2 positive terminals apposing GnRH neurons, where VGAT terminal appositions were decreased and VGLUT2 terminal appositions were significantly increased, as compared to young diestrus control animals. Interestingly, in middle-aged cycling animals this divergent modulation of VGAT and VGLUT2 terminal apposition was greatly impaired, as no significant differences were observed between VGAT and VGLUT2 terminals apposing GnRH neurons at proestrous. However, the density of VGAT and VGLUT2 terminals apposing GnRH neurons were both significantly increased in the middle-aged animals. In conclusion, there is an increase in glutamatergic and decrease in GABAergic synaptic terminal appositions on GnRH neurons on proestrus in young animals, which may serve to facilitate activation of GnRH neurons. In contrast, middle-aged diestrous and proestrous animals show a significant increase in both VGAT and VGLUT synaptic terminal appositions on GnRH neurons as compared to young animals, and the cycle-related change in these appositions between diestrus and proestrus that is observed in young animals is lost.

  6. Pallidal neuronal discharge in Huntington's disease: support for selective loss of striatal cells originating the indirect pathway.

    PubMed

    Starr, Philip A; Kang, Gail A; Heath, Susan; Shimamoto, Shoichi; Turner, Robert S

    2008-05-01

    Chorea is the predominant motor manifestation in the early symptomatic phase of adult onset Huntington's disease (HD). Pathologically, this stage is marked by differential loss of striatal neurons contributing to the indirect pathway. This pattern of neuronal loss predicts decreased neuronal firing rates in GPi and increased firing rates in GPe, the opposite of the changes in firing rate known to occur in Parkinson's disease (PD). We present single-unit discharge characteristics (33 neurons) observed in an awake patient with HD (41 CAG repeats) undergoing microelectrode guided surgery for pallidal deep brain stimulation. Pallidal single-unit activity at "rest" and during voluntary movement was discriminated off line by principal component analysis and evaluated with respect to discharge rate, bursting, and oscillatory activity in the 0-200 Hz range. 24 GPi and 9 GPe units were studied, and compared with 132 GPi and 50 GPe units from 14 patients with PD. The mean (+/-SEM) spontaneous discharge rate for HD was 58+/-4 for GPi and 73+/-5 for GPe. This contrasted with discharge rates in PD of 95+/-2 for GPi and 57+/-3 for GPe. HD GPi units showed more bursting than PD GPi units but much less oscillatory activity in the 2-35 Hz frequency range at rest. These findings are consistent with selective early loss of striatal cells originating the indirect pathway.

  7. Age-Related Differences in Working Memory Performance in A 2-Back Task

    PubMed Central

    Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.

    2011-01-01

    The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus–response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage, and retrieval of information in working memory. PMID:21909328

  8. Kids, candy, brain and behavior: age differences in responses to candy gains and losses.

    PubMed

    Luking, Katherine R; Luby, Joan L; Barch, Deanna M

    2014-07-01

    The development of reward-related neural systems, from adolescence through adulthood, has received much recent attention in the developmental neuroimaging literature. However, few studies have investigated behavioral and neural responses to both gains and losses in pre-pubertal child populations. To address this gap in the literature, in the present study healthy children aged 7-11 years and young-adults completed an fMRI card-guessing game using candy pieces delivered post-scan as an incentive. Age differences in behavioral and neural responses to candy gains/losses were investigated. Adults and children displayed similar responses to gains, but robust age differences were observed following candy losses within the caudate, thalamus, insula, and hippocampus. Interestingly, when task behavior was included as a factor in post hoc mediation analyses, activation following loss within the caudate/thalamus related to task behavior and relationships with age were no longer significant. Conversely, relationships between response to loss and age within the hippocampus and insula remained significant even when controlling for behavior, with children showing heightened loss responses within the dorsal/posterior insula. These results suggest that both age and task behavior influence responses within the extended reward circuitry, and that children seem to be more sensitive than adults to loss feedback particularly within the dorsal/posterior insula. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Noradrenaline from Locus Coeruleus Neurons Acts on Pedunculo-Pontine Neurons to Prevent REM Sleep and Induces Its Loss-Associated Effects in Rats

    PubMed Central

    Khanday, Mudasir Ahmad; Somarajan, Bindu I.; Mehta, Rachna

    2016-01-01

    Normally, rapid eye movement sleep (REMS) does not appear during waking or non-REMS. Isolated, independent studies showed that elevated noradrenaline (NA) levels inhibit REMS and induce REMS loss-associated cytomolecular, cytomorphological, psychosomatic changes and associated symptoms. However, the source of NA and its target in the brain for REMS regulation and function in health and diseases remained to be confirmed in vivo. Using tyrosine hydroxylase (TH)-siRNA and virus-coated TH-shRNA in normal freely moving rats, we downregulated NA synthesis in locus coeruleus (LC) REM-OFF neurons in vivo. These TH-downregulated rats showed increased REMS, which was prevented by infusing NA into the pedunculo-pontine tegmentum (PPT), the site of REM-ON neurons, normal REMS returned after recovery. Moreover, unlike normal or control-siRNA- or shRNA-injected rats, upon REMS deprivation (REMSD) TH-downregulated rat brains did not show elevated Na-K ATPase (molecular changes) expression and activity. To the best of our knowledge, these are the first in vivo findings in an animal model confirming that NA from the LC REM-OFF neurons (1) acts on the PPT REM-ON neurons to prevent appearance of REMS, and (2) are responsible for inducing REMSD-associated molecular changes and symptoms. These observations clearly show neuro-physio-chemical mechanism of why normally REMS does not appear during waking. Also, that LC neurons are the primary source of NA, which in turn causes some, if not many, REMSD-associated symptoms and behavioral changes. The findings are proof-of-principle for the first time and hold potential to be exploited for confirmation toward treating REMS disorder and amelioration of REMS loss-associated symptoms in patients. PMID:27957531

  10. Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease

    PubMed Central

    Nguyen, Tammy T.; Oh, Sang S.; Weaver, David; Lewandowska, Agnieszka; Maxfield, Dane; Schuler, Max-Hinderk; Smith, Nathan K.; Macfarlane, Jane; Saunders, Gerald; Palmer, Cheryl A.; Debattisti, Valentina; Koshiba, Takumi; Pulst, Stefan; Feldman, Eva L.; Hajnóczky, György; Shaw, Janet M.

    2014-01-01

    Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease. PMID:25136135

  11. Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease via mitochondrial stabilization.

    PubMed

    Lee, Yujeong; Park, Hee Ra; Chun, Hye Jeong; Lee, Jaewon

    2015-05-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the selective loss of dopaminergic neurons in the nigrostriatal pathway. The lipophile 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can cross the blood-brain barrier and is subsequently metabolized into toxic1-methyl-4-phenylpyridine (MPP(+) ), which causes mitochondrial dysfunction and the selective cell death of dopaminergic neurons. The present article reports the neuroprotective effects of silibinin in a murine MPTP model of PD. The flavonoid silibinin is the major active constituent of silymarin, an extract of milk thistle seeds, and is known to have hepatoprotective, anticancer, antioxidative, and neuroprotective effects. In the present study, silibinin effectively attenuated motor deficit and dopaminergic neuronal loss caused by MPTP. Furthermore, in vitro study confirmed that silibinin protects primary cultured neurons against MPP(+) -induced cell death and mitochondrial membrane disruption. The findings of the present study indicate that silibinin has neuroprotective effects in MPTP-induced models of PD rather than antioxidative or anti-inflammatory effects and that the neuroprotection afforded might be mediated by the stabilization of mitochondrial membrane potential. Furthermore, these findings suggest that silibinin protects mitochondria in MPTP-induced PD models and that it offers a starting point for the development of treatments that ameliorate the symptoms of PD. © 2015 Wiley Periodicals, Inc.

  12. Immunization against GAD Induces Antibody Binding to GAD-Independent Antigens and Brainstem GABAergic Neuronal Loss

    PubMed Central

    Chang, Thashi; Alexopoulos, Harry; Pettingill, Philippa; McMenamin, Mary; Deacon, Robert; Erdelyi, Ferenc; Szabó, Gabor; Buckley, Camilla J.; Vincent, Angela

    2013-01-01

    Stiff person syndrome (SPS) is a highly-disabling neurological disorder of the CNS characterized by progressive muscular rigidity and spasms. In approximately 60–80% of patients there are autoantibodies to glutamic acid decarboxylase (GAD), the enzyme that synthesizes gamma-amino butyric acid (GABA), the predominant inhibitory neurotransmitter of the CNS. Although GAD is intracellular, it is thought that autoimmunity to GAD65 may play a role in the development of SPS. To test this hypothesis, we immunized mice, that expressed enhanced green fluorescent protein (EGFP) under the GAD65 promoter, with either GAD65 (n = 13) or phosphate buffered saline (PBS) (n = 13). Immunization with GAD65 resulted in autoantibodies that immunoprecipitated GAD, bound to CNS tissue in a highly characteristic pattern, and surprisingly bound not only to GAD intracellularly but also to the surface of cerebellar neurons in culture. Moreover, immunization resulted in immunoglobulin diffusion into the brainstem, and a partial loss of GAD-EGFP expressing cells in the brainstem. Although immunization with GAD65 did not produce any behavioral abnormality in the mice, the induction of neuronal-surface antibodies and the trend towards loss of GABAergic neurons in the brainstem, supports a role for humoral autoimmunity in the pathogenesis of SPS and suggests that the mechanisms may involve spread to antigens expressed on the surface of these neurons. PMID:24058450

  13. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction

    PubMed Central

    Christensen, Mark H.; Ishibashi, Masaru; Nielsen, Michael L.; Leonard, Christopher S.; Kohlmeier, Kristi A.

    2015-01-01

    The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on several parameters affecting LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7-P15), nicotine was found to induce larger intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15-P34). Nicotine increased neuronal firing of cholinergic cells to a greater degree in younger animals, possibly linked to development associated differences found in nicotinic effects on action potential shape and afterhyperpolarization. We conclude that in addition to age-associated alterations of several properties expected to affect resting cell excitability, parameters affecting cell excitability are altered by nicotine differentially across ontogeny. Taken together, our data suggest that nicotine induces a larger excitatory response in cholinergic LDT neurons from the youngest animals, which could result in a greater excitatory output from these cells to target regions involved in development of addiction. Such output would be expected to be promotive of addiction; therefore, ontogenetic differences in nicotine-mediated increases in the excitability of the LDT could contribute to the differential susceptibility to nicotine addiction seen across age. PMID:24863041

  14. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    PubMed

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Phosphorylated α-Synuclein Accumulations and Lewy Body-like Pathology Distributed in Parkinson's Disease-Related Brain Areas of Aged Rhesus Monkeys Treated with MPTP.

    PubMed

    Huang, Baihui; Wu, Shihao; Wang, Zhengbo; Ge, Longjiao; Rizak, Joshua D; Wu, Jing; Li, Jiali; Xu, Lin; Lv, Longbao; Yin, Yong; Hu, Xintian; Li, Hao

    2018-05-21

    Phosphorylation of α-synuclein at serine 129 (P-Ser 129 α-syn) is involved in the pathogenesis of Parkinson's disease (PD) and Lewy body (LB) formation. However, there is no clear evidence indicates the quantitative relation of P-Ser 129 α-syn accumulation and dopaminergic cell loss, LBs pathology and the affected brain areas in PD monkeys. Here, pathological changes in the substantia nigra (SN) and PD-related brain areas were measured in aged monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) utilizing a modeling-recovery-remodeling strategy. Compared to age-matched controls, the MPTP-treated monkeys showed significantly reduced tyrosine hydroxylase (TH)-positive neurons and increased P-Ser 129 α-syn-positive aggregations in the SN. Double-labeling Immunofluorescence found some TH-positive neurons to be co-localized with P-Ser129 α-syn in the SN, suggesting the inverse correlation between P-Ser 129 α-syn aggregations and dopaminergic cell loss in the SN may represent an interactive association related to the progression of the PD symptoms in the model. P-Ser 129 α-syn aggregations or LB-like pathology was also found in the midbrain and the neocortex, specifically in the oculomotor nucleus (CN III), temporal cortex (TC), prefrontal cortex (PFC) and in cells surrounding the third ventricle. Notably, the occipital cortex (OC) was P-Ser 129 α-syn negative. The findings of LB-like pathologies, dopaminergic cell loss and the stability of the PD symptoms in this model suggest that the modeling-recovery-remodeling strategy in aged monkeys may provide a new platform for biomedical investigations into the pathogenesis of PD and potential therapeutic development. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist

    PubMed Central

    Bu, Wei; Ren, Huiling; Deng, Yunping; Del Mar, Nobel; Guley, Natalie M.; Moore, Bob M.; Honig, Marcia G.; Reiner, Anton

    2016-01-01

    We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state. In the present study, we showed that SMM-189 boosts nuclear pCREB levels in microglia in several brain regions by 3 days after TBI, by using pCREB/CD68 double immunofluorescent labeling. Next, to better understand the basis of motor deficits and increased fearfulness after TBI, we used unbiased stereological methods to characterize neuronal loss in cortex, striatum, and basolateral amygdala (BLA) and assessed how neuronal loss was affected by SMM-189 treatment. Our stereological neuron counts revealed a 20% reduction in cortical and 30% reduction in striatal neurons bilaterally at 2–3 months post blast, with SMM-189 yielding about 50% rescue. Loss of BLA neurons was restricted to the blast side, with 33% of Thy1+ fear-suppressing pyramidal neurons and 47% of fear-suppressing parvalbuminergic (PARV) interneurons lost, and Thy1-negative fear-promoting pyramidal neurons not significantly affected. SMM-189 yielded 50–60% rescue of Thy1+ and PARV neuron loss in BLA. Thus, fearfulness after mild TBI may result from the loss of fear-suppressing neuron types in BLA, and SMM-189 may reduce fearfulness by their rescue. Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia

  17. Therapeutic value of nerve growth factor in promoting neural stem cell survival and differentiation and protecting against neuronal hearing loss.

    PubMed

    Han, Zhao; Wang, Cong-Pin; Cong, Ning; Gu, Yu-Yan; Ma, Rui; Chi, Fang-Lu

    2017-04-01

    Nerve growth factor (NGF) is a neurotrophic factor that modulates survival and differentiation of neural stem cells (NSCs). We investigated the function of NGF in promoting growth and neuronal differentiation of NSCs isolated from mouse cochlear tissue, as well as its protective properties against gentamicin (GMC) ototoxicity. NSCs were isolated from the cochlea of mice and cultured in vitro. Effect of NGF on survival, neurosphere formation, and differentiation of the NSCs, as well as neurite outgrowth and neural excitability in the subsequent in vitro neuronal network, was examined. Mechanotransduction capacity of intact cochlea and auditory brainstem response (ABR) threshold in mice were also measured following GMC treatment to evaluate protection using NGF against GMC-induced neuronal hearing loss. NGF improved survival, neurosphere formation, and neuronal differentiation of mouse cochlear NSCs in vitro, as well as promoted neurite outgrowth and neural excitability in the NSC-differentiated neuronal culture. In addition, NGF protected mechanotransduction capacity and restored ABR threshold in gentamicin ototoxicity mouse model. Our study supports a potential therapeutic value of NGF in promoting proliferation and differentiation of NSCs into functional neurons in vitro, supporting its protective role in the treatment of neuronal hearing loss.

  18. Respiratory chain deficiency in aged spinal motor neurons☆

    PubMed Central

    Rygiel, Karolina A.; Grady, John P.; Turnbull, Doug M.

    2014-01-01

    Sarcopenia, muscle wasting, and strength decline with age, is an important cause of loss of mobility in the elderly individuals. The underlying mechanisms are uncertain but likely to involve defects of motor nerve, neuromuscular junction, and muscle. Loss of motor neurons with age and subsequent denervation of skeletal muscle has been recognized as one of the contributing factors. This study investigated aspects of mitochondrial biology in spinal motor neurons from elderly subjects. We found that protein components of complex I of mitochondrial respiratory chain were reduced or absent in a proportion of aged motor neurons–a phenomenon not observed in fetal tissue. Further investigation showed that complex I-deficient cells had reduced mitochondrial DNA content and smaller soma size. We propose that mitochondrial dysfunction in these motor neurons could lead to the cell loss and ultimately denervation of muscle fibers. PMID:24684792

  19. Induction of parkinsonism-related proteins in the spinal motor neurons of transgenic mouse carrying a mutant SOD1 gene.

    PubMed

    Morimoto, Nobutoshi; Nagai, Makiko; Miyazaki, Kazunori; Ohta, Yasuyuki; Kurata, Tomoko; Takehisa, Yasushi; Ikeda, Yoshio; Matsuura, Tohru; Asanuma, Masato; Abe, Koji

    2010-06-01

    Amyotrophic lateral sclerosis is a progressive and fatal disease caused by selective death of motor neurons, and a number of these patients carry mutations in the superoxide dismutase 1 (SOD1) gene involved in ameliorating oxidative stress. Recent studies indicate that oxidative stress and disruption of mitochondrial homeostasis is a common mechanism for motor neuron degeneration in amyotrophic lateral sclerosis and the loss of midbrain dopamine neurons in Parkinson's disease. Therefore, the present study investigated the presence and alterations of familial Parkinson's disease-related proteins, PINK1 and DJ-1, in spinal motor neurons of G93ASOD1 transgenic mouse model of amyotrophic lateral sclerosis. Following onset of disease, PINK1 and DJ-1 protein expression increased in the spinal motor neurons. The activated form of p53 also increased and translocated to the nuclei of spinal motor neurons, followed by increased expression of p53-activated gene 608 (PAG608). This is the first report demonstrating that increased expression of PAG608 correlates with activation of phosphorylated p53 in spinal motor neurons of an amyotrophic lateral sclerosis model. These results provide further evidence of the profound correlations between spinal motor neurons of amyotrophic lateral sclerosis and parkinsonism-related proteins.

  20. Neuronal injury from cardiac arrest: aging years in minutes.

    PubMed

    Cherry, Brandon H; Sumien, Nathalie; Mallet, Robert T

    2014-01-01

    Cardiac arrest is a leading cause of death and permanent disability. Most victims succumb to the oxidative and inflammatory damage sustained during cardiac arrest/resuscitation, but even survivors typically battle long-term neurocognitive impairment. Although extensive research has delineated the complex mechanisms that culminate in neuronal damage and death, no effective treatments have been developed to interrupt these mechanisms. Of importance, many of these injury cascades are also active in the aging brain, where neurons and other cells are under persistent oxidative and inflammatory stress which eventually damages or kills the cells. In light of these similarities, it is reasonable to propose that the brain essentially ages the equivalent of several years within the few minutes taken to resuscitate a patient from cardiac arrest. Accordingly, cardiac arrest-resuscitation models may afford an opportunity to study the deleterious mechanisms underlying the aging process, on an accelerated time course. The aging and resuscitation fields both stand to gain pivotal insights from one another regarding the mechanisms of injury sustained during resuscitation from cardiac arrest and during aging. This synergism between the two fields could be harnessed to foster development of treatments to not only save lives but also to enhance the quality of life for the elderly.

  1. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Nutritional interventions protect against age-related deficits in behavior: from animals to humans

    USDA-ARS?s Scientific Manuscript database

    Aged rats show impaired performance on motor and cognitive tasks. Similar changes in behavior occur in humans with age, and the development of methods to retard or reverse these age-related neuronal and behavioral deficits could increase healthy aging and decrease health care costs. In the present s...

  3. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones.

    PubMed

    Highley, J Robin; Kirby, Janine; Jansweijer, Joeri A; Webb, Philip S; Hewamadduma, Channa A; Heath, Paul R; Higginbottom, Adrian; Raman, Rohini; Ferraiuolo, Laura; Cooper-Knock, Johnathan; McDermott, Christopher J; Wharton, Stephen B; Shaw, Pamela J; Ince, Paul G

    2014-10-01

    Loss of nuclear TDP-43 characterizes sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether (1) RNA splicing dysregulation is present in lower motor neurones in ALS and in a motor neurone-like cell model; and (2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurones obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. We found altered expression of spliceosome components in motor neurones and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43-depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, which were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurones, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. © 2014 British Neuropathological Society.

  4. Soy isoflavones improve spatial delayed matching-to-place performance and reduce cholinergic neuron loss in elderly male rats.

    PubMed

    Lee, Yoon-Bok; Lee, Hyong Joo; Won, Moo Ho; Hwang, In Koo; Kang, Tae-Cheon; Lee, Jae-Yong; Nam, Sang-Yoon; Kim, Kang-Sung; Kim, Eugene; Cheon, Sang-Hee; Sohn, Heon-Soo

    2004-07-01

    To investigate the protective activity of soy isoflavones on neurons, the effects of isoflavones on cholinergic enzyme activity, immunoreactivities of cholinergic enzyme, and delayed matching-to-place (DMP) performance were measured in normal elderly rats. Male Sprague-Dawley rats (n = 48; 10 mo old) were assigned to 3 groups: CD (control diet), ISO 0.3 (0.3 g/kg soy isoflavones diet), and ISO 1.2 (1.2 g/kg soy isoflavones diet). After 16 wk of consuming these diets, choline acetyltransferase (ChAT) activity in the ISO 0.3 group was greater in cortex and basal forebrain (BF; P < 0.05) than in controls. In BF, ChAT activity was also significantly greater in the ISO 1.2 group than in control rats. Acetylcholine esterase (AChE) activity in the ISO 0.3 group was significantly inhibited in cortex, BF, and hippocampus and in the ISO 1.2 group in cortex and hippocampus. Choline acetyltransferase immunoreactivity (ChAT-IR) in the ISO 1.2 group was significantly greater than in controls in the medial septum area. ChAT-IR in the ISO 0.3 and ISO 1.2 groups was significantly higher than in the CD group in the hippocampus CA1 area. Spatial DMP performance by the ISO 0.3 group showed significantly shorter swimming time than by the CD group. These findings show that soy isoflavones can influence the brain cholinergic system and reduce age-related neuron loss and cognition decline in male rats.

  5. Inherited Paediatric Motor Neuron Disorders: Beyond Spinal Muscular Atrophy

    PubMed Central

    Sampaio, Hugo; Mowat, David; Roscioli, Tony

    2017-01-01

    Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis. PMID:28634552

  6. RNA sequencing reveals pronounced changes in the noncoding transcriptome of aging synaptosomes.

    PubMed

    Chen, Bei Jun; Ueberham, Uwe; Mills, James D; Kirazov, Ludmil; Kirazov, Evgeni; Knobloch, Mara; Bochmann, Jana; Jendrek, Renate; Takenaka, Konii; Bliim, Nicola; Arendt, Thomas; Janitz, Michael

    2017-08-01

    Normal aging is associated with impairments in cognitive functions. These alterations are caused by diminutive changes in the biology of synapses, and ineffective neurotransmission, rather than loss of neurons. Hitherto, only a few studies, exploring molecular mechanisms of healthy brain aging in higher vertebrates, utilized synaptosomal fractions to survey local changes in aging-related transcriptome dynamics. Here we present, for the first time, a comparative analysis of the synaptosomes transcriptome in the aging mouse brain using RNA sequencing. Our results show changes in the expression of genes contributing to biological pathways related to neurite guidance, synaptosomal physiology, and RNA splicing. More intriguingly, we also discovered alterations in the expression of thousands of novel, unannotated lincRNAs during aging. Further, detailed characterization of the cleavage and polyadenylation factor I subunit 1 (Clp1) mRNA and protein expression indicates its increased expression in neuronal processes of hippocampal stratum radiatum in aging mice. Together, our study uncovers a new layer of transcriptional regulation which is targeted by aging within the local environment of interconnecting neuronal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Loss of Autophagy in Proopiomelanocortin Neurons Perturbs Axon Growth and Causes Metabolic Dysregulation

    PubMed Central

    Coupé, Bérengère; Ishii, Yuko; Dietrich, Marcelo O; Komatsu, Masaaki; Horvath, Tamas L.; Bouret, Sebastien G.

    2012-01-01

    Summary The hypothalamic melanocortin system, which includes neurons that produce proopiomelanocortin (POMC)-derived peptides, is a major negative regulator of energy balance. POMC neurons begin to acquire their unique properties during neonatal life. The formation of functional neural systems requires massive cytoplasmic remodeling that may involve autophagy, an important intracellular mechanism for the degradation of damaged proteins and organelles. Here we investigated the functional and structural effects of the deletion of an essential autophagy gene, Atg7, in POMC neurons. Lack of Atg7 in POMC neurons caused higher post-weaning body weight, increased adiposity, and glucose intolerance. These metabolic impairments were associated with an age-dependant accumulation of ubiquitin/p62-positive aggregates in the hypothalamus and a disruption in the maturation of POMC-containing axonal projections. Together, these data provide direct genetic evidence that Atg7 in POMC neurons is required for normal metabolic regulation and neural development, and they implicate hypothalamic autophagy deficiency in the pathogenesis of obesity. PMID:22285542

  8. Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer's disease

    PubMed Central

    Kar, Satyabrata; Slowikowski, Stephen P.M.; Westaway, David; Mount, Howard T.J.

    2004-01-01

    Alzheimer's disease is an age-related neurodegenerative disorder that is characterized by a progressive loss of memory and deterioration of higher cognitive functions. The brain of an individual with Alzheimer's disease exhibits extracellular plaques of aggregated β-amyloid protein (Aβ), intracellular neurofibrillary tangles that contain hyperphosphorylated tau protein and a profound loss of basal forebrain cholinergic neurons that innervate the hippocampus and the neocortex. Aβ accumulation may trigger or contribute to the process of neurodegeneration. However, the mechanisms whereby Aβ induces basal forebrain cholinergic cell loss and cognitive impairment remain obscure. Physiologically relevant concentrations of Aβ-related peptides have acute, negative effects on multiple aspects of acetylcholine (ACh) synthesis and release, without inducing toxicity. These data suggest a neuromodulatory influence of the peptides on central cholinergic functions. Long-term exposure to micromolar Aβ induces cholinergic cell toxicity, possibly via hyperphosphorylation of tau protein. Conversely, activation of selected cholinergic receptors has been shown to alter the processing of the amyloid precursor protein as well as phosphorylation of tau protein. A direct interaction between Aβ and nicotinic ACh receptors has also been demonstrated. This review addresses the role of Aβ-related peptides in regulating the function and survival of central cholinergic neurons and the relevance of these effects to cholinergic deficits in Alzheimer's disease. Understanding the functional interrelations between Aβ peptides, cholinergic neurons and tau phosphorylation will unravel the biologic events that precede neurodegeneration and may lead to the development of more effective pharmacotherapies for Alzheimer's disease. PMID:15644984

  9. Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance

    PubMed Central

    Jablonski, Angela M.; Lamitina, Todd; Liachko, Nicole F.; Sabatella, Mariangela; Lu, Jiayin; Zhang, Lei; Ostrow, Lyle W.; Gupta, Preetika; Wu, Chia-Yen; Doshi, Shachee; Mojsilovic-Petrovic, Jelena; Lans, Hannes; Wang, Jiou; Kraemer, Brian

    2015-01-01

    Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses the locomotor deficit of Caenorhabditis elegans engineered to express mutTDP-43 or mutSOD1 and also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and mutSOD1 abundance, solubility, and turnover in association with altering the ubiquitination status of these substrates. In human amyotrophic lateral sclerosis spinal cord, we find that RAD-23 abundance is increased and RAD-23 is mislocalized within motor neurons. We propose a novel pathophysiological function for RAD-23 in the stabilization of mutated proteins that cause neurodegeneration. SIGNIFICANCE STATEMENT In this work, we identify RAD-23, a component of the protein homeostasis network and nucleotide excision repair pathway, as a modifier of the toxicity of two disease-causing, misfolding-prone proteins, SOD1 and TDP-43. Reducing the abundance of RAD-23 accelerates the degradation of mutant SOD1 and TDP-43 and reduces the cellular content of the toxic species. The existence of endogenous proteins that act as “anti-chaperones” uncovers new and general targets for therapeutic intervention. PMID:26490867

  10. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications for age-related behavioral slowing

    PubMed Central

    Insel, Nathan; Patron, Lilian A.; Hoang, Lan T.; Nematollahi, Saman; Schimanski, Lesley A.; Lipa, Peter; Barnes, Carol A.

    2012-01-01

    Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30–100 Hz “gamma” oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40–70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials (LFPs), later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited inter-spike intervals consistent with a fast (70–100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the neurons’ average firing rates. We propose that an average lengthening of the cortical 15–25 ms gamma cycle is one factor contributing to age-related slowing, and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs. PMID:23152616

  11. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    PubMed

    Paul, Rajib; Choudhury, Amarendranath; Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat; Borah, Anupom

    2017-01-01

    Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  12. A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing.

    PubMed

    Vagnoni, Alessio; Bullock, Simon L

    2016-09-01

    There is growing interest in the link between axonal cargo transport and age-associated neuronal dysfunction. The study of axonal transport in neurons of adult animals requires intravital or ex vivo imaging approaches, which are laborious and expensive in vertebrate models. We describe simple, noninvasive procedures for imaging cargo motility within axons using sensory neurons of the translucent Drosophila wing. A key aspect is a method for mounting the intact fly that allows detailed imaging of transport in wing neurons. Coupled with existing genetic tools in Drosophila, this is a tractable system for studying axonal transport over the life span of an animal and thus for characterization of the relationship between cargo dynamics, neuronal aging and disease. Preparation of a sample for imaging takes ∼5 min, with transport typically filmed for 2-3 min per wing. We also document procedures for the quantification of transport parameters from the acquired images and describe how the protocol can be adapted to study other cell biological processes in aging neurons.

  13. Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans.

    PubMed

    Theofilas, Panos; Ehrenberg, Alexander J; Nguy, Austin; Thackrey, Julia M; Dunlop, Sara; Mejia, Maria B; Alho, Ana T; Paraizo Leite, Renata Elaine; Rodriguez, Roberta Diehl; Suemoto, Claudia K; Nascimento, Camila F; Chin, Marcus; Medina-Cleghorn, Daniel; Cuervo, Ana Maria; Arkin, Michelle; Seeley, William W; Miller, Bruce L; Nitrini, Ricardo; Pasqualucci, Carlos Augusto; Filho, Wilson Jacob; Rueb, Udo; Neuhaus, John; Heinsen, Helmut; Grinberg, Lea T

    2018-01-01

    Clarifying the mechanisms connecting neurofibrillary tangle (NFT) neurotoxicity to neuronal dysfunction in humans is likely to be pivotal for developing effective treatments for Alzheimer's disease (AD). To model the temporal progression of AD in humans, we used a collection of brains with controls and individuals from each Braak stage to quantitatively investigate the correlation between intraneuronal caspase activation or macroautophagy markers, NFT burden, and neuronal loss, in the dorsal raphe nucleus and locus coeruleus, the earliest vulnerable areas to NFT accumulation. We fit linear regressions with each count as outcomes, with Braak score and age as the predictors. In progressive Braak stages, intraneuronal active caspase-6 positivity increases both alone and overlapping with NFTs. Likewise, the proportion of NFT-bearing neurons showing autophagosomes increases. Overall, caspases may be involved in upstream cascades in AD and are associated with higher NFTs. Macroautophagy changes correlate with increasing NFT burden from early AD stages. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Genomic integrity and the ageing brain.

    PubMed

    Chow, Hei-man; Herrup, Karl

    2015-11-01

    DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.

  15. Comparing Volume Loss in Neuroanatomical Regions of Emotion versus Regions of Cognition in Healthy Aging.

    PubMed

    Pressman, Peter S; Noniyeva, Yuliana; Bott, Nick; Dutt, Shubir; Sturm, Virginia; Miller, Bruce L; Kramer, Joel H

    2016-01-01

    Many emotional functions are relatively preserved in aging despite declines in several cognitive domains and physical health. High levels of happiness exist even among centenarians. To address the hypothesis of whether preservation of emotional function in healthy aging may relate to different rates of age-related volume loss across brain structures, we performed two volumetric analyses on structural magnetic resonance neuroimaging of a group of healthy aging research participants using Freesurfer version 5.1. Volumes selected as supporting cognition included bilateral midfrontal and lateral frontal gyri, lateral parietal and temporal cortex, and medial temporal lobes. Volumes supporting emotion included bilateral amygdala, rostral anterior cingulate, insula, orbitofrontal cortex, and nucleus accumbens. A cross-sectional analysis was performed using structural MRI scans from 258 subjects. We found no difference in proportional change between groups. A longitudinal mixed effects model was used to compare regional changes over time in a subset of 84 subjects. Again, there was no difference in proportional change over time. While our results suggest that aging does not collectively target cognitive brain regions more than emotional regions, subgroup analysis suggests relative preservation of the anterior cingulate cortex, with greater volume loss in the nucleus accumbens. Implications of these relative rates of age-related volume loss in healthy aging are discussed and merit further research.

  16. The Earliest Stage of Cognitive Impairment in Transition From Normal Aging to Alzheimer Disease Is Marked By Prominent RNA Oxidation in Vulnerable Neurons

    PubMed Central

    Nunomura, Akihiko; Tamaoki, Toshio; Motohashi, Nobutaka; Nakamura, Masao; McKeel, Daniel W.; Tabaton, Massimo; Lee, Hyoung-gon; Smith, Mark A.; Perry, George; Zhu, Xiongwei

    2012-01-01

    Although neuronal RNA oxidation is a prominent and established feature in age-associated neurodegenerative disorders such as Alzheimer disease (AD), oxidative damage to neuronal RNA in aging and in the transitional stages from normal elderly to the onset of AD has not been fully examined. In this study, we used an in situ approach to identify an oxidized RNA nucleoside 8-hydroxyguanosine (8OHG) in the cerebral cortex of 65 individuals without dementia ranging in age from 0.3 to 86 years. We also examined brain samples from 20 elderly who were evaluated for their premortem clinical dementia rating score and postmortem brain pathological diagnoses to investigate preclinical AD and mild cognitive impairment. Relative density measurements of 8OHG-immunoreactivity revealed a statistically significant increase in neuronal RNA oxidation during aging in the hippocampus and the temporal neocortex. In subjects with mild cognitive impairment but not preclinical AD, neurons of the temporal cortex showed a higher burden of oxidized RNA compared to age-matched controls. These results indicate that although neuronal RNA oxidation fundamentally occurs as an age-associated phenomenon, more prominent RNA damage than in normal aging correlates with the onset of cognitive impairment in the prodromal stage of AD. PMID:22318126

  17. Brain Aging in the Oldest-Old

    PubMed Central

    von Gunten, A.; Ebbing, K.; Imhof, A.; Giannakopoulos, P.; Kövari, E.

    2010-01-01

    Nonagenarians and centenarians represent a quickly growing age group worldwide. In parallel, the prevalence of dementia increases substantially, but how to define dementia in this oldest-old age segment remains unclear. Although the idea that the risk of Alzheimer's disease (AD) decreases after age 90 has now been questioned, the oldest-old still represent a population relatively resistant to degenerative brain processes. Brain aging is characterised by the formation of neurofibrillary tangles (NFTs) and senile plaques (SPs) as well as neuronal and synaptic loss in both cognitively intact individuals and patients with AD. In nondemented cases NFTs are usually restricted to the hippocampal formation, whereas the progressive involvement of the association areas in the temporal neocortex parallels the development of overt clinical signs of dementia. In contrast, there is little correlation between the quantitative distribution of SP and AD severity. The pattern of lesion distribution and neuronal loss changes in extreme aging relative to the younger-old. In contrast to younger cases where dementia is mainly related to severe NFT formation within adjacent components of the medial and inferior aspects of the temporal cortex, oldest-old individuals display a preferential involvement of the anterior part of the CA1 field of the hippocampus whereas the inferior temporal and frontal association areas are relatively spared. This pattern suggests that both the extent of NFT development in the hippocampus as well as a displacement of subregional NFT distribution within the Cornu ammonis (CA) fields may be key determinants of dementia in the very old. Cortical association areas are relatively preserved. The progression of NFT formation across increasing cognitive impairment was significantly slower in nonagenarians and centenarians compared to younger cases in the CA1 field and entorhinal cortex. The total amount of amyloid and the neuronal loss in these regions were also

  18. Heptachlor induced nigral dopaminergic neuronal loss and Parkinsonism-like movement deficits in mice

    PubMed Central

    Hong, Seokheon; Hwang, Joohyun; Kim, Joo Yeon; Shin, Ki Soon; Kang, Shin Jung

    2014-01-01

    Epidemiological studies have suggested an association between pesticide exposure and Parkinson's disease. In this study, we examined the neurotoxicity of an organochlorine pesticide, heptachlor, in vitro and in vivo. In cultured SH-SY5Y cells, heptachlor induced mitochondria-mediated apoptosis. When injected into mice intraperitoneally on a subchronic schedule, heptachlor induced selective loss of dopaminergic neurons in the substantia nigra pars compacta. In addition, the heptachlor injection induced gliosis of microglia and astrocytes selectively in the ventral midbrain area. When the general locomotor activities were monitored by open field test, the heptachlor injection did not induce any gross motor dysfunction. However, the compound induced Parkinsonism-like movement deficits when assessed by a gait and a pole test. These results suggest that heptachlor can induce Parkinson's disease-related neurotoxicities in vivo. PMID:24577234

  19. Water-loss dehydration and aging.

    PubMed

    Hooper, Lee; Bunn, Diane; Jimoh, Florence O; Fairweather-Tait, Susan J

    2014-01-01

    This review defines water-loss and salt-loss dehydration. For older people serum osmolality appears the most appropriate gold standard for diagnosis of water-loss dehydration, but clear signs of early dehydration have not been developed. In older adults, lower muscle mass, reduced kidney function, physical and cognitive disabilities, blunted thirst, and polypharmacy all increase dehydration risk. Cross-sectional studies suggest a water-loss dehydration prevalence of 20-30% in this population. Water-loss dehydration is associated with higher mortality, morbidity and disability in older people, but evidence is still needed that this relationship is causal. There are a variety of ways we may be able to help older people reduce their risk of dehydration by recognising that they are not drinking enough, and being helped to drink more. Strategies to increase fluid intake in residential care homes include identifying and overcoming individual and institutional barriers to drinking, such as being worried about not reaching the toilet in time, physical inability to make or to reach drinks, and reduced social drinking and drinking pleasure. Research needs are discussed, some of which will be addressed by the FP7-funded NU-AGE (New dietary strategies addressing the specific needs of elderly population for a healthy ageing in Europe) trial. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Up-regulation of autophagy-related gene 5 (ATG5) protects dopaminergic neurons in a zebrafish model of Parkinson's disease.

    PubMed

    Hu, Zhan-Ying; Chen, Bo; Zhang, Jing-Pu; Ma, Yuan-Yuan

    2017-11-03

    Parkinson's disease (PD) is one of the most epidemic neurodegenerative diseases and is characterized by movement disorders arising from loss of midbrain dopaminergic (DA) neurons. Recently, the relationship between PD and autophagy has received considerable attention, but information about the mechanisms involved is lacking. Here, we report that autophagy-related gene 5 ( ATG5 ) is potentially important in protecting dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model in zebrafish. Using analyses of zebrafish swimming behavior, in situ hybridization, immunofluorescence, and expressions of genes and proteins related to PD and autophagy, we found that the ATG5 expression level was decreased and autophagy flux was blocked in this model. The ATG5 down-regulation led to the upgrade of PD-associated proteins, such as β-synuclein, Parkin, and PINK1, aggravation of MPTP-induced PD-mimicking pathological locomotor behavior, DA neuron loss labeled by tyrosine hydroxylase (TH) or dopamine transporter (DAT), and blocked autophagy flux in the zebrafish model. ATG5 overexpression alleviated or reversed these PD pathological features, rescued DA neuron cells as indicated by elevated TH/DAT levels, and restored autophagy flux. The role of ATG5 in protecting DA neurons was confirmed by expression of the human atg5 gene in the zebrafish model. Our findings reveal that ATG5 has a role in neuroprotection, and up-regulation of ATG5 may serve as a goal in the development of drugs for PD prevention and management. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Loss of 'complexity' and aging. Potential applications of fractals and chaos theory to senescence

    NASA Technical Reports Server (NTRS)

    Lipsitz, L. A.; Goldberger, A. L.

    1992-01-01

    The concept of "complexity," derived from the field of nonlinear dynamics, can be adapted to measure the output of physiologic processes that generate highly variable fluctuations resembling "chaos." We review data suggesting that physiologic aging is associated with a generalized loss of such complexity in the dynamics of healthy organ system function and hypothesize that such loss of complexity leads to an impaired ability to adapt to physiologic stress. This hypothesis is supported by observations showing an age-related loss of complex variability in multiple physiologic processes including cardiovascular control, pulsatile hormone release, and electroencephalographic potentials. If further research supports this hypothesis, measures of complexity based on chaos theory and the related geometric concept of fractals may provide new ways to monitor senescence and test the efficacy of specific interventions to modify the age-related decline in adaptive capacity.

  2. Age-related cognitive decline coincides with accelerated volume loss of the dorsal but not ventral hippocampus in mice.

    PubMed

    Reichel, J M; Bedenk, B T; Czisch, M; Wotjak, C T

    2017-01-01

    Even in the absence of neurodegenerative diseases, progressing age often coincides with cognitive decline and morphological changes. However, longitudinal studies that directly link these two processes are missing. In this proof-of-concept study we therefore performed repeated within-subject testing of healthy male R26R mice in a spatial learning task in combination with manganese-enhanced volumetric MRI analyses at the ages of 8, 16, and 24 months. We grouped the mice into good and poor performers (n = 6, each), based on their spatial learning abilities at the age of 24 months. Using this stratification, we failed to detect a priori volume differences, but observed a significant decrease in total hippocampal volume over time for both groups. Interestingly, this volume decrease was specific for the dorsal hippocampus and significantly accelerated in poor performers between 16 and 24 months of age. This is the first time that individual changes in hippocampal volume were traced alongside cognitive performance within the same subjects over 1½ years. Our study points to a causal link between volume loss of the dorsal hippocampus and cognitive impairments. In addition, it suggests accelerated degenerative processes rather than a priori volume differences as determining trajectories of age-related cognitive decline. Despite the relatively small sample sizes, the strong behavioral and moderate morphological alterations demonstrate the general feasibility of longitudinal studies of age-related decline in cognition and hippocampus integrity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Productivity loss at work; health-related and work-related factors.

    PubMed

    van den Heuvel, Swenne G; Geuskens, Goedele A; Hooftman, Wendela E; Koppes, Lando L J; van den Bossche, Seth N J

    2010-09-01

    Productivity loss is an increasing problem in an aging working population that is decreasing in numbers. The aim of this study is to identify work-related and health-related characteristics associated with productivity loss, due to either sickness absence or reduced performance at work. In this cross-sectional study, data of the Netherlands Working Conditions Survey of 2007 were used, which includes a national representative sample of 22,759 employees aged 15 to 64 years. Demographic characteristics, health-related and work-related factors were assessed with a questionnaire. Logistic regression analyses were carried out to study the relationship of work-related and health-related factors with low performance at work and sickness absence in the past 12 months. Poor general health, the number of longstanding health conditions, and most types of longstanding health conditions were associated with productivity loss. Health-related factors were in general stronger associated with sickness absence than with low performance at work. Performance: poor health OR 1.54 CI 1.38-1.71, >1 health conditions OR 1.21 CI 1.09-1.35; sickness absence: poor health OR 2.62 CI 2.33-2.93, >1 health conditions OR 2.47 CI 2.21-2.75. Of the different types of longstanding health conditions, only psychological complaints and to a small extent musculoskeletal symptoms, were associated with low performance (respectively OR 1.54 CI 1.27-1.87; OR 1.09 CI 1.00-1.18). Low performance at work was less likely among employees with high physically demanding work (shift work OR 0.70 CI 0.63-0.76, using force OR 0.78 CI 0.72-0.84, and repetitive movements OR 0.74 CI 0.70-0.79). Psychosocial factors were stronger associated with low performance at work than with sickness absence (performance: job autonomy OR 1.28 CI 1.21-1.37, job demands OR 1.23 CI 1.16-1.31, emotionally demanding work OR 1.73 CI 1.62-1.85; sickness absence: job autonomy ns, job demands OR 1.09 CI 1.03-1.17, emotionally demanding work OR

  4. Molecular changes in brain aging and Alzheimer’s disease are mirrored in experimentally silenced cortical neuron networks

    PubMed Central

    Gleichmann, Marc; Zhang, Yongqing; Wood, William H.; Becker, Kevin G.; Mughal, Mohamed R.; Pazin, Michael J.; van Praag, Henriette; Kobilo, Tali; Zonderman, Alan B.; Troncoso, Juan C.; Markesbery, William R.; Mattson, Mark P.

    2010-01-01

    Activity-dependent modulation of neuronal gene expression promotes neuronal survival and plasticity, and neuronal network activity is perturbed in aging and Alzheimer’s disease (AD). Here we show that cerebral cortical neurons respond to chronic suppression of excitability by downregulating the expression of genes and their encoded proteins involved in inhibitory transmission (GABAergic and somatostatin) and Ca2+ signaling; alterations in pathways involved in lipid metabolism and energy management are also features of silenced neuronal networks. A molecular fingerprint strikingly similar to that of diminished network activity occurs in the human brain during aging and in AD, and opposite changes occur in response to activation of N-methyl-D-aspartate (NMDA) and brain-derived neurotrophic factor (BDNF) receptors in cultured cortical neurons and in mice in response to an enriched environment or electroconvulsive shock. Our findings suggest that reduced inhibitory neurotransmission during aging and in AD may be the result of compensatory responses that, paradoxically, render the neurons vulnerable to Ca2+-mediated degeneration. PMID:20947216

  5. Graded Neuronal Modulations Related to Visual Spatial Attention.

    PubMed

    Mayo, J Patrick; Maunsell, John H R

    2016-05-11

    Studies of visual attention in monkeys typically measure neuronal activity when the stimulus event to be detected occurs at a cued location versus when it occurs at an uncued location. But this approach does not address how neuronal activity changes relative to conditions where attention is unconstrained by cueing. Human psychophysical studies have used neutral cueing conditions and found that neutrally cued behavioral performance is generally intermediate to that of cued and uncued conditions (Posner et al., 1978; Mangun and Hillyard, 1990; Montagna et al., 2009). To determine whether the neuronal correlates of visual attention during neutral cueing are similarly intermediate, we trained macaque monkeys to detect changes in stimulus orientation that were more likely to occur at one location (cued) than another (uncued), or were equally likely to occur at either stimulus location (neutral). Consistent with human studies, performance was best when the location was cued, intermediate when both locations were neutrally cued, and worst when the location was uncued. Neuronal modulations in visual area V4 were also graded as a function of cue validity and behavioral performance. By recording from both hemispheres simultaneously, we investigated the possibility of switching attention between stimulus locations during neutral cueing. The results failed to support a unitary "spotlight" of attention. Overall, our findings indicate that attention-related changes in V4 are graded to accommodate task demands. Studies of the neuronal correlates of attention in monkeys typically use visual cues to manipulate where attention is focused ("cued" vs "uncued"). Human psychophysical studies often also include neutrally cued trials to study how attention naturally varies between points of interest. But the neuronal correlates of this neutral condition are unclear. We measured behavioral performance and neuronal activity in cued, uncued, and neutrally cued blocks of trials. Behavioral

  6. Graded Neuronal Modulations Related to Visual Spatial Attention

    PubMed Central

    Maunsell, John H. R.

    2016-01-01

    Studies of visual attention in monkeys typically measure neuronal activity when the stimulus event to be detected occurs at a cued location versus when it occurs at an uncued location. But this approach does not address how neuronal activity changes relative to conditions where attention is unconstrained by cueing. Human psychophysical studies have used neutral cueing conditions and found that neutrally cued behavioral performance is generally intermediate to that of cued and uncued conditions (Posner et al., 1978; Mangun and Hillyard, 1990; Montagna et al., 2009). To determine whether the neuronal correlates of visual attention during neutral cueing are similarly intermediate, we trained macaque monkeys to detect changes in stimulus orientation that were more likely to occur at one location (cued) than another (uncued), or were equally likely to occur at either stimulus location (neutral). Consistent with human studies, performance was best when the location was cued, intermediate when both locations were neutrally cued, and worst when the location was uncued. Neuronal modulations in visual area V4 were also graded as a function of cue validity and behavioral performance. By recording from both hemispheres simultaneously, we investigated the possibility of switching attention between stimulus locations during neutral cueing. The results failed to support a unitary “spotlight” of attention. Overall, our findings indicate that attention-related changes in V4 are graded to accommodate task demands. SIGNIFICANCE STATEMENT Studies of the neuronal correlates of attention in monkeys typically use visual cues to manipulate where attention is focused (“cued” vs “uncued”). Human psychophysical studies often also include neutrally cued trials to study how attention naturally varies between points of interest. But the neuronal correlates of this neutral condition are unclear. We measured behavioral performance and neuronal activity in cued, uncued, and neutrally

  7. Age-related proximal femur bone mineral loss in South Indian women: a dual energy X-ray absorptiometry study.

    PubMed

    Anburajan, M; Rethinasabapathi, C; Korath, M P; Ponnappa, B G; Kumar, K S; Panicker, T M; Govindan, A; Jagadeesan, G N

    2001-04-01

    i) To collect normative data for proximal femur bone mineral density (BMD) in South Indian women using dual energy X-ray absorptiometry (DXA) and ii) to study the rate and significance of hip bone mineral loss with advancing age in this population. Forty five women, whose age ranged from 16 to 84 years were studied. This sample was drawn randomly from general medical practice at KJ Hospital, Chennai, South India during November, 1997 to April, 1998. Of these 45 cases, 21 were pre-menopausal (mean +/- SD age = 30.9+/-8.8 years) and 24 post-menopausal (mean +/- SD age = 62.1+/-11.0 years). Subjects with secondary bone diseases were excluded. Also excluded were those taking any drugs known to affect calcium metabolism e.g., thiazide diuretics, oestrogen and calcium. Subjects were divided into seven decadal age groups from 15-24 years to 75-84 years. BMD of the right proximal femur was evaluated using a QDR-1000 DXA bone densitometer (Hologic Inc., Waltham, Massachusetts, USA). Data analysis was done with SPSS/PC statistical software package. Linear regression analysis showed significant (p < 0.001) negative correlations between all hip BMD variables at different regions of interest and patient's age. Relative to that at 30 years of age, rates of BMD loss in the neck of femur, trochanter, intertrochanter, total hip and Ward's triangle were 0.68%, 0.65%, 0.58%, 0.61% and 1.05% per annum respectively. Over the age of 65 years, the above mentioned regions BMD decreased by 0.91%, 0.84%, 0.72%, 0.78% and 1.66% per annum respectively. Normative data for proximal femur BMD in South India women have been evaluated and it may prove useful for diagnosing osteoporosis in the women of South India.

  8. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson’s disease: Involvement of mitochondrial dysfunctions and oxidative stress

    PubMed Central

    Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat

    2017-01-01

    Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer’s disease while its role in the occurrence of Parkinson’s disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia. PMID:28170429

  9. Dendrite regeneration of adult Drosophila sensory neurons diminishes with aging and is inhibited by epidermal-derived matrix metalloproteinase 2.

    PubMed

    DeVault, Laura; Li, Tun; Izabel, Sarah; Thompson-Peer, Katherine L; Jan, Lily Yeh; Jan, Yuh Nung

    2018-03-01

    Dendrites possess distinct structural and functional properties that enable neurons to receive information from the environment as well as other neurons. Despite their key role in neuronal function, current understanding of the ability of neurons to regenerate dendrites is lacking. This study characterizes the structural and functional capacity for dendrite regeneration in vivo in adult animals and examines the effect of neuronal maturation on dendrite regeneration. We focused on the class IV dendritic arborization (c4da) neuron of the Drosophila sensory system, which has a dendritic arbor that undergoes dramatic remodeling during the first 3 d of adult life and then maintains a relatively stable morphology thereafter. Using a laser severing paradigm, we monitored regeneration after acute and spatially restricted injury. We found that the capacity for regeneration was present in adult neurons but diminished as the animal aged. Regenerated dendrites recovered receptive function. Furthermore, we found that the regenerated dendrites show preferential alignment with the extracellular matrix (ECM). Finally, inhibition of ECM degradation by inhibition of matrix metalloproteinase 2 (Mmp2) to preserve the extracellular environment characteristics of young adults led to increased dendrite regeneration. These results demonstrate that dendrites retain regenerative potential throughout adulthood and that regenerative capacity decreases with aging. © 2018 DeVault et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats.

    PubMed

    Cho, H J; Sajja, V S S S; Vandevord, P J; Lee, Y W

    2013-12-03

    Molecular and cellular mechanisms of brain injury after exposure to blast overpressure (BOP) are not clearly known. The present study hypothesizes that pro-oxidative and pro-inflammatory pathways in the brain may be responsible for neuronal loss and behavioral deficits following BOP exposure. Male Sprague-Dawley rats were anesthetized and exposed to calibrated BOP of 129.23±3.01kPa while controls received only anesthesia. In situ dihydroethidium fluorescence staining revealed that BOP significantly increased the production of reactive oxygen species in the brain. In addition, real-time reverse transcriptase-polymerase chain reaction, immunofluorescence staining and enzyme-linked immunosorbent assay demonstrated a significant up-regulation of mRNA and protein expressions of pro-inflammatory mediators, such as interferon-γ and monocyte chemoattractant protein-1, in brains collected from BOP-exposed animals compared with the controls. Furthermore, immunoreactivity of neuronal nuclei in brains indicated that fewer neurons were present following BOP exposure. Moreover, novel object recognition paradigm showed a significant impairment in the short-term memory at 2weeks following BOP exposure. These results suggest that pro-oxidative and pro-inflammatory environments in the brain could play a potential role in BOP-induced neuronal loss and behavioral deficits. It may provide a foundation for defining a molecular and cellular basis of the pathophysiology of blast-induced neurotrauma (BINT). It will also contribute to the development of new therapeutic approaches selectively targeting these pathways, which have great potential in the diagnosis and therapy of BINT. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Progressive polyuria without vasopressin neuron loss in a mouse model for familial neurohypophysial diabetes insipidus.

    PubMed

    Hayashi, Masayuki; Arima, Hiroshi; Ozaki, Noriyuki; Morishita, Yoshiaki; Hiroi, Maiko; Ozaki, Nobuaki; Nagasaki, Hiroshi; Kinoshita, Noriaki; Ueda, Masatsugu; Shiota, Akira; Oiso, Yutaka

    2009-05-01

    Familial neurohypophysial diabetes insipidus (FNDI), an autosomal dominant disorder, is mostly caused by mutations in the gene of neurophysin II (NPII), the carrier protein of arginine vasopressin (AVP). Previous studies suggest that loss of AVP neurons might be the cause of polyuria in FNDI. Here we analyzed knockin mice expressing mutant NPII that causes FNDI in humans. The heterozygous mice manifested progressive polyuria as do patients with FNDI. Immunohistochemical analyses revealed that inclusion bodies that were not immunostained with antibodies for mutant NPII, normal NPII, or AVP were present in the AVP cells in the supraoptic nucleus (SON), and that the size of inclusion bodies gradually increased in parallel with the increases in urine volume. Electron microscopic analyses showed that aggregates existed in the endoplasmic reticulum (ER) as well as in the nucleus of AVP neurons in 1-mo-old heterozygous mice. At 12 mo, dilated ER filled with aggregates occupied the cytoplasm of AVP cells, while few aggregates were found in the nucleus. Analyses with in situ hybridization revealed that expression of AVP mRNA was significantly decreased in the SON in the heterozygous mice compared with that in wild-type mice. Counting cells expressing AVP mRNA in the SON indicated that polyuria had progressed substantially in the absence of neuronal loss. These data suggest that cell death is not the primary cause of polyuria in FNDI, and that the aggregates accumulated in the ER might be involved in the dysfunction of AVP neurons that lead to the progressive polyuria.

  12. Reduced insulin signaling maintains electrical transmission in a neural circuit in aging flies

    PubMed Central

    McGourty, Kieran; Allen, Marcus J.; Madem, Sirisha Kudumala; Adcott, Jennifer; Kerr, Fiona; Wong, Chi Tung; Vincent, Alec; Godenschwege, Tanja; Boucrot, Emmanuel; Partridge, Linda

    2017-01-01

    Lowered insulin/insulin-like growth factor (IGF) signaling (IIS) can extend healthy lifespan in worms, flies, and mice, but it can also have adverse effects (the “insulin paradox”). Chronic, moderately lowered IIS rescues age-related decline in neurotransmission through the Drosophila giant fiber system (GFS), a simple escape response neuronal circuit, by increasing targeting of the gap junctional protein innexin shaking-B to gap junctions (GJs). Endosomal recycling of GJs was also stimulated in cultured human cells when IIS was reduced. Furthermore, increasing the activity of the recycling small guanosine triphosphatases (GTPases) Rab4 or Rab11 was sufficient to maintain GJs upon elevated IIS in cultured human cells and in flies, and to rescue age-related loss of GJs and of GFS function. Lowered IIS thus elevates endosomal recycling of GJs in neurons and other cell types, pointing to a cellular mechanism for therapeutic intervention into aging-related neuronal disorders. PMID:28902870

  13. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging

    PubMed Central

    Zecca, Luigi; Stroppolo, Antonella; Gatti, Alberto; Tampellini, Davide; Toscani, Marco; Gallorini, Mario; Giaveri, Giuseppe; Arosio, Paolo; Santambrogio, Paolo; Fariello, Ruggero G.; Karatekin, Erdem; Kleinman, Mark H.; Turro, Nicholas; Hornykiewicz, Oleh; Zucca, Fabio A.

    2004-01-01

    In this study, a comparative analysis of metal-related neuronal vulnerability was performed in two brainstem nuclei, the locus coeruleus (LC) and substantia nigra (SN), known targets of the etiological noxae in Parkinson's disease and related disorders. LC and SN pars compacta neurons both degenerate in Parkinson's disease and other Parkinsonisms; however, LC neurons are comparatively less affected and with a variable degree of involvement. In this study, iron, copper, and their major molecular forms like ferritins, ceruloplasmin, neuromelanin (NM), manganese-superoxide dismutase (SOD), and copper/zinc-SOD were measured in LC and SN of normal subjects at different ages. Iron content in LC was much lower than that in SN, and the ratio heavy-chain ferritin/iron in LC was higher than in the SN. The NM concentration was similar in LC and SN, but the iron content in NM of LC was much lower than SN. In both regions, heavy- and light-chain ferritins were present only in glia and were not detectable in neurons. These data suggest that in LC neurons, the iron mobilization and toxicity is lower than that in SN and is efficiently buffered by NM. The bigger damage occurring in SN could be related to the higher content of iron. Ferritins accomplish the same function of buffering iron in glial cells. Ceruloplasmin levels were similar in LC and SN, but copper was higher in LC. However, the copper content in NM of LC was higher than that of SN, indicating a higher copper mobilization in LC neurons. Manganese-SOD and copper/zinc-SOD had similar age trend in LC and SN. These results may explain at least one of the reasons underlying lower vulnerability of LC compared to SN in Parkinsonian syndromes. PMID:15210960

  14. Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys.

    PubMed

    Kanaan, Nicholas M; Kordower, Jeffrey H; Collier, Timothy J

    2010-06-01

    Aging remains the strongest risk factor for developing Parkinson's disease (PD), and there is selective vulnerability in midbrain dopamine (DA) neuron degeneration in PD. By tracking normal aging-related changes with an emphasis on regional specificity, factors involved in selective vulnerability and resistance to degeneration can be studied. Towards this end, we sought to determine whether age-related changes in microglia and astrocytes in rhesus monkeys are region-specific, suggestive of involvement in regional differences in vulnerability to degeneration that may be relevant to PD pathogenesis. Gliosis in midbrain DA subregions was measured by estimating glia number using unbiased stereology, assessing fluorescence intensity for proteins upregulated during activation, and rating morphology. With normal aging, microglia exhibited increased staining intensity and a shift to more activated morphologies preferentially in the vulnerable substantia nigra-ventral tier (vtSN). Astrocytes did not exhibit age-related changes consistent with an involvement in regional vulnerability in any measure. Our results suggest advancing age is associated with chronic mild inflammation in the vtSN, which may render these DA neurons more vulnerable to degeneration. Copyright 2008 Elsevier Inc. All rights reserved.

  15. The Neuronal Ceroid-Lipofuscinoses

    ERIC Educational Resources Information Center

    Bennett, Michael J.; Rakheja, Dinesh

    2013-01-01

    The neuronal ceroid-lipofuscinoses (NCL's, Batten disease) represent a group of severe neurodegenerative diseases, which mostly present in childhood. The phenotypes are similar and include visual loss, seizures, loss of motor and cognitive function, and early death. At autopsy, there is massive neuronal loss with characteristic storage in…

  16. Morphological Characteristics of Motor Neurons Do Not Determine Their Relative Susceptibility to Degeneration in a Mouse Model of Severe Spinal Muscular Atrophy

    PubMed Central

    Mutsaers, Chantal A.; Thomson, Derek; Hamilton, Gillian; Parson, Simon H.; Gillingwater, Thomas H.

    2012-01-01

    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice – including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA. PMID:23285108

  17. An Evolutionarily Conserved Role of Presenilin in Neuronal Protection in the Aging Drosophila Brain.

    PubMed

    Kang, Jongkyun; Shin, Sarah; Perrimon, Norbert; Shen, Jie

    2017-07-01

    Mutations in the Presenilin genes are the major genetic cause of Alzheimer's disease. Presenilin and Nicastrin are essential components of γ-secretase, a multi-subunit protease that cleaves Type I transmembrane proteins. Genetic studies in mice previously demonstrated that conditional inactivation of Presenilin or Nicastrin in excitatory neurons of the postnatal forebrain results in memory deficits, synaptic impairment, and age-dependent neurodegeneration. The roles of Drosophila Presenilin ( Psn ) and Nicastrin ( Nct ) in the adult fly brain, however, are unknown. To knockdown (KD) Psn or Nct selectively in neurons of the adult brain, we generated multiple shRNA lines. Using a ubiquitous driver, these shRNA lines resulted in 80-90% reduction of mRNA and pupal lethality-a phenotype that is shared with Psn and Nct mutants carrying nonsense mutations. Furthermore, expression of these shRNAs in the wing disc caused notching wing phenotypes, which are also shared with Psn and Nct mutants. Similar to Nct , neuron-specific Psn KD using two independent shRNA lines led to early mortality and rough eye phenotypes, which were rescued by a fly Psn transgene. Interestingly, conditional KD (cKD) of Psn or Nct in adult neurons using the elav-Gal4 and tubulin-Gal80 ts system caused shortened lifespan, climbing defects, increases in apoptosis, and age-dependent neurodegeneration. Together, these findings demonstrate that, similar to their mammalian counterparts, Drosophila Psn and Nct are required for neuronal survival during aging and normal lifespan, highlighting an evolutionarily conserved role of Presenilin in neuronal protection in the aging brain. Copyright © 2017 by the Genetics Society of America.

  18. Berry fruit differentially improves age-related decrements in behavior based on baseline status

    USDA-ARS?s Scientific Manuscript database

    Aging and neurodegenerative diseases are thought to be the results of prolonged effects of oxidative stress and inflammation. Previously, we have shown that daily supplementation of berry fruits, such as blueberry or raspberry, was able to reverse age-related deficits in behavioral and neuronal func...

  19. The Difference that Age Makes: Cultural Factors that Shape Older Adults' Responses to Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Mogk, Marja

    2008-01-01

    This article suggests that approaching vision loss from age-related macular degeneration from a sociocultural perspective, specifically considering perceptions of aging, blindness, disability, and generational viewpoints and norms, may be critical to understanding older adults' responses to vision loss and visual rehabilitation.

  20. Auditory Perceptual Learning in Adults with and without Age-Related Hearing Loss

    PubMed Central

    Karawani, Hanin; Bitan, Tali; Attias, Joseph; Banai, Karen

    2016-01-01

    Introduction : Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL). Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL. Methods : Fifty-six listeners (60–72 y/o), 35 participants with ARHL, and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training, and no-training group). Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1) Speech-in-noise, (2) time compressed speech, and (3) competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results : Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions : ARHL did not preclude auditory perceptual learning but there was little generalization to

  1. The role of hydrogen sulfide in aging and age-related pathologies.

    PubMed

    Perridon, Bernard W; Leuvenink, Henri G D; Hillebrands, Jan-Luuk; van Goor, Harry; Bos, Eelke M

    2016-09-27

    When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the 'hallmarks of aging'. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H 2 S) in the regulation of aging. Nowadays, H 2 S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H 2 S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies.

  2. Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism.

    PubMed

    Wu, Hongmei; Wang, Xuelai; Gao, Jingquan; Liang, Shuang; Hao, Yanqiu; Sun, Caihong; Xia, Wei; Cao, Yonggang; Wu, Lijie

    2017-03-15

    To investigate the effect of FTY720 on the valproic acid (VPA) rat model of autism. As an animal model of autism, we used intraperitoneal injection of VPA on embryonic day 12.5 in Wistar rats. The pups were given FTY720 orally at doses of 0.25, 0.5 and 1mg/kg daily from postnatal day 15 to 35. Social behavior, spatial learning and memory were assessed at the end of FTY720 treatment. The histological change, oxidative stress, neuroinflammatory responses, and apoptosis-related proteins in the hippocampus were evaluated. FTY720 (1mg/kg) administration to VPA-exposed rats (1) improved social behavior, spatial learning and memory impairment; (2) resulted in a reduction in neuronal loss and apoptosis of pyramidal cells in hippocampal CA1 regions; (3) inhibited activation of microglial cells, in turn lowering the level of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-6 in the hippocampus; (4) changed Malondialdehyde (MDA) levels, Glutathione (GSH) levels, superoxide dismutase (SOD) activity and Glutathione Peroxidase (GSH-Px) activity in the hippocampus; (6) inhibited the elevated Bax and caspase-3 protein levels and enhanced the relative expression level of Bcl-2 in the hippocampus; and (7) increased phospho-Ca2+/calmodulin-dependent protein kinase II (p-CaMKII), phospho-cAMP-response element binding protein (p-CREB) and Brain Derived Neurotrophic Factor (BDNF) protein expression in the hippocampus. FTY720 rescues social deficit, spatial learning and memory impairment in VPA-exposed rats. FTY720 exerts both a direct protection for neurons and an indirect modulation of inflammation-mediated neuron loss as a possible mechanism of neuroprotection. Copyright © 2017. Published by Elsevier Inc.

  3. Hilar Interneuron Vulnerability Distinguishes Aged Rats With Memory Impairment

    PubMed Central

    Spiegel, Amy M.; Koh, Ming Teng; Vogt, Nicholas M.; Rapp, Peter R.; Gallagher, Michela

    2016-01-01

    Hippocampal interneuron populations are reportedly vulnerable to normal aging. The relationship between interneuron network integrity and age-related memory impairment, however, has not been tested directly. That question was addressed in the present study using a well-characterized model in which outbred, aged, male Long-Evans rats exhibit a spectrum of individual differences in hippocampal-dependent memory. Selected interneuron populations in the hippocampus were visualized for stereological quantification with a panel of immunocytochemical markers, including glutamic acid decarboxylase-67 (GAD67), somatostatin, and neuropeptide Y. The overall pattern of results was that, although the numbers of GAD67- and somatostatin-positive interneurons declined with age across multiple fields of the hippocampus, alterations specifically related to the cognitive outcome of aging were observed exclusively in the hilus of the dentate gyrus. Because the total number of NeuN-immunoreactive hilar neurons was unaffected, the decline observed with other markers likely reflects a loss of target protein rather than neuron death. In support of that interpretation, treatment with the atypical antiepileptic levetiracetam at a low dose shown previously to improve behavioral performance fully restored hilar SOM expression in aged, memory-impaired rats. Age-related decreases in GAD67- and somatostatin-immunoreactive neuron number beyond the hilus were regionally selective and spared the CA1 field of the hippocampus entirely. Together these findings confirm the vulnerability of hippocampal interneurons to normal aging and highlight that the integrity of a specific subpopulation in the hilus is coupled with age-related memory impairment. PMID:23749483

  4. Neuroprotective role of chrysin in attenuating loss of dopaminergic neurons and improving motor, learning and memory functions in rats.

    PubMed

    Ahmed, Muhammad Rashid; Shaikh, Masood Ahmed; Ul Haq, Syed Hafiz Imran; Nazir, Shakila

    2018-01-01

    Selective degeneration of dopaminergic neurons is the pathological hallmark of Parkinson disease (PD). Enhanced oxidative stress, lipid peroxidation and susceptibility of dopaminergic neurons to apoptotic cellular death are the leading pathogenetic mechanisms. Chrysin is an active flavonoid. Its neuroprotective effects have been reported. This study examined the neuroprotective effects of chrysin in ameliorating the dopaminergic neuronal degeneration and motor behavioral changes in rotenone model of PD. Thirty Sprague-Dawley rats were assigned into three groups: Control, rotenone-treated, and rotenone+chrysin treated groups. Rotenone was given at a dose of 3 mg/kg daily intraperitoneally, and chrysin was given at a dose of 50 mg/kg daily intraperitoneally for 4 weeks. Using five neurobehavioral assessment tests, evaluation was done weekly to record the motor behavioral changes. After 4 weeks, animals were sacrificed, brains were removed, and section from striatum and substantia nigra were stained using hematoxylin and eosin and cresyl violet stains. Immunohistochemical sections were also prepared using anti-tyrosine hydroxylase (TH) antibody. Rotenone-induced Parkinson like changes were evident from deteriorating motor behavior. These animals showed extensive loss of dopaminergic neurons, decreased immunoreactivity against anti-TH antibodies and number of TH positive dopaminergic neurons in the nigrostriatal region. Chrysin treated animals showed a significant reduction in motor behavioral changes, degeneration and loss of nigrostriatal dopaminergic neurons and increased immunoreactivity to anti-TH antibody. This study concludes that chrysin confers neuroprotection in rat model of PD. It attenuates the degeneration of the nigrostriatal dopaminergic neurons and motor behavioral abnormalities.

  5. The role of hydrogen sulfide in aging and age-related pathologies

    PubMed Central

    Perridon, Bernard W.; Leuvenink, Henri G.D.; Hillebrands, Jan-Luuk; van Goor, Harry; Bos, Eelke M.

    2016-01-01

    When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the ‘hallmarks of aging’. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H2S) in the regulation of aging. Nowadays, H2S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H2S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies. PMID:27683311

  6. NaHS Protects against the Impairments Induced by Oxygen-Glucose Deprivation in Different Ages of Primary Hippocampal Neurons

    PubMed Central

    Yu, Qian; Wang, Binrong; Zhao, Tianzhi; Zhang, Xiangnan; Tao, Lei; Shi, Jinshan; Sun, Xude; Ding, Qian

    2017-01-01

    Brain ischemia leads to poor oxygen supply, and is one of the leading causes of brain damage and/or death. Neuroprotective agents are thus in great need for treatment purpose. Using both young and aged primary cultured hippocampal neurons as in vitro models, we investigated the effect of sodium hydrosulfide (NaHS), an exogenous donor of hydrogen sulfide, on oxygen-glucose deprivation (OGD) damaged neurons that mimick focal cerebral ischemia/reperfusion (I/R) induced brain injury. NaHS treatment (250 μM) protected both young and aged hippocampal neurons, as indicated by restoring number of primary dendrites by 43.9 and 68.7%, number of dendritic end tips by 59.8 and 101.1%, neurite length by 36.8 and 66.7%, and spine density by 38.0 and 58.5% in the OGD-damaged young and aged neurons, respectively. NaHS treatment inhibited growth-associated protein 43 downregulation, oxidative stress in both young and aged hippocampal neurons following OGD damage. Further studies revealed that NaHS treatment could restore ERK1/2 activation, which was inhibited by OGD-induced protein phosphatase 2 (PP2A) upregulation. Our results demonstrated that NaHS has potent protective effects against neuron injury induced by OGD in both young and aged hippocampal neurons. PMID:28326019

  7. Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease.

    PubMed

    Le Douaron, Gael; Schmidt, Fanny; Amar, Majid; Kadar, Hanane; Debortoli, Lucila; Latini, Alexandra; Séon-Méniel, Blandine; Ferrié, Laurent; Michel, Patrick Pierre; Touboul, David; Brunelle, Alain; Raisman-Vozari, Rita; Figadère, Bruno

    2015-01-07

    Parkinson disease is a neurodegenerative disorder of aging, characterized by disabling motor symptoms resulting from the loss of midbrain dopaminergic neurons and the decrease of dopamine in the striatum. Current therapies are directed at treating the symptoms but there is presently no cure for the disease. In order to discover neuroprotective compounds with a therapeutical potential, our research team has established original and highly regioselective methods for the synthesis of 2,3-disubstituted 6-aminoquinoxalines. To evaluate the neuroprotective activity of these molecules, we used midbrain cultures and various experimental conditions that promote dopaminergic cell loss. Among a series of 11 molecules, only compound MPAQ (2-methyl-3-phenyl-6-aminoquinoxaline) afforded substantial protection in a paradigm where dopaminergic neurons die spontaneously and progressively as they mature. Prediction of blood-brain barrier permeation by Quantitative Structure-Activity Relationship studies (QSARs) suggested that MPAQ was able to reach the brain parenchyma with sufficient efficacy. HPLC-MS/MS quantification in brain homogenates and MALDI-TOF mass spectrometry imaging on brain tissue sections performed in MPAQ-treated mice allowed us to confirm this prediction and to demonstrate, by MALDI-TOF mass spectrometry imaging, that MPAQ was localized in areas containing vulnerable neurons and/or their terminals. Of interest, MPAQ also rescued dopaminergic neurons, which (i) acquired dependency on the trophic peptide GDNF for their survival or (ii) underwent oxidative stress-mediated insults mediated by catalytically active iron. In summary, MPAQ possesses an interesting pharmacological profile as it penetrates the brain parenchyma and counteracts mechanisms possibly contributive to dopaminergic cell death in Parkinson disease. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Physiological neuronal decline in healthy aging human brain - An in vivo study with MRI and short echo-time whole-brain (1)H MR spectroscopic imaging.

    PubMed

    Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich

    2016-08-15

    Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Shortening-induced torque depression in old men: implications for age-related power loss.

    PubMed

    Power, Geoffrey A; Makrakos, Demetri P; Stevens, Daniel E; Herzog, Walter; Rice, Charles L; Vandervoort, Anthony A

    2014-09-01

    Following active muscle shortening, the steady-state isometric torque at the final muscle length is lower than the steady-state torque obtained for a purely isometric contraction at that same final muscle length. This well-documented property of skeletal muscle is termed shortening-induced torque depression (TD). Despite many investigations into the mechanisms of weakness and power loss in old age, the influence of muscle shortening on the history dependence of isometric torque production remains to be elucidated. Thus, it is unclear whether older adults are disadvantaged for torque and power production following a dynamic shortening contraction. The purpose of this study was to evaluate shortening-induced TD in older adults, and to determine whether shortening-induced TD is related to power loss. Maximal voluntary isometric dorsiflexion contractions (MVC; 10s) in 8 young (25.5±3.7years) and 9 old (76.1±5.4years) men were performed on a HUMAC NORM dynamometer as a reference, and then again following an active shortening of 40° joint excursion (40°PF-0°PF) at angular velocities of 15°/s and 120°/s. Work and instantaneous power were derived during shortening. Shortening-induced TD was calculated and expressed as a percentage by determining the mean torque value over 1s during the isometric steady state of the MVC following shortening, divided by the mean torque value for the same 1s time period during the isometric reference MVC. To assess muscle activation, electromyography (root mean square; EMGRMS) of the tibialis anterior (TA) and soleus (SOL) was calculated at identical time points used in assessing shortening-induced TD, and voluntary activation (VA) was assessed using the interpolated twitch technique. Old were 18% weaker than young for MVC, and ~40% less powerful for 15°/s and 120°/s of shortening. Old produced 37% and 21% less work for 15°/s and 120°/s than young, respectively. Furthermore, old experienced 60% and 70% greater shortening-induced TD

  10. Loss of GCN5 leads to increased neuronal apoptosis by upregulating E2F1- and Egr-1-dependent BH3-only protein Bim.

    PubMed

    Wu, Yanna; Ma, Shanshan; Xia, Yong; Lu, Yangpeng; Xiao, Shiyin; Cao, Yali; Zhuang, Sidian; Tan, Xiangpeng; Fu, Qiang; Xie, Longchang; Li, Zhiming; Yuan, Zhongmin

    2017-01-26

    Cellular acetylation homeostasis is a kinetic balance precisely controlled by histone acetyl-transferase (HAT) and histone deacetylase (HDAC) activities. The loss of the counterbalancing function of basal HAT activity alters the precious HAT:HDAC balance towards enhanced histone deacetylation, resulting in a loss of acetylation homeostasis, which is closely associated with neuronal apoptosis. However, the critical HAT member whose activity loss contributes to neuronal apoptosis remains to be identified. In this study, we found that inactivation of GCN5 by either pharmacological inhibitors, such as CPTH2 and MB-3, or by inactivation with siRNAs leads to a typical apoptosis in cultured cerebellar granule neurons. Mechanistically, the BH3-only protein Bim is transcriptionally upregulated by activated Egr-1 and E2F1 and mediates apoptosis following GCN5 inhibition. Furthermore, in the activity withdrawal- or glutamate-evoked neuronal apoptosis models, GCN5 loses its activity, in contrast to Bim induction. Adenovirus-mediated overexpression of GCN5 suppresses Bim induction and apoptosis. Interestingly, the loss of GCN5 activity and the induction of Egr-1, E2F1 and Bim are involved in the early brain injury (EBI) following subarachnoid haemorrhage (SAH) in rats. HDAC inhibition not only significantly rescues Bim expression and apoptosis induced by either potassium deprivation or GCN5 inactivation but also ameliorates these events and EBI in SAH rats. Taken together, our results highlight a new mechanism by which the loss of GCN5 activity promotes neuronal apoptosis through the transcriptional upregulation of Bim, which is probably a critical event in triggering neuronal death when cellular acetylation homeostasis is impaired.

  11. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex

    PubMed Central

    de Vivo, Luisa; Nelson, Aaron B.; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-01-01

    Study Objective: The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Methods: Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6–8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Results: Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Conclusions: Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. Citation: de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of sleep affects the ultrastructure of pyramidal neurons in the adolescent mouse frontal cortex. SLEEP 2016;39(4):861–874. PMID:26715225

  12. Senile amyloidosis and neuron binding antibody in the aging Syrian hamster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumenthal, H.T.; Musacchia, X.J.

    1985-05-01

    The effects of age, sex, and irradiation on the genesis of amyloidosis, neuron-binding antibody (NBA), and the concomitant appearance of these two phenomena were studied in a colony of Syrian hamsters. In nonirradiated controls amyloidosis increased in prevalence with age after 12 months, and prevalence was higher in females than in males. Irradiation had the effect of advancing the appearance of amyloidosis to the 7-12 months group but did not intensify the amyloidotic process. IgG binding to the nucleus or cytoplasm of neurons was rare, and, despite the fact that IgM and IgA binding to these structures was present inmore » about one-third of the animals, there was neither an aging nor an irradiation effect. The only statistically significant findings with respect to the concomitant occurrence of amyloid and NBA were negative correlations between nuclear IgM and IgA binding and amyloidosis. Of the various species thus far studied, the hamster is the first in which there has been no aging effect in respect to NBA.« less

  13. Loss of otolith function with age is associated with increased postural sway measures.

    PubMed

    Serrador, Jorge M; Lipsitz, Lewis A; Gopalakrishnan, Gosala S; Black, F Owen; Wood, Scott J

    2009-11-06

    Loss of balance and increased fall risk is a common problem associated with aging. Changes in vestibular function occur with aging but the contribution of reduced vestibular otolith function to fall risk remains unknown. We examined a population of 151 healthy individuals (aged 21-93) for both balance (sway measures) and ocular counter-rolling (OCR) function. We assessed balance function with eyes open and closed on a firm surface, eyes open and closed on a foam surface and OCR during +/-20 degree roll tilt at 0.005 Hz. Subjects demonstrated a significant age-related reduction in OCR and increase in postural sway. The effect of age on OCR was greater in females than males. The reduction in OCR was strongly correlated with the mediolateral measures of sway with eyes closed. This correlation was also present in the elderly group alone, suggesting that aging alone does not account for this effect. OCR decreased linearly with age and at a greater rate in females than males. This loss of vestibular otolith-ocular function is associated with increased mediolateral measures of sway which have been shown to be related to increased risk of falls. These data suggest a role for loss of otolith function in contributing to fall risk in the elderly. Further prospective, longitudinal studies are necessary to confirm these findings.

  14. Curcuma treatment prevents cognitive deficit and alteration of neuronal morphology in the limbic system of aging rats.

    PubMed

    Vidal, Blanca; Vázquez-Roque, Rubén A; Gnecco, Dino; Enríquez, Raúl G; Floran, Benjamin; Díaz, Alfonso; Flores, Gonzalo

    2017-03-01

    Curcuma is a natural compound that has shown neuroprotective properties, and has been reported to prevent aging and improve memory. While the mechanism(s) underlying these effects are unclear, they may be related to increases in neural plasticity. Morphological changes have been reported in neuronal dendrites in the limbic system in animals and elderly humans with cognitive impairment. In this regard, there is a need to use alternative therapies that delay the onset of morphologies and behavioral characteristics of aging. Therefore, the objective of this study was to evaluate the effect of curcuma on cognitive processes and dendritic morphology of neurons in the prefrontal cortex (PFC), the CA1 and CA3 regions of the dorsal hippocampus, the dentate gyrus, and the basolateral amygdala (BLA) of aged rats. 18-month-old rats were administered curcuma (100 mg/kg) daily for 60 days. After treatment, recognition memory was assessed using the novel object recognition test. Curcuma-treated rats showed a significant increase in the exploration quotient. Dendritic morphology was assessed by Golgi-Cox staining and followed by Sholl analysis. Curcuma-treated rats showed a significant increase in dendritic spine density and dendritic length in pyramidal neurons of the PFC, the CA1 and CA3, and the BLA. The preservation of dendritic morphology was positively correlated with cognitive improvements. Our results suggest that curcuma induces modification of dendritic morphology in the aforementioned regions. These changes may explain how curcuma slows the aging process that has already begun in these animals, preventing deterioration in neuronal morphology of the limbic system and recognition memory. © 2016 Wiley Periodicals, Inc.

  15. The Role of MAC1 in Diesel Exhaust Particle-induced Microglial Activation and Loss of Dopaminergic Neuron Function

    PubMed Central

    Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E.; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L.

    2013-01-01

    Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson’s disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (<0.22 µM; 50µg/mL), ultrafine carbon black (ufCB, 50µg/ml), or DEP extracts (eDEP; from 50 µg/ml DEP) and the effect of microglial activation and dopaminergic (DA) neuron function was assessed. All three treatments showed enhanced amoeboid microglia morphology, increased H2O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2O2 production in microglia. However, pretreatment with the MAC1/CD11b inhibitor antibody blocked microglial H2O2 production in response to DEP. MAC1−/− mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2O2 production and loss of DA neuron function. PMID:23470120

  16. Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs. aged rats.

    PubMed

    Wasserman, Jason K; Yang, Helen; Schlichter, Lyanne C

    2008-10-01

    Intracerebral hemorrhage (ICH) usually affects older humans but almost no experimental studies have assessed aged animals. We address how aging alters inflammation, neuron death and lesion resolution after a hemorrhage in the rat striatum. In the normal aged brain, microglia displayed a 'dystrophic' phenotype, with shorter cellular processes and large gaps between adjacent cells, and there was more astrocyte reactivity. The ICH injury was monitored as hematoma volume and number of dying neurons at 1 and 3 days, and the volume of the residual lesion, ventricles and lost tissue at 28 days. Inflammation at 1 and 3 days was assessed from densities of microglia with resting vs. activated morphologies, or expressing the lysosomal marker ED1. Despite an initial delay in neuron death in aged animals, by 28 days, there was no difference in neuron density or volume of tissue lost. However, lesion resolution was impaired in aged animals and there was less compensatory ventricular expansion. At 1 day after ICH, there were fewer activated microglia/macrophages in the aged brain, but by 3 days there were more of these cells at the edge of the hematoma and in the surrounding parenchyma. In both age groups a glial limitans had developed by 3 days, but astrocyte reactivity and the spread of activated microglia/macrophages into the surrounding parenchyma was greater in the aged. These findings have important implications for efforts to reduce secondary injury after ICH and to develop anti-inflammatory therapies to treat ICH in aged humans.

  17. Monetary Losses Do Not Loom Large in Later Life: Age Differences in the Framing Effect

    PubMed Central

    Reed, Andrew E.

    2009-01-01

    Studies of the framing effect indicate that individuals are risk averse for decisions framed as gains but risk seeking for decisions framed as losses. However, findings regarding age-related changes in susceptibility to framing are mixed. Recent work demonstrating age-related decreases in reactivity to anticipated monetary losses, but not gains, suggests that older and younger adults might show equivalent risk aversion for gains but discrepant risk seeking for losses. In the current study, older and younger adults completed a monetary gambling task in which they chose between sure options and risky gambles (the expected outcomes of which were equated). Although both groups demonstrated risk aversion in the gain frame, only younger adults showed risk seeking in the loss frame. PMID:19497929

  18. Monetary losses do not loom large in later life: age differences in the framing effect.

    PubMed

    Mikels, Joseph A; Reed, Andrew E

    2009-06-01

    Studies of the framing effect indicate that individuals are risk averse for decisions framed as gains but risk seeking for decisions framed as losses. However, findings regarding age-related changes in susceptibility to framing are mixed. Recent work demonstrating age-related decreases in reactivity to anticipated monetary losses, but not gains, suggests that older and younger adults might show equivalent risk aversion for gains but discrepant risk seeking for losses. In the current study, older and younger adults completed a monetary gambling task in which they chose between sure options and risky gambles (the expected outcomes of which were equated). Although both groups demonstrated risk aversion in the gain frame, only younger adults showed risk seeking in the loss frame.

  19. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation.

    PubMed

    Coupé, Bérengère; Ishii, Yuko; Dietrich, Marcelo O; Komatsu, Masaaki; Horvath, Tamas L; Bouret, Sebastien G

    2012-02-08

    The hypothalamic melanocortin system, which includes neurons that produce pro-opiomelanocortin (POMC)-derived peptides, is a major negative regulator of energy balance. POMC neurons begin to acquire their unique properties during neonatal life. The formation of functional neural systems requires massive cytoplasmic remodeling that may involve autophagy, an important intracellular mechanism for the degradation of damaged proteins and organelles. Here we investigated the functional and structural effects of the deletion of an essential autophagy gene, Atg7, in POMC neurons. Lack of Atg7 in POMC neurons caused higher postweaning body weight, increased adiposity, and glucose intolerance. These metabolic impairments were associated with an age-dependent accumulation of ubiquitin/p62-positive aggregates in the hypothalamus and a disruption in the maturation of POMC-containing axonal projections. Together, these data provide direct genetic evidence that Atg7 in POMC neurons is required for normal metabolic regulation and neural development, and they implicate hypothalamic autophagy deficiency in the pathogenesis of obesity. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The aging of elite male athletes: age-related changes in performance and skeletal muscle structure and function

    PubMed Central

    Faulkner, John A.; Davis, Carol S.; Mendias, Christopher L.; Brooks, Susan V.

    2009-01-01

    Objective The paper addresses the degree to which the attainment of the status as an elite athlete in different sports ameliorates the known age-related losses in skeletal muscle structure and function. Design The retrospective design, based on comparisons of published data on former elite and masters athletes and data on control subjects, assessed the degree to which the attainment of ‘elite and masters athlete status’ ameliorated the known age-related changes in skeletal muscle structure and function. Setting Institutional. Participants Elite male athletes. Interventions Participation in selected individual and team sports. Main Outcome Measurements Strength, power, VO2 max and performance. Results For elite athletes in all sports, as for the general population, age-related muscle atrophy begins at about 50 years of age. Despite the loss of muscle mass, elite athletes who maintain an active life style age gracefully with few health problems. Conversely, those who lapse into inactivity regress toward general population norms for fitness, weight control, and health problems. Elite athletes in the dual and team sports have careers that rarely extend into the thirties. Conclusions Life long physical activity does not appear to have any impact on the loss in fiber number. The loss of fibers can be buffered to some degree by hypertrophy of fibers that remain. Surprisingly, the performance of elite athletes in all sports appears to be impaired before the onset of the fiber loss. Even with major losses in physical capacity and muscle mass, the performance of elite and masters athletes is remarkable. PMID:19001883

  1. Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure.

    PubMed

    Dulka, Eden A; Moenter, Suzanne M

    2017-11-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype. Copyright © 2017 Endocrine Society.

  2. Effects of Statewide Job Losses on Adolescent Suicide-Related Behaviors

    PubMed Central

    Ananat, Elizabeth Oltmans; Gibson-Davis, Christina M.

    2014-01-01

    Objectives. We investigated the impact of statewide job loss on adolescent suicide-related behaviors. Methods. We used 1997 to 2009 data from the Youth Risk Behavior Survey and the Bureau of Labor Statistics to estimate the effects of statewide job loss on adolescents’ suicidal ideation, suicide attempts, and suicide plans. Probit regression models controlled for demographic characteristics, state of residence, and year; samples were divided according to gender and race/ethnicity. Results. Statewide job losses during the year preceding the survey increased girls’ probability of suicidal ideation and suicide plans and non-Hispanic Black adolescents’ probability of suicidal ideation, suicide plans, and suicide attempts. Job losses among 1% of a state’s working-age population increased the probability of girls and Blacks reporting suicide-related behaviors by 2 to 3 percentage points. Job losses did not affect the suicide-related behaviors of boys, non-Hispanic Whites, or Hispanics. The results were robust to the inclusion of other state economic characteristics. Conclusions. As are adults, adolescents are affected by economic downturns. Our findings show that statewide job loss increases adolescent girls’ and non-Hispanic Blacks’ suicide-related behaviors. PMID:25122027

  3. Neuronal nicotinic acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus.

    PubMed

    Ray, M A; Graham, A J; Lee, M; Perry, R H; Court, J A; Perry, E K

    2005-08-01

    The cholinergic system has been implicated in the development of autism on the basis of neuronal nicotinic acetylcholine receptor (nAChR) losses in cerebral and cerebellar cortex. In the present study, the first to explore nAChRs in the thalamus in autism, alpha4, alpha7 and beta2 nAChR subunit expression in thalamic nuclei of adult individuals with autism (n=3) and age-matched control cases (n=3) was investigated using immunochemical methods. Loss of alpha7- and beta2- (but not alpha4-) immunoreactive neurons occurred in the paraventricular nucleus (PV) and nucleus reuniens in autism. Preliminary results indicated glutamic acid decarboxylase immunoreactivity occurred at a low level in PV, co-expressed with alpha7 in normal and autistic cases and was not reduced in autism. This suggested loss of neuronal alpha7 in autism is not caused by loss of GABAergic neurons. These findings indicate nicotinic abnormalities that occur in the thalamus in autism which may contribute to sensory or attentional deficits.

  4. Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology

    PubMed Central

    Tesseur, Ina; Zou, Kun; Esposito, Luke; Bard, Frederique; Berber, Elisabeth; Can, Judith Van; Lin, Amy H.; Crews, Leslie; Tremblay, Patrick; Mathews, Paul; Mucke, Lennart; Masliah, Eliezer; Wyss-Coray, Tony

    2006-01-01

    Alzheimer’s disease (AD) is characterized by progressive neurodegeneration and cerebral accumulation of the β-amyloid peptide (Aβ), but it is unknown what makes neurons susceptible to degeneration. We report that the TGF-β type II receptor (TβRII) is mainly expressed by neurons, and that TβRII levels are reduced in human AD brain and correlate with pathological hallmarks of the disease. Reducing neuronal TGF-β signaling in mice resulted in age-dependent neurodegeneration and promoted Aβ accumulation and dendritic loss in a mouse model of AD. In cultured cells, reduced TGF-β signaling caused neuronal degeneration and resulted in increased levels of secreted Aβ and β-secretase–cleaved soluble amyloid precursor protein. These results show that reduced neuronal TGF-β signaling increases age-dependent neurodegeneration and AD-like disease in vivo. Increasing neuronal TGF-β signaling may thus reduce neurodegeneration and be beneficial in AD. PMID:17080199

  5. Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice

    PubMed Central

    Wang, I-Ting Judy; Yue, Cuiyong; Takano, Hajime; Terzic, Barbara

    2017-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a neurodevelopmental disorder characterized by epileptic seizures, severe intellectual disability, and autistic features. Mice lacking CDKL5 display multiple behavioral abnormalities reminiscent of the disorder, but the cellular origins of these phenotypes remain unclear. Here, we find that ablating CDKL5 expression specifically from forebrain glutamatergic neurons impairs hippocampal-dependent memory in male conditional knock-out mice. Hippocampal pyramidal neurons lacking CDKL5 show decreased dendritic complexity but a trend toward increased spine density. This morphological change is accompanied by an increase in the frequency of spontaneous miniature EPSCs and interestingly, miniature IPSCs. Using voltage-sensitive dye imaging to interrogate the evoked response of the CA1 microcircuit, we find that CA1 pyramidal neurons lacking CDKL5 show hyperexcitability in their dendritic domain that is constrained by elevated inhibition in a spatially and temporally distinct manner. These results suggest a novel role for CDKL5 in the regulation of synaptic function and uncover an intriguing microcircuit mechanism underlying impaired learning and memory. SIGNIFICANCE STATEMENT Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a severe neurodevelopmental disorder caused by mutations in the CDKL5 gene. Although Cdkl5 constitutive knock-out mice have recapitulated key aspects of human symptomatology, the cellular origins of CDKL5 deficiency-related phenotypes are unknown. Here, using conditional knock-out mice, we show that hippocampal-dependent learning and memory deficits in CDKL5 deficiency have origins in glutamatergic neurons of the forebrain and that loss of CDKL5 results in the enhancement of synaptic transmission and disruptions in neural circuit dynamics in a spatially and temporally specific manner. Our findings demonstrate that CDKL5 is an important regulator of synaptic function in glutamatergic neurons and

  6. Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice.

    PubMed

    Tang, Sheng; Wang, I-Ting Judy; Yue, Cuiyong; Takano, Hajime; Terzic, Barbara; Pance, Katarina; Lee, Jun Y; Cui, Yue; Coulter, Douglas A; Zhou, Zhaolan

    2017-08-02

    Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a neurodevelopmental disorder characterized by epileptic seizures, severe intellectual disability, and autistic features. Mice lacking CDKL5 display multiple behavioral abnormalities reminiscent of the disorder, but the cellular origins of these phenotypes remain unclear. Here, we find that ablating CDKL5 expression specifically from forebrain glutamatergic neurons impairs hippocampal-dependent memory in male conditional knock-out mice. Hippocampal pyramidal neurons lacking CDKL5 show decreased dendritic complexity but a trend toward increased spine density. This morphological change is accompanied by an increase in the frequency of spontaneous miniature EPSCs and interestingly, miniature IPSCs. Using voltage-sensitive dye imaging to interrogate the evoked response of the CA1 microcircuit, we find that CA1 pyramidal neurons lacking CDKL5 show hyperexcitability in their dendritic domain that is constrained by elevated inhibition in a spatially and temporally distinct manner. These results suggest a novel role for CDKL5 in the regulation of synaptic function and uncover an intriguing microcircuit mechanism underlying impaired learning and memory. SIGNIFICANCE STATEMENT Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a severe neurodevelopmental disorder caused by mutations in the CDKL5 gene. Although Cdkl5 constitutive knock-out mice have recapitulated key aspects of human symptomatology, the cellular origins of CDKL5 deficiency-related phenotypes are unknown. Here, using conditional knock-out mice, we show that hippocampal-dependent learning and memory deficits in CDKL5 deficiency have origins in glutamatergic neurons of the forebrain and that loss of CDKL5 results in the enhancement of synaptic transmission and disruptions in neural circuit dynamics in a spatially and temporally specific manner. Our findings demonstrate that CDKL5 is an important regulator of synaptic function in glutamatergic neurons and

  7. The neural architecture of age-related dual-task interferences.

    PubMed

    Chmielewski, Witold X; Yildiz, Ali; Beste, Christian

    2014-01-01

    In daily life elderly adults exhibit deficits when dual-tasking is involved. So far these deficits have been verified on a behavioral level in dual-tasking. Yet, the neuronal architecture of these deficits in aging still remains to be explored especially when late-middle aged individuals around 60 years of age are concerned. Neuroimaging studies in young participants concerning dual-tasking were, among others, related to activity in middle frontal (MFG) and superior frontal gyrus (SFG) and the anterior insula (AI). According to the frontal lobe hypothesis of aging, alterations in these frontal regions (i.e., SFG and MFG) might be responsible for cognitive deficits. We measured brain activity using fMRI, while examining age-dependent variations in dual-tasking by utilizing the PRP (psychological refractory period) test. Behavioral data showed an increasing PRP effect in late-middle aged adults. The results suggest the age-related deteriorated performance in dual-tasking, especially in conditions of risen complexity. These effects are related to changes in networks involving the AI, the SFG and the MFG. The results suggest that different cognitive subprocesses are affected that mediate the observed dual-tasking problems in late-middle aged individuals.

  8. Aging Triggers Cytoplasmic Depletion and Nuclear Translocation of the E3 Ligase Mahogunin: A Function for Ubiquitin in Neuronal Survival.

    PubMed

    Benvegnù, Stefano; Mateo, María Inés; Palomer, Ernest; Jurado-Arjona, Jerónimo; Dotti, Carlos G

    2017-05-04

    A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Loss of dopaminergic neurons occurs in the ventral tegmental area and hypothalamus of rats following chronic stress: Possible pathogenetic loci for depression involved in Parkinson's disease.

    PubMed

    Sugama, Shuei; Kakinuma, Yoshihiko

    2016-10-01

    Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic (DA) neurons in the nigrostriatal and mesolimbic pathways including ventral tegmental area (VTA). Although several factors for the neuronal loss have been suggested, most of the PD cases are sporadic and idiopathic. In our previous study, we demonstrated the first evidence that solely chronic restraint stress (RS) induced the DA neuronal loss in the substantia nigra (SN). In this study, we further investigated whether chronic stress could affect other major DA systems, VTA and tuberoinfundibular system (TIDA), by using immunohistochemical and in situ hybridization techniques. The present study showed that, in the VTA, tyrosine hydroxylase (TH) immunoreactive neurons decreased by 9.8% at 2nd week, 19.2% at 4th week, 39.5% at 8th week, and 40.6% at 16th week during chronic RS as compared to control. Similarly, in the TIDA, the TH neurons decreased by 10.9% at 2nd week, 38.2% at 4th week, 56.3% at 8th week, and 57.1% at 16th week. The in situ hybridization results consistently demonstrated decreases in Th mRNA expressing cells in the VTA and TIDA in a comparable time dependent manner. Thus, exposure to chronic stress may simultaneously induce multiple neuronal loss of DA systems. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  10. Loss of MeCP2 in Parvalbumin-and Somatostatin-Expressing Neurons in Mice Leads to Distinct Rett Syndrome-like Phenotypes.

    PubMed

    Ito-Ishida, Aya; Ure, Kerstin; Chen, Hongmei; Swann, John W; Zoghbi, Huda Y

    2015-11-18

    Inhibitory neurons are critical for proper brain function, and their dysfunction is implicated in several disorders, including autism, schizophrenia, and Rett syndrome. These neurons are heterogeneous, and it is unclear which subtypes contribute to specific neurological phenotypes. We deleted Mecp2, the mouse homolog of the gene that causes Rett syndrome, from the two most populous subtypes, parvalbumin-positive (PV+) and somatostatin-positive (SOM+) neurons. Loss of MeCP2 partially impairs the affected neuron, allowing us to assess the function of each subtype without profound disruption of neuronal circuitry. We found that mice lacking MeCP2 in either PV+ or SOM+ neurons have distinct, non-overlapping neurological features: mice lacking MeCP2 in PV+ neurons developed motor, sensory, memory, and social deficits, whereas those lacking MeCP2 in SOM+ neurons exhibited seizures and stereotypies. Our findings indicate that PV+ and SOM+ neurons contribute complementary aspects of the Rett phenotype and may have modular roles in regulating specific behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Convergent properties of vestibular-related brain stem neurons in the gerbil

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.

    2000-01-01

    Three classes of vestibular-related neurons were found in and near the prepositus and medial vestibular nuclei of alert or decerebrate gerbils, those responding to: horizontal translational motion, horizontal head rotation, or both. Their distribution ratios were 1:2:2, respectively. Many cells responsive to translational motion exhibited spatiotemporal characteristics with both response gain and phase varying as a function of the stimulus vector angle. Rotationally sensitive neurons were distributed as Type I, II, or III responses (sensitive to ipsilateral, contralateral, or both directions, respectively) in the ratios of 4:6:1. Four tested factors shaped the response dynamics of the sampled neurons: canal-otolith convergence, oculomotor-related activity, rotational Type (I or II), and the phase of the maximum response. Type I nonconvergent cells displayed increasing gains with increasing rotational stimulus frequency (0.1-2.0 Hz, 60 degrees /s), whereas Type II neurons with convergent inputs had response gains that markedly decreased with increasing translational stimulus frequency (0.25-2.0 Hz, +/-0.1 g). Type I convergent and Type II nonconvergent neurons exhibited essentially flat gains across the stimulus frequency range. Oculomotor-related activity was noted in 30% of the cells across all functional types, appearing as burst/pause discharge patterns related to the fast phase of nystagmus during head rotation. Oculomotor-related activity was correlated with enhanced dynamic range compared with the same category that had no oculomotor-related response. Finally, responses that were in-phase with head velocity during rotation exhibited greater gains with stimulus frequency increments than neurons with out-of-phase responses. In contrast, for translational motion, neurons out of phase with head acceleration exhibited low-pass characteristics, whereas in-phase neurons did not. Data from decerebrate preparations revealed that although similar response types could

  12. Insulin-like growth factor 2 rescues aging-related memory loss in rats.

    PubMed

    Steinmetz, Adam B; Johnson, Sarah A; Iannitelli, Dylan E; Pollonini, Gabriella; Alberini, Cristina M

    2016-08-01

    Aging is accompanied by declines in memory performance, and particularly affects memories that rely on hippocampal-cortical systems, such as episodic and explicit. With aged populations significantly increasing, the need for preventing or rescuing memory deficits is pressing. However, effective treatments are lacking. Here, we show that the level of the mature form of insulin-like growth factor 2 (IGF-2), a peptide regulated in the hippocampus by learning, required for memory consolidation and a promoter of memory enhancement in young adult rodents, is significantly reduced in hippocampal synapses of aged rats. By contrast, the hippocampal level of the immature form proIGF-2 is increased, suggesting an aging-related deficit in IGF-2 processing. In agreement, aged compared to young adult rats are deficient in the activity of proprotein convertase 2, an enzyme that likely mediates IGF-2 posttranslational processing. Hippocampal administration of the recombinant, mature form of IGF-2 rescues hippocampal-dependent memory deficits and working memory impairment in aged rats. Thus, IGF-2 may represent a novel therapeutic avenue for preventing or reversing aging-related cognitive impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Synaptic transmission at the endbulb of Held deteriorates during age‐related hearing loss

    PubMed Central

    Manis, Paul B.

    2016-01-01

    Key points Synaptic transmission at the endbulb of Held was assessed by whole‐cell patch clamp recordings from auditory neurons in mature (2–4 months) and aged (20–26 months) mice.Synaptic transmission is degraded in aged mice, which may contribute to the decline in neural processing of the central auditory system during age‐related hearing loss.The changes in synaptic transmission in aged mice can be partially rescued by improving calcium buffering, or decreasing action potential‐evoked calcium influx.These experiments suggest potential mechanisms, such as regulating intraterminal calcium, that could be manipulated to improve the fidelity of transmission at the aged endbulb of Held. Abstract Age‐related hearing loss (ARHL) is associated with changes to the auditory periphery that raise sensory thresholds and alter coding, and is accompanied by alterations in excitatory and inhibitory synaptic transmission, and intrinsic excitability in the circuits of the central auditory system. However, it remains unclear how synaptic transmission changes at the first central auditory synapses during ARHL. Using mature (2–4 months) and old (20–26 months) CBA/CaJ mice, we studied synaptic transmission at the endbulb of Held. Mature and old mice showed no difference in either spontaneous quantal synaptic transmission or low frequency evoked synaptic transmission at the endbulb of Held. However, when challenged with sustained high frequency stimulation, synapses in old mice exhibited increased asynchronous transmitter release and reduced synchronous release. This suggests that the transmission of temporally precise information is degraded at the endbulb during ARHL. Increasing intraterminal calcium buffering with EGTA‐AM or decreasing calcium influx with ω‐agatoxin IVA decreased the amount of asynchronous release and restored synchronous release in old mice. In addition, recovery from depression following high frequency trains was faster in old mice, but

  14. The role of MAC1 in diesel exhaust particle-induced microglial activation and loss of dopaminergic neuron function.

    PubMed

    Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L

    2013-06-01

    Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson's disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (< 0.22 μM; 50 μg/mL), ultrafine carbon black (ufCB, 50 μg/mL), or DEP extracts (eDEP; from 50 μg/mL DEP), and the effect of microglial activation and dopaminergic (DA) neuron function was assessed. All three treatments showed enhanced ameboid microglia morphology, increased H2 O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2 O2 production in microglia. However, pre-treatment with the MAC1/CD11b inhibitor antibody blocked microglial H2 O2 production in response to DEP. MAC1(-/-) mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2 O2 production and loss of DA neuron function. © 2013 International Society for Neurochemistry.

  15. The loss of the kinases SadA and SadB results in early neuronal apoptosis and a reduced number of progenitors.

    PubMed

    Dhumale, Pratibha; Menon, Sindhu; Chiang, Joanna; Püschel, Andreas W

    2018-01-01

    The neurons that form the mammalian neocortex originate from progenitor cells in the ventricular (VZ) and subventricular zone (SVZ). Newborn neurons are multipolar but become bipolar during their migration from the germinal layers to the cortical plate (CP) by forming a leading process and an axon that extends in the intermediate zone (IZ). Once they settle in the CP, neurons assume a highly polarized morphology with a single axon and multiple dendrites. The AMPK-related kinases SadA and SadB are intrinsic factors that are essential for axon formation during neuronal development downstream of Lkb1. The knockout of both genes encoding Sad kinases (Sada and Sadb) results not only in a loss of axons but also a decrease in the size of the cortical plate. The defect in axon formation has been linked to a function of Sad kinases in the regulation of microtubule binding proteins. However, the causes for the reduced size of the cortical plate in the Sada-/-;Sadb-/- knockout remain to be analyzed in detail. Here we show that neuronal cell death is increased and the number of neural progenitors is decreased in the Sada-/-;Sadb-/- CP. The reduced number of progenitors is a non-cell autonomous defect since they do not express Sad kinases. These defects are restricted to the neocortex while the hippocampus remains unaffected.

  16. Correction of Age-Related Midface Volume Loss With Low-Volume Hyaluronic Acid Filler.

    PubMed

    Wilson, Monique Vanaman; Fabi, Sabrina Guillen; Greene, Ryan

    2017-03-01

    The pivotal approval trial for a smooth, highly cohesive, viscous, 20-mg/mL hyaluronic acid filler demonstrated sustained aesthetic improvement, with a mean injection volume of 6.65 mL. In daily practice, however, it is not often practical or necessary to use large injection volumes to achieve the desired cosmetic outcome. To assess the efficacy, longevity, and patient satisfaction associated with correction of age-related midface volume loss using the low volumes of hyaluronic acid filler more commonly used in day-to-day practice. A 2-center, retrospective cohort study examined medical records of 61 healthy patients who underwent treatment for facial volume loss with hyaluronic acid filler from November 1, 2013, through April 31, 2014. Follow-up visits were conducted at 1, 3, 6, and 12 months after the procedure. Data were pooled from a private facial plastic surgery practice in Weston, Florida, and a private cosmetic dermatology practice in San Diego, California. Patients were treated with hyaluronic acid filler according to the investigator's usual practices. The main outcome measure was patient-graded Global Aesthetic Improvement Scale scores at 1, 3, 6, and 12 months after treatment. Scores range from 1 to 5; 1 indicates very much improved and 5, worse. A total of 61 consecutive, healthy adult patients (mean [SD] age, 57.4 [12.8] years) with mild to severe facial volume loss were enrolled in the study. A total of 46 patients (75%) were white, 3 (5%) were black/African American, 9 (15%) were Hispanic/Latino, 1 (2%) was Asian/Pacific Islander, and 2 (3%) were other. Three patients (5%) were male, and 58 (95%) were female. Mean initial treatment volume was 1.6 mL. At follow-up, 29 patients (48%) elected to have a touch-up treatment; mean total touch-up volume was 1.4 mL. The patient-graded Global Aesthetic Improvement Scale scores at 1, 3, 6, and 12 months after treatment demonstrated that 73% (41 of 56) to 89% (24 of 27) of the study patients reported being very

  17. GHRELIN HYPORESPONSIVENESS CONTRIBUTES TO AGING-RELATED HYPERINFLAMMATION IN SEPTIC SHOCK

    PubMed Central

    Wu, Rongqian; Zhou, Mian; Dong, Weifeng; Ji, Youxin; Miksa, Michael; Marini, Corrado P.; Ravikumar, Thanjavur S.; Wang, Ping

    2009-01-01

    Objective To test the hypothesis that hyporesponsiveness to ghrelin due to reduced growth hormone (GH) contributes to the aging-related hyperinflammatory state in sepsis. Summary Background Data Sepsis and septic shock are a serious problem particularly in the geriatric population. Ghrelin is an endogenous ligand for the GH secretagogue receptor 1a (GHSR1a, i.e., ghrelin receptor). The decline in GH with age is directly associated with many adverse changes that occur with aging. However, the role of GH, ghrelin, and GHSR1a in the age-associated vulnerability to sepsis remains unknown. Methods Male Fischer-344 rats (young: 3-months; aged: 24-months) were used. Plasma GH levels, ghrelin receptor expression and neuronal activity in the parasympathostimulatory nuclei of the brain stem in normal young and aged animals were measured. Endotoxemia was induced by intravenous injection of lipopolysaccharide (LPS, 15 mg/kg BW). Results While LPS-induced release of proinflammatory cytokines from macrophages isolated from aged rats decreased, LPS injection caused an in vivo hyperinflammatory state. GH levels were lower in aged rats, which was associated with lower expression of GHSR1a in the dorsal vagal complex (DVC) and a decrease in parasympathostimulatory neuronal activity. GHSR1a antagonist elevated LPS-induced cytokine release in young rats. GH increased GHSR-1a expression in the DVC in aged rats. Co-administration of ghrelin and GH, but not ghrelin alone or GH alone, markedly reduced cytokine levels and organ injury after endotoxemia in aged rats, which was associated with significantly elevated parasympathostimulatory neuronal activity. Conclusions These findings suggest that the reduced central (brain) responsiveness to ghrelin due to the decreased GH, plays a major role in producing the hyperinflammatory state, resulting in severe organ injuries and high mortality after endotoxemia in aged animals. Ghrelin and GH can be developed as a novel therapy for sepsis in the

  18. The Role of Free Radicals in the Aging Brain and Parkinson’s Disease: Convergence and Parallelism

    PubMed Central

    Kumar, Hemant; Lim, Hyung-Woo; More, Sandeep Vasant; Kim, Byung-Wook; Koppula, Sushruta; Kim, In Su; Choi, Dong-Kug

    2012-01-01

    Free radical production and their targeted action on biomolecules have roles in aging and age-related disorders such as Parkinson’s disease (PD). There is an age-associated increase in oxidative damage to the brain, and aging is considered a risk factor for PD. Dopaminergic neurons show linear fallout of 5–10% per decade with aging; however, the rate and intensity of neuronal loss in patients with PD is more marked than that of aging. Here, we enumerate the common link between aging and PD at the cellular level with special reference to oxidative damage caused by free radicals. Oxidative damage includes mitochondrial dysfunction, dopamine auto-oxidation, α-synuclein aggregation, glial cell activation, alterations in calcium signaling, and excess free iron. Moreover, neurons encounter more oxidative stress as a counteracting mechanism with advancing age does not function properly. Alterations in transcriptional activity of various pathways, including nuclear factor erythroid 2-related factor 2, glycogen synthase kinase 3β, mitogen activated protein kinase, nuclear factor kappa B, and reduced activity of superoxide dismutase, catalase and glutathione with aging might be correlated with the increased incidence of PD. PMID:22949875

  19. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons.

    PubMed

    Castañeda, Patricia; Muñoz, Mauricio; García-Rojo, Gonzalo; Ulloa, José L; Bravo, Javier A; Márquez, Ruth; García-Pérez, M Alexandra; Arancibia, Damaris; Araneda, Karina; Rojas, Paulina S; Mondaca-Ruff, David; Díaz-Véliz, Gabriela; Mora, Sergio; Aliaga, Esteban; Fiedler, Jenny L

    2015-10-01

    Chronic stress promotes cognitive impairment and dendritic spine loss in hippocampal neurons. In this animal model of depression, spine loss probably involves a weakening of the interaction between pre- and postsynaptic cell adhesion molecules, such as N-cadherin, followed by disruption of the cytoskeleton. N-cadherin, in concert with catenin, stabilizes the cytoskeleton through Rho-family GTPases. Via their effector LIM kinase (LIMK), RhoA and ras-related C3 botulinum toxin substrate 1 (RAC) GTPases phosphorylate and inhibit cofilin, an actin-depolymerizing molecule, favoring spine growth. Additionally, RhoA, through Rho kinase (ROCK), inactivates myosin phosphatase through phosphorylation of the myosin-binding subunit (MYPT1), producing actomyosin contraction and probable spine loss. Some micro-RNAs negatively control the translation of specific mRNAs involved in Rho GTPase signaling. For example, miR-138 indirectly activates RhoA, and miR-134 reduces LIMK1 levels, resulting in spine shrinkage; in contrast, miR-132 activates RAC1, promoting spine formation. We evaluated whether N-cadherin/β-catenin and Rho signaling is sensitive to chronic restraint stress. Stressed rats exhibit anhedonia, impaired associative learning, and immobility in the forced swim test and reduction in N-cadherin levels but not β-catenin in the hippocampus. We observed a reduction in spine number in the apical dendrites of CA1 pyramidal neurons, with no effect on the levels of miR-132 or miR-134. Although the stress did not modify the RAC-LIMK-cofilin signaling pathway, we observed increased phospho-MYPT1 levels, probably mediated by RhoA-ROCK activation. Furthermore, chronic stress raises the levels of miR-138 in accordance with the observed activation of the RhoA-ROCK pathway. Our findings suggest that a dysregulation of RhoA-ROCK activity by chronic stress could potentially underlie spine loss in hippocampal neurons. © 2015 Wiley Periodicals, Inc.

  20. Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss

    PubMed Central

    McGregor, Ronald; Shan, Ling; Wu, Ming-Fung

    2017-01-01

    The loss of specific neuronal phenotypes, as determined by immunohistochemistry, has become a powerful tool for identifying the nature and cause of neurological diseases. Here we show that the number of neurons identified and quantified using this method misses a substantial percentage of extant neurons in a phenotype specific manner. In mice, 24% more hypocretin/orexin (Hcrt) neurons are seen in the night compared to the day, and an additional 17% are seen after inhibiting microtubule polymerization with colchicine. We see no such difference between the number of MCH (melanin concentrating hormone) neurons in dark, light or colchicine conditions, despite MCH and Hcrt both being hypothalamic peptide transmitters. Although the size of Hcrt neurons did not differ between light and dark, the size of MCH neurons was increased by 15% in the light phase. The number of neurons containing histidine decarboxylase (HDC), the histamine synthesizing enzyme, was 34% greater in the dark than in the light, but, like Hcrt, cell size did not differ. We did not find a significant difference in the number or the size of neurons expressing choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, in the horizontal diagonal band (HBD) during the dark and light conditions. As expected, colchicine treatment did not increase the number of these neurons. Understanding the function and dynamics of transmitter production within “non-visible” phenotypically defined cells has fundamental implications for our understanding of brain plasticity. PMID:28570646

  1. Sexual Dimorphism of Kisspeptin and Neurokinin B Immunoreactive Neurons in the Infundibular Nucleus of Aged Men and Women

    PubMed Central

    Hrabovszky, Erik; Molnár, Csilla S.; Sipos, Máté T.; Vida, Barbara; Ciofi, Philippe; Borsay, Beáta A.; Sarkadi, László; Herczeg, László; Bloom, Stephen R.; Ghatei, Mohammad A.; Dhillo, Waljit S.; Kalló, Imre; Liposits, Zsolt

    2011-01-01

    The secretory output of gonadotropin-releasing hormone (GnRH) neurons is critically influenced by peptidergic neurons synthesizing kisspeptins (KP) and neurokinin B (NKB) in the hypothalamic infundibular nucleus (Inf). These cells mediate negative feedback effects of sex steroids on the reproductive axis. While negative feedback is lost in postmenopausal women, it is partly preserved by the sustained testosterone secretion in aged men. We hypothesized that the different reproductive physiology of aged men and women is reflected in morphological differences of KP and NKB neurons. This sexual dimorphism was studied with immunohistochemistry in hypothalamic sections of aged human male (≥50 years) and female (>55 years) subjects. KP and NKB cell bodies of the Inf were larger in females. The number of KP cell bodies, the density of KP fibers, and the incidence of their contacts on GnRH neurons were much higher in aged women compared with men. The number of NKB cell bodies was only slightly higher in women and there was no sexual dimorphism in the regional density of NKB fibers and the incidence of their appositions onto GnRH cells. The incidences of NKB cell bodies, fibers, and appositions onto GnRH neurons exceeded several-fold those of KP-IR elements in men. More NKB than KP inputs to GnRH cells were also present in women. Immunofluorescent studies identified only partial overlap between KP and NKB axons. KP and NKB were colocalized in higher percentages of afferents to GnRH neurons in women compared with men. Most of these sex differences might be explained with the lack of estrogen negative feedback in aged women, whereas testosterone can continue to suppress KP, and to a lesser extent, NKB synthesis in men. Overall, sex differences in reproductive physiology of aged humans were reflected in the dramatic sexual dimorphism of the KP system, with significantly higher incidences of KP-IR neurons, fibers and inputs to GnRH neurons in aged females vs. males. PMID

  2. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS

    PubMed Central

    Maxwell, Michele M.; Tomkinson, Elizabeth M.; Nobles, Johnathan; Wizeman, John W.; Amore, Allison M.; Quinti, Luisa; Chopra, Vanita; Hersch, Steven M.; Kazantsev, Aleksey G.

    2011-01-01

    Sirtuin 2 (SIRT2) is one of seven known mammalian protein deacetylases homologous to the yeast master lifespan regulator Sir2. In recent years, the sirtuin protein deacetylases have emerged as candidate therapeutic targets for many human diseases, including metabolic and age-dependent neurological disorders. In non-neuronal cells, SIRT2 has been shown to function as a tubulin deacetylase and a key regulator of cell division and differentiation. However, the distribution and function of the SIRT2 microtubule (MT) deacetylase in differentiated, postmitotic neurons remain largely unknown. Here, we show abundant and preferential expression of specific isoforms of SIRT2 in the mammalian central nervous system and find that a previously uncharacterized form, SIRT2.3, exhibits age-dependent accumulation in the mouse brain and spinal cord. Further, our studies reveal that focal areas of endogenous SIRT2 expression correlate with reduced α-tubulin acetylation in primary mouse cortical neurons and suggest that the brain-enriched species of SIRT2 may function as the predominant MT deacetylases in mature neurons. Recent reports have demonstrated an association between impaired tubulin acetyltransferase activity and neurodegenerative disease; viewed in this light, our results showing age-dependent accumulation of the SIRT2 neuronal MT deacetylase in wild-type mice suggest a functional link between tubulin acetylation patterns and the aging brain. PMID:21791548

  3. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation

    PubMed Central

    Li, Chang-Jun; Cheng, Peng; Liang, Meng-Ke; Chen, Yu-Si; Lu, Qiong; Wang, Jin-Yu; Xia, Zhu-Ying; Zhou, Hou-De; Cao, Xu; Xie, Hui; Liao, Er-Yuan; Luo, Xiang-Hang

    2015-01-01

    Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra–bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss. PMID:25751060

  4. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation.

    PubMed

    Li, Chang-Jun; Cheng, Peng; Liang, Meng-Ke; Chen, Yu-Si; Lu, Qiong; Wang, Jin-Yu; Xia, Zhu-Ying; Zhou, Hou-De; Cao, Xu; Xie, Hui; Liao, Er-Yuan; Luo, Xiang-Hang

    2015-04-01

    Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra-bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.

  5. Multiple prethymic defects underlie age-related loss of T progenitor competence

    PubMed Central

    Zediak, Valerie P.; Maillard, Ivan

    2007-01-01

    Aging in mice and humans is characterized by declining T-lymphocyte production in the thymus, yet it is unclear whether aging impacts the T-lineage potential of hematopoietic progenitors. Although alterations in the lymphoid progenitor content of aged mouse bone marrow (BM) have been described, irradiation-reconstitution experiments have failed to reveal defects in T-lineage potential of BM hematopoietic progenitors or purified hematopoietic stem cells (HSCs) from aged mice. Here, we assessed T-progenitor potential in unmanipulated recipient mice without conditioning irradiation. T-progenitor potential was reduced in aged BM compared with young BM, and this reduction was apparent at the earliest stages of intrathymic differentiation. Further, enriched populations of aged HSCs or multipotent progenitors (MPPs) gave rise to fewer T-lineage cells than their young counterparts. Whereas the T-precursor frequency within the MPP pool was unchanged, there was a 4-fold decline in T-precursor frequency within the HSC pool. In addition, among the T-competent HSC clones, there were fewer highly proliferative clones in the aged HSC pool than in the young HSC pool. These results identify T-compromised aged HSCs and define the nature and cellular sites of prethymic, age-related defects in T-lineage differentiation potential. PMID:17456721

  6. Age Is Associated with Reduced Sharp-Wave Ripple Frequency and Altered Patterns of Neuronal Variability.

    PubMed

    Wiegand, Jean-Paul L; Gray, Daniel T; Schimanski, Lesley A; Lipa, Peter; Barnes, C A; Cowen, Stephen L

    2016-05-18

    Spatial and episodic memory performance declines with age, and the neural basis for this decline is not well understood. Sharp-wave ripples are brief (∼70 ms) high-frequency oscillatory events generated in the hippocampus and are associated with the consolidation of spatial memories. Given the connection between ripple oscillations and memory consolidation, we investigated whether the structure of ripple oscillations and ripple-triggered patterns of single-unit activity are altered in aged rats. Local field and single-unit activity surrounding sharp-wave ripple events were examined in the CA1 region of the hippocampus of old (n = 5) and young (n = 6) F344 rats during periods of rest preceding and following performance on a place-dependent eyeblink-conditioning task. Neural responses in aged rats differed from responses in young rats in several ways. First, compared with young rats, the rate of ripple occurrence (ripple density) is reduced in aged rats during postbehavior rest. Second, mean ripple frequency during prebehavior and postbehavior rest is lower in aged animals (aged: 132 Hz; young: 146 Hz). Third, single neurons in aged animals responded more consistently from ripple to ripple. Fourth, variability in interspike intervals was greater in aged rats. Finally, neurons were tuned to a narrower range of phases of the ripple oscillation relative to young animals. Together, these results suggest that the CA1 network in aged animals has a reduced "vocabulary" of available representational states. The hippocampus is a structure that is critical for the formation of episodic memories. Sharp-wave ripple events generated in the hippocampus have been implicated in memory consolidation processes critical to memory stabilization. We examine here whether these ripple oscillations are altered over the course of the life span, which could contribute to hippocampus-dependent memory deficits that occur during aging. This experiment used young and aged memory-impaired rats

  7. Age Is Associated with Reduced Sharp-Wave Ripple Frequency and Altered Patterns of Neuronal Variability

    PubMed Central

    Wiegand, Jean-Paul L.; Gray, Daniel T.; Schimanski, Lesley A.; Lipa, Peter; Barnes, C. A.

    2016-01-01

    Spatial and episodic memory performance declines with age, and the neural basis for this decline is not well understood. Sharp-wave ripples are brief (∼70 ms) high-frequency oscillatory events generated in the hippocampus and are associated with the consolidation of spatial memories. Given the connection between ripple oscillations and memory consolidation, we investigated whether the structure of ripple oscillations and ripple-triggered patterns of single-unit activity are altered in aged rats. Local field and single-unit activity surrounding sharp-wave ripple events were examined in the CA1 region of the hippocampus of old (n = 5) and young (n = 6) F344 rats during periods of rest preceding and following performance on a place-dependent eyeblink-conditioning task. Neural responses in aged rats differed from responses in young rats in several ways. First, compared with young rats, the rate of ripple occurrence (ripple density) is reduced in aged rats during postbehavior rest. Second, mean ripple frequency during prebehavior and postbehavior rest is lower in aged animals (aged: 132 Hz; young: 146 Hz). Third, single neurons in aged animals responded more consistently from ripple to ripple. Fourth, variability in interspike intervals was greater in aged rats. Finally, neurons were tuned to a narrower range of phases of the ripple oscillation relative to young animals. Together, these results suggest that the CA1 network in aged animals has a reduced “vocabulary” of available representational states. SIGNIFICANCE STATEMENT The hippocampus is a structure that is critical for the formation of episodic memories. Sharp-wave ripple events generated in the hippocampus have been implicated in memory consolidation processes critical to memory stabilization. We examine here whether these ripple oscillations are altered over the course of the life span, which could contribute to hippocampus-dependent memory deficits that occur during aging. This experiment used young and

  8. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury.

    PubMed

    Abiko, Kagari; Ikoma, Katsunori; Shiga, Tohru; Katoh, Chietsugu; Hirata, Kenji; Kuge, Yuji; Kobayashi, Kentaro; Tamaki, Nagara

    2017-12-01

    Traumatic brain injury (TBI) causes brain dysfunction in many patients. Using C-11 flumazenil (FMZ) positron emission tomography (PET), we have detected and reported the loss of neuronal integrity, leading to brain dysfunction in TBI patients. Similarly to FMZ PET, I-123 iomazenil (IMZ) single photon emission computed tomography (SPECT) is widely used to determine the distribution of the benzodiazepine receptor (BZR) in the brain cortex. The purpose of this study is to examine whether IMZ SPECT is as useful as FMZ PET for evaluating the loss of neuronal integrity in TBI patients. The subjects of this study were seven patients who suffered from neurobehavioral disability. They underwent IMZ SPECT and FMZ PET. Nondisplaceable binding potential (BP ND ) was calculated from FMZ PET images. The uptake of IMZ was evaluated on the basis of lesion-to-pons ratio (LPR). The locations of low uptake levels were visually evaluated both in IMZ SPECT and FMZ PET images. We compared FMZ BP ND and (LPR-1) of IMZ SPECT. In the visual assessment, FMZ BP ND decreased in 11 regions. In IMZ SPECT, low uptake levels were observed in eight of the 11 regions. The rate of concordance between FMZ PET and IMZ SPECT was 72.7%. The mean values IMZ (LPR-1) (1.95 ± 1.01) was significantly lower than that of FMZ BP ND (2.95 ± 0.80 mL/mL). There was good correlation between FMZ BP ND and IMZ (LPR-1) (r = 0.80). IMZ SPECT findings were almost the same as FMZ PET findings in TBI patients. The results indicated that IMZ SPECT is useful for evaluating the loss of neuronal integrity. Because IMZ SPECT can be performed in various facilities, IMZ SPECT may become widely adopted for evaluating the loss of neuronal integrity.

  9. Late onset neurodegeneration in the Cln3-/- mouse model of juvenile neuronal ceroid lipofuscinosis is preceded by low level glial activation.

    PubMed

    Pontikis, Charlie C; Cella, Claire V; Parihar, Nisha; Lim, Ming J; Chakrabarti, Shubhodeep; Mitchison, Hannah M; Mobley, William C; Rezaie, Payam; Pearce, David A; Cooper, Jonathan D

    2004-10-15

    Mouse models of neuronal ceroid lipofuscinosis (NCL) exhibit many features of the human disorder, with widespread regional atrophy and significant loss of GABAergic interneurons in the hippocampus and neocortex. Reactive gliosis is a characteristic of all forms of NCL, but it is unclear whether glial activation precedes or is triggered by neuronal loss. To explore this issue we undertook detailed morphological characterization of the Cln3 null mutant (Cln3(-/-)) mouse model of juvenile NCL (JNCL) that revealed a delayed onset neurodegenerative phenotype with no significant regional atrophy, but with widespread loss of hippocampal interneurons that was first evident at 14 months of age. Quantitative image analysis demonstrated upregulation of markers of astrocytic and microglial activation in presymptomatic Cln3(-/-) mice at 5 months of age, many months before significant neuronal loss occurs. These data provide evidence for subtle glial responses early in JNCL pathogenesis.

  10. Comparison of frailty of primary neurons, embryonic, and aging mouse cortical layers.

    PubMed

    Fugistier, Patrick; Vallet, Philippe G; Leuba, Geneviève; Piotton, Françoise; Marin, Pascale; Bouras, Constantin; Savioz, Armand

    2014-02-01

    Superficial layers I to III of the human cerebral cortex are more vulnerable toward Aβ peptides than deep layers V to VI in aging. Three models of layers were used to investigate this pattern of frailty. First, primary neurons from E14 and E17 embryonic murine cortices, corresponding respectively to future deep and superficial layers, were treated either with Aβ(1-42), okadaic acid, or kainic acid. Second, whole E14 and E17 embryonic cortices, and third, in vitro separated deep and superficial layers of young and old C57BL/6J mice, were treated identically. We observed that E14 and E17 neurons in culture were prone to death after the Aβ and particularly the kainic acid treatment. This was also the case for the superficial layers of the aged cortex, but not for the embryonic, the young cortex, and the deep layers of the aged cortex. Thus, the aged superficial layers appeared to be preferentially vulnerable against Aβ and kainic acid. This pattern of vulnerability corresponds to enhanced accumulation of senile plaques in the superficial cortical layers with aging and Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Future Time Perspective Impacts Gain-Related but Not Loss-Related Intertemporal Choice.

    PubMed

    Li, Tian; Tan, Yuxin; Gong, Xianmin; Yin, Shufei; Qiu, Fangshu; Hu, Xue

    2018-01-01

    Future time perspective (FTP) modulates individuals' temporal orientation in selecting their motivations and goals, which widely influences their cognitions and behaviors. However, it remains unclear how FTP exactly affects intertemporal choice. To clarify the effect of FTP on intertemporal choice, 90 college students ( M age = 21.70, SD = 1.23) were randomly assigned to the limited FTP condition (16 males, 29 females) and the open-ended FTP condition (17 males, 28 females). In the limited FTP condition, participants were instructed to imagine their states of being 70 years old, whereas in the open-ended FTP condition, they were instructed to describe their current states. All participants then completed a series of intertemporal choice tasks, in which they chose from gain- and loss-related choices occurring at various time points. Results showed that the participants who received the future-imagining manipulation had more limited FTP compared with those who did not receive the manipulation, which confirmed the validity of the FTP manipulation. A 2 (FTP: limited vs. open-ended) × 2 (type of choice: gain vs. loss) repeated measures ANOVA on discount rate revealed a significant interaction between these two factors. The participants in the limited FTP condition had higher discount rates on gain-related choices but showed no difference on loss-related choices compared with the participants under the open-ended FTP condition. The results suggest that limited FTP could lower individuals' future orientation (i.e., willingness to delay an outcome) on gain-related, but not on loss-related, intertemporal decision-making.

  12. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus.

    PubMed

    Suntsova, Natalia; Guzman-Marin, Ruben; Kumar, Sunil; Alam, Md Noor; Szymusiak, Ronald; McGinty, Dennis

    2007-02-14

    The perifornical-lateral hypothalamic area (PF/LH) contains neuronal groups playing an important role in control of waking and sleep. Among the brain regions that regulate behavioral states, one of the strongest sources of projections to the PF/LH is the median preoptic nucleus (MnPN) containing a sleep-active neuronal population. To evaluate the role of MnPN afferents in the control of PF/LH neuronal activity, we studied the responses of PF/LH cells to electrical stimulation or local chemical manipulation of the MnPN in freely moving rats. Single-pulse electrical stimulation evoked responses in 79% of recorded PF/LH neurons. No cells were activated antidromically. Direct and indirect transsynaptic effects depended on sleep-wake discharge pattern of PF/LH cells. The majority of arousal-related neurons, that is, cells discharging at maximal rates during active waking (AW) or during AW and rapid eye movement (REM) sleep, exhibited exclusively or initially inhibitory responses to stimulation. Sleep-related neurons, the cells with elevated discharge during non-REM and REM sleep or selectively active in REM sleep, exhibited exclusively or initially excitatory responses. Activation of the MnPN via microdialytic application of L-glutamate or bicuculline resulted in reduced discharge of arousal-related and in excitation of sleep-related PF/LH neurons. Deactivation of the MnPN with muscimol caused opposite effects. The results indicate that the MnPN contains subset(s) of neurons, which exert inhibitory control over arousal-related and excitatory control over sleep-related PF/LH neurons. We hypothesize that MnPN sleep-active neuronal group has both inhibitory and excitatory outputs that participate in the inhibitory control of arousal-promoting PF/LH mechanisms.

  13. Aging and Age-Related Diseases of the Ocular Lens and Vitreous Body

    PubMed Central

    Petrash, J. Mark

    2013-01-01

    Reduced quality of life and financial burden due to visual impairment and blindness begin to increase dramatically when individuals reach the age of 40. The major causes of age-related vision loss can be traced to changes to the structure and function of the lens, one of the tissues responsible for focusing light on the retina. Age-related nuclear cataracts, which are caused by aggregation and condensation of proteins, diminish vision because they impede the transmission and focusing of light on the retina. In addition to the slow-developing age-related form, cataracts often develop rapidly as a complication of ocular surgery, such as following vitrectomy or as a consequence of vitreous gel degeneration. Posterior capsular opacification, which can develop following cataract removal, is caused by proliferation and inappropriate accumulation of lens epithelial cells on the surfaces of intraocular lenses and the posterior lens capsule. Presbyopia is a loss of accommodative amplitude and reduced ability to shift focus from far to near objects. Onset of presbyopia is associated with an increase in lens hardness and reduced ability of the lens to change shape in response to ciliary muscle contraction. Avenues of promising research that seek to delay or prevent these causes of low vision are discussed in light of our current understanding of disease pathogenesis and some challenges that must be met to achieve success. PMID:24335070

  14. ALS-related misfolded protein management in motor neurons and muscle cells.

    PubMed

    Galbiati, Mariarita; Crippa, Valeria; Rusmini, Paola; Cristofani, Riccardo; Cicardi, Maria Elena; Giorgetti, Elisa; Onesto, Elisa; Messi, Elio; Poletti, Angelo

    2014-12-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common form of adult-onset motor neuron disease. It is now considered a multi-factorial and multi-systemic disorder in which alterations of the crosstalk between neuronal and non-neuronal cell types might influence the course of the disease. In this review, we will provide evidence that dysfunctions of affected muscle cells are not only a marginal consequence of denervation associated to motor neurons loss, but a direct consequence of cell muscle toxicity of mutant SOD1. In muscle, the misfolded state of mutant SOD1 protein, unlike in motor neurons, does not appear to have direct effects on protein aggregation and mitochondrial functionality. Muscle cells are, in fact, more capable than motor neurons to handle misfolded proteins, suggesting that mutant SOD1 toxicity in muscle is not mediated by classical mechanisms of intracellular misfolded proteins accumulation. Several recent works indicate that a higher activation of molecular chaperones and degradative systems is present in muscle cells, which for this reason are possibly able to better manage misfolded mutant SOD1. However, several alterations in gene expression and regenerative potential of skeletal muscles have also been reported as a consequence of the expression of mutant SOD1 in muscle. Whether these changes in muscle cells are causative of ALS or a consequence of motor neuron alterations is not yet clear, but their elucidation is very important, since the understanding of the mechanisms involved in mutant SOD1 toxicity in muscle may facilitate the design of treatments directed toward this specific tissue to treat ALS or at least to delay disease progression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults.

    PubMed

    Oka, Saori; Hirai, Jun; Yasukawa, Takashi; Nakahara, Yasuyuki; Inoue, Yoshihiro H

    2015-08-01

    The theory that accumulation of reactive oxygen species (ROS) in internal organs is a major promoter of aging has been considered negatively. However, it is still controversial whether overexpression of superoxide dismutases (SODs), which remove ROS, extends the lifespan in Drosophila adults. We examined whether ROS accumulation by depletion of Cu/Zn-SOD (SOD1) or Mn-SOD (SOD2) influenced age-related impairment of the nervous system and muscles in Drosophila. We confirmed the efficient depletion of Sod1 and Sod2 through RNAi and ROS accumulation by monitoring of ROS-inducible gene expression. Both RNAi flies displayed accelerated impairment of locomotor activity with age and shortened lifespan. Similarly, adults with nervous system-specific depletion of Sod1 or Sod2 also showed reduced lifespan. We then found an accelerated loss of dopaminergic neurons in the flies with suppressed SOD expression. A half-dose reduction of three pro-apoptotic genes resulted in a significant suppression of the neuronal loss, suggesting that apoptosis was involved in the neuronal loss caused by SOD silencing. In addition, depletion of Sod1 or Sod2 in musculature is also associated with enhancement of age-related locomotion impairment. In indirect flight muscles from SOD-depleted adults, abnormal protein aggregates containing poly-ubiquitin accumulated at an early adult stage and continued to increase as the flies aged. Most of these protein aggregates were observed between myofibril layers. Moreover, immuno-electron microscopy indicated that the aggregates were predominantly localized in damaged mitochondria. These findings suggest that muscular and neuronal ROS accumulation may have a significant effect on age-dependent impairment of the Drosophila adults.

  16. Aging-associated changes in hippocampal glycogen metabolism in mice. Evidence for and against astrocyte-to-neuron lactate shuttle.

    PubMed

    Drulis-Fajdasz, Dominika; Gizak, Agnieszka; Wójtowicz, Tomasz; Wiśniewski, Jacek R; Rakus, Dariusz

    2018-03-01

    Lactate derived from astrocytic glycogen has been shown to support memory formation in hippocampi of young animals, inhibiting it in old animals. Here we show, using quantitative mass spectrometry-based proteomics, immunofluorescence, and qPCR that aging is associated with an increase of glycogen metabolism enzymes concentration and shift in their localization from astrocytes to neurons. These changes are accompanied with reorganization of hippocampal energy metabolism which is manifested by elevated capacity of aging neurons to oxidize glucose in glycolysis and mitochondria, and decreased ability for fatty acids utilization. Our observations suggest that astrocyte-to-neuron lactate shuttle may operate in young hippocampi, however, during aging neurons become independent on astrocytic lactate and the metabolic crosstalk between the brain's cells is disrupted. © 2018 The Authors GLIA Published by Wiley Periodicals, Inc.

  17. Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats.

    PubMed

    Kolosova, Nataliya G; Muraleva, Natalia A; Zhdankina, Anna A; Stefanova, Natalia A; Fursova, Anzhela Z; Blagosklonny, Mikhail V

    2012-08-01

    Age-related macular degeneration, a neurodegenerative and vascular retinal disease, is the most common cause of blindness in the Western countries. Evidence accumulates that target of rapamycin is involved in aging and age-related diseases, including neurodegeneration. The target of rapamycin inhibitor, rapamycin, suppresses the senescent cell phenotype and extends life span in diverse species, including mice. Rapamycin decreases senescence-associated phenotypes in retinal pigment epithelial cells in culture. Herein, we investigated the effect of rapamycin on spontaneous retinopathy in senescence-accelerated OXYS rats, an animal model of age-related macular degeneration. Rats were treated with either 0.1 or 0.5 mg/kg rapamycin, which was given orally as a food mixture. In a dose-dependent manner, rapamycin decreased the incidence and severity of retinopathy. Rapamycin improved some (but not all) histological abnormalities associated with retinopathy. Thus, in retinal pigment epithelial cell layers, rapamycin decreased nuclei heterogeneity and normalized intervals between nuclei. In photoreceptor cells, associated neurons, and radial glial cells, rapamycin prevented nuclear and cellular pyknosis. More important, rapamycin prevented destruction of ganglionar neurons in the retina. Rapamycin did not exert any adverse effects on the retina in control disease-free Wistar rats. Taken together, our data suggest the therapeutic potential of rapamycin for treatment and prevention of retinopathy. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Vasoactive intestinal peptide and electrical activity influence neuronal survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenneman, D.E.; Eiden, L.E.

    1986-02-01

    Blockage of electrical activity in dissociated spinal cord cultures results in a significant loss of neurons during a critical period in development. Decreases in neuronal cell numbers and SVI-labeled tetanus toxin fixation produced by electrical blockage with tetrodotoxin (TTX) were prevented by addition of vasoactive intestinal peptide (VIP) to the nutrient medium. The most effective concentration of VIP was 0.1 nM. At higher concentrations, the survival-enhancing effect of VIP on TTX-treated cultures was attenuated. Addition of the peptide alone had no significant effect on neuronal cell counts or tetanus toxin fixation. With the same experimental conditions, two closely related peptides,more » PHI-27 (peptide, histidyl-isoleucine amide) and secretin, were found not to increase the number of neurons in TTX-treated cultures. Interference with VIP action by VIP antiserum resulted in neuronal losses that were not significantly different from those observed after TTX treatment. These data indicate that under conditions of electrical blockade a neurotrophic action of VIP on neuronal survival can be demonstrated.« less

  19. Loss of Hippocampal Neurons after Kainate Treatment Correlates with Behavioral Deficits

    PubMed Central

    Maia, Gisela H.; Quesado, José L.; Soares, Joana I.; do Carmo, Joana M.; Andrade, Pedro A.; Andrade, José P.; Lukoyanov, Nikolai V.

    2014-01-01

    Treating rats with kainic acid induces status epilepticus (SE) and leads to the development of behavioral deficits and spontaneous recurrent seizures later in life. However, in a subset of rats, kainic acid treatment does not induce overt behaviorally obvious acute SE. The goal of this study was to compare the neuroanatomical and behavioral changes induced by kainate in rats that developed convulsive SE to those who did not. Adult male Wistar rats were treated with kainic acid and tested behaviorally 5 months later. Rats that had experienced convulsive SE showed impaired performance on the spatial water maze and passive avoidance tasks, and on the context and tone retention tests following fear conditioning. In addition, they exhibited less anxiety-like behaviors than controls on the open-field and elevated plus-maze tests. Histologically, convulsive SE was associated with marked neuron loss in the hippocampal CA3 and CA1 fields, and in the dentate hilus. Rats that had not experienced convulsive SE after kainate treatment showed less severe, but significant impairments on the spatial water maze and passive avoidance tasks. These rats had fewer neurons than control rats in the dentate hilus, but not in the hippocampal CA3 and CA1 fields. Correlational analyses revealed significant relationships between spatial memory indices of rats and neuronal numbers in the dentate hilus and CA3 pyramidal field. These results show that a part of the animals that do not display intense behavioral seizures (convulsive SE) immediately after an epileptogenic treatment, later in life, they may still have noticeable structural and functional changes in the brain. PMID:24409306

  20. Impact of Aging on the Auditory System and Related Cognitive Functions: A Narrative Review

    PubMed Central

    Jayakody, Dona M. P.; Friedland, Peter L.; Martins, Ralph N.; Sohrabi, Hamid R.

    2018-01-01

    Age-related hearing loss (ARHL), presbycusis, is a chronic health condition that affects approximately one-third of the world's population. The peripheral and central hearing alterations associated with age-related hearing loss have a profound impact on perception of verbal and non-verbal auditory stimuli. The high prevalence of hearing loss in the older adults corresponds to the increased frequency of dementia in this population. Therefore, researchers have focused their attention on age-related central effects that occur independent of the peripheral hearing loss as well as central effects of peripheral hearing loss and its association with cognitive decline and dementia. Here we review the current evidence for the age-related changes of the peripheral and central auditory system and the relationship between hearing loss and pathological cognitive decline and dementia. Furthermore, there is a paucity of evidence on the relationship between ARHL and established biomarkers of Alzheimer's disease, as the most common cause of dementia. Such studies are critical to be able to consider any causal relationship between dementia and ARHL. While this narrative review will examine the pathophysiological alterations in both the peripheral and central auditory system and its clinical implications, the question remains unanswered whether hearing loss causes cognitive impairment or vice versa. PMID:29556173

  1. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.

    PubMed

    Toth, Marton Lorant; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A; Bhanot, Gyan; Rongo, Chris; Hall, David H; Driscoll, Monica

    2012-06-27

    Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.

  2. Neurite Sprouting and Synapse Deterioration in the Aging C. elegans Nervous System

    PubMed Central

    Toth, Marton; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A.; Bhanot, Gyan; Rongo, Chris; Hall, David H

    2012-01-01

    C. elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: 1) accumulation of novel outgrowths from specific neurons, and 2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a dimunition of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies. PMID:22745480

  3. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss

    DTIC Science & Technology

    2012-07-01

    Mesenchymal stem cell (MSC) differentiation towards the bone forming osteoblastic lineage decreases as a function of age and may contribute to age-related...problem of age-related reduced availability of MSC we propose to examine the bone anabolic potential of induced pluripotent stem cell (iPS) derived MSC

  4. Automatic Speech Recognition Predicts Speech Intelligibility and Comprehension for Listeners With Simulated Age-Related Hearing Loss.

    PubMed

    Fontan, Lionel; Ferrané, Isabelle; Farinas, Jérôme; Pinquier, Julien; Tardieu, Julien; Magnen, Cynthia; Gaillard, Pascal; Aumont, Xavier; Füllgrabe, Christian

    2017-09-18

    The purpose of this article is to assess speech processing for listeners with simulated age-related hearing loss (ARHL) and to investigate whether the observed performance can be replicated using an automatic speech recognition (ASR) system. The long-term goal of this research is to develop a system that will assist audiologists/hearing-aid dispensers in the fine-tuning of hearing aids. Sixty young participants with normal hearing listened to speech materials mimicking the perceptual consequences of ARHL at different levels of severity. Two intelligibility tests (repetition of words and sentences) and 1 comprehension test (responding to oral commands by moving virtual objects) were administered. Several language models were developed and used by the ASR system in order to fit human performances. Strong significant positive correlations were observed between human and ASR scores, with coefficients up to .99. However, the spectral smearing used to simulate losses in frequency selectivity caused larger declines in ASR performance than in human performance. Both intelligibility and comprehension scores for listeners with simulated ARHL are highly correlated with the performances of an ASR-based system. In the future, it needs to be determined if the ASR system is similarly successful in predicting speech processing in noise and by older people with ARHL.

  5. Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease

    PubMed Central

    Fu, Hongjun; Rodriguez, Gustavo A.; Herman, Mathieu; Emrani, Sheina; Nahmani, Eden; Barrett, Geoffrey; Figueroa, Helen Y.; Goldberg, Eliana

    2017-01-01

    Summary The earliest stages of Alzheimer's disease (AD) are characterized by the formation of mature tangles in the entorhinal cortex and disorientation and confusion navigating familiar places. The medial entorhinal cortex (MEC) contains specialized neurons called grid cells that form part of the spatial navigation system. Here we show in a transgenic mouse model expressing mutant human tau predominantly in the EC that the formation of mature tangles in old mice was associated with excitatory cell loss and deficits in grid cell function, including destabilized grid fields and reduced firing rates, as well as altered network activity. Overt tau pathology in the aged mice was accompanied by spatial memory deficits. Therefore, tau pathology initiated in the entorhinal cortex could lead to deficits in grid cell firing and underlie the deterioration of spatial cognition seen in human AD. PMID:28111080

  6. Understanding HIV-related stigma in older age in rural Malawi.

    PubMed

    Freeman, Emily

    2016-09-01

    The combination of HIV- and age-related stigma exacerbates prevalence of HIV infection and late diagnosis and initiation of anti-retroviral therapy among older populations (Moore, 2012; Richards et al. 2013). Interventions to address these stigmas must be grounded in understanding of situated systems of beliefs about illness and older age. This study analyses constructions of HIV and older age that underpinned the stigmatisation of older adults with HIV in rural Balaka, Malawi. It draws on data from a series of in-depth interviews (N = 135) with adults aged 50-∼90 (N = 43) in 2008-2010. Around 40% (n = 18) of the sample had HIV. Dominant understandings of HIV in Balaka pertained to the sexual transmission of the virus and poor prognosis of those infected. They intersected with understandings of ageing. Narratives about older age and HIV in older age both centred on the importance of having bodily, moral and social power to perform broadly-defined "work". Those who could not work were physically and socially excluded from the social world. This status, labelled as "child-like", was feared by all participants. In participants' narratives, growing old involves a gradual decline in the power required to produce one's membership of the social world through work. HIV infection in old age is understood to accelerate this decline. Understandings of the sexual transmission of HIV, in older age, imply the absence of moral power and in turn, loss of social power. The prognosis of those with HIV, in older age, reflects and causes amplified loss of bodily power. In generating dependency, this loss of bodily power infantilises older care recipients and jeopardises their family's survival, resulting in further loss of social power. This age-and HIV-related loss of power to produce social membership through work is the discrediting attribute at the heart of the stigmatisation of older people with HIV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons.

    PubMed

    Lopez-Gonzalez, Rodrigo; Lu, Yubing; Gendron, Tania F; Karydas, Anna; Tran, Helene; Yang, Dejun; Petrucelli, Leonard; Miller, Bruce L; Almeida, Sandra; Gao, Fen-Biao

    2016-10-19

    GGGGCC repeat expansions in C9ORF72 are the most common genetic cause of both ALS and FTD. To uncover underlying pathogenic mechanisms, we found that DNA damage was greater, in an age-dependent manner, in motor neurons differentiated from iPSCs of multiple C9ORF72 patients than control neurons. Ectopic expression of the dipeptide repeat (DPR) protein (GR) 80 in iPSC-derived control neurons increased DNA damage, suggesting poly(GR) contributes to DNA damage in aged C9ORF72 neurons. Oxidative stress was also increased in C9ORF72 neurons in an age-dependent manner. Pharmacological or genetic reduction of oxidative stress partially rescued DNA damage in C9ORF72 neurons and control neurons expressing (GR) 80 or (GR) 80 -induced cellular toxicity in flies. Moreover, interactome analysis revealed that (GR) 80 preferentially bound to mitochondrial ribosomal proteins and caused mitochondrial dysfunction. Thus, poly(GR) in C9ORF72 neurons compromises mitochondrial function and causes DNA damage in part by increasing oxidative stress, revealing another pathogenic mechanism in C9ORF72-related ALS and FTD. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Glucocorticoid-induced loss of DNA methylation in non-neuronal cells and potential involvement of DNMT1 in epigenetic regulation of Fkbp5

    PubMed Central

    Yang, Xiaoju; Ewald, Erin R.; Huo, Yuqing; Tamashiro, Kellie L.; Salvatori, Roberto; Sawa, Akira; Wand, Gary S.; Lee, Richard S.

    2012-01-01

    Glucocorticoids may play a significant role in the etiology of neuropsychiatric illnesses. Abnormalities in plasma cortisol levels, glucocorticoid sensitivity, and HPA-axis function often accompany clinical symptoms of stress-related illnesses such as PTSD and depression. Of particular interest are genetic association studies that link single nucleotide polymorphisms of HPA-axis genes with illnesses only in the context of an early-life trauma exposure such as child abuse. These studies suggest that dysregulation of HPA-axis function can have lasting repercussions in shaping mood and anxiety, long after termination of the traumatic experience. As persistent glucocorticoid-induced loss of DNA methylation in Fkbp5 was previously observed in the hippocampus and blood and in the neuronal cell line HT-22, we asked whether these epigenetic alterations occur in non-neuronal, HPA-axis relevant cells. We used the pituitary adenoma cell line AtT-20 to demonstrate that the intronic enhancer region of Fkbp5 undergoes loss of DNA methylation in response to dexamethasone treatment in a dose-dependent manner. We also focused on the mouse hippocampal dentate gyrus to test whether these changes would be enriched in a region implicated in the HPA-axis stress response, neurogenesis, and synaptic plasticity. We observed an increase in enrichment of DNA methylation loss in the dentate gyrus, as compared to whole hippocampal tissues that were similarly treated with glucocorticoids. We then asked whether Dnmt1, a methyltransferase enzyme involved in maintaining DNA methylation following cell division, is involved in the observed epigenetic alterations. We found a dose-dependent decrease of Dnmt1 expression in the AtT-20 cells following dexamethasone treatment, and a similar decrease in corticosterone-treated mouse hippocampus. Taken together, we provide evidence that these glucocorticoid-induced epigenetic alterations have a broader validity in non-neuronal cells and that they may involve

  9. The burden of age-related macular degeneration: a value-based analysis.

    PubMed

    Brown, Melissa M; Brown, Gary C; Sharma, Sanjay; Stein, Joshua D; Roth, Zachary; Campanella, Joseph; Beauchamp, George R

    2006-06-01

    The quality-of-life loss and the financial consequences associated with age-related macular degeneration are assessed. The quality-of-life loss associated with macular degeneration is markedly underestimated by the general public, nonophthalmic physicians, and ophthalmologists who treat patients with this condition. Mild age-related macular degeneration causes a 17% decrement in the quality of life of the average patient, similar to that encountered with moderate cardiac angina or symptomatic human immunodeficiency virus syndrome. Moderate age-related macular degeneration causes a 40% decrease in the average patient's quality of life, similar to that associated with severe cardiac angina or renal dialysis. Very severe age-related macular degeneration causes a large 63% decrease in the average patient's quality of life, similar to that encountered with end-stage prostatic cancer or a catastrophic stroke that leaves a person bedridden, incontinent and requiring constant nursing care. The return on investment is high for both treatment with current age-related macular degeneration therapies and the research costs invested in the development of age-related macular degeneration treatment modalities. Age-related macular degeneration is a major public health problem that has a devastating effect upon patients and marked adverse financial consequences for the economy.

  10. Limb deficiency and prosthetic management. 2. Aging with limb loss.

    PubMed

    Flood, Katherine M; Huang, Mark E; Roberts, Toni L; Pasquina, Paul F; Nelson, Virginia S; Bryant, Phillip R

    2006-03-01

    This self-directed learning module highlights the issues faced by people aging with limb loss. It is part of the study guide on limb deficiency and vascular rehabilitation in the Self-Directed Physiatric Education Program for practitioners and trainees in physical medicine and rehabilitation. This article specifically focuses on the impact that limb loss has on health and physical function throughout the life span. Case examples are used to illustrate what effect limb loss in childhood or young adulthood has on the incidence and management of new impairments or disease processes commonly associated with aging. To discuss the impact of early-life limb loss on the incidence and management of physiologic and functional changes associated with aging.

  11. The estrogen-related receptors (ERRs): potential targets against bone loss.

    PubMed

    Zhang, Ling; Wong, Jiemin; Vanacker, Jean-Marc

    2016-10-01

    Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.

  12. Therapeutic strategies to address neuronal nitric oxide synthase deficiency and the loss of nitric oxide bioavailability in Duchenne Muscular Dystrophy.

    PubMed

    Timpani, Cara A; Hayes, Alan; Rybalka, Emma

    2017-05-25

    Duchenne Muscular Dystrophy is a rare and fatal neuromuscular disease in which the absence of dystrophin from the muscle membrane induces a secondary loss of neuronal nitric oxide synthase and the muscles capacity for endogenous nitric oxide synthesis. Since nitric oxide is a potent regulator of skeletal muscle metabolism, mass, function and regeneration, the loss of nitric oxide bioavailability is likely a key contributor to the chronic pathological wasting evident in Duchenne Muscular Dystrophy. As such, various therapeutic interventions to re-establish either the neuronal nitric oxide synthase protein deficit or the consequential loss of nitric oxide synthesis and bioavailability have been investigated in both animal models of Duchenne Muscular Dystrophy and in human clinical trials. Notably, the efficacy of these interventions are varied and not always translatable from animal model to human patients, highlighting a complex interplay of factors which determine the downstream modulatory effects of nitric oxide. We review these studies herein.

  13. Loss of mTOR repressors Tsc1 or Pten has divergent effects on excitatory and inhibitory synaptic transmission in single hippocampal neuron cultures.

    PubMed

    Weston, Matthew C; Chen, Hongmei; Swann, John W

    2014-01-01

    The Pten and Tsc1 genes both encode proteins that repress mechanistic target of rapamycin (mTOR) signaling. Disruption of either gene in the brain results in epilepsy and autism-like symptoms in humans and mouse models, therefore it is important to understand the molecular and physiological events that lead from gene disruption to disease phenotypes. Given the similar roles these two molecules play in the regulation of cellular growth and the overlap in the phenotypes that result from their loss, we predicted that the deletion of either the Pten or Tsc1 gene from autaptic hippocampal neurons would have similar effects on neuronal morphology and synaptic transmission. Accordingly, we found that loss of either Pten or Tsc1 caused comparable increases in soma size, dendrite length and action potential properties. However, the effects of Pten and Tsc1 loss on synaptic transmission were different. Loss of Pten lead to an increase in both excitatory and inhibitory neurotransmission, while loss of Tsc1 did not affect excitatory neurotransmission and reduced inhibitory transmission by decreasing mIPSC amplitude. Although the loss of Pten or Tsc1 both increased downstream mTORC1 signaling, phosphorylation of Akt was increased in Pten-ko and decreased in Tsc1-ko neurons, potentially accounting for the different effects on synaptic transmission. Despite the different effects at the synaptic level, our data suggest that loss of Pten or Tsc1 may both lead to an increase in the ratio of excitation to inhibition at the network level, an effect that has been proposed to underlie both epilepsy and autism.

  14. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons.

    PubMed

    Fukui, Hirokazu; Moraes, Carlos T

    2009-03-15

    Age-dependent accumulation of partially deleted mitochondrial DNA (DeltamtDNA) has been suggested to contribute to aging and the development of age-associated diseases including Parkinson's disease. However, the molecular mechanisms underlying the generation and accumulation of DeltamtDNA have not been addressed in vivo. In this study, we have developed a mouse model expressing an inducible mitochondria-targeted restriction endonuclease (PstI). Using this system, we could trigger mtDNA double-strand breaks (DSBs) in adult neurons. We found that this transient event leads to the generation of a family of DeltamtDNA with features that closely resemble naturally-occurring mtDNA deletions. The formation of these deleted species is likely to be mediated by yet uncharacterized DNA repairing machineries that participate in homologous recombination and non-homologous end-joining. Furthermore, we obtained in vivo evidence that DeltamtDNAs with larger deletions accumulate faster than those with smaller deletions, implying a replicative advantage of smaller mtDNAs. These findings identify DSB, DNA repair systems and replicative advantage as likely mechanisms underlying the generation and age-associated accumulation of DeltamtDNA in mammalian neurons.

  15. MRI Brain Volume Measurements in Infantile Neuronal Ceroid Lipofuscinosis.

    PubMed

    Baker, E H; Levin, S W; Zhang, Z; Mukherjee, A B

    2017-02-01

    Infantile neuronal ceroid lipofuscinosis is a devastating neurodegenerative storage disease caused by palmitoyl-protein thioesterase 1 deficiency, which impairs degradation of palmitoylated proteins (constituents of ceroid) by lysosomal hydrolases. Consequent lysosomal ceroid accumulation leads to neuronal injury, resulting in rapid neurodegeneration and childhood death. As part of a project studying the treatment benefits of a combination of cysteamine bitartrate and N -acetyl cysteine, we made serial measurements of patients' brain volumes with MR imaging. Ten patients with infantile neuronal ceroid lipofuscinosis participating in a treatment/follow-up study underwent brain MR imaging that included high-resolution T1-weighted images. After manual placement of a mask delineating the surface of the brain, a maximum-likelihood classifier was applied to determine total brain volume, further subdivided as cerebrum, cerebellum, brain stem, and thalamus. Patients' brain volumes were compared with those of a healthy population. Major subdivisions of the brain followed similar trajectories with different timing. The cerebrum demonstrated early, rapid volume loss and may never have been normal postnatally. The thalamus dropped out of the normal range around 6 months of age; the cerebellum, around 2 years of age; and the brain stem, around 3 years of age. Rapid cerebral volume loss was expected on the basis of previous qualitative reports. Because our study did not include a nontreatment arm and because progression of brain volumes in infantile neuronal ceroid lipofuscinosis has not been previously quantified, we could not determine whether our intervention had a beneficial effect on brain volumes. However, the level of quantitative detail in this study allows it to serve as a reference for evaluation of future therapeutic interventions. © 2017 by American Journal of Neuroradiology.

  16. Effects of Aging and Adult-Onset Hearing Loss on Cortical Auditory Regions

    PubMed Central

    Cardin, Velia

    2016-01-01

    Hearing loss is a common feature in human aging. It has been argued that dysfunctions in central processing are important contributing factors to hearing loss during older age. Aging also has well documented consequences for neural structure and function, but it is not clear how these effects interact with those that arise as a consequence of hearing loss. This paper reviews the effects of aging and adult-onset hearing loss in the structure and function of cortical auditory regions. The evidence reviewed suggests that aging and hearing loss result in atrophy of cortical auditory regions and stronger engagement of networks involved in the detection of salient events, adaptive control and re-allocation of attention. These cortical mechanisms are engaged during listening in effortful conditions in normal hearing individuals. Therefore, as a consequence of aging and hearing loss, all listening becomes effortful and cognitive load is constantly high, reducing the amount of available cognitive resources. This constant effortful listening and reduced cognitive spare capacity could be what accelerates cognitive decline in older adults with hearing loss. PMID:27242405

  17. Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system.

    PubMed

    Becker, Laren; Nguyen, Linh; Gill, Jaspreet; Kulkarni, Subhash; Pasricha, Pankaj Jay; Habtezion, Aida

    2018-05-01

    The enteric nervous system (ENS) undergoes neuronal loss and degenerative changes with age. The cause of this neurodegeneration is poorly understood. Muscularis macrophages residing in close proximity to enteric ganglia maintain neuromuscular function via direct crosstalk with enteric neurons and have been implicated in the pathogenesis of GI motility disorders like gastroparesis and postoperative ileus. The aim of this study was to assess whether ageing causes alterations in macrophage phenotype that contributes to age-related degeneration of the ENS. Longitudinal muscle and myenteric plexus from small intestine of young, mid-aged and old mice were dissected and prepared for whole mount immunostaining, flow cytometry, Luminex immunoassays, western blot analysis, enteric neural stem cell (ENSC) isolation or conditioned media. Bone marrow derived macrophages were prepared and polarised to classic (M1) or alternative (M2) activation states. Markers for macrophage phenotype were measured using quantitative RT-PCR. Ageing causes a shift in macrophage polarisation from anti-inflammatory 'M2' to proinflammatory 'M1' that is associated with a rise in cytokines and immune cells in the ENS. This phenotypic shift is associated with a neural response to inflammatory signals, increase in apoptosis and loss of enteric neurons and ENSCs, and delayed intestinal transit. An age-dependent decrease in expression of the transcription factor FoxO3, a known longevity gene, contributes to the loss of anti-inflammatory behaviour in macrophages of old mice, and FoxO3-deficient mice demonstrate signs of premature ageing of the ENS. A shift by macrophages towards a proinflammatory phenotype with ageing causes inflammation-mediated degeneration of the ENS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Raspberry supplementation alleviates age-related motor dysfunction in select populations

    USDA-ARS?s Scientific Manuscript database

    Age-related declines in balance, muscle strength and coordination often lead to a higher incidence of falling. Among older adults, falls are the leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demons...

  19. Serum aminotransferase changes with significant weight loss: sex and age effects.

    PubMed

    Suzuki, Ayako; Binks, Martin; Sha, Ronald; Wachholtz, Amy; Eisenson, Howard; Diehl, Anna Mae

    2010-02-01

    In obese subjects, the liver may be differentially affected by significant weight loss depending on as yet unknown factors. We explored clinical factors associated with serum alanine aminotransferase (ALT) changes during significant weight loss in a residential weight loss program. Clinical data from 362 adults who received a comprehensive weight loss intervention (ie, diets, physical fitness, and behavioral modification) in the program were analyzed. Serum ALT was used as a surrogate marker of liver injury. The ALT changes during the program were calculated to create study outcome categories (improvement, no change, or deterioration of ALT during significant weight loss). Variables of demography, lifestyle, and comorbidities at baseline, and total/rate of weight change during the program were explored for associations with the ALT change categories using multiple logistic regression models. Variation by sex was apparent among predictors of ALT deterioration; men with rapid weight loss and women with higher initial body mass index were more likely to experience ALT deterioration, whereas men with prior alcohol consumption were less likely to experience ALT deterioration even after adjusting for baseline ALT (Ps < .03). Variation by age was apparent among predictors of ALT improvement; younger patients with current smoking and older patients with rapid weight loss, diabetes or impaired fasting glucose, or sleep apnea or who followed a reduced-carbohydrate diet were less likely to experience ALT improvement (Ps < .05). A number of clinical factors influence ALT changes during weight loss in sex- and age-specific manners. The patterns that we detected may have pathophysiologic significance beyond the practical implications of our findings in clinical practice related to underlying changes in fat metabolism. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Low Vision Rehabilitation, Age-Related Vision Loss, and Risk: A Critical Interpretive Synthesis

    PubMed Central

    Laliberte Rudman, Debbie; Egan, Mary Y.; McGrath, Colleen E.; Kessler, Dorothy; Gardner, Paula; King, Judy; Ceci, Christine

    2016-01-01

    Purpose: Given the centrality of risk in geriatric rehabilitation, it is critically important to attend to how conceptualizations of risk shape research, policies, and rehabilitation practices. This paper presents a critical interpretive synthesis (CIS) of literature addressing risk and low vision rehabilitation for older adults with age-related vision loss (ARVL) to identify key guiding assumptions regarding risk and discuss implications for what gets attended to, and not attended to, within research and rehabilitation. Design and Methods: This CIS combined guidelines proposed by Dixon-Woods and colleagues (2006—Conducting a critical interpretive synthesis of the literature on access to healthcare by vulnerable groups. BMC Medical Research Methodology, 6, 35) and Alvesson and Sandberg (2011—Generating research questions through problematization. Academy of Management Review, 36, 247–271; 2013—Constructing research questions: Doing interesting research. London: Sage). The iterative review process involved 3 steps: literature search and selection, data extraction, and syntheses to identify boundary assumptions. The dataset included 83 research and practice description articles. Results: Older adults with ARVL were constructed as “at risk” for various adverse outcomes, particularly dependency and self-harm, and as posing risks to others. An epidemiological approach to risk based in assumptions aligned with a technico-scientific perspective was dominant, with risk conceptualized as an embodied, individual-level phenomenon that is to be determined and managed through objective screening and expert monitoring. Implications: Key concerns include a lack of: attention to the tensions created when rehabilitation research and practice attempt to promote independence while simultaneously reducing risk, incorporation of aging adults’ perspectives on risk, and analysis of environmental factors that shape risks. Research that starts by valuing older adults

  1. Profound vision loss impairs psychological well-being in young and middle-aged individuals.

    PubMed

    Garcia, Giancarlo A; Khoshnevis, Matin; Gale, Jesse; Frousiakis, Starleen E; Hwang, Tiffany J; Poincenot, Lissa; Karanjia, Rustum; Baron, David; Sadun, Alfredo A

    2017-01-01

    The aim of this study was to evaluate the effects of profound vision loss on psychological well-being in adolescents, young adults, and middle-aged adults with regard to mood, interpersonal interactions, and career-related goals. In addition, we assessed the significance of the resources that may be used to enhance psychological well-being in cases of profound vision loss, and in particular, examined the utility of low vision aids and the role of the ophthalmologist as a provider of emotional support. A questionnaire was issued to individuals aged 13-65 years with profound vision loss resulting from Leber's hereditary optic neuropathy (LHON). Depression prevalence was evaluated with questions regarding major depressive disorder symptomatology. Participants appraised the effects of vision loss on their interpersonal interactions and career goals by providing an impact rating (IR) on a 21-point psychometric scale from -10 to +10. Social well-being index was defined as the average of interpersonal IR and career IR. Subjects were additionally asked about the use of low vision aids and sources of emotional support. A total of 103 participants (mean age =26.4±11.2 years at LHON diagnosis; mean ± standard deviation) completed the questionnaire. Nearly half (49.5%) met the depression criteria after vision loss. Negative impacts on interpersonal interactions (median IR = -5) and career goals (median IR = -6) were observed; both ratings were worse ( P <0.001) for depressed versus nondepressed subjects. Older age at diagnosis corresponded to higher depression prevalence and increased incidence of negative interpersonal IR and career IR. Sixty-eight percent of subjects used electronic vision aids; controlling for age, social well-being index was higher among these individuals than for those who did not use electronic aids ( P =0.03). Over half of the participants (52.4%) asserted that they derived emotional support from their ophthalmologist. Profound vision loss in

  2. Enhanced Sensitivity to Hyperpolarizing Inhibition in Mesoaccumbal Relative to Nigrostriatal Dopamine Neuron Subpopulations

    PubMed Central

    2017-01-01

    Midbrain dopamine neurons recorded in vivo pause their firing in response to reward omission and aversive stimuli. While the initiation of pauses typically involves synaptic or modulatory input, intrinsic membrane properties may also enhance or limit hyperpolarization, raising the question of how intrinsic conductances shape pauses in dopamine neurons. Using retrograde labeling and electrophysiological techniques combined with computational modeling, we examined the intrinsic conductances that shape pauses evoked by current injections and synaptic stimulation in subpopulations of dopamine neurons grouped according to their axonal projections to the nucleus accumbens or dorsal striatum in mice. Testing across a range of conditions and pulse durations, we found that mesoaccumbal and nigrostriatal neurons differ substantially in rebound properties with mesoaccumbal neurons displaying significantly longer delays to spiking following hyperpolarization. The underlying mechanism involves an inactivating potassium (IA) current with decay time constants of up to 225 ms, and small-amplitude hyperpolarization-activated currents (IH), characteristics that were most often observed in mesoaccumbal neurons. Pharmacological block of IA completely abolished rebound delays and, importantly, shortened synaptically evoked inhibitory pauses, thereby demonstrating the involvement of A-type potassium channels in prolonging pauses evoked by GABAergic inhibition. Therefore, these results show that mesoaccumbal and nigrostriatal neurons display differential responses to hyperpolarizing inhibitory stimuli that favors a higher sensitivity to inhibition in mesoaccumbal neurons. These findings may explain, in part, observations from in vivo experiments that ventral tegmental area neurons tend to exhibit longer aversive pauses relative to SNc neurons. SIGNIFICANCE STATEMENT Our study examines rebound, postburst, and synaptically evoked inhibitory pauses in subpopulations of midbrain dopamine

  3. Cell-Specific Loss of SNAP25 from Cortical Projection Neurons Allows Normal Development but Causes Subsequent Neurodegeneration.

    PubMed

    Hoerder-Suabedissen, Anna; Korrell, Kim V; Hayashi, Shuichi; Jeans, Alexander; Ramirez, Denise M O; Grant, Eleanor; Christian, Helen C; Kavalali, Ege T; Wilson, Michael C; Molnár, Zoltán

    2018-05-30

    Synaptosomal associated protein 25 kDa (SNAP25) is an essential component of the SNARE complex regulating synaptic vesicle fusion. SNAP25 deficiency has been implicated in a variety of cognitive disorders. We ablated SNAP25 from selected neuronal populations by generating a transgenic mouse (B6-Snap25tm3mcw (Snap25-flox)) with LoxP sites flanking exon5a/5b. In the presence of Cre-recombinase, Snap25-flox is recombined to a truncated transcript. Evoked synaptic vesicle release is severely reduced in Snap25 conditional knockout (cKO) neurons as shown by live cell imaging of synaptic vesicle fusion and whole cell patch clamp recordings in cultured hippocampal neurons. We studied Snap25 cKO in subsets of cortical projection neurons in vivo (L5-Rbp4-Cre; L6-Ntsr1-Cre; L6b-Drd1a-Cre). cKO neurons develop normal axonal projections, but axons are not maintained appropriately, showing signs of swelling, fragmentation and eventually complete absence. Onset and progression of degeneration are dependent on the neuron type, with L5 cells showing the earliest and most severe axonal loss. Ultrastructural examination revealed that cKO neurites contain autophagosome/lysosome-like structures. Markers of inflammation such as Iba1 and lipofuscin are increased only in adult cKO cortex. Snap25 cKO can provide a model to study genetic interactions with environmental influences in several disorders.

  4. Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity.

    PubMed

    Ohsawa, Ikuroh; Nishimaki, Kiyomi; Murakami, Yayoi; Suzuki, Yuko; Ishikawa, Masahiro; Ohta, Shigeo

    2008-06-11

    Oxidative stress may underlie age-dependent memory loss and cognitive decline. Toxic aldehydes, including 4-hydroxy-2-nonenal (HNE), an end product of lipid peroxides, are known to accumulate in the brain in neurodegenerative disease. We have previously shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) detoxifies HNE by oxidizing its aldehyde group. To investigate the role of such toxic aldehydes, we produced transgenic mice, which expressed a dominant-negative form of ALDH2 in the brain. The mice had decreased ability to detoxify HNE in their cortical neurons and accelerated accumulation of HNE in the brain. Consequently, their lifespan was shortened and age-dependent neurodegeneration and hyperphosphorylation of tau were observed. Object recognition and Morris water maze tests revealed that the onset of cognitive impairment correlated with the degeneration, which was further accelerated by APOE (apolipoprotein E) knock-out; therefore, the accumulation of toxic aldehydes is by itself critical in the progression of neurodegenerative disease, which could be suppressed by ALDH2.

  5. Characterizing age-related decline of recognition memory and brain activation profile in mice.

    PubMed

    Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale

    2018-06-01

    Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Deep Sleep and Parietal Cortex Gene Expression Changes Are Related to Cognitive Deficits with Age

    PubMed Central

    Buechel, Heather M.; Popovic, Jelena; Searcy, James L.; Porter, Nada M.; Thibault, Olivier; Blalock, Eric M.

    2011-01-01

    Background Age-related cognitive deficits negatively affect quality of life and can presage serious neurodegenerative disorders. Despite sleep disruption's well-recognized negative influence on cognition, and its prevalence with age, surprisingly few studies have tested sleep's relationship to cognitive aging. Methodology We measured sleep stages in young adult and aged F344 rats during inactive (enhanced sleep) and active (enhanced wake) periods. Animals were behaviorally characterized on the Morris water maze and gene expression profiles of their parietal cortices were taken. Principal Findings Water maze performance was impaired, and inactive period deep sleep was decreased with age. However, increased deep sleep during the active period was most strongly correlated to maze performance. Transcriptional profiles were strongly associated with behavior and age, and were validated against prior studies. Bioinformatic analysis revealed increased translation and decreased myelin/neuronal pathways. Conclusions The F344 rat appears to serve as a reasonable model for some common sleep architecture and cognitive changes seen with age in humans, including the cognitively disrupting influence of active period deep sleep. Microarray analysis suggests that the processes engaged by this sleep are consistent with its function. Thus, active period deep sleep appears temporally misaligned but mechanistically intact, leading to the following: first, aged brain tissue appears capable of generating the slow waves necessary for deep sleep, albeit at a weaker intensity than in young. Second, this activity, presented during the active period, seems disruptive rather than beneficial to cognition. Third, this active period deep sleep may be a cognitively pathologic attempt to recover age-related loss of inactive period deep sleep. Finally, therapeutic strategies aimed at reducing active period deep sleep (e.g., by promoting active period wakefulness and/or inactive period deep sleep) may

  7. Postnatal loss of brainstem serotonin neurones compromises the ability of neonatal rats to survive episodic severe hypoxia

    PubMed Central

    Cummings, Kevin J; Hewitt, Julie C; Li, Aihua; Daubenspeck, John A; Nattie, Eugene E

    2011-01-01

    Abstract Pet-1−/− mice with a prenatal, genetically induced loss of 5-hydroxytryptamine (5-HT, serotonin) neurones are compromised in their ability to withstand episodic environmental anoxia via autoresuscitation. Given the prenatal role of 5-HT neurones in the development of neural networks, here we ask if a postnatal loss of 5-HT neurones also compromises autoresuscitation. We treated neonatal rat pups at postnatal day (P)2–3 with an intra-cisternal injection of 5,7-dihydroxytryptamine (5,7-DHT; ∼40 μg; n = 8) to pharmacologically lesion the 5-HT system, or vehicle (control; n = 14). At P7–10 we exposed unanaesthetized treated and control pups to 15 episodes of environmental anoxia (97% N2, 3% CO2). Medullary 5-HT content was reduced 80% by 5,7-DHT treatment (P < 0.001). Baseline ventilation (), metabolic rate (), ventilatory equivalent (/), heart rate (HR), heart rate variability (HRV) and arterial haemoglobin saturation () were no different in 5-HT-deficient pups compared to controls. However, only 25% of 5-HT-deficient pups survived all 15 episodes of environmental anoxia, compared to 79% of control littermates (P = 0.007). High mortality of 5,7-DHT-treated pups was associated with delayed onset of gasping (P < 0.001), delayed recovery of HR from hypoxic-induced bradycardia (P < 0.001), and delayed recovery of eupnoea from hypoxic-induced apnoea (P < 0.001). Treatment with 5,7-DHT affected neither the gasping pattern once initiated, nor HR, / or during the intervening episodes of room air. A significant increase in HRV occurred in all animals with repeated exposure, and in 5-HT-deficient pups this increase occurred immediately prior to death. We conclude that a postnatal loss of brainstem 5-HT content compromises autoresuscitation in response to environmental anoxia. This report provides new evidence in rat pups that 5-HT neurones serve a physiological role in autoresuscitation. Our data may be relevant to understanding the aetiology of the sudden

  8. Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss

    PubMed Central

    Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Ferri, Sarah L.; Baumann, Arnd; Meerlo, Peter

    2014-01-01

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object–location task. Five hours of total sleep deprivation directly following training impaired the formation of object–location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. PMID:25411499

  9. Designing a Training Program for Understanding Sensory Losses in Aging

    ERIC Educational Resources Information Center

    Shore, Herbert

    1976-01-01

    Techniques have been developed for research and teaching purposes on the sensory losses that accompany the aging process. By experiencing the sensory loss, those working with the aged understand how the environment and professional interaction can assist, support, and enhance coping and functioning by the older person. (Author)

  10. Aberrant Subcellular Neuronal Calcium Regulation in Aging and Alzheimer’s Disease

    PubMed Central

    Camandola, Simonetta; Mattson, Mark P.

    2010-01-01

    In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer’s disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. PMID:20950656

  11. Peripheral nerve injury induces loss of nociceptive neuron-specific Gαi-interacting protein in neuropathic pain rat.

    PubMed

    Liu, Zhen; Wang, Fei; Fischer, Gregory; Hogan, Quinn H; Yu, Hongwei

    2016-01-01

    Gαi-interacting protein (GINIP) is expressed specifically in dorsal root ganglion (DRG) neurons and functions in modulation of peripheral gamma-aminobutyric acid B receptor (GBR). Genetic deletion of GINIP leads to impaired responsiveness to GBR agonist-mediated analgesia in rodent. It is, however, not defined whether nerve injury changes GINIP expression. Immunolabeling with validated antibody revealed GINIP expression in ~40% of total lumbar DRG neurons in normal adult rats. GINIP immunoreactivity was detected in ~80% of IB4-positive (nonpeptidergic) and ~30% of CGRP-positive (peptidergic) neurons. GINIP immunoreactivity in the spinal cord dorsal horn was colabeled with IB4 and partially with CGRP. In addition, GINIP was expressed in DRG neurons immunopositive for GBR1, GBR2, Gαi(s), and Gαo and was also extensively colabeled with multiple nociceptive neuronal markers, including Trpv1, NaV1.7, CaV2.2α1b, CaV3.2α1b, TrkA, and Trek2. Peripheral nerve injury by L5 spinal nerve ligation significantly decreased the proportion of GINIP immunoreactivity-positive neurons from 40 ± 8.4% to 0.8 ± 0.1% (p < 0.01, mean ± SD, four weeks after spinal nerve ligation) and the total GINIP protein to 1.3% ± 0.04% of its basal level (p < 0.01, n = 6 animals in each group, two weeks after spinal nerve ligation) in the ipsilateral L5 DRGs. Our results show that GINIP is predominantly expressed by small nonpeptidergic nociceptive neurons and that nerve injury triggers loss of GINIP expression. Signal transduction roles of GINIP may be diverse as it colabeled with various subgroups of nociceptive neurons. Future studies may investigate details of the signaling mechanism engaged by GINIP, as well as the pathophysiological significance of lost expression of GINIP in neuropathic pain. © The Author(s) 2016.

  12. Projecting productivity losses for cancer-related mortality 2011 - 2030.

    PubMed

    Pearce, Alison; Bradley, Cathy; Hanly, Paul; O'Neill, Ciaran; Thomas, Audrey Alforque; Molcho, Michal; Sharp, Linda

    2016-10-18

    When individuals stop working due to cancer this represents a loss to society - the loss of productivity. The aim of this analysis was to estimate productivity losses associated with premature mortality from all adult cancers and from the 20 highest mortality adult cancers in Ireland in 2011, and project these losses until 2030. An incidence-based method was used to estimate the cost of cancer deaths between 2011 and 2030 using the Human Capital Approach. National data were used for cancer, population and economic inputs. Both paid work and unpaid household activities were included. Sensitivity analyses estimated the impact of assumptions around future cancer mortality rates, retirement ages, value of unpaid work, wage growth and discounting. The 233,000 projected deaths from all invasive cancers in Ireland between 2011 and 2030 will result in lost productivity valued at €73 billion; €13 billion in paid work and €60 billion in household activities. These losses represent approximately 1.4 % of Ireland's GDP annually. The most costly cancers are lung (€14.4 billion), colorectal and breast cancer (€8.3 billion each). However, when viewed as productivity losses per cancer death, testis (€364,000 per death), cervix (€155,000 per death) and brain cancer (€136,000 per death) are most costly because they affect working age individuals. An annual 1 % reduction in mortality reduces productivity losses due to all invasive cancers by €8.5 billion over 20 years. Society incurs substantial losses in productivity as a result of cancer-related mortality, particularly when household production is included. These estimates provide valuable evidence to inform resource allocation decisions in cancer prevention and control.

  13. Loss of consciousness is related to hyper-correlated gamma-band activity in anesthetized macaques and sleeping humans.

    PubMed

    Bola, Michał; Barrett, Adam B; Pigorini, Andrea; Nobili, Lino; Seth, Anil K; Marchewka, Artur

    2018-02-15

    Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments. First, electrocorticography (ECoG) acquired from 4 macaque monkeys anesthetized with different anesthetic agents (ketamine, medetomidine, propofol) and, second, stereo-electroencephalography (sEEG) from 10 epilepsy patients in different wake-sleep stages (wakefulness, NREM, REM). Specifically, we investigated co-activation patterns among brain areas, defined as correlations between local amplitudes of gamma-band activity. We found that resting wakefulness was associated with intermediate levels of gamma-band coupling, indicating neither complete dependence, nor full independence among brain regions. In contrast, loss of consciousness during NREM sleep and propofol anesthesia was associated with excessively correlated brain activity, as indicated by a robust increase of number and strength of positive correlations. However, such excessively correlated brain signals were not observed during REM sleep, and were present only to a limited extent during ketamine anesthesia. This might be related to the fact that, despite suppression of behavioral responsiveness, REM sleep and ketamine anesthesia often involve presence of dream-like conscious experiences. We conclude that hyper-correlated gamma-band activity might be a signature of loss of consciousness common across various manipulations and independent of behavioral responsiveness. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Age-related and menopause-related changes of urinary excretion of C- and N-terminal cross-linked telopeptides of type I collagen and the relationships thereof with menopause-related bone loss].

    PubMed

    Liu, Shi-ping; Liao, Er-yuan; Wu, Xian-ping; Cao, Xing-zhi; Shan, Peng-fei; Su, Xin

    2006-02-14

    To study the age-related and menopause-related changes of urinary excretion of C- and N-terminal cross-linked telopeptides of type I collagen (uCTX/Cr and uNTX/Cr) and the relationships thereof with menopause state, years after menopause, bone mineral density (BMD), and menopause-related bone loss in healthy women. ELISA was used to examine the uCTX/Cr and uNTX/Cr of 659 female volunteers aged 20 - 80 in Changsha. Dual energy X-ray absorptiometry (DXA) was used to measure the BMD of various skeletal sites, including the lumbar vertebrae (L1 - L4) at anteroposterior (AP) position, L(2) - L(4) at lateral (LAT) position, hip, and forearm. 339 postmenopausal women among the 659 subjects were divided into 3 groups, osteoporotic, osteopenic, and normal groups according to the WHO criteria of osteoporosis diagnosis. (1) Both the curves of uCTX/Cr and uNTX/Cr with age were fit the best by regression analysis of cubic equation. The coefficients of determination (R(2)) were 0.139 for uCTX/Cr and 0.149 for uNTX/Cr. The levels of uCTX/Cr and uNTX/Cr of the women aged > 35 increased with age. (2) The values of uCTX/Cr and uNTX/Cr were 253 mg/mol +/- 101 mg/mol Cr and 63 nmol +/- 34 nmol BCE/mmol Cr respectively in the postmenopausal women, remarkably higher than those of the premenopausal women (149 mg/mol +/- 80 mg/mol Cr and 33 nmol +/- 17 nmol BCE/mmol Cr respectively), increased by 69.5% and 93.4% respectively. The annual change rates of uCTX/Cr and uNTX/Cr were the highest within the first 5 years after menopause, and these increases were in agreement with the significant decrease of BMD at most skeletal sites by 10.8% approximately 27.6%. (3) After controlled for age and body weight, both uCTX/Cr and uNTX/Cr showed significant negative correlation with BMD (r = -0.078 to -0.283, P < 0.05 or 0.01), and there was a significant positive correlation between uCTX/Cr and uNTX/Cr. (4) The elevation of the levels of uCTX/Cr and uNTX/Cr in the osteoporotic and osteopenic

  15. Oxygen radicals elicit paralysis and collapse of spinal cord neuron growth cones upon exposure to proinflammatory cytokines.

    PubMed

    Kuhn, Thomas B

    2014-01-01

    A persistent inflammatory and oxidative stress is a hallmark of most chronic CNS pathologies (Alzheimer's (ALS)) as well as the aging CNS orchestrated by the proinflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β). Loss of the integrity and plasticity of neuronal morphology and connectivity comprises an early step in neuronal degeneration and ultimate decline of cognitive function. We examined in vitro whether TNFα or IL-1β impaired morphology and motility of growth cones in spinal cord neuron cultures. TNFα and IL-1β paralyzed growth cone motility and induced growth cone collapse in a dose-dependent manner reflected by complete attenuation of neurite outgrowth. Scavenging reactive oxygen species (ROS) or inhibiting NADPH oxidase activity rescued loss of neuronal motility and morphology. TNFα and IL-1β provoked rapid, NOX-mediated generation of ROS in advancing growth cones, which preceded paralysis of motility and collapse of morphology. Increases in ROS intermediates were accompanied by an aberrant, nonproductive reorganization of actin filaments. These findings suggest that NADPH oxidase serves as a pivotal source of oxidative stress in neurons and together with disruption of actin filament reorganization contributes to the progressive degeneration of neuronal morphology in the diseased or aging CNS.

  16. Improved word recognition for observers with age-related maculopathies using compensation filters

    NASA Technical Reports Server (NTRS)

    Lawton, Teri B.

    1988-01-01

    A method for improving word recognition for people with age-related maculopathies, which cause a loss of central vision, is discussed. It is found that the use of individualized compensation filters based on an person's normalized contrast sensitivity function can improve word recognition for people with age-related maculopathies. It is shown that 27-70 pct more magnification is needed for unfiltered words compared to filtered words. The improvement in word recognition is positively correlated with the severity of vision loss.

  17. Hyperpolarizing and age-dependent depolarizing responses of cultured locus coeruleus neurons to noradrenaline.

    PubMed

    Finlayson, P G; Marshall, K C

    1984-08-01

    The electrical activity and responses to noradrenaline (NA) of locus coeruleus (LC) neurons have been studied in organotypic cultures using intracellular recording. Most LC neurons were predominantly quiescent, though occasional bursts of activity were observed; a few cells were tonically active at rates of 0.5-5/s. In most cells tested, iontophoretic application of NA evoked responses which were initially hyperpolarizing, sometimes followed by a depolarizing phase and frequently followed by a period of increased excitatory synaptic activity. The enhanced synaptic activity appeared to be an indirect effect since it was blocked by bath application of tetrodotoxin (TTX). In the presence of TTX, responses to NA of all but one cell were simple hyperpolarizations or biphasic (hyperpolarization/depolarization) responses. The presence of the depolarizing component appeared to be age-dependent, since it was frequently observed in cultures grown in vitro for less than 26 days, while neurons in older cultures exhibited only hyperpolarizing responses. If such age-dependent depolarizing responses are present in vivo, they would represent a unique example of a transmitter response which is present only during a transient developmental phase.

  18. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus.

    PubMed

    Campos, Carlos A; Bowen, Anna J; Han, Sung; Wisse, Brent E; Palmiter, Richard D; Schwartz, Michael W

    2017-07-01

    Anorexia is a common manifestation of chronic diseases, including cancer. Here we investigate the contribution to cancer anorexia made by calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) that transmit anorexic signals. We show that CGRP PBN neurons are activated in mice implanted with Lewis lung carcinoma cells. Inactivation of CGRP PBN neurons before tumor implantation prevents anorexia and loss of lean mass, and their inhibition after symptom onset reverses anorexia. CGRP PBN neurons are also activated in Apc min/+ mice, which develop intestinal cancer and lose weight despite the absence of reduced food intake. Inactivation of CGRP PBN neurons in Apc min/+ mice permits hyperphagia that counteracts weight loss, revealing a role for these neurons in a 'nonanorexic' cancer model. We also demonstrate that inactivation of CGRP PBN neurons prevents lethargy, anxiety and malaise associated with cancer. These findings establish CGRP PBN neurons as key mediators of cancer-induced appetite suppression and associated behavioral changes.

  19. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus

    PubMed Central

    Campos, Carlos A.; Bowen, Anna J.; Han, Sung; Wisse, Brent E.; Palmiter, Richard D.; Schwartz, Michael W.

    2017-01-01

    Anorexia is a common manifestation of chronic diseases, including cancer. Here we investigate the contribution to cancer anorexia made by calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) that transmit anorexic signals. We show that CGRPPBN neurons are activated in mice implanted with Lewis lung carcinoma (LLC) cells. Inactivation of CGRPPBN neurons before tumor implantation prevents anorexia and loss of lean mass, and their inhibition after symptom onset reverses anorexia. CGRPPBN neurons are also activated in Apcmin/+ mice that develop intestinal cancer and lose weight despite the absence of reduced food intake. Inactivation of CGRPPBN neurons in Apcmin/+ mice permits hyperphagia that counteracts weight loss, revealing a role for these neurons in a “non-anorexic” cancer model. We also demonstrate that inactivation of CGRPPBN neurons prevents lethargy, anxiety and malaise associated with cancer. These findings establish CGRPPBN neurons as key mediators of cancer-induced appetite suppression and associated behavioral changes. PMID:28581479

  20. Otological diagnoses and probable age-related auditory neuropathy in "younger" and "older" elderly persons.

    PubMed

    Rosenhall, Ulf; Hederstierna, Christina; Idrizbegovic, Esma

    2011-09-01

    Audiological data from a population based epidemiological investigation were studied on elderly persons. Specific diagnoses of otological and audiological disorders, which can result in hearing loss, were searched for. A retrospective register study. Three age cohorts, 474 70- and 75-year olds ("younger"), and 252 85-year olds ("older"), were studied. Clinical pure tone and speech audiometry was used. Data from medical files were included. Conductive hearing loss was diagnosed in 6.1% of the "younger" elderly persons, and in 10.3% of the "older" ones. Specific diagnoses (chronic otitis media and otosclerosis) were established in about half of the cases. Sensorineural hearing loss, other than age-related hearing loss and noise induced hearing loss, was diagnosed in 3.4 % and 5.2% respectively. Severely impaired speech recognition, possibly reflecting age-related auditory neuropathy, was found in 0.4% in the "younger" group, and in 10% in the "older" group. Bilateral functional deafness was present in 3.2% of the 85-year-old persons, but was not present in the 70-75-year group. The incidence of probable age-related auditory neuropathy increases considerably from 70-75 to 85 years. There are marked differences between "younger" and "older" elderly persons regarding hearing loss that severely affects oral communication.

  1. IL-13Rα1 expression in dopaminergic neurons contributes to their oxidative stress-mediated loss following chronic peripheral treatment with LPS

    PubMed Central

    Morrison, Brad E.; Marcondes, Maria Cecilia Garibaldi; Nomura, Daniel K.; Sanchez-Alavez, Manuel; Sanchez-Gonzalez, Alejandro; Saar, Indrek; Kim, Kwang-Soo; Bartfai, Tamas; Maher, Pamela; Sugama, Shuei; Conti, Bruno

    2012-01-01

    Inflammation and its mediators, including cytokines and reactive oxigen species, are believed to contribute to neurodegeneration. In the mouse brain, we found that the interleukin 13 receptor alpha 1 chain (IL-13Rα1) was expressed in the dopaminergic (DA) neurons of the substantia nigra pars compacta which are preferentially lost in human Parkinson’s disease (PD). Mice deficient for Il13ra1 exhibited resistance to loss of DA neurons in a model of chronic peripheral inflammation using bacterial lipopolysaccharide. Interleukin-13, as well as interleukin-4, potentiated the cytotoxic effects of t-butyl hydroperoxide and hydrogen peroxide on mouse dopaminergic MN9D cells. Collectively, our data indicate that expression of IL-13Rα1 on DA neurons can increase their susceptibility to oxidative stress-mediated damage thereby contributing to their preferential loss. In humans, Il13ra1 lies on the X chromosome within the PARK12 locus of susceptibility to PD suggesting that IL-13Rα1 may have a role in the pathogenesis of this neurodegenerative disease. PMID:23169588

  2. Replication-dependent histone genes are actively transcribed in differentiating and aging retinal neurons

    PubMed Central

    Banday, Abdul Rouf; Baumgartner, Marybeth; Al Seesi, Sahar; Karunakaran, Devi Krishna Priya; Venkatesh, Aditya; Congdon, Sean; Lemoine, Christopher; Kilcollins, Ashley M; Mandoiu, Ion; Punzo, Claudio; Kanadia, Rahul N

    2014-01-01

    In the mammalian genome, each histone family contains multiple replication-dependent paralogs, which are found in clusters where their transcription is thought to be coupled to the cell cycle. Here, we wanted to interrogate the transcriptional regulation of these paralogs during retinal development and aging. We employed deep sequencing, quantitative PCR, in situ hybridization (ISH), and microarray analysis, which revealed that replication-dependent histone genes were not only transcribed in progenitor cells but also in differentiating neurons. Specifically, by ISH analysis we found that different histone genes were actively transcribed in a subset of neurons between postnatal day 7 and 14. Interestingly, within a histone family, not all paralogs were transcribed at the same level during retinal development. For example, expression of Hist1h1b was higher embryonically, while that of Hist1h1c was higher postnatally. Finally, expression of replication-dependent histone genes was also observed in the aging retina. Moreover, transcription of replication-dependent histones was independent of rapamycin-mediated mTOR pathway inactivation. Overall, our data suggest the existence of variant nucleosomes produced by the differential expression of the replication-dependent histone genes across retinal development. Also, the expression of a subset of replication-dependent histone isotypes in senescent neurons warrants re-examining these genes as “replication-dependent.” Thus, our findings underscore the importance of understanding the transcriptional regulation of replication-dependent histone genes in the maintenance and functioning of neurons. PMID:25486194

  3. Future Time Perspective and Awareness of Age-Related Change: Examining their Role in Predicting Psychological Well-Being

    PubMed Central

    Brothers, Allyson; Gabrian, Martina; Wahl, Hans-Werner; Diehl, Manfred

    2016-01-01

    This study examined how two distinct facets of perceived personal lifetime – future time perspective (FTP) and awareness of age-related change (AARC) – are associated with one another, and how they may interact to predict psychological well-being. To better understand associations among subjective perceptions of lifetime, aging and well-being, we tested a series of models to investigate questions of directionality, indirect effects, and conditional processes among FTP, AARC-Gains, AARC-Losses, and psychological well-being. In all models, we tested for differences between middle-aged and older adults, and between adults from the U.S. and Germany. Analyses were conducted within a structural equation modeling framework on a cross-national, 2.5-year longitudinal sample of 537 community-residing adults (age 40–98 years). Awareness of age-related losses (AARC-Losses) at Time 1 predicted FTP at Time 2, but FTP did not predict AARC-Gains or AARC-Losses. Furthermore, future time perspective mediated the association between AARC-Losses and well-being. Moderation analyses revealed a buffering effect of awareness of age-related gains (AARC-Gains) in which perceptions of more age-related gains diminished the negative effect of a limited future time perspective on well-being. Effects were robust across age groups and countries. Taken together, these findings suggest that perceived age-related loss experiences may sensitize individuals to perceive a more limited future lifetime which may then lead to lower psychological well-being. In contrast, perceived age-related gains may function as a resource to preserve psychological well-being, in particular when time is perceived as running out. PMID:27243764

  4. Future time perspective and awareness of age-related change: Examining their role in predicting psychological well-being.

    PubMed

    Brothers, Allyson; Gabrian, Martina; Wahl, Hans-Werner; Diehl, Manfred

    2016-09-01

    This study examined how 2 distinct facets of perceived personal lifetime-future time perspective (FTP) and awareness of age-related change (AARC)-are associated with another, and how they may interact to predict psychological well-being. To better understand associations among subjective perceptions of lifetime, aging, and well-being, we tested a series of models to investigate questions of directionality, indirect effects, and conditional processes among FTP, AARC-Gains, AARC-Losses, and psychological well-being. In all models, we tested for differences between middle-aged and older adults, and between adults from the United States and Germany. Analyses were conducted within a structural equation modeling framework on a cross-national, 2.5-year longitudinal sample of 537 community-residing adults (age 40-98 years). Awareness of age-related losses (AARC-Losses) at Time 1 predicted FTP at Time 2, but FTP did not predict AARC-Gains or AARC-Losses. Furthermore, future time perspective mediated the association between AARC-Losses and well-being. Moderation analyses revealed a buffering effect of awareness of age-related gains (AARC-Gains) in which perceptions of more age-related gains diminished the negative effect of a limited future time perspective on well-being. Effects were robust across age groups and countries. Taken together, these findings suggest that perceived age-related loss experiences may sensitize individuals to perceive a more limited future lifetime which may then lead to lower psychological well-being. In contrast, perceived age-related gains may function as a resource to preserve psychological well-being, in particular when time is perceived as running out. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Energy metabolism of synaptosomes from different neuronal systems of rat cerebellum during aging: a functional proteomic characterization.

    PubMed

    Ferrari, Federica; Gorini, Antonella; Villa, Roberto Federico

    2015-01-01

    Functional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the cerebellar cortex of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from the glutamatergic mossy fibre endings which make synaptic contact with the granule cells of the granular layer, and the "small" synaptosomes, derived from the pre-synaptic terminals of granule cells making synaptic contact with the dendrites of Purkinje cells, were isolated by a combined differential/gradient centrifugation technique. Because most brain disorders are associated with bioenergetic changes, the maximum rate (Vmax) of selected enzymes of glycolysis, Krebs' cycle, glutamate and amino acids metabolism, and acetylcholine catabolism were evaluated. The results show that "large" and "small" synaptosomes possess specific and independent metabolic features. This study represents a reliable model to study in vivo (1) the physiopathological molecular mechanisms of some brain diseases dependent on energy metabolism, (2) the responsiveness to noxious stimuli, and (3) the effects of drugs, discriminating their action sites at subcellular level on specific neuronal pathways.

  6. Education mitigates age-related decline in N-Acetylaspartate levels.

    PubMed

    Erickson, Kirk I; Leckie, Regina L; Weinstein, Andrea M; Radchenkova, Polina; Sutton, Bradley P; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock-Heyman, Laura; McAuley, Edward; Kramer, Arthur F

    2015-03-01

    Greater educational attainment is associated with better neurocognitive health in older adults and is thought to reflect a measure of cognitive reserve. In vivo neuroimaging tools have begun to identify the brain systems and networks potentially responsible for reserve. We examined the relationship between education, a commonly used proxy for cognitive reserve, and N-acetylaspartate (NAA) in neurologically healthy older adults (N=135; mean age=66 years). Using single voxel MR spectroscopy, we predicted that higher levels of education would moderate an age-related decline in NAA in the frontal cortex. After controlling for the variance associated with cardiorespiratory fitness, sex, annual income, and creatine levels, there were no significant main effects of education (B=0.016, P=0.787) or age (B=-0.058, P=0.204) on NAA levels. However, consistent with our predictions, there was a significant education X age interaction such that more years of education offset an age-related decline in NAA (B=0.025, P=0.031). When examining working memory via the backwards digit span task, longer span length was associated with greater education (P<0.01) and showed a trend with greater NAA concentrations (P<0.06); however, there was no age X education interaction on digit span performance nor a significant moderated mediation effect between age, education, and NAA on digit span performance. Taken together, these results suggest that higher levels of education may attenuate an age-related reduction in neuronal viability in the frontal cortex.

  7. Prospective Relations between Social Comparison Orientation and Weight Loss Outcomes.

    PubMed

    Arigo, Danielle; Butryn, Meghan L

    2018-06-26

    Maintenance of weight loss after behavioral intervention tends to be poor, and there is need for an improved understanding of factors that are associated with successful maintenance. Social comparison is known to be a powerful influence on treatment outcomes for group-based behavioral weight loss programs, but little is known about the role of individual differences in social comparison orientation (i.e., tendency to value comparison information) in this context. The goal of this study was to examine prospective relations between social comparison orientation and long-term weight loss outcomes (percent weight loss, aerobic-intensity physical activity) among participants in behavioral weight loss treatment. Participants (n = 161, M Age = 54, M BMI = 34.4░kg/m 2 ) completed a measure of social comparison orientation at pre-treatment baseline. Height and weight were measured in the research center and aerobic-intensity physical activity was assessed via accelerometer at baseline, mid- and end-of-treatment, and at 6 and 12 months post-treatment (representing maintenance). Multilevel models tested prospective relations between comparison orientation and treatment outcomes over time, with emphasis on differences during the post-treatment maintenance phase. Stronger (vs. weaker) general comparison orientation was associated with better maintenance of aerobic-intensity physical activity. However, stronger (vs. weaker) orientation toward comparisons with better-off others (i.e., upward comparison) was associated with less weight loss success during and after treatment. Social comparison orientation thus shows meaningful relations with long-term maintenance of key outcomes in group-based behavioral weight loss treatment, and warrants further investigation in this context.

  8. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders.

    PubMed

    Smith, Derek K; He, Miao; Zhang, Chun-Li; Zheng, Jialin C

    2017-10-01

    Neural cell identity reprogramming strategies aim to treat age-related neurodegenerative disorders with newly induced neurons that regenerate neural architecture and functional circuits in vivo. The isolation and neural differentiation of pluripotent embryonic stem cells provided the first in vitro models of human neurodegenerative disease. Investigation into the molecular mechanisms underlying stem cell pluripotency revealed that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs) and these cells could be used to model Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, and Parkinson disease. Additional neural precursor and direct transdifferentiation strategies further enabled the induction of diverse neural linages and neuron subtypes both in vitro and in vivo. In this review, we highlight neural induction strategies that utilize stem cells, iPSCs, and lineage reprogramming to model or treat age-related neurodegenerative diseases, as well as, the clinical challenges related to neural transplantation and in vivo reprogramming strategies. Copyright © 2016. Published by Elsevier Ltd.

  9. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders

    PubMed Central

    Smith, Derek K.; He, Miao; Zhang, Chun-Li; Zheng, Jialin C.

    2018-01-01

    Neural cell identity reprogramming strategies aim to treat age-related neurodegenerative disorders with newly induced neurons that regenerate neural architecture and functional circuits in vivo. The isolation and neural differentiation of pluripotent embryonic stem cells provided the first in vitro models of human neurodegenerative disease. Investigation into the molecular mechanisms underlying stem cell pluripotency revealed that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs) and these cells could be used to model Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, and Parkinson disease. Additional neural precursor and direct transdifferentiation strategies further enabled the induction of diverse neural linages and neuron subtypes both in vitro and in vivo. In this review, we highlight neural induction strategies that utilize stem cells, iPSCs, and lineage reprogramming to model or treat age-related neurodegenerative diseases, as well as, the clinical challenges related to neural transplantation and in vivo reprogramming strategies. PMID:26844759

  10. Productivity losses attributable to untreated chlamydial infection and associated pelvic inflammatory disease in reproductive-aged women.

    PubMed

    Blandford, John M; Gift, Thomas L

    2006-10-01

    The productivity losses attributable to disease-related morbidity and mortality impose a burden on society in general and on employers in particular. A reliable assessment of the productivity losses associated with untreated infection with Chlamydia trachomatis (Ct) would complement earlier work on direct medical costs and contribute to an estimate of the full cost of chlamydial disease. The goal of this study was to estimate the discounted lifetime productivity losses attributable to untreated chlamydial infection in reproductive-aged women. We developed a cost model using Monte Carlo methods to estimate the lifetime discounted productivity losses attributable to untreated lower genital tract Ct infection among reproductive-aged women. The model considered the impact of disability resulting from acute pelvic inflammatory disease (PID) associated with untreated Ct infection and from the sequelae of acute PID, including chronic pelvic pain, ectopic pregnancy, and infertility. To accommodate disparate Ct infection rates and labor market characteristics across age groups, we matched age-based risk factors for Ct infection with labor market patterns. Data sources included the 2001 National Chlamydia Surveillance Data, the 2001 Current Population Survey, and published literature. Estimates indicate that the mean weighted productivity losses per untreated Ct infection were approximately US dollars 130 (in year 2001 dollars). Mean weighted productivity losses per case of acute PID were estimated at US dollars 649. Estimated productivity losses were highly correlated with age, reflecting age-dependent differences in labor market characteristics. The productivity losses attributable to untreated infection with Ct and to sequelae of this infection form a substantial portion of the total economic burden of disease. Effective programs to prevent chlamydial infection and effective screening, diagnosis, and treatment of Ct-infected women may reduce productivity losses and

  11. At the centre of neuronal, synaptic and axonal pathology in murine prion disease: degeneration of neuroanatomically linked thalamic and brainstem nuclei

    PubMed Central

    Reis, Renata; Hennessy, Edel; Murray, Caoimhe; Griffin, Éadaoin W.

    2015-01-01

    Aims The processes by which neurons degenerate in chronic neurodegenerative diseases remain unclear. Synaptic loss and axonal pathology frequently precede neuronal loss and protein aggregation demonstrably spreads along neuroanatomical pathways in many neurodegenerative diseases. The spread of neuronal pathology is less studied. Methods We previously demonstrated severe neurodegeneration in the posterior thalamus of multiple prion disease strains. Here we used the ME7 model of prion disease to examine the nature of this degeneration in the posterior thalamus and the major brainstem projections into this region. Results We objectively quantified neurological decline between 16 and 18 weeks post‐inoculation and observed thalamic subregion‐selective neuronal, synaptic and axonal pathology while demonstrating relatively uniform protease‐resistant prion protein (PrP) aggregation and microgliosis across the posterior thalamus. Novel amyloid precursor protein (APP) pathology was particularly prominent in the thalamic posterior (PO) and ventroposterior lateral (VPL) nuclei. The brainstem nuclei forming the major projections to these thalamic nuclei were examined. Massive neuronal loss in the PO was not matched by significant neuronal loss in the interpolaris (Sp5I), while massive synaptic loss in the ventral posteromedial nucleus (VPM) did correspond with significant neuronal loss in the principal trigeminal nucleus. Likewise, significant VPL synaptic loss was matched by significant neuronal loss in the gracile and cuneate nuclei. Conclusion These findings demonstrate significant spread of neuronal pathology from the thalamus to the brainstem in prion disease. The divergent neuropathological features in adjacent neuronal populations demonstrates that there are discrete pathways to neurodegeneration in different neuronal populations. PMID:25727649

  12. Hyperlipidemic Diet Causes Loss of Olfactory Sensory Neurons, Reduces Olfactory Discrimination, and Disrupts Odor-Reversal Learning

    PubMed Central

    Thiebaud, Nicolas; Johnson, Melissa C.; Butler, Jessica L.; Bell, Genevieve A.; Ferguson, Kassandra L.; Fadool, Andrew R.; Fadool, James C.; Gale, Alana M.; Gale, David S.

    2014-01-01

    Currently, 65% of Americans are overweight, which leads to well-supported cardiovascular and cognitive declines. Little, however, is known concerning obesity's impact on sensory systems. Because olfaction is linked with ingestive behavior to guide food choice, its potential dysfunction during obesity could evoke a positive feedback loop to perpetuate poor ingestive behaviors. To determine the effect of chronic energy imbalance and reveal any structural or functional changes associated with obesity, we induced long-term, diet-induced obesity by challenging mice to high-fat diets: (1) in an obesity-prone (C57BL/6J) and obesity-resistant (Kv1.3−/−) line of mice, and compared this with (2) late-onset, genetic-induced obesity in MC4R−/− mice in which diabetes secondarily precipitates after disruption of the hypothalamic axis. We report marked loss of olfactory sensory neurons and their axonal projections after exposure to a fatty diet, with a concomitant reduction in electro-olfactogram amplitude. Loss of olfactory neurons and associated circuitry is linked to changes in neuronal proliferation and normal apoptotic cycles. Using a computer-controlled, liquid-based olfactometer, mice maintained on fatty diets learn reward-reinforced behaviors more slowly, have deficits in reversal learning demonstrating behavioral inflexibility, and exhibit reduced olfactory discrimination. When obese mice are removed from their high-fat diet to regain normal body weight and fasting glucose, olfactory dysfunctions are retained. We conclude that chronic energy imbalance therefore presents long-lasting structural and functional changes in the operation of the sensory system designed to encode external and internal chemical information and leads to altered olfactory- and reward-driven behaviors. PMID:24828650

  13. Awareness, Knowledge, and Concern about Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Cimarolli, Verena R.; Laban-Baker, Allie; Hamilton, Wanda S.; Stuen, Cynthia

    2012-01-01

    Age-related macular degeneration (AMD)--a common eye disease causing vision loss--can be detected early through regular eye-health examinations, and measures can be taken to prevent visual decline. Getting eye examinations requires certain levels of awareness, knowledge, and concern related to AMD. However, little is known about AMD-related…

  14. Sarcopenia and age-related changes in body composition and functional capacity.

    PubMed

    Evans, W J; Campbell, W W

    1993-02-01

    Advancing adult age is associated with profound changes in body composition. One of the most prominent of these changes is sarcopenia, defined as the age-related loss in skeletal muscle mass, which results in decreased strength and aerobic capacity and thus functional capacity. Sarcopenia is also closely linked to age-related losses in bone mineral, basal metabolic rate and increased body fat content. Through physical exercise and training, especially resistance training, it may be possible to prevent sarcopenia and the remarkable array of associated abnormalities, such as type II diabetes, coronary artery disease, hypertension, osteoporosis and obesity. Using an exercise program of sufficient frequency, intensity and duration, it is quite possible to increase muscle strength and endurance at any age. There is no pharmacological intervention that holds a greater promise of improving health and promoting independence in the elderly than does exercise.

  15. Transiently increasing cAMP levels selectively in hippocampal excitatory neurons during sleep deprivation prevents memory deficits caused by sleep loss.

    PubMed

    Havekes, Robbert; Bruinenberg, Vibeke M; Tudor, Jennifer C; Ferri, Sarah L; Baumann, Arnd; Meerlo, Peter; Abel, Ted

    2014-11-19

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object-location task. Five hours of total sleep deprivation directly following training impaired the formation of object-location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. Copyright © 2014 the authors 0270-6474/14/3415715-07$15.00/0.

  16. Attention-related changes in correlated neuronal activity arise from normalization mechanisms

    PubMed Central

    Verhoef, Bram-Ernst; Maunsell, John H.R.

    2017-01-01

    Attention is believed to enhance perception by altering the correlations between pairs of neurons. How attention changes neuronal correlations is unknown. Using multi-electrodes in primate visual cortex, we measured spike-count correlations when single or multiple stimuli were presented, and stimuli were attended or unattended. When stimuli were unattended, adding a suppressive, non-preferred, stimulus beside a preferred stimulus increased spike-count correlations between pairs of similarly-tuned neurons, but decreased spike-count correlations between pairs of oppositely-tuned neurons. These changes are explained by a stochastic normalization model containing populations of oppositely-tuned, mutually-suppressive neurons. Importantly, this model also explains why attention decreased (attend preferred stimulus) or increased (attend non-preferred stimulus) correlations: as an indirect consequence of attention-related changes in the inputs to normalization mechanisms. Our findings link normalization mechanisms to correlated neuronal activity and attention, showing that normalization mechanisms shape response correlations and that these correlations change when attention biases normalization mechanisms. PMID:28553943

  17. Melatonin Ameliorates Injury and Specific Responses of Ischemic Striatal Neurons in Rats

    PubMed Central

    Ma, Yuxin; Feng, Qiqi; Ma, Jing; Feng, Zhibo; Zhan, Mali; OuYang, Lisi; Mu, Shuhua; Liu, Bingbing; Jiang, Zhuyi; Jia, Yu; Li, Youlan

    2013-01-01

    Studies have confirmed that middle cerebral artery occlusion (MCAO) causes striatal injury in which oxidative stress is involved in the pathological mechanism. Increasing evidence suggests that melatonin may have a neuroprotective effect on cerebral ischemic damage. This study aimed to examine the morphological changes of different striatal neuron types and the effect of melatonin on striatal injury by MCAO. The results showed that MCAO induced striatum-related dysfunctions of locomotion, coordination, and cognition, which were remarkably relieved with melatonin treatment. MCAO induced severe striatal neuronal apoptosis and loss, which was significantly decreased with melatonin treatment. Within the outer zone of the infarct, the number of Darpp-32+ projection neurons and the densities of dopamine-receptor-1 (D1)+ and dopamine-receptor-2 (D2)+ fibers were reduced; however, both parvalbumin (Parv)+ and choline acetyltransferase (ChAT)+ interneurons were not significantly decreased in number, and neuropeptide Y (NPY)+ and calretinin (Cr)+ interneurons were even increased. With melatonin treatment, the loss of projection neurons and characteristic responses of interneurons were notably attenuated. The present study demonstrates that the projection neurons are rather vulnerable to ischemic damage, whereas the interneurons display resistance and even hyperplasia against injury. In addition, melatonin alleviates striatal dysfunction, neuronal loss, and morphological transformation of interneurons resulting from cerebral ischemia. PMID:23686363

  18. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.

    PubMed

    Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M

    2006-01-01

    Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in

  19. Strength and muscle mass loss with aging process. Age and strength loss.

    PubMed

    Keller, Karsten; Engelhardt, Martin

    2013-10-01

    aging process is associated with changes in muscle mass and strength with decline of muscle strength after the 30(th) life year. The aim of this study was to investigate these changes in muscle mass and strength. for this analysis 26 participants were subdivided in two groups. Group 1 comprises participants aged <40 years (n=14), group 2 those >40 years (n=12). We assessed anthropometrics, range of motions, leg circumferences and isometric strength values of the knee joints. besides comparable anthropometrics, circumferences and strength were higher in group 1 than in group 2. Circumference of upper leg (20 cm above knee articular space) showed for right leg a trend to a significant (median: 54.45 cm (1(st) quartile: 49.35/3(rd) quartile: 57.78) vs 49.80 cm (49.50/50.75), p=0.0526) and for left leg a significant 54.30 cm (49.28/58.13) vs 49.50 cm (48.00/52.53), p=0.0356) larger circumference in group 1. Isometric strength was in 60° knee flexion significantly higher in group 1 than in group 2 for right (729.88N (561.47/862.13) vs 456.92N (304.67/560.12), p=0.00448) and left leg (702.49N (581.36/983.87) vs 528.49N (332.95/648.58), p=0.0234). aging process leads to distinct muscle mass and strength loss. Muscle strength declines from people aged <40 years to those >40 years between 16.6% and 40.9%.

  20. Increase of histaminergic tuberomammillary neurons in narcolepsy.

    PubMed

    Valko, Philipp O; Gavrilov, Yury V; Yamamoto, Mihoko; Reddy, Hasini; Haybaeck, Johannes; Mignot, Emmanuel; Baumann, Christian R; Scammell, Thomas E

    2013-12-01

    Narcolepsy is caused by loss of the hypothalamic neurons producing the orexin/hypocretin neuropeptides. One key target of the orexin system is the histaminergic neurons of the tuberomammillary nucleus (TMN), an essential wake-promoting system. As cerebrospinal fluid histamine levels may be low in patients with narcolepsy, we examined histaminergic neurons in patients with narcolepsy and in 2 mouse models of narcolepsy. We counted the number of hypothalamic neurons producing orexin, melanin-concentrating hormone, and histamine in 7 narcolepsy patients and 12 control subjects using stereological techniques. We identified histaminergic neurons using immunostaining for histidine decarboxylase. We also examined these systems in 6 wild-type mice, 6 orexin/ataxin-3 transgenic mice, and 5 orexin ligand knockout mice. Compared to controls, narcolepsy patients had 94% more histaminergic TMN neurons (233,572 ± 49,476 vs 120,455 ± 10,665, p < 0.001). This increase was higher in 5 narcolepsy patients with >90% orexin neuron loss than in 2 patients with ≤75% orexin neuron loss (252,279 ± 46,264 vs 186,804 ± 1,256, p = 0.03). Similarly, the number of histaminergic TMN neurons was increased 53% in orexin ligand knockout mice compared to wild-type mice, whereas orexin/ataxin-3 transgenic mice showed an intermediate 28% increase. This surprising increase in histaminergic neurons in narcolepsy may be a compensatory response to loss of excitatory drive from the orexin neurons and may contribute to some of the symptoms of narcolepsy such as preserved consciousness during cataplexy and fragmented nighttime sleep. In addition, this finding may have therapeutic implications, as medications that enhance histamine signaling are now under development. © 2013 American Neurological Association.

  1. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    PubMed

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-11-27

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

  2. FDA-approved drugs that protect mammalian neurons from glucose toxicity slow aging dependent on cbp and protect against proteotoxicity.

    PubMed

    Lublin, Alex; Isoda, Fumiko; Patel, Harshil; Yen, Kelvin; Nguyen, Linda; Hajje, Daher; Schwartz, Marc; Mobbs, Charles

    2011-01-01

    Screening a library of drugs with known safety profiles in humans yielded 30 drugs that reliably protected mammalian neurons against glucose toxicity. Subsequent screening demonstrated that 6 of these 30 drugs increase lifespan in C. elegans: caffeine, ciclopirox olamine, tannic acid, acetaminophen, bacitracin, and baicalein. Every drug significantly reduced the age-dependent acceleration of mortality rate. These protective effects were blocked by RNAi inhibition of cbp-1 in adults only, which also blocks protective effects of dietary restriction. Only 2 drugs, caffeine and tannic acid, exhibited a similar dependency on DAF-16. Caffeine, tannic acid, and bacitracin also reduced pathology in a transgenic model of proteotoxicity associated with Alzheimer's disease. These results further support a key role for glucose toxicity in driving age-related pathologies and for CBP-1 in protection against age-related pathologies. These results also provide novel lead compounds with known safety profiles in human for treatment of age-related diseases, including Alzheimer's disease and diabetic complications.

  3. Matrix metalloproteinase-9 expression in the nuclear compartment of neurons and glial cells in aging and stroke.

    PubMed

    Pirici, Daniel; Pirici, Ionica; Mogoanta, Laurentiu; Margaritescu, Otilia; Tudorica, Valerica; Margaritescu, Claudiu; Ion, Daniela A; Simionescu, Cristiana; Coconu, Marieta

    2012-10-01

    Matrix metalloproteinases (MMPs) are well-recognized denominators for extracellular matrix remodeling in the pathology of both ischemic and hemorrhagic strokes. Recent data on non-nervous system tissue showed intracellular and even intranuclear localizations for different MMPs, and together with this, a plethora of new functions have been proposed for these intracellular active enzymes, but are mostly related to apoptosis induction and malign transformation. In neurons and glial cells, on human tissue, animal models and cell cultures, different active MMPs have been also proven to be located in the intra-cytoplasmic or intra-nuclear compartments, with no clear-cut function. In the present study we show for the first time on human tissue the nuclear expression of MMP-9, mainly in neurons and to a lesser extent in astrocytes. We have studied ischemic and hemorrhagic stroke patients, as well as aged control patients. Age and ischemic suffering seemed to be the best predictors for an elevated MMP-9 nuclear expression, and there was no evidence of a clear-cut extracellular proteolytic activity for this compartment, as revealed by intact vascular basement membranes and assessment of vascular densities. More, the majority of the cells expressing MMP-9 in the nuclear compartment also co-expressed activated-caspase 3, indicating a possible link between nuclear MMP-9 localization and apoptosis in neuronal and glial cells following an ischemic or hemorrhagic event. These results, besides showing for the first time the nuclear localization of MMP-9 on a large series of human stroke and aged brain tissues, raise new questions regarding the unknown spectrum of the functions MMPs in human CNS pathology. © 2011 Japanese Society of Neuropathology.

  4. Dietary administration of paraquat for 13 weeks does not result in a loss of dopaminergic neurons in the substantia nigra of C57BL/6J mice.

    PubMed

    Minnema, Daniel J; Travis, Kim Z; Breckenridge, Charles B; Sturgess, Nicholas C; Butt, Mark; Wolf, Jeffrey C; Zadory, Dan; Beck, Melissa J; Mathews, James M; Tisdel, Merrill O; Cook, Andrew R; Botham, Philip A; Smith, Lewis L

    2014-03-01

    Several investigations have reported that mice administered paraquat dichloride (PQ·Cl2) by intraperitoneal injection exhibit a loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). In this study, male and female C57BL/6J mice were administered PQ·Cl2 in the diet at concentrations of 0 (control), 10, and 50ppm for a duration of 13weeks. A separate group of mice were administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) during week 12 as positive controls to produce a loss of dopaminergic neurons in the SNpc. The comparative effects of PQ and MPTP on the SNpc and/or striatum were assessed using neurochemical, neuropathological, and stereological endpoints. Morphological and stereological assessments were performed by investigators 'blinded' to the origin of the tissue. Neither dose of PQ·Cl2 (10 or 50 ppm in the diet) caused a loss of striatal dopamine or dopamine metabolite concentrations in the brains of mice. Pathological assessments of the SNpc and striatum showed no evidence of neuronal degeneration or astrocytic/microglial activation. Furthermore, the number of tyrosine hydroxylase-positive (TH(+)) neurons in the SNpc was not reduced in PQ-treated mice. In contrast, MPTP caused a decrease in striatal dopamine concentration, a reduction in TH(+) neurons in the SNpc, and significant pathological changes including astrocytic and microglial activation in the striatum and SNpc. The MPTP-induced effects were greater in males than in females. It is concluded that 13weeks of continuous dietary exposure of C57BL/6J mice to 50ppm PQ·Cl2 (equivalent to 10.2 and 15.6mg PQ ion/kg body weight/day for males and females, respectively) does not result in the loss of, or damage to, dopaminergic neurons in the SNpc. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Loss of collapsin response mediator protein 4 suppresses dopaminergic neuron death in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease.

    PubMed

    Tonouchi, Aine; Nagai, Jun; Togashi, Kentaro; Goshima, Yoshio; Ohshima, Toshio

    2016-06-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Several lines of evidence suggest that neurodegeneration in PD is accelerated by a vicious cycle in which apoptosis in dopaminergic neurons triggers the activation of microglia and harmful inflammatory processes that further amplify neuronal death. Recently, we demonstrated that the deletion of collapsin response mediator protein 4 (CRMP4) suppresses inflammatory responses and cell death in a mouse model of spinal cord injury, leading to improved functional recovery. We thus hypothesized that Crmp4-/- mice may have limited inflammatory responses and a decrease in the loss of SNc dopaminergic neurons in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. We observed CRMP4 expression in neurons, astrocytes, and microglia/macrophages following the injection of 25 mg/kg MPTP. We compared the number of dopaminergic neurons and the inflammatory response in SNc between Crmp4+/+ and Crmp4-/- mice after MPTP injection. Limited loss of SNc dopaminergic neurons and decreased activations of microglia and astrocytes were observed in Crmp4-/- mice. These results suggest that CRMP4 is a novel therapeutic target in the treatment of PD patients. We demonstrated that genetic CRMP4 deletion delays a vicious cycle of inflammation and neurodegeneration in a Parkinson's disease mouse model. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) injection to wild-type mice induces collapsin response mediator protein 4 (CRMP4) up-regulation in neurons, astrocytes, and microglia. CRMP4-deficient mice show reduced inflammation and suppressed dopaminergic neuronal death after MPTP injection. These findings suggest that CRMP4 deletion may be a new therapeutic strategy against Parkinson's diseases. © 2016 International Society for Neurochemistry.

  6. Sleep Interacts with Aβ to Modulate Intrinsic Neuronal Excitability

    PubMed Central

    Tabuchi, Masashi; Lone, Shahnaz R.; Liu, Sha; Liu, Qili; Zhang, Julia; Spira, Adam P.; Wu, Mark N.

    2015-01-01

    SUMMARY Background Emerging data suggest an important relationship between sleep and Alzheimer’s Disease (AD), but how poor sleep promotes the development of AD remains unclear. Results Here, using a Drosophila model of AD, we provide evidence suggesting that changes in neuronal excitability underlie the effects of sleep loss on AD pathogenesis. β-amyloid (Aβ) accumulation leads to reduced and fragmented sleep, while chronic sleep deprivation increases Aβ burden. Moreover, enhancing sleep reduces Aβ deposition. Increasing neuronal excitability phenocopies the effects of reducing sleep on Aβ, and decreasing neuronal activity blocks the elevated Aβ accumulation induced by sleep deprivation. At the single neuron level, we find that chronic sleep deprivation, as well as Aβ expression, enhances intrinsic neuronal excitability. Importantly, these data reveal that sleep loss exacerbates Aβ–induced hyperexcitability and suggest that defects in specific K+ currents underlie the hyperexcitability caused by sleep loss and Aβ expression. Finally, we show that feeding levetiracetam, an anti-epileptic medication, to Aβ-expressing flies suppresses neuronal excitability and significantly prolongs their lifespan. Conclusions Our findings directly link sleep loss to changes in neuronal excitability and Aβ accumulation and further suggest that neuronal hyperexcitability is an important mediator of Aβ toxicity. Taken together, these data provide a mechanistic framework for a positive feedback loop, whereby sleep loss and neuronal excitation accelerate the accumulation of Aβ, a key pathogenic step in the development of AD. PMID:25754641

  7. Peripheral nerve injury induces loss of nociceptive neuron-specific Gαi-interacting protein in neuropathic pain rat

    PubMed Central

    Liu, Zhen; Wang, Fei; Fischer, Gregory; Hogan, Quinn H.

    2016-01-01

    Background Gαi-interacting protein (GINIP) is expressed specifically in dorsal root ganglion (DRG) neurons and functions in modulation of peripheral gamma-aminobutyric acid B receptor (GBR). Genetic deletion of GINIP leads to impaired responsiveness to GBR agonist-mediated analgesia in rodent. It is, however, not defined whether nerve injury changes GINIP expression. Results Immunolabeling with validated antibody revealed GINIP expression in ∼40% of total lumbar DRG neurons in normal adult rats. GINIP immunoreactivity was detected in ∼80% of IB4-positive (nonpeptidergic) and ∼30% of CGRP-positive (peptidergic) neurons. GINIP immunoreactivity in the spinal cord dorsal horn was colabeled with IB4 and partially with CGRP. In addition, GINIP was expressed in DRG neurons immunopositive for GBR1, GBR2, Gαi(s), and Gαo and was also extensively colabeled with multiple nociceptive neuronal markers, including Trpv1, NaV1.7, CaV2.2α1b, CaV3.2α1b, TrkA, and Trek2. Peripheral nerve injury by L5 spinal nerve ligation significantly decreased the proportion of GINIP immunoreactivity-positive neurons from 40 ± 8.4% to 0.8 ± 0.1% (p < 0.01, mean ± SD, four weeks after spinal nerve ligation) and the total GINIP protein to 1.3% ± 0.04% of its basal level (p < 0.01, n = 6 animals in each group, two weeks after spinal nerve ligation) in the ipsilateral L5 DRGs. Conclusion Our results show that GINIP is predominantly expressed by small nonpeptidergic nociceptive neurons and that nerve injury triggers loss of GINIP expression. Signal transduction roles of GINIP may be diverse as it colabeled with various subgroups of nociceptive neurons. Future studies may investigate details of the signaling mechanism engaged by GINIP, as well as the pathophysiological significance of lost expression of GINIP in neuropathic pain. PMID:27145804

  8. Increased Re-Entry into Cell Cycle Mitigates Age-Related Neurogenic Decline in the Murine Subventricular Zone

    PubMed Central

    Stoll, Elizabeth A.; Habibi, Behnum A.; Mikheev, Andrei M.; Lasiene, Jurate; Massey, Susan C.; Swanson, Kristin R.; Rostomily, Robert C.; Horner, Philip J.

    2012-01-01

    Although new neurons are produced in the subventricular zone (SVZ) of the adult mammalian brain, fewer functional neurons are produced with increasing age. The age-related decline in neurogenesis has been attributed to a decreased pool of neural progenitor cells (NPCs), an increased rate of cell death, and an inability to undergo neuronal differentiation and develop functional synapses. The time between mitotic events has also been hypothesized to increase with age, but this has not been directly investigated. Studying primary-cultured NPCs from the young adult and aged mouse forebrain, we observe that fewer aged cells are dividing at a given time; however, the mitotic cells in aged cultures divide more frequently than mitotic cells in young cultures during a 48-hour period of live-cell time-lapse imaging. Double-thymidine-analog labeling also demonstrates that fewer aged cells are dividing at a given time, but those that do divide are significantly more likely to re-enter the cell cycle within a day, both in vitro and in vivo. Meanwhile, we observed that cellular survival is impaired in aged cultures. Using our live-cell imaging data, we developed a mathematical model describing cell cycle kinetics to predict the growth curves of cells over time in vitro and the labeling index over time in vivo. Together, these data surprisingly suggest that progenitor cells remaining in the aged SVZ are highly proliferative. PMID:21948688

  9. C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta.

    PubMed

    Hernandez, Michael X; Namiranian, Pouya; Nguyen, Eric; Fonseca, Maria I; Tenner, Andrea J

    2017-02-01

    C5aR1, the proinflammatory receptor for C5a, is expressed in the central nervous system on microglia, endothelial cells, and neurons. Previous work demonstrated that the C5aR1 antagonist, PMX205, decreased amyloid pathology and suppressed cognitive deficits in two Alzheimer's Disease (AD) mouse models. However, the cellular mechanisms of this protection have not been definitively demonstrated. Here, primary cultured mouse neurons treated with exogenous C5a show reproducible loss of MAP-2 staining in a dose-dependent manner within 24 hr of treatment, indicative of injury to neurons. This injury is prevented by the C5aR1 antagonist PMX53, a close analog of PMX205. Furthermore, primary neurons derived from C5aR1 null mice exhibited no MAP-2 loss after exposure to the highest concentration of C5a tested. Primary mouse neurons treated with both 100 nM C5a and 5 µM fibrillar amyloid beta (fAβ), to model what occurs in the AD brain, showed increased MAP-2 loss relative to either C5a or fAβ alone. Blocking C5aR1 with PMX53 (100 nM) blocked the loss of MAP2 in these primary neurons to the level seen with fAβ alone. Similar experiments with primary neurons derived from C5aR1 null mice showed a loss of MAP-2 due to fAβ treatment. However, the addition of C5a to the cultures did not enhance the loss of MAP-2 and the addition of PMX53 to the cultures did not change the MAP-2 loss in response to fAβ. Thus, at least part of the beneficial effects of C5aR1 antagonist in AD mouse models may be due to protection of neurons from the toxic effects of C5a.

  10. Education mitigates age-related decline in N-Acetylaspartate levels

    PubMed Central

    Erickson, Kirk I; Leckie, Regina L; Weinstein, Andrea M; Radchenkova, Polina; Sutton, Bradley P; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock-Heyman, Laura; McAuley, Edward; Kramer, Arthur F

    2015-01-01

    Background Greater educational attainment is associated with better neurocognitive health in older adults and is thought to reflect a measure of cognitive reserve. In vivo neuroimaging tools have begun to identify the brain systems and networks potentially responsible for reserve. Methods We examined the relationship between education, a commonly used proxy for cognitive reserve, and N-acetylaspartate (NAA) in neurologically healthy older adults (N = 135; mean age = 66 years). Using single voxel MR spectroscopy, we predicted that higher levels of education would moderate an age-related decline in NAA in the frontal cortex. Results After controlling for the variance associated with cardiorespiratory fitness, sex, annual income, and creatine levels, there were no significant main effects of education (B = 0.016, P = 0.787) or age (B = −0.058, P = 0.204) on NAA levels. However, consistent with our predictions, there was a significant education X age interaction such that more years of education offset an age-related decline in NAA (B = 0.025, P = 0.031). When examining working memory via the backwards digit span task, longer span length was associated with greater education (P < 0.01) and showed a trend with greater NAA concentrations (P < 0.06); however, there was no age X education interaction on digit span performance nor a significant moderated mediation effect between age, education, and NAA on digit span performance. Conclusions Taken together, these results suggest that higher levels of education may attenuate an age-related reduction in neuronal viability in the frontal cortex. PMID:25798329

  11. O-GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance

    PubMed Central

    Su, Cathy

    2017-01-01

    O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo. Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons. SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo. This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood–brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a

  12. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex.

    PubMed

    de Vivo, Luisa; Nelson, Aaron B; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-04-01

    The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. © 2016 Associated Professional Sleep Societies, LLC.

  13. Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis.

    PubMed

    Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine

    2017-06-01

    Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43 Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43 Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.

  14. Radiation therapy: age-related macular degeneration.

    PubMed

    Mendez, Carlos A Medina; Ehlers, Justis P

    2013-01-01

    Age-related macular degeneration (AMD) is the leading cause of severe irreversible vision loss in patients over the age of 50 years in the developed world. Neovascular AMD (NVAMD) is responsible for 90% of the cases with severe visual loss. In the last decade, the treatment paradigm for NVAMD has been transformed by the advent of anti-vascular endothelial growth factor therapy. Despite the excellent results of anti-vascular endothelial growth factor therapy, frequent injections remain a necessity for most patients. The burden of these frequent visits as well as the cumulative risks of indefinite intravitreal injections demand continued pursuit of more enduring therapy that provides similar functional results. Radiotherapy has been studied for two decades as a potential therapy for NVAMD. Because of its antiangiogenic properties, radiation therapy remains a promising potential adjunctive resource for the treatment of choroidal neovascularization secondary to NVAMD. This review considers the past, present and future of radiation as a treatment or combination treatment of NVAMD. Copyright © 2013 S. Karger AG, Basel.

  15. Age, Loss Minimization, and the Role of Probability for Decision-Making.

    PubMed

    Best, Ryan; Freund, Alexandra M

    2018-04-05

    Older adults are stereotypically considered to be risk averse compared to younger age groups, although meta-analyses on age and the influence of gain/loss framing on risky choices have not found empirical evidence for age differences in risk-taking. The current study extends the investigation of age differences in risk preference by including analyses on the effect of the probability of a risky option on choices in gain versus loss situations. Participants (n = 130 adults aged 19-80 years) chose between a certain option and a risky option of varying probability in gain- and loss-framed gambles with actual monetary outcomes. Only younger adults displayed an overall framing effect. Younger and older adults responded differently to probability fluctuations depending on the framing condition. Older adults were more likely to choose the risky option as the likelihood of avoiding a larger loss increased and as the likelihood of a larger gain decreased. Younger adults responded with the opposite pattern: they were more likely to choose the risky option as the likelihood of a larger gain increased and as the likelihood of avoiding a (slightly) larger loss decreased. Results suggest that older adults are more willing to select a risky option when it increases the likelihood that larger losses be avoided, whereas younger adults are more willing to select a risky option when it allows for slightly larger gains. This finding supports expectations based on theoretical accounts of goal orientation shifting away from securing gains in younger adulthood towards maintenance and avoiding losses in older adulthood. Findings are also discussed in respect to the affective enhancement perspective and socioemotional selectivity theory. © 2018 S. Karger AG, Basel.

  16. Aging impairs heat loss, but when does it matter?

    PubMed Central

    Stapleton, Jill M.; Poirier, Martin P.; Flouris, Andreas D.; Boulay, Pierre; Sigal, Ronald J.; Malcolm, Janine

    2014-01-01

    Aging is associated with an attenuated physiological ability to dissipate heat. However, it remains unclear if age-related impairments in heat dissipation only occur above a certain level of heat stress and whether this response is altered by aerobic fitness. Therefore, we examined changes in whole body evaporative heat loss (HE) as determined using whole body direct calorimetry in young (n = 10; 21 ± 1 yr), untrained middle-aged (n = 10; 48 ± 5 yr), and older (n = 10; 65 ± 3 yr) males matched for body surface area. We also studied a group of trained middle-aged males (n = 10; 49 ± 5 yr) matched for body surface area with all groups and for aerobic fitness with the young group. Participants performed intermittent aerobic exercise (30-min exercise bouts separated by 15-min rest) in the heat (40°C and 15% relative humidity) at progressively greater fixed rates of heat production equal to 300 (Ex1), 400 (Ex2), and 500 (Ex3) W. Results showed that HE was significantly lower in middle-aged untrained (Ex2: 426 ± 34; and Ex3: 497 ± 17 W) and older (Ex2: 424 ± 38; and Ex3: 485 ± 44 W) compared with young (Ex2: 472 ± 42; and Ex3: 558 ± 51 W) and middle-aged trained (474 ± 21; Ex3: 552 ± 23 W) males at the end of Ex2 and Ex3 (P < 0.05). No differences among groups were observed during recovery. We conclude that impairments in HE in older and middle-aged untrained males occur at exercise-induced heat loads of ≥400 W when performed in a hot environment. These impairments in untrained middle-aged males can be minimized through regular aerobic exercise training. PMID:25505030

  17. Histological studies of neuroprotective effects of Curcuma longa Linn. on neuronal loss induced by dexamethasone treatment in the rat hippocampus.

    PubMed

    Issuriya, Acharaporn; Kumarnsit, Ekkasit; Wattanapiromsakul, Chatchai; Vongvatcharanon, Uraporn

    2014-10-01

    Long term exposure to dexamethasone (Dx) is associated with brain damage especially in the hippocampus via the oxidative stress pathway. Previously, an ethanolic extract from Curcuma longa Linn. (CL) containing the curcumin constituent has been reported to produce antioxidant effects. However, its neuroprotective property on brain histology has remained unexplored. This study has examined the effects of a CL extract on the densities of cresyl violet positive neurons and glial fibrillary acidic protein immunoreactive (GFAP-ir) astrocytes in the hippocampus of Dx treated male rats. It showed that 21 days of Dx treatment (0.5mg/kg, i.p. once daily) significantly reduced the densities of cresyl violet positive neurons in the sub-areas CA1, CA3 and the dentate gyrus, but not in the CA2 area. However, CL pretreatment (100mg/kg, p.o.) was found to significantly restore neuronal densities in the CA1 and dentate gyrus. In addition, Dx treatment also significantly decreased the densities of the GFAP-ir astrocytes in the sub-areas CA1, CA3 and the dentate gyrus. However, CL pretreatment (100mg/kg, p.o.) failed to protect the loss of astrocytes in these sub-areas. These findings confirm the neuroprotective effects of the CL extract and indicate that the cause of astrocyte loss might be partially reduced by a non-oxidative mechanism. Moreover, the detection of neuronal and glial densities was suitable method to study brain damage and the effects of treatment. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Testosterone Deficiency Accelerates Neuronal and Vascular Aging of SAMP8 Mice: Protective Role of eNOS and SIRT1

    PubMed Central

    Ota, Hidetaka; Akishita, Masahiro; Akiyoshi, Takuyu; Kahyo, Tomoaki; Setou, Mitsutoshi; Ogawa, Sumito; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi

    2012-01-01

    Oxidative stress and atherosclerosis-related vascular disorders are risk factors for cognitive decline with aging. In a small clinical study in men, testosterone improved cognitive function; however, it is unknown how testosterone ameliorates the pathogenesis of cognitive decline with aging. Here, we investigated whether the cognitive decline in senescence-accelerated mouse prone 8 (SAMP8), which exhibits cognitive impairment and hypogonadism, could be reversed by testosterone, and the mechanism by which testosterone inhibits cognitive decline. We found that treatment with testosterone ameliorated cognitive function and inhibited senescence of hippocampal vascular endothelial cells of SAMP8. Notably, SAMP8 showed enhancement of oxidative stress in the hippocampus. We observed that an NAD+-dependent deacetylase, SIRT1, played an important role in the protective effect of testosterone against oxidative stress-induced endothelial senescence. Testosterone increased eNOS activity and subsequently induced SIRT1 expression. SIRT1 inhibited endothelial senescence via up-regulation of eNOS. Finally, we showed, using co-culture system, that senescent endothelial cells promoted neuronal senescence through humoral factors. Our results suggest a critical role of testosterone and SIRT1 in the prevention of vascular and neuronal aging. PMID:22238626

  19. [Patterns of brain ageing].

    PubMed

    Fernández Viadero, Carlos; Verduga Vélez, Rosario; Crespo Santiago, Dámaso

    2017-06-01

    Neuroplasticity lends the brain a strong ability to adapt to changes in the environment that occur during ageing. Animal models have shown alterations in neurotransmission and imbalances in the expression of neural growth factor. Changes at the morphometric level are not constant. Volume loss is related to alterations in neuroplasticity and involvement of the cerebral neuropil. Although there are no conclusive data, physical exercise improves the molecular, biological, functional and behavioural-cognitive changes associated with brain ageing. The aged human brain has been described as showing weight and volume loss and increased ventricular size. However, neuroimaging shows significant variation and many healthy elderly individuals show no significant macroscopic changes. In most brain regions, the number of neurons remains stable throughout life. Neuroplasticity does not disappear with ageing, and changes in dendritic arborization and the density of spines and synapses are more closely related to brain activity than to age. At the molecular level, although the presence of altered Tau and β-amyloid proteins is used as a biomarker of neurodegenerative disease, postmortem studies show that these abnormal proteins are common in the brains of elderly people without dementia. Finally, due to the relationship between neurodegenerative diseases and metabolic alterations, this article analyses the influence of insulin-like growth factor and ageing, both in animal models and in humans, and the possible neuroprotective effect of insulin. Copyright © 2017 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Dispersion-relation phase spectroscopy of neuron transport

    NASA Astrophysics Data System (ADS)

    Wang, Ru; Wang, Zhuo; Millet, Larry; Gillette, Martha; Leigh, Joseph Robert; Sobh, Nahil; Levine, Alex; Popescu, Gabreil

    2012-02-01

    Molecular motors move materials along prescribed biopolymer tracks. This sort of active transport is required to rapidly move products over large distances within the cell, where passive diffusion is too slow. We examine intracellular traffic patterns using a new application of spatial light interference microscopy (SLIM) and measure the dispersion relation, i.e. decay rate vs. spatial mode, associated with mass transport in live cells. This approach applies equally well to both discrete and continuous mass distributions without the need for particle tracking. From the quadratic experimental curve specific to diffusion, we extracted the diffusion coefficient as the only fitting parameter. The linear portion of the dispersion relation reveals the deterministic component of the intracellular transport. Our data show a universal behavior where the intracellular transport is diffusive at small scales and deterministic at large scales. We further applied this method to studying transport in neurons and are able to use SLIM to map the changes in index of refraction across the neuron and its extended processes. We found that in dendrites and axons, the transport is mostly active, i.e., diffusion is subdominant.

  1. Functional and Structural Benefits Induced by Omega-3 Polyunsaturated Fatty Acids During Aging

    PubMed Central

    Cutuli, Debora

    2017-01-01

    Background Omega-3 polyunsaturated fatty acids (n-3 PUFA) are structural components of the brain and are indispensable for neuronal membrane synthesis. Along with decline in cognition, decreased synaptic density and neuronal loss, normal aging is accompanied by a reduction in n-3 PUFA concentration in the brain in both humans and rodents. Recently, many clinical and experimental studies have demonstrated the importance of n-3 PUFA in counteracting neurodegeneration and age-related dysfunctions. Methods Methods: This review will focus on the neuroprotective effects of n-3 PUFA on cognitive impairment, neuroinflammation and neurodegeneration during normal aging. Multiple pathways of n-3 PUFA preventive action will be examined. Results Namely, n-3 PUFA have been shown to increase the levels of several signaling factors involved in synaptic plasticity, thus leading to the increase of dendritic spines and synapses as well as the enhancement of hippocampal neurogenesis even at old age. In elderly subjects n-3 PUFA exert anti-inflammatory effects associated with improved cognitive functions. Interestingly, growing evidence highlights n-3 PUFA efficacy in preventing the loss of both gray and white matter volume and integrity. Conclusion This review shows that n-3 PUFA are essential for a successful aging and appear as ideal cognitive enhancers to be implemented in nutritional interventions for the promotion of healthy aging. PMID:27306037

  2. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging.

    PubMed

    Rodriguez-Perez, Ana I; Borrajo, Ana; Diaz-Ruiz, Carmen; Garrido-Gil, Pablo; Labandeira-Garcia, Jose L

    2016-05-24

    The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals.

  3. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging

    PubMed Central

    Rodriguez-Perez, Ana I.; Borrajo, Ana; Diaz-Ruiz, Carmen; Garrido-Gil, Pablo; Labandeira-Garcia, Jose L.

    2016-01-01

    The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals. PMID:27167199

  4. Dissecting the role of Engrailed in adult dopaminergic neurons--Insights into Parkinson disease pathogenesis.

    PubMed

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L

    2015-12-21

    The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. The Cholinergic Signaling Responsible for the Expression of a Memory-Related Protein in Primary Rat Cortical Neurons.

    PubMed

    Chen, Tsan-Ju; Chen, Shun-Sheng; Wang, Dean-Chuan; Hung, Hui-Shan

    2016-11-01

    Cholinergic dysfunction in the brain is closely related to cognitive impairment including memory loss. In addition to the degeneration of basal forebrain cholinergic neurons, deficits in the cholinergic receptor signaling may also play an important role. In the present study, to examine the cholinergic signaling pathways responsible for the induction of a memory-related postsynaptic protein, a cholinergic agonist carbachol was used to induce the expression of activity-regulated cytoskeleton associated protein (Arc) in primary rat cortical neurons. After pretreating neurons with various antagonists or inhibitors, the levels of carbachol-induced Arc protein expression were detected by Western blot analysis. The results show that carbachol induces Arc protein expression mainly through activating M1 acetylcholine receptors and the downstream phospholipase C pathway, which may lead to the activation of the MAPK/ERK signaling pathway. Importantly, carbachol-mediated M2 receptor activation exerts negative effects on Arc protein expression and thus counteracts the enhanced effects of M1 activation. Furthermore, it is suggested for the first time that M1-mediated enhancement of N-methyl-D-aspartate receptor (NMDAR) responses, leading to Ca(2+) entry through NMDARs, contributes to carbachol-induced Arc protein expression. These findings reveal a more complete cholinergic signaling that is responsible for carbachol-induced Arc protein expression, and thus provide more information for developing treatments that can modulate cholinergic signaling and consequently alleviate cognitive impairment. J. Cell. Physiol. 231: 2428-2438, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Functional correlates of brain aging: beta and gamma frequency band responses to age-related cortical changes.

    PubMed

    Christov, Mario; Dushanova, Juliana

    2016-01-01

    The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.

  7. Loss of Prohibitin Membrane Scaffolds Impairs Mitochondrial Architecture and Leads to Tau Hyperphosphorylation and Neurodegeneration

    PubMed Central

    Merkwirth, Carsten; Morbin, Michela; Brönneke, Hella S.; Jordan, Sabine D.; Rugarli, Elena I.; Langer, Thomas

    2012-01-01

    Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies

  8. Egalitarian reward contingency in competitive games and primate prefrontal neuronal activity.

    PubMed

    Hosokawa, Takayuki; Watanabe, Masataka

    2015-01-01

    How people work to obtain a reward depends on the context of the reward delivery, such as the presence/absence of competition and the contingency of reward delivery. Since resources are limited, winning a competition is critically important for organisms' obtaining a reward. People usually expect ordinary performance-reward contingency, with better performers obtaining better rewards. Unordinary reward contingency, such as egalitarianism (equal rewards/no-rewards to both good and poor performers), dampens people's motivation. We previously reported that monkeys were more motivated, and neurons in the lateral prefrontal cortex (LPFC) showed higher outcome-related activity in a competitive than in a noncompetitive game (Hosokawa and Watanabe, 2012). However, monkey's behavior and LPFC neuronal activity have not been examined in a competitive situation with an unordinary performance-reward contingency. Also, the fixed performance-reward contingency in the previous study did not allow us to examine effects of win/loss separately from those of reward/no-reward on prefrontal neuronal activity. Here, we employed the egalitarian competitive situation in which both the winner and loser, or neither of them, got a reward as well as the normal competitive situation in which only the winner got a reward. Monkey's behavioral performance greatly deteriorated in trials with the egalitarian outcome conditions. LPFC neurons showed activities that reflected the normal or egalitarian outcome condition while very few neurons coded win/loss independent of reward/no-reward. Importantly, we found neurons that showed reward-related activity in the normal, but not in the egalitarian outcome conditions, even though the same reward was given to the animal. These results indicate that LPFC may play an important role in monitoring the current reward contingency and integrating it with the performance outcome (win-loss) for better performing the competitive game, and thus for better survival.

  9. Obesity: locus of control, body image, weight loss, and age-at-onset.

    PubMed

    Wineman, N M

    1980-01-01

    In a retrospective investigation designed to measure locus of control, body image, and weight loss in Overeaters Anonymous members who had childhood, adolescence, or adulthood onset of obesity, 116 subjects were grouped according to age at onset of obesity and the year they joined OA. A convenience, volunteer sample of OA members completed a demographic data questionnaire, Rotter's Social Reaction. Inventory, and Secord and Jourard's Body Cathexis Scale. Significant overweight percentage differences were not found when the three age-at-onset groups were compared. Significant differences emerged, however, for adolescent-onset group persons who were categorized as "old" members; they had a larger weight loss and were more satisfied with their body image. A positive linear relationship between greater perception of internal control and a good body image was found in the entire adulthood-onset group. Weight loss and good body image of the oldest adolescent-onset group probably was the outcome of their association with a self-help group i.e., OA. Assessment of developmental issues related to the time of initial weight gain may indicate which treatment regime would be most effective.

  10. Multidisciplinary Interventions in Motor Neuron Disease

    PubMed Central

    Williams, U. E.; Philip-Ephraim, E. E.; Oparah, S. K.

    2014-01-01

    Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease. PMID:26317009

  11. Loss of α-calcitonin gene-related peptide (αCGRP) reduces the efficacy of the Vestibulo-ocular Reflex (VOR).

    PubMed

    Luebke, Anne E; Holt, Joseph C; Jordan, Paivi M; Wong, Yi Shan; Caldwell, Jillian S; Cullen, Kathleen E

    2014-07-30

    The neuroactive peptide calcitonin-gene related peptide (CGRP) is known to act at efferent synapses and their targets in hair cell organs, including the cochlea and lateral line. CGRP is also expressed in vestibular efferent neurons as well as a number of central vestibular neurons. Although CGRP-null (-/-) mice demonstrate a significant reduction in cochlear nerve sound-evoked activity compared with wild-type mice, it is unknown whether and how the loss of CGRP influence vestibular system function. Vestibular function was assessed by quantifying the vestibulo-ocular reflex (VOR) in alert mice. The loss of CGRP in (-/-) mice was associated with a reduction of the VOR gain of ≈50% without a concomitant change in phase. Using immunohistochemistry, we confirmed that, although CGRP staining was absent in the vestibular end-organs of null (-/-) mice, cholinergic staining appeared normal, suggesting that the overall gross development of vestibular efferent innervation was unaltered. We further confirmed that the observed deficit in vestibular function of null (-/-) mice was not the result of nontargeted effects at the level of the extraocular motor neurons and/or their innervation of extraocular muscles. Analysis of the relationship between vestibular quick phase amplitude and peak velocity revealed that extraocular motor function was unchanged, and immunohistochemistry revealed no abnormalities in motor endplates. Together, our findings show that the neurotransmitter CGRP plays a key role in ensuring VOR efficacy. Copyright © 2014 the authors 0270-6474/14/3410453-06$15.00/0.

  12. Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum

    PubMed Central

    Sommer, Marc A.

    2013-01-01

    The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce “delay activity” between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move. PMID:23365182

  13. Sleep interacts with aβ to modulate intrinsic neuronal excitability.

    PubMed

    Tabuchi, Masashi; Lone, Shahnaz R; Liu, Sha; Liu, Qili; Zhang, Julia; Spira, Adam P; Wu, Mark N

    2015-03-16

    Emerging data suggest an important relationship between sleep and Alzheimer's disease (AD), but how poor sleep promotes the development of AD remains unclear. Here, using a Drosophila model of AD, we provide evidence suggesting that changes in neuronal excitability underlie the effects of sleep loss on AD pathogenesis. β-amyloid (Aβ) accumulation leads to reduced and fragmented sleep, while chronic sleep deprivation increases Aβ burden. Moreover, enhancing sleep reduces Aβ deposition. Increasing neuronal excitability phenocopies the effects of reducing sleep on Aβ, and decreasing neuronal activity blocks the elevated Aβ accumulation induced by sleep deprivation. At the single neuron level, we find that chronic sleep deprivation, as well as Aβ expression, enhances intrinsic neuronal excitability. Importantly, these data reveal that sleep loss exacerbates Aβ-induced hyperexcitability and suggest that defects in specific K(+) currents underlie the hyperexcitability caused by sleep loss and Aβ expression. Finally, we show that feeding levetiracetam, an anti-epileptic medication, to Aβ-expressing flies suppresses neuronal excitability and significantly prolongs their lifespan. Our findings directly link sleep loss to changes in neuronal excitability and Aβ accumulation and further suggest that neuronal hyperexcitability is an important mediator of Aβ toxicity. Taken together, these data provide a mechanistic framework for a positive feedback loop, whereby sleep loss and neuronal excitation accelerate the accumulation of Aβ, a key pathogenic step in the development of AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cortical neuronal cytoskeletal changes associated with FIV infection

    NASA Technical Reports Server (NTRS)

    Jacobson, S.; Henriksen, S. J.; Prospero-Garcia, O.; Phillips, T. R.; Elder, J. H.; Young, W. G.; Bloom, F. E.; Fox, H. S.

    1997-01-01

    HIV-1 infection is often complicated by central nervous system (CNS) dysfunction. Degenerative neuronal changes as well as neuronal loss have been documented in individuals with AIDS. Feline immunodeficiency virus (FIV) infection of cats provides a model for both the immune and the central nervous system manifestations of HIV infection of humans. In this study we have examined neurons in the frontal cortex of feline immunodeficiency virus-infected cats and controls for immunoreactivity with SMI 32, an antibody recognizing a non-phosphorylated epitope on neurofilaments. We noted a significant increase in the number of immunoreactive pyramidal cells in infected animals compared to controls. The changes seen in the neuronal cytoskeleton as a consequence of the inoculation with FIV were similar to those seen in humans undergoing the normal aging process as well as those suffering from neurological diseases, including Alzheimer's and dementia pugilistica. The changes we noted in the feline brain were also similar to that reported in animals with traumatic injuries or with spontaneously occurring or induced motor neuron diseases, suggesting that the increase in reactivity represents a deleterious effect of FIV on the central nervous system.

  15. The Effect of Age on a Visual Learning Task in the American Cockroach

    ERIC Educational Resources Information Center

    Brown, Sheena; Strausfeld, Nicholas

    2009-01-01

    Neuronal modifications that accompany normal aging occur in brain neuropils and might share commonalties across phyla including the most successful group, the Insecta. This study addresses the kinds of neuronal modifications associated with loss of memory that occur in the hemimetabolous insect "Periplaneta americana." Among insects that display…

  16. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2015-12-01

    scratch response in development of spontaneous dermatitis in NC/Nga mice. Br J Dermatol 2004;151:335-45. 32. Nakano T, Andoh T, Sasaki A, Nojima H, Kuraishi... contact a stripe of brain derived neurotrophic factor becomes the axon [16]. During neuron growth, mitochondria, membrane vesicles, proteins involved in...epiphyseal bone marrow [27]. The CGRP containing neurons in rat femurs near the growth plate come in contact with osteoclasts [21]. Neuropeptide

  17. Age-Related Benefits of Digital Noise Reduction for Short-Term Word Learning in Children with Hearing Loss

    ERIC Educational Resources Information Center

    Pittman, Andrea

    2011-01-01

    Purpose: To determine the rate of word learning for children with hearing loss (HL) in quiet and in noise compared to normal-hearing (NH) peers. The effects of digital noise reduction (DNR) were examined for children with HL. Method: Forty-one children with NH and 26 children with HL were grouped by age (8-9 years and 11-12 years). The children…

  18. Prospects for Replacement of Auditory Neurons by Stem Cells

    PubMed Central

    Shi, Fuxin; Edge, Albert S.B.

    2013-01-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457

  19. The Transfection of BDNF to Dopamine Neurons Potentiates the Effect of Dopamine D3 Receptor Agonist Recovering the Striatal Innervation, Dendritic Spines and Motor Behavior in an Aged Rat Model of Parkinson’s Disease

    PubMed Central

    Razgado-Hernandez, Luis F.; Espadas-Alvarez, Armando J.; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J.; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  20. Decoupled choice-driven and stimulus-related activity in parietal neurons may be misrepresented by choice probabilities.

    PubMed

    Zaidel, Adam; DeAngelis, Gregory C; Angelaki, Dora E

    2017-09-28

    Trial-by-trial correlations between neural responses and choices (choice probabilities) are often interpreted to reflect a causal contribution of neurons to task performance. However, choice probabilities may arise from top-down, rather than bottom-up, signals. We isolated distinct sensory and decision contributions to single-unit activity recorded from the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas of monkeys during perception of self-motion. Superficially, neurons in both areas show similar tuning curves during task performance. However, tuning in MSTd neurons primarily reflects sensory inputs, whereas choice-related signals dominate tuning in VIP neurons. Importantly, the choice-related activity of VIP neurons is not predictable from their stimulus tuning, and these factors are often confounded in choice probability measurements. This finding was confirmed in a subset of neurons for which stimulus tuning was measured during passive fixation. Our findings reveal decoupled stimulus and choice signals in the VIP area, and challenge our understanding of choice signals in the brain.Choice-related signals in neuronal activity may reflect bottom-up sensory processes, top-down decision-related influences, or a combination of the two. Here the authors report that choice-related activity in VIP neurons is not predictable from their stimulus tuning, and that dominant choice signals can bias the standard metric of choice preference (choice probability).