Sample records for aged mice fed

  1. Natural History of Age-Related Retinal Lesions That Precede AMD in Mice Fed High or Low Glycemic Index Diets

    PubMed Central

    Weikel, Karen A.; FitzGerald, Paul; Shang, Fu; Caceres, M. Andrea; Bian, Qingning; Handa, James T.; Stitt, Alan W.

    2012-01-01

    Purpose. Epidemiologic data indicate that people who consume low glycemic index (GI) diets are at reduced risk for the onset and progression of age-related macular degeneration (AMD). The authors sought corroboration of this observation in an animal model. Methods. Five- and 16-month-old C57BL/6 mice were fed high or low GI diets until they were 17 and 23.5 months of age, respectively. Retinal lesions were evaluated by transmission electron microscopy, and advanced glycation end products (AGEs) were evaluated by immunohistochemistry. Results. Retinal lesions including basal laminar deposits, loss of basal infoldings, and vacuoles in the retinal pigment epithelium were more prevalent in the 23.5- than in the 17-month-old mice. Within each age group, consumption of a high GI diet increased the risk for lesions and the risk for photoreceptor abnormalities and accumulation of AGEs. Conclusions. Consuming high GI diets accelerates the appearance of age-related retinal lesions that precede AMD in mice, perhaps by increasing the deposition of toxic AGEs in the retina. The data support the hypothesis that consuming lower GI diets, or simulation of their effects with nutraceuticals or drugs, may protect against AMD. The high GI-fed C57BL/6 mouse is a new model of age-related retinal lesions that precede AMD and mimic the early stages of disease and may be useful for drug discovery. PMID:22205601

  2. Changes in environmental temperature influence leptin responsiveness in low- and high-fat-fed mice.

    PubMed

    Harris, Ruth B S; Mitchell, Tiffany D; Kelso, Emily W; Flatt, W P

    2007-07-01

    Loss of body fat in leptin-treated animals has been attributed to reduced energy intake, increased thermogenesis, and preferential fatty acid oxidation. Leptin does not decrease food intake or body fat in leptin-resistant high-fat (HF)-fed mice, possibly due to a failure of leptin to activate hypothalamic receptors. We measured energy expenditure of male C57BL/6 mice adapted to low-fat (LF) or HF diet and infused them for 13 days with PBS or 10 mug leptin/day from an intraperitoneal mini-osmotic pump to test whether leptin resistance prevented leptin-induced increases in energy expenditure and fatty acid oxidation. There was no effect of low-dose leptin infusions on either of these measures in LF-fed or HF-fed mice, even though LF-fed mice lost body fat. Experiment 2 tested leptin responsiveness in LF-fed and HF-fed mice housed at different temperatures (18 degrees C, 23 degrees C, 27 degrees C), assuming that the cold would increase and the hot environment would inhibit food intake and thermogenesis, which could potentially interfere with leptin action. LF-fed mice housed at 23 degrees C were the only mice that lost body fat during leptin infusion, suggesting that an ability to modify energy expenditure is essential to the maintenance of leptin responsiveness. HF-fed mice in cold or warm environments did not respond to leptin. HF-fed mice in the hot environment were fatter than other HF-fed mice, and, surprisingly, leptin caused a further increase in body fat, demonstrating that the mice were not totally leptin resistant and that partial leptin resistance in a hot environment favors positive energy balance and fat deposition.

  3. HEPATIC LIPOGENESIS IN D$sub 2$O-FED MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinowitz, J.L.; Defendi, V.; Langan, J.

    1960-11-25

    Swiss mice were maintained on a regimen of 25% D/sub 2/O for three weeks. The mice were slightly smaller than H/sub 2/O-fed controls, but the liver weight to body weight ratio was greater. There were no significant differences in liver lipid or cholesterol. Histologic examination showed progressive vacuolization and loss of basophilia, with changes in the mitochondrial distribution in the cytoplasm. These alterations did not show any specific localization in the hepatic lobule. There was a progressive reduction in the ability of liver homogenates from D/sub 2/O-fed mice to convert acetate-2-C-14 to cholesterol and fatty acid. Incubation of normal mousemore » livers in media containing 75% D/sub 2/O resulted in significant enhancement of cholestero1 and fatty acid biosynthetic capacity. This reduced lipogenesis in D/sub 2/O-fed mice appears to be due to derangements in cell structure, rather than to inhibition of enzyme activity. (auth)« less

  4. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    PubMed

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  5. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet

    PubMed Central

    Mitchell, Sarah J.; Martin-Montalvo, Alejandro; Mercken, Evi M.; Palacios, Hector H.; Ward, Theresa M.; Abulwerdi, Gelareh; Minor, Robin K.; Vlasuk, George P.; Ellis, James L.; Sinclair, David A.; Dawson, John; Allison, David B.; Zhang, Yongqing; Becker, Kevin G.; Bernier, Michel; de Cabo, Rafael

    2014-01-01

    The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD+ deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of pro-inflammatory gene expression both in the liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice. PMID:24582957

  6. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice

    PubMed Central

    Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.

    2015-01-01

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793

  7. Ca2+ mobilization in the aortic endothelium in streptozotocin-induced diabetic and cholesterol-fed mice.

    PubMed

    Kamata, K; Nakajima, M

    1998-04-01

    1. Experiments were performed to compare Ca2+ mobilization in the aortic endothelium in streptozotocin (STZ)-induced diabetic and cholesterol-fed mice with that in age-matched controls. 2. The intracellular free Ca2+ ([Ca2+]i) in the fura PE-3 loaded endothelium of aortic rings was dose-dependently increased by cumulative administration of acetylcholine (ACh). ACh caused a transient rise in [Ca2+]i in Ca2+-free medium. The ACh-induced increase in [Ca2+]i in normal or Ca2+-free medium was significantly weaker in both STZ-induced diabetic and cholesterol-fed mice. 3. The weaker [Ca2+]i response in Ca2+-containing medium in STZ-induced diabetic and cholesterol-fed mice was normalized by chronic administration of cholestyramine. 4. The increased low density lipoprotein (LDL) levels seen in both STZ-induced diabetic and cholesterol-fed mice were normalized by the same chronic administration of cholestyramine (300 mg kg(-1), p.o. daily for 10 weeks). Chronic administration of cholestyramine had no effect on the plasma glucose level. 5. Lysophosphatidylcholine (LPC) decreased the [Ca2+]i responses to ACh in the aortic endothelium from normal mice. 6. These results suggest that ACh increases both Ca2+ influx and Ca2+ release from storage in the aortic endothelium. The weaker [Ca2+]i influx seen in the endothelium of aortae from both STZ-induced diabetic and cholesterol-fed mice was improved by the chronic administration of cholestyramine, and we suggest that this improvement is due, at least in part, to a lowering of the plasma LDL level. It is further suggested that LPC may have an important influence over Ca2+ mobilization in the endothelium.

  8. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    PubMed

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  9. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet.

    PubMed

    Mitchell, Sarah J; Martin-Montalvo, Alejandro; Mercken, Evi M; Palacios, Hector H; Ward, Theresa M; Abulwerdi, Gelareh; Minor, Robin K; Vlasuk, George P; Ellis, James L; Sinclair, David A; Dawson, John; Allison, David B; Zhang, Yongqing; Becker, Kevin G; Bernier, Michel; de Cabo, Rafael

    2014-03-13

    The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of proinflammatory gene expression in both liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered the phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet.

    PubMed

    Al Rajabi, Ala; Castro, Gabriela S F; da Silva, Robin P; Nelson, Randy C; Thiesen, Aducio; Vannucchi, Helio; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Curtis, Jonathan M; Jacobs, René L

    2014-03-01

    Dietary choline is required for proper structure and dynamics of cell membranes, lipoprotein synthesis, and methyl-group metabolism. In mammals, choline is synthesized via phosphatidylethanolamine N-methyltransferase (Pemt), which converts phosphatidylethanolamine to phosphatidylcholine. Pemt(-/-) mice have impaired VLDL secretion and developed fatty liver when fed a high-fat (HF) diet. Because of the reduction in plasma lipids, Pemt(-/-)/low-density lipoprotein receptor knockout (Ldlr(-/-)) mice are protected from atherosclerosis. The goal of this study was to investigate the importance of dietary choline in the metabolic phenotype of Pemt(-/-)/Ldlr(-/-) male mice. At 10-12 wk of age, Pemt(+/+)/Ldlr(-/-) (HF(+/+)) and half of the Pemt(-/-)/Ldlr(-/-) (HF(-/-)) mice were fed an HF diet with normal (1.3 g/kg) choline. The remaining Pemt(-/-)/Ldlr(-/-) mice were fed an HF diet supplemented (5 g/kg) with choline (HFCS(-/-) mice). The HF diet contained 60% of calories from fat and 1% cholesterol, and the mice were fed for 16 d. HF(-/-) mice lost weight and developed hepatomegaly, steatohepatitis, and liver damage. Hepatic concentrations of free cholesterol, cholesterol-esters, and triglyceride (TG) were elevated by 30%, 1.1-fold and 3.1-fold, respectively, in HF(-/-) compared with HF(+/+) mice. Choline supplementation normalized hepatic cholesterol, but not TG, and dramatically improved liver function. The expression of genes involved in cholesterol transport and esterification increased by 50% to 5.6-fold in HF(-/-) mice when compared with HF(+/+) mice. Markers of macrophages, oxidative stress, and fibrosis were elevated in the HF(-/-) mice. Choline supplementation normalized the expression of these genes. In conclusion, HF(-/-) mice develop liver failure associated with altered cholesterol metabolism when fed an HF/normal choline diet. Choline supplementation normalized cholesterol metabolism, which was sufficient to prevent nonalcoholic steatohepatitis development

  11. Dimethylethanolamine does not prevent liver failure in phosphatidylethanolamine N-methyltransferase-deficient mice fed a choline-deficient diet.

    PubMed

    Waite, Kristin A; Vance, Dennis E

    2004-03-22

    Mice that lack phosphatidylethanolamine-N-methyltransferase (PEMT) and are fed a choline-deficient (CD) diet suffer severe liver damage and do not survive. Since phosphatidyldimethylethanolamine (PDME) has physical properties similar to those of phosphatidylcholine (PC), we hypothesized that dimethylethanolamine (DME) would be converted into PDME that might substitute for PC, and therefore abrogate the liver damage in the Pemt -/- mice fed a CD diet. We fed Pemt -/- mice either a CD diet, a CD diet supplemented with choline, or a CD diet supplemented with DME (CD + DME). Pemt -/- mice fed the CD diet developed severe liver failure by 4 days while CD + DME-fed mice developed severe liver failure by 5 days. The hepatic PC level in choline-supplemented (CS) mice was 67 +/- 4 nmol/mg protein, whereas the PC content was reduced in CD- and CD + DME-fed mice (49 +/- 3 and 30 +/- 3 nmol/mg protein, respectively). Upon supplementation of the CD diet with DME the amount of hepatic PDME was 81 +/- 9 nmol/mg protein so that the hepatic content of PC + PDME combined was 111 nmol/mg protein. Moreover, plasma apolipoprotein B100 and Al levels were markedly lower in mice fed the CD + DME diet compared to mice fed the CS diet, as was the plasma content of PC. Thus, despite replacement of the deficit in hepatic PC with PDME in Pemt -/- mice fed a CD diet, normal liver function was not restored. We conclude that although PC and PDME exhibit similar physical properties, the three methyl groups of choline are required for hepatic function in mice.

  12. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    PubMed Central

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  13. Relationship between the effect of dietary fat on swimming endurance and energy metabolism in aged mice.

    PubMed

    Zhang, Guihua; Shirai, Nobuya; Suzuki, Hiramitsu

    2011-10-01

    The aim of this study was to investigate the effect of different dietary fats on alterations in endurance, energy metabolism, and plasma levels of interleukin-6 (IL-6) and minerals in mice. Male mice (aged 58 weeks) were fed diets containing 6% safflower oil, fish oil, or lard for 12 weeks. Swimming time to exhaustion, energy metabolism, and plasma IL-6 levels were subsequently determined. Mice fed safflower oil exhibited a marked increase in swimming time compared to the baseline level. Mice fed lard exhibited a significant decrease in swimming time, while mice on a fish oil diet exhibited a small decrease in swimming time. The final swimming time of mice fed safflower oil was significantly longer than that of animals fed lard. This improvement in endurance with dietary safflower oil was accompanied by decreased accumulation of lactate and less glycogen depletion during swimming. In the safflower oil group, muscle carnitine palmitoyltransferase activity increased significantly after swimming, while the plasma non-esterified fatty acid concentration decreased significantly. A trend to increased plasma IL-6 levels was observed in sedentary animals on a safflower oil diet compared to those on a lard diet. These results suggest that dietary safflower oil improves the swimming endurance of aged mice to a greater extent than lard, and that this effect appears to involve glycogen sparing through increased fatty acid utilization. Copyright © 2011 S. Karger AG, Basel.

  14. Alterations in Skeletal Muscle Fatty Acid Handling Predisposes Middle-Aged Mice to Diet-Induced Insulin Resistance

    PubMed Central

    Koonen, Debby P.Y.; Sung, Miranda M.Y.; Kao, Cindy K.C.; Dolinsky, Vernon W.; Koves, Timothy R.; Ilkayeva, Olga; Jacobs, René L.; Vance, Dennis E.; Light, Peter E.; Muoio, Deborah M.; Febbraio, Maria; Dyck, Jason R.B.

    2010-01-01

    OBJECTIVE Although advanced age is a risk factor for type 2 diabetes, a clear understanding of the changes that occur during middle age that contribute to the development of skeletal muscle insulin resistance is currently lacking. Therefore, we sought to investigate how middle age impacts skeletal muscle fatty acid handling and to determine how this contributes to the development of diet-induced insulin resistance. RESEARCH DESIGN AND METHODS Whole-body and skeletal muscle insulin resistance were studied in young and middle-aged wild-type and CD36 knockout (KO) mice fed either a standard or a high-fat diet for 12 weeks. Molecular signaling pathways, intramuscular triglycerides accumulation, and targeted metabolomics of in vivo mitochondrial substrate flux were also analyzed in the skeletal muscle of mice of all ages. RESULTS Middle-aged mice fed a standard diet demonstrated an increase in intramuscular triglycerides without a concomitant increase in insulin resistance. However, middle-aged mice fed a high-fat diet were more susceptible to the development of insulin resistance—a condition that could be prevented by limiting skeletal muscle fatty acid transport and excessive lipid accumulation in middle-aged CD36 KO mice. CONCLUSION Our data provide insight into the mechanisms by which aging becomes a risk factor for the development of insulin resistance. Our data also demonstrate that limiting skeletal muscle fatty acid transport is an effective approach for delaying the development of age-associated insulin resistance and metabolic disease during exposure to a high-fat diet. PMID:20299464

  15. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    PubMed

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  16. Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice.

    PubMed

    Li, Xiaoxiao; Luo, Jing; Anandh Babu, Pon Velayutham; Zhang, Wei; Gilbert, Elizabeth; Cline, Mark; McMillan, Ryan; Hulver, Matthew; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan; Liu, Dongmin

    2014-12-01

    Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.

  17. Cranberry extract attenuates hepatic inflammation in high fat-fed obese mice

    PubMed Central

    Glisan, Shannon L.; Ryan, Caroline; Neilson, Andrew P.; Lambert, Joshua D.

    2016-01-01

    Cranberry (Vaccinium macrocarpon) consumption has been associated with health beneficial effects. Non-alcoholic fatty liver disease (NAFLD) is a co-morbidity of obesity. In the present study, we investigated the effect of a polyphenol-rich cranberry extract (CBE) on hepatic inflammation in high fat-fed obese C57BL/6J mice. Following dietary treatment with 0.8% CBE for 10 weeks, we observed no change in body weight or visceral fat mass in CBE supplemented mice compared to high fat-fed control mice. We did observe a significant decrease in plasma alanine aminotransferase (31%) and histological severity of NAFLD (33% decrease in area of involvement, 29% decrease in lipid droplet size) compared to high fat-fed controls. Hepatic protein levels of tumor necrosis factor alpha and C-C chemokine ligand 2 were reduced by 28% and 19%, respectively, following CBE supplementation. CBE significantly decreased hepatic mRNA levels of toll-like receptor 4 (TLR4, 63%) and nuclear factorκ B (NFκB, 24%), as well as a number of genes related to the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome. In conclusion, CBE reduced NAFLD and hepatic inflammation in high fat-fed obese C57BL/6J mice. These effects appear to be related to mitigation of TLR4-NFκB related signaling, however further studies into the underlying mechanisms of these hepatoprotective effects are needed. PMID:27619543

  18. Cranberry extract attenuates hepatic inflammation in high-fat-fed obese mice.

    PubMed

    Glisan, Shannon L; Ryan, Caroline; Neilson, Andrew P; Lambert, Joshua D

    2016-11-01

    Cranberry (Vaccinium macrocarpon) consumption has been associated with health beneficial effects. Nonalcoholic fatty liver disease (NAFLD) is a comorbidity of obesity. In the present study, we investigated the effect of a polyphenol-rich cranberry extract (CBE) on hepatic inflammation in high fat (HF)-fed obese C57BL/6J mice. Following dietary treatment with 0.8% CBE for 10 weeks, we observed no change in body weight or visceral fat mass in CBE-supplemented mice compared to HF-fed control mice. We did observe a significant decrease in plasma alanine aminotransferase (31%) and histological severity of NAFLD (33% decrease in area of involvement, 29% decrease in lipid droplet size) compared to HF-fed controls. Hepatic protein levels of tumor necrosis factor α and C-C chemokine ligand 2 were reduced by 28% and 19%, respectively, following CBE supplementation. CBE significantly decreased hepatic mRNA levels of toll-like receptor 4 (TLR4, 63%) and nuclear factor κB (NFκB, 24%), as well as a number of genes related to the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3 inflammasome. In conclusion, CBE reduced NAFLD and hepatic inflammation in HF-fed obese C57BL/6J mice. These effects appear to be related to mitigation of TLR4-NFκB related signaling; however, further studies into the underlying mechanisms of these hepatoprotective effects are needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice.

    PubMed

    Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B

    2015-06-15

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.

  20. EPA prevents fat mass expansion and metabolic disturbances in mice fed with a Western diet.

    PubMed

    Pinel, Alexandre; Pitois, Elodie; Rigaudiere, Jean-Paul; Jouve, Chrystele; De Saint-Vincent, Sarah; Laillet, Brigitte; Montaurier, Christophe; Huertas, Alain; Morio, Beatrice; Capel, Frederic

    2016-08-01

    The impact of alpha linolenic acid (ALA), EPA, and DHA on obesity and metabolic complications was studied in mice fed a high-fat, high-sucrose (HF) diet. HF diets were supplemented with ALA, EPA, or DHA (1% w/w) and given to C57BL/6J mice for 16 weeks and to Ob/Ob mice for 6 weeks. In C57BL/6J mice, EPA reduced plasma cholesterol (-20%), limited fat mass accumulation (-23%) and adipose cell hypertrophy (-50%), and reduced plasma leptin concentration (-60%) compared with HF-fed mice. Furthermore, mice supplemented with EPA exhibited a higher insulin sensitivity (+24%) and glucose tolerance (+20%) compared with HF-fed mice. Similar effects were observed in EPA-supplemented Ob/Ob mice, although fat mass accumulation was not prevented. By contrast, in comparison with HF-fed mice, DHA did not prevent fat mass accumulation, increased plasma leptin concentration (+128%) in C57BL/6J mice, and did not improve glucose homeostasis in C57BL/6J and Ob/Ob mice. In 3T3-L1 adipocytes, DHA stimulated leptin expression whereas EPA induced adiponectin expression, suggesting that improved leptin/adiponectin balance may contribute to the protective effect of EPA. In conclusion, supplementation with EPA, but not ALA and DHA, could preserve glucose homeostasis in an obesogenic environment and limit fat mass accumulation in the early stage of weight gain. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Expression of genes involved in carbohydrate-lipid metabolism in muscle and fat tissues in the initial stage of adult-age obesity in fed and fasted mice.

    PubMed

    Bazhan, Nadezhda M; Baklanov, Alexandr V; Piskunova, Julia V; Kazantseva, Antonina J; Makarova, Elena N

    2017-10-01

    C57Bl mice exhibit impaired glucose metabolism by the late adult age under standard living conditions. The aim of this study was to evaluate white adipose tissue (WAT), brown adipose tissue (BAT), and skeletal muscle expression of genes involved in carbohydrate-lipid metabolism at postpubertal stages preceding the late adult age in C57Bl mice. Muscle mRNA levels of uncoupling protein 3 ( Ucp3 ) and carnitine palmitoyltransferase 1 ( Cpt1 ) (indicators of FFA oxidation), WAT mRNA levels of hormone-sensitive lipase ( Lipe ) and lipoprotein lipase ( Lpl ) (indicators of lipolysis and lipogenesis), muscle and WAT mRNA levels of the type 4 glucose transporter Slc2a4 (indicators of insulin-dependent glucose uptake), and BAT mRNA levels of uncoupling protein 1 ( Ucp1 ) (indicator of thermogenesis) were measured in fed and 16 h-fasted mice in three age groups: 10-week-old (young), 15-week-old (early adult), and 30-week-old (late adult). Weight gain from young to early adult age was not accompanied by changes in WAT and BAT indexes and biochemical blood parameters. Weight gain from early to late adult age was accompanied by increased WAT and BAT indexes and decreased glucose tolerance. Muscle Ucp3 and Cpt1 mRNA levels and WAT Lipe and Slc2a4 mRNA levels increased from young to early adult age and then sharply decreased by the late adult age. Moreover, BAT Ucp1 mRNA level decreased in the late adult age. Fasting failed to increase muscle Cpt1 mRNA levels in late adult mice. These transcriptional changes could contribute to impaired glucose metabolism and the onset of obesity in late adult mice during normal development. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measuredmore » on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.« less

  3. Energy utilization of a low carbohydrate diet fed genetically obese rats and mice.

    PubMed

    Thenen, S W; Mayer, J

    1977-02-01

    Genetically obese Zucker rats, ob/ob mice and non-obese littermates were fed low carbohydrate (2%, 48%, and 50% of energy as carbohydrate, protein, and fat, respectively) and control (60%, 19%, and 21%, as carobhydrate, protein, and fat) diets. The oxidation of the energy components of these diets was measured by adding D-[U-14C]glucose, L-[U-14C]glutamic acid, and glyceryl tri-[1-14C]oleate to test meals given intragastrically and collecting respiratory CO2 for 4 hours. The animals responded to the low carbohydrate diet by oxidizing less glucose and more glutamic acid, but these amounts were proportional to dietary carbohydrate and protein composition, In contrast, the animals oxidized both higher amounts and percentages of glyceryl trioleate when fed the low carbohydrate diet. Obese Zucker rats oxidized less fat than non-obese rats when fed both diets, while obese mice oxidized fat to the same extent as non-obese mice. Feeding the low carbohydrate diet significantly increased body weight in the obese mice, but not in obese rats and non-obese mice and rats. The effect of obesity and the low carbohydrate diet on food intake, serum glucose and lipid values and CO2 production are also reported.

  4. Ursodeoxycholic acid decreases age-related adiposity and inflammation in mice

    PubMed Central

    Oh, Ah-Reum; Bae, Jin-Sik; Lee, Junghoon; Shin, Eunji; Oh, Byung-Chul; Park, Sang-Chul; Cha, Ji-Young

    2016-01-01

    Ursodeoxycholic acid (UDCA), a natural, hydrophilic nontoxic bile acid, is clinically effective for treating cholestatic and chronic liver diseases. We investigated the chronic effects of UDCA on age-related lipid homeostasis and underlying molecular mechanisms. Twenty-week-old C57BL/6 male and female mice were fed a diet with or without 0.3% UDCA supplementation for 25 weeks. UDCA significantly reduced weight gain, adiposity, hepatic triglyceride, and hepatic cholesterol without incidental hepatic injury. UDCA-mediated hepatic triglyceride reduction was associated with downregulated hepatic expression of peroxisome proliferator-activated receptor-γ, and of other genes involved in lipogenesis (Chrebp, Acaca, Fasn, Scd1, and Me1) and fatty acid uptake (Ldlr, Cd36). The inflammatory cytokines Tnfa, Ccl2, and Il6 were significantly decreased in liver and/or white adipose tissues of UDCA-fed mice. These data suggest that UDCA exerts beneficial effects on age-related metabolic disorders by lowering the hepatic lipid accumulation, while concurrently reducing hepatocyte and adipocyte susceptibility to inflammatory stimuli. [BMB Reports 2016; 49(2): 105-110] PMID:26350747

  5. 2,4-Dinitrofluorobenzene-induced contact hypersensitivity response in NC/Nga mice fed fructo-oligosaccharide.

    PubMed

    Fujiwara, Reiko; Sasajima, Naho; Takemura, Naoki; Ozawa, Keisuke; Nagasaka, Yuki; Okubo, Takuma; Sahasakul, Yuraporn; Watanabe, Jun; Sonoyama, Kei

    2010-01-01

    Strategies to manipulate gut microbiota in infancy have been considered to prevent the development of allergic diseases later in life. We previously demonstrated that maternal dietary supplementation with fructo-oligosaccharide (FOS) during pregnancy and lactation modulated the composition of gut microbiota and diminished the severity of spontaneously developing atopic dermatitis-like skin lesions in the offspring of NC/Nga mice. The present study tested whether dietary FOS affects contact hypersensitivity (CHS), another model for allergic skin disease, in NC/Nga mice. In experiment 1, 5-wk-old female NC/Nga mice were fed diets either with or without FOS supplementation for 3 wk and then received 2,4-dinitrofluorobenzene (DNFB) on the ear auricle 5 times at 7-d intervals. FOS supplementation reduced CHS response as demonstrated by ear swelling. Quantitative RT-PCR analysis showed that mRNA levels for interleukin (IL)-10, IL-12p40, and IL-17 in the lesional ear skin were significantly lower in mice fed FOS. In experiment 2, female NC/Nga mice were fed diets either with or without FOS during pregnancy and lactation. After weaning, offspring were fed the diets supplemented with or without FOS. Three weeks after weaning, offspring received DNFB on the ear auricle 4 times at 7-d intervals. Although FOS supplementation after weaning reduced ear swelling, maternal FOS consumption was ineffective in offspring. The present data suggest that dietary FOS reduces CHS while maternal FOS consumption is ineffective in offspring of DNFB-treated NC/Nga mice.

  6. Impaired CXCR4 Expression and Cell Engraftment of Bone Marrow-derived Cells from Aged Atherogenic Mice

    PubMed Central

    Xu, Qiyuan; Wang, Jian’An; He, Jinlin; Zhou, Mingsheng; Adi, Jennipher; Webster, Keith A; Yu, Hong

    2011-01-01

    Objectives Reduced numbers and activity of circulating progenitor cells are associated with aging and have been linked with coronary artery disease. To determine the impact of aging and atherosclerotic disease on the chemotaxic activity of bone marrow derived cells (BMCs), we examined CXCR4 surface expression on BMCs from aged and atherosclerotic mice. Methods CXCR4 expression and cellular mobility were compared between BMCs of young (6-week old) ApoE null mice (ApoE−/−) and aged ApoE−/− mice that had been fed with a high-fat, high-cholesterol diet for 6-months. Results Age and atherosclerosis correlated with significantly lower surface expression of CXCR4 that was less inducible by calcium. The impaired calcium response was associated with defective calcium influx and was partially recovered by treatment with the calcium ionophore ionomycin. ApoE−/− mice fed high fat diet for 6-months had defective CXCR4 expression and SDF-1 regulation that is equivalent to that of 24-month old wild type mice. BMCs from aged, atherogenic ApoE−/− mice also displayed defective homing to SDF-1, and the animals had lower serum and bone marrow levels of SDF-1. Conclusion Evolution of atherosclerosis in ApoE−/− mice is paralleled by progressive loss of mobility of BMCs with reductions of CXCR4 expression, and reduced levels of SDF-1 in both serum and bone marrow. These changes mute the homing capability of BMCs and may contribute to the progression of atherosclerosis in this model. PMID:21855069

  7. Curcumin suppresses intestinal polyps in APC Min mice fed a high fat diet.

    PubMed

    Pettan-Brewer, Christina; Morton, John; Mangalindan, Ruby; Ladiges, Warren

    2011-01-01

    Colorectal cancer (CRC) is a leading cause of cancer deaths in the United States. Various risk factors have been associated with CRC including increasing age and diet. Epidemiological and experimental studies have implicated a diet high in fat as an important risk factor for colon cancer. High fat diets can promote obesity resulting in insulin resistance and inflammation and the development of oxidative stress, increased cell proliferation, and suppression of apoptosis. Because of the high consumption of dietary fats, especially saturated fats, by Western countries, it is of interest to see if non-nutrient food factors might be effective in preventing or delaying CRC in the presence of high saturated fat intake. Curcumin (Curcuma longa), the main yellow pigment in turmeric, was selected to test because of its reported anti-tumor activity. APC Min mice, which develop intestinal polyps and have many molecular features of CRC, were fed a diet containing 35% pork fat, 33% sucrose, and a protein and vitamin mineral mixture (HFD) with or without 0.5% curcumin. These cohorts were compared to APC Min mice receiving standard rodent chow (RC) with 8% fat. APC Min mice fed the HFD for 3 months had a 23% increase in total number of polyps compared to APC Min mice on RC. Curcumin was able to significantly reverse the accelerated polyp development associated with the HFD suggesting it may be effective clinically in helping prevent colon cancer even when ingesting high amounts of fatty foods. The anti-tumor effect of curcumin was shown to be associated with enhanced apoptosis and increased efficiency of DNA repair. Since curcumin prevented the gain in body weight seen in APC Min mice ingesting the HFD, modulation of energy metabolism may also be a factor.

  8. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    PubMed

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1 ∆/- ) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg -/- (also known as Ercc5 -/- ) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1 ∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1 ∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1 ∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  9. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet.

    PubMed

    Nguyen, Son G; Kim, Jungman; Guevarra, Robin B; Lee, Ji-Hoon; Kim, Eungpil; Kim, Su-Il; Unno, Tatsuya

    2016-10-12

    We investigated the anti-obesity effects of the potential prebiotic, laminarin, on mice fed a high-fat diet. A metagenomics approach was applied to characterize the ecological and functional differences of gut microbiota among mice fed a normal diet (CTL), a high-fat diet (HFD), and a laminarin-supplemented high-fat diet (HFL). The HFL mice showed a slower weight gain than the HFD mice during the laminarin-feeding period, but the rate of weight gain increased after the termination of laminarin supplementation. Gut microbial community analysis showed clear differences between the CTL and HFD mice, whereas the HFL mice were between the two. A higher abundance of carbohydrate active enzymes was observed in the HFL mice compared to the HFD mice, with especially notable increases in glycoside hydrolase and polysaccharide lyases. A significant decrease in Firmicutes and an increase in the Bacteroidetes phylum, especially the genus Bacteroides, were observed during laminarin ingestion. Laminarin ingestion altered the gut microbiota at the species level, which was re-shifted after termination of laminarin ingestion. Therefore, supplementing laminarin could reduce the adverse effects of a high-fat diet by shifting the gut microbiota towards a higher energy metabolism. Thus, laminarin could be used to develop anti-obesity functional foods. Our results also suggest that laminarin would need to be consumed regularly in order to prevent or manage obesity.

  10. Alpha-ketoglutarate stabilizes redox homeostasis and improves arterial elasticity in aged mice.

    PubMed

    Niemiec, T; Sikorska, J; Harrison, A; Szmidt, M; Sawosz, E; Wirth-Dzieciolowska, E; Wilczak, J; Pierzynowski, S

    2011-02-01

    The objective of this study was to evaluate the effect of α-ketoglutarate on redox state parameters and arterial elasticity in elderly mice. Mice in the control group were fed with standard diet, while the experimental animals received the diet supplemented either with calcium (Ca-AKG) or sodium salt of α-ketoglutarate (Na-AKG). The experimental animals were divided into 4 groups with 10 individuals in each: control I (12 months old), control II (2 months old), experimental group I fed with Ca-AKG (12 months old) and experimental group II fed with Na-AKG (12 months old). Mice treated with Ca-AKG as well as the control II animals demonstrated significantly higher level of total antioxidant status (TAS), comparing to the control I animals and those treated with Ca-AKG. Thiobarbituric acid reactive substances (TBARS) level in blood plasma was found significantly lower in young and Ca-AKG treated mice. TBARS liver concentration was significantly different in each examined group. The study also demonstrates the decrease in TBARS level in Ca-AKG treated animals. Treatment with Na-AKG significantly increased glutathione peroxidase activity and decreased the activity of superoxide dismutase. The presented results suggest that Ca-AKG protects the organism against the free radicals related elderly processes. The study presents also the effect of Ca-AKG treatment on arterial elastic characteristics in elderly mice. The beneficial effect of Ca-AKG on ageing organisms was confirmed via redox state stabilization and blood vessel elasticity improvement.

  11. Aging-associated renal disease in mice is fructokinase dependent.

    PubMed

    Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Milagres, Tamara; Hernando, Ana Andres; Jensen, Thomas; Miyazaki, Makoto; Doke, Tomohito; Hayasaki, Takahiro; Nakagawa, Takahiko; Marumaya, Shoichi; Long, David A; Garcia, Gabriela E; Kuwabara, Masanari; Sánchez-Lozada, Laura G; Kang, Duk-Hee; Johnson, Richard J

    2016-10-01

    Aging-associated kidney disease is usually considered a degenerative process associated with aging. Recently, it has been shown that animals can produce fructose endogenously, and that this can be a mechanism for causing kidney damage in diabetic nephropathy and in association with recurrent dehydration. We therefore hypothesized that low-level metabolism of endogenous fructose might play a role in aging-associated kidney disease. Wild-type and fructokinase knockout mice were fed a normal diet for 2 yr that had minimal (<5%) fructose content. At the end of 2 yr, wild-type mice showed elevations in systolic blood pressure, mild albuminuria, and glomerular changes with mesangial matrix expansion, variable mesangiolysis, and segmental thrombi. The renal injury was amplified by provision of high-salt diet for 3 wk, as noted by the presence of glomerular hypertrophy, mesangial matrix expansion, and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase knockout mice were protected from renal injury both at baseline and after high salt intake (3 wk) compared with wild-type mice. This was associated with higher levels of active (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies suggest that aging-associated renal disease might be due to activation of specific metabolic pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-associated renal injury may represent a disease process as opposed to normal age-related degeneration.

  12. Liver cholesterol concentrations in mice fed diets containing various sources of fat, carbohydrates or fiber.

    PubMed

    Beynen, A C; Klaasen, H L; Koopman, J P; Fielmich-Bouman, A M; Lemmens, A G

    1989-01-01

    Liver cholesterol concentrations were measured in mice after feeding for 30 days cholesterol-free, semipurified diets containing various sources of fat, carbohydrates or fiber. Olive oil produced significantly higher liver cholesterol concentrations than tallow, sunflowerseed oil and cocoa fat. In mice fed either fructose or sucrose liver cholesterol was significantly increased when compared with mice fed galactose or lactose. Dietary cellulose, when compared with pectin, did not influence liver cholesterol. The amount of fat in the diet, in the form of either corn oil or coconut fat, had no significant effect on liver cholesterol. It is concluded that the type of carbohydrate and fat in the diet are major determinants of liver cholesterol in mice.

  13. Early Deposition of Ceroid in Kupffer Cells of Mice Fed Hepatic Necrogenic Diets

    PubMed Central

    Porta, Eduardo A.; Hartroft, W. Stanley

    1963-01-01

    Experiments were undertaken to study the prenecrotic morphologic changes in liver of mice that were fed diets deficient in vitamin E and selenium. When these diets were fed to male albino mice the accumulation of ceroid pigment in Kupffer cells was observed within seven days of commencing the diets, long before any evidence of necrosis was observed. In later stages of the experiment the ceroid pigment deposited in Kupffer cells was so abundant that it appeared possible that interference with hepatic sinusoidal blood flow and impairment of physiologic activity of the reticuloendothelial system had resulted. ImagesFig. 1Fig. 2 PMID:20327568

  14. Sterol O-acyltransferase 1 deficiency improves defective insulin signaling in the brains of mice fed a high-fat diet.

    PubMed

    Xu, Ning; Meng, Hao; Liu, Tian-Yi; Feng, Ying-Li; Qi, Yuan; Zhang, Dong-Huan; Wang, Hong-Lei

    2018-05-05

    Insulin resistance induced by a high-fat diet (HFD) is related to metabolic diseases, and sterol O-acyltransferase 1 (SOAT1) is a key enzyme for the biosynthesis of cholesteryl ester. In the present study, wild-type (WT) mice and SOAT1-knockout (KO) mice with a C57BL6 background fed a HFD were used to explore the role of SOAT1 in the hypothalamus. The results show that the WT mice exhibited a significant increase in body weight as well as hepatic histologic changes; they also had a lower glucose and insulin tolerance than the WT mice fed a normal diet. However, the metabolic syndrome was attenuated in the SOAT1-KO HFD-fed mice. With regard to brain function, the SOAT1-KO HFD-fed mice showed improved cognitive function; they also manifested reduced levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, which would otherwise be raised by a HFD. In addition, the HFD led to the overexpression of GFAP and phosphorylated NF-κB in the hypothalamus, changes that were reversed in the SOAT1-KO HFD-fed mice. Moreover, SOAT1-KO mice improved HFD-caused defective hypothalamic insulin resistance, as evidenced by the upregulation of p-insulin receptor (INSR), p-AKT and p-glycogen synthase kinase (GSK)-3β, while the downregulation of p-AMP-activated protein kinase (AMPK)-α and p-acetyl-CoA carboxylase (ACC)-α. In addition, similar results were observed in high fructose (HFR)-stimulated astrocytes (ASTs) isolated from WT or KO mice. These results suggest that SOAT1 plays an important role in hypothalamic insulin sensitivity, linked to cognitive impairment, in HFD-fed mice. Copyright © 2018. Published by Elsevier Inc.

  15. Time-restricted feeding reduces adiposity in mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Disruption of the circadian rhythm contributes to obesity. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity in male C57BL/6 mice. Three-week-old mice were fed a low-fat or high-fat diet (16% or 45% of energy from corn oil) ad libitum (ad l...

  16. Absorption and distribution of cadmium in mice fed diets containing either inorganic or oyster-incorporated cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, M.F.; Hardy, J.T.; Miller, B.M.

    1984-02-01

    To determine the absorption, organ distribution, and retention of organically bound cadmium (Cd) and the effects of dietary zinc (Zn) on Cd metabolism, groups of mice were fed five different diets. The organic Cd used in the diets was in the form of lyophilized oyster (Crassostrea virginica) that had accumulated radiolabeled 109Cd through a plankton food chain. The mice were fed either a standard basal mouse diet (AIN-76) or diets containing five or eight times the Zn concentration of the basal diet. The source of Zn was either oyster tissue or ZnCO3. The concentration of organic and inorganic Cd providedmore » a dose of approximately 0.4 mg/kg. Diets prepared from oyster tissue probably contained all of the Cd and 85% of the Zn in organic form. Diets prepared with inorganic metals contained about the same Cd and Zn concentrations as the diets prepared with oyster. There was very little difference between the retention of Cd by mice that ingested organic (oyster bound) Cd and those fed inorganic Cd (CdCl2). However, when the Cd retained in the intestine was excluded, retention of organic Cd was significantly greater than that of inorganic Cd. The organ distribution of Cd differed significantly according to the chemical form of Cd fed (organic or inorganic) and the Zn level in the diet. The kidneys of mice fed organically bound Cd retained a higher percentage of the metal than the kidneys of those fed inorganic Cd. On the other hand, the livers of animals fed a low-Zn diet retained a higher percentage of the Cd than the livers of those fed a high-Zn diet, regardless of the dietary source of Cd.« less

  17. A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice

    PubMed Central

    Fink, Brian D.; Herlein, Judith A.; Guo, Deng Fu; Kulkarni, Chaitanya; Weidemann, Benjamin J.; Yu, Liping; Grobe, Justin L.; Rahmouni, Kamal; Kerns, Robert J.

    2014-01-01

    We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics. PMID:25301169

  18. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice.

    PubMed

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Morphometric and functional abnormalities of kidneys in the progeny of mice fed chocolate during pregnancy and lactation.

    PubMed

    Patera, Janusz; Chorostowska-Wynimko, Joanna; Słodkowska, Janina; Borowska, Adamina; Skopiński, Piotr; Sommer, Ewa; Wasiutyński, Aleksander; Skopińska-Rózewska, Ewa

    2006-01-01

    Even most commonly consumed beverages like tea, coffee, chocolate and cocoa contain methylxanthines, biogenic amines and polyphenols, among them catechins, that exhibit significant biological activity and might profoundly affect the organism homeostasis. We have previously shown that 400 mg of bitter chocolate or 6 mg of theobromine added to the daily diet of pregnant and afterwards lactating mice affected embryonic angiogenesis and caused bone mineralization disturbances as well as limb shortening in 4-weeks old offspring. The aim of the present study was the morphometric and functional evaluation of kidneys in the 4-weeks old progeny mice fed according to the protocol mentioned above. Progeny from the mice fed chocolate presented considerable morphometric abnormalities in the kidney structure, with the lower number of glomeruli per mm2 and their increased diameter. Moreover, higher serum creatinine concentration was observed in that group of offspring. No morphometric or functional irregularities were found in the progeny of mice fed theobromine. Abnormalities demonstrated in the offspring of mice fed chocolate are not related to its theobromine content. Consequently, identification of active compound(s) responsible for the observed effects is of vital importance.

  20. Esculetin prevents non-alcoholic fatty liver in diabetic mice fed high-fat diet.

    PubMed

    Choi, Ra-Yeong; Ham, Ju Ri; Lee, Mi-Kyung

    2016-12-25

    This study investigated the effects and mechanism of esculetin (6,7-dihydroxycoumarin) on non-alcoholic fatty liver in diabetic mice fed high-fat diet (HFD). The diabetic mice model was induced by injection of streptozotocin, after which they were fed HFD diet with or without esculetin for 11 weeks. Non-diabetic mice were provided a normal diet. Diabetes induced hepatic hypertrophy, lipid accumulation and droplets; however, esculetin reversed these changes. Esculetin treatment in diabetic mice fed HFD significantly down-regulated expression of lipid synthesis genes (Fasn, Dgat2 and Plpp2) and inflammation genes (Tlr4, Myd88, Nfkb, Tnfα and Il6). Moreover, the activities of hepatic lipid synthesis enzymes (fatty acid synthase and phosphatidate phosphohydrolase) and gluconeogenesis enzyme (glucose-6-phosphatase) in the esculetin group were decreased compared with the diabetic group. In addition, esculetin significantly reduced blood HbA 1c , serum cytokines (TNF-α and IL-6) and chemokine (MCP-1) levels compared with the diabetic group without changing the insulin content in serum and the pancreas. Hepatic SOD activity was lower and lipid peroxidation level was higher in the diabetic group than in the normal group; however, esculetin attenuates these differences. Overall, these results demonstrated that esculetin supplementation could protect against development of non-alcoholic fatty liver in diabetes via regulation of lipids, glucose and inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. A mitochondrial-targeted coenzyme q analog prevents weight gain and ameliorates hepatic dysfunction in high-fat-fed mice.

    PubMed

    Fink, Brian D; Herlein, Judith A; Guo, Deng Fu; Kulkarni, Chaitanya; Weidemann, Benjamin J; Yu, Liping; Grobe, Justin L; Rahmouni, Kamal; Kerns, Robert J; Sivitz, William I

    2014-12-01

    We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics. U.S. Government work not protected by U.S. copyright.

  2. Long-term Dietary Macronutrients and Hepatic Gene Expression in Aging Mice.

    PubMed

    Gokarn, Rahul; Solon-Biet, Samantha M; Cogger, Victoria C; Cooney, Gregory J; Wahl, Devin; McMahon, Aisling C; Mitchell, James R; Mitchell, Sarah J; Hine, Christopher; de Cabo, Rafael; Raubenheimer, David; Simpson, Stephen J; Le Couteur, David G

    2018-04-23

    Nutrition influences both hepatic function and aging, but mechanisms are poorly understood. Here, the effects of lifelong, ad libitum-fed diets varying in macronutrients and energy on hepatic gene expression were studied. Gene expression was measured using Affymetrix mouse arrays in livers of 46 mice aged 15 months fed one of 25 diets varying in protein, carbohydrates, fat, and energy density from 3 weeks of age. Gene expression was almost entirely influenced by protein intake. Carbohydrate and fat intake had few effects on gene expression compared with protein. Pathways and processes associated with protein intake included those involved with mitochondrial function, metabolic signaling (PI3K-Akt, AMPK, mTOR) and metabolism of protein and amino acids. Protein intake had variable effects on genes associated with regulation of longevity and influenced by caloric restriction. Among the genes of interest with expression that were significantly associated with protein intake are Cth, Gls2, Igf1, and Nnmt, which were increased with higher protein intake, and Igf2bp2, Fgf21, Prkab2, and Mtor, which were increased with lower protein intake. Dietary protein has a powerful impact on hepatic gene expression in older mice, with some overlap with genes previously reported to be involved with regulation of longevity or caloric restriction.

  3. Decreased Arteriolar Tetrahydrobiopterin is Linked to Superoxide Generation from Nitric Oxide Synthase in Mice Fed High Salt

    PubMed Central

    Nurkiewicz, Timothy R.; Wu, Guoyao; Li, Peng; Boegehold, Matthew A.

    2012-01-01

    Objective Impaired endothelium-dependent arteriolar dilation in mice fed high salt is due to local oxidation of nitric oxide (NO) by superoxide anion (O2-). We explored the possibility that “uncoupled” endothelial nitric oxide synthase (eNOS) is the source of this O2-. Methods Levels of L-arginine (L-Arg), tetrahydrobiopterin (BH4) and O2- (hydroethidine oxidation) were measured in spinotrapezius muscle arterioles of mice fed normal salt (0.45%, NS) or high salt (4%, HS) diets for 4 weeks, with or without dietary L-Arg supplementation. The contribution of NO to endothelium-dependent dilation was determined from the effect of Nω-nitro-L-arginine methyl ester (L-NAME) on responses to acetylcholine (ACh). Results Arterioles in HS mice had lower [BH4] and higher O2- levels than those in NS mice. ACh further increased arteriolar O2- in HS mice only. L-Arg supplementation prevented the reduction in [BH4] in arterioles of HS mice, and O2- was not elevated in these vessels. Compared to NS mice, arteriolar ACh responses were diminished and insensitive to L-NAME in HS mice, but not in HS mice supplemented with L-Arg. Conclusions These findings suggest that eNOS uncoupling due to low [BH4] is responsible for O2- generation and reduced NO-dependent dilation in arterioles of mice fed a high salt diet. PMID:20163541

  4. Chronic carbon monoxide treatment attenuates development of obesity and remodels adipocytes in mice fed a high-fat diet.

    PubMed

    Hosick, P A; AlAmodi, A A; Storm, M V; Gousset, M U; Pruett, B E; Gray, W; Stout, J; Stec, D E

    2014-01-01

    Induction of heme oxygenase-1 (HO-1) has been demonstrated to result in chronic weight loss in several rodent models of obesity. However, the specific contribution of the HO metabolite, carbon monoxide (CO) to this response remains unknown. In this study, we determined the effect of chronic low level administration of a specific CO donor on the progression of obesity and its effects on metabolism and adipocyte biology in mice fed a high-fat diet. Experiments were performed on C57BL/6J mice fed a high-fat diet (60%) from 4 weeks until 30 weeks of age. Mice were administered either the CO donor, carbon monoxide releasing molecules (CORM)-A1 (5 mg kg(-1), intraperitoneally every other day) or the inactive form of the drug (iCORM-A1). Body weights were measured weekly and fasted blood glucose, insulin as well as body composition were measured every 6 weeks. Food intake, O2 consumption, CO2 production, activity and body heat production were measured at 28 weeks after start of the experimental protocol. Chronic CORM-A1 attenuated the development of high fat induced obesity from 18 weeks until the end of the study. Chronic CORM-A1 treatment in mice fed a high-fat diet resulted in significant decreases in fasted blood glucose, insulin and body fat and increased O2 consumption and heat production as compared with mice treated with iCORM-A1. Chronic CORM-A1 treatment also resulted in a significant decrease in adipocyte size and an increase in adipocyte number and in NRF-1, PGC-1α and UCP1 protein levels in epidydmal fat. Our results demonstrate that chronic CO treatment prevents the development of high-fat diet induced obesity via stimulation of metabolism and remodeling of adipocytes.

  5. Meibomian Gland Dysfunction Model in Hairless Mice Fed a Special Diet With Limited Lipid Content.

    PubMed

    Miyake, Hideki; Oda, Tomoko; Katsuta, Osamu; Seno, Masaharu; Nakamura, Masatsugu

    2016-06-01

    A novel meibomian gland dysfunction (MGD) model was developed to facilitate understanding of the pathophysiology of MGD and to evaluate treatment with azithromycin ophthalmic solution (azithromycin). MGD was induced in HR-1 hairless mice by feeding them a special diet with limited lipid content (HR-AD). Male HR-1 hairless mice were fed an HR-AD diet for 16 weeks. Development of MGD was assessed by histopathology at 4-week intervals. The lid margin was observed by slit-lamp examination. After cessation of the HR-AD diet, the mice were fed a normal diet to restore normal eye conditions. Expression of cytokeratin 6 was determined by immunostaining. We evaluated the effects of topically applied azithromycin on the plugged orifice in this model. After mice were fed the HR-AD diet, histopathology analysis showed hyperkeratinization of the ductal epithelium in the meibomian gland. Ductal hyperkeratinization resulted in the loss of acini, followed by atrophy of the gland. Slit-lamp examination revealed a markedly plugged orifice, telangiectasia, and a toothpaste-like meibum compared with that of a normal eyelid. Cessation of feeding with HR-AD ameliorated both the MGD signs and the expression of cytokeratin 6, restoring the tissue to a histologically normal state. Azithromycin treatment significantly decreased the number of plugged orifices and ameliorated atrophy, as revealed by histopathologic analysis. We developed a novel model that mimics human MGD signs in HR-1 hairless mice fed an HR-AD diet. Azithromycin treatment led to therapeutic improvement in this model. This MGD model could be useful for the evaluation of drug candidates for MGD.

  6. Liver Fatty Acid Binding Protein Gene-ablation Exacerbates Weight Gain in High-Fat Fed Female Mice

    PubMed Central

    McIntosh, Avery L.; Atshaves, Barbara P.; Landrock, Danilo; Landrock, Kerstin K.; Martin, Gregory G.; Storey, Stephen M.; Kier, Ann B.; Schroeder, Friedhelm

    2013-01-01

    Loss of liver fatty acid binding protein (L-FABP) decreases long chain fatty acid uptake and oxidation in primary hepatocytes and in vivo. On this basis, L-FABP gene ablation would potentiate high-fat diet-induced weight gain and weight gain/energy intake. While this was indeed the case when L-FABP null (−/−) mice on the C57BL/6NCr background were pair-fed high fat diet, whether this would also be observed under high-fat diet fed ad libitum was not known. Therefore, this possibility was examined in female L-FABP (−/−) mice on the same background. L-FABP (−/−) mice consumed equal amounts of defined high-fat or isocaloric control diets fed ad libitum. However, on the ad libitum fed high-fat diet the L-FABP (−/−) mice exhibited: 1) Decreased hepatic long chain fatty acid (LCFA) β-oxidation as indicated by lower serum β–hydroxybutyrate level; 2) Decreased hepatic protein levels of key enzymes mitochondrial (rate limiting carnitine palmitoyl acyltransferase A1, CPT1A; HMG-CoA synthase) and peroxisomal (acyl CoA oxidase 1, ACOX1) LCFA β-oxidation; 3) Increased fat tissue mass (FTM) and FTM/energy intake to the greatest extent; and 4) Exacerbated body weight gain, weight gain/energy intake, liver weight, and liver weight/body weight to the greatest extent. Taken together, these findings showed that L-FABP gene-ablation exacerbated diet-induced weight gain and fat tissue mass gain in mice fed high-fat diet ad libitum—consistent with the known biochemistry and cell biology of L-FABP. PMID:23539345

  7. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    PubMed

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice

    PubMed Central

    Solon-Biet, Samantha M.; McMahon, Aisling C.; Ballard, J. William O.; Ruohonen, Kari; Wu, Lindsay E.; Cogger, Victoria C.; Warren, Alessandra; Huang, Xin; Pichaud, Nicolas; Melvin, Richard G.; Gokarn, Rahul; Khalil, Mamdouh; Turner, Nigel; Cooney, Gregory J.; Sinclair, David A.; Raubenheimer, David; Le Couteur, David G.; Simpson, Stephen J.

    2016-01-01

    Summary The fundamental questions of what represents a macronutritionally balanced diet and how this maintains health and longevity remain unanswered. Here, the Geometric Framework, a state-space nutritional modeling method, was used to measure interactive effects of dietary energy, protein, fat, and carbohydrate on food intake, cardiometabolic phenotype, and longevity in mice fed one of 25 diets ad libitum. Food intake was regulated primarily by protein and carbohydrate content. Longevity and health were optimized when protein was replaced with carbohydrate to limit compensatory feeding for protein and suppress protein intake. These consequences are associated with hepatic mammalian target of rapamycin (mTOR) activation and mitochondrial function and, in turn, related to circulating branched-chain amino acids and glucose. Calorie restriction achieved by high-protein diets or dietary dilution had no beneficial effects on lifespan. The results suggest that longevity can be extended in ad libitum-fed animals by manipulating the ratio of macronutrients to inhibit mTOR activation. PMID:24606899

  9. The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice.

    PubMed

    Le Couteur, David G; Tay, Szun S; Solon-Biet, Samantha; Bertolino, Patrick; McMahon, Aisling C; Cogger, Victoria C; Colakoglu, Feyza; Warren, Alessandra; Holmes, Andrew J; Pichaud, Nicolas; Horan, Martin; Correa, Carolina; Melvin, Richard G; Turner, Nigel; Ballard, J William O; Ruohonen, Kari; Raubenheimer, David; Simpson, Stephen J

    2015-12-01

    There is a strong association between aging, diet, and immunity. The effects of macronutrients and energy intake on splanchnic and hepatic lymphocytes were studied in 15 month old mice. The mice were ad-libitum fed 1 of 25 diets varying in the ratios and amounts of protein, carbohydrate, and fat over their lifetime. Lymphocytes in liver, spleen, Peyers patches, mesenteric lymph nodes, and inguinal lymph nodes were evaluated using flow cytometry. Low protein intake reversed aging changes in splenic CD4 and CD8 T cells, CD4:CD8 T cell ratio, memory/effector CD4 T cells and naïve CD4 T cells. A similar influence of total caloric intake in these ad-libitum fed mice was not apparent. Protein intake also influenced hepatic NK cells and B cells, while protein to carbohydrate ratio influenced hepatic NKT cells. Hepatosteatosis was associated with increased energy and fat intake and changes in hepatic Tregs, effector/memory T, and NK cells. Hepatic NK cells were also associated with body fat, glucose tolerance, and leptin levels while hepatic Tregs were associated with hydrogen peroxide production by hepatic mitochondria. Dietary macronutrients, particularly protein, influence splanchnic lymphocytes in old age, with downstream associations with mitochondrial function, liver pathology, and obesity-related phenotype. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Cow milk allergy symptoms are reduced in mice fed dietary synbiotics during oral sensitization with whey.

    PubMed

    Schouten, Bastiaan; van Esch, Betty C A M; Hofman, Gerard A; van Doorn, Suzan A C M; Knol, Jan; Nauta, Alma J; Garssen, Johan; Willemsen, Linette E M; Knippels, Léon M J

    2009-07-01

    Cow milk allergy is the most common food allergy in children. So far, no effective treatment is available to prevent or cure food allergy. The purpose of this study was to compare effects of dietary supplementation with a prebiotic mixture (Immunofortis), a probiotic strain [Bifidobacterium breve M-16V], or a synbiotic diet combining both on the outcome of the allergic response when provided during oral sensitization with whey in mice. Mice were fed diets containing 2% (wt:wt) Immunofortis and/or the B. breve M-16V (n = 6/group). The acute allergic skin response was determined by measuring ear swelling. Antigen-induced anaphylaxis was scored. Furthermore, whey-specific serum immunoglobulins and mouse mast cell protease-1 (mMCP-1) were determined. In mice fed the synbiotic mixture, the allergic skin response and the anaphylactic reaction were strongly reduced compared with whey-sensitized mice fed the control diet (P < 0.01). Immunofortis or B. breve M-16V alone were significantly less effective in reducing the allergic skin response than the synbiotic diet and did not reduce the anaphylactic reaction. The whey-specific IgE and IgG(1) responses were not affected; however, IgG(2a) was greater in all treated groups than in the control group (P < 0.05). Serum mMCP-1 concentrations, reflecting mucosal mast cell degranulation, were lower in mice fed synbiotics compared with those fed the control diet (P < 0.01). Dietary supplementation with Immunofortis, B. breve M-16V, and particularly the synbiotic mixture, provided during sensitization, reduces the allergic effector response in a murine model of IgE-mediated hypersensitivity that mimics the human route of sensitization. This model shows the potential for dietary intervention with synbiotics in reducing the allergic response to food allergens.

  11. Changes in IL12A methylation pattern in livers from mice fed DDC.

    PubMed

    Oliva, J; French, S W

    2012-04-01

    Mallory-Denk body (MDB) formation is a component of alcoholic and non alcoholic hepatitis. Proteins of the TLR pathway were shown to be involved in the formation of MDBs, in mice fed DDC. TLR genes are upregulated and SAMe supplementation prevents this up regulation and prevented the formation of MDBs. DNA of livers from control mice, from mice fed DDC 10weeks, refed 1week with DDC and with DDC+SAMe were extracted and used to study the methylation pattern of genes involves in the TLR pathway. A PCR array was used to analyze it. Using PCR arrays for the mouse TLR pathway,24 genes were found whose expression of IL12A was regulated by the methylation of its gene. DDC fed for 10weeks reduced the methylation of the IL12A gene expression. This expression was also reduced when DDC was refed. However, when SAMe was fed, the intermediate level methylation of IL12A was up regulated to the intermediate level and the methylation of the promoter decreased compared to DDC refeeding or DDC 10weeks. IL12A is known to induce the production of IFNg by NK and L(T). We showed in a previous publication that IFNg is one of the major cytokines involved in the induction of MDB formation. The low expression of IL12A associated with the intermediate methylation of its promoter could explain one step in the mechanism which leads to the formation of MDBs. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Systemic metabolite changes in wild-type C57BL/6 mice fed black raspberries

    PubMed Central

    Pan, Pan; Skaer, Chad W.; Wang, Hsin-Tzu; Kreiser, Michael A.; Stirdivant, Steven M.; Oshima, Kiyoko; Huang, Yi-Wen; Young, Matthew R.; Wang, Li-Shu

    2017-01-01

    Introduction Freeze-dried black raspberries (BRBs) elicit chemopreventive effects against colorectal cancer in humans and in rodents. The study objective was to investigate potential BRB-caused metabolite changes using wild-type (WT) C57BL/6 mice. Methods and results WT mice were fed either control diet or control diet supplemented with 5% BRBs for 8 weeks. A non-targeted metabolomic analysis was conducted on colonic mucosa, liver, and fecal specimens collected from both diet groups. BRBs significantly changed the levels of 41 colonic mucosa metabolites, 40 liver metabolites and 34 fecal metabolites compared to control diet-fed mice. BRBs reduced 34 lipid metabolites in colonic mucosa and increased levels of amino acids in liver. One metabolite, 3-[3-(sulfooxy) phenyl] propanoic acid, might be a useful biomarker of BRB consumption. In addition, BRB powder was found to contain 30-fold higher levels of linolenate compared to control diets. Consistently, multiple omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including stearidonate, docosapentaenoate (ω-3 DPA), eicosapentaenoate (EPA) and docosahexaenoate (DHA), were significantly elevated in livers of BRB-fed mice. Conclusion The data from the current study suggest that BRBs produce systemic metabolite changes in multiple tissue matrices, supporting our hypothesis that BRBs may serve as both a chemopreventive agent and a beneficial dietary supplement. PMID:28094560

  13. Cancer-Predicting Gene Expression Changes in Colonic Mucosa of Western Diet Fed Mlh1 +/- Mice

    PubMed Central

    Dermadi Bebek, Denis; Valo, Satu; Reyhani, Nima; Ollila, Saara; Päivärinta, Essi; Peltomäki, Päivi; Mutanen, Marja; Nyström, Minna

    2013-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in the Western world and interactions between genetic and environmental factors, including diet, are suggested to play a critical role in its etiology. We conducted a long-term feeding experiment in the mouse to address gene expression and methylation changes arising in histologically normal colonic mucosa as putative cancer-predisposing events available for early detection. The expression of 94 growth-regulatory genes previously linked to human CRC was studied at two time points (5 weeks and 12 months of age) in the heterozygote Mlh1 +/- mice, an animal model for human Lynch syndrome (LS), and wild type Mlh1 +/+ littermates, fed by either Western-style (WD) or AIN-93G control diet. In mice fed with WD, proximal colon mucosa, the predominant site of cancer formation in LS, exhibited a significant expression decrease in tumor suppressor genes, Dkk1, Hoxd1, Slc5a8, and Socs1, the latter two only in the Mlh1 +/- mice. Reduced mRNA expression was accompanied by increased promoter methylation of the respective genes. The strongest expression decrease (7.3 fold) together with a significant increase in its promoter methylation was seen in Dkk1, an antagonist of the canonical Wnt signaling pathway. Furthermore, the inactivation of Dkk1 seems to predispose to neoplasias in the proximal colon. This and the fact that Mlh1 which showed only modest methylation was still expressed in both Mlh1 +/- and Mlh1 +/+ mice indicate that the expression decreases and the inactivation of Dkk1 in particular is a prominent early marker for colon oncogenesis. PMID:24204690

  14. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice.

    PubMed

    Feng, Bin; Meng, Ran; Huang, Bin; Shen, Shanmei; Bi, Yan; Zhu, Dalong

    2016-01-01

    Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30 mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.

  15. Zectran fed orally to mice...cholinesterase levels in blood determined

    Treesearch

    Jean Marie Lang; Raymond R. Miskus

    1967-01-01

    Zectran, a carbamate insecticide, is being field-tested against the spruce budworm. Taken in sufficient quantity, it can induce cholinesterase (ChE) inhibition in mammals. In laboratory experiments, Zectran was fed orally to mice. Results indicated that maximum ChE inhibition occurred 15 to 30 minutes after ingestion of Zectran, and that a ChE test is unreliable in the...

  16. Beneficial effects of apple peel polyphenols on vascular endothelial dysfunction and liver injury in high choline-fed mice.

    PubMed

    Jia, Mengfan; Ren, Daoyuan; Nie, Yan; Yang, Xingbin

    2017-03-22

    This study was designed to investigate the preventive effects of Red Fuji apple peel polyphenolic extract (APP) on vascular endothelial dysfunction and liver injury in mice fed a high choline diet. The mice were fed 3% dietary choline in drinking water for 8 weeks and displayed vascular dysfunction and liver damage (p < 0.01). The administration of APP at 600 and 900 mg per kg bw significantly elevated serum NO, HDL and 6-Keto-PGF1a levels and lowered serum TC, TG, LDL, ET-1 and TXB2 levels in the HC-fed mice. Besides, APP also caused the reduction of AST, ALT activities and MDA, CRP, TNF-α levels, and increased the hepatic GSH-Px and SOD activities of the HC-fed mice. Furthermore, the histopathology of the liver by conventional H&E and oil red O staining confirmed the liver steatosis induced by a choline diet and the hepatoprotective effect of APP. The experiment results indicated that the polyphenolic extract from apple peel might be regarded as a preventive and therapeutic product for the amelioration of HC diet-induced vascular dysfunction and hepatic injury.

  17. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    PubMed

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P < 0.05), but it did not differ among mice fed the 3 diets. Plasma ALP and TRAP activities and bone formation and resorption in femur were similar among ovariectomized mice fed the HFD containing 0 or 1000 mg vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  18. [Development of Rhodnius pictipes Stal, 1872 fed on mice and through a silicone membrane (Hemiptera, Reduviidae, Triatominae)].

    PubMed

    Rocha, D da S; da Fonseca, A H; Costa, F A; Jurberg, J; Galvão, C

    1997-01-01

    Rhodnius pictipes (Hemiptera, Reduviidae) from Serra Norte, State of Pará, Brazil, acclimatized in an insectary at the Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Departamento de Entomologia, Instituto Oswaldo Cruz, were fed through a silicone membrane. In order to know the viability and the efficiency of this membrane compared with insects fed on mice, the number of bloodmeals taken, period of development of the five nymphal instars, longevity of adults, average amount of blood intake in each meal and percent of mortality were observed. A total of 310 insects, were used, comprising 50 nymphs of each instar, as well as 30 male and 30 female adults. Insects fed artificially had reduced minimal and maximal periods of development than the group fed on mice. The largest relative increase of body weight was observed in the 2nd instar followed by the 1st, and the amount of blood ingested increased during the development, to the 5th instar for both groups. There were no significant differences between the groups fed artificially and in vivo according to Tukey's test for p > 0.05. The percent of mortality in the 1st instar was 18% for artificially fed and 16% for the group fed on mice; these percentages decreased as insects developed until the 4th instar, without mortality, returning to increase in the 5th instar. R. pictipes was shown to be easily adaptable to artificial feeding, and could be considered as an important and viable experimental model.

  19. Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.

    PubMed

    Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S

    2017-07-01

    What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P < 0.05], whereas FLH showed good reliability in chow (ICC = 0.7; P < 0.05) but not in HFD mice after 10 weeks (ICC < 0.5). Our data demonstrate that non-invasive muscle function tests are valuable and reliable tools for assessment of muscle strength and

  20. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet.

    PubMed

    Wang, Jun; Ryu, Ho Kyung

    2015-10-01

    The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism.

  1. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet

    PubMed Central

    Wang, Jun

    2015-01-01

    BACKGROUND/OBJECTIVES The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. MATERIALS/METHODS Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. RESULTS Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). CONCLUSIONS Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism. PMID:26425278

  2. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice

    PubMed Central

    Baldwin, Jessie; Collins, Brian; Wolf, Patricia G.; Martinez, Kristina; Shen, Wan; Chuang, Chia-Chi; Zhong, Wei; Cooney, Paula; Cockrell, Chase; Chang, Eugene; Gaskins, H. Rex; McIntosh, Michael K.

    2016-01-01

    Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high fat (HF), butter-rich diet. C57BL/6J mice were fed a low fat (LF) diet or HF diet with 3% or 5% grapes for 11 weeks. Total body and inguinal fat were moderately, but significantly reduced in mice fed both levels of grapes compared to their controls. Mice fed 5% grapes had lower liver weights and triglyceride levels, and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls. Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4, and Gpat1 compared to the 3% controls. Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp., and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene (dsrA-Bw), and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls. Additionally, Bifidobacterium, Lactobacillus, Allobaculum, and several other genera correlated negatively with adiposity. Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls. Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens. Collectively, these data indicate that some of the adverse health consequences of consuming a HF diet rich in saturated fat can be attenuated by table grape consumption. PMID:26423887

  3. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice.

    PubMed

    Baldwin, Jessie; Collins, Brian; Wolf, Patricia G; Martinez, Kristina; Shen, Wan; Chuang, Chia-Chi; Zhong, Wei; Cooney, Paula; Cockrell, Chase; Chang, Eugene; Gaskins, H Rex; McIntosh, Michael K

    2016-01-01

    Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high-fat (HF), butter-rich diet. C57BL/6J mice were fed a low-fat (LF) diet or HF diet with 3% or 5% grapes for 11weeks. Total body and inguinal fat were moderately but significantly reduced in mice fed both levels of grapes compared to their controls. Mice fed 5% grapes had lower liver weights and triglyceride levels and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls. Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4 and Gpat1 compared to the 3% controls. Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% of grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp. and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls. In addition, Bifidobacterium, Lactobacillus, Allobaculum and several other genera correlated negatively with adiposity. Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls. Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens. Collectively, these data indicate that some of the adverse health consequences of consuming an HF diet rich in saturated fat can be attenuated by table grape consumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice.

    PubMed

    Newman, John C; Covarrubias, Anthony J; Zhao, Minghao; Yu, Xinxing; Gut, Philipp; Ng, Che-Ping; Huang, Yu; Haldar, Saptarsi; Verdin, Eric

    2017-09-05

    Ketogenic diets recapitulate certain metabolic aspects of dietary restriction such as reliance on fatty acid metabolism and production of ketone bodies. We investigated whether an isoprotein ketogenic diet (KD) might, like dietary restriction, affect longevity and healthspan in C57BL/6 male mice. We find that Cyclic KD, KD alternated weekly with the Control diet to prevent obesity, reduces midlife mortality but does not affect maximum lifespan. A non-ketogenic high-fat diet (HF) fed similarly may have an intermediate effect on mortality. Cyclic KD improves memory performance in old age, while modestly improving composite healthspan measures. Gene expression analysis identifies downregulation of insulin, protein synthesis, and fatty acid synthesis pathways as mechanisms common to KD and HF. However, upregulation of PPARα target genes is unique to KD, consistent across tissues, and preserved in old age. In all, we show that a non-obesogenic ketogenic diet improves survival, memory, and healthspan in aging mice. Published by Elsevier Inc.

  5. The Major Green Tea Polyphenol, (−)-Epigallocatechin-3-Gallate, Inhibits Obesity, Metabolic Syndrome, and Fatty Liver Disease in High-Fat–Fed Mice1,2

    PubMed Central

    Bose, Mousumi; Lambert, Joshua D.; Ju, Jihyeung; Reuhl, Kenneth R.; Shapses, Sue A.; Yang, Chung S.

    2008-01-01

    In this study, we investigated the effects of the major green tea polyphenol, (−)-epigallocatechin-3-gallate (EGCG), on high-fat–induced obesity, symptoms of the metabolic syndrome, and fatty liver in mice. In mice fed a high-fat diet (60% energy as fat), supplementation with dietary EGCG treatment (3.2 g/kg diet) for 16 wk reduced body weight (BW) gain, percent body fat, and visceral fat weight (P < 0.05) compared with mice without EGCG treatment. The BW decrease was associated with increased fecal lipids in the high-fat–fed groups (r2 = 0.521; P < 0.05). EGCG treatment attenuated insulin resistance, plasma cholesterol, and monocyte chemoattractant protein concentrations in high-fat–fed mice (P < 0.05). EGCG treatment also decreased liver weight, liver triglycerides, and plasma alanine aminotransferase concentrations in high-fat–fed mice (P < 0.05). Histological analyses of liver samples revealed decreased lipid accumulation in hepatocytes in mice treated with EGCG compared with high-fat diet-fed mice without EGCG treatment. In another experiment, 3-mo-old high-fat–induced obese mice receiving short-term EGCG treatment (3.2 g/kg diet, 4 wk) had decreased mesenteric fat weight and blood glucose compared with high-fat–fed control mice (P < 0.05). Our results indicate that long-term EGCG treatment attenuated the development of obesity, symptoms associated with the metabolic syndrome, and fatty liver. Short-term EGCG treatment appeared to reverse preexisting high-fat–induced metabolic pathologies in obese mice. These effects may be mediated by decreased lipid absorption, decreased inflammation, and other mechanisms. PMID:18716169

  6. Adipokine production in mice fed high-fat diets containing different types of dietary fats

    USDA-ARS?s Scientific Manuscript database

    The present study compared high-fat diets containing different types of dietary fats with various levels of linoleic acid (18:2n6, LA) and a-linolenic acid (18:3n3, ALA) on adipokine production in male C57BL/6 mice. Three-week old mice were fed AIN93G diet (15% of energy from corn oil, control) or ...

  7. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age.

    PubMed

    Agudo, J; Martin, M; Roca, C; Molas, M; Bura, A S; Zimmer, A; Bosch, F; Maldonado, R

    2010-12-01

    The endocannabinoid system has a key role in energy storage and metabolic disorders. The endocannabinoid receptor 2 (CB2R), which was first detected in immune cells, is present in the main peripheral organs responsible for metabolic control. During obesity, CB2R is involved in the development of adipose tissue inflammation and fatty liver. We examined the long-term effects of CB2R deficiency in glucose metabolism. Mice deficient in CB2R (Cb2 ( -/- ) [also known as Cnr2]) were studied at different ages (2-12 months). Two-month-old Cb2 (-/-) and wild-type mice were treated with a selective CB2R antagonist or fed a high-fat diet. The lack of CB2R in Cb2 (-/-) mice led to greater increases in food intake and body weight with age than in Cb2 (+/+) mice. However, 12-month-old obese Cb2 (-/-) mice did not develop insulin resistance and showed enhanced insulin-stimulated glucose uptake in skeletal muscle. In agreement, adipose tissue hypertrophy was not associated with inflammation. Similarly, treatment of wild-type mice with CB2R antagonist resulted in improved insulin sensitivity. Moreover, when 2-month-old Cb2 (-/-) mice were fed a high-fat diet, reduced body weight gain and normal insulin sensitivity were observed. These results indicate that the lack of CB2R-mediated responses protected mice from both age-related and diet-induced insulin resistance, suggesting that these receptors may be a potential therapeutic target in obesity and insulin resistance.

  8. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE)

    PubMed Central

    Baba, Shahid P.; Hellmann, Jason; Srivastava, Sanjay; Bhatnagar, Aruni

    2011-01-01

    Diabetes results in enhanced chemical modification of proteins by advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) precursors. These modifications have been linked to the development of several secondary diabetic complications. Our previous studies showed that aldose reductase (AR; AKR1B3) catalyzes the reduction of ALEs and AGEs precursors; however, the in vivo significance of this metabolic pathway during diabetes and obesity has not been fully assessed. Therefore we examined the role of AR in regulating ALEs and AGEs formation in murine models of diet-induced obesity and streptozotocin-induced diabetes. In comparison with wild-type (WT) and AR-null mice fed normal chow, mice fed a high-fat (HF) diet (42% kcal fat) showed increased accumulation of AGEs and protein–acrolein adducts in the plasma. AGEs and acrolein adducts were also increased in the epididymal fat of WT and AR-null mice fed a HF diet. Deletion of AR increased the accumulation of 4-hydroxy-trans-2-nonenal (HNE) protein adduct in the plasma and increased the expression of the AGE receptor (RAGE) in HF fed mice. No change in AGEs formation was observed in the kidneys of HF-fed mice. In comparison, renal tissue from AR-null mice treated with streptozotocin showed greater AGE accumulation than streptozotocin-treated WT mice. These data indicated that AR regulated the accumulation of lipid peroxidation derived aldehydes and AGEs under conditions of severe, but not mild, hyperglycemia and that deletion of AR increased RAGE-induction via mechanisms that were independent of AGEs accumulation. PMID:21276777

  9. Sex-dependent regulation of hypothalamic neuropeptide Y-Y1 receptor gene expression in moderate/high fat, high-energy diet-fed mice

    PubMed Central

    Zammaretti, Francesca; Panzica, Giancarlo; Eva, Carola

    2007-01-01

    In this study we investigated whether long-term consumption of a moderate/high fat (MHF), high-energy diet can affect the gene expression of the Y1 receptor (Y1R) for neuropeptide Y (NPY) in the dorsomedial (DMH), ventromedial (VMH), arcuate (ARC) and paraventricular (PVN) hypothalamic nuclei of male and female Y1R/LacZ transgenic mice, carrying the murine Y1R promoter linked to the LacZ gene. MHF diet-fed male mice showed an increased consumption of metabolizable energy that was associated with a significant increase in body weight as compared with chow-fed controls. In parallel, consumption of a MHF diet for 8 weeks significantly decreased Y1R/LacZ transgene expression in the DMH and VMH of male mice whereas no changes were found in the ARC and PVN. Leptin treatment reduced body weight of both MHF diet- and chow-fed male mice but failed to prevent the decrease in Y1R/LacZ transgene expression apparent in the DMH and VMH of male mice after 8 weeks of MHF diet intake. Conversely, no significant changes of metabolizable energy intake, body weight or hypothalamic β-galactosidase expression were found in MHF diet-fed female Y1R/LacZ transgenic mice. A gender-related difference of Y1R/LacZ transgenic mice was also observed in response to leptin treatment that failed to decrease body weight of both MHF diet- and chow-fed female mice. Results herein demonstrate that Y1R/LacZ FVB mice show a sexual dimorphism both on energy intake and on nucleus-specific regulation of the NPY Y1R system in the hypothalamus. Overall, these results provide new insights into the mechanism by which diet composition affects the hypothalamic circuit that controls energy homeostasis. PMID:17584829

  10. Effect of GPR84 deletion on obesity and diabetes development in mice fed long chain or medium chain fatty acid rich diets.

    PubMed

    Du Toit, Eugene; Browne, Liam; Irving-Rodgers, Helen; Massa, Helen M; Fozzard, Nicolette; Jennings, Michael P; Peak, Ian R

    2017-04-20

    Although there is good evidence showing that diets rich in medium chain fatty acids (MCFAs) have less marked obesogenic and diabetogenic effects than diets rich in long chain fatty acids (LCFAs), the role of the pro-inflammatory, medium chain fatty acid receptor (GPR84) in the aetiology of obesity and glucose intolerance is not well characterised. We set out to determine whether GPR84 expression influences obesity and glucose intolerance susceptibility in MCFA and LCFA rich diet fed mice. Wild type (WT) and GPR84 knockout (KO) mice were fed a control, MCFA or LCFA diet, and body mass, heart, liver and epididymal fat mass was assessed, as well as glucose tolerance and adipocyte size. LCFA diets increased body mass and decreased glucose tolerance in both WT and GPR84 KO animals while MCFA diets had no effect on these parameters. There were no differences in body weight when comparing WT and GPR84 KO mice on the respective diets. Glucose tolerance was also similar in WT and GPR84 KO mice irrespective of diet. Liver mass was increased following LCFA feeding in WT but not GPR84 KO mice. Hepatic triglyceride content was increased in GPR84 KO animals fed MCFA, and myocardial triglyceride content was increased in GPR84 KO animals fed LCFA. GPR84 deletion had no effects on body weight or glucose tolerance in mice fed either a high MCFA or LCFA diet. GPR84 may influence lipid metabolism, as GPR84 KO mice had smaller livers and increased myocardial triglyceride accumulation when fed LCFA diets, and increased liver triglyceride accumulation in responses to increased dietary MCFAs.

  11. Bardoxolone methyl prevents insulin resistance and the development of hepatic steatosis in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Dinh, Chi H L; Wang, Hongqin; Cheng, Licai; Huang, Xu-Feng

    2015-09-05

    High-fat (HF) diet-induced obesity is a major risk factor for the development of insulin resistance and hepatic steatosis. We examined the hypothesis that bardoxolone methyl (BM) would prevent the development of insulin resistance and hepatic steatosis in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC), HF (40% fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 weeks. Glucose metabolism was assessed using a glucose tolerance test (GTT) and insulin sensitivity test (IST). Signalling molecules involved in insulin resistance, inflammation, and lipid metabolism were examined in liver tissue via western blotting and RT-PCR. BM prevented HF diet-induced insulin resistance and alterations in the protein levels of protein tyrosine phosphatase 1B (PTP1B), forkhead box protein O1 (FOXO1) and BDNF, and expression of the insulin receptor (IR), IRS-1 and glucose-6-phosphatase (G6Pase) genes. Furthermore, BM prevented fat accumulation in the liver and decreases in the β-oxidation gene, peroxisomal acyl-coenzyme A oxidase 1 (ACOX) in mice fed a HF diet. In the livers of HF fed mice, BM administration prevented HF diet-induced macrophage infiltration, inflammation as indicated by reduced IL-6 and signal transducer and activator of transcription 3 (STAT3) protein levels and TNFα mRNA expression, and increased nuclear factor-like 2 (Nrf2) mRNA expression and nuclear protein levels. These findings suggest that BM prevents HF diet induced insulin resistance and the development of hepatic steatosis in mice fed a chronic HF diet through modulation of molecules involved in insulin signalling, lipid metabolism and inflammation in the liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of voluntary running with defined distances on body adiposity and its associated inflammation in mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Sedentary lifestyle contributes to obesity. This study examined the effect of quantitative voluntary running on body adiposity and its associated inflammation in mice fed a high-fat diet. Male C57BL/6 mice were assigned into six groups and fed the AIN93G (sedentary) or a high-fat diet (sedentary, ...

  13. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulatingmore » glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in

  14. An integrative transcriptomic approach to identify depot differences in genes and microRNAs in adipose tissues from high fat fed mice.

    PubMed

    Wijayatunga, Nadeeja N; Pahlavani, Mandana; Kalupahana, Nishan S; Kottapalli, Kameswara Rao; Gunaratne, Preethi H; Coarfa, Cristian; Ramalingam, Latha; Moustaid-Moussa, Naima

    2018-02-06

    Obesity contributes to metabolic disorders such as diabetes and cardiovascular disease. Characterization of differences between the main adipose tissue depots, white (WAT) [including subcutaneous (SAT) and visceral adipose tissue (VAT)] and brown adipose tissue (BAT) helps to identify their roles in obesity. Thus, we studied depot-specific differences in whole transcriptome and miRNA profiles of SAT, VAT and BAT from high fat diet (HFD/45% of calories from fat) fed mice using RNA sequencing and small RNA-Seq. Using quantitative real-time polymerase chain reaction, we validated depot-specific differences in endoplasmic reticulum (ER) stress related genes and miRNAs using mice fed a HFD vs. low fat diet (LFD/10% of calories from fat). According to the transcriptomic analysis, lipogenesis, adipogenesis, inflammation, endoplasmic reticulum (ER) stress and unfolded protein response (UPR) were higher in VAT compared to BAT, whereas energy expenditure, fatty acid oxidation and oxidative phosphorylation were higher in BAT than in VAT of the HFD fed mice. In contrast to BAT, ER stress marker genes were significantly upregulated in VAT of HFD fed mice than the LFD fed mice. For the first time, we report depot specific differences in ER stress related miRNAs including; downregulation of miR-125b-5p, upregulation miR-143-3p, and miR-222-3p in VAT following HFD and upregulation of miR-30c-2-3p only in BAT following a HFD in mice than the LFD mice. In conclusion, HFD differentially regulates miRNAs and genes in different adipose depots with significant induction of genes related to lipogenesis, adipogenesis, inflammation, ER stress, and UPR in WAT compared to BAT.

  15. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice.

    PubMed

    Xie, Kan; Neff, Frauke; Markert, Astrid; Rozman, Jan; Aguilar-Pimentel, Juan Antonio; Amarie, Oana Veronica; Becker, Lore; Brommage, Robert; Garrett, Lillian; Henzel, Kristin S; Hölter, Sabine M; Janik, Dirk; Lehmann, Isabelle; Moreth, Kristin; Pearson, Brandon L; Racz, Ildiko; Rathkolb, Birgit; Ryan, Devon P; Schröder, Susanne; Treise, Irina; Bekeredjian, Raffi; Busch, Dirk H; Graw, Jochen; Ehninger, Gerhard; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Sandholzer, Michael; Schmidt-Weber, Carsten; Weiergräber, Marco; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Ehninger, Dan

    2017-07-24

    Dietary restriction regimes extend lifespan in various animal models. Here we show that longevity in male C57BL/6J mice subjected to every-other-day feeding is associated with a delayed onset of neoplastic disease that naturally limits lifespan in these animals. We compare more than 200 phenotypes in over 20 tissues in aged animals fed with a lifelong every-other-day feeding or ad libitum access to food diet to determine whether molecular, cellular, physiological and histopathological aging features develop more slowly in every-other-day feeding mice than in controls. We also analyze the effects of every-other-day feeding on young mice on shorter-term every-other-day feeding or ad libitum to account for possible aging-independent restriction effects. Our large-scale analysis reveals overall only limited evidence for a retardation of the aging rate in every-other-day feeding mice. The data indicate that every-other-day feeding-induced longevity is sufficiently explained by delays in life-limiting neoplastic disorders and is not associated with a more general slowing of the aging process in mice.Dietary restriction can extend the life of various model organisms. Here, Xie et al. show that intermittent periods of fasting achieved through every-other-day feeding protect mice against neoplastic disease but do not broadly delay organismal aging in animals.

  16. Troxerutin abrogates mitochondrial oxidative stress and myocardial apoptosis in mice fed calorie-rich diet.

    PubMed

    Geetha, Rajagopalan; Sathiya Priya, Chandrasekaran; Anuradha, Carani Venkatraman

    2017-12-25

    Mitochondrial oxidative stress plays a major role in the pathogenesis of myocardial apoptosis in metabolic syndrome (MS) patients. In this study, we investigated the effect of troxerutin (TX), an antioxidant on mitochondrial oxidative stress and apoptotic markers in heart of mice fed fat and fructose-rich diet. Adult male Mus musculus mice were fed either control diet or high fat, high fructose diet (HFFD) for 60 days to induce MS. Mice from each dietary group were divided into two on the 16th day and were either treated or untreated with TX (150 mg/kg bw, p.o) for the next 45 days. At the end of the study, mitochondrial reactive oxygen species (ROS) generation, oxidative stress markers, levels of intracellular calcium, cardiolipin content, cytochrome c release and apoptotic markers were examined in the myocardium. HFFD-feeding resulted in diminution of antioxidants and increased ROS production, lipid peroxidation and oxidatively modified adducts of 8-OHG, 4-HNE and 3-NT. Further increase in Ca 2+ levels, low levels of calcium transporters and decrease in cardiolipin content were noted. Changes in the mitochondrial structure were observed by electron microscopy. Furthermore, cytochrome c release, increase in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and decrease in antiapoptotic protein (BCL-2) in HFFD-fed mice suggest myocardial apoptosis. These changes were significantly restored by TX supplementation. TX administration effectively attenuated cardiac apoptosis and exerted a protective role by increasing antioxidant potential and by improving mitochondrial function. Thus, TX could be a promising therapeutic candidate for treating cardiac disease in MS patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice.

    PubMed

    Miyamoto, Junki; Watanabe, Keita; Taira, Satsuki; Kasubuchi, Mayu; Li, Xuan; Irie, Junichiro; Itoh, Hiroshi; Kimura, Ikuo

    2018-01-01

    Dietary intake of barley β-glucan (BG) is known to affect energy metabolism. However, its underlying mechanism remains poorly understood because studies have presented inconsistent results, with both positive and negative effects reported in terms of satiety, energy intake, weight loss, and glycemic control. The objective of this study was to clarify the physiological role underlying the metabolic benefits of barley BG using a mouse model of high fat diet (HFD)-induced obesity. Male 4-wk-old C57BL/6J mice were fed an HFD with 20% barley flour containing either high BG (HBG; 2% BG) or low BG (LBG; 0.6% BG) levels under conventional and germ-free (GF) conditions for 12 wks. In addition, mice were fed either an HFD with 5% cellulose (HFC; high fiber cellulose) or 5% barley BG (HFB; high fiber β-glucan) for 12 wks. Then, metabolic parameters, gut microbial compositions, and the production of fecal short-chain fatty acids (SCFAs) were analyzed. The weight gain and fat mass of HBG-fed mice were lower than those of control mice at 16-wk-old. Moreover, the secretion of the gut hormones PYY and GLP-1 increased in HBG-fed mice, thereby reducing food intake and improving insulin sensitivity by changing the gut microbiota and increasing SCFAs (especially, butyrate) under conventional condition. These effects in HBG-fed mice were abolished under GF conditions. Moreover, the HFB diets also increased PYY and GLP-1 secretion, and decreased food intake compared with that in HFC-fed mice. These results suggest that the beneficial metabolic effects of barley BG are primary due to the suppression of appetite and improvement of insulin sensitivity, which are induced by gut hormone secretion promoted via gut microbiota-produced SCFAs.

  18. Barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice

    PubMed Central

    Taira, Satsuki; Kasubuchi, Mayu; Li, Xuan; Irie, Junichiro; Itoh, Hiroshi

    2018-01-01

    Dietary intake of barley β-glucan (BG) is known to affect energy metabolism. However, its underlying mechanism remains poorly understood because studies have presented inconsistent results, with both positive and negative effects reported in terms of satiety, energy intake, weight loss, and glycemic control. The objective of this study was to clarify the physiological role underlying the metabolic benefits of barley BG using a mouse model of high fat diet (HFD)-induced obesity. Male 4-wk-old C57BL/6J mice were fed an HFD with 20% barley flour containing either high BG (HBG; 2% BG) or low BG (LBG; 0.6% BG) levels under conventional and germ-free (GF) conditions for 12 wks. In addition, mice were fed either an HFD with 5% cellulose (HFC; high fiber cellulose) or 5% barley BG (HFB; high fiber β-glucan) for 12 wks. Then, metabolic parameters, gut microbial compositions, and the production of fecal short-chain fatty acids (SCFAs) were analyzed. The weight gain and fat mass of HBG-fed mice were lower than those of control mice at 16-wk-old. Moreover, the secretion of the gut hormones PYY and GLP-1 increased in HBG-fed mice, thereby reducing food intake and improving insulin sensitivity by changing the gut microbiota and increasing SCFAs (especially, butyrate) under conventional condition. These effects in HBG-fed mice were abolished under GF conditions. Moreover, the HFB diets also increased PYY and GLP-1 secretion, and decreased food intake compared with that in HFC-fed mice. These results suggest that the beneficial metabolic effects of barley BG are primary due to the suppression of appetite and improvement of insulin sensitivity, which are induced by gut hormone secretion promoted via gut microbiota-produced SCFAs. PMID:29698465

  19. A Polyphenol-Rich Fraction Obtained from Table Grapes Decreases Adiposity, Insulin Resistance, and Markers of Inflammation and Impacts Gut Microbiota in High-Fat Fed Mice

    PubMed Central

    Collins, Brian; Hoffman, Jessie; Martinez, Kristina; Grace, Mary; Lila, Mary Ann; Cockrell, Chase; Nadimpalli, Anuradha; Chang, Eugene; Chuang, Chia-Chi; Zhong, Wei; Mackert, Jessica; Shen, Wan; Cooney, Paula; Hopkins, Robin; McIntosh, Michael

    2016-01-01

    The objective of this study was to determine if consuming an extractable or non-extractable fraction of table grapes reduced the metabolic consequences of consuming a high-fat, American-type diet. Male C57BL/6J mice were fed a low fat (LF) diet, a high fat (HF) diet, or a HF diet containing whole table grape powder (5% w/w), an extractable, polyphenol-rich (HF-EP) fraction, a non-extractable, polyphenol-poor (HF-NEP) fraction, or equal combinations of both fractions (HF-EP+NEP) from grape powder for 16 weeks. Mice fed the HF-EP and HF-EP+NEP diets had lower percentages of body fat and amounts of white adipose tissue (WAT) and improved glucose tolerance compared to the HF-fed controls. Mice fed the HF-EP+NEP diet had lower liver weights and triglyceride (TG) levels compared to the HF-fed controls. Mice fed the HF-EP+NEP diets had higher hepatic mRNA levels of hormone sensitive lipase and adipose TG lipase, and decreased expression of c-reactive protein compared to the HF-fed controls. In epididymal (visceral) WAT, the expression levels of several inflammatory genes were lower in mice fed the HF-EP and HF-EP+NEP diets compared to the HF-fed controls. Mice fed the HF diets had increased myeloperoxidase activity and impaired localization of the tight junction protein zonula occludens-1 in ileal mucosa compared to the HF-EP and HF-NEP diets. Several of these treatment effects were associated with alterations in gut bacterial community structure. Collectively, these data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming a HF diet. PMID:27133434

  20. Ufmylation and FATylation pathways are downregulated in human alcoholic and nonalcoholic steatohepatitis, and mice fed DDC, where Mallory-Denk bodies (MDBs) form.

    PubMed

    Liu, H; Li, J; Tillman, B; French, B A; French, S W

    2014-08-01

    We previously reported the mechanisms involved in the formation of Mallory-Denk bodies (MDBs) in mice fed DDC. To further provide clinical evidence as to how ubiquitin-like protein (Ubls) modification, gene transcript expression in Ufmylation and FATylation were investigated in human archived formalin-fixed, paraffin-embedded (FFPE) liver biopsies and frozen liver sections from DDC re-fed mice were used. Real-time PCR analysis showed that all Ufmylation molecules (Ufm1, Uba5, Ufc1, Ufl1 and UfSPs) were significantly downregulated, both in DDC re-fed mice livers and patients' livers where MDBs had formed, indicating that gene transcript changes were limited to MDB-forming livers where the protein quality control system was downregulated. FAT10 and subunits of the immunoproteasome (LMP2 and LMP7) were both upregulated as previously shown. An approximate 176- and 5-fold upregulation (respectively) of FAT10 was observed in the DDC re-fed mice liver and in the livers of human alcoholic hepatitis with MDBs present, implying that there was an important role played by this gene. The FAT10-specific E1 and E2 enzymes Uba6 and USE1, however, were found to be downregulated both in patients' livers and in the liver of DDC re-fed mice. Interestedly, the downregulation of mRNA levels was proportionate to MDB abundance in the liver tissues. Our results show the first systematic demonstration of transcript regulation of Ufmylation and FATylation in the liver of patients who form MDBs, where protein quality control is downregulated. This was also shown in the livers of DDC re-fed mice where MDBs had formed. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Changes of Tight Junction Protein Claudins in Small Intestine and Kidney Tissues of Mice Fed a DDC Diet.

    PubMed

    Abiko, Yukie; Kojima, Takashi; Murata, Masaki; Tsujiwaki, Mitsuhiro; Takeuchi, Masaya; Sawada, Norimasa; Mori, Michio

    2013-12-01

    DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine)-fed mice are widely used as a model for cholestatic liver disease. We examined the expression of tight junction protein claudin subspecies by immunofluorescent histochemistry in small intestine and kidney tissues of mice fed a DDC diet for 12 weeks. In the small intestine, decreases in claudin-3, claudin-7 and claudin-15 were observed in villous epithelial cells corresponding to the severity of histological changes while leaving the abundance of these claudin subspecies unchanged in crypt cells. Nevertheless, the proliferative activity of intestinal crypt cells measured by immunohistochemistry for Ki-67 decreased in the mice fed the DDC diet compared with that of control mice. These results suggest the possibility that DDC feeding affects the barrier function of villous epithelial cells and thus inhibits the proliferative activity of crypt epithelial cells. On the other hand, in the kidney, remarkable changes were found in the subcellular localization of claudin subspecies in a segment-specific manner, although histological changes of renal epithelial cells were quite minimal. These results indicate that immunohistochemistry for claudin subspecies can serve as a useful tool for detecting minute functional alterations of intestinal and renal epithelial cells.

  2. Anti-Inflammatory Properties of Brazilian Green Propolis Encapsulated in a γ-Cyclodextrin Complex in Mice Fed a Western-Type Diet.

    PubMed

    Rimbach, Gerald; Fischer, Alexandra; Schloesser, Anke; Jerz, Gerold; Ikuta, Naoko; Ishida, Yoshiyuki; Matsuzawa, Ryota; Matsugo, Seiichi; Huebbe, Patricia; Terao, Keiji

    2017-05-26

    Ageing is often accompanied by chronic inflammation. A fat- and sugar-rich Western-type diet (WTD) may accelerate the ageing phenotype. Cell culture studies have indicated that artepillin C-containing Brazilian green propolis exhibits anti-inflammatory properties. However, little is known regarding its anti-inflammatory potential in mouse liver in vivo. In this study, female C57BL/6NRj wild-type mice were fed a WTD, a WTD supplemented with Brazilian green propolis supercritical extract (GPSE) encapsulated in γ-cyclodextrin (γCD) or a WTD plus γCD for 10 weeks. GPSE-γCD did not affect the food intake, body weight or body composition of the mice. However, mRNA levels of the tumour necrosis factor α were significantly downregulated ( p < 0.05) in these mice compared to those in the WTD-fed controls. Furthermore, the gene expression levels of other pro-inflammatory markers, including serum amyloid P, were significantly ( p < 0.001) decreased following GPSE-γCD treatment. GPSE-γCD significantly induced hepatic ferritin gene expression ( p < 0.01), which may contribute to its anti-inflammatory properties. Conversely, GPSE-γCD did not affect the biomarkers of endogenous antioxidant defence, including catalase, glutathione peroxidase-4, paraoxonase-1, glutamate cysteine ligase and nuclear factor erythroid 2-related factor-2 (Nrf2). Overall, the present data suggest that dietary GPSE-γCD exhibits anti-inflammatory, but not antioxidant activity in mouse liver in vivo. Thus, GPSE-γCD has the potential to serve as a natural hepatoprotective bioactive compound for dietary-mediated strategies against chronic inflammation.

  3. Simvastatin inhibited cardiac hypertrophy and fibrosis in apolipoprotein E-deficient mice fed a “Western-style diet” by increasing PPAR α and γ expression and reducing TC, MMP-9, and Cat S levels

    PubMed Central

    Qin, Yan-wen; Ye, Ping; He, Ji-qiang; Sheng, Li; Wang, Lu-ya; Du, Jie

    2010-01-01

    Aim: The examine the cardiac hypertrophy and fibrosis in apolipoprotein E-deficient mice (ApoE−/− mice) fed a “Western-style diet” and the effect of simvastatin intervention. Methods: Male ApoE−/− mice (n=36) were fed a “Western-style diet” from the age of 8 weeks. After 16 weeks, they were randomly given either simvastatin (25 mg·kg−1·d−1) or normal saline (control group) by gavage for 8, 16, or 24 weeks. The left ventricular (LV) wall thickness and diameter of the myocardial cells were determined with Hematoxylin-Eosin stain, and the level of fibrosis of the myocardial matrix was assessed with Masson stain. Real-time quantitative polymerase chain reaction and Western blotting analysis were used to determine the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9), Cathepsin S (Cat S), and the peroxisome proliferator-activated receptors (PPARs) in the myocardium of ApoE−/− mice. Results: ApoE−/− mice fed a “Western-style diet” showed an significant age-dependent increase in total cholesterol (TC), LV wall thickness, myocardial cell diameter and LV collagen content (P<0.05). The simvastatin treatment group showed significantly reduced LV wall thickness, myocardial cell diameters and LV collagen content at 40 weeks when compared with the control group (P<0.05). Furthermore, treatment with simvastatin also significantly inhibited the mRNA and protein expressions of MMP-9 and Cat S as well as increased the mRNA and protein expressions of PPAR alpha and PPAR gamma at 32 and 40 weeks compared with the control group (P<0.05). Conclusion: ApoE−/− mice fed a “Western-style diet” had cardiac hypertrophy and fibrosis, which worsened with age. Simvastatin treatment inhibits the development of cardiac hypertrophy and fibrosis, and this effect may be mediated through increased levels of PPAR alpha and PPAR gamma and reduced levels of TC, MMP-9, and Cat S. PMID:20835264

  4. Differential effects of EPA, DPA and DHA on cardio-metabolic risk factors in high-fat diet fed mice.

    PubMed

    Guo, Xiao-Fei; Sinclair, Andrew J; Kaur, Gunveen; Li, Duo

    2017-09-22

    The aim of the present study was to assess and compare the effects of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) supplementation on lipid metabolism in 4 month-old male C57BL/6J mice fed a high-fat diet. The high-fat fed mice showed evidence of fatty liver, obesity and insulin resistance after being on the high-fat diet for 6 weeks compared with the control low-fat diet fed mice. Supplementation of the high-fat diet with either EPA, DPA or DHA prevented the fatty liver, prevented high serum cholesterol and serum glucose and prevented high liver cholesterol levels. DPA (but not EPA or DHA) was associated with a significantly improved homeostasis model assessment of insulin resistance (HOMA-IR) compared with the high-fat fed mice. Supplementation with DPA and DHA both prevented the decreased serum adiponectin levels, compared with EPA and the high-fat diet. In addition, supplementation with DPA and DHA both prevented the increased serum alanine aminotransferase (ALT) levels compared with EPA and the high-fat group, which can be attributed to down-regulation of TLR-4/NF-κB signaling pathway and decreasing lipogenesis in the liver. Therefore, DPA and DHA seem to exert similar effects in cardio-metabolic protection against the high-fat diet and these effects seem to be different to those of EPA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chronic exercise reduces hypothalamic transforming growth factor-β1 in middle-aged obese mice.

    PubMed

    Silva, Vagner R R; Katashima, Carlos K; Lenhare, Luciene; Silva, Carla G B; Morari, Joseane; Camargo, Rafael L; Velloso, Licio A; Saad, Mario A; da Silva, Adelino S R; Pauli, Jose Rodrigo; Ropelle, Eduardo Rochete

    2017-08-28

    Obesity and aging are associated with hypothalamic inflammation, hyperphagia and abnormalities in the thermogenesis control. It has been demonstrated that the association between aging and obesity induces hypothalamic inflammation and metabolic disorders, at least in part, through the atypical hypothalamic transforming growth factor-β (TGF-β1). Physical exercise has been used to modulate several metabolic parameters. Thus, the aim of this study was to evaluate the impact of chronic exercise on TGF-β1 expression in the hypothalamus of Middle-Aged mice submitted to a one year of high-fat diet (HFD) treatment. We observed that long-term of HFD-feeding induced hypothalamic TGF-β1 accumulation, potentiated the hypothalamic inflammation, body weight gain and defective thermogenesis of Middle-Aged mice when compared to Middle-Aged animals fed on chow diet. As expected, chronic exercise induced negative energy balance, reduced food consumption and increasing the energy expenditure, which promotes body weight loss. Interestingly, exercise training reduced the TGF-β1 expression and IkB-α ser32 phosphorylation in the hypothalamus of Middle-Aged obese mice. Taken together our study demonstrated that chronic exercise suppressed the TGF-β1/IkB-α axis in the hypothalamus and improved the energy homeostasis in an animal model of obesity-associated to aging.

  6. Chronic exercise reduces hypothalamic transforming growth factor-β1 in middle-aged obese mice

    PubMed Central

    Silva, Vagner R. R.; Katashima, Carlos K.; Lenhare, Luciene; Silva, Carla G. B.; Morari, Joseane; Camargo, Rafael L.; Velloso, Licio A.; Saad, Mario A.; da Silva, Adelino S. R.; Pauli, Jose Rodrigo; Ropelle, Eduardo Rochete

    2017-01-01

    Obesity and aging are associated with hypothalamic inflammation, hyperphagia and abnormalities in the thermogenesis control. It has been demonstrated that the association between aging and obesity induces hypothalamic inflammation and metabolic disorders, at least in part, through the atypical hypothalamic transforming growth factor-β (TGF-β1). Physical exercise has been used to modulate several metabolic parameters. Thus, the aim of this study was to evaluate the impact of chronic exercise on TGF-β1 expression in the hypothalamus of Middle-Aged mice submitted to a one year of high-fat diet (HFD) treatment. We observed that long-term of HFD-feeding induced hypothalamic TGF-β1 accumulation, potentiated the hypothalamic inflammation, body weight gain and defective thermogenesis of Middle-Aged mice when compared to Middle-Aged animals fed on chow diet. As expected, chronic exercise induced negative energy balance, reduced food consumption and increasing the energy expenditure, which promotes body weight loss. Interestingly, exercise training reduced the TGF-β1 expression and IkB-α ser32 phosphorylation in the hypothalamus of Middle-Aged obese mice. Taken together our study demonstrated that chronic exercise suppressed the TGF-β1/IkB-α axis in the hypothalamus and improved the energy homeostasis in an animal model of obesity-associated to aging. PMID:28854149

  7. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore,more » a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs

  8. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice

    PubMed Central

    Zhou, Peng; Werner, John H.; Lee, Donghoon; Sheppard, Aaron D.; Liangpunsakul, Suthat; Duffield, Giles E.

    2015-01-01

    Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ~4-h and ~6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ~11 h and ~6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian timing

  9. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior.

    PubMed

    Townsend, Brigitte E; Chen, Yung-Ju; Jeffery, Elizabeth H; Johnson, Rodney W

    2014-11-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. Sulforaphane increases antioxidant enzymes including NAD(P)H quinone oxidoreductase and heme oxygenase I and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide (LPS)-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days before an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 hours after LPS, and mRNA was quantified in liver and brain at 24 hours. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin-1β (IL-1β) expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. In addition, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior

    PubMed Central

    Townsend, Brigitte E.; Chen, Yung-Ju; Jeffery, Elizabeth H.; Johnson, Rodney W.

    2015-01-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. SFN increases antioxidant enzymes including NAD(P)H quinone oxidoreductase (NQO1) and heme oxygenase I (HMOX1) and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days prior to an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 h following LPS, and mRNA quantified in liver and brain at 24 h. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin (IL)-1β expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. Additionally, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS. PMID:25439028

  11. Protective Effects of Flax Seed (Linum Usitatissimum) Hydroalcoholic Extract on Fetus Brain in Aged and Young Mice.

    PubMed

    Kamali, Mahsa; Bahmanpour, Soghra

    2016-05-01

    One of the major problems of the aged women or older than 35 is getting pregnant in the late fertility life. Fertility rates begin to decline gradually at the age of 30, more so at 35, and markedly at 40. Even with fertility treatments such as in vitro fertilization, women have more difficulty in getting pregnant or may deliver abnormal fetus. The purpose of this study was to assess the effects of flax seed hydroalcoholic extract on the fetal brain of aged mice and its comparison with young mice. In this experimental study, 32 aged and 32 young mice were divided into 4 groups. Controls received no special treatment. The experimental mice groups, 3 weeks before mating, were fed with flax seed hydroalcoholic extract by oral gavages. After giving birth, the brains of the fetus were removed. Data analysis was performed by statistical test ANOVA using SPSS version 18 (P<0.05). The mean fetus brain weight of aged mother groups compared to the control group was increased significantly (P<0.05). This study showed that flax seed hydroalcoholic extract could improve fetal brain weights in the aged groups.

  12. Bardoxolone methyl prevents the development and progression of cardiac and renal pathophysiologies in mice fed a high-fat diet.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Wang, Hongqin; Dinh, Chi H L; Huang, Xu-Feng

    2016-01-05

    Obesity caused by the consumption of a high-fat (HF) diet is a major risk factor for the development of associated complications, such as heart and kidney failure. A semi-synthetic triterpenoid, bardoxolone methyl (BM) was administrated to mice fed a HF diet for 21 weeks to determine if it would prevent the development of obesity-associated cardiac and renal pathophysiologies. Twelve week old male C57BL/6J mice were fed a lab chow (LC), HF (40% fat), or a HF diet supplemented with 10 mg/kg/day BM in drinking water. After 21 weeks, the left ventricles of hearts and cortex of kidneys of mice were collected for analysis. Histological analysis revealed that BM prevented HF diet-induced development of structural changes in the heart and kidneys. BM prevented HF diet-induced decreases in myocyte number in cardiac tissue, although this treatment also elevated cardiac endothelin signalling molecules. In the kidneys, BM administration prevented HF diet-induced renal corpuscle hypertrophy and attenuated endothelin signalling. Furthermore, in both the hearts and kidneys of mice fed a HF diet, BM administration prevented HF diet-induced increases in fat accumulation, macrophage infiltration and tumour necrosis factor alpha (TNFα) gene expression. These findings suggest that BM prevents HF diet-induced developments of cardiac and renal pathophysiologies in mice fed a chronic HF diet by preventing inflammation. Moreover, these results suggest that BM has the potential as a therapeutic for preventing obesity-induced cardiac and renal pathophysiologies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Breast-feeding at 12 months of age and dietary habits among breast-fed and non-breast-fed infants.

    PubMed

    Lande, Britt; Andersen, Lene Frost; Veierød, Marit B; Baerug, Anne; Johansson, Lars; Trygg, Kerstin U; Bjørneboe, Gunn-Elin Aa

    2004-06-01

    To analyse factors associated with breast-feeding and use of sweetened drinks at 12 months, and to compare dietary habits among breast-fed and non-breast-fed infants. Data were collected by a semi-quantitative food-frequency questionnaire filled in by the parents. National dietary survey in Norway. In total, 1932 12-month-old infants were included. At 12 months, 36% of the infants were breast-fed. The odds of breast-feeding at this age were more than doubled both for mothers > or =35 years compared with mothers <25 years and for mothers in the highest educational group compared with mothers in the lowest. A negative association was found for maternal smoking, and the odds of breast-feeding were 40% lower for mothers who smoked than for non-smokers. Some dietary differences were observed between breast-fed and non-breast-fed infants apart from intake of milk. In particular, breast-fed infants had a significantly lower daily intake of sweetened drinks than non-breast-fed infants and a 16% lower mean daily intake of added sugars (P<0.001). Furthermore, breast-fed infants had 30% higher odds of not receiving sweetened drinks daily, compared with non-breast-fed infants. Maternal age, education and smoking status were important factors for breast-feeding at 12 months. Breast-fed infants had lower intakes of sweetened drinks and added sugars than non-breast-fed infants. From a public health perspective, continued promotion of breast-feeding is needed to reduce inequalities in breast-feeding. Moreover, prevention of high intakes of sweetened drinks and added sugars should start in infancy.

  14. Reducing endoplasmic reticulum stress does not improve steatohepatitis in mice fed a methionine- and choline-deficient diet.

    PubMed

    Henkel, Anne S; Dewey, Amanda M; Anderson, Kristy A; Olivares, Shantel; Green, Richard M

    2012-07-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of nonalcoholic steatohepatitis. The ER stress response is activated in the livers of mice fed a methionine- and choline-deficient (MCD) diet, yet the role of ER stress in the pathogenesis of MCD diet-induced steatohepatitis is unknown. Using chemical chaperones on hepatic steatosis and markers of inflammation and fibrosis in mice fed a MCD diet, we aim to determine the effects of reducing ER stress. C57BL/6J mice were fed a MCD diet with or without the ER chemical chaperones 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) for 2 wk. TUDCA and PBA effectively attenuated the ER stress response in MCD diet-fed mice, as evidenced by reduced protein levels of phosphorylated eukaryotic initiation factor 2α and phosphorylated JNK and suppression of mRNA levels of CCAAT/enhancer binding protein homologous protein, glucose-regulated protein 78 kDa, and X-box binding protein 1. However, PBA and TUDCA did not decrease MCD diet-induced hepatic steatosis. MCD diet-induced hepatic inflammation, as evidenced by increased plasma alanine aminotransferase and induction of hepatic TNFα expression, was also not reduced by PBA or TUDCA. PBA and TUDCA did not attenuate MCD diet-induced upregulation of the fibrosis-associated genes tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9. ER chemical chaperones reduce MCD diet-induced ER stress, yet they do not improve MCD diet-induced hepatic steatosis, inflammation, or activation of genes associated with fibrosis. These data suggest that although the ER stress response is activated by the MCD diet, it does not have a primary role in the pathogenesis of MCD diet-induced steatohepatitis.

  15. Anti-obesity and anti-diabetic effects of ethanol extract of Artemisia princeps in C57BL/6 mice fed a high-fat diet.

    PubMed

    Yamamoto, Norio; Kanemoto, Yuki; Ueda, Manabu; Kawasaki, Kengo; Fukuda, Itsuko; Ashida, Hitoshi

    2011-01-01

    Artemisia princeps is commonly used as a food ingredient and in traditional Asian medicine. In this study, we examined the effects of long-term administration of an ethanol extract of A. princeps (APE) on body weight, white adipose tissue, blood glucose, insulin, plasma and hepatic lipids, and adipocytokines in C57BL/6 mice fed a high-fat diet. Daily feeding of a 1% APE diet for 14 weeks normalized elevated body weight, white adipose tissue, and plasma glucose and insulin levels, and delayed impaired glucose tolerance in mice a fed high-fat diet. These events were not observed in mice fed a control diet containing 1% APE. Liver triglyceride and cholesterol levels were similar in mice fed a 1% APE-diet and those fed a control diet. In the high-fat diet groups, APE inhibited hepatic fatty acid synthase (FAS) and suppressed the elevation of plasma leptin, but had no effect on adiponectin levels. These findings suggest that the regulation of leptin secretion by APE may inhibit FAS activity with subsequent suppression of triglyceride accumulation in the liver and adipose tissues. Inhibition of lipid accumulation can, in turn, lead to improvements in impaired glucose tolerance.

  16. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    PubMed Central

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch; Bahl, Martin Iain; Hansen, Camilla Hartmann Friis; Danneskiold-Samsøe, Niels Banhos; Kristiansen, Karsten; Radulescu, Ilinca Daria; Sina, Christian; Frandsen, Henrik Lauritz; Hansen, Axel Kornerup; Brix, Susanne; Hellgren, Lars I.; Licht, Tine Rask

    2017-01-01

    Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects of an obesogenic diet. Mice were fed either a defined high-fat diet (HFD) containing 4% gliadin (n = 20), or a gliadin-free, isocaloric HFD (n = 20) for 23 weeks. Combined analysis of several parameters including insulin resistance, histology of liver and adipose tissue, intestinal microbiota in three gut compartments, gut barrier function, gene expression, urinary metabolites and immune profiles in intestinal, lymphoid, liver and adipose tissues was performed. Mice fed the gliadin-containing HFD displayed higher glycated hemoglobin and higher insulin resistance as evaluated by the homeostasis model assessment, more hepatic lipid accumulation and smaller adipocytes than mice fed the gliadin-free HFD. This was accompanied by alterations in the composition and activity of the gut microbiota, gut barrier function, urine metabolome, and immune phenotypes within liver and adipose tissue. Our results reveal that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet. PMID:28300220

  17. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent.

    PubMed

    Tetri, Laura H; Basaranoglu, Metin; Brunt, Elizabeth M; Yerian, Lisa M; Neuschwander-Tetri, Brent A

    2008-11-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1-16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-alpha and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation.

  18. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet.

    PubMed

    Kong, Bo; Luyendyk, James P; Tawfik, Ossama; Guo, Grace L

    2009-01-01

    Nonalcoholic steatohepatitis (NASH) comprises dysregulation of lipid metabolism and inflammation. Identification of the various genetic and environmental susceptibility factors for NASH may provide novel treatments to limit inflammation and fibrosis in patients. This study utilized a mouse model of hypercholesterolemia, low-density lipoprotein receptor knockout (LDLr(-/-)) mice fed a high-fat diet for 5 months, to test the hypothesis that farnesoid X receptor (FXR) deficiency contributed to NASH development. Either the high-fat diet or FXR deficiency increased serum alanine aminotransferase activity, whereas only FXR deficiency increased bile acid and alkaline phosphatase levels. FXR deficiency and high-fat feeding increased serum cholesterol and triglycerides. Although high fat led to macrosteatosis and hepatocyte ballooning in livers of mice regardless of genotype, no inflammatory infiltrate was observed in the livers of LDLr(-/-) mice. In contrast, in the livers of LDLr(-/-)/FXR(-/-) mice, foci of inflammatory cells were observed occasionally when fed the control diet and were greatly increased when fed the high-fat diet. Consistent with enhanced inflammatory cells, hepatic levels of tumor necrosis factor alpha and intercellular adhesion molecule-1 mRNA were increased by the high-fat diet in LDLr(-/-)/FXR(-/-) mice. In agreement with elevated levels of procollagen 1 alpha 1 and TGF-beta mRNA, type 1 collagen protein levels were increased in livers of LDLr(-/-)/FXR(-/-) mice fed a high-fat diet. In conclusion, FXR deficiency induces pathologic manifestations required for NASH diagnosis in a mouse model of hypercholesterolemia, including macrosteatosis, hepatocyte ballooning, and inflammation, which suggest a combination of FXR deficiency and high-fat diet is a risk factor for NASH development, and activation of FXR may be a therapeutic intervention in the treatment of NASH.

  19. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    PubMed

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  20. Enterobacter cloacae administration induces hepatic damage and subcutaneous fat accumulation in high-fat diet fed mice.

    PubMed

    Keskitalo, Anniina; Munukka, Eveliina; Toivonen, Raine; Hollmén, Maija; Kainulainen, Heikki; Huovinen, Pentti; Jalkanen, Sirpa; Pekkala, Satu

    2018-01-01

    Accumulating evidence indicates that gut microbiota plays a significant role in obesity, insulin resistance and associated liver disorders. Family Enterobacteriaceae and especially Enterobacter cloacae strain B29 have been previously linked to obesity and hepatic damage. The underlying mechanisms, however, remain unclear. Therefore, we comprehensively examined the effects of E. cloacae subsp. cloacae (ATCC® 13047™) administration on host metabolism of mice fed with high-fat diet (HFD). C57BL/6N mice were randomly divided into HFD control, chow control, and E. cloacae treatment groups. The E. cloacae treatment group received live bacterial cells in PBS intragastrically twice a week, every other week for 13 weeks. Both control groups received PBS intragastrically. After the 13-week treatment period, the mice were sacrificed for gene and protein expression and functional analyses. Our results show that E. cloacae administration increased subcutaneous fat mass and the relative proportion of hypertrophic adipocytes. Both subcutaneous and visceral fat had signs of decreased insulin signaling and elevated lipolysis that was reflected in higher serum glycerol levels. In addition, E. cloacae -treated mice had significantly higher hepatic AST and AST/ALT ratio, and their liver histology indicated fibrosis, demonstrating that E. cloacae subsp. cloacae administration promotes hepatic damage in HFD fed mice.

  1. Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    A sedentary lifestyle contributes to obesity. This study determined the effects of quantitative voluntary running on body adiposity and its associated inflammation in mice fed a high-fat diet. Male C57BL/6 mice were assigned to six groups and fed an AIN93G (sedentary) or a high-fat diet (sedentary...

  2. Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet.

    PubMed

    Yan, Lin; Sundaram, Sneha; Nielsen, Forrest H

    2017-11-01

    This study investigated the effect of voluntary running of defined distances on body adiposity in male C57BL/6 mice fed a high-fat diet. Mice were assigned to 6 groups and fed a standard AIN93G diet (sedentary) or a modified high-fat AIN93G diet (sedentary; unrestricted running; or 75%, 50%, or 25% of unrestricted running) for 12 weeks. The average running distance was 8.3, 6.3, 4.2, and 2.1 km/day for the unrestricted, 75%, 50%, and 25% of unrestricted runners, respectively. Body adiposity was 46% higher in sedentary mice when fed the high-fat diet instead of the standard diet. Running decreased adiposity in mice fed the high-fat diet in a dose-dependent manner but with no significant difference between sedentary mice and those running 2.1 km/day. In sedentary mice, the high-fat instead of the standard diet increased insulin resistance, hepatic triacylglycerides, and adipose and plasma concentrations of leptin and monocyte chemotactic protein-1 (MCP-1). Running reduced these variables in a dose-dependent manner. Adipose adiponectin was lowest in sedentary mice fed the high-fat diet; running raised adiponectin in both adipose tissue and plasma. Running 8.3 and 6.3 km/day had the greatest, but similar, effects on the aforementioned variables. Running 2.1 km/day did not affect these variables except, when compared with sedentariness, it significantly decreased MCP-1. The findings showed that running 6.3 kg/day was optimal for reducing adiposity and associated inflammation that was increased in mice by feeding a high-fat diet. The findings suggest that voluntary running of defined distances may counteract the obesogenic effects of a high-fat diet.

  3. Bardoxolone methyl prevents fat deposition and inflammation in the visceral fat of mice fed a high-fat diet.

    PubMed

    Dinh, Chi H L; Szabo, Alexander; Camer, Danielle; Yu, Yinghua; Wang, Hongqin; Huang, Xu-Feng

    2015-03-05

    Key features of diet-induced obesity are visceral fat deposition, macrophage infiltration and inflammation that can lead to metabolic disorders. This study examined the effects of bardoxolone methyl (BARD) in preventing obesity and inflammation in the visceral fat of mice fed high-fat diet. Male C57BL/6J mice were fed a high-fat diet (HFD), a low-fat diet (LFD, i.e., lab chow diet) or a high-fat diet supplemented with BARD (HFD/BARD) for 21weeks. BARD at a dosage of 10mg/kg body weight was administered orally in drinking water. Histology, immunohistochemistry and Western blot were used for the analysis of epididymal adipose tissue. Morphological results demonstrated that HFD fed mice treated with BARD had smaller adipocytes and fewer macrophages present in epididymal adipose tissue than the HFD group. Furthermore, BARD administration reduced the inflammatory profile in this tissue by increasing the expression of nuclear factor of kappa-light-polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) protein and decreasing the protein expression of tumour necrosis factor alpha (TNF-α). BARD also prevented oxidative stress reflected by a reduction in stress activated proteins, including signal transducer and activator of transcription 3 (STAT3), protein kinase B (Akt), extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). BARD administration activated the sympathetic nervous system in epididymal adipose tissue assessed by the increased synthesis of tyrosine hydroxylase (TH) and uncoupling protein 2 (UCP2). The expression of inflammatory and sympathetic nervous system proteins in BARD mice fed a HFD was equivalent to that of the LFD control mice, indicating the anti-inflammatory and anti-obesity properties of this drug. In conclusion, the oral administration of BARD in HFD mice prevented fat deposition, inflammation and oxidative stress, and improved sympathetic activity in visceral fat. This study suggests a potential therapeutic role

  4. The effect of calorie restriction on the presence of apoptotic ovarian cells in normal wild type mice and low-plasma-IGF-1 Laron dwarf mice

    PubMed Central

    2013-01-01

    Background It is known that caloric restriction extends lifespan and can minimize age-related dysfunction of the reproductive system. We became interested in how caloric restriction influences apoptosis, which is a crucial process that maintains ovarian cell homeostasis. Methods We examined ovarian cells in: 2.5-year-old wild type mice on caloric restriction (CR) or fed ad libitum (AL) and Laron dwarf mice (GHR-KO) at the same ages on CR or fed AL. Apoptosis was assessed by histochemical analysis on paraffin sections of ovarian tissue. Results Morphological and histochemical analysis revealed that CR improved reproductive potential in 2.5-year-old WT littermates and GHR-KO female mice, as indicated by the increased number of ovarian follicles. The level of apoptosis in ovarian tissue was higher in WT mice on a CR diet compared with WT mice on the AL diet. In GHR-KO mice, the level of apoptosis in ovaries was similar for mice on CR and on AL diets and bigger than in WT mice on CR. Conclusions Morphological and histochemical analysis revealed a younger biological age of the ovaries in 2-year-old WT littermates and GHR-KO female mice on CR compared with animals fed AL. PMID:24063422

  5. Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice

    PubMed Central

    Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji

    2015-01-01

    Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930

  6. Rice bran enzymatic extract reduces atherosclerotic plaque development and steatosis in high-fat fed ApoE-/- mice.

    PubMed

    Perez-Ternero, Cristina; Claro, Carmen; Parrado, Juan; Herrera, Maria Dolores; Alvarez de Sotomayor, Maria

    2017-05-01

    Rice bran is a by-product of rice milling and is rich in bioactive molecules such as γ-oryzanol, phytosterols, and tocotrienols. The rice bran enzymatic extract (RBEE) previously showed vessel remodeling prevention and lipid-lowering, antioxidant, anti-inflammatory, and antiapoptotic activities. The aim of this study was to identify RBEE hypolipidemic mechanisms and to study the effects of RBEE on the progression of atherosclerosis disease and linked vascular dysfunction and liver steatosis in apolipoprotein E-knockout (ApoE-/-) mice fed low- or high-fat (LFD, HFD, respectively) and cholesterol diets. ApoE-/- mice were fed LFD (13% kcal) or HFD (42% kcal) supplemented or not supplemented with 1 or 5% RBEE (w/w) for 23 wk. Then, serum, aorta, liver, and feces were collected and flash frozen for further analysis. RBEE supplementation of HFD improved serum values by augmenting high-density lipoprotein cholesterol and preventing total cholesterol and aspartate aminotransferase increase. 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity was attenuated (1 and 5% RBEE) and cholesterol excretion increased (5% RBEE). Diet supplementation with 5% RBEE reduced plaque development regardless of the diet. In HFD-fed mice, both doses of RBEE reduced lipid deposition and macrophage infiltration in the aortic sinus and downregulated intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression. None of these effects was observed in mice fed LFD. Liver steatosis was reduced by RBEE supplementation of LFD (1% RBEE) and HFD (1 and 5% RBEE) and nuclear peroxisome proliferator-activated receptor-α expression upregulated in the HDF 5% RBEE group. Regular consumption of RBEE-supplemented HFD reduced plaque development and liver steatosis by decreasing inflammation and hyperlipidemia through an HMG-CoA reductase activity and lipid excretion-related mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Dietary pomegranate extract and inulin affect gut microbiome differentially in mice fed an obesogenic diet.

    PubMed

    Zhang, Song; Yang, Jieping; Henning, Susanne M; Lee, Rupo; Hsu, Mark; Grojean, Emma; Pisegna, Rita; Ly, Austin; Heber, David; Li, Zhaoping

    2017-12-01

    Growing evidence suggests that dysbiosis of gut microbiota is associated with pathogenesis of a variety of human diseases. Using dietary intervention to shape the composition and metabolism of the gut microbiota is increasingly recognized. In the present study, we investigated the effects of polysaccharide inulin and polyphenol-rich pomegranate extract (PomX) alone or in combination on the cecal microbiota composition and function in a diet induced obesity mouse model. Male C57BL/6 mice were randomly divided into four experimental groups and consumed either high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose, 17% energy from protein)] diet, HF/HS diet supplemented with PomX (0.25%), or inulin (9%) or PomX and inulin in combination for 4 weeks. In mice fed the PomX-diet the proportion of Turicibacteraceae and Ruminococcaceae was significantly increased compared to the control HF/HS diet. Supplementation with inulin alone and inulin + PomX combination significantly increased the proportion of Verrucomicrobiaceae (A. muciniphila) and decreased Clostridiaceae. Only mice fed the inulin diet experienced an increase in serum lipopolysaccharide (LPS) and monocyte chemoattractant protein 1 (MCP-1), which was reversed when feeding the inulin + PomX diet. Feeding the inulin + PomX diet was associated with a significant increase in Bifidobacteriaceae and Rikenellaceae, which may have contributed to the reduction of endotoxemia markers. Inulin supplementation showed lower species richness of gut microbiota compared to mice fed with HF/HS or HF/HS/PomX, and the reduction was reversed by the addition of PomX. Inulin alone and in combination with PomX had distinct microbial clusters determined by both weighted and unweighted UniFrac Beta-Diversity principle coordinate analysis. A total of 19 KEGG biological pathways were significantly regulated in the gut microbiota with PomX and inulin alone or combined treatment. Inulin significantly enhanced KEGG

  8. Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice.

    PubMed

    Morton, Tiffany L; Galior, Kornelia; McGrath, Cody; Wu, Xin; Uzer, Gunes; Uzer, Guniz Bas; Sen, Buer; Xie, Zhihui; Tyson, David; Rubin, Janet; Styner, Maya

    2016-01-01

    Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete's paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a "brown" phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD.

  9. Ufmylation and FATylation Pathways are Down Regulated in Human Alcoholic and Non Alcoholic Steatohepatitis, and Mice Fed DDC, where Mallory-Denk Bodies (MDBs) Form

    PubMed Central

    Liu, H; Li, J; Tillman, B; French, BA; French, SW

    2014-01-01

    We previously reported the mechanisms involved in the formation of Mallory-Denk bodies (MDBs) in mice fed DDC. To further provide clinical evidence as to how ubiquitin-like protein (Ubls) modification, gene transcript expression in Ufmylation and FATylation were investigated in human archived formalin-fixed, paraffin-embedded (FFPE) liver biopsies and frozen liver sections from DDC re-fed mice were used. Real-time PCR analysis showed that all Ufmylation molecules (Ufm1, Uba5, Ufc1, Ufl1 and UfSPs) were significantly down regulated, both in DDC re-fed mice livers and patients’ livers where MDBs had formed, indicating that gene transcript changes were limited to MDB-forming livers where the protein quality control system was down regulated. FAT10 and subunits of the immunoproteasome (LMP2 and LMP7) were both up regulated as previously shown. An approximate 176- and 5-fold up regulation (respectively) of FAT10 were observed in the DDC re-fed mice liver and in the livers of human alcoholic hepatitis with MDBs present, implying that there was an important role played by this gene. The FAT10-specific E1 and E2 enzymes Uba6 and USE1, however, were found to be down regulated both in patients’ livers and in the liver of DDC re-fed mice. Interestedly, the down regulation of mRNA levels was proportionate to MDB abundance in the liver tissues. Our results show the first systematic demonstration of transcript regulation of Ufmylation and FATylation in the liver of patients who form MDBs, where protein quality control is down regulated. This was also shown in livers of DDC re-fed mice where MDBs had formed. PMID:24893112

  10. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent

    PubMed Central

    Tetri, Laura H.; Basaranoglu, Metin; Brunt, Elizabeth M.; Yerian, Lisa M.; Neuschwander-Tetri, Brent A.

    2008-01-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1–16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-α and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation. PMID:18772365

  11. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum alleviates age-inflicted oxidative stress and improves expression of biomarkers of ageing in mice.

    PubMed

    Kaushal, Deepti; Kansal, Vinod K

    2012-02-01

    The potential benefiting effects of probiotic Dahi on age-inflicted accumulation of oxidation products, antioxidant enzymes and expression of biomarkers of ageing were evaluated in mice. Probiotic Dahi were prepared by co-culturing in buffalo milk (3% fat) Dahi bacteria (Lactococcus lactis ssp. cremoris NCDC-86 and Lactococcus lactis ssp. lactis biovar diacetylactis NCDC-60) along with selected strain of Lactobacillus acidophilus LaVK2 (La-Dahi) or combined L. acidophilus and Bifidobacterium bifidum BbVK3 (LaBb-Dahi). Four groups of 12 months old mice (6 each) were fed for 4 months supplements (5 g/day) of buffalo milk (3% fat), Dahi, La-Dahi and LaBb-Dahi, respectively, with basal diet. The activities of catalase (CAT) and glutathione peroxidase (GPx) declined and the contents of oxidation products, thiobarbituric acid reactive substances (TBARS) and protein carbonyls, increased in red blood corpuscles (RBCs), liver, kidney and heart tissues and superoxide dismutase (SOD) activity increased in RBCs and hepatic tissues during ageing of mice. Feeding ageing mice with La-Dahi or LaBb-Dahi increased CAT activity in all the four tissues, and GPx activity in RBCs and hepatic tissue, and a significant decline in TBARS in plasma, kidney and hepatic tissues and protein carbonyls in plasma. Feeding mice with probiotic Dahi also reversed age related decline in expression of biomarkers of ageing, peroxisome proliferators activated receptor-α, senescence marker protein-30 (SMP-30) and klotho in hepatic and kidney tissues. The present study suggests that probiotic Dahi containing selected strains of bacteria can be used as a potential nutraceutical intervention to combat oxidative stress and molecular alterations associated with ageing.

  12. Soybean β-Conglycinin Prevents Age-Related Hearing Impairment.

    PubMed

    Tanigawa, Tohru; Shibata, Rei; Kondo, Kazuhisa; Katahira, Nobuyuki; Kambara, Takahiro; Inoue, Yoko; Nonoyama, Hiroshi; Horibe, Yuichiro; Ueda, Hiromi; Murohara, Toyoaki

    2015-01-01

    Obesity-related complications are associated with the development of age-related hearing impairment. β-Conglycinin (β-CG), one of the main storage proteins in soy, offers multiple health benefits, including anti-obesity and anti-atherosclerotic effects. Here, to elucidate the potential therapeutic application of β-CG, we investigated the effect of β-CG on age-related hearing impairment. Male wild-type mice (age 6 months) were randomly divided into β-CG-fed and control groups. Six months later, the body weight was significantly lower in β-CG-fed mice than in the controls. Consumption of β-CG rescued the hearing impairment observed in control mice. Cochlear blood flow also increased in β-CG-fed mice, as did the expression of eNOS in the stria vascularis (SV), which protects vasculature. β-CG consumption also ameliorated oxidative status as assessed by 4-HNE staining. In the SV, lipofuscin granules of marginal cells and vacuolar degeneration of microvascular pericytes were decreased in β-CG-fed mice, as shown by transmission electron microscopy. β-CG consumption prevented loss of spiral ganglion cells and reduced the frequencies of lipofuscin granules, nuclear invaginations, and myelin vacuolation. Our observations indicate that β-CG ameliorates age-related hearing impairment by preserving cochlear blood flow and suppressing oxidative stress.

  13. Men and mice: Relating their ages.

    PubMed

    Dutta, Sulagna; Sengupta, Pallav

    2016-05-01

    Since the late 18th century, the murine model has been widely used in biomedical research (about 59% of total animals used) as it is compact, cost-effective, and easily available, conserving almost 99% of human genes and physiologically resembling humans. Despite the similarities, mice have a diminutive lifespan compared to humans. In this study, we found that one human year is equivalent to nine mice days, although this is not the case when comparing the lifespan of mice versus humans taking the entire life at the same time without considering each phase separately. Therefore, the precise correlation of age at every point in their lifespan must be determined. Determining the age relation between mice and humans is necessary for setting up experimental murine models more analogous in age to humans. Thus, more accuracy can be obtained in the research outcome for humans of a specific age group, although current outcomes are based on mice of an approximate age. To fill this gap between approximation and accuracy, this review article is the first to establish a precise relation between mice age and human age, following our previous article, which explained the relation in ages of laboratory rats with humans in detail. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Lipoprotein(A) with An Intact Lysine Binding Site Protects the Retina From an Age-Related Macular Degeneration Phenotype in Mice (An American Ophthalmological Society Thesis)

    PubMed Central

    Handa, James T.; Tagami, Mizuki; Ebrahimi, Katayoon; Leibundgut, Gregor; Janiak, Anna; Witztum, Joseph L.; Tsimikas, Sotirios

    2015-01-01

    Purpose: To test the hypothesis that the accumulation of oxidized phospholipids (OxPL) in the macula is toxic to the retina unless neutralized by a variety of mechanisms, including binding by lipoprotein(a) [Lp(a)], which is composed of apolipoprotein(a) [apo(a)] and apolipoprotein B-100 (apoB). Methods: Human maculas and eyes from two Lp(a) transgenic murine models were subjected to morphologic, ultrastructural, and immunohistochemical analysis. “Wild-type Lp(a)” mice, which express human apoB-100 and apo(a) that contains oxidized phospholipid, and “mutant LBS− Lp(a)” mice with a defective apo(a) lysine binding site (LBS) for oxidized phospholipid binding, were fed a chow or high-fat diet for 2 to 12 months. Oxidized phospholipid–containing lipoproteins were detected by immunoreactivity to E06, a murine monoclonal antibody binding to the phosphocholine headgroup of oxidized, but not native, phospholipids. Results: Oxidized phospholipids, apo(a), and apoB accumulate in maculas, including drusen, of age-related macular degeneration (AMD) samples and age-matched controls. Lp(a) mice fed a high-fat diet developed age-related changes. However, mutant LBS− Lp(a) mice fed a high-fat diet developed retinal pigment epithelial cell degeneration and drusen. These changes were associated with increased OxPL, decreased antioxidant defenses, increased complement, and decreased complement regulators. Conclusions: Human maculas accumulate Lp(a) and OxPL. Mutant LBS− Lp(a) mice, lacking the ability to bind E06-detectable oxidized phospholipid, develop AMD-like changes. The ability of Lp(a) to bind E06-detectable OxPL may play a protective role in AMD. PMID:26538774

  15. Glucagon-like peptide-2 treatment improves glucose dysmetabolism in mice fed a high-fat diet.

    PubMed

    Baldassano, Sara; Amato, Antonella; Caldara, Gaetano Felice; Mulè, Flavia

    2016-12-01

    Previous studies suggested that endogenous glucagon-like peptide 2 (GLP-2) is dispensable for the regulation of glucose homeostasis under normal conditions, while it can play a beneficial role in obesity conditions. The purpose of the present study was to investigate whether chronic treatment with Gly 2 -GLP-2, a stable analogue of GLP-2, can have an impact on glycaemic and lipid control in mice fed a high-fat diet (HFD), an animal model of human obesity and insulin resistance. HFD mice were treated once a day with Gly 2 -GLP-2 for 4 weeks. Body weight, food intake, fasting glucose, intraperitoneal glucose tolerance, insulin-induced glucose clearance, glucose-stimulated insulin secretion, β-cell mass, plasma lipid metabolic profile, and lipid deposition in the liver were examined. In untreated HFD mice, fasting glucose levels, glucose tolerance, glucose-stimulated plasma insulin and sensibility to exogenous insulin were deteriorating with time and β-cell mass increased. In Gly 2 -GLP-2-treated mice, we found significant increase in glucose tolerance and exogenous insulin sensitivity, reduction in glucose-stimulated plasma insulin and in the increase in β-cell mass in comparison with pair-aged HFD untreated animals. The chronic treatment with the peptide was not associated with remarkable improvements of dyslipidemia and it did not prevent liver fat accumulation and the presence of microvesicular steatosis. In conclusion, the results of the present study suggest, for the first time, that Gly 2 -GLP-2 may produce glucose metabolic benefits in mice with diet-induced obesity. The mechanisms underlying the beneficial impact of GLP-2 on glucose metabolism remain to be established.

  16. Practical pathology of aging mice

    PubMed Central

    Pettan-Brewer, Christina; Treuting, Piper M.

    2011-01-01

    Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington. PMID:22953032

  17. Assessment the levels of tartrate-resistant acid phosphatase (TRAP) on mice fed with eggshell calcium citrate malate.

    PubMed

    Yu, Yiding; Zhang, Mingdi; Lin, Songyi; Wang, Liyan; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-07-01

    Optimized conditions were obtained by one-factor-at-a-time test (OFAT) and ternary quadratic regression orthogonal composite design (TQROCD) respectively. By pulse electric fields (PEF) technology, the process of eggshell calcium citrate malate (ESCCM), eggshell calcium citrate (ESCC) and eggshells calcium malate (ESCM) were comprehensive compared. The levels of tartrate-resistant acid phosphatase (TRAP) and the bioavailability on mice fed with eggshell calcium citrate malate (ESCCM) treated by pulsed electric field (PEF) were evaluated. Results showed that the rates of calcium dissolution of the different acids studied can be arranged as ESCCM (7.90 mg/mL)>ESCC (7.12 mg/mL)>ESCM (7.08 mg/mL) from highest to lowest rate of dissolution. At the same dose 133.0 mg kg(-1) d(-1), the levels of TRAP in the ESCCM treatment groups were significantly lower than those in ESCM and ESCC (P<0.05). Bone calcium content in the mice fed with ESCCM was generally higher than fed with ESCM and ESCC. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Anti-obesity and anti-hyperglycemic effects of the dietary citrus limonoid nomilin in mice fed a high-fat diet.

    PubMed

    Ono, Eri; Inoue, Jun; Hashidume, Tsutomu; Shimizu, Makoto; Sato, Ryuichiro

    2011-07-08

    TGR5 is a member of the G protein-coupled receptor family and is activated by bile acids (BAs). TGR5 is thought to be a promising drug target for metabolic diseases because the activation of TGR5 prevents obesity and hyperglycemia in mice fed a high-fat diet (HFD). In the present study, we identified a naturally occurring limonoid, nomilin, as an activator of TGR5. Unlike BAs, nomilin did not exhibit the farnesoid X receptor ligand activity. Although the nomilin derivative obacunone was capable of activating TGR5, limonin (the most abundant limonoid in citrus seeds) was not a TGR5 activator. When male C57BL/6J mice fed a HFD for 9 weeks were further fed a HFD either alone or supplemented with 0.2%w/w nomilin for 77 days, nomilin-treated mice had lower body weight, serum glucose, serum insulin, and enhanced glucose tolerance. Our results suggest a novel biological function of nomilin as an agent having anti-obesity and anti-hyperglycemic effects that are likely to be mediated through the activation of TGR5. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Changes in intestinal immunity, gut microbiota, and expression of energy metabolism-related genes explain adenoma growth in bilberry and cloudberry-fed ApcMin mice.

    PubMed

    Päivärinta, Essi; Niku, Mikael; Maukonen, Johanna; Storvik, Markus; Heiman-Lindh, Anu; Saarela, Maria; Pajari, Anne-Maria; Mutanen, Marja

    2016-11-01

    We showed previously that ellagitannin-rich cloudberries and anthocyanin-rich bilberries reduce the number of intestinal adenomas in multiple intestinal neoplasia/+ (Apc Min ) mice. We also found that cloudberries decreased the size of adenomas, whereas bilberries increased it. Here we hypothesized that the difference in adenoma growth could be explained by dissimilar effects of the berries on intestinal immune responses and gut microbiota, potentially driven by the distinct polyphenol compositions of the 2 berries. Our objectives were to investigate lymphocyte subtypes and the predominant cecal bacterial diversity in mice fed with bilberries and cloudberries, and to analyze global gene expression profiles in the intestinal mucosa. Immunostainings of CD3 + T lymphocytes, FoxP3 + regulatory T lymphocytes, and CD45R + B lymphocytes revealed a smaller ratio of intraepithelial to all mucosal CD3 + T lymphocytes in the cloudberry-fed mice compared with controls, suggesting an attenuation of inflammation. Bilberry feeding induced no changes in the density of any of the lymphocyte subtypes. The predominant bacterial diversity in cecal contents, analyzed using polymerase chain reaction-denaturating gradient gel electrophoresis, was higher in the bilberry group than in the control or cloudberry groups. The microbial profiles of cloudberry-fed mice clustered together and were associated with small adenoma size. Pathway analyses of gene expression data showed that cloudberry down-regulated and bilberry up-regulated the expression of energy metabolism-related genes in the intestinal mucosa. In conclusion, attenuation of intestinal inflammation, changes in microbial profiles, and down-regulation of mucosal energy metabolism may account for the smaller adenoma size in cloudberry-fed mice in comparison to bilberry-fed mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    PubMed

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  1. Effects of nutrition on disease and life span. I. Immune responses, cardiovascular pathology, and life span in MRL mice.

    PubMed Central

    Mark, D. A.; Alonso, D. R.; Quimby, F.; Thaler, H. T.; Kim, Y. T.; Fernandes, G.; Good, R. A.; Weksler, M. E.

    1984-01-01

    Mice of the autoimmune, lymphoproliferative strain MRL/lpr and the congenic, nonlymphoproliferative strain MRL/n were fed one of six diets from weaning on-ward. These mice were sacrificed at 3 or 5 months of age. Low fat diets resulted in lower cholesterol and higher triglyceride levels than did cholesterol-containing high-fat diets. Caloric restriction of MRL/lpr mice was associated with an increased plaque-forming cell response to trinitrophenylated polyacrylamide beads, less lymphoproliferation, and less severe glomerulonephritis. Diet did not affect the incidence of autoimmune vasculitis in MRL/lpr mice sacrificed at 5 months. MRL/lpr mice fed a low-fat, calorically restricted diet from 5 months of age to death lived longer than mice which were fed ad libitum a cholesterol-containing, high-fat diet. At death, MRL/lpr mice fed the former diet had the autoimmune vasculitis which had been evident in mice killed at 5 months, whereas mice fed the latter diet, in addition to the vasculitis, had a high incidence of atherosclerotic lesions of intrarenal and aortic branch arteries. Images Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:6333184

  2. Differences in betaine-homocysteine methyltransferase expression, ER stress response and liver injury between alcohol-fed mice and rats

    PubMed Central

    Shinohara, Masao; Ji, Cheng; Kaplowitz, Neil

    2009-01-01

    Chronic ethanol infusion resulted in greater serum ALT elevation, lipid accumulation, necroinflammation, and focal hepatic cell death in mice than rats. Mice exhibited a remarkable hyperhomocysteinemia but no increase was seen in rats. Similarly, a high methionine low folate diet (HMLF) induced less steatosis, serum ALT increase, and hyperhomocysteinemia in rats than in mice. Western blot analysis of betaine homocysteine methyltransferase (BHMT) expression showed that rats fed either ethanol or HMLF had significantly increased BHMT expression which did not occur in mice. Nuclear NFκB p65 was increased in mouse in response to alcohol feeding. The human BHMT promoter was repressed by homocysteine in mouse hepatocytes but not rat hepatocytes. BHMT induction was faster and greater in primary rat hepatocytes than mouse hepatocytes in response to exogenous homocysteine exposure. Mice fed ethanol i.g. exhibited an increase in GRP78 and IRE1 which was not seen in the rat and SREBP-1 was increased to a greater extent in mice than rats. Thus, rats are more resistant to ethanol induced steatosis, ER stress and hyperhomocysteinemia and this correlates with induction of BHMT in rats. These findings support the hypothesis that a critical factor in the pathogenesis of alcoholic liver injury is the enhanced ability of rat or impaired ability of mouse to up-regulate BHMT which prevents hyperhomocysteinemia, ER stress and liver injury. PMID:20069651

  3. Lipid Emulsion Administered Intravenously or Orally Attenuates Triglyceride Accumulation and Expression of Inflammatory Markers in the Liver of Nonobese Mice Fed Parenteral Nutrition Formula123

    PubMed Central

    Ito, Kyoko; Hao, Lei; Wray, Amanda E.; Ross, A. Catharine

    2013-01-01

    The accumulation of hepatic TG and development of hepatic steatosis (HS) is a serious complication of the use of parenteral nutrition (PN) formulas containing a high percentage of dextrose. But whether fat emulsions or other nutrients can ameliorate the induction of HS by high-carbohydrate diets is still uncertain. We hypothesized that administration of a lipid emulsion (LE; Intralipid) and/or the vitamin A metabolite retinal (RAL) will reduce hepatic TG accumulation and attenuate indicators of inflammation. C57BL/6 male mice were fed PN formula as their only source of hydration and nutrition for 4–5 wk. In Expt. 1, mice were fed PN only or PN plus treatment with RAL (1 μg/g orally), LE (200 μL i.v.), or both LE and RAL. In Expt. 2, LE was orally administered at 4 and 13.5% of energy to PN-fed mice. All PN mice developed HS compared with mice fed normal chow (NC) and HS was reduced by LE. The liver TG mass was lower in the PN+LE and PN+RAL+LE groups compared with the PN and PN+RAL groups (P < 0.01) and in the 4% and 13.5% PN+LE groups compared with PN alone. Hepatic total retinol was higher in the RAL-fed mice (P < 0.0001), but RAL did not alter TG mass. mRNA transcripts for fatty acid synthase (Fasn) and sterol regulatory element-binding protein-1c (Srebpf1) were higher in the PN compared with the NC mice, but FAS protein and Srebpf1 mRNA were lower in the PN+LE groups compared with PN alone. The inflammation marker serum amyloid P component was also reduced. In summary, LE given either i.v. or orally may be sufficient to reduce the steatotic potential of orally fed high-dextrose formulas and may suppress the early development of HS during PN therapy. PMID:23325918

  4. Effect of a mitochondrial-targeted coenzyme Q analog on pancreatic β-cell function and energetics in high fat fed obese mice.

    PubMed

    Imai, Yumi; Fink, Brian D; Promes, Joseph A; Kulkarni, Chaitanya A; Kerns, Robert J; Sivitz, William I

    2018-06-01

    We recently reported that mitoquinone (mitoQ, 500 μmol/L) added to drinking water of C57BL/6J mice attenuated weight gain and reduced oxidative stress when administered to high-fat (HF) fed mice. Here, we examined the effects of mitoQ administered to HF fed mice on pancreatic islet morphology, dynamics of insulin secretion, and islet mitochondrial metabolism. C57BL/6J mice were fed HF for 130 days while we administered vehicle (cyclodextrin [CD]) or mitoQ added to the drinking water at up to 500 μmol/L. MitoQ-treated mice vs vehicle gained significantly less weight, expended significantly more energy as determined by indirect calorimetry, and trended to consume less (nonsignificant) food. As we and others reported before, mitoQ-treated mice drank less water but showed no difference in percent body fluid by nuclear magnetic resonance. Circulating insulin and glucose-stimulated insulin secretion by isolated islets were decreased in mitoQ-treated mice while insulin sensitivity (plasma insulin x glucose) was greater. Islet respiration as basal oxygen consumption (OCR), OCR directed at ATP synthesis, and maximal uncoupled OCR were also reduced in mitoQ-treated mice. Quantitative morphologic studies revealed that islet size was reduced in the mitoQ-treated mice while visual inspection of histochemically stained sections suggested that mitoQ reduced islet lipid peroxides. MitoQ markedly improved liver function as determined by plasma alanine aminotransferase. In summary, mitoQ treatment reduced the demand for insulin and reduced islet size, likely consequent to the action of mitoQ to mitigate weight gain and improve liver function. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  5. Fibroblast Growth Factor 21 (Fgf21) Gene Expression Is Elevated in the Liver of Mice Fed a High-Carbohydrate Liquid Diet and Attenuated by a Lipid Emulsion but Is Not Upregulated in the Liver of Mice Fed a High-Fat Obesogenic Diet.

    PubMed

    Hao, Lei; Huang, Kuan-Hsun; Ito, Kyoko; Sae-Tan, Sudathip; Lambert, Joshua D; Ross, A Catharine

    2016-02-01

    Fibroblast growth factor 21 (FGF21) is a regulator of carbohydrate and lipid metabolism; however, the regulation of Fgf21 gene expression by diet remains incompletely understood. We investigated the effect of a high-carbohydrate (HC) liquid diet, with and without supplementation with a lipid emulsion (LE), and of a high-fat diet (HFD) compared with a low-fat diet (LFD) on the regulation of Fgf21 gene expression in the liver of intact mice. C57BL/6 male mice were fed standard feed pellets (SFPs), a purified HC liquid diet (adequate in calories and protein), or an HC liquid diet containing an LE at either 4% or 13.5% of energy for 5 wk (Expt. 1) or 1 wk (Expt. 2). In Expt. 3, mice were fed a purified LFD (∼10% fat) or HFD (∼60% fat) or were fed an HFD and given access to a running wheel for voluntary exercise for 16 wk. Fgf21 mRNA in liver and FGF21 protein in plasma were increased by 3.5- to 7-fold in HC mice compared with SFP mice (P < 0.001), whereas the LE dose-dependently attenuated the induction of Fgf21 expression (P < 0.05). After 16 wk, hepatic Fgf21 mRNA did not differ between LFD and HFD mice but was dramatically reduced in the HFD+exercise group to <20% of the level in the HFD group (P < 0.0001). In mice, hepatic Fgf21 expression was upregulated by 1 and 5 wk of feeding a lipogenic HC diet but not by 16 wk of feeding an obesogenic HFD, whereas the addition of fat as an LE to the HC formula significantly reduced Fgf21 gene expression and the plasma FGF21 protein concentration. Our results support a strong and reversible response of hepatic Fgf21 expression to shifts in dietary glucose intake. © 2016 American Society for Nutrition.

  6. Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: a critical role for heme oxygenase-1.

    PubMed

    Shen, Yu; Ward, Natalie C; Hodgson, Jonathan M; Puddey, Ian B; Wang, Yutang; Zhang, Di; Maghzal, Ghassan J; Stocker, Roland; Croft, Kevin D

    2013-12-01

    Several lines of evidence indicate that quercetin, a polyphenol derived in the diet from fruit and vegetables, contributes to cardiovascular health. We aimed to investigate the effects of dietary quercetin on endothelial function and atherosclerosis in mice fed a high-fat diet. Wild-type C57BL/6 (WT) and apolipoprotein E gene knockout (ApoE(-/-)) mice were fed: (i) a high-fat diet (HFD) or (ii) a HFD supplemented with 0.05% w/w quercetin (HFD+Q), for 14 weeks. Compared with animals fed HFD, HFD+Q attenuated atherosclerosis in ApoE(-/-) mice. Treatment with the HFD+Q significantly improved endothelium-dependent relaxation of aortic rings isolated from WT but not ApoE(-/-) mice and attenuated hypochlorous acid-induced endothelial dysfunction in aortic rings of both WT and ApoE(-/-) mice. Mechanistic studies revealed that HFD+Q significantly improved plasma F2-isoprostanes, 24h urinary nitrite, and endothelial nitric oxide synthase activity, and increased heme oxygenase-1 (HO-1) protein expression in the aortas of both WT and ApoE(-/-) mice (P<0.05). HFD+Q also resulted in small changes in plasma cholesterol (P<0.05 in WT) and plasma triacylglycerols (P<0.05 in ApoE (-/-)mice). In a separate experiment, quercetin did not protect against hypochlorite-induced endothelial dysfunction in arteries obtained from heterozygous HO-1 gene knockout mice with low expression of HO-1 protein. Quercetin protects mice fed a HFD against oxidant-induced endothelial dysfunction and ApoE(-/-) mice against atherosclerosis. These effects are associated with improvements in nitric oxide bioavailability and are critically related to arterial induction of HO-1. © 2013 Elsevier Inc. All rights reserved.

  7. Diet Replenishment for Ad-libitum–fed Mice Housed in Social Groups is Compatible with Shelf Life

    PubMed Central

    Huerkamp, Michael J; Dowdy, Minida R

    2008-01-01

    Regulatory guidelines and best practices in the care of research animals allow diets milled for laboratory animals to be used within 180 d of formulation but otherwise permit latitude and professional judgment in how and when feed is offered. As such, practices at some research institutions allow for the replenishment (‘topping up’) of fresh chow over that existing in the cage food hopper, rather than complete replacement of the diet on a regular basis. To determine the depletion rate of a pelleted diet as fed from a conventional overhead food hopper, the consumption of full hoppers of food was measured for breeding pairs of mice in production and gender-specific groups of weanlings and juvenile mice kept in ventilated cages at 71.9 ± 0.2 °F (approximately 22.6 °C) and 40% ± 5% relative humidity. Breeding pairs of mice depleted 97% of a 250-g ration within 44 d of offering and consumed diet at a rate of 4.7 ± 0.5 g per mouse daily. Gender-grouped weanling and juvenile mice housed 5 to 6 per cage exhausted more than 99% of a 500-g ration of diet in 24 d and consumed chow at a rate of 3.4 ± 0.3 g per animal daily. These findings suggest that breeding pairs and groups of mice kept 5 to 6 per cage deplete feed at such a rate that diets can be fed by using replenishment provided diet is offered within 5 mo of the milling date. PMID:18459713

  8. Isoproterenol exacerbates hyperglycemia and modulates chromium distribution in mice fed with a high fat diet.

    PubMed

    Chang, Geng-Ruei; Chen, Wen-Kai; Hou, Po-Hsun; Mao, Frank Chiahung

    2017-12-01

    Isoproterenol (ISO), a nonselective β-adrenoceptor agonist for treating bradycardia and asthma, has been proposed to raise blood glucose level. Little is known regarding the relationship between ISO treatment, the induced chromium (Cr) redistribution, and changes in glucose metabolism. We aimed to characterize the effects of a single dose of ISO on glucose homeostasis and Cr level changes in an obesity mouse model. Mice (C57BL6/j strain) were first fed for a continuous period of 12 weeks with either a high fat diet (HFD), to develop an obesity animal model, or a standard diet (SD), to develop a lean animal model as controls. These groups were each separated into two subgroups to receive either a single dose of ISO or saline (control). We measured in vivo their metabolic parameters, fasting glucose level, area under the curve (AUC) for glucose level time profile, insulin level time profile, insulin sensitivity index, and chromium distribution. After a single dose of ISO, the SD-fed mice had slightly higher blood glucose levels compared with the SD controls, when the level was measured 30 and 60min after injection. By contrast, the ISO-treated HFD-fed mice had significantly higher blood glucose levels and AUC during the entire 120min following one administration compared with the HFD control group. Additionally, they had a substantially lower HOMA-IR index, whereas insulin levels remained unchanged. The Cr level in their bones and liver was decreased, and loss of Cr through urinary excretion was elevated. The results demonstrated that ISO exacerbated hyperglycemic syndrome in the obesity animal model. ISO induced a net negative Cr balance as a result of increased urinary excretion, leading to Cr mobilization that was not desirable to overcome the hyperglycemia. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice.

    PubMed

    Wang, Kaiping; Cao, Peng; Wang, Hanxiang; Tang, Zhuohong; Wang, Na; Wang, Jinglin; Zhang, Yu

    2016-05-18

    This study aimed to investigate the therapeutic effects of Angelica sinensis polysaccharide (ASP), an active component derived from a water extract of Angelica sinensis, in high-fat diet (HFD)-fed BALB/c mice. The potential mechanisms underlying the activity of this compound were also considered. Specifically, serum and hepatic biochemical parameters were evaluated, and key proteins involved in the lipid/glucose metabolism were analyzed. Long-term feeding with a HFD induced severe fatty liver and hyperglycemia. Histological examination clearly showed that ASP reduced lipid accumulation in the liver and attenuated hepatic steatosis in HFD-fed mice. In addition, ASP markedly alleviated serum and liver lipid disorders and fatty liver via the upregulation of PPARγ expression and the activation of adiponectin-SIRT1-AMPK signaling. Furthermore, ASP also significantly relieved severe oxidative stress, demonstrating that ASP might attenuate nonalcoholic fatty liver disease via a "two-hit" mechanism. In addition, ASP reduced blood glucose levels and ameliorated insulin resistance via the regulation of related metabolic enzymes and by activating the PI3K/Akt pathway in HFD-fed mice. Our findings revealed that ASP might be used as an alternative dietary supplement or health care product to ameliorate metabolic syndrome in populations that consistently consume HFDs.

  10. Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet

    PubMed Central

    Noll, Christophe; Labbé, Sébastien M.; Pinard, Sandra; Shum, Michael; Bilodeau, Lyne; Chouinard, Lucie; Phoenix, Serge; Lecomte, Roger; Carpentier, André C.; Gallo-Payet, Nicole

    2016-01-01

    ABSTRACT The role of the angiotensin type-2 receptor in adipose physiology remains controversial. The aim of the present study was to demonstrate whether genetic angiotensin type-2 receptor-deficiency prevents or worsens metabolic and adipose tissue morphometric changes observed following a 6-week high-fat/high-fructose diet with injection of a small dose of streptozotocin. We compared tissue uptake of nonesterified fatty acid and dietary fatty acid in wild-type and angiotensin type-2 receptor-deficient mice by using the radiotracer 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid in mice fed a standard or high-fat diet. Postprandial fatty acid uptake in the heart, liver, skeletal muscle, kidney and adipose tissue was increased in wild-type mice after a high-fat diet and in angiotensin type-2 receptor-deficient mice on both standard and high-fat diets. Compared to the wild-type mice, angiotensin type-2 receptor-deficient mice had a lower body weight, an increase in fasting blood glucose and a decrease in plasma insulin and leptin levels. Mice fed a high-fat diet exhibited increased adipocyte size that was prevented by angiotensin type-2 receptor-deficiency. Angiotensin type-2 receptor-deficiency abolished the early hypertrophic adipocyte remodeling induced by a high-fat diet. The small size of adipocytes in the angiotensin type-2 receptor-deficient mice reflects their inability to store lipids and explains the increase in fatty acid uptake in non-adipose tissues. In conclusion, a genetic deletion of the angiotensin type-2 receptor is associated with metabolic dysfunction of white adipose depots, and indicates that adipocyte remodeling occurs before the onset of insulin resistance in the high-fat fed mouse model. PMID:27144096

  11. Aging Exacerbates Obesity-induced Cerebromicrovascular Rarefaction, Neurovascular Uncoupling, and Cognitive Decline in Mice

    PubMed Central

    Tucsek, Zsuzsanna; Toth, Peter; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Warrington, Junie P.; Giles, Cory B.; Wren, Jonathan D.; Koller, Akos; Ballabh, Praveen; Sonntag, William E.; Csiszar, Anna

    2014-01-01

    Epidemiological studies show that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular impairment, we compared young (7 months) and aged (24 months) high-fat diet–fed obese C57BL/6 mice. We found that aging exacerbates the obesity-induced decline in microvascular density both in the hippocampus and in the cortex. The extent of hippocampal microvascular rarefaction and the extent of impairment of hippocampal-dependent cognitive function positively correlate. Aging exacerbates obesity-induced loss of pericyte coverage on cerebral microvessels and alters hippocampal angiogenic gene expression signature, which likely contributes to microvascular rarefaction. Aging also exacerbates obesity-induced oxidative stress and induction of NADPH oxidase and impairs cerebral blood flow responses to whisker stimulation. Collectively, obesity exerts deleterious cerebrovascular effects in aged mice, promoting cerebromicrovascular rarefaction and neurovascular uncoupling. The morphological and functional impairment of the cerebral microvasculature in association with increased blood–brain barrier disruption and neuroinflammation (Tucsek Z, Toth P, Sosnowsk D, et al. Obesity in aging exacerbates blood–brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol Biol Med Sci. 2013. In press, PMID: 24269929) likely contribute to obesity-induced cognitive decline in aging. PMID:24895269

  12. Effect of Saffron on Metabolic Profile and Retina in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet.

    PubMed

    Doumouchtsis, Evangelos K; Tzani, Aspasia; Doulamis, Ilias P; Konstantopoulos, Panagiotis; Laskarina-Maria, Korou; Agrogiannis, Georgios; Agapitos, Emmanouil; Moschos, Marilita M; Kostakis, Alkiviadis; Perrea, Despina N

    2017-09-22

    Saffron is a spice that has been traditionally used as a regimen for a variety of diseases due to its potent antioxidant attributes. It is well documented that impaired systemic oxidative status is firmly associated with diverse adverse effects including retinal damage. The aim of this study was to investigate the role of saffron administration against the retinal damage in apoE -/- mice fed a high-fat diet, since they constitute a designated experimental model susceptible to oxidative stress. Twenty-one mice were allocated into three groups: Group A (control, n = 7 c57bl/6 mice) received standard chow diet; Group B (high-fat, n = 7 apoE -/- mice) received a high-fat diet; and Group C (high-fat and saffron, n = 7 apoE -/- mice) received a high-fat diet and saffron (25 mg/kg/d) through their drinking water. The duration of the study was 20 weeks. Lipidemic profile, glucose, C-reactive protein (CRP), and total oxidative capacity (PerOX) were measured in blood serum. Histological analysis of retina was also conducted. Administration of saffron resulted in enhanced glycemic control and preservation of retinal thickness when compared with apoE -/- mice fed a high-fat diet. The outcomes of the study suggest the potential protective role of saffron against retinal damage induced by oxidative stress. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.

  13. Whey Protein Reduces Early Life Weight Gain in Mice Fed a High-Fat Diet

    PubMed Central

    Tranberg, Britt; Hellgren, Lars I.; Lykkesfeldt, Jens; Sejrsen, Kristen; Jeamet, Aymeric; Rune, Ida; Ellekilde, Merete; Nielsen, Dennis S.; Hansen, Axel Kornerup

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001–0.05). Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001). Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01) and glucose clearance was improved after an oral glucose challenge (P<0.05). Plasma cholesterol was lowered by whey compared to casein (P<0.001). The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05) whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey. PMID:23940754

  14. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    PubMed

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  15. S100A8 Production in CXCR2-Expressing CD11b+Gr-1high Cells Aggravates Hepatitis in Mice Fed a High-Fat and High-Cholesterol Diet.

    PubMed

    Mukai, Kaori; Miyagi, Takuya; Nishio, Kumiko; Yokoyama, Yoshinobu; Yoshioka, Teppei; Saito, Yoshinobu; Tanaka, Satoshi; Shigekawa, Minoru; Nawa, Takatoshi; Hikita, Hayato; Sakamori, Ryotaro; Yoshihara, Harumasa; Imai, Yasuharu; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with a spectrum of presentations. S100A8 has been suggested to play a pivotal role as an endogenous immune-activator in inflammatory diseases. In this study, we investigated the involvement of S100A8 in the development of NAFLD. We used a diet model of NAFLD, in which mice were fed either a high-fat and high-cholesterol diet (HFHCD) or a normal diet (ND) as a control. We also assessed liver tissues from patients with NAFLD, including patients with nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). HFHCD-fed mice, but not ND-fed mice, developed steatohepatitis. S100A8 expression was significantly elevated in the livers of HFHCD-fed mice compared with the controls. S100A8 was exclusively expressed in CXCR2-expressing CD11b(+)Gr-1(high) cells, which significantly increased in the livers of HFHCD-fed mice. These cells were F4/80 negative and did not possess a suppressor function. TNF-α expression was enhanced by S100A8 in primary liver leukocytes or a hepatocyte cell line and significantly elevated in the livers of HFHCD-fed mice. TNF-α was primarily produced from CD11b(+)F4/80(+) cells in liver leukocytes in response to S100A8. TNF-α deficiency attenuated hepatitis in HFHCD-fed mice. S100A8 was significantly more expressed in the liver tissues of patients with NASH than in those of patients with NAFL. In conclusion, these results suggest that S100A8 is primarily produced from CXCR2-expressing CD11b(+)Gr-1(high) cells, and it upregulates TNF-α production in CD11b(+)F4/80(+) cells through cellular cross-talk, which is an important mechanism in the development of NAFLD. Copyright © 2015 by The American Association of Immunologists, Inc.

  16. Consumption of Walnuts in Combination with Other Whole Foods Produces Physiologic, Metabolic, and Gene Expression Changes in Obese C57BL/6J High-Fat-Fed Male Mice.

    PubMed

    Luo, Ting; Miranda-Garcia, Omar; Adamson, Allysa; Hamilton-Reeves, Jill; Sullivan, Debra K; Kinchen, Jason M; Shay, Neil F

    2016-09-01

    Although a reductionist approach has sought to understand the roles of individual nutrients and biochemicals in foods, it has become apparent that there can be differences when studying food components in isolation or within the natural matrix of a whole food. The objective of this study was to determine the ability of whole-food intake to modulate the development of obesity and other metabolic dysfunction in mice fed a high-fat (HF), Western-style obesogenic diet. To test the hypothesis that an n-3 (ω-3) polyunsaturated fatty acid-rich food could synergize with other, largely polyphenol-rich foods by producing greater reductions in metabolic disease conditions, the intake of English walnuts was evaluated in combination with 9 other whole foods. Eight-week-old male C57Bl/6J mice were fed low-fat (LF; 10% fat) and HF control diets, along with an HF diet with 8.6% (wt:wt) added walnuts for 9 wk. The HF control diet contained 46% fat with added sucrose (10.9%, wt:wt) and cholesterol (1%, wt:wt); the added sucrose and cholesterol were not present in the LF diet. Other groups were provided the walnut diet with a second whole food-raspberries, apples, cranberries, tart cherries, broccoli sprouts, olive oil, soy protein, or green tea. All of the energy-containing whole foods were added at an energy level equivalent to 1.5 servings/d. Body weights, food intake, and glucose tolerance were determined. Postmortem, serum lipids and inflammatory markers, hepatic fat, gene expression, and the relative concentrations of 594 biochemicals were measured. The addition of walnuts with either raspberries, apples, or green tea reduced glucose area under the curve compared with the HF diet alone (-93%, -64%, and -54%, respectively, P < 0.05). Compared with HF-fed mice, mice fed walnuts with either broccoli sprouts or green tea (-49% and -61%, respectively, P < 0.05) had reduced hepatic fat concentrations. There were differences in global gene expression patterns related to whole

  17. Metabolomic and genomic profiling of n-3 polyunsaturated fatty acid effects on muscle metabolism in mice fed a high fat diet

    USDA-ARS?s Scientific Manuscript database

    We previously reported that feeding mice high-fat (HF) diets enriched with eicosapentaenoic acid (EPA) decreased inflammation, adiposity and insulin resistance. In the current study, we used skeletal muscle from mice fed HF or HF-EPA for 11 weeks to further dissect mechanisms mediating EPA effects o...

  18. Histochemical Examination on Periodontal Tissues of Klotho-Deficient Mice Fed With Phosphate-Insufficient Diet

    PubMed Central

    Hikone, Kumiko; Hasegawa, Tomoka; Tsuchiya, Erika; Hongo, Hiromi; Sasaki, Muneteru; Yamamoto, Tomomaya; Kudo, Ai; Oda, Kimimitsu; Haraguchi, Mai; de Freitas, Paulo Henrique Luiz; Li, Minqi; Iida, Junichiro; Amizuka, Norio

    2017-01-01

    To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho−/− mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho−/−norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase–positive osteoblasts and tartrate-resistant acid phosphatase–reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho−/− lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling. PMID:28122194

  19. Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet.

    PubMed

    Zhang, Xinsheng; Zhang, Yong; Liu, Yinghua; Wang, Jin; Xu, Qing; Yu, Xiaoming; Yang, Xueyan; Liu, Zhao; Xue, Changyong

    2016-09-01

    We previously observed that medium-chain triglycerides (MCTs) could reduce body fat mass and improve the metabolism of cholesterol. We hypothesized that MCTs can improve atherosclerosis by promoting the reverse cholesterol transport (RCT) process. Therefore, the objective of this study was to investigate the roles of MCTs in macrophage RCT and the progression of atherosclerosis. To test this hypothesis, 30 4-week-old ApoE-deficient (ApoE(-/-)) mice were randomly divided into 2 groups and fed a diet of 2% MCTs or long-chain triglycerides (LCTs) for 16 weeks. Ten age- and sex-matched C57BL/6J mice were fed a diet of 2% LCTs as the control. Macrophage-to-feces RCT was assessed in vivo by intraperitoneal injection of RAW 264.7 macrophages containing (3)H-labeled cholesterol, and atherosclerotic plaques were measured. The mRNA and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. There was a greater decrease in body fat mass, atherosclerotic plaques, and an improvement in serum lipid profiles. In addition, the MCT mice group showed an increase in (3)H-tracer in the feces and a decrease in the liver. Significantly higher levels of mRNA and protein expression of hepatic ATP-binding cassette transporter A1, ATP-binding cassette transporter G5, cholesterol 7α-hydroxylase, and intestinal ATP-binding cassette transporter G8, as well as lower levels of expression of intestinal Niemann-Pick C1-like 1, were found in the MCT group. These results suggest that MCTs could obviously promote macrophage RCT and improve atherosclerosis in ApoE(-/-) mice, indicating that MCTs have the potential to prevent cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Proteomic analysis of mice fed methionine and choline deficient diet reveals marker proteins associated with steatohepatitis.

    PubMed

    Lee, Su Jin; Kang, Jeong Han; Iqbal, Waqas; Kwon, Oh-Shin

    2015-01-01

    The mechanisms underlying the progression of simple steatosis to steatohepatitis are yet to be elucidated. To identify the proteins involved in the development of liver tissue inflammation, we performed comparative proteomic analysis of non-alcoholic steatohepatitis (NASH). Mice fed a methionine and choline deficient diet (MCD) developed hepatic steatosis characterized by increased free fatty acid (FFA) and triglyceride levels as well as alpha-SMA. Two-dimensional proteomic analysis revealed that the change from the normal diet to the MCD diet affected the expressions of 50 proteins. The most-pronounced changes were observed in the expression of proteins involved in Met metabolism and oxidative stress, most of which were significantly downregulated in NASH model animals. Peroxiredoxin (Prx) is the most interesting among the modulated proteins identified in this study. In particular, cross-regulated Prx1 and Prx6 are likely to participate in cellular defense against the development of hepatitis. Thus, these Prx isoforms may be a useful new marker for early stage steatohepatitis. Moreover, curcumin treatment results in alleviation of the severity of hepatic inflammation in steatohepatitis. Notably, curcumin administration in MCD-fed mice dramatically reduced CYP2E1 as well as Prx1 expression, while upregulating Prx6 expression. These findings suggest that curcumin may have a protective role against MCD fed-induced oxidative stress.

  1. Expression of aquaporins in the efferent ductules, sperm counts, and sperm motility in estrogen receptor-alpha deficient mice fed lab chow versus casein.

    PubMed

    Ruz, Ricardo; Gregory, Mary; Smith, Charles E; Cyr, Daniel G; Lubahn, Dennis B; Hess, Rex A; Hermo, Louis

    2006-02-01

    Estrogens play an important role in the male reproductive tract, and this is especially so for the efferent ductules, where alpha-estrogen receptors (ERalpha) have been localized. Mice deficient in ERalpha (alphaERKO mice) are infertile, and the effect appears to be due in part to retention of water at the level of the efferent ductules. In the present study, we examined the consequences of ERalpha deletion on the distribution of certain aquaporins (AQPs), water protein channels, in the efferent ductules and on sperm numbers and motility. In addition, the effects of feeding mice a regular lab chow diet, which contains phytoestrogens, known to affect male reproductive tract functions, and a casein diet, which lacks phytoestrogens, were also assessed. Light microscope immunolocalizations of AQP-1 and AQP-9 revealed dramatic reduction and patchier staining in alphaERKO mice with distal areas of the efferent ductules being more affected than proximal areas. No other changes in immunolocalizations were noted as a consequence of diet. Computer-assisted sperm analyses demonstrated a 62% reduction in cauda epididymal sperm/ml in alphaERKO mice fed lab chow, whereas 87% fewer sperm/ml were observed in alphaERKO mice fed casein, suggesting an enhanced role for sperm production and concentration in a diet containing phytoestrogens. All sperm motility parameters were altered to some degree in alphaERKO mice fed lab chow. Alterations in sperm motility parameters were also detected, but were less dramatic in alphaERKO mice fed casein. These data suggest that the decrease in AQP expression in the efferent ductules of alphaERKO mice contributes in part to water retention in this tissue, eventually leading to backflow of water into the testis, with subsequent decreases in sperm concentration and motility. The data also suggest that phytoestrogens, which are present in regular lab chow, can influence the male reproductive tract with and without the presence of ERalpha, promoting

  2. Green tea polyphenol treatment attenuates atherosclerosis in high-fat diet-fed apolipoprotein E-knockout mice via alleviating dyslipidemia and up-regulating autophagy

    PubMed Central

    Jiang, Jinjin; Yu, Pengxin; Zhang, Guofu; Zhang, Guanghui; Liu, Xiaoting

    2017-01-01

    Background: Green tea polyphenol (GTP) is a polyphenol source from green tea that has drawn wide attention owing to epidemiological evidence of its beneficial effects in the prevention of cardiovascular disease; the underlying molecular mechanisms of these effects are not well understood. This study aimed to investigate the effects of GTP treatment on autophagy regulation in the vessel wall and lipid metabolism of HFD-fed male ApoE-knockout mice. Methods: Adult male ApoE-knockout mice (n = 30) fed with a high-fat diet (HFD) were treated with either vehicle or GTP (3.2 or 6.4 g/L) administered via drinking water for 15 weeks, and C57BL/6J mice fed with standard chow diet (STD) were used as the control group. Metabolic parameters, expression of key mRNAs and proteins of hepatic lipid metabolism and autophagy in the vessel wall of mice were determined after the 15-week treatment. Results: A HFD induced atherosclerosis formation and lipid metabolism disorders as well as reduced autophagy expression in the vessel wall of ApoE-knockout mice, but GTP treatment alleviated the lipid metabolism disorders, decreased the oxLDL levels in serum, and increased the mRNA and protein expressions of hepatic PPARα and autophagy markers (LC3, Beclin1 and p62) in the vessel wall of ApoE-knockout mice. Conclusions: Our findings suggest that GTP supplementation showed marked suppression of atherogenesis through improved lipid metabolism as well as through a direct impact on oxLDL and autophagy flux in the vessel wall. PMID:28777810

  3. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    ERIC Educational Resources Information Center

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  4. Glucosamine enhances body weight gain and reduces insulin response in mice fed chow diet but mitigates obesity, insulin resistance and impaired glucose tolerance in mice high-fat diet.

    PubMed

    Hwang, Ji-Sun; Park, Ji-Won; Nam, Moon-Suk; Cho, Hyeongjin; Han, Inn-Oc

    2015-03-01

    This study investigated the potential of glucosamine (GlcN) to affect body weight gain and insulin sensitivity in mice normal and at risk for developing diabetes. Male C57BL/6J mice were fed either chow diet (CD) or a high fat diet (HFD) and the half of mice from CD and HFD provided with a solution of 10% (w/v) GlcN. Total cholesterol and nonesterified free fatty acid levels were determined. Glucose tolerance test and insulin tolerance test were performed. HepG2 human hepatoma cells or differentiated 3T3-L1 adipocytes were stimulated with insulin under normal (5 mM) or high glucose (25 mM) conditions. Effect of GlcN on 2-deoxyglucose (2-DG) uptake was determined. JNK and Akt phosphorylation and nucleocytoplasmic protein O-GlcNAcylation were assayed by Western blotting. GlcN administration stimulated body weight gain (6.58±0.82 g vs. 11.1±0.42 g), increased white adipose tissue fat mass (percentage of bodyweight, 3.7±0.32 g vs. 5.61±0.34 g), and impaired the insulin response in livers of mice fed CD. However, GlcN treatment in mice fed HFD led to reduction of body weight gain (18.02±0.66 g vs. 16.22±0.96 g) and liver weight (2.27±0.1 vs. 1.85±0.12 g). Furthermore, obesity-induced insulin resistance and impaired Akt insulin signaling in the liver were alleviated by GlcN administration. GlcN inhibited the insulin response under low (5 mM) glucose conditions, whereas it restored the insulin response for Akt phosphorylation under high (25 mM) glucose conditions in HepG2 and 3T3-L1 cells. Uptake of 2-DG increased upon GlcN treatment under 5 mM glucose compared to control, whereas insulin-stimulated 2-DG uptake decreased under 5 mM and increased under 25 mM glucose in differentiated 3T3-L1 cells. Our results show that GlcN increased body weight gain and reduced the insulin response for glucose maintenance when fed to normal CD mice, whereas it alleviated body weight gain and insulin resistance in HFD mice. Therefore, the current data support the integrative

  5. Zinc metabolism in genetically obese (ob/ob) mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, M.L.; Failla, M.L.

    1987-05-01

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from those in lean controls. In the present studies the absorption, retention and tissue distribution of zinc and constitutive levels of zinc-metallothionein (Zn-MT) in selected tissues were compared in obese (ob/ob) and lean (+/.) C57BL/6J mice. When 5-, 10- and 22-wk-old mice were administered 1.2 mumol /sup 65/Zn by stomach tube the apparent absorption of /sup 65/Zn by obese mice was 1.5, 2.2 and 3.9 times higher, respectively, than that in age-matched lean mice. Retention of orallymore » administered /sup 65/Zn after 96 h was also substantially higher in obese mice than in lean mice. To assess the possible influences of hyperphagia and intestinal hypertrophy on the enhanced apparent absorption of /sup 65/Zn by obese mice food intake by an additional group of obese mice was restricted to that of age-matched lean controls. When actual absorption of zinc was determined according to the method of Heth and Hoekstra, groups of ad libitum--fed obese, pair-fed obese and lean mice absorbed 38, 32 and 18% of administered /sup 65/Zn, respectively. In contrast, the rate of /sup 65/Zn excretion 2-6 d after oral or subcutaneous administration of the metal was similar for obese and lean mice. Unrestricted and pair-fed obese mice had significantly lower percentages of carcass /sup 65/Zn present in skin, muscle plus bone, spleen and testes and higher percentages present in liver, small intestine and adipose tissue than lean mice.« less

  6. Decreased production of interleukin-6 and prostaglandin E2 associated with inhibition of delta-5 desaturation of omega6 fatty acids in mice fed safflower oil diets supplemented with sesamol.

    PubMed

    Chavali, S R; Forse, R A

    1999-12-01

    The differences in the immune responses in mice fed sesame oil diets and those fed sesamin may be attributed to the presence of other lignans in the non-fat portion of the oil. The fatty acid composition (mean +/- SD mol. %) of liver membrane phospholipids and the levels of endotoxin-induced prostaglandin (PG) E2, interleukin (IL)-6, IL-10, IL-12 and tumor necrosis factor (TNF)-alpha were determined in mice fed diets supplemented with 5% safflower oil (SO) in the absence or presence of 1% sesamol. The levels of dihomo-gamma-linolenic acid (20:3omega6) were markedly higher (P<0.025) in the livers from mice fed sesamol supplemented SO diets (1.6 +/- 0.1) compared to the controls (1.4 +/- 0.1). These data suggest that sesamol or its metabolite could inhibit the in vivo delta-5 desaturation of omega6 fatty acids. Further, in animals fed sesamol supplemented SO diets, the levels of PGE2 (228 +/- 41 pg/ml) were markedly lower (P<0.01) compared to those fed SO diet alone (1355 +/- 188 pg/ml). Concomitantly, the concentrations of IL-6 were also lower (P<0.01) in mice fed sesamol diet (63 +/- 11 ng/ml) compared to the controls (143 +/- 22 ng/ml). A marked reduction in the levels of PGE2 in animals fed sesamol diets suggests that sesamol or its metabolite could inhibit the activity of cyclooxygenase enzyme.

  7. Effects of aging and dietary antler supplementation on the calcium-regulating hormones and bone status in ovariectomized SAMP8 mice.

    PubMed

    Chen, Chun-Chi; Liu, Mei-Hui; Wang, Ming-Fu; Chen, Cheng-Chin

    2007-12-31

    This study was conducted to investigate the effects of aging and long-term dietary antler supplementation on the calcium-regulating hormones and bone status in ovariectomized (Ovx) SAMP8 mice. The female SAMP8 mice were divided into four groups (in each group n = 6), Ovx or sham operated at the age of 2 months, and fed with 0.2% antler containing diet or control diet from the age of 2.5 months. The samples were collected at the age of 3, 6, 9, 12, and 15 months, respectively, for physicochemical analyses, biochemical analyses, and the determination of hormones by radioimmunoassay. The results showed that plasma calcium (Ca) concentrations were maintained in a narrow range in all groups throughout the whole experimental period. With aging and/or ovariectomy, plasma parathyroid hormone (PTH) and 1,25-dihydroxycholecalciferol (1,25-(OH)2-D3) levels increased, and plasma phosphorus (P) and calcitonin (CT) levels decreased, and the femoral bone densities and Ca contents increased during the earlier stage, and then decreased gradually in all groups. Plasma PTH and 1,25-(OH)2-D3 levels in the Ovx mice were significantly higher than those in the intact mice, and plasma P concentrations, plasma CT levels, femoral bone densities, and femoral Ca contents in the Ovx mice were significantly lower than those in the intact mice. In addition, the decreases of plasma P levels, plasma CT levels, femoral bone densities, and femoral Ca contents, and the increases of plasma PTH levels were moderated by antler administration in both Ovx and intact mice. However, there was no effect of the dietary antler supplementation on the plasma 1,25-(OH)2-D3 levels in the female mice. It is concluded that prolonged dietary antler supplementation has important positive effects on bone loss with age and/ or ovarian function deficiency.

  8. IL-8 signaling is up regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present

    PubMed Central

    Liu, Hui; French, Barbara A.; Nelson, Tyler J.; Li, Jun; Tillman, Brittany; French, Samuel W.

    2015-01-01

    Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up regulation in AH livers and a 26-fold up regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Over expression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. PMID:26260904

  9. IL-8 signaling is up-regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present.

    PubMed

    Liu, Hui; French, Barbara A; Nelson, Tyler J; Li, Jun; Tillman, Brittany; French, Samuel W

    2015-10-01

    Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up-regulation in AH livers and a 26-fold up-regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up-regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Overexpression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Gene expression profile of high-fat diet-fed C57BL/6J mice: in search of potential role of azelaic acid.

    PubMed

    Muthulakshmi, Shanmugam; Chakrabarti, Alok K; Mukherjee, Sanjay

    2015-03-01

    High-fat diet (HFD) elevates circulatory fatty acids and influences glucose and fat metabolism. Azelaic acid (AzA), a naturally occurring α,ω-dicarboxylic acid in wheat, rye, barley, oat seeds and sorghum, has been reported to exert antidiabetic effects in HFD-induced type 2 diabetes mellitus (T2DM) C57BL/6J mice. The present study was undertaken to identify the genes that are differentially modulated by treatment with AzA in HFD-fed mice. Mice were fed HFD for 10 weeks and subjected to intragastric administration of 80 mg/kg body weight (BW) of AzA daily along with HFD from 11 to 15 weeks. Lipid profile, adipokines and cytokines were examined in the plasma/liver of mice. Whole genome profiling was performed in the liver of mice using microarray and validated by qRT-PCR, Western blot and immunohistochemical analyses. HFD intake resulted in significantly elevated lipids (except high-density lipoproteins), resistin, tumour necrosis factor alpha and interleukin-6 with marked reduction in adiponectin. Administration of AzA to HFD-fed mice significantly restored the lipids, adipokines and cytokines to near normal. Transcript profiling revealed that HFD intake activated the genes involved in stress response, cell cycle regulation and apoptosis. Treatment with AzA caused increased expression of genes involved in reactive oxygen species (ROS) scavenging, receptor-mediated signalling, transcription, protein modification and insulin signal transduction. AzA activates insulin signal molecules leading to insulin sensitivity. The ability of AzA to modulate the expression of these genes supports the notion that AzA is a promising drug candidate for the treatment of insulin resistance associated with T2DM.

  11. Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice.

    PubMed

    Liu, Hui; French, Barbara A; Li, Jun; Tillman, Brittany; French, Samuel W

    2015-12-01

    MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Mechanisms for the anti-obesity actions of bofutsushosan in high-fat diet-fed obese mice.

    PubMed

    Kobayashi, Shinjiro; Kawasaki, Yuki; Takahashi, Tatsuo; Maeno, Hironori; Nomura, Masaaki

    2017-01-01

    The Kampo medicine bofutsushosan (BTS; Pulvis ledebouriellae compositae ; Fang Feng Tong Sheng San ) has been used as an anti-obesity treatment in overweight patients. In this study, we assessed the underlying physiological changes induced by BTS in obese mice maintained on a high-fat diet. Male ICR mice were fed a 60% kcal fat diet for 5 weeks starting at 4 weeks of age and then fed the same diet with administration of water (control) or aqueous BTS extract (1.0-2.0 g/kg) for 25 days. Body weight, wet weight of isolated white adipose tissue, and obesity-related serum parameters (glucose, lipids, leptin, adiponectin) were measured after treatment. The mRNA expression levels of leptin, adiponectin, and UCP1 in the adipose tissues were determined by quantitative real-time polymerase chain reaction after the first 5 days of treatment. Bofutsushosan (1.5-2.0 g/kg) significantly decreased total body weight and total wet weight of white adipose tissue isolated from subcutaneous (retroperitoneal) and visceral regions (epididymal, mesenteric, and perirenal). At 2.0 g/kg, BTS also decreased total fat mass, visceral fat mass, and ratio of fat mass to body weight as measured by computed tomography, and significantly decreased epididymal adipocyte size after 14 and 25 days' treatment. Twenty-five days' treatment lowered serum glucose, insulin, leptin, and triglycerides, and reduced homeostasis model assessment-insulin resistance. Alternatively, 2.0 g/kg BTS significantly increased mRNA levels of adiponectin, leptin, and UCP1 in interscapular brown adipose tissue but not epididymal white adipose tissue after 5 days' administration. In the early administration period, BTS increased mRNA expression levels of leptin, adiponectin, and UCP1 in brown adipose tissues. With longer administration, BTS improved insulin resistance, and subsequently reduced serum levels of leptin and triglyceride in parallel with decreased visceral white adipose tissue volume and adipocyte size.

  13. Aliskiren Attenuates Steatohepatitis and Increases Turnover of Hepatic Fat in Mice Fed with a Methionine and Choline Deficient Diet

    PubMed Central

    Lee, Kuei-Chuan; Chan, Che-Chang; Yang, Ying-Ying; Hsieh, Yun-Cheng; Huang, Yi-Hsiang; Lin, Han-Chieh

    2013-01-01

    Background & Aims Activation of the renin-angiotensin-system is known to play a role in nonalcoholic steatohepatitis. Renin knockout mice manifest decreased hepatic steatosis. Aliskiren is the first direct renin inhibitor to be approved for clinical use. Our study aims to evaluate the possible therapeutic effects and mechanism of the chronic administration of aliskiren in a dietary steatohepatitis murine model. Methods Male C57BL/6 mice were fed with a methionine and choline-deficient (MCD) diet to induce steatohepatitis. After 8 weeks of feeding, the injured mice were randomly assigned to receive aliskiren (50 mg·kg-1 per day) or vehicle administration for 4 weeks. Normal controls were also administered aliskiren (50 mg·kg-1 per day) or a vehicle for 4 weeks. Results In the MCD mice, aliskiren attenuated hepatic steatosis, inflammation and fibrosis. Aliskiren did not change expression of lipogenic genes but increase turnover of hepatic fat by up-regulating peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1a, cytochrome P450-4A14 and phosphorylated AMP-activated protein kinase. Furthermore, aliskiren decreased the hepatic expression of angiotensin II and nuclear factor κB. The levels of oxidative stress, hepatocyte apoptosis, activation of Kupffer cells and hepatic stellate cells, and pro-fibrotic markers were also reduced in the livers of the MCD mice receiving aliskiren. Conclusions Aliskiren attenuates steatohepatitis and fibrosis in mice fed with a MCD diet. Thus, the noted therapeutic effects might come from not only the reduction of angiotensin II but also the up-regulation of fatty acid oxidation-related genes. PMID:24204981

  14. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.

    PubMed

    Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J

    2016-08-01

    In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  15. Curcumin may impair iron status when fed to mice for six months

    PubMed Central

    Chin, Dawn; Huebbe, Patricia; Frank, Jan; Rimbach, Gerald; Pallauf, Kathrin

    2014-01-01

    Curcumin has been shown to have many potentially health beneficial properties in vitro and in animal models with clinical studies on the toxicity of curcumin reporting no major side effects. However, curcumin may chelate dietary trace elements and could thus potentially exert adverse effects. Here, we investigated the effects of a 6 month dietary supplementation with 0.2% curcumin on iron, zinc, and copper status in C57BL/6J mice. Compared to non-supplemented control mice, we observed a significant reduction in iron, but not zinc and copper stores, in the liver and the spleen, as well as strongly suppressed liver hepcidin and ferritin expression in the curcumin-supplemented mice. The expression of the iron-importing transport proteins divalent metal transporter 1 and transferrin receptor 1 was induced, while hepatic and splenic inflammatory markers were not affected in the curcumin-fed mice. The mRNA expression of other putative target genes of curcumin, including the nuclear factor (erythroid-derived 2)-like 2 and haem oxygenase 1 did not differ between the groups. Most of the published animal trials with curcumin-feeding have not reported adverse effects on iron status or the spleen. However, it is possible that long-term curcumin supplementation and a Western-type diet may aggravate iron deficiency. Therefore, our findings show that further studies are needed to evaluate the effect of curcumin supplementation on iron status. PMID:24634837

  16. DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice

    PubMed Central

    Croteau, Deborah L.; de Souza-Pinto, Nadja C.; Harboe, Charlotte; Keijzers, Guido; Zhang, Yongqing; Becker, Kevin; Sheng, Shan

    2010-01-01

    AGING is associated with elevated oxidative stress and DNA damage. To achieve healthy aging, we must begin to understand how diet affects cellular processes. We postulated that fruit-enriched diets might initiate a program of enhanced DNA repair and thereby improve genome integrity. C57Bl/6 J mice were fed for 14 weeks a control diet or a diet with 8% peach or nectarine extract. The activities of DNA repair enzymes, the level of DNA damage, and gene expression changes were measured. Our study showed that repair of various oxidative DNA lesions was more efficient in liver extracts derived from mice fed fruit-enriched diets. In support of these findings, gas chromatography–mass spectrometry analysis revealed that there was a decrease in the levels of formamidopyrimidines in peach-fed mice compared with the controls. Additionally, microarray analysis revealed that NTH1 was upregulated in peach-fed mice. Taken together, these results suggest that an increased intake of fruits might modulate the efficiency of DNA repair, resulting in altered levels of DNA damage. PMID:20847039

  17. Tea Dietary Fiber Improves Serum and Hepatic Lipid Profiles in Mice Fed a High Cholesterol Diet.

    PubMed

    Guo, Wenxin; Shu, Yang; Yang, Xiaoping

    2016-06-01

    Tea dietary fiber (TDF) was prepared from tea residues and modified to get cellulose-modified TDF (CTDF) by cellulase or micronized TDF (MTDF) by ultrafine grinding. The in vitro lipid-binding capacities of the three fibers and their effects on serum and hepatic lipid profiles in mice fed a high cholesterol diet were evaluated. The results showed that the three fibers had excellent lipid-binding capacities, and the cholesterol- and sodium cholate-binding capacities of CTDF and MTDF were significantly higher than those of TDF. Animal studies showed that, compared to model control, the three fibers significantly decreased mice average daily gain, gain: feed, and liver index, reduced total cholesterol (TC), triglyceride, and low density lipoprotein-cholesterol of serum and liver, increased serum and hepatic high density lipoprotein-cholesterol to TC ratio, and promoted the excretion of fecal lipids, and they also significantly increased the activities of superoxide dismutase and glutathione peroxidase of serum and liver, and decreased lipid peroxidation; moreover, the effects of CTDF and MTDF were better than that of TDF. It was concluded that the three fibers could improve serum and hepatic lipid profiles in mice fed a high cholesterol diet and the mechanism of action might be due to the promotion of fecal excretion of lipids through their lipid-binding ability and the inhibition of lipid peroxidation. These findings suggest that tea dietary fiber has the potential to be used as a functional ingredient to control cardiovascular disease.

  18. Plasticity of lifelong calorie-restricted C57BL/6J mice in adapting to a medium-fat diet intervention at old age.

    PubMed

    Rusli, Fenni; Boekschoten, Mark V; Borelli, Vincenzo; Sun, Chen; Lute, Carolien; Menke, Aswin L; van den Heuvel, Joost; Salvioli, Stefano; Franceschi, Claudio; Müller, Michael; Steegenga, Wilma T

    2018-04-01

    Calorie restriction (CR) is a dietary regimen that supports healthy aging. In this study, we investigated the systemic and liver-specific responses caused by a diet switch to a medium-fat (MF) diet in 24-month-old lifelong, CR-exposed mice. This study aimed to increase the knowledge base on dietary alterations of gerontological relevance. Nine-week-old C57BL/6J mice were exposed either to a control, CR, or MF diet. At the age of 24 months, a subset of mice of the CR group was transferred to ad libitumMF feeding (CR-MF). The mice were sacrificed at the age of 28 months, and then, biochemical and molecular analyses were performed. Our results showed that, despite the long-term exposure to the CR regimen, mice in the CR-MF group displayed hyperphagia, rapid weight gain, and hepatic steatosis. However, no hepatic fibrosis/injury or alteration in CR-improved survival was observed in the diet switch group. The liver transcriptomic profile of CR-MF mice largely shifted to a profile similar to the MF-fed animals but leaving ~22% of the 1,578 differentially regulated genes between the CR and MF diet groups comparable with the expression of the lifelong CR group. Therefore, although the diet switch was performed at an old age, the CR-MF-exposed mice showed plasticity in coping with the challenge of a MF diet without developing severe liver pathologies. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation.

    PubMed

    Melo, Arine M; Benatti, Rafaela O; Ignacio-Souza, Leticia M; Okino, Caroline; Torsoni, Adriana S; Milanski, Marciane; Velloso, Licio A; Torsoni, Marcio Alberto

    2014-05-01

    The goal of this study was to determine the presence early of markers of endoplasmic reticulum stress (ERS) and insulin resistance in the offspring from dams fed HFD (HFD-O) or standard chow diet (SC-O) during pregnancy and lactation. To address this question, we evaluated the hypothalamic and hepatic tissues in recently weaned mice (d28) and the hypothalamus of newborn mice (d0) from dams fed HFD or SC during pregnancy and lactation. Body weight, adipose tissue mass, and food intake were more accentuated in HFD-O mice than in SC-O mice. In addition, intolerance to glucose and insulin was higher in HFD-O mice than in SC-O mice. Compared with SC-O mice, levels of hypothalamic IL1-β mRNA, NFκB protein, and p-JNK were increased in HFD-O mice. Furthermore, compared with SC-O mice, hypothalamic AKT phosphorylation after insulin challenge was reduced, while markers of ERS (p-PERK, p-eIF2α, XBP1s, GRP78, and GRP94) and p-AMPK were increased in the hypothalamic tissue of HFD-O at d28 but not at d0. These damages to hypothalamic signaling were accompanied by increased triglyceride deposits, activation of NFκB, p-JNK, p-PERK and p-eIF2α. These point out lactation period as maternal trigger for metabolic changes in the offspring. These changes may occur early and quietly contribute to obesity and associated pathologies in adulthood. Although in rodents the establishment of ARC neuronal projections occurs during the lactation period, in humans it occurs during the third trimester. Gestational diabetes and obesity in this period may contribute to impairment of energy homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Reduced mitochondrial mass and function add to age-related susceptibility toward diet-induced fatty liver in C57BL/6J mice.

    PubMed

    Lohr, Kerstin; Pachl, Fiona; Moghaddas Gholami, Amin; Geillinger, Kerstin E; Daniel, Hannelore; Kuster, Bernhard; Klingenspor, Martin

    2016-10-01

    Nonalcoholic fatty liver disease (NAFLD) is a major health burden in the aging society with an urging medical need for a better understanding of the underlying mechanisms. Mitochondrial fatty acid oxidation and mitochondrial-derived reactive oxygen species (ROS) are considered critical in the development of hepatic steatosis, the hallmark of NAFLD. Our study addressed in C57BL/6J mice the effect of high fat diet feeding and age on liver mitochondria at an early stage of NAFLD development. We therefore analyzed functional characteristics of hepatic mitochondria and associated alterations in the mitochondrial proteome in response to high fat feeding in adolescent, young adult, and middle-aged mice. Susceptibility to diet-induced obesity increased with age. Young adult and middle-aged mice developed fatty liver, but not adolescent mice. Fat accumulation was negatively correlated with an age-related reduction in mitochondrial mass and aggravated by a reduced capacity of fatty acid oxidation in high fat-fed mice. Irrespective of age, high fat diet increased ROS production in hepatic mitochondria associated with a balanced nuclear factor erythroid-derived 2 like 2 (NFE2L2) dependent antioxidative response, most likely triggered by reduced tethering of NFE2L2 to mitochondrial phosphoglycerate mutase 5. Age indirectly influenced mitochondrial function by reducing mitochondrial mass, thus exacerbating diet-induced fat accumulation. Therefore, consideration of age in metabolic studies must be emphasized. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice.

    PubMed

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K; Garvey, Sean M; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.

  2. [Anti-aging action of the total lactones of ginkgo on aging mice].

    PubMed

    Dong, Liu-yi; Fan, Li; Li, Gui-fang; Guo, Yan; Pan, Jian; Chen, Zhi-wu

    2004-03-01

    To investigate the effects of total lactones of ginkgo on aging by using D-galactose induced aging mice and natural aging mice. By using D-galactose induced aging mice, to detect the LF content in heart and liver, the Hyp content in liver, the MAO, GSH-Px activities and the NO content in cerebrum. The apoptosis of cerebral cell was determined by terminal deoxy-nucleotidyl transforase-mediated dUTP-digoxigenin nick end-labeling (Tunel) in natural aging mice. TLG was shown to increase the GSH-Px activities, reduce the NO content and decrease the MAO activity in cerebrum. Meanwhile, TLG was found to reduce the LF content in liver and heart and raise the Hyp content in liver. TLG was shown to inhibit apoptosis of cerebral cell and decrease the number of apoptotic cells in the brain. TLG possesses effect on antiaging via attenuating lipid peroxidation and NO and apoptosis of cerebral cells.

  3. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    PubMed

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet. © 2014 The authors.

  4. Proteins Differentially Expressed in the Pancreas of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice Fed Ethanol For 3 Months.

    PubMed

    Bhopale, Kamlesh K; Amer, Samir M; Kaphalia, Lata; Soman, Kizhake V; Wiktorowicz, John E; Shakeel Ansari, Ghulam A; Kaphalia, Bhupendra S

    2017-07-01

    The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis. Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry. Nineteen differentially expressed proteins were identified by applying criteria established for protein identification in proteomics. An increased abundance was found for ribosome-binding protein 1, 60S ribosomal protein L31-like isoform 1, histone 4, calcium, and adenosine triphosphate (ATP) binding proteins and the proteins involved in antiapoptotic processes and endoplasmic reticulum function, stress, and/or homeostasis. Low abundance was found for endoA cytokeratin, 40S ribosomal protein SA, amylase 2b isoform precursor, serum albumin, and ATP synthase subunit β and the proteins involved in cell motility, structure, and conformation. Chronic ethanol feeding in alcohol dehydrogenase-deficient deer mice differentially expresses pancreatic functional and structural proteins, which can be used to develop biomarker(s) of alcoholic chronic pancreatitis, particularly amylase 2b precursor, and 60 kDa heat shock protein and those involved in ATP synthesis and blood osmotic pressure.

  5. Loganin attenuates diabetic nephropathy in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products.

    PubMed

    Liu, Kai; Xu, Huiqin; Lv, Gaohong; Liu, Bin; Lee, Maxwell Kim Kit; Lu, Chunhong; Lv, Xing; Wu, Yunhao

    2015-02-15

    Diabetic nephropathy is the most common cause of end-stage renal disease in patients with diabetes. Advanced glycation end-products (AGEs) play a prominent role in the development of diabetic nephropathy. We herein evaluated the effects of loganin on diabetic nephropathy in vivo. We established a diabetic nephropathy model in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of AGEs. Diabetic symptoms, renal functions, and pathohistology of pancreas and kidney were evaluated. AGE-RAGE pathway and oxidative stress parameters were determined. The model mice exhibited characteristic symptoms of diabetes including weight loss, polydipsia, polyphagia, polyuria, elevated blood glucose levels and low serum insulin levels during the experiments. However, loganin at doses of 0.02 and 0.1g/kg effectively improved these diabetic symptoms. Loganin reduced kidney/body weight ratio, 24h urine protein levels, and serum levels of urea nitrogen and creatinine in diabetic mice to different degrees compared to positive controls. Moreover, loganin improved the histology of pancreas and kidney, and alleviated the structural alterations in endothelial cells, mesangial cells and podocytes in renal cortex. Finally, we found that loganin reduced AGE levels in serum and kidney and downregulated mRNA and protein expression of receptors for AGEs in kidney in diabetic mice. Loganin also reduced the levels of malondialdehyde and increased the levels of superoxide dismutase in serum and kidney. Loganin improved diabetic nephropathy in vivo associated with inhibition of AGE pathways, and could be a promising remedy for diabetic nephropathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Peptide YY induces characteristic meal patterns of aged mice.

    PubMed

    Mogami, Sachiko; Yamada, Chihiro; Fujitsuka, Naoki; Hattori, Tomohisa

    2017-11-01

    Changes in eating behavior occur in the elderly due to oral and swallowing dysfunctions. We aimed to clarify the difference between basal meal patterns of young and aged mice in relation to appetite regulating hormones. Thirty two of young (7-week-old) and aged (23-25-month-old) C57BL/6 male mice were acclimated to a single housing and then transferred to a highly sensitive automated feeding monitoring device. Feeding behavior was monitored from the onset of the dark phase after habituation to the device. Plasma peptide YY (PYY) levels were assessed under the several feeding status or after treatment of PYY. PYY and its receptor (NPY Y2 receptor, Y2R) antagonist were intraperitoneally administered 30min before the monitoring. Although the basal 24-h meal amounts did not differ by age, the total meal time and frequency of minimum feeding activity (bout) were significantly increased and the average bout size and time per bout were significantly decreased in aged mice. PYY dynamics were abnormal and the temporal reduction in food intake by exogenous PYY was more prominent in aged mice than in young mice. PYY administration to young mice induced aged-like meal patterns, and Y2R antagonist administration to aged mice induced young-like meal patterns. Aged mice exhibited characteristic meal patterns probably due to PYY metabolism dysfunction and/or enhanced PYY-Y2R signaling, suggesting a novel method for assessing eating difficulties in aged animals and a potential target for the remedy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Choline Supplementation Prevents a Hallmark Disturbance of Kwashiorkor in Weanling Mice Fed a Maize Vegetable Diet: Hepatic Steatosis of Undernutrition.

    PubMed

    May, Thaddaeus; Klatt, Kevin C; Smith, Jacob; Castro, Eumenia; Manary, Mark; Caudill, Marie A; Jahoor, Farook; Fiorotto, Marta L

    2018-05-22

    Hepatic steatosis is a hallmark feature of kwashiorkor malnutrition. However, the pathogenesis of hepatic steatosis in kwashiorkor is uncertain. Our objective was to develop a mouse model of childhood undernutrition in order to test the hypothesis that feeding a maize vegetable diet (MVD), like that consumed by children at risk for kwashiorkor, will cause hepatic steatosis which is prevented by supplementation with choline. A MVD was developed with locally sourced organic ingredients, and fed to weanling mice ( n = 9) for 6 or 13 days. An additional group of mice ( n = 4) were fed a choline supplemented MVD. Weight, body composition, and liver changes were compared to control mice ( n = 10) at the beginning and end of the study. The MVD resulted in reduced weight gain and hepatic steatosis. Choline supplementation prevented hepatic steatosis and was associated with increased hepatic concentrations of the methyl donor betaine. Our findings show that (1) feeding a MVD to weanling mice rapidly induces hepatic steatosis, which is a hallmark disturbance of kwashiorkor; and that (2) hepatic steatosis associated with feeding a MVD is prevented by choline supplementation. These findings support the concept that insufficient choline intake may contribute to the pathogenesis of hepatic steatosis in kwashiorkor.

  8. Choline Supplementation Prevents a Hallmark Disturbance of Kwashiorkor in Weanling Mice Fed a Maize Vegetable Diet: Hepatic Steatosis of Undernutrition

    PubMed Central

    May, Thaddaeus; Klatt, Kevin C.; Smith, Jacob; Castro, Eumenia; Manary, Mark; Caudill, Marie A.; Jahoor, Farook

    2018-01-01

    Hepatic steatosis is a hallmark feature of kwashiorkor malnutrition. However, the pathogenesis of hepatic steatosis in kwashiorkor is uncertain. Our objective was to develop a mouse model of childhood undernutrition in order to test the hypothesis that feeding a maize vegetable diet (MVD), like that consumed by children at risk for kwashiorkor, will cause hepatic steatosis which is prevented by supplementation with choline. A MVD was developed with locally sourced organic ingredients, and fed to weanling mice (n = 9) for 6 or 13 days. An additional group of mice (n = 4) were fed a choline supplemented MVD. Weight, body composition, and liver changes were compared to control mice (n = 10) at the beginning and end of the study. The MVD resulted in reduced weight gain and hepatic steatosis. Choline supplementation prevented hepatic steatosis and was associated with increased hepatic concentrations of the methyl donor betaine. Our findings show that (1) feeding a MVD to weanling mice rapidly induces hepatic steatosis, which is a hallmark disturbance of kwashiorkor; and that (2) hepatic steatosis associated with feeding a MVD is prevented by choline supplementation. These findings support the concept that insufficient choline intake may contribute to the pathogenesis of hepatic steatosis in kwashiorkor. PMID:29786674

  9. Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice.

    PubMed

    Yuan, Xidi; Klein, Dennis; Kerscher, Susanne; West, Brian L; Weis, Joachim; Katona, Istvan; Martini, Rudolf

    2018-05-09

    Aging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations. Specifically, nerve fibers showed demyelination, remyelination and axonal lesion. Moreover, in the aging mice, neuromuscular junctions showed features typical for dying-back neuropathies, as revealed by a decline of presynaptic markers, associated with α-bungarotoxin-positive postsynapses. In line with these observations were reduced muscle strengths. These alterations were accompanied by elevated numbers of endoneurial macrophages, partially comprising the features of phagocytosing macrophages. Comparable profiles of macrophages could be identified in peripheral nerve biopsies of aging persons. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by applying an orally administered CSF-1R specific kinase (c-FMS) inhibitor. The 6-month-lasting treatment started before development of degenerative changes at 18 months and reduced macrophage numbers in mice by ∼70%, without side effects. Strikingly, nerve structure was ameliorated and muscle strength preserved. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may pave the way for treating degeneration in the aging peripheral nervous system by targeting macrophages, leading to reduced weakness, improved mobility, and eventually increased quality of life in the elderly. SIGNIFICANCE STATEMENT Aging is a major risk factor for the structure and function of the nervous system. Here we show that peripheral nerves of 24-month-old aging mice show similar degenerative alterations as nerves from aging

  10. Identification of a sustainable two-plant diet that effectively prevents age-related metabolic syndrome and extends lifespan in aged mice.

    PubMed

    Li, Xiang-Yong; Liu, Ying-Hua; Wang, Bin; Chen, Chih-Yu; Zhang, Hong-Man; Kang, Jing X

    2018-01-01

    The current system of food production is linked to both the increasing prevalence of chronic disease and the deterioration of the environment, and thereby calls for novel ways of producing nutritious foods in a sustainable manner. In the "longevity village" of Bama, China, we have identified two plant foods, hemp seed and bitter vegetable (Sonchus oleraceus), that are commonly consumed by its residents and grow abundantly in unfarmed land without fertilizers or pesticides. Here, we show that a diet composed of these two foods (the "HB diet") provides a sufficient variety of nutrients and confers significant health benefits. Aged mice allowed ad libitum access to the HB diet not only had longer life spans and improved cognitive function but were also protected against age-related metabolic syndrome, fatty liver, gut dysbiosis and chronic inflammation compared to aged mice fed a control Western diet. Furthermore, longevity-related genes (including 5'adenosine monophosphate-activated protein kinase, sirtuin 1, nuclear respiratory factor 1 and forkhead box O3) were significantly up-regulated, while aging-related genes (including mammalian target of rapamycin and nuclear factor kappa B) were down-regulated. These results demonstrate that the HB diet is capable of promoting health and longevity, and present a sustainable source of healthy foods that can help control the prevalence of chronic diseases and reduce agricultural impact on the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity.

    PubMed

    Gorman, Shelley; Buckley, Alysia G; Ling, Kak-Ming; Berry, Luke J; Fear, Vanessa S; Stick, Stephen M; Larcombe, Alexander N; Kicic, Anthony; Hart, Prue H

    2017-08-01

    In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D 3 -supplemented (2280 IU/kg, VitD + ) or nonsupplemented (0 IU/kg, VitD - ) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD - diet were switched to a VitD + diet from 8 weeks of age (VitD -/+ ). At 12 weeks of age, signs of low-level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD - mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D 3 There was no difference in the level of expression of the tight junction proteins occludin or claudin-1 in lung epithelial cells of VitD + mice compared to VitD - mice; however, claudin-1 levels were reduced when initially vitamin D-deficient mice were fed the vitamin D 3 -containing diet (VitD -/+ ). Reduced total IgM levels were detected in BALF and serum of VitD -/+ mice compared to VitD + mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD -/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D 3 -containing diet, which may be explained by increased activation of B cells in airway-draining lymph nodes. These findings suggest that supplementation of initially vitamin D-deficient mice with vitamin D 3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice

    PubMed Central

    Schriever, Sonja C.; Müller, Timo D.; Tschöp, Matthias H.

    2017-01-01

    Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK), for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD) fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD) or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT), compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic glucose tolerance

  13. Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet.

    PubMed

    Duncan, M J; Smith, J T; Narbaiza, J; Mueez, F; Bustle, L B; Qureshi, S; Fieseler, C; Legan, S J

    2016-12-01

    Time-restricted feeding ameliorates the deleterious effects of a high-fat diet on body weight and metabolism in young adult mice. Because obesity is highly prevalent in the middle-aged population, this study tested the hypothesis that time-restricted feeding alleviates the adverse effects of a high-fat diet in male middle-aged (12months) mice. C57BL6/J mice were fed one of three diets for 21-25weeks: 1) high-fat diet (60% total calories from fat) ad-libitum (HFD-AL), 2) HFD, time-restricted feeding (HFD-TRF), and 3) low-fat diet (10% total calories from fat) ad-libitum (LFD-AL) (n=15 each). HFD-TRF mice only had food access for 8h/day during their active period. HFD-TRF mice gained significantly less weight than HFD-AL mice (~20% vs 55% of initial weight, respectively). Caloric intake differed between these groups only during the first 8weeks and accounted for most but not all of their body weight difference during this time. TRF of a HFD lowered glucose tolerance in terms of incremental area under the curve (iAUC) (p<0.02) to that of LFD-AL mice. TRF of a HFD lowered liver weight (p<0.0001), but not retroperitoneal or epididymal fat pad weight, to that of LFD-AL mice. Neither HFD-AL nor HFD-TRF had any effect on performance in the novel object recognition or object location memory tests. Circulating corticosterone levels either before or after restraint stress were not affected by diet. In conclusion, TRF without caloric restriction is an effective strategy in middle-aged mice for alleviating the negative effects of a HFD on body weight, liver weight, and glucose tolerance. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Chronic Alcohol Consumption Causes Liver Injury in High-Fructose-Fed Male Mice Through Enhanced Hepatic Inflammatory Response

    PubMed Central

    Song, Ming; Chen, Theresa; Prough, Russell A.; Cave, Matthew C.; McClain, Craig J.

    2017-01-01

    Background Obesity and the metabolic syndrome occur in approximately one-third of patients with alcoholic liver disease (ALD). The increased consumption of fructose parallels the increased prevalence of obesity and the metabolic syndrome in the United States and worldwide. In this study, we investigated whether dietary high fructose potentiates chronic alcohol-induced liver injury, and explored potential mechanism(s). Methods Six-week-old male C57BL/6J mice were assigned to 4 groups: control, high fructose, chronic ethanol (EtOH), and high fructose plus chronic alcohol. The mice were fed either control diet or high-fructose diet (60%, w/w) for 18 weeks. Chronic alcohol-fed mice were given 20% (v/v) ethanol (Meadows-Cook model) ad libitum as the only available liquid from the 9th week through the 18th week. Liver injury, steatosis, hepatic inflammatory gene expression, and copper status were assessed. Results High-fructose diet and chronic alcohol consumption alone each induce hepatic fat accumulation and impair copper status. However, the combination of dietary high fructose plus chronic alcohol synergistically induced liver injury as evidenced by robustly increased plasma alanine aminotransferase and aspartate aminotransferase, but the combination did not exacerbate hepatic fat accumulation nor worsen copper status. Moreover, FE-fed mice were characterized by prominent microvesicular steatosis. High-fructose diet and chronic alcohol ingestion together led to a significant up-regulation of Kupffer cell (KC) M1 phenotype gene expression (e.g., tumor necrosis factor-a and monocyte chemoattractant protein-1), as well as Toll-like receptor 4 (TLR4) signaling gene expression, which is also associated with the up-regulation of KCs and activation marker gene expression, including Emr1, CD68, and CD163. Conclusions Our data suggest that dietary high fructose may potentiate chronic alcohol consumption-induced liver injury. The underlying mechanism might be due to the

  15. Regular Exercise Reduces Endothelial Cortical Stiffness in Western Diet-Fed Female Mice.

    PubMed

    Padilla, Jaume; Ramirez-Perez, Francisco I; Habibi, Javad; Bostick, Brian; Aroor, Annayya R; Hayden, Melvin R; Jia, Guanghong; Garro, Mona; DeMarco, Vincent G; Manrique, Camila; Booth, Frank W; Martinez-Lemus, Luis A; Sowers, James R

    2016-11-01

    We recently showed that Western diet-induced obesity and insulin resistance promotes endothelial cortical stiffness in young female mice. Herein, we tested the hypothesis that regular aerobic exercise would attenuate the development of endothelial and whole artery stiffness in female Western diet-fed mice. Four-week-old C57BL/6 mice were randomized into sedentary (ie, caged confined, n=6) or regular exercise (ie, access to running wheels, n=7) conditions for 16 weeks. Exercise training improved glucose tolerance in the absence of changes in body weight and body composition. Compared with sedentary mice, exercise-trained mice exhibited reduced endothelial cortical stiffness in aortic explants (sedentary 11.9±1.7 kPa versus exercise 5.5±1.0 kPa; P<0.05), as assessed by atomic force microscopy. This effect of exercise was not accompanied by changes in aortic pulse wave velocity (P>0.05), an in vivo measure of aortic stiffness. In comparison, exercise reduced femoral artery stiffness in isolated pressurized arteries and led to an increase in femoral internal artery diameter and wall cross-sectional area (P<0.05), indicative of outward hypertrophic remodeling. These effects of exercise were associated with an increase in femoral artery elastin content and increased number of fenestrae in the internal elastic lamina (P<0.05). Collectively, these data demonstrate for the first time that the aortic endothelium is highly plastic and, thus, amenable to reductions in stiffness with regular aerobic exercise in the absence of changes in in vivo whole aortic stiffness. Comparatively, the same level of exercise caused destiffening effects in peripheral muscular arteries, such as the femoral artery, that perfuse the working limbs. © 2016 American Heart Association, Inc.

  16. Plantago lanceolata L. leaves prevent obesity in C57BL/6 J mice fed a high-fat diet.

    PubMed

    Yoshida, Taiji; Rikimaru, Kazuhiro; Sakai, Miho; Nishibe, Sansei; Fujikawa, Takahiko; Tamura, Yoshifumi

    2013-01-01

    The highly abundant and widely dispersed plant Plantago lanceolata L. (narrow leaf or English plantain) has been used for culinary and medicinal purposes since ancient times. Here, we investigated the anti-obesity effects of P. lanceolata leaf powder (shortly PL) when fed to male C57BL/6 J mice. Addition of PL to a high-fat diet did not affect food intake but significantly reduced food efficiency, suppressed body weight gain and visceral fat accumulation, and reduced serum free-fatty acid and glucose levels. PL-fed mice exhibited marked increases in HSL, Adrd3 and Cpt2 mRNA levels, and significant decreases in Fas transcripts in epididymal white adipose tissue (WAT). These findings suggest that dietary PL exerts anti-obesity effects by stimulating metabolism throughout visceral fat tissue by activating lipolysis, accelerating fatty acid β-oxidation and suppressing fatty acid synthase in WAT. To our knowledge, this is the first demonstration of anti-obesity substances derived from a Plantago species.

  17. Impact of dietary dairy polar lipids on lipid metabolism of mice fed a high-fat diet.

    PubMed

    Reis, Mariza G; Roy, Nicole C; Bermingham, Emma N; Ryan, Leigh; Bibiloni, Rodrigo; Young, Wayne; Krause, Lutz; Berger, Bernard; North, Mike; Stelwagen, Kerst; Reis, Marlon M

    2013-03-20

    The effect of milk polar lipids on lipid metabolism of liver, adipose tissue, and brain and on composition of intestinal microbiota was investigated. C57BL/6J mice were fed a high-fat diet (HFD) for 5 weeks, followed by 5 weeks with HFD without (control) or supplemented with total polar lipids (TPL), phospholipids (PL), or sphingolipids (SPL). Animals fed SPL showed a tendency for lower triglyceride synthesis (P = 0.058) in the liver, but not in adipose tissue. PL and TPL reduced de novo hepatic fatty acid biosynthesis. The ratio of palmitoleic to palmitic acid in the liver was lower for animals fed SPL or TPL compared to control. There was little effect of the supplementation on the cecal microbiota composition. In the brain, DHA (C22:6) content correlated negatively with tetracosanoic acid (C24:0) after TPL supplementation (-0.71, P = 0.02) but not in control (0.26, P = 0.44). Arachidonic acid (C20:4) was negatively correlated with C24:0 in both groups (TPL, -0.77, P = 0.008; control, -0.81, P = 0.003).

  18. Depletion of suppressor T cells by 2'-deoxyguanosine abrogates tolerance in mice fed ovalbumin and permits the induction of intestinal delayed-type hypersensitivity.

    PubMed Central

    Mowat, A M

    1986-01-01

    We have re-examined the role of suppressor T cells (Ts) in regulating immune responses to fed proteins by investigating the effect of 2'-deoxyguanosine (dGuo) on systemic and intestinal immunity in mice fed ovalbumin (OVA). Administration of dGuo for 10 days abrogated the suppression of systemic delayed-type hypersensitivity (DTH) and antibody responses normally found after feeding OVA, and also prevented the generation of OVA-specific Ts. In parallel, mice given dGuo and fed OVA developed sensitization to OVA in the gut-associated lymphoid tissues (GALT) after oral challenge with OVA and had increased intraepithelial lymphocyte (IEL) counts and crypt cell production rates (CCPR) in the jejunal mucosa, indicating the presence of a local DTH response. These findings confirm the importance of Ts in preventing hypersensitivity to dietary protein antigens and suggest that enteropathies associated with food hypersensitivity are due to a defect in Ts activity. PMID:2940171

  19. Splenic Immune Response Is Down-Regulated in C57BL/6J Mice Fed Eicosapentaenoic Acid and Docosahexaenoic Acid Enriched High Fat Diet.

    PubMed

    Soni, Nikul K; Ross, Alastair B; Scheers, Nathalie; Savolainen, Otto I; Nookaew, Intawat; Gabrielsson, Britt G; Sandberg, Ann-Sofie

    2017-01-10

    Dietary n -3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with reduction of inflammation, although the mechanisms are poorly understood, especially how the spleen, as a secondary lymphoid organ, is involved. To investigate the effects of EPA and DHA on spleen gene expression, male C57BL/6J mice were fed high fat diets (HFD) differing in fatty acid composition, either based on corn oil (HFD-CO), or CO enriched with 2 g/100 g EPA and DHA (HFD-ED), for eight weeks. Spleen tissue was analyzed using transcriptomics and for fatty acids profiling. Biological processes (BPs) related to the immune response, including T-cell receptor signaling pathway, T-cell differentiation and co-stimulation, myeloid dendritic cell differentiation, antigen presentation and processing, and the toll like receptor pathway were downregulated by HFD-ED compared with control and HFD-CO. These findings were supported by the down-regulation of NF-κB in HFD-ED compared with HFD-CO fed mice. Lower phospholipid arachidonic acid levels in HFD-ED compared with HFD-CO, and control mice suggest attenuation of pathways via prostaglandins and leukotrienes. The HFD-ED also upregulated BPs related to erythropoiesis and hematopoiesis compared with control and HFD-CO fed mice. Our findings suggest that EPA and DHA down-regulate the splenic immune response induced by HFD-CO, supporting earlier work that the spleen is a target organ for the anti-inflammatory effects of these n -3 fatty acids.

  20. Splenic Immune Response Is Down-Regulated in C57BL/6J Mice Fed Eicosapentaenoic Acid and Docosahexaenoic Acid Enriched High Fat Diet

    PubMed Central

    Soni, Nikul K.; Ross, Alastair B.; Scheers, Nathalie; Savolainen, Otto I.; Nookaew, Intawat; Gabrielsson, Britt G.; Sandberg, Ann-Sofie

    2017-01-01

    Dietary n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with reduction of inflammation, although the mechanisms are poorly understood, especially how the spleen, as a secondary lymphoid organ, is involved. To investigate the effects of EPA and DHA on spleen gene expression, male C57BL/6J mice were fed high fat diets (HFD) differing in fatty acid composition, either based on corn oil (HFD-CO), or CO enriched with 2 g/100 g EPA and DHA (HFD-ED), for eight weeks. Spleen tissue was analyzed using transcriptomics and for fatty acids profiling. Biological processes (BPs) related to the immune response, including T-cell receptor signaling pathway, T-cell differentiation and co-stimulation, myeloid dendritic cell differentiation, antigen presentation and processing, and the toll like receptor pathway were downregulated by HFD-ED compared with control and HFD-CO. These findings were supported by the down-regulation of NF-κB in HFD-ED compared with HFD-CO fed mice. Lower phospholipid arachidonic acid levels in HFD-ED compared with HFD-CO, and control mice suggest attenuation of pathways via prostaglandins and leukotrienes. The HFD-ED also upregulated BPs related to erythropoiesis and hematopoiesis compared with control and HFD-CO fed mice. Our findings suggest that EPA and DHA down-regulate the splenic immune response induced by HFD-CO, supporting earlier work that the spleen is a target organ for the anti-inflammatory effects of these n-3 fatty acids. PMID:28075380

  1. Effects of Enzymatically Synthesized Glycogen and Exercise on Abdominal Fat Accumulation in High-Fat Diet-Fed Mice.

    PubMed

    Tamura, Shohei; Honda, Kazuhisa; Morinaga, Ryoji; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-01-01

    The combination of diet and exercise is the first choice for the treatment of obesity and metabolic syndrome. We previously reported that enzymatically synthesized glycogen (ESG) suppresses abdominal fat accumulation in obese rats. However, the effect of the combination of ESG and exercise on abdominal fat accumulation has not yet been investigated. Our goal in this study was therefore to evaluate the effects of dietary ESG and its combination with exercise on abdominal fat accumulation in high-fat diet (HFD)-fed mice. Male ICR mice were assigned to four groups: HFD, HFD containing 20% ESG, HFD with exercise, HFD containing 20% ESG with exercise. Treadmill exercise was performed for 3 wk (25 m/min, 30 min/d, 3 d/wk) after 5-d adaption to running at that speed. Both ESG and exercise significantly reduced the weights of abdominal adipose tissues. In addition, the combination of ESG and exercise significantly suppressed abdominal fat accumulation, suggesting that ESG and exercise showed an additive effect. Exercise significantly increased the mRNA levels of lipid metabolism-related genes such as lipoprotein lipase, peroxisome proliferator-activated receptor delta; factor-delta (PPARδ), carnitin palmitoyltransferase b, adipose triglyceride lipase (ATGL), and uncoupling protein-3 in the gastrocnemius muscle. On the other hand, dietary ESG significantly decreased the mRNA levels of PPARδ and ATGL in the gastrocnemius muscle. These results suggest that the combined treatment of ESG and exercise effectively suppresses abdominal fat accumulation in HFD-fed mice by different mechanisms.

  2. Daumone fed late in life improves survival and reduces hepatic inflammation and fibrosis in mice.

    PubMed

    Park, Jong Hee; Chung, Hae Young; Kim, Minkyu; Lee, Jung Hwa; Jung, Mankil; Ha, Hunjoo

    2014-08-01

    The liver is one of the most susceptible organs to aging, and hepatic inflammation and fibrosis increase with age. Chronic inflammation has been proposed as the major molecular mechanism underlying aging and age-related diseases, whereas calorie restriction has been shown to be the most effective in extending mammalian lifespan and to have anti-aging effects through its anti-inflammatory action. Thus, it is necessary to develop effective calorie restriction mimetics. Daumone [(2)-(6R)-(3,5-dihydroxy-6-methyltetrahydropyran-2-yloxy)heptanoic acid], a pheromone secreted by Caenorhabditis elegans, forces them to enter the dauer stage when facing inadequate conditions. Because Caenorhabditis elegans live longer during the dauer stage under energy deprivation, it was hypothesized that daumone may improve survival in mammals by mimicking calorie restriction. Daumone (2 mg kg(-1) day(-1) ) was administered orally for 5 months to 24-month-old male C57BL/6J mice. Daumone was found to reduce the risk of death by 48% compared with age-matched control mice, and the increased plasma insulin normally presented in old mice was significantly reduced by daumone. The increased hepatic hypertrophy, senescence-associated β-galactosidase activity, insulin resistance, lipid accumulation, inflammation, oxidative stress, and fibrosis in old mice were significantly attenuated by daumone. From a mechanistic view, daumone reduced the phosphorylation of the IκBα and upregulation of Rela and Nfkbia mRNA in the livers of old mice. The anti-inflammatory effect of daumone was confirmed in lipopolysaccharide-induced liver injury model. Oral administration of daumone improves survival in mice and delivers anti-aging effects to the aged liver by modulating chronic inflammation, indicating that daumone could be developed as an anti-aging compound. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Dietary Tocotrienol/γ-Cyclodextrin Complex Increases Mitochondrial Membrane Potential and ATP Concentrations in the Brains of Aged Mice

    PubMed Central

    Schloesser, Anke; Esatbeyoglu, Tuba; Piegholdt, Stefanie; Dose, Janina; Ikuta, Naoko; Okamoto, Hinako; Ishida, Yoshiyuki; Terao, Keiji; Matsugo, Seiichi; Rimbach, Gerald

    2015-01-01

    Brain aging is accompanied by a decrease in mitochondrial function. In vitro studies suggest that tocotrienols, including γ- and δ-tocotrienol (T3), may exhibit neuroprotective properties. However, little is known about the effect of dietary T3 on mitochondrial function in vivo. In this study, we monitored the effect of a dietary T3/γ-cyclodextrin complex (T3CD) on mitochondrial membrane potential and ATP levels in the brain of 21-month-old mice. Mice were fed either a control diet or a diet enriched with T3CD providing 100 mg T3 per kg diet for 6 months. Dietary T3CD significantly increased mitochondrial membrane potential and ATP levels compared to those of controls. The increase in MMP and ATP due to dietary T3CD was accompanied by an increase in the protein levels of the mitochondrial transcription factor A (TFAM). Furthermore, dietary T3CD slightly increased the mRNA levels of superoxide dismutase, γ-glutamyl cysteinyl synthetase, and heme oxygenase 1 in the brain. Overall, the present data suggest that T3CD increases TFAM, mitochondrial membrane potential, and ATP synthesis in the brains of aged mice. PMID:26301044

  4. Systemic activation of NF-κB driven luciferase activity in transgenic mice fed advanced glycation end products modified albumin.

    PubMed

    Nass, Norbert; Bayreuther, Kristina; Simm, Andreas

    2017-04-01

    Advanced glycation end products (AGEs) are stable end products of the Maillard reaction and accumulate with progressing ageing and degenerative diseases. Significant amounts of AGE-modified peptides are also consumed with processed food. AGEs bind to specific receptors, especially the receptor of AGEs (RAGE). Activation of RAGE then evokes intracellular signalling, finally resulting in the activation of the NF-κB transcription factor and therefore a proinflammatory state. We here analysed, whether NF-κB is activated in short term upon feeding an AGE-modified protein in-vivo. Transgenic mice expressing firefly luciferase under the control of an NF-κB responsive promoter were intraperitoneally injected or fed with AGE-modified- or control albumin and luciferase expression was analysed by in-vivo imaging and by in-vitro by determination of luciferase enzyme activity in heart, lung, gut, spleen, liver and kidney. In all organs, an activation of the luciferase reporter gene was observed in response to AGE-BSA feeding, however with different intensity and timing. The gut exhibited highest luciferase activity and this activity peaked 6-8 h post AGE-feeding. In heart and kidney, luciferase activity increased for up to 12 h post feeding. All other organs tested, exhibited highest activity at 10 h after AGE-consumption. Altogether, these data demonstrate that feeding AGE-modified protein resulted in a transient and systemic activation of the NF-κB reporter.

  5. Cholera toxin-induced ADP-ribosylation of a 46 kDa protein is decreased in brains of ethanol-fed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nhamburo, P.T.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    The acute in vitro effects of ethanol on cerebral cortical adenylate cyclase activity and beta-adrenergic receptor characteristics suggested a site of action of ethanol at Gs, the stimulatory guanine nucleotide binding protein. After chronic ethanol ingestion, the beta-adrenergic receptor appeared to be uncoupled (i.e., the form of the receptor with high affinity for agonist was undetectable), and stimulation of adenylate cyclase activity by isoproterenol or guanine nucleotides was reduced, suggesting an alteration in the properties of Gs. To further characterize this change, cholera and pertussis toxin-mediated /sup 32/P-ADP-ribosylation of mouse cortical membranes was assessed in mice that had chronically ingestedmore » ethanol in a liquid diet. /sup 32/P-labeled proteins were separated by SDS-PAGE and quantitated by autoradiography. There was a selective 30-50% decrease in cholera toxin-induced labeling of 46 kDa protein band in membranes of ethanol-fed mice, with no apparent change in pertussis toxin-induced labeling. The 46 kDa protein has a molecular weight similar to that of the alpha subunit of Gs, suggesting a reduced amount of this protein or a change in its characteristics as a substrate for cholera toxin-induced ADP-ribosylation in cortical membranes of ethanol-fed mice.« less

  6. Endoplasmic reticulum stress does not contribute to steatohepatitis in obese and insulin-resistant high-fat-diet-fed foz/foz mice.

    PubMed

    Legry, Vanessa; Van Rooyen, Derrick M; Lambert, Barbara; Sempoux, Christine; Poekes, Laurence; Español-Suñer, Regina; Molendi-Coste, Olivier; Horsmans, Yves; Farrell, Geoffrey C; Leclercq, Isabelle A

    2014-10-01

    Non-alcoholic fatty liver (steatosis) and steatohepatitis [non-alcoholic steatohepatitis (NASH)] are hepatic complications of the metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin-resistant animals (such as ob/ob mice) with simple steatosis, but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and histological features that mimic human NASH. We explored ER stress markers in the liver of foz/foz mice in response to a high-fat diet (HFD) at several time points. We then evaluated the effect of treatment with an ER stress inducer tunicamycin, or conversely with the ER protectant tauroursodeoxycholic acid (TUDCA), on the metabolic and hepatic features. foz/foz mice are obese, glucose intolerant and develop NASH characterized by steatosis, inflammation, ballooned hepatocytes and apoptosis from 6 weeks of HFD feeding. This was not associated with activation of the upstream unfolded protein response [phospho-eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α) activity and spliced X-box-binding protein 1 (Xbp1)]. Activation of c-Jun N-terminal kinase (JNK) and up-regulation of activating transcription factor-4 (Atf4) and CCAAT/enhancer-binding protein-homologous protein (Chop) transcripts were however compatible with a 'pathological' response to ER stress. We tested this by using intervention experiments. Induction of chronic ER stress failed to worsen obesity, glucose intolerance and NASH pathology in HFD-fed foz/foz mice. In addition, the ER protectant TUDCA, although reducing steatosis, failed to improve glucose intolerance, hepatic inflammation and apoptosis in HFD-fed foz/foz mice. These results show that signals driving hepatic inflammation, apoptosis and insulin resistance are independent of ER stress in obese diabetic mice with steatohepatitis.

  7. Identification of eQTLs for Hepatic Xbp1s and Socs3 Gene Expression in Mice Fed a High-Fat, High-Caloric Diet

    PubMed Central

    Pasricha, Sarina; Kenney-Hunt, Jane; Anderson, Kristy; Jafari, Nadereh; Hall, Rabea A.; Lammert, Frank; Cheverud, James; Green, Richard M.

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent form of human hepatic disease and feeding mice a high-fat, high-caloric (HFHC) diet is a standard model of NAFLD. To better understand the genetic basis of NAFLD, we conducted an expression quantitative trait locus (eQTL) analysis of mice fed a HFHC diet. Two-hundred sixty-five (A/J × C57BL/6J) F2 male mice were fed a HFHC diet for 8 wk. eQTL analysis was utilized to identify genomic regions that regulate hepatic gene expression of Xbp1s and Socs3. We identified two overlapping loci for Xbp1s and Socs3 on Chr 1 (164.0–185.4 Mb and 174.4–190.5 Mb, respectively) and Chr 11 (41.1–73.1 Mb and 44.0–68.6 Mb, respectively), and an additional locus for Socs3 on Chr 12 (109.9–117.4 Mb). C57BL/6J-Chr 11A/J/ NaJ mice fed a HFHC diet manifested the A/J phenotype of increased Xbp1s and Socs3 gene expression (P < 0.05), whereas C57BL/6J-Chr 1A/J/ NaJ mice retained the C57BL/6J phenotype. In addition, we replicated the eQTLs on Chr 1 and Chr 12 (LOD scores ≥3.5) using mice from the BXD murine reference panel challenged with CCl4 to induce chronic liver injury and fibrosis. We have identified overlapping eQTLs for Xbp1 and Socs3 on Chr 1 and Chr 11, and consomic mice confirmed that replacing the C57BL/6J Chr 11 with the A/J Chr 11 resulted in an A/J phenotype for Xbp1 and Socs3 gene expression. Identification of the genes for these eQTLs will lead to a better understanding of the genetic factors responsible for NAFLD and potentially other hepatic diseases. PMID:25617409

  8. Relationship of aging and nutritional status to innate immunity in tube-fed bedridden patients.

    PubMed

    Takeuchi, Yoshiaki; Tashiro, Tomoe; Yamamura, Takuya; Takahashi, Seiichiro; Katayose, Kozo; Kohga, Shin; Takase, Mitsunori; Imawari, Michio

    2017-01-01

    Aging and malnutrition are known to influence immune functions. The aim of this study was to investigate the relationship of aging and malnutrition to innate immune functions in tube-fed bedridden patients. A cross-sectional survey was performed in 71 tube-fed bedridden patients aged 50-95 years (mean age±SD, 80.2±8.5 years) with serum albumin concentrations between 2.5 and 3.5 g/dL. We evaluated associations of age and nutritional variables with natural-killer cell activity, neutrophilphagocytic activity, and neutrophil-sterilizing activity. Nutritional variables included body mass index, weightadjusted energy intake, total lymphocyte count, and serum concentrations of albumin, transferrin, prealbumin, total cholesterol, C-reactive protein, and zinc. Natural-killer cell activity, neutrophil-phagocytic activity, and neutrophil-sterilizing activity were normal or increased in 67 (94%), 63 (89%), and 69 (97%) patients, respectively. Multiple linear regression analysis with a backward elimination method showed that natural-killer cell activity correlated negatively with aging and lymphocyte counts (p<0.01 for both) but positively with body mass index and transferrin (p<0.01 for both). Neutrophil-phagocytic and neutrophil-sterilizing activities were not associated with any variables. In tube-fed bedridden patients with hypo-albuminemia, natural-killer cell activity may be associated with aging, body mass index, transferrin, and lymphocyte counts.

  9. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet.

    PubMed

    Ibusuki, Rie; Uto, Hirofumi; Arima, Shiho; Mawatari, Seiichi; Setoguchi, Yoshiko; Iwashita, Yuji; Hashimoto, Shinichi; Maeda, Takuro; Tanoue, Shiro; Kanmura, Shuji; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito

    2013-11-01

    Neutrophils infiltrate the livers of patients with nonalcoholic steatohepatitis (NASH). Human neutrophil peptides (HNPs) induce cytokine and chemokine production under inflammatory conditions, which may contribute to the progression of NASH. In this study, we focused on the effects of HNP-1 on hepatic steatosis and fibrosis in a mouse model of NASH induced by a choline-deficient, L-amino acid-defined (CDAA) diet. We generated transgenic mice expressing HNP-1 under the control of a β-actin-based promoter. HNP-1 transgenic and wild-type C57BL/6N mice were fed a CDAA diet for 16 weeks to induce hepatic steatosis and fibrosis. Serological and histological features were examined, and the effects of HNP-1 on hepatic stellate cell lines were assessed. HNP-1 transgenic and wild-type mice fed the CDAA diet showed no significant differences in serum alanine aminotransferase levels or the degree of hepatic steatosis based on Oil red O staining and hepatic triglyceride content. In contrast, Sirius Red and Azan staining showed significantly more severe hepatic fibrosis in HNP-1 transgenic mice compared with wild-type mice. In addition, significantly more α-smooth muscle actin-positive hepatic stellate cells were observed in the transgenic mice than in the wild-type mice. Finally, the proliferation of the LI90 hepatic stellate cell line increased in response to HNP-1. Our data indicate that HNP-1 enhances hepatic fibrosis in fatty liver by inducing hepatic stellate cell proliferation. Thus, neutrophil-derived HNP-1 may contribute to the progression of NASH. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Lipid peroxidation in mice fed a choline-deficient diet as evaluated by total hydroxyoctadecadienoic acid.

    PubMed

    Yoshida, Yasukazu; Itoh, Nanako; Hayakawa, Mieko; Habuchi, Yoko; Inoue, Ruriko; Chen, Zhi-Hua; Cao, Jiaofei; Cynshi, Osamu; Niki, Etsuo

    2006-03-01

    The relevance of oxidative stress in mice fed a choline-deficient diet (CDD) was investigated in relation to the oxidative stress marker, hydroxyoctadecadienoic acid (HODE) in comparison with F2-isoprostanes. Further, the protective effects of antioxidants against oxidative damage were assessed by using HODE. We recently proposed total HODE as a biomarker for oxidative stress in vivo. Biological samples such as plasma, urine, and tissues were first reduced and then saponified to convert various oxidation products of linoleates to HODE. In the present study, this method was applied to measure oxidative damage in mice induced by CDD for 1 mo. CDD, when compared with choline-controlled diet (CCD), increased liver weight and fatty acid accumulation but the increase in body weight was less significant. Remarkable increases in HODE and 8-iso-prostaglandin F(2alpha) in liver and plasma were observed when mice were fed with the CDD for 1 mo compared with the CCD. The HODE level was about two to three orders higher than the F2-isoprostane level. This increase was decreased to the level of the CCD when alpha-tocopherol or 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran, a potent synthetic antioxidant, was mixed with the CDD. The stereoisomer ratio of HODE (9-and-13 (Z,E)-HODE/9-and-13 (E,E)-HODE) was decreased by CDD compared with CCD, which was spared by the addition of alpha-tocopherol and 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran. However, the increase in plasma glutamic-pyruvic transaminase and fatty acids in liver induced by the CDD was not recovered by any antioxidant. This study clearly demonstrated that oxidative stress was involved in fatty liver formation induced by the CDD and that HODE was a good biomarker for an oxidative stress in vivo.

  11. Sphingosine rescues aged mice from pulmonary pseudomonas infection.

    PubMed

    Rice, Teresa C; Pugh, Amanda M; Seitz, Aaron P; Gulbins, Erich; Nomellini, Vanessa; Caldwell, Charles C

    2017-11-01

    Bacterial lung infection is a leading cause of death for those 65 y or older, often requiring intensive care unit admission and mechanical ventilation, which consumes considerable health care resources. Although administration of antibiotics is the standard of care for bacterial pneumonia, its overuse has led to the emergence of multidrug resistant organisms. Therefore, alternative strategies to help minimize the effects of bacterial pneumonia in the elderly are necessary. As studies have shown that sphingosine (SPH) has inherent bacterial killing properties, our goal was to assess whether it could act as a prophylactic treatment to protect aged mice from pulmonary infection by Pseudomonas aeruginosa. Aged (51 wk) and young (8 wk) C57Bl/6 mice were used in this study. Pulmonary SPH levels were determined by histology. SPH content of microparticles was quantified using a SPH kinase assay. Pneumonia was induced by intranasally treating mice with 10 6  Colony Forming Unit (CFU) P aeruginosa. Microparticles were isolated from young mice, whereas some were further incubated with SPH. We observed that SPH levels are reduced in the bronchial epithelial cells as well as the bronchoalveolar lavage microparticles isolated from aged mice, which correlates with a susceptibility to infection. We demonstrate that SPH or microparticle treatment can protect aged mice from pulmonary P aeruginosa infection. Finally, we observed that enriching microparticles with SPH before treatment eliminated the bacterial load in P aeruginosa-infected aged mice. These data suggest that prophylactic treatment with SPH could reduce lung bacterial infections for the at-risk elderly population. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Brazilian Green Propolis Promotes Weight Loss and Reduces Fat Accumulation in C57BL/6 Mice Fed A High-Fat Diet.

    PubMed

    Sakai, Tohru; Ohhata, Miyuki; Fujii, Misaki; Oda, Sayaka; Kusaka, Yasuna; Matsumoto, Miki; Nakamoto, Akiko; Taki, Tomoyo; Nakamoto, Mariko; Shuto, Emi

    2017-01-01

    Propolis is a bee product with various biological properties. C57BL/6 mice were fed a high-fat diet and treated with propolis for 14 weeks. Body weight in mice treated with 2% propolis was less than that in control mice from 3 weeks after the start of treatment until 14 weeks except for the 7th week. Mice treated with propolis showed significantly lower epididymal fat weight and subcutaneous fat weight. Infiltration of epididymal fat by macrophages and T cells was reduced in the propolis group. Supplementation of propolis increased feces weight and fat content in feces, suggesting that mechanisms of weight reduction by propolis partly include a laxative effect and inhibition of fat absorption.

  13. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice

    PubMed Central

    van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-01-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  14. Aging and alcohol interact to alter hepatic DNA hydroxymethylation

    PubMed Central

    Tammen, Stephanie A.; Dolnikowski, Gregory G.; Ausman, Lynne M.; Liu, Zhenhua; Sauer, Julia; SimonettaFriso; Choi, Sang-Woon

    2014-01-01

    Background Aging and chronic alcohol consumption are both modifiers of DNA methylation but it is not yet known whether chronic alcohol consumption also alters DNA hydroxymethylation, a newly discovered epigenetic mark produced by oxidation of methylcytosine. Furthermore, it has not been tested whether aging and alcohol interact to modify this epigenetic phenomenon, thereby having an independent effect on gene expression. Methods Old (18 months) and young (4 months) male C57BL/6 mice were pair-fed either a Lieber-DeCarli liquid diet with alcohol (18% of energy) or an isocaloricLieber-DeCarli control diet for 5 weeks. Global DNA hydroxymethylation and DNA methylation were analyzed from hepatic DNA using a new LC/MS-MS method. Hepatic mRNA expression of the Tet enzymes and Cyp2e1 were measured via qRTPCR. Results In young mice, mild chronic alcohol exposure significantly reduced global DNA hydroxymethylation compared with control mice (0.22%±0.01% vs 0.29±0.06%, p = 0.004). Alcohol did not significantly alter hydroxymethylcytosine levels in old mice. Old mice fed the control diet showed decreased global DNA hydroxymethylation compared with young mice fed the control diet (0.24±0.02% vs 0.29±0.06%, p = 0.04). This model suggests an interaction between aging and alcohol in determining DNA hydroxymethylation (pinteraction = 0.009). Expression of Tet2 and Tet3 enzymes was decreased in the old mice relative to the young (p < 0.005). Conclusions The observation that alcohol alters DNA hydroxymethylation indicates a new epigenetic effect of alcohol. This is the first study demonstrating the interactive effects of chronic alcohol consumption and aging on DNA hydroxymethylation. PMID:25070523

  15. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    USDA-ARS?s Scientific Manuscript database

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  16. Effects of chocolate supplementation on metabolic and cardiovascular parameters in ApoE3L mice fed a high-cholesterol atherogenic diet.

    PubMed

    Yakala, Gopala K; Wielinga, Peter Y; Suarez, Manuel; Bunschoten, Annelies; van Golde, Jolanda M; Arola, Lluis; Keijer, Jaap; Kleemann, Robert; Kooistra, Teake; Heeringa, Peter

    2013-11-01

    Dietary intake of cocoa and/or chocolate has been suggested to exhibit protective cardiovascular effects although this is still controversial. The aim of this study was to investigate the effects of chocolate supplementation on metabolic and cardiovascular parameters. Four groups of ApoE*3Leiden mice were exposed to the following diet regimens. Group 1: cholesterol-free control diet (CO). Group 2: high-dose (1.0% w/w) control cholesterol (CC). Group 3: CC supplemented chocolate A (CCA) and Group 4: CC supplemented chocolate B (CCB). Both chocolates differed in polyphenol and fiber content, CCA had a relatively high-polyphenol and low-fiber content compared to CCB. Mice fed a high-cholesterol diet showed increased plasma-cholesterol and developed atherosclerosis. Both chocolate treatments, particularly CCA, further increased plasma-cholesterol and increased atherosclerotic plaque formation. Moreover, compared to mice fed a high-cholesterol diet, both chocolate-treated groups displayed increased liver injury. Mice on high-cholesterol diet had elevated plasma levels of sVCAM-1, sE-selectin and SAA, which was further increased in the CCB group. Similar effects were observed for renal inflammation markers. The two chocolate preparations showed unfavorable, but different effects on cardiometabolic health in E3L mice, which dissimilarities may be related to differences in chocolate composition. We conclude that discrepancies reported on the effects of chocolate on cardiometabolic health may at least partly be due to differences in chocolate composition. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Breast-feeding regulates immune system development via transforming growth factor-β in mice pups.

    PubMed

    Sakaguchi, Keita; Koyanagi, Akemi; Kamachi, Fumitaka; Harauma, Akiko; Chiba, Asako; Hisata, Ken; Moriguchi, Toru; Shimizu, Toshiaki; Miyake, Sachiko

    2018-03-01

    Breast milk contains important nutrients and immunoregulatory factors that are essential for newborn infants. Recently, epidemiological studies suggested that breast-feeding prevents a wide range of infectious diseases and lowers the incidence of infant allergic diseases. To examine the effects of breast milk on immunological development in infancy, we established an artificial rearing system for hand-feeding mice and compared mouse pups fed with either breast milk or milk substitute. All mice were killed at 14 days of age and immune cells in the thymus, spleen, and small intestine were examined on flow cytometry. The number of thymocytes was higher whereas that of total immune cells of peripheral lymphoid tissues was lower in mice fed breast milk compared with milk substitute-fed mice. In peripheral lymphoid tissues, the proportion of B cells was higher and that of CD8 + T cells, macrophages, dendritic cells, and granulocytes was significantly lower in breast milk-fed mice. The same alteration in immune cells of the thymus and peripheral lymphoid tissues in milk substitute-fed mice was also observed in pups reared by mother mice treated with anti-transforming growth factor-β (anti-TGF-β) monoclonal antibody. Breast milk regulates the differentiation and expansion of innate and adaptive immune cells partly due to TGF-β. Hence, TGF-β in breast milk may be a new therapeutic target for innate immune system-mediated diseases of infancy. © 2017 Japan Pediatric Society.

  18. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice

    PubMed Central

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K.; Garvey, Sean M.; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice. PMID

  19. Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice.

    PubMed

    Kim, Juyoung; Kim, Juhae; Kwon, Young Hye

    2016-08-01

    Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including LXRα, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.

  20. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet

    PubMed Central

    Orellana, Juan A.; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  1. Impact of N-acetylcysteine and sesame oil on lipid metabolism and hypothalamic-pituitary-adrenal axis homeostasis in middle-aged hypercholesterolemic mice

    PubMed Central

    Korou, Laskarina-Maria; Agrogiannis, George; Koros, Christos; Kitraki, Efthimia; Vlachos, Ioannis S.; Tzanetakou, Irene; Karatzas, Theodore; Pergialiotis, Vasilios; Dimitroulis, Dimitrios; Perrea, Despina N.

    2014-01-01

    Hyperlipidemia and stress are important factors affecting cardiovascular health in middle-aged individuals. We investigated the effects of N-acetylcysteine (NAC) and sesame oil on the lipidemic status, liver architecture and the hypothalamic-pituitary-adrenal (HPA) axis of middle-aged mice fed a cholesterol-enriched diet. We randomized 36 middle-aged C57bl/6 mice into 6 groups: a control group, a cholesterol/cholic acid diet group, a cholesterol/cholic acid diet group with NAC supplementation, a cholesterol/cholic acid diet enriched with 10% sesame oil and two groups receiving a control diet enriched with NAC or sesame oil. NAC administration prevented the onset of the disturbed lipid profile, exhibiting decreased lipid peroxidation and alkaline phosphatase (ALP) levels, restored nitric oxide bioavailability and reduced hepatic damage, compared to non-supplemented groups. High-cholesterol feeding resulted in increased hypothalamic glucocorticoid receptors (GR) levels, while NAC supplementation prevented this effect. NAC supplementation presented significant antioxidant capacity by means of preventing serum lipid status alterations, hepatic damage, and HPA axis disturbance due to high-cholesterol feeding in middle-aged mice. These findings suggest a beneficial preventive action of plant-derived antioxidants, such as NAC, on lipid metabolism and on the HPA axis. PMID:25348324

  2. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    PubMed

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  3. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice.

    PubMed

    Lund, J; Hafstad, A D; Boardman, N T; Rossvoll, L; Rolim, N P; Ahmed, M S; Florholmen, G; Attramadal, H; Wisløff, U; Larsen, T S; Aasum, E

    2015-04-15

    Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress. Copyright © 2015 the American Physiological Society.

  4. Mice Fed a High-Cholesterol Diet Supplemented with Quercetin-3-Glucoside Show Attenuated Hyperlipidemia and Hyperinsulinemia Associated with Differential Regulation of PCSK9 and LDLR in their Liver and Pancreas.

    PubMed

    Mbikay, Majambu; Mayne, Janice; Sirois, Francine; Fedoryak, Olesya; Raymond, Angela; Noad, Jennifer; Chrétien, Michel

    2018-05-01

    Hepatic LDL receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) regulate the clearance of plasma LDL-cholesterol (LDL-C): LDLR promotes it, and PCSK9 opposes it. These proteins also express in pancreatic β cells. Using cultured hepatocytes, we previously showed that the plant flavonoid quercetin-3-glucoside (Q3G) inhibits PCSK9 secretion, stimulated LDLR expression, and enhanced LDL-C uptake. Here, we examine whether Q3G supplementation could reverse the hyperlipidemia and hyperinsulinemia of mice fed a high-cholesterol diet, and how it affects hepatic and pancreatic LDLR and PCSK9 expression. For 12 weeks, mice are fed a low- (0%) or high- (1%) cholesterol diet (LCD or HCD), supplemented or not with Q3G at 0.05 or 0.1% (w/w). Tissue LDLR and PCSK9 is analyzed by immunoblotting, plasma PCSK9 and insulin by ELISA, and plasma cholesterol and glucose by colorimetry. In LCD-fed mice, Q3G has no effect. In HCD-fed mice, it attenuates the increase in plasma cholesterol and insulin, accentuates the decrease in plasma PCSK9, and increases hepatic and pancreatic LDLR and PCSK9. In cultured pancreatic β cells, however, it stimulates PCSK9 secretion. In mice, dietary Q3G could counter HCD-induced hyperlipidemia and hyperinsulinemia, in part by oppositely modulating hepatic and pancreatic PCSK9 secretion. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice.

    PubMed

    Porter, David; Faivre, Emilie; Flatt, Peter R; Hölscher, Christian; Gault, Victor A

    2012-05-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Microbiota, metabolome, and immune alterations in obese mice fed a high-fat diet containing type 2 resistant starch.

    PubMed

    Barouei, Javad; Bendiks, Zach; Martinic, Alice; Mishchuk, Darya; Heeney, Dustin; Hsieh, Yu-Hsin; Kieffer, Dorothy; Zaragoza, Jose; Martin, Roy; Slupsky, Carolyn; Marco, Maria L

    2017-11-01

    We examined the intestinal and systemic responses to incorporating a type 2 resistant starch (RS) into a high fat diet fed to obese mice. Diet-induced obese, C57BL/6J male mice were fed an HF diet without or with 20% (by weight) high-amylose maize resistant starch (HF-RS) for 6 weeks. Serum adiponectin levels were higher with RS consumption, but there were no differences in weight gain and adiposity. With HF-RS, the expression levels of ileal TLR2 and Reg3g and cecal occludin, TLR2, TLR4, NOD1 and NOD2 were induced; whereas colonic concentrations of the inflammatory cytokine IL-17A declined. The intestinal, serum, liver, and urinary metabolomes were also altered. HF-RS resulted in lower amino acid concentrations, including lower serum branched chain amino acids, and increased quantities of urinary di/trimethylamine, 3-indoxylsulfate, and phenylacetylglycine. Corresponding to these changes were enrichments in Bacteroidetes (S24-7 family) and certain Firmicutes taxa (Lactobacillales and Erysipelotrichaceae) with the HF-RS diet. Parabacteroides and S24-7 positively associated with cecal maltose concentrations. These taxa and Erysipelotrichaceae, Allobaculum, and Bifidobacterium were directly correlated with uremic metabolites. Consumption of RS modified the intestinal microbiota, stimulated intestinal immunity and endocrine-responses, and modified systemic metabolomes in obese mice consuming an otherwise obesogenic diet. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Omija fruit ethanol extract improves adiposity and related metabolic disturbances in mice fed a high-fat diet.

    PubMed

    Park, Hyo Jin; Kim, Hye-Jin; Kim, Sang Ryong; Choi, Myung-Sook; Jung, Un Ju

    2017-03-01

    This study investigated the biological and molecular mechanisms underlying the antiobesity effect of omija fruit ethanol extract (OFE) in mice fed a high-fat diet (HFD). C57BL/6J mice were fed an HFD (20% fat, w/w) with or without OFE (500 mg/kg body weight) for 16 weeks. Dietary OFE significantly increased brown adipose tissue weight and energy expenditure while concomitantly decreasing white adipose tissue (WAT) weight and adipocyte size by up-regulating the expression of brown fat-selective genes in WAT. OFE also improved hepatic steatosis and dyslipidemia by enhancing hepatic fatty acid oxidation-related enzymes activity and fecal lipid excretion. In addition to steatosis, OFE decreased the expression of pro-inflammatory genes in the liver. Moreover, OFE improved glucose tolerance and lowered plasma glucose, insulin and homeostasis model assessment of insulin resistance, which may be linked to decreases in the activity of hepatic gluconeogenic enzymes and the circulating level of gastric inhibitory polypeptide. These findings suggest that OFE may protect against diet-induced adiposity and related metabolic disturbances by controlling brown-like transformation of WAT, fatty acid oxidation, inflammation in the liver and fecal lipid excretion. Improved insulin resistance may be also associated with its antiobesity effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet.

    PubMed

    Shin, Seulmee; Kim, Seulah; Oh, Hee-Eun; Kong, Hyunseok; Shin, Eunju; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil; Kim, Kyungjae

    2012-06-01

    Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.

  9. Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet

    PubMed Central

    Shin, Seulmee; Kim, Seulah; Oh, Hee-Eun; Kong, Hyunseok; Shin, Eunju; Do, Seon-Gil; Jo, Tae Hyung; Park, Young-In; Lee, Chong-Kil

    2012-01-01

    Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D. PMID:22916045

  10. Estrogen effects on cognition and hippocampal transcription in middle-aged mice.

    PubMed

    Aenlle, Kristina K; Kumar, Ashok; Cui, Li; Jackson, Travis C; Foster, Thomas C

    2009-06-01

    Young and middle-aged female mice were ovariectomized and given cyclic injections of either estradiol or vehicle treatments. During the fifth week after surgery the Morris water maze was used to assess cognitive function. Age and treatment effects emerged over the course of spatial training such that middle-aged vehicle treated mice exhibited deficits in acquiring a spatial search strategy compared to younger vehicle treated mice and middle-age estradiol treated mice. Following behavioral characterization, mice were maintained on their injection schedule until week seven and hippocampi were collected 24h after the last injection. Hippocampal RNA was extracted and genes responsive to age and estrogen were identified using cDNA microarrays. Estradiol treatment in middle-aged mice altered the expression of genes related to transcriptional regulation, biosynthesis, growth, neuroprotection, and elements of cell signaling pathways. Expression profiles for representative genes were confirmed in a separate set of animals using oligonucleotide arrays and RT-PCR. Our results indicate that estrogen treatment in middle-aged animals may promote hippocampal health during the aging process.

  11. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    PubMed

    Liang, Zhe; Xie, Yan; Dominguez, Jessica A; Breed, Elise R; Yoseph, Benyam P; Burd, Eileen M; Farris, Alton B; Davidson, Nicholas O; Coopersmith, Craig M

    2014-01-01

    Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. Aged (20-24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  12. Effects of Capsaicin Coadministered with Eicosapentaenoic Acid on Obesity-Related Dysregulation in High-Fat-Fed Mice.

    PubMed

    Hirotani, Yoshihiko; Fukamachi, Junta; Ueyama, Rina; Urashima, Yoko; Ikeda, Kenji

    2017-01-01

    Obesity-induced inflammation contributes to the development of metabolic disorders such as insulin resistance, type 2 diabetes, fatty liver disease, and cardiovascular disease. In this study, we investigated whether the combination of eicosapentaenoic acid (EPA) and capsaicin could protect against high-fat diet (HFD)-induced obesity and related metabolic disorders. The experiments were performed using male C57BL/6J mice that were fed one of the following diets for 10 weeks: standard chow (5.3% fat content) (normal group), a HFD (32.0% fat content) (HFD group), or a HFD supplemented with either 4% (w/w) EPA (EPA group) or a combination of 4% (w/w) EPA and 0.01% (w/w) capsaicin (EPA+Cap group). Our results indicated that the body, fat and liver tissue weights and levels of serum glucose, insulin, total cholesterol, triglyceride, high-density lipoprotein-cholesterol, aspartate aminotransferase, and alanine aminotransferase were significantly higher in HFD group mice than in normal group mice (p<0.05 in all cases). However, the body and fat tissue weights and serum glucose levels and homeostasis model assessment of insulin resistance were significantly lower in EPA+Cap group mice group than in HFD and EPA group mice (p<0.05 in all cases). Thus, our study suggests that the combination of EPA and capsaicin might be beneficial for delaying the progression of obesity-related metabolic dysregulation and subsequent complications.

  13. Anti-Aging Effect of Siraitia grosuenorii by Enhancement of Hematopoietic Stem Cell Function.

    PubMed

    Bai, Lin; Shi, Guiying; Yang, Yajun; Chen, Wei; Zhang, Lianfeng

    2016-01-01

    Anti-aging has always been a popular topic, and there are many claims about the existence of factors that can slow, stop, or even reverse the aging process. Siraitia grosuenorii, a local fruit in china, has been used for the treatment of gastritis, sore throats, and whooping cough in traditional Chinese medicine. The individuals who took the juice of Siraitia grosuenorii regularly had increased longevity in the Guangxi Province, which is located in the Southern part of China. In this paper, we fed mice with Siraitia grosuenorii for 10 months to identify the role of Siraitia grosuenorii in anti-aging and to investigate its corresponding mechanism. The results showed that mice fed with Siraitia grosuenorii displayed a slower aging process. The extension of the aging process was due to the enhanced function of HSCs. FACS analysis showed that the number of LSKs, LT-HSCs, ST-HSCs and MPPs from Siraitia grosuenorii mice was decreased. In vitro, a clonigenic assay showed that LT-HSCs from Siraitia grosuenorii mice increased the ability of self-renewal. Moreover, Siraitia grosuenorii mice maintained the quiescence of LSKs, decreased the level of ROS and reduced the amount of senescence associated β-gal positive cells. Furthermore, Siraitia grosuenorii mice decreased the expression of senescence-associated proteins. Siraitia grosuenorii maintained quiescence, decreased senescence and enhanced the function of HSCs, slowing the aging process of mice.

  14. The metabolic footprint of aging in mice.

    PubMed

    Houtkooper, Riekelt H; Argmann, Carmen; Houten, Sander M; Cantó, Carles; Jeninga, Ellen H; Andreux, Pénélope A; Thomas, Charles; Doenlen, Raphaël; Schoonjans, Kristina; Auwerx, Johan

    2011-01-01

    Aging is characterized by a general decline in cellular function, which ultimately will affect whole body homeostasis. Although DNA damage and oxidative stress all contribute to aging, metabolic dysfunction is a common hallmark of aging at least in invertebrates. Since a comprehensive overview of metabolic changes in otherwise healthy aging mammals is lacking, we here compared metabolic parameters of young and 2 year old mice. We systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging. Among the affected pathways in both liver and muscle we found glucose and fatty acid metabolism, and redox homeostasis. These alterations translated in decreased long chain acylcarnitines and increased free fatty acid levels and a marked reduction in various amino acids in the plasma of aged mice. As such, these metabolites serve as biomarkers for aging and healthspan.

  15. The metabolic footprint of aging in mice

    PubMed Central

    Houtkooper, Riekelt H.; Argmann, Carmen; Houten, Sander M.; Cantó, Carles; Jeninga, Ellen H.; Andreux, Pénélope A.; Thomas, Charles; Doenlen, Raphaël; Schoonjans, Kristina; Auwerx, Johan

    2011-01-01

    Aging is characterized by a general decline in cellular function, which ultimately will affect whole body homeostasis. Although DNA damage and oxidative stress all contribute to aging, metabolic dysfunction is a common hallmark of aging at least in invertebrates. Since a comprehensive overview of metabolic changes in otherwise healthy aging mammals is lacking, we here compared metabolic parameters of young and 2 year old mice. We systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging. Among the affected pathways in both liver and muscle we found glucose and fatty acid metabolism, and redox homeostasis. These alterations translated in decreased long chain acylcarnitines and increased free fatty acid levels and a marked reduction in various amino acids in the plasma of aged mice. As such, these metabolites serve as biomarkers for aging and healthspan. PMID:22355651

  16. Neuroinflammation and cognitive function in aged mice following minor surgery

    PubMed Central

    Rosczyk, H.A.; Sparkman, N. L.; Johnson, R.W.

    2009-01-01

    Following surgery, elderly patients often suffer from postoperative cognitive dysfunction (POCD) which can persist long after physical recovery. It is known that surgery-induced tissue damage activates the peripheral innate immune system resulting in the release of inflammatory mediators. Compared to adults, aged animals demonstrate increased neuroinflammation and microglial priming that leads to an exaggerated proinflammatory cytokine response following activation of the peripheral immune system. Therefore, we sought to determine if the immune response to surgical trauma results in increased neuroinflammation and cognitive impairment in aged mice. Adult and aged mice underwent minor abdominal surgery and 24 h later hippocampal cytokines were measured and working memory was assessed in a reversal learning version of the Morris water maze. While adult mice showed no signs of neuroinflammation following surgery, aged mice had significantly increased levels of IL-1β mRNA in the hippocampus. Minor surgery did not result in severe cognitive impairment although aged mice that underwent surgery did tend to perseverate in the old target during reversal testing suggesting reduced cognitive flexibility. Overall these results suggest that minor surgery leads to an exaggerated neuroinflammatory response in aged mice but does not result in significantly impaired performance in the Morris water maze. PMID:18602982

  17. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1.

    PubMed

    Guo, Honghui; Xia, Min; Zou, Tangbin; Ling, Wenhua; Zhong, Ruimin; Zhang, Weiguo

    2012-04-01

    Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. Here, we hypothesized that cyanidin 3-glucoside (C3G), a typical anthocyanin reported to possess potent anti-inflammatory properties, would ameliorate obesity-associated inflammation and metabolic disorders, such as insulin resistance and hepatic steatosis in mouse models of diabesity. Male C57BL/6J obese mice fed a high-fat diet for 12 weeks and genetically diabetic db/db mice at an age of 6 weeks received dietary C3G supplementation (0.2%) for 5 weeks. We found that dietary C3G lowered fasting glucose levels and markedly improved the insulin sensitivity in both high-fat diet fed and db/db mice as compared with unsupplemented controls. White adipose tissue messenger RNA levels and serum concentrations of inflammatory cytokines (tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1) were reduced by C3G, as did macrophage infiltration in adipose tissue. Concomitantly, hepatic triglyceride content and steatosis were alleviated by C3G. Moreover, C3G treatment decreased c-Jun N-terminal kinase activation and promoted phosphorylation and nuclear exclusion of forkhead box O1 after refeeding. These findings clearly indicate that C3G has significant potency in antidiabetic effects by modulating the c-Jun N-terminal kinase/forkhead box O1 signaling pathway and the related inflammatory adipocytokines. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  18. High dietary fat and sucrose results in an extensive and time-dependent deterioration in health of multiple physiological systems in mice.

    PubMed

    Burchfield, James G; Kebede, Melkam A; Meoli, Christopher C; Stöckli, Jacqueline; Whitworth, P Tess; Wright, Amanda L; Hoffman, Nolan J; Minard, Annabel Y; Ma, Xiuquan; Krycer, James R; Nelson, Marin E; Tan, Shi-Xiong; Yau, Belinda; Thomas, Kristen C; Wee, Natalie K Y; Khor, Ee-Cheng; Enriquez, Ronaldo F; Vissel, Bryce; Biden, Trevor J; Baldock, Paul A; Hoehn, Kyle L; Cantley, James; Cooney, Gregory J; James, David E; Fazakerley, Daniel J

    2018-04-13

    Obesity is associated with metabolic dysfunction, including insulin resistance and hyperinsulinemia, and with disorders such as cardiovascular disease, osteoporosis, and neurodegeneration. Typically, these pathologies are examined in discrete model systems and with limited temporal resolution, and whether these disorders co-occur is therefore unclear. To address this question, here we examined multiple physiological systems in male C57BL/6J mice following prolonged exposure to a high-fat/high-sucrose diet (HFHSD). HFHSD-fed mice rapidly exhibited metabolic alterations, including obesity, hyperleptinemia, physical inactivity, glucose intolerance, peripheral insulin resistance, fasting hyperglycemia, ectopic lipid deposition, and bone deterioration. Prolonged exposure to HFHSD resulted in morbid obesity, ectopic triglyceride deposition in liver and muscle, extensive bone loss, sarcopenia, hyperinsulinemia, and impaired short-term memory. Although many of these defects are typically associated with aging, HFHSD did not alter telomere length in white blood cells, indicating that this diet did not generally promote all aspects of aging. Strikingly, glucose homeostasis was highly dynamic. Glucose intolerance was evident in HFHSD-fed mice after 1 week and was maintained for 24 weeks. Beyond 24 weeks, however, glucose tolerance improved in HFHSD-fed mice, and by 60 weeks, it was indistinguishable from that of chow-fed mice. This improvement coincided with adaptive β-cell hyperplasia and hyperinsulinemia, without changes in insulin sensitivity in muscle or adipose tissue. Assessment of insulin secretion in isolated islets revealed that leptin, which inhibited insulin secretion in the chow-fed mice, potentiated glucose-stimulated insulin secretion in the HFHSD-fed mice after 60 weeks. Overall, the excessive calorie intake was accompanied by deteriorating function of numerous physiological systems. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet.

    PubMed

    Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G

    2018-02-01

    Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.

  20. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice

    PubMed Central

    Wang, Jingjing; Tang, Huang; Zhang, Chenhong; Zhao, Yufeng; Derrien, Muriel; Rocher, Emilie; van-Hylckama Vlieg, Johan ET; Strissel, Katherine; Zhao, Liping; Obin, Martin; Shen, Jian

    2015-01-01

    Structural disruption of gut microbiota and associated inflammation are considered important etiological factors in high fat diet (HFD)-induced metabolic syndrome (MS). Three candidate probiotic strains, Lactobacillus paracasei CNCM I-4270 (LC), L. rhamnosus I-3690 (LR) and Bifidobacterium animalis subsp. lactis I-2494 (BA), were individually administered to HFD-fed mice (108 cells day−1) for 12 weeks. Each strain attenuated weight gain and macrophage infiltration into epididymal adipose tissue and markedly improved glucose–insulin homeostasis and hepatic steatosis. Weighted UniFrac principal coordinate analysis based on 454 pyrosequencing of fecal bacterial 16S rRNA genes showed that the probiotic strains shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean mice fed a normal (chow) diet. Redundancy analysis revealed that abundances of 83 operational taxonomic units (OTUs) were altered by probiotics. Forty-nine altered OTUs were significantly correlated with one or more host MS parameters and were designated ‘functionally relevant phylotypes'. Thirteen of the 15 functionally relevant OTUs that were negatively correlated with MS phenotypes were promoted, and 26 of the 34 functionally relevant OTUs that were positively correlated with MS were reduced by at least one of the probiotics, but each strain changed a distinct set of functionally relevant OTUs. LC and LR increased cecal acetate but did not affect circulating lipopolysaccharide-binding protein; in contrast, BA did not increase acetate but significantly decreased adipose and hepatic tumor necrosis factor-α gene expression. These results suggest that Lactobacillus and Bifidobacterium differentially attenuate obesity comorbidities in part through strain-specific impacts on MS-associated phylotypes of gut microbiota in mice. PMID:24936764

  1. Microglial K+ Channel Expression in Young Adult and Aged Mice

    PubMed Central

    Schilling, Tom; Eder, Claudia

    2015-01-01

    The K+ channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K+ channels and their regulation in vivo is limited. Here, we have investigated K+ currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K+ currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K+ currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K+ current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K+ currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca2+-activated K+ channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K+ channel pattern nor K+ channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca2+-activated, K+ channels. PMID:25472417

  2. Body Weight Loss and Tissue Wasting in Late Middle-Aged Mice on Slightly Imbalanced Essential/Non-essential Amino Acids Diet.

    PubMed

    Corsetti, Giovanni; Pasini, Evasio; Romano, Claudia; Calvani, Riccardo; Picca, Anna; Marzetti, Emanuele; Flati, Vincenzo; Dioguardi, Francesco S

    2018-01-01

    Objective: Inadequate protein intake can impair protein balance thus leading to skeletal muscle atrophy, impaired body growth, and functional decline. Foods provide both non-essential (NEAAs) and essential amino acids (EAAs) that may convey different metabolic stimuli to specific organs and tissues. In this study, we sought to evaluate the impact of six diets, with various EAA/NEAA blends, on body composition and the risk of developing tissue wasting in late middle-aged male mice. Methods: Six groups of late middle-aged male mice were fed for 35 days with iso-nutrients, iso-caloric, and iso-nitrogenous special diets containing different EAA/NEAA ratios ranging from 100/0% to 0/100%. One group fed with standard laboratory rodent diet (StD) served as control. Preliminarily, we verified the palatability of the diets by recording the mice preference, and by making accessible all diets simultaneously, in comparison to StD. Body weight, food and water consumption were measured every 3 days. Blood and urine samples, as well as heart, kidneys, liver, spleen, triceps surae, retroperitoneal WAT, and BAT were harvested and weighed. Results: Mice consuming NEAA-based diets, although showing increased food and calorie intake, suffered the most severe weight loss. Interestingly, the diet containing a EAA/NEAA-imbalance, with moderate NEAAs prevalence, was able to induce catabolic stimuli, generalized body wasting, and systemic metabolic alterations comparable to those observed with diet containing NEAA alone. In addition, complete depletion of retroperitoneal white adipose tissue and a severe loss (>75%) of brown adipose tissue were observed together with muscle wasting. Conversely, EAA-containing diets induced significant decreases in body weight by reducing primarily fat reserves, but at the same time they improved the clinical parameters. On these basis we can deduce that tissue wasting was caused by altered AA quality, independent of reduced nitrogen or caloric intake

  3. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet.

    PubMed

    Arunkumar, Elumalai; Anuradha, Carani Venkatraman

    2012-08-01

    Genistein (GEN), a soy isoflavone, exerts insulin-sensitizing actions in animals; however, the underlying mechanisms have not been determined. Because GEN is a known activator of adenosine monophosphate-activated protein kinase (AMPK), we hypothesize that GEN activates insulin signaling through AMPK activation. To test this hypothesis, a high fat-high fructose diet (HFFD)-fed mice model of insulin resistance was administered GEN, and the insulin signaling pathway proteins in the skeletal muscle were examined. Hyperglycemia and hyperinsulinemia observed in HFFD-fed mice were significantly lowered by GEN. GEN increased insulin-stimulated tyrosine phosphorylation of insulin receptor-β and insulin receptor substrate (IRS) 1 but down-regulated IRS-1 serine phosphorylation in the skeletal muscle of HFFD-fed mice. Furthermore, GEN treatment improved muscle IRS-1-associated phospatidylinositol-3 kinase expression, phosphorylation of Akt at Ser(473), and translocation of glucose transporter subtype 4. Phosphorylation of AMPK at Thr(172) and acetyl coenzyme A carboxylase (ACC) at Ser(79) was augmented, whereas phosphorylation of p70 ribosomal protein S6 kinase 1 at Thr(389) was significantly decreased after GEN treatment in the skeletal muscle of HFFD-fed mice. These results suggest that GEN might improve insulin action in the skeletal muscle by targeting AMPK. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Chronic administration of methamphetamine promotes atherosclerosis formation in ApoE-/- knockout mice fed normal diet.

    PubMed

    Gao, Bo; Li, Lun; Zhu, Pengfei; Zhang, Mingjing; Hou, Lingbo; Sun, Yufei; Liu, Xiaoyan; Peng, Xiaohong; Gu, Ye

    2015-11-01

    Chronic methamphetamine (METH) abuse could induce neurotoxicity due to reactive oxygen species generation and sympathetic activation. Both factors are associated with atherosclerosis, so we tested the hypothesis that chronic METH administration might also promote atherosclerosis formation in Apo E-/- knockout mice fed normal diet. Male ApoE-/- mice (6 weeks-old) were treated with saline (NS) or METH [4 mg/kg/day (M4) or 8 mg/kg/day (M8) through intraperitoneal injection] for 24 weeks. Atherosclerotic lesion area on oil red O stained en face aorta was dose-dependently increased in M4 and M8 groups compared to NS group. Percentage of atherosclerotic lesion area was significantly higher in M8 group compared to NS and M4 groups. Plasma CRP was increased and inflammatory cytokine (ICAM-1, VCAM-1, TNF-α, and INF-γ) expression on aortic root was upregulated in METH groups compared to NS group. Neuropeptide Y (NPY) protein and mRNA expressions in aortic root and myocardial tissue were determined by Western blot and real time PCR, which were significantly upregulated in M4 and M8 groups. Moreover, mRNA expressions of NPY1R, NPY2R and NPY5R in aortic and myocardial tissue were also significantly upregulated in M4 and M8 groups. Raw264.7 cells were treated with NPY, NPY receptor antagonists, METH (10 μM or 100 μM) with or without lipopolysaccharide (LPS), and the expressions of TNF-α, CRP, MCP-1 and reactive oxygen species (ROS) production were significantly increased in METH and LPS + METH groups compared to control and LPS groups. Co-treatment with NPY1R antagonist decreased the expressions of TNF-α, CRP and MCP-1 in NPY and METH treated cells. Chronic METH administration can promote inflammation and atherosclerotic plague formation in ApoE-/- mice fed normal chow. NPY might be involved in the pathogenesis of METH-induced atherogenic effects through NPY Y1 receptor pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Neutral oligosaccharides in feces of breastfed and formula-fed infants at different ages.

    PubMed

    Dotz, Viktoria; Adam, Rüdiger; Lochnit, Günter; Schroten, Horst; Kunz, Clemens

    2016-12-01

    Beneficial effects have been proposed for human milk oligosaccharides (HMO), as deduced from in vitro and animal studies. To date, in vivo evidence of the link between certain oligosaccharide structures in milk and their consumption by infant gut microbiota is still missing, although likely. Whereas many studies have described HMO patterns in human milk from larger cohorts, data on the excretion of HMO and possible metabolites produced in the infant gut are still very limited. From smaller-scale studies, an age-dependency according to infant gut maturation and microbiota adaptation has previously been hypothesized. To further investigate this, we profiled neutral fecal oligosaccharides from term-born infants who were exclusively breastfed, formula-fed or mixed-fed at the age of 2 months, and from a follow-up of a subgroup at 7 months of age (INFABIO study). Data on maternal antibiotic exposure was also included. Automated matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analyses revealed the presence of HMO and metabolites in the feces of most, but not all breastfed infants at 2 months, with highly varying patterns that appeared not to differ with maternal antibiotics exposure. Formula-fed infants at 2 months and most of the breastfed infants at 7 months did not excrete HMO-like structures in their feces, the latter corresponding to the hypothesis of age-dependency. Together with our previous results that were partly contradictory to what has been proposed by others, here, we suggest alternative explanations for the described association of oligosaccharide excretion with age and feeding type in infants below 7 months of age. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Resilience in Aging Mice

    PubMed Central

    Kirkland, James L.; Stout, Michael B.

    2016-01-01

    Abstract Recently discovered interventions that target fundamental aging mechanisms have been shown to increase life span in mice and other species, and in some cases, these same manipulations have been shown to enhance health span and alleviate multiple age-related diseases and conditions. Aging is generally associated with decreases in resilience, the capacity to respond to or recover from clinically relevant stresses such as surgery, infections, or vascular events. We hypothesize that the age-related increase in susceptibility to those diseases and conditions is driven by or associated with the decrease in resilience. Thus, a test for resilience at middle age or even earlier could represent a surrogate approach to test the hypothesis that an intervention delays the process of aging itself. For this, animal models to test resilience accurately and predictably are needed. In addition, interventions that increase resilience might lead to treatments aimed at enhancing recovery following acute illnesses, or preventing poor outcomes from medical interventions in older, prefrail subjects. At a meeting of basic researchers and clinicians engaged in research on mechanisms of aging and care of the elderly, the merits and drawbacks of investigating effects of interventions on resilience in mice were considered. Available and potential stressors for assessing physiological resilience as well as the notion of developing a limited battery of such stressors and how to rank them were discussed. Relevant ranking parameters included value in assessing general health (as opposed to focusing on a single physiological system), ease of use, cost, reproducibility, clinical relevance, and feasibility of being repeated in the same animal longitudinally. During the discussions it became clear that, while this is an important area, very little is known or established. Much more research is needed in the near future to develop appropriate tests of resilience in animal models within an

  7. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis

    PubMed Central

    van der Heijden, Roel A.; Bijzet, Johan; Meijers, Wouter C.; Yakala, Gopala K.; Kleemann, Robert; Nguyen, Tri Q.; de Boer, Rudolf A.; Schalkwijk, Casper G.; Hazenberg, Bouke P. C.; Tietge, Uwe J. F.; Heeringa, Peter

    2015-01-01

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process. PMID:26563579

  8. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis.

    PubMed

    van der Heijden, Roel A; Bijzet, Johan; Meijers, Wouter C; Yakala, Gopala K; Kleemann, Robert; Nguyen, Tri Q; de Boer, Rudolf A; Schalkwijk, Casper G; Hazenberg, Bouke P C; Tietge, Uwe J F; Heeringa, Peter

    2015-11-13

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process.

  9. Muscle-specific deletion of Prkaa1 enhances skeletal muscle lipid accumulation in mice fed a high-fat diet.

    PubMed

    Wu, Weiche; Xu, Ziye; Zhang, Ling; Liu, Jiaqi; Feng, Jie; Wang, Xinxia; Shan, Tizhong; Wang, Yizhen

    2018-05-01

    Excessive intramyocellular triacylglycerols (IMTGs, muscle lipids) are associated with the abnormal energy metabolism and insulin resistance of skeletal muscle. AMP-activated protein kinase (AMPK), a crucial cellular energy sensor, consists of α, β and γ subunits. Researchers have not clearly determined whether Prkaa1 (also known as AMPKα1) affects IMTG accumulation in skeletal muscle. Here, we show an important role of Prkaa1 in skeletal muscle lipid metabolism. Deletion of muscle Prkaa1 leads to the delayed development of skeletal muscles but does not affect glucose tolerance or insulin sensitivity in animals fed a normal diet. Notably, when animals are fed a high-fat diet, the skeletal muscle of muscle-specific Prkaa1 knockout mice accumulates more lipids than the skeletal muscle of wild-type (WT) mice, with concomitant upregulation of adipogenic gene expressions and downregulation of the expression of genes associated with mitochondrial oxidation. Muscle-specific Prkaa1 ablation also results in hyperlipidemia, which may contribute to the increased IMTG levels. Furthermore, Prkaa1 deletion activates skeletal muscle mTOR signalling, which has a central role in lipid metabolism and mitochondrial oxidation. Collectively, our study provides new insights into the role of Prkaa1 in skeletal muscle. This knowledge may contribute to the treatment of related metabolic diseases.

  10. Astaxanthin affects oxidative stress and hyposalivation in aging mice

    PubMed Central

    Kuraji, Manatsu; Matsuno, Tomonori; Satoh, Tazuko

    2016-01-01

    Oral dryness, a serious problem for the aging Japanese society, is induced by aging-related hyposalivation and causes dysphagia, dysgeusia, inadaptation of dentures, and growth of oral Candida albicans. Oxidative stress clearly plays a role in decreasing saliva secretion and treatment with antioxidants such astaxanthin supplements may be beneficial. Therefore, we evaluated the effects of astaxanthin on the oral saliva secretory function of aging mice. The saliva flow increased in astaxanthin-treated mice 72 weeks after administration while that of the control decreased by half. The plasma d-ROMs values of the control but not astaxanthin-treated group measured before and 72 weeks after treatment increased. The diacron-reactive oxygen metabolites (d-ROMs) value of astaxanthin-treated mice 72 weeks after treatment was significantly lower than that of the control group was. The plasma biological antioxidative potential (BAP) values of the control but not astaxanthin-treated mice before and 72 weeks after treatment decreased. Moreover, the BAP value of the astaxanthin-treated group 72 weeks after treatment was significantly higher than that of the control was. Furthermore, the submandibular glands of astaxanthin-treated mice had fewer inflammatory cells than the control did. Specifically, immunofluorescence revealed a significantly large aquaporin-5 positive cells in astaxanthin-treated mice. Our results suggest that astaxanthin treatment may prevent age-related decreased saliva secretion. PMID:27698533

  11. Effects of Acerola (Malpighia emarginata DC.) Juice Intake on Brain Energy Metabolism of Mice Fed a Cafeteria Diet.

    PubMed

    Leffa, Daniela Dimer; Rezin, Gislaine Tezza; Daumann, Francine; Longaretti, Luiza M; Dajori, Ana Luiza F; Gomes, Lara Mezari; Silva, Milena Carvalho; Streck, Emílio L; de Andrade, Vanessa Moraes

    2017-03-01

    Obesity is a multifactorial disease that comes from an imbalance between food intake and energy expenditure. Moreover, studies have shown a relationship between mitochondrial dysfunction and obesity. In the present study, we investigated the effect of acerola juices (unripe, ripe, and industrial) and its main pharmacologically active components (vitamin C and rutin) on the activity of enzymes of energy metabolism in the brain of mice fed a palatable cafeteria diet. Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into six subgroups, each of which received a different supplement for one further month (water, unripe, ripe or industrial acerola juices, vitamin C, or rutin) by gavage. Our results demonstrated that CAF diet inhibited the activity of citrate synthase in the prefrontal cortex, hippocampus, and hypothalamus. Moreover, CAF diet decreased the complex I activity in the hypothalamus, complex II in the prefrontal cortex, complex II-III in the hypothalamus, and complex IV in the posterior cortex and striatum. The activity of succinate dehydrogenase and creatine kinase was not altered by the CAF diet. However, unripe acerola juice reversed the inhibition of the citrate synthase activity in the prefrontal cortex and hypothalamus. Ripe acerola juice reversed the inhibition of citrate synthase in the hypothalamus. The industrial acerola juice reversed the inhibition of complex I activity in the hypothalamus. The other changes were not reversed by any of the tested substances. In conclusion, we suggest that alterations in energy metabolism caused by obesity can be partially reversed by ripe, unripe, and industrial acerola juice.

  12. Age-related T2 changes in hindlimb muscles of mdx mice.

    PubMed

    Vohra, Ravneet S; Mathur, Sunita; Bryant, Nathan D; Forbes, Sean C; Vandenborne, Krista; Walter, Glenn A

    2016-01-01

    Magnetic resonance imaging (MRI) was used to monitor changes in the transverse relaxation time constant (T2) in lower hindlimb muscles of mdx mice at different ages. Young (5 weeks), adult (44 weeks), and old mdx (96 weeks), and age-matched control mice were studied. Young mdx mice were imaged longitudinally, whereas adult and old mdx mice were imaged at a single time-point. Mean muscle T2 and percent of pixels with elevated T2 were significantly different between mdx and control mice at all ages. In young mdx mice, mean muscle T2 peaked at 7-8 weeks and declined at 9-11 weeks. In old mdx mice, mean muscle T2 was decreased compared with young and adult mice, which could be attributed to fibrosis. MRI captured longitudinal changes in skeletal muscle integrity of mdx mice. This information will be valuable for pre-clinical testing of potential therapeutic interventions for muscular dystrophy. © 2015 Wiley Periodicals, Inc.

  13. Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet.

    PubMed

    Abderrazak, Amna; Couchie, Dominique; Mahmood, Dler Faieeq Darweesh; Elhage, Rima; Vindis, Cécile; Laffargue, Muriel; Matéo, Véronique; Büchele, Berthold; Ayala, Monica Rubio; El Gaafary, Menna; Syrovets, Tatiana; Slimane, Mohamed-Naceur; Friguet, Bertrand; Fulop, Tamas; Simmet, Thomas; El Hadri, Khadija; Rouis, Mustapha

    2015-03-24

    This study was designed to evaluate the effect of arglabin on the NLRP3 inflammasome inhibition and atherosclerotic lesion in ApoE2Ki mice fed a high-fat Western-type diet. Arglabin was purified, and its chemical identity was confirmed by mass spectrometry. It inhibited, in a concentration-dependent manner, interleukin (IL)-1β and IL-18, but not IL-6 and IL-12, production in lipopolysaccharide and cholesterol crystal-activated cultured mouse peritoneal macrophages, with a maximum effect at ≈50 nmol/L and EC50 values for both cytokines of ≈ 10 nmol/L. Lipopolysaccharide and cholesterol crystals did not induce IL-1β and IL-18 production in Nlrp3(-/-) macrophages. In addition, arglabin activated autophagy as evidenced by the increase in LC3-II protein. Intraperitoneal injection of arglabin (2.5 ng/g body weight twice daily for 13 weeks) into female ApoE2.Ki mice fed a high-fat diet resulted in a decreased IL-1β plasma level compared with vehicle-treated mice (5.2±1.0 versus 11.7±1.1 pg/mL). Surprisingly, arglabin also reduced plasma levels of total cholesterol and triglycerides to 41% and 42%, respectively. Moreover, arglabin oriented the proinflammatory M1 macrophages into the anti-inflammatory M2 phenotype in spleen and arterial lesions. Finally, arglabin treatment markedly reduced the median lesion areas in the sinus and whole aorta to 54% (P=0.02) and 41% (P=0.02), respectively. Arglabin reduces inflammation and plasma lipids, increases autophagy, and orients tissue macrophages into an anti-inflammatory phenotype in ApoE2.Ki mice fed a high-fat diet. Consequently, a marked reduction in atherosclerotic lesions was observed. Thus, arglabin may represent a promising new drug to treat inflammation and atherosclerosis. © 2015 American Heart Association, Inc.

  14. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice.

    PubMed

    Cheon, Eric C; Strouch, Matthew J; Barron, Morgan R; Ding, Yongzeng; Melstrom, Laleh G; Krantz, Seth B; Mullapudi, Bhargava; Adrian, Kevin; Rao, Sambasiva; Adrian, Thomas E; Bentrem, David J; Grippo, Paul J

    2011-06-15

    Diets containing omega-6 (ω-6) fat have been associated with increased tumor development in carcinogen-induced pancreatic cancer models. However, the effects of ω-6 fatty acids and background strain on the development of genetically-induced pancreatic neoplasia is unknown. We assessed the effects of a diet rich in ω-6 fat on the development of pancreatic neoplasia in elastase (EL)-Kras(G12D) (EL-Kras) mice in two different backgrounds. EL-Kras FVB mice were crossed to C57BL/6 (B6) mice to produce EL-Kras FVB6 F1 (or EL-Kras F1) and EL-Kras B6 congenic mice. Age-matched EL-Kras mice from each strain were compared to one another on a standard chow. Two cohorts of EL-Kras FVB and EL-Kras F1 mice were fed a 23% corn oil diet and compared to age-matched mice fed a standard chow. Pancreata were scored for incidence, frequency, and size of neoplastic lesions, and stained for the presence of mast cells to evaluate changes in the inflammatory milieu secondary to a high fat diet. EL-Kras F1 mice had increased incidence, frequency, and size of pancreatic neoplasia compared to EL-Kras FVB mice. The frequency and size of neoplastic lesions and the weight and pancreatic mast cell densities in EL-Kras F1 mice were increased in mice fed a high ω-6 fatty acid diet compared to mice fed a standard chow. We herein introduce the EL-Kras B6 mouse model which presents with increased frequency of pancreatic neoplasia compared to EL-Kras F1 mice. The phenotype in EL-Kras F1 and FVB mice is promoted by a diet rich in ω-6 fatty acid. Copyright © 2010 UICC.

  15. Blueberry supplementation attenuates microglia activation and increases neuroplasticity in mice consuming a high fat diet

    USDA-ARS?s Scientific Manuscript database

    Objectives: Consuming a high-fat diet (HFD) may result in behavioral deficits similar to those observed in aging animals. Blueberries may prevent and even reverse age-related alterations in neurochemistry and behavior. It was previously demonstrated that middle-aged mice fed HFD had impaired memory;...

  16. Profiling of hepatic gene expression of mice fed with edible japanese mushrooms by DNA microarray analysis: comparison among Pleurotus ostreatus, Grifola frondosa, and Hypsizigus marmoreus.

    PubMed

    Sato, Mayumi; Tokuji, Yoshihiko; Yoneyama, Shozo; Fujii-Akiyama, Kyoko; Kinoshita, Mikio; Ohnishi, Masao

    2011-10-12

    To compare and estimate the effects of dietary intake of three kinds of mushrooms (Pleurotus ostreatus, Grifola frondosa, and Hypsizigus marmoreus), mice were fed a diet containing 10-14% of each mushroom for 4 weeks. Triacylglycerol in the liver and plasma decreased and plasma cholesterol increased in the P. ostreatus-fed group compared with those in the control group. Cholesterol in the liver was lower in the G. frondosa-fed group than in the control group, but no changes were found in the H. marmoreus-fed group. DNA microarray analysis of the liver revealed differences of gene expression patterns among mushrooms. Ctp1a and Fabp families were upregulated in the P. ostreatus-fed group, which were considered to promote lipid transport and β-oxidation. In the G. frondosa-fed group, not only the gene involved in signal transduction of innate immunity via TLR3 and interferon but also virus resistance genes, such as Mx1, Rsad2, and Oas1, were upregulated.

  17. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  18. Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice.

    PubMed

    Kondakala, Sandeep; Lee, Jung Hwa; Ross, Matthew K; Howell, George E

    2017-12-15

    The prevalence of obesity is increasing at an alarming rate in the United States with 36.5% of adults being classified as obese. Compared to normal individuals, obese individuals have noted pathophysiological alterations which may alter the toxicokinetics of xenobiotics and therefore alter their toxicities. However, the effects of obesity on the toxicity of many widely utilized pesticides has not been established. Therefore, the present study was designed to determine if the obese phenotype altered the toxicity of the most widely used organophosphate (OP) insecticide, chlorpyrifos (CPS). Male C57BL/6J mice were fed normal or high-fat diet for 4weeks and administered a single dose of vehicle or CPS (2.0mg/kg; oral gavage) to assess cholinergic (acetylcholinesterase activities) and non-cholinergic (carboxylesterase and endocannabinoid hydrolysis) endpoints. Exposure to CPS significantly decreased red blood cell acetylcholinesterase (AChE) activity, but not brain AChE activity, in both diet groups. Further, CPS exposure decreased hepatic carboxylesterase activity and hepatic hydrolysis of a major endocannabinoid, anandamide, in a diet-dependent manner with high-fat diet fed animals being more sensitive to CPS-mediated inhibition. These in vivo studies were corroborated by in vitro studies using rat primary hepatocytes, which demonstrated that fatty acid amide hydrolase and CES activities were more sensitive to CPS-mediated inhibition than 2-arachidonoylglycerol hydrolase activity. These data demonstrate hepatic CES and FAAH activities in high-fat diet fed mice were more potently inhibited than those in normal diet fed mice following CPS exposure, which suggests that the obese phenotype may exacerbate some of the non-cholinergic effects of CPS exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Gelidium elegans Regulates the AMPK-PRDM16-UCP-1 Pathway and Has a Synergistic Effect with Orlistat on Obesity-Associated Features in Mice Fed a High-Fat Diet.

    PubMed

    Choi, Jia; Kim, Kui-Jin; Koh, Eun-Jeong; Lee, Boo-Yong

    2017-03-30

    The incidence of obesity is rising at an alarming rate throughout the world and is becoming a major public health concern with incalculable social and economic costs. Gelidium elegans (GENS), also previously known as Gelidium amansii , has been shown to exhibit anti-obesity effects. Nevertheless, the mechanism by which GENS is able to do this remains unclear. In the present study, our results showed that GENS prevents high-fat diet (HFD)-induced weight gain through modulation of the adenosine monophosphate-activated protein kinase (AMPK)-PR domain-containing16 (PRDM16)-uncoupling protein-1 (UCP-1) pathway in a mice model. We also found that GENS decreased hyperglycemia in mice that had been fed a HFD compared to corresponding controls. We also assessed the beneficial effect of the combined treatment with GENS and orlistat (a Food and Drug Administration-approved obesity drug) on obesity characteristics in HFD-fed mice. We found that in HFD-fed mice, the combination of GENS and orlistat is associated with more significant weight loss than orlistat treatment alone. Moreover, our results demonstrated a positive synergistic effect of GENS and orlistat on hyperglycemia and plasma triglyceride level in these animals. Thus, we suggest that a combination therapy of GENS and orlistat may positively influence obesity-related health outcomes in a diet-induced obese population.

  20. Gelidium elegans Regulates the AMPK-PRDM16-UCP-1 Pathway and Has a Synergistic Effect with Orlistat on Obesity-Associated Features in Mice Fed a High-Fat Diet

    PubMed Central

    Choi, Jia; Kim, Kui-Jin; Koh, Eun-Jeong; Lee, Boo-Yong

    2017-01-01

    The incidence of obesity is rising at an alarming rate throughout the world and is becoming a major public health concern with incalculable social and economic costs. Gelidium elegans (GENS), also previously known as Gelidium amansii, has been shown to exhibit anti-obesity effects. Nevertheless, the mechanism by which GENS is able to do this remains unclear. In the present study, our results showed that GENS prevents high-fat diet (HFD)-induced weight gain through modulation of the adenosine monophosphate-activated protein kinase (AMPK)-PR domain-containing16 (PRDM16)-uncoupling protein-1 (UCP-1) pathway in a mice model. We also found that GENS decreased hyperglycemia in mice that had been fed a HFD compared to corresponding controls. We also assessed the beneficial effect of the combined treatment with GENS and orlistat (a Food and Drug Administration-approved obesity drug) on obesity characteristics in HFD-fed mice. We found that in HFD-fed mice, the combination of GENS and orlistat is associated with more significant weight loss than orlistat treatment alone. Moreover, our results demonstrated a positive synergistic effect of GENS and orlistat on hyperglycemia and plasma triglyceride level in these animals. Thus, we suggest that a combination therapy of GENS and orlistat may positively influence obesity-related health outcomes in a diet-induced obese population. PMID:28358328

  1. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang

    2015-10-29

    Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/cholesterol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibited lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles.

  2. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet

    PubMed Central

    Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang

    2015-01-01

    Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/choleserol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibtied lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles. PMID:26510459

  3. Post-weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high-fat diets.

    PubMed

    Bermingham, Emma N; Bassett, Shalome A; Young, Wayne; Roy, Nicole C; McNabb, Warren C; Cooney, Janine M; Brewster, Di T; Laing, William A; Barnett, Matthew P G

    2013-03-05

    Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health.

  4. Post-weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high-fat diets

    PubMed Central

    2013-01-01

    Background Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Methods Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Results Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Conclusions Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health. PMID:23497688

  5. Fatty liver accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet.

    PubMed

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F

    2013-05-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model.

  6. Effects of Supplemental Acerola Juice on the Mineral Concentrations in Liver and Kidney Tissue Samples of Mice Fed with Cafeteria Diet.

    PubMed

    Leffa, Daniela Dimer; dos Santos, Carla Eliete Iochims; Daumann, Francine; Longaretti, Luiza Martins; Amaral, Livio; Dias, Johnny Ferraz; da Silva, Juliana; Andrade, Vanessa Moraes

    2015-09-01

    We evaluated the impact of a supplemental acerola juice (unripe, ripe, and industrial) and its main pharmaceutically active components on the concentrations of minerals in the liver and kidney of mice fed with cafeteria diet. Swiss male mice were fed with a cafeteria (CAF) diet for 13 weeks. The CAF consisted of a variety of supermarket products with high energy content. Subsequently, animals received one of the following food supplements for 1 month: water, unripe acerola juice, ripe acerola juice, industrial acerola juice, vitamin C, or rutin. Mineral concentrations of the tissues were determined by particle-induced X-ray emission (PIXE). Our study suggests that the simultaneous intake of acerola juices, vitamin C, or rutin in association with a hypercaloric and hyperlipidic diet provides change in the mineral composition of organisms in the conditions of this study, which plays an important role in the antioxidant defenses of the body. This may help to reduce the metabolism of the fat tissue or even to reduce the oxidative stress.

  7. A ketogenic diet reduces metabolic syndrome-induced allodynia and promotes peripheral nerve growth in mice.

    PubMed

    Cooper, Michael A; Menta, Blaise W; Perez-Sanchez, Consuelo; Jack, Megan M; Khan, Zair W; Ryals, Janelle M; Winter, Michelle; Wright, Douglas E

    2018-08-01

    Current experiments investigated whether a ketogenic diet impacts neuropathy associated with obesity and prediabetes. Mice challenged with a ketogenic diet were compared to mice fed a high-fat diet or a high-fat diet plus exercise. Additionally, an intervention switching to a ketogenic diet following 8 weeks of high-fat diet was performed to compare how a control diet, exercise, or a ketogenic diet affects metabolic syndrome-induced neural complications. When challenged with a ketogenic diet, mice had reduced bodyweight and fat mass compared to high-fat-fed mice, and were similar to exercised, high-fat-fed mice. High-fat-fed, exercised and ketogenic-fed mice had mildly elevated blood glucose; conversely, ketogenic diet-fed mice were unique in having reduced serum insulin levels. Ketogenic diet-fed mice never developed mechanical allodynia contrary to mice fed a high-fat diet. Ketogenic diet fed mice also had increased epidermal axon density compared all other groups. When a ketogenic diet was used as an intervention, a ketogenic diet was unable to reverse high-fat fed-induced metabolic changes but was able to significantly reverse a high-fat diet-induced mechanical allodynia. As an intervention, a ketogenic diet also increased epidermal axon density. In vitro studies revealed increased neurite outgrowth in sensory neurons from mice fed a ketogenic diet and in neurons from normal diet-fed mice given ketone bodies in the culture medium. These results suggest a ketogenic diet can prevent certain complications of prediabetes and provides significant benefits to peripheral axons and sensory dysfunction. Published by Elsevier Inc.

  8. Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice.

    PubMed

    Wang, Bin; Zhang, Sicong; Wang, Xiaoya; Yang, Shuo; Jiang, Qixing; Xu, Yanshun; Xia, Wenshui

    2017-09-01

    Transcriptome analysis was performed to investigate the alterations in gene expression after chitosan (CS) treatment on the liver of mice fed with high-fat diet (HFD). The results showed that the body weight, the liver weight and the epididymal fat mass of HFD mice, which were 62.98%, 46.51% and 239.37%, respectively, higher than those of control mice, could be significantly decreased by chitosan supplementation. Also, high-fat diet increased both plasma lipid and liver lipid as compared with the control mice. Chitosan supplementation decreased the plasma lipid and liver lipid, increased the lipoprotein lipase (LPL) and hepatic lipase (HL) activity, increased T-AOC and decreased MDA in the liver and the epididymis adipose as compared with the HFD mice. Transcriptome analysis indicated that increased Mups, Lcn2, Gstm3 and CYP2E1 expressions clearly indicated HFD induced lipid metabolism disorder and oxidative damage. Especially, chitosan treatment decreased the Mup17 and Lcn2 expressions by 64.32% and 82.43% respectively as compared with those of HFD mice. These results indicated that chitosan possess the ability to improve the impairment of lipid metabolism as strongly associated with increased Mups expressions and gene expressions related to oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Enhanced peroxisomal β-oxidation metabolism in visceral adipose tissues of high-fat diet-fed obesity-resistant C57BL/6 mice

    PubMed Central

    XIE, WEI-DONG; WANG, HUA; ZHANG, JIN-FANG; LI, JIAN-NA; CAN, YI; QING, LV; KUNG, HSIANG-FU; ZHANG, YA-OU

    2011-01-01

    This study aimed to investigate the potential mechanisms of natural resistance to high-fat diet-induced obesity. Four-week-old C57BL/6 mice were fed a high-fat diet for 6 weeks and were then designated as high-fat diet-fed obesity-prone (HOP) and obesity-resistant (HOR) animals. Their blood biochemistry was evaluated, and visceral adipose tissue samples were subjected to proteomic, Western blot and quantitative real-time PCR (q-PCR) analyses. The HOR mice showed reduced visceral fat weight and size, as well as lowered serum lipid and leptin levels. Proteomic analysis showed that enoyl coenzyme A hydratase 1, peroxisomal (Ech1) expression was significantly increased in their visceral adipose tissues. Moreover, other proteins, such as α-tropomyosin, myosin light chain, urine-nucleoside phosphorylase and transgelin, were also significantly increased. Furthermore, q-PCR analysis showed that the expression of acyl-CoA oxidase 1 palmitoyl, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase and 3-oxoacyl-CoA thiolase responsible for peroxisomal β-oxidation was also up-regulated in the visceral adipose tissues of the HOR mice. The expression of peroxisome proliferator-activated receptor α (PPARα) was increased in the HOR mice as shown by Western blot analysis. Obesity-resistant animals show enhanced peroxisomal β-oxidation metabolism and reduced fat accumulation in visceral adipose tissues by up-regulating the expression of Ech1, peroxisomal or other related peroxisomal β-oxidation marker genes, which may be driven or enhanced by the up-regulation of the expression of PPARα. However, further validation in future studies is required. PMID:22977503

  10. Joint dysfunction and functional decline in middle age myostatin null mice.

    PubMed

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier.

    PubMed

    Benoit, Bérengère; Plaisancié, Pascale; Géloën, Alain; Estienne, Monique; Debard, Cyrille; Meugnier, Emmanuelle; Loizon, Emmanuelle; Daira, Patricia; Bodennec, Jacques; Cousin, Olivier; Vidal, Hubert; Laugerette, Fabienne; Michalski, Marie-Caroline

    2014-08-28

    Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.

  12. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.

    PubMed

    Du, Junjie; Fan, Lampson M; Mai, Anna; Li, Jian-Mei

    2013-11-01

    Systemic oxidative stress associated with dietary calorie overload plays an important role in the deterioration of vascular function in middle-aged patients suffering from obesity and insulin resistance. However, effective therapy is still lacking. In this study, we used a mouse model of middle-aged obesity to investigate the therapeutic potential of pharmaceutical inhibition (apocynin, 5 mM supplied in the drinking water) or knockout of Nox2, an enzyme generating reactive oxygen species (ROS), in high-fat diet (HFD)-induced obesity, oxidative stress, insulin resistance and endothelial dysfunction. Littermates of C57BL/6J wild-type (WT) and Nox2 knockout (KO) mice (7 months old) were fed with a HFD (45% kcal fat) or normal chow diet (NCD, 12% kcal fat) for 16 weeks and used at 11 months of age. Compared to NCD WT mice, HFD WT mice developed obesity, insulin resistance, dyslipidaemia and hypertension. Aortic vessels from these mice showed significantly increased Nox2 expression and ROS production, accompanied by significantly increased ERK1/2 activation, reduced insulin receptor expression, decreased Akt and eNOS phosphorylation and impaired endothelium-dependent vessel relaxation to acetylcholine. All these HFD-induced abnormalities (except the hyperinsulinaemia) were absent in apocynin-treated WT or Nox2 KO mice given the same HFD. In conclusion, Nox2-derived ROS played a key role in damaging insulin receptor and endothelial function in dietary obesity after middle-age. Targeting Nox2 could represent a valuable therapeutic strategy in the metabolic syndrome. © 2013 The British Pharmacological Society.

  13. Shen-Yuan-Dan Capsule Inhibiting Inflammatory Reaction by Regulating Insulin Receptor Substrate 1/PI3K/Akt/NF-κB Signaling Pathway in Apoliprotein E Knockout Mice Fed with a High-Fat Diet.

    PubMed

    Zhou, Mingxue; Li, Ping; Kang, Qunfu; Zhang, Lei; Shang, Juju; Liu, Weihong; Liu, Hongxu

    2017-05-01

    Shen-Yuan-Dan Capsule (SYDC), a traditional Chinese medicine, is proposed to have the capacity to prevent angina pectoris. However, the effects and the related mechanisms of SYDC on atherosclerosis (AS) are still unknown. This study was designed to investigate the effects of SYDC on AS and inflammatory reaction in the apoliprotein E-knockout (ApoE -/- ) mice fed with a high-fat diet. Thirty eight-week-old male ApoE -/- mice were randomly divided into three groups (n = 10) 6 weeks after being fed with a high-fat diet: the control group, the lipitor group, and the SYDC group. The hearts were collected for hematoxylin and eosin (HE) or Van Gieson (VG) staining, and the aortas were collected for quantitative reverse transcription polymerase chain reaction (RT-PCR) and western-blotting. The data showed that the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), atherosclerotic indexes (AI) and the corrected areas of atherosclerotic plaque of the mice on SYDC group were significantly decreased compared with those of the mice in the control group (p < 0.01, p < 0.05). SYDC can significantly increase collagen proportion in plaques as compared to the untreated mice (p < 0.01). In addition, the messenger ribonucleic acid (mRNA) expressions of insulin receptor substrate 1 (IRS-1), PI3K, Akt, NF-κB and tumor necrosis factor-α (TNF-α) in the mice fed with a high-fat diet were significantly reduced by SYDC (p < 0.05, p < 0.01). SYDC can exert an anti-atherosclerotic effect on ApoE -/- mice fed with a high-fat diet. The action mechanism of SYDC was attributed to its ability to inhibit inflammatory reaction by regulating IRS-1/PI3K/Akt/NF-κB signaling pathway.

  14. Dietary ribonucleic acid suppresses inflammation of adipose tissue and improves glucose intolerance that is mediated by immune cells in C57BL/6 mice fed a high-fat diet.

    PubMed

    Sakai, Tohru; Taki, Tomoyo; Nakamoto, Akiko; Tazaki, Shiho; Arakawa, Mai; Nakamoto, Mariko; Tsutsumi, Rie; Shuto, Emi

    2015-01-01

    Recent evidence suggests that immune cells play an important role in differentiation of inflammatory macrophages in adipose tissue, which contributes to systemic chronic inflammation. Dietary ribonucleic acid (RNA) has been shown to modulate immune function. We hypothesized that RNA affects immune cell function in adipose tissue and then improves inflammatory response in adipose tissue. C57/BL6 mice and recombination activating gene-1 (RAG-1) knockout mice on a C57BL/6 mice background were fed a high-fat diet containing 1% RNA for 12 wk. An oral glucose tolerance test was performed. Supplementation of dietary RNA in C57BL/6 mice fed a high-fat diet resulted in a smaller area under the curve (AUC) after oral glucose administration than that for control mice. The mRNA expression levels of inflammation-related cytokines in adipose tissue and serum interleukin-6 levels were reduced by dietary RNA supplementation. Interestingly, reduction of the AUC value by RNA supplementation was abolished in T and B cell-deficient RAG-1 knockout mice. These results indicate that RNA improves inflammation in adipose tissue and reduces the AUC value following oral glucose administration in a T and B cell-dependent manner.

  15. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation.

    PubMed

    Bailey-Downs, Lora C; Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2013-07-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet-fed obese C57BL/6 mice. High-fat diet-induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet-induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals.

  16. Aging Exacerbates Obesity-Induced Oxidative Stress and Inflammation in Perivascular Adipose Tissue in Mice: A Paracrine Mechanism Contributing to Vascular Redox Dysregulation and Inflammation

    PubMed Central

    Bailey-Downs, Lora C.; Tucsek, Zsuzsanna; Toth, Peter

    2013-01-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet–fed obese C57BL/6 mice. High-fat diet–induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet–induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals

  17. Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice

    PubMed Central

    Buchanan, J.B.; Sparkman, N.L.; Chen, J.; Johnson, R.W.

    2008-01-01

    Summary Peripheral immune stimulation as well as certain types of psychological stress increases brain levels of inflammatory cytokines such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNFα). We have demonstrated that aged mice show greater increases in central inflammatory cytokines, as well as greater cognitive deficits, compared to adults in response to peripheral lipopolysaccharide (LPS) administration. Because aged mice are typically more sensitive to systemic stressors such as LPS, and certain psychological stressors induce physiological responses similar to those that follow LPS, we hypothesized that aged mice would be more sensitive to the physiological and cognitive effects of mild stress than adult mice. Here, adult (3–5 mo) and aged (22–23 mo) male BALB/c mice were trained in the Morris water maze for 5 days. Mice were then exposed to a mild restraint stress of 30 minutes before being tested in a working memory version of the water maze over a 3 day period. On day 4 mice were stressed and then killed for collection of blood and brain. In a separate group of animals, mice were killed immediately after one, two or three 30 min restraint sessions and blood for peripheral corticosterone and cytokine protein measurement, and brains were dissected for central cytokine mRNA measurement. Stress disrupted spatial working memory in both adult and aged mice but to a much greater extent in the aged mice. In addition, aged mice showed an increase in stress-induced expression of hippocampal IL-1β mRNA and MHC class II protein compared to non-stressed controls while expression in adult mice was unaffected by stress. These data show that aged mice are more sensitive to both the cognitive and inflammatory effects of mild stress than are adult mice and suggest a possible a role for IL-1β. PMID:18407425

  18. Resilience in Aging Mice.

    PubMed

    Kirkland, James L; Stout, Michael B; Sierra, Felipe

    2016-11-01

    Recently discovered interventions that target fundamental aging mechanisms have been shown to increase life span in mice and other species, and in some cases, these same manipulations have been shown to enhance health span and alleviate multiple age-related diseases and conditions. Aging is generally associated with decreases in resilience, the capacity to respond to or recover from clinically relevant stresses such as surgery, infections, or vascular events. We hypothesize that the age-related increase in susceptibility to those diseases and conditions is driven by or associated with the decrease in resilience. Thus, a test for resilience at middle age or even earlier could represent a surrogate approach to test the hypothesis that an intervention delays the process of aging itself. For this, animal models to test resilience accurately and predictably are needed. In addition, interventions that increase resilience might lead to treatments aimed at enhancing recovery following acute illnesses, or preventing poor outcomes from medical interventions in older, prefrail subjects. At a meeting of basic researchers and clinicians engaged in research on mechanisms of aging and care of the elderly, the merits and drawbacks of investigating effects of interventions on resilience in mice were considered. Available and potential stressors for assessing physiological resilience as well as the notion of developing a limited battery of such stressors and how to rank them were discussed. Relevant ranking parameters included value in assessing general health (as opposed to focusing on a single physiological system), ease of use, cost, reproducibility, clinical relevance, and feasibility of being repeated in the same animal longitudinally. During the discussions it became clear that, while this is an important area, very little is known or established. Much more research is needed in the near future to develop appropriate tests of resilience in animal models within an aging context

  19. Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.

    PubMed

    Kamei, Asuka; Watanabe, Yuki; Shinozaki, Fumika; Yasuoka, Akihito; Shimada, Kousuke; Kondo, Kaori; Ishijima, Tomoko; Toyoda, Tsudoi; Arai, Soichi; Kondo, Takashi; Abe, Keiko

    2017-02-01

    Maple syrup contains various polyphenols and we investigated the effects of a polyphenol-rich maple syrup extract (MSXH) on the physiology of mice fed a high-fat diet (HFD). The mice fed a low-fat diet (LFD), an HFD, or an HFD supplemented with 0.02% (002MSXH) or 0.05% MSXH (005MSXH) for 4 weeks. Global gene expression analysis of the liver was performed, and the differentially expressed genes were classified into three expression patterns; pattern A (LFD < HFD > 002MSXH = 005MSXH, LFD > HFD < 002MSXH = 005MSXH), pattern B (LFD < HFD = 002MSXH > 005MSXH, LFD > HFD = 002MSXH < 005MSXH), and pattern C (LFD < HFD > 002MSXH < 005MSXH, LFD > HFD < 002MSXH > 005MSXH). Pattern A was enriched in glycolysis, fatty acid metabolism, and folate metabolism. Pattern B was enriched in tricarboxylic acid cycle while pattern C was enriched in gluconeogenesis, cholesterol metabolism, amino acid metabolism, and endoplasmic reticulum stress-related event. Our study suggested that the effects of MSXH ingestion showed (i) dose-dependent pattern involved in energy metabolisms and (ii) reversely pattern involved in stress responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects.

    PubMed

    Soualeh, Nidhal; Dridi, Imen; Eppe, Gauthier; Némos, Christophe; Soulimani, Rachid; Bouayed, Jaouad

    2017-07-01

    Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a

  1. Age-related Changes in the Hepatic Microcirculation in Mice

    PubMed Central

    Ito, Yoshiya; Sørensen, Karen K.; Bethea, Nancy W.; Svistounov, Dmitri; McCuskey, Margaret K.; Smedsrød, Bård H.; McCuskey, Robert S.

    2007-01-01

    Aging of the liver is associated with impaired metabolism of drugs, adverse drug interactions, and susceptibility to toxins. Since reduced hepatic blood flow is suspected to contribute this impairment, we examined age-related alterations in hepatic microcirculation.. Livers of C57Bl/6 mice were examined at 0.8 (pre-pubertal), 3 (young adult), 14 (middle-aged) and 27 (senescent) months of age using in vivo and electron microscopic methods. The results demonstrated a 14% reduction in the numbers of perfused sinusoids between 0.8 and 27 month mice associated with 35% reduction in sinusoidal blood flow. This was accompanied by an inflammatory response evidenced by a 5-fold increase in leukocyte adhesion in 27 month mice, up-regulated expression of ICAM-1, and increases in intrahepatic macrophages. Sinusoidal diameter decreased 6-10%. Liver sinusoidal endothelial cell (LSEC) dysfunction was seen as early as 14 months when there was a 3-fold increase in the numbers of swollen LSEC. The endocytotic capacity of LSEC also was found to be reduced in older animals. The sinusoidal endothelium in 27 month old mice exhibited pseudocapillarization. In conclusion, the results suggest that leukocyte accumulation in the sinusoids and narrowing of sinusoidal lumens due to pseudocapillarization and dysfunction of LSEC reduce sinusoidal blood flow in aged livers. PMID:17582718

  2. Soy Content of Basal Diets Determines the Effects of Supplemental Selenium in Male Mice123

    PubMed Central

    Quiner, Trevor E.; Nakken, Heather L.; Mason, Brock A.; Lephart, Edwin D.; Hancock, Chad R.; Christensen, Merrill J.

    2011-01-01

    The effects of supplemental Se in rodent models may depend upon composition of the basal diet to which it is added. Wild-type male littermates of Transgenic Adenocarcinoma of Mouse Prostate mice were fed until 18 wk of age 1 of 2 Se-adequate stock diets high in soy (HS) or low in phytoestrogens (LP) or the same diets supplemented with 3.0 mg Se/kg diet as seleno-methylselenocysteine. Body and abdominal fat pad weights were lower (P < 0.01) in mice fed the HS diet. Supplemental Se reduced fat pad weights in mice receiving the LP diet but increased body and fat pad weights in mice consuming the HS formulation (P-interaction < 0.005). Serum free triiodothyronine concentrations were unaffected by supplemental Se in mice fed the LP diet but were decreased by Se supplementation of mice given the HS feed (P-interaction < 0.02). Free thyroxine concentrations were higher in mice consuming the HS diet regardless of Se intake (P < 0.001). Hepatic mRNA for iodothyronine deiodinase I was lower (P < 0.001) in mice fed the HS diet. Supplementation of Se increased this mRNA (P < 0.001) in both diet groups. Results from this study show a significant interaction between the composition of basal diets and the effects of supplemental Se with respect to body composition. These findings have important implications for future studies in rodent models of the effects of supplemental Se on heart disease, cancer, diabetes, and other conditions related to body weight and composition. PMID:22031663

  3. Dihydrocapsiate improved age-associated impairments in mice by increasing energy expenditure.

    PubMed

    Ohyama, Kana; Suzuki, Katsuya

    2017-11-01

    Metabolic dysfunction is associated with aging and results in age-associated chronic diseases, including type 2 diabetes mellitus, cardiovascular disease, and stroke. Hence, there has been a focus on increasing energy expenditure in aged populations to protect them from age-associated diseases. Dihydrocapsiate (DCT) is a compound that belongs to the capsinoid family. Capsinoids are capsaicin analogs that are found in nonpungent peppers and increase whole body energy expenditure. However, their effect on energy expenditure has been reported only in young populations, and to date the effectiveness of DCT in increasing energy expenditure in aged populations has not been investigated. In this study, we investigated whether DCT supplementation in aged mice improves age-associated impairments. We obtained 5-wk-old and 1-yr-old male C57BL/6J mice and randomly assigned the aged mice to two groups, resulting in a total of three groups: 1 ) young mice, 2 ) old mice, and 3 ) old mice supplemented with 0.3% DCT. After 12 wk of supplementation, blood and tissue samples were collected and analyzed. DCT significantly suppressed age-associated fat accumulation, adipocyte hypertrophy, and liver steatosis. In addition, the DCT treatment dramatically suppressed age-associated increases in hepatic inflammation, immune cell infiltration, and oxidative stress. DCT exerted these suppression effects by increasing energy expenditure linked to upregulation of both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that DCT efficiently improves age-associated impairments, including liver steatosis and inflammation, in part by increasing energy expenditure via activation of the fat oxidation pathway in skeletal muscle. Copyright © 2017 the American Physiological Society.

  4. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets.

    PubMed

    Guri, Amir J; Hontecillas, Raquel; Si, Hongwei; Liu, Dongmin; Bassaganya-Riera, Josep

    2007-02-01

    Despite their efficacy in improving insulin sensitivity, thiazolidinediones (TZDs) are associated with a number of side effects (i.e. weight gain, hepatotoxicity, congestive heart failure) that have limited their use by millions of diabetic patients. We have investigated whether abscisic acid (ABA), a naturally occurring phytochemical with structural similarities to TZDs, could be used as an alternative to TZDs to improve glucose homeostasis. We first examined whether ABA, similar to TZDs, activates PPARgamma in vitro. We next determined the lowest effective dose of dietary ABA (100 mg/kg) and assessed its effect on glucose tolerance, obesity-related inflammation, and mRNA expression of PPARgamma and its responsive genes in white adipose tissue (WAT) of db/db mice fed high-fat diets. We found that ABA induced transactivation of PPARgamma in 3T3-L1 pre-adipocytes in vitro. Dietary ABA-supplementation for 36 days decreased fasting blood glucose concentrations, ameliorated glucose tolerance, and increased mRNA expression of PPARgamma and its responsive genes (i.e., adiponectin, aP2, and CD36) in WAT. We also found that adipocyte hypertrophy, tumor necrosis factor-alpha (TNF-alpha) expression, and macrophage infiltration in WAT were significantly attenuated in ABA-fed mice. These findings suggest that ABA could be used as a nutritional intervention against type II diabetes and obesity-related inflammation.

  5. Salicornia Extract Ameliorates Salt-Induced Aggravation of Nonalcoholic Fatty Liver Disease in Obese Mice Fed a High-Fat Diet.

    PubMed

    Kim, Jae Hwan; Suk, Sujin; Jang, Woo Jung; Lee, Chang Hyung; Kim, Jong-Eun; Park, Jin-Kyu; Kweon, Mee-Hyang; Kim, Jong Hun; Lee, Ki Won

    2017-07-01

    High-fat and high-salt intakes are among the major risks of chronic diseases including obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Salicornia is a halophytic plant known to exert antioxidant, antidiabetic, and hypolipidemic effects, and Salicornia-extracted salt (SS) has been used as a salt substitute. In this study, the effects of SS and purified salt (PS) on the aggravation of NAFLD/NASH were compared. C57BL/6J male mice (8-wk-old) were fed a high-fat diet (HFD) for 6 mo and divided into 3 dietary groups, which were additionally fed HFD, HFD + SS, and HFD + PS for 13 wk. PS induced aggravation of NAFLD/NASH in HFD-fed mice. Although the actual salt intake was same between the PS and SS groups as 1% of the diet (extrapolated from the World Health Organization [WHO] guideline), SS induced less liver injury and hepatic steatosis compared to PS. The hepatic mRNA expressions of inflammatory cytokines and fibrosis marker were significantly lower in the SS group than the PS group. Oxidative stress is one of the major causes of inflammation in NAFLD/NASH. Results of the component analysis showed that the major polyphenols that exhibited antioxidant activity in the Salicornia water extract were ferulic acid, caffeic acid, and isorhamnetin. These results suggest that even the level of salt intake recommended by WHO can accelerate the progression of liver disease in obese individuals consuming HFD. It is proposed that SS can be a salt substitute for obese individuals who consume HFD. © 2017 Institute of Food Technologists®.

  6. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    PubMed

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  7. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    PubMed

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Anti-obesity effects of Rapha diet® preparation in mice fed a high-fat diet

    PubMed Central

    Kim, Jihyun; Kyung, Jangbeen; Kim, Dajeong; Choi, Ehn-Kyoung; Bang, Paul

    2012-01-01

    The anti-obesity activities of Rapha diet® preparation containing silkworm pupa peptide, Garcinia cambogia, white bean extract, mango extract, raspberry extract, cocoa extract, and green tea extract were investigated in mice with dietary obesity. Male C57BL/6 mice were fed a high-fat diet (HFD) containing 3% Rapha diet® preparation for 8 weeks, and blood and tissue parameters of obesity were analyzed. The HFD markedly enhanced body weight gain by increasing the weights of epididymal, perirenal, and mesenteric adipose tissues. The increased body weight gain induced by HFD was significantly reduced by feeding Rapha diet® preparation, in which decreases in the weight of abdominal adipose tissue and the size of abdominal adipocytes were confirmed by microscopic examination. Long-term feeding of HFD increased blood triglycerides and cholesterol levels, leading to hepatic lipid accumulation. However, Rapha diet® preparation not only reversed the blood lipid levels, but also attenuated hepatic steatosis. The results indicate that Rapha diet® preparation could improve HFD-induced obesity by reducing both lipid accumulation and the size of adipocytes. PMID:23326287

  9. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice.

    PubMed

    Tung, Victoria W K; Burton, Thomas J; Quail, Stephanie L; Mathews, Miranda A; Camp, Aaron J

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5-6, 8-9 and 27-28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2-3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27-28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27-28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27-28 months. this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed.

  10. Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high-fat diet.

    PubMed

    Kim, Inhye; Kim, Haeng-Ran; Kim, Jae-Hyun; Om, Ae-Son

    2013-08-30

    This study was designed to examine the potential health benefits of Allium sativum L. (garlic) stem extract (ASSE) on obesity and related disorders in high-fat diet-induced obese mice. Obese mice were orally administered ASSE at doses of 100, 250 and 500 mg kg(-1) body weight day(-1) for 4 weeks. Consumption of ASSE significantly suppressed body weight gain and white adipose tissue (WAT) weight regardless of daily food intake. Obese mice fed ASSE also exhibited a significant decrease in WAT cell size. The decreased level of adiponectin and increased level of leptin in obese mice reverted to near normal mice levels in ASSE-treated mice. ASSE administration significantly improved lipid parameters of the serum and liver and inhibited fat accumulation in the liver by modulating the activities of hepatic lipid-regulating enzymes in obese mice. Administration of ASSE also led to significant increases in antioxidant enzymes and suppressed glutathione depletion and lipid peroxidation in hepatic tissue. These results suggest that ASSE may ameliorate obesity, insulin resistance and oxidative damage in high-fat diet-induced obese mice. © 2013 Society of Chemical Industry.

  11. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition.

    PubMed

    Pavlisova, Jana; Bardova, Kristina; Stankova, Barbora; Tvrzicka, Eva; Kopecky, Jan; Rossmeisl, Martin

    2016-05-01

    Mixed results have been obtained regarding the level of insulin resistance induced by high-fat diets rich in saturated fatty acids (SFA) when compared to those enriched by polyunsaturated fatty acids (PUFA), and how metabolic effects of marine PUFA of n-3 series, i.e. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), depend on dietary lipid background. Here we compared two high-fat diets, in which the major lipid constituent was based either on SFA in the form of pork lard (LHF diet) or PUFA of n-6 series (Omega-6) as corn oil (cHF diet). Both cHF and LHF parental diets were also supplemented with EPA+DHA (∼30 g/kg diet) to produce cHF+F and LHF+F diet, respectively. Male C57BL/6N mice were fed the experimental diets for 8 weeks. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps in mice fed LHF and cHF diets, and then metabolic effects of cHF+F and LHF+F diets were assessed focusing on the liver and epididymal white adipose tissue (eWAT). Both LHF and cHF induced comparable weight gain and the level of insulin resistance, however LHF-fed mice showed increased hepatic steatosis associated with elevated activity of stearoyl-CoA desaturase-1 (SCD1), and lower plasma triacylglycerol levels when compared to cHF. Despite lowering hepatic SCD1 activity, which was concomitant with reduced hepatic steatosis reaching the level observed in cHF+F mice, LHF+F did not decrease adiposity and the weight of eWAT, and rather further impaired insulin sensitivity relative to cHF+F, that tended to improve it. In conclusion, high-fat diets containing as much as ∼35 weight% as lipids induce similar weight gain and impairment of insulin sensitivity irrespective whether they are based on SFA or Omega-6. Although the SFA-rich diet containing EPA+DHA efficiently reduced hepatic steatosis, it did so without a corresponding improvement in insulin sensitivity and in the absence of effect on adiposity. Copyright © 2015 Elsevier B.V. and Société Fran

  12. Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice.

    PubMed

    Chang, Hui-Hua; Moro, Aune; Takakura, Kazuki; Su, Hsin-Yuan; Mo, Allen; Nakanishi, Masako; Waldron, Richard T; French, Samuel W; Dawson, David W; Hines, O Joe; Li, Gang; Go, Vay Liang W; Sinnett-Smith, James; Pandol, Stephen J; Lugea, Aurelia; Gukovskaya, Anna S; Duff, Michael O; Rosenberg, Daniel W; Rozengurt, Enrique; Eibl, Guido

    2017-01-01

    Epidemiologic data has linked obesity to a higher risk of pancreatic cancer, but the underlying mechanisms are poorly understood. To allow for detailed mechanistic studies in a relevant model mimicking diet-induced obesity and pancreatic cancer, a high-fat, high-calorie diet (HFCD) was given to P48+/Cre;LSL-KRASG12D (KC) mice carrying a pancreas-specific oncogenic Kras mutation. The mice were randomly allocated to a HFCD or control diet (CD). Cohorts were sacrificed at 3, 6, and 9 months and tissues were harvested for further analysis. Compared to CD-fed mice, HFCD-fed animals gained significantly more weight. Importantly, the cancer incidence was remarkably increased in HFCD-fed KC mice, particularly in male KC mice. In addition, KC mice fed the HFCD showed more extensive inflammation and fibrosis, and more advanced PanIN lesions in the pancreas, compared to age-matched CD-fed animals. Interestingly, we found that the HFCD reduced autophagic flux in PanIN lesions in KC mice. Further, exome sequencing of isolated murine PanIN lesions identified numerous genetic variants unique to the HFCD. These data underscore the role of sustained inflammation and dysregulated autophagy in diet-induced pancreatic cancer development and suggest that diet-induced genetic alterations may contribute to this process. Our findings provide a better understanding of the mechanisms underlying the obesity-cancer link in males and females, and will facilitate the development of interventions targeting obesity-associated pancreatic cancer.

  13. Fatty Liver Accompanies an Increase in Lactobacillus Species in the Hind Gut of C57BL/6 Mice Fed a High-Fat Diet123

    PubMed Central

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I.; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F.

    2013-01-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model. PMID:23486979

  14. Epidermal Hydration Is Improved by Enhanced Ceramide Metabolism in Aged C57BL/6J Mice After Dietary Supplementation of Royal Jelly.

    PubMed

    Jeon, Sanghun; Cho, Yunhi

    2015-09-01

    Epidermal hydration is maintained by the epidermal lipid barrier, of which ceramide (Cer) is the major constituent. We examined the dietary effect of royal jelly (RJ) on epidermal hydration in aged mice. Altered Cer metabolism was further determined by measuring epidermal levels of individual Cer, glucosylceramide (GC), and sphingomyelin (SM) species, and of Cer-metabolizing enzymes. Aged C57BL/6J mice were fed a control diet (group AGED) or diets with 1% RJ harvested from two different areas (groups AGED+RJ1:AGED + RJ2) for 16 weeks. Aged C57BL/6J mice with no dietary intervention (the control group: group C) represented the onset of aging. In group AGED, epidermal levels of hydration, Cer1/2/5/6/7, GC-A/B/C/D, SM1/2/3, and β-glucocerebrosidase (GCase) protein, an enzyme of GC hydrolysis for Cer generation, were lower than in group C; these levels, as well as those of Cer3/4 and acidic sphingomyelinase (aSMase) protein, an enzyme of SM hydrolysis for Cer generation, were higher in group AGED + RJ1 than in group AGED. Despite increases in GC-B, SM1/2/3, and serine palmitoyltransferase2 protein, an enzyme of de novo Cer synthesis, in group AGED + RJ2 to levels higher than in group AGED, epidermal levels of hydration, Cer1-7, GC-A/C/D, GCase, and aSMase proteins were similar in these two groups. Expression of GCase and aSMase mRNAs, and of Cer synthase3 and ceramidase proteins, enzymes of de novo Cer synthesis and degradation, did not differ among groups. Dietary RJ1 improved epidermal hydration by enhancing Cer metabolism with increased levels of all Cer, GC, and SM species, and of GCase and aSMase proteins.

  15. Dietary aloe vera gel powder and extract inhibit azoxymethane- induced colorectal aberrant crypt foci in mice fed a high- fat diet.

    PubMed

    Chihara, Takeshi; Shimpo, Kan; Kaneko, Takaaki; Beppu, Hidehiko; Higashiguchi, Takashi; Sonoda, Shigeru; Tanaka, Miyuki; Yamada, Muneo; Abe, Fumiaki

    2015-01-01

    Aloe vera gel exhibits protective effects against insulin resistance as well as lipid-lowering and anti-diabetic effects. The anti-diabetic compounds in this gel were identified as Aloe-sterols. Aloe vera gel extract (AVGE) containing Aloe-sterols has recently been produced using a new procedure. We previously reported that AVGE reduced large-sized intestinal polyps in Apc-deficient Min mice fed a high fat diet (HFD), suggesting that Aloe vera gel may protect against colorectal cancer. In the present study, we examined the effects of Aloe vera gel powder (AVGP) and AVGE on azoxymethane-induced colorectal preneoplastic aberrant crypt foci (ACF) in mice fed a HFD. Male C57BL/6J mice were given a normal diet (ND), HFD, HFD containing 0.5% carboxymethyl cellulose solution, which was used as a solvent for AVGE (HFDC), HFD containing 3% or 1% AVGP, and HFDC containing 0.0125% (H-) or 0.00375% (L-) AVGE. The number of ACF was significantly lower in mice given 3% AVGP and H-AVGE than in those given HFD or HFDC alone. Moreover, 3% AVGP, H-AVGE and L-AVGE significantly decreased the mean Ki-67 labeling index, assessed as a measure of cell proliferation in the colonic mucosa. In addition, hepatic phase II enzyme glutathione S-transferase mRNA levels were higher in the H-AVGE group than in the HFDC group. These results suggest that both AVGP and AVGE may have chemopreventive effects on colorectal carcinogenesis under the HFD condition. Furthermore, the concentration of Aloe-sterols was similar between 3% AVGP and H-AVGE, suggesting that Aloe-sterols were the main active ingredients in this experiment.

  16. Safety evaluation and lipid-lowering effects of food-grade biopolymer complexes (ε-polylysine-pectin) in mice fed a high-fat diet.

    PubMed

    Song, Mingyue; Lopez-Pena, Cynthia Lyliam; McClements, David Julian; Decker, Eric Andrew; Xiao, Hang

    2017-05-24

    ε-Polylysine (ε-PL) is a potent cationic antimicrobial, but its application as a food additive is currently limited because it tends to precipitate with anionic species in food matrices. Previous research has shown that the formation of an electrostatic complex between cationic ε-PL and anionic pectin (P) improved the physical stability of ε-PL while maintaining its antimicrobial activity. However, the impact of complexation on the effects of ε-PL on health is currently unknown. A subchronic toxicity study was therefore carried out to determine the safety of ingested ε-PL-P complexes using high-fat diet-fed male and female mice. After a 13-week dietary treatment with P, ε-PL, or ε-PL-P complexes, no significant toxicological effects were observed on the survival, mean body weight, food consumption, and organ weights of the animals, suggesting that the complexes were safe for oral consumption. Interestingly, the ε-PL-P complexes were found to have several beneficial health effects: suppression of high-fat diet-induced elevation of serum aspartate aminotransferase and alanine aminotransferase activities, reduction in serum total triglyceride and cholesterol levels, and an increase in fecal excretion of triglycerides. These effects were much stronger in female mice than in male mice. Moreover, the lipid-lowering effects were observed only for the ε-PL-P complexes but not for ε-PL or P alone at the same doses. Overall, our results demonstrate the oral safety of ε-PL-P complexes and their gender-specific lipid-lowering effects in high-fat diet-fed mice, which provide an important basis for the utilization of ε-PL-P complexes in food systems as functional ingredients.

  17. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice

    PubMed Central

    Wang, Bei; Zhou, Hong; Dang, Shipeng; Shi, Yufang; Hao, Li; Luo, Qingquan; Jin, Min; Zhou, Qianjun; Zhang, Yanyun

    2017-01-01

    Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging. PMID:28458256

  18. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice.

    PubMed

    Cheng, Yiji; Wang, Xue; Wang, Bei; Zhou, Hong; Dang, Shipeng; Shi, Yufang; Hao, Li; Luo, Qingquan; Jin, Min; Zhou, Qianjun; Zhang, Yanyun

    2017-04-29

    Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging.

  19. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology.

    PubMed

    Grossi, Cristina; Rigacci, Stefania; Ambrosini, Stefano; Ed Dami, Teresa; Luccarini, Ilaria; Traini, Chiara; Failli, Paola; Berti, Andrea; Casamenti, Fiorella; Stefani, Massimo

    2013-01-01

    The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and "fluffy"; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet.

  20. A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet.

    PubMed

    Gorustovich, Alejandro A; Steimetz, Tammy; Nielsen, Forrest H; Guglielmotti, María B

    2008-07-01

    Emerging evidence indicates that boron (B) plays a role in bone formation and maintenance. Thus, a study was performed to determine whether dietary B-deficiency affects periodontal alveolar bone modelling and remodelling. Weanling Swiss mice (n=30) were divided into three groups: control diet (GI, 3mg B/kg); B-deficient diet (GII, 0.07 mg B/kg); and pair-fed with GII (GIII). The animals were maintained on their respective diets for 9 weeks and then sacrificed. The guidelines of the NIH for the care and use of laboratory animals were observed. The mandibles were resected, fixed, decalcified in 10% EDTA and embedded in paraffin. Buccolingually oriented sections were obtained at the level of the mesial root of the first lower molar and stained with H-E. Histomorphometric studies were performed separately on the buccal and lingual sides of the periodontal alveolar bone. Percentages of osteoblast surfaces (ObSs), eroded surfaces (ESs), and quiescent surfaces (QSs) were determined. No statistically significant differences in food intake and body weight were observed between the groups. When compared with GI and GIII mice, GII mice (B-deficient) had 63% and 48% reductions in ObS and 58% and 73% increases in QS in buccal and lingual plates, respectively. ES were not affected by B nutriture. The results are evidence that dietary boron deprivation in mice alters periodontal alveolar bone modelling and remodelling by inhibiting bone formation.

  1. Use of Nerve Conduction Velocity to Assess Peripheral Nerve Health in Aging Mice

    PubMed Central

    Walsh, Michael E.; Sloane, Lauren B.; Fischer, Kathleen E.; Austad, Steven N.; Richardson, Arlan

    2015-01-01

    Nerve conduction velocity (NCV), the speed at which electrical signals propagate along peripheral nerves, is used in the clinic to evaluate nerve function in humans. A decline in peripheral nerve function is associated with a number of age-related pathologies. While several studies have shown that NCV declines with age in humans, there is little information on the effect of age on NCV in peripheral nerves in mice. In this study, we evaluated NCV in male and female C57Bl/6 mice ranging from 4 to 32 months of age. We observed a decline in NCV in both male and female mice after 20 months of age. Sex differences were detected in sensory NCV as well as the rate of decline during aging in motor nerves; female mice had slower sensory NCV and a slower age-related decline in motor nerves compared with male mice. We also tested the effect of dietary restriction on NCV in 30-month-old female mice. Dietary restriction prevented the age-related decline in sciatic NCV but not other nerves. Because NCV is clinically relevant to the assessment of nerve function, we recommend that NCV be used to evaluate healthspan in assessing genetic and pharmacological interventions that increase the life span of mice. PMID:25477428

  2. Restriction on an energy-dense diet improves markers of metabolic health and cellular aging in mice through decreasing hepatic mTOR activity.

    PubMed

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald; Huebbe, Patricia

    2015-02-01

    Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum-fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5'-adenosine monophosphate-activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation.

  3. Sex-specific phenotypes of hyperthyroidism and hypothyroidism in aged mice.

    PubMed

    Rakov, Helena; Engels, Kathrin; Hönes, Georg Sebastian; Brix, Klaudia; Köhrle, Josef; Moeller, Lars Christian; Zwanziger, Denise; Führer, Dagmar

    2017-12-22

    Sex and age play a role in the prevalence of thyroid dysfunction (TD), but their interrelationship for manifestation of hyper- and hypothyroidism is still not well understood. Using a murine model, we asked whether sex impacts the phenotypes of hyper- and hypothyroidism at two life stages. Hyper- and hypothyroidism were induced by i.p. T4 or MMI/ClO 4 -/LoI treatment over 7 weeks in 12- and 20-months-old female and male C57BL/6N mice. Control animals underwent PBS treatment (n = 7-11 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination and strength) and serum thyroid hormone (TH) status. Distinct sex impact was found in eu- and hyperthyroid mice, while phenotypic traits of hypothyroidism were similar in male and female mice. No sex difference was found in TH status of euthyroid mice; however, T4 treatment resulted in twofold higher TT4, FT4 and FT3 serum concentrations in adult and old females compared to male animals. Hyperthyroid females consistently showed higher locomotor activity and better coordination but more impairment of muscle function by TH excess at adult age. Importantly and in contrast to male mice, adult and old hyperthyroid female mice showed increased body weight. Higher body temperature in female mice was confirmed in all age groups. No sex impact was found on heart rate irrespective of TH status in adult and old mice. By comparison of male and female mice with TD at two life stages, we found that sex modulates TH action in an organ- and function-specific manner. Sex differences were more pronounced under hyperthyroid conditions. Importantly, sex-specific differences in features of TD in adult and old mice were not conclusively explained by serum TH status in mice.

  4. Age, experience and genetic background influence treadmill walking in mice

    PubMed Central

    Wooley, Christine M.; Xing, Shuqin; Burgess, Robert W.; Cox, Gregory A.; Seburn, Kevin L.

    2009-01-01

    WOOLEY, C.M., S. XING, R.W. BURGESS, G.A. COX, AND K.L. SEBURN. Age, experience and genetic background influence treadmill walking in mice. PHYSIOL. BEHAV. XX(X), XXX-XXX, 2008 – The use of a treadmill to gather data for gait analysis in mice is a convenient, sensitive method to evaluate motor performance. However, evidence from several species, including mice, shows that treadmill locomotion is a novel task that is not equivalent to over ground locomotion and that may be particularly sensitive to the test environment and protocol. We investigated the effects of age, genetic background and repeated trials on treadmill walking in mice and show that these factors are important considerations in the interpretation of gait data. Specifically we report that as C57BL/6J (B6) mice age, the animals use progressively longer, less frequent strides to maintain the same walking speed. The increase is most rapid between 1 and 6 months of age and is explained, in part, by changes in size and weight. We also extended previous findings showing that repeat trials cause mice to modify their treadmill gait pattern. In general, B6 mice tend to take shorter, more frequent steps and adopt a wider dynamic stance with repeated walking trials. The nature and extent of the response changes with both the number and timing of the trials and was observed with inter-trial intervals as long as 3 months. Finally, we compared the gait pattern of an additional seven inbred strains of mice and found significant variation in the length and frequency of strides used to maintain the same walking speed. The combined results offer the bases for further mechanistic studies and can be used to guide optimal experimental design. PMID:19027767

  5. Differential effects of dietary sodium intake on blood pressure and atherosclerosis in hypercholesterolemic mice.

    PubMed

    Lu, Hong; Wu, Congqing; Howatt, Deborah A; Balakrishnan, Anju; Charnigo, Richard J; Cassis, Lisa A; Daugherty, Alan

    2013-01-01

    The amount of dietary sodium intake regulates the renin angiotensin system (RAS) and blood pressure, both of which play critical roles in atherosclerosis. However, there are conflicting findings regarding the effects of dietary sodium intake on atherosclerosis. This study applied a broad range of dietary sodium concentrations to determine the concomitant effects of dietary sodium intake on the RAS, blood pressure, and atherosclerosis in mice. Eight-week-old male low-density lipoprotein receptor -/- mice were fed a saturated fat-enriched diet containing selected sodium concentrations (Na 0.01%, 0.1%, or 2% w/w) for 12 weeks. Mice in these three groups were all hypercholesterolemic, although mice fed Na 0.01% and Na 0.1% had higher plasma cholesterol concentrations than mice fed Na 2%. Mice fed Na 0.01% had greater abundances of renal renin mRNA than those fed Na 0.1% and 2%. Plasma renin concentrations were higher in mice fed Na 0.01% (14.2 ± 1.7 ng/ml/30 min) than those fed Na 0.1% or 2% (6.2 ± 0.6 and 5.8 ± 1.6 ng/ml per 30 min, respectively). However, systolic blood pressure at 12 weeks was higher in mice fed Na 2% (138 ± 3 mm Hg) than those fed Na 0.01% and 0.1% (129 ± 3 and 128 ± 4 mmHg, respectively). In contrast, mice fed Na 0.01% (0.17 ± 0.02 mm(2)) had larger atherosclerotic lesion areas in aortic roots than those fed Na 2% (0.09 ± 0.01 mm(2)), whereas lesion areas in mice fed Na 0.1% (0.12 ± 0.02 mm(2)) were intermediate between and not significantly different from those in Na 0.01% and Na 2% groups. In conclusion, while high dietary sodium intake led to higher systolic blood pressure, low dietary sodium intake augmented atherosclerosis in hypercholesterolemic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose.

    PubMed

    Volynets, Valentina; Louis, Sandrine; Pretz, Dominik; Lang, Lisa; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C

    2017-05-01

    Background: The consumption of a Western-style diet (WSD) and high fructose intake are risk factors for metabolic diseases. The underlying mechanisms are largely unclear. Objective: To unravel the mechanisms by which a WSD and fructose promote metabolic disease, we investigated their effects on the gut microbiome and barrier function. Methods: Adult female C57BL/6J mice were fed a sugar- and fat-rich WSD or control diet (CD) for 12 wk and given access to tap water or fructose-supplemented water. The microbiota was analyzed with the use of 16S rRNA gene sequencing. Barrier function was studied with the use of permeability tests, and endotoxin, mucus thickness, and gene expressions were measured. Results: The WSD increased body weight gain but not endotoxin translocation compared with the CD. In contrast, high fructose intake increased endotoxin translocation 2.6- and 3.8-fold in the groups fed the CD + fructose and WSD + fructose, respectively, compared with the CD group. The WSD + fructose treatment also induced a loss of mucus thickness in the colon (-46%) and reduced defensin expression in the ileum and colon. The lactulose:mannitol ratio in the WSD + fructose mice was 1.8-fold higher than in the CD mice. Microbiota analysis revealed that fructose, but not the WSD, increased the Firmicutes:Bacteroidetes ratio by 88% for CD + fructose and 63% for WSD + fructose compared with the CD group. Bifidobacterium abundance was greater in the WSD mice than in the CD mice (63-fold) and in the WSD + fructose mice than in the CD + fructose mice (330-fold). Conclusions: The consumption of a WSD or high fructose intake differentially affects gut permeability and the microbiome. Whether these differences are related to the distinct clinical outcomes, whereby the WSD primarily promotes weight gain and high fructose intake causes barrier dysfunction, needs to be investigated in future studies. © 2017 American Society for Nutrition.

  7. Beneficial Effect of Voluntary Exercise on Experimental Colitis in Mice Fed a High-Fat Diet: The Role of Irisin, Adiponectin and Proinflammatory Biomarkers

    PubMed Central

    Mazur-Bialy, Agnieszka Irena; Bilski, Jan; Wojcik, Dagmara; Brzozowski, Bartosz; Surmiak, Marcin; Hubalewska-Mazgaj, Magdalena; Chmura, Anna; Magierowski, Marcin; Magierowska, Katarzyna; Mach, Tomasz; Brzozowski, Tomasz

    2017-01-01

    Inflammatory bowel diseases (IBDs) are a heterogeneous group of disorders exhibited by two major phenotypic forms: Crohn‘s disease and ulcerative colitis. Although the aetiology of IBD is unknown, several factors coming from the adipose tissue and skeletal muscles, such as cytokines, adipokines and myokines, were suggested in the pathogenesis of ulcerative colitis; however, it has not been extensively studied whether voluntary exercise can ameliorate that disorder. We explored the effect of moderate exercise (i.e., voluntary wheel running) on the disease activity index (DAI), colonic blood flow (CBF), plasma irisin and adiponectin levels and real-time PCR expression of proinflammatory markers in mesenteric fat in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis fed a high-fat diet (HFD) compared to those on a standard chow diet (SD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant fall in CBF, some increase in colonic tissue weight and a significant increase in the plasma levels of tumour necrosis factor-alpha (TNF-α), IL-6, monocyte chemotactic protein 1 (MCP-1) and IL-13 (p < 0.05). In sedentary HFD mice, colonic lesions were aggravated, colonic tissue weight increased and the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels significantly increased. Simultaneously, a significant decrease in the plasma irisin and adiponectin levels was observed in comparison with SD mice (p < 0.05). Exercise significantly decreased macroscopic and microscopic colitis, substantially increased CBF and attenuated the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels while raising the plasma irisin and the plasma and WAT concentrations of adiponectin in HFD mice (p < 0.05). We conclude that: (1) experimental colitis is exacerbated in HFD mice, possibly due to a fall in colonic microcirculation and an increase in the plasma and mesenteric fat content of proinflammatory biomarkers; and (2) voluntary physical activity can

  8. Beneficial Effect of Voluntary Exercise on Experimental Colitis in Mice Fed a High-Fat Diet: The Role of Irisin, Adiponectin and Proinflammatory Biomarkers.

    PubMed

    Mazur-Bialy, Agnieszka Irena; Bilski, Jan; Wojcik, Dagmara; Brzozowski, Bartosz; Surmiak, Marcin; Hubalewska-Mazgaj, Magdalena; Chmura, Anna; Magierowski, Marcin; Magierowska, Katarzyna; Mach, Tomasz; Brzozowski, Tomasz

    2017-04-20

    Inflammatory bowel diseases (IBDs) are a heterogeneous group of disorders exhibited by two major phenotypic forms: Crohn's disease and ulcerative colitis. Although the aetiology of IBD is unknown, several factors coming from the adipose tissue and skeletal muscles, such as cytokines, adipokines and myokines, were suggested in the pathogenesis of ulcerative colitis; however, it has not been extensively studied whether voluntary exercise can ameliorate that disorder. We explored the effect of moderate exercise (i.e., voluntary wheel running) on the disease activity index (DAI), colonic blood flow (CBF), plasma irisin and adiponectin levels and real-time PCR expression of proinflammatory markers in mesenteric fat in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis fed a high-fat diet (HFD) compared to those on a standard chow diet (SD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant fall in CBF, some increase in colonic tissue weight and a significant increase in the plasma levels of tumour necrosis factor-alpha (TNF-α), IL-6, monocyte chemotactic protein 1 (MCP-1) and IL-13 ( p < 0.05). In sedentary HFD mice, colonic lesions were aggravated, colonic tissue weight increased and the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels significantly increased. Simultaneously, a significant decrease in the plasma irisin and adiponectin levels was observed in comparison with SD mice ( p < 0.05). Exercise significantly decreased macroscopic and microscopic colitis, substantially increased CBF and attenuated the plasma TNF-α, IL-6, MCP-1, IL-1β and leptin levels while raising the plasma irisin and the plasma and WAT concentrations of adiponectin in HFD mice ( p < 0.05). We conclude that: (1) experimental colitis is exacerbated in HFD mice, possibly due to a fall in colonic microcirculation and an increase in the plasma and mesenteric fat content of proinflammatory biomarkers; and (2) voluntary physical activity can

  9. Age-Dependent Ocular Dominance Plasticity in Adult Mice

    PubMed Central

    Lehmann, Konrad; Löwel, Siegrid

    2008-01-01

    Background Short monocular deprivation (4 days) induces a shift in the ocular dominance of binocular neurons in the juvenile mouse visual cortex but is ineffective in adults. Recently, it has been shown that an ocular dominance shift can still be elicited in young adults (around 90 days of age) by longer periods of deprivation (7 days). Whether the same is true also for fully mature animals is not yet known. Methodology/Principal Findings We therefore studied the effects of different periods of monocular deprivation (4, 7, 14 days) on ocular dominance in C57Bl/6 mice of different ages (25 days, 90–100 days, 109–158 days, 208–230 days) using optical imaging of intrinsic signals. In addition, we used a virtual optomotor system to monitor visual acuity of the open eye in the same animals during deprivation. We observed that ocular dominance plasticity after 7 days of monocular deprivation was pronounced in young adult mice (90–100 days) but significantly weaker already in the next age group (109–158 days). In animals older than 208 days, ocular dominance plasticity was absent even after 14 days of monocular deprivation. Visual acuity of the open eye increased in all age groups, but this interocular plasticity also declined with age, although to a much lesser degree than the optically detected ocular dominance shift. Conclusions/Significance These data indicate that there is an age-dependence of both ocular dominance plasticity and the enhancement of vision after monocular deprivation in mice: ocular dominance plasticity in binocular visual cortex is most pronounced in young animals, reduced but present in adolescence and absent in fully mature animals older than 110 days of age. Mice are thus not basically different in ocular dominance plasticity from cats and monkeys which is an absolutely essential prerequisite for their use as valid model systems of human visual disorders. PMID:18769674

  10. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice

    PubMed Central

    Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921

  11. Effect of Diets Containing Sucrose vs. D-tagatose in Hypercholesterolemic Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Police, S.; Harris, J; Lodder, R

    Effects of functional sweeteners on the development of the metabolic syndrome and atherosclerosis are unknown. The objective was to compare the effect of dietary carbohydrate in the form of sucrose (SUCR) to D-tagatose (TAG; an isomer of fructose currently used as a low-calorie sweetener) on body weight, blood cholesterol concentrations, hyperglycemia, and atherosclerosis in low-density lipoprotein receptor deficient (LDLr-/-) mice. LDLr-/- male and female mice were fed either standard murine diet or a diet enriched with TAG or SUCR as carbohydrate sources for 16 weeks. TAG and SUCR diets contained equivalent amounts (g/kg) of protein, fat, and carbohydrate. We measuredmore » food intake, body weight, adipocyte diameter, serum cholesterol and lipoprotein concentrations, and aortic atherosclerosis. Macrophage immunostaining and collagen content were examined in aortic root lesions. CONTROL and TAG-fed mice exhibited similar energy intake, body weights and blood glucose and insulin concentrations, but SUCR-fed mice exhibited increased energy intake and became obese and hyperglycemic. Adipocyte diameter increased in female SUCR-fed mice compared to TAG and CONTROL. Male and female SUCR-fed mice had increased serum cholesterol and triglyceride concentrations compared to TAG and CONTROL. Atherosclerosis was increased in SUCR-fed mice of both genders compared to TAG and CONTROL. Lesions from SUCR-fed mice exhibited pronounced macrophage immunostaining and reductions in collagen content compared to TAG and CONTROL mice. These results demonstrate that in comparison to sucrose, equivalent substitution of TAG as dietary carbohydrate does not result in the same extent of obesity, hyperglycemia, hyperlipidemia, and atherosclerosis.« less

  12. Effect of Diets Containing Sucrose vs. D-tagatose in Hypercholesterolemic Mice

    PubMed Central

    Police, Sara B.; Harris, J. Clay; Lodder, Robert A.; Cassis, Lisa A.

    2010-01-01

    Effects of functional sweeteners on the development of the metabolic syndrome and atherosclerosis are unknown. The objective was to compare the effect of dietary carbohydrate in the form of sucrose (SUCR) to D-tagatose (TAG; an isomer of fructose currently used as a low-calorie sweetener) on body weight, blood cholesterol concentrations, hyperglycemia, and atherosclerosis in low-density lipoprotein receptor deficient (LDLr−/−) mice. LDLr−/− male and female mice were fed either standard murine diet or a diet enriched with TAG or SUCR as carbohydrate sources for 16 weeks. TAG and SUCR diets contained equivalent amounts (g/kg) of protein, fat, and carbohydrate. We measured food intake, body weight, adipocyte diameter, serum cholesterol and lipoprotein concentrations, and aortic atherosclerosis. Macrophage immunostaining and collagen content were examined in aortic root lesions. CONTROL and TAG-fed mice exhibited similar energy intake, body weights and blood glucose and insulin concentrations, but SUCR-fed mice exhibited increased energy intake and became obese and hyperglycemic. Adipocyte diameter increased in female SUCR-fed mice compared to TAG and CONTROL. Male and female SUCR-fed mice had increased serum cholesterol and triglyceride concentrations compared to TAG and CONTROL. Atherosclerosis was increased in SUCR-fed mice of both genders compared to TAG and CONTROL. Lesions from SUCR-fed mice exhibited pronounced macrophage immunostaining and reductions in collagen content compared to TAG and CONTROL mice. These results demonstrate that in comparison to sucrose, equivalent substitution of TAG as dietary carbohydrate does not result in the same extent of obesity, hyperglycemia, hyperlipidemia, and atherosclerosis. PMID:19008872

  13. Effect of diets containing sucrose vs. D-tagatose in hypercholesterolemic mice.

    PubMed

    Police, Sara B; Harris, J Clay; Lodder, Robert A; Cassis, Lisa A

    2009-02-01

    Effects of functional sweeteners on the development of the metabolic syndrome and atherosclerosis are unknown. The objective was to compare the effect of dietary carbohydrate in the form of sucrose (SUCR) to D-tagatose (TAG; an isomer of fructose currently used as a low-calorie sweetener) on body weight, blood cholesterol concentrations, hyperglycemia, and atherosclerosis in low-density lipoprotein receptor deficient (LDLr(-/-)) mice. LDLr(-/-) male and female mice were fed either standard murine diet or a diet enriched with TAG or SUCR as carbohydrate sources for 16 weeks. TAG and SUCR diets contained equivalent amounts (g/kg) of protein, fat, and carbohydrate. We measured food intake, body weight, adipocyte diameter, serum cholesterol and lipoprotein concentrations, and aortic atherosclerosis. Macrophage immunostaining and collagen content were examined in aortic root lesions. CONTROL and TAG-fed mice exhibited similar energy intake, body weights and blood glucose and insulin concentrations, but SUCR-fed mice exhibited increased energy intake and became obese and hyperglycemic. Adipocyte diameter increased in female SUCR-fed mice compared to TAG and CONTROL. Male and female SUCR-fed mice had increased serum cholesterol and triglyceride concentrations compared to TAG and CONTROL. Atherosclerosis was increased in SUCR-fed mice of both genders compared to TAG and CONTROL. Lesions from SUCR-fed mice exhibited pronounced macrophage immunostaining and reductions in collagen content compared to TAG and CONTROL mice. These results demonstrate that in comparison to sucrose, equivalent substitution of TAG as dietary carbohydrate does not result in the same extent of obesity, hyperglycemia, hyperlipidemia, and atherosclerosis.

  14. Decursin, an active compound isolated from Angelica gigas, inhibits fat accumulation, reduces adipocytokine secretion and improves glucose tolerance in mice fed a high-fat diet.

    PubMed

    Hwang, Jin-Taek; Kim, Sung Hee; Hur, Haeng Jeon; Kim, Hyun Jin; Park, Jae Ho; Sung, Mi Jeong; Yang, Hye Jeong; Ryu, Shi Yong; Kim, Young Sup; Cha, Mi Ran; Kim, Myung Sunny; Kwon, Dae Young

    2012-05-01

    Decursin (De), an active component of Angelica gigas, is known to exert anticancer and neuroprotective effects. However, its antiobesity and antidiabetic potential has not yet been investigated. This study evaluated the antiobesity effect of decursin, particularly focusing on its ability to inhibit adipocyte differentiation in 3T3-L1 cells. Decursin treatment resulted in the inhibition of adipocyte differentiation and the expression of fatty acid synthase. The study further investigated these antiobesity effects using mice fed a normal diet (ND), a high-fat diet (HFD) and a HFD plus decursin 200 mg/kg diet (HFD + De) for 7 weeks. Mice administered HFD plus decursin showed a drastic decrease in weight gain, triglyceride content, total cholesterol content and fat size compared with those that received the HFD alone; this was observed despite similar quantities of total food intake. Furthermore, decursin improved glucose tolerance in mice fed a HFD. Finally, administration of decursin along with the HFD significantly reduced the secretion of HFD-induced adipocytokines such as leptin, resistin, IL-6 and MCP-1. These results suggest that decursin might be useful for the treatment of obesity and diabetes. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet.

    PubMed

    Umezawa, Masakazu; Nakamura, Masayuki; El-Ghoneimy, Ashraf A; Onoda, Atsuto; Shaheen, Hazem M; Hori, Hiroshi; Shinkai, Yusuke; El-Sayed, Yasser S; El-Far, Ali H; Takeda, Ken

    2018-01-01

    Exposure to diesel exhaust (DE) exacerbates non-alcoholic fatty liver disease, and may systemically affect lipid metabolism. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have anti-inflammatory activity and suppresses hepatic triacylglycerol accumulation, but many daily diets are deficient in this nutrient. Therefore, the effect of DE exposure in mice fed n-3 PUFA-deficient diet was investigated. Mice were fed control chow or n-3 PUFA-deficient diet for 4 weeks, then exposed to clean air or DE by inhalation for further 4 weeks. Liver histology, plasma parameters, and expression of fatty acid synthesis-related genes were evaluated. N-3 PUFA-deficient diet increased hepatic lipid droplets accumulation and expression of genes promoting fatty acid synthesis: Acaca, Acacb, and Scd1. DE further increased the plasma leptin and the expression of fatty acid synthesis-related genes: Acacb, Fasn, and Scd1. N-3 PUFA-deficient diet and DE exposure potentially enhanced hepatic fatty acid synthesis and subsequently accumulation of lipid droplets. The combination of low-dose DE exposure and intake of n-3 PUFA-deficient diet may be an additional risk factor for the incidence of non-alcoholic fatty liver disease. The present study suggests an important mechanism for preventing toxicity of DE on the liver through the incorporation of n-3 PUFAs in the diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of social isolation, re-socialization and age on cognitive and aggressive behaviors of Kunming mice and BALB/c mice.

    PubMed

    An, Dong; Chen, Wei; Yu, De-Qin; Wang, Shi-Wei; Yu, Wei-Zhi; Xu, Hong; Wang, Dong-Mei; Zhao, Dan; Sun, Yi-Ping; Wu, Jun-Cheng; Tang, Yi-Yuan; Yin, Sheng-Ming

    2017-05-01

    Both Kunming (KM) mice and BALB/c mice have been widely used as rodent models to investigate stress-associated mental diseases. However, little is known about the different behaviors of KM mice and BALB/c mice after social isolation, particularly cognitive and aggressive behaviors. In this study, the behaviors of KM and BALB/c mice isolated for 2, 4 and 8 weeks and age-matched controls were evaluated using object recognition, object location and resident-intruder tests. The recovery of behavioral deficits by re-socialization was also examined for the isolated mice in adolescence. Our study showed that isolation for 2, 4 and 8 weeks led to cognitive deficits and increased aggressiveness for both KM and BALB/c mice. An important finding is that re-socialization could completely recover spatial/non-spatial cognitive deficits resulted from social isolation for both KM and BALB/c mice. In addition, age only impacted aggressiveness of KM mice. Moreover, isolation duration showed different impacts on cognitive and aggressive behaviors for both KM and BALB/c mice. Furthermore, BALB/c mice showed weak spatial/non-spatial memory and low aggressiveness when they were at the same age and isolation duration, compared to KM mice. In conclusion, KM mice and BALB/c mice behaved characteristically under physiology and isolation conditions. © 2016 Japanese Society of Animal Science.

  17. [Effects of aquaporin-4 gene knockout on behavior changes and cerebral morphology during aging in mice].

    PubMed

    Su, Shengan; Lu, Yunbi; Zhang, Weiping

    2013-05-01

    To investigate the effects of aquaporin-4 (AQP4) gene knockout on the behavior changes and cerebral morphology during aging in mice,and to compare that of young and aged mice between AQP4 knockout mice (AQP4(-/-)) and wild type mice (AQP4(+/+)). Fifty-eight CD-1 mice were divided into four groups: young (2-3 months old) AQP4(-/-), aged (17-19 months old) AQP4(-/-), young AQP4(+/+) and aged AQP4(+/+). The activity levels and exploring behavior of mice were tested in open field. The neurons were stained with toluidine blue and NeuN, the astrocytes and microglia were stained with GFAP and Iba-1, respectively. The morphological changes of neuron, astrocyte and microglia were then analyzed. Compared with young mice, the total walking distance in open field of aged AQP4(+/+) mice and aged AQP4(-/-) mice decreased 41.2% and 44.1%, respectively (P<0.05); while there was no difference in the ratio of distance and retention time in the central area of open field. The density of neuron in cortex of aged AQP4(+/+) mice and aged AQP4(-/-) mice decreased 19.6% and 15.8%, respectively (P<0.05), while there was no difference in the thickness of neuron cell body in hippocampus CA1 region. The density of astrocyte in hippocampus CA3 region of aged AQP4(+/+) mice and aged AQP4(-/-) mice increased 57.7% and 64.3%, respectively (P<0.001), while there was no difference in the area of astrocyte. The area of microglia in hippocampus CA3 region of aged AQP4(+/+) mice and aged AQP4(-/-) mice increased 46.9% and 52.0%, respectively (P<0.01), while there was no difference in the density of microglia. Compared with AQP4(+/+) mice, the young and aged AQP4(-/-) mice showed smaller area of astrocyte in hippocampus CA3 region, reduced 18.0% in young mice and 23.6% in aged mice. There was no difference between AQP4(+/+) mice and AQP4(-/-) mice for other observed indexes. AQP4 may be involved in change of astrocyte and astrocyte-related behaviors during aging. AQP4 gene knockout may have limited

  18. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice.

    PubMed

    Song, Jia; Chu, Shuaishuai; Cui, Yin; Qian, Yue; Li, Xiuxiu; Xu, Fangxia; Shao, Xueming; Ma, Zhengliang; Xia, Tianjiao; Gu, Xiaoping

    2018-04-13

    Postoperative cognitive dysfunction (POCD) is a common clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery. Advanced age is a significant independent risk factor for POCD. We previously reported that in young mice, sleep-wake rhythm is involved in the isoflurane-induced memory impairment. In present study, we sought to determine whether advanced age increased the risk of POCD through aggravated and prolonged post-anesthetic circadian disruption in the elderly. We constructed POCD model by submitting the mice to 5-h 1.3% isoflurane anesthesia from Zeitgeber Time (ZT) 14 to ZT19. Under novel object recognition assay (NOR) and Morris water maze (MWM) test, We found 5-h isoflurane anesthesia impaired the cognition of young mice for early 3 days after anesthesia but damaged the aged for at least 1 week. With Mini-Mitter continuously monitoring, a 3.22 ± 0.75 h gross motor activity acrophase delay was manifested in young mice on D1, while in the aged mice, the gross motor activity phase shift lasted for 3 days, consistent with the body temperature rhythm trends of change. Melatonin has been considered as an effective remedy for circadian rhythm shift. In aged mice, melatonin was pretreated intragastrically at the dose of 10 mg/kg daily for 7 consecutive days before anesthesia. We found that melatonin prevented isoflurane-induced cognitive impairments by restoring the locomotor activity and temperature circadian rhythm via clock gene resynchronization. Overall, these results indicated that Long-term isoflurane anesthesia induced more aggravated and prolonged memory deficits and circadian rhythms disruption in aged mice. Melatonin could prevent isoflurane-induced cognitive impairments by circadian rhythm resynchronization. Copyright © 2018. Published by Elsevier Inc.

  19. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice.

    PubMed

    Selvaratnam, Johanna S; Robaire, Bernard

    2016-09-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat(-/-)) and SOD1-null (Sod(-/-)) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod(-/-) mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod(-/-) mice, while aged Cat(-/-) mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat(-/-) mice but was consistently low in young and aged Sod(-/-) mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod(-/-) and Cat(-/-) mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat(-/-) and in Sod(-/-) mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod(-/-) mice and with age in all mice. These studies show that aged Sod(-/-) mice display severe redox dysfunction, while wild-type and Cat(-/-) mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. © 2016 by the Society for the Study of Reproduction, Inc.

  20. Hearts from Mice Fed a Non-Obesogenic High-Fat Diet Exhibit Changes in Their Oxidative State, Calcium and Mitochondria in Parallel with Increased Susceptibility to Reperfusion Injury

    PubMed Central

    Littlejohns, Ben; Pasdois, Philippe; Duggan, Simon; Bond, Andrew R.; Heesom, Kate; Jackson, Christopher L.; Angelini, Gianni D.; Halestrap, Andrew P.; Suleiman, M.-Saadeh

    2014-01-01

    Rationale High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown. Objectives To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury. Methods and Results Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet. Conclusions This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults. PMID:24950187

  1. The Effect of Flax Seed (Linum Usitatissimum) Hydroalcoholic Extract on Brain, Weight and Plasma Sexual Hormone Levels in Aged and Young Mice.

    PubMed

    Bahmanpour, Soghra; Kamali, Mahsa

    2016-05-01

    Flax is a food and fiber crop that is grown in some regions of the world. Its value will account for its great popularity as a food, medical and cosmetic applications. Flax fibers are taken from the stem of the plant and are two to three times as strong as cotton. In this study, we compared brain weight and plasma sex hormone levels in young and aged mice after the administration of Linum usitatissimum (flax seed) hydro alcoholic extract. In this study, 32 aged and 32 young mice were divided into 4 groups. Controls remained untreated and experimental groups were fed with flax seed hydroalcoholic extract by oral gavages during 3 weeks. After 3 weeks, the brain was removed and blood samples were collected to measure sex hormone levels by ELISA. Data analysis was done by statistical ANOVA test using SPSS version 18 (P<0.05). The results of this study shows that the brain weight of mice did not change significantly, but the sex hormone levels in the experimental groups in comparison with the control groups increased significantly (P<0.05). The hydroalcoholic extract of flax seed had no effect on the brain weight, but this extract improved the sexual hormone levels.

  2. Hematopoiesis and aging. V. A decline in hematocrit occurs in all aging female B6D2F1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, D.R.; Patrene, K.

    Longitudinal studies of hematocrits were done in aging B6D2F1 female mice at 54, 64, 91, 105 and 115 weeks of age. A modest decline in hematocrit was observed in 41/42 mice; we have previously shown that the decreased hematocrit of aged as compared to young mice is due to an expansion of plasma volume. Mice which died spontaneously after 91 weeks had lower hematocrits at 91 weeks and 105 weeks than did those which survived to 115 weeks. At each time interval, a sub-group of mice was killed and uptake of /sup 59/Fe into blood, foreleg, spleen and liver wasmore » studied and total nucleated cells per humerus was determined. The results were generally compatible with the thesis that aging mice maintain normal rates of erythropoiesis under basal conditions. Thus, it would appear that a decrease in hematocrit can be considered an expected part of the aging process in this mouse.« less

  3. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    USDA-ARS?s Scientific Manuscript database

    Consumption of an obesigenic / high-fat (HF) diet is associated with an increase of inflammation-related colon cancer risk and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory processes and changes gut microbiome composition, C57BL/6 mice were fed a HF ...

  4. The effect of aging on efferent nerve fibers regeneration in mice.

    PubMed

    Verdú, E; Butí, M; Navarro, X

    1995-10-23

    This study evaluates the influence of aging on nerve regeneration and reinnervation of target organs in mice aged 2, 6, 9, 12, 18 and 24 months. In animals of each age group the sciatic nerve was subjected to crush, section or section and suture. Reinnervation of plantar muscles and sweat glands (SG) was evaluated over three months after operation by functional methods. Reappearance of SG secretion and motor responses occurred slightly earlier in young than older mice. The degree of motor and sudomotor reinnervation, with respect to preoperative control values, was also significantly higher in young than old animals. The differences were more pronounced after 12 months of age. The degree of recovery progressively decreased with the severity of the lesion, differences being more marked in older mice. Neurorraphy improved recovery, comparatively more in older than in young mice. These results indicate that, after injuries of peripheral nerves, axonal regeneration and reinnervation are maintained throughout life, but tend to be more delayed and slightly less effective with aging.

  5. Microvascular dysfunction with increased vascular leakage response in mice systemically exposed to arsenic.

    PubMed

    Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan

    2014-09-01

    The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.

  6. The α-Tocopherol Form of Vitamin E Reverses Age-Associated Susceptibility to Streptococcus pneumoniae Lung Infection by Modulating Pulmonary Neutrophil Recruitment

    PubMed Central

    Ghanem, Elsa N. Bou; Clark, Stacie; Du, Xiaogang; Wu, Dayong; Camilli, Andrew; Leong, John M.; Meydani, Simin N.

    2016-01-01

    Streptococcus pneumoniae infections are an important cause of morbidity and mortality in older patients. Uncontrolled neutrophil-driven pulmonary inflammation exacerbates this disease. To test whether the α-tocopherol (α-Toc) form of vitamin E, a regulator of immunity, can modulate neutrophil responses as a preventive strategy to mitigate the age-associated decline in resistance to S. pneumoniae, young (4 mo) and old (22–24 mo) C57BL/6 mice were fed a diet containing 30-PPM (control) or 500-PPM (supplemented) α-Toc for 4 wk and intratracheally infected with S. pneumoniae. Aged mice fed a control diet were exquisitely more susceptible to S. pneumoniae than young mice. At 2 d postinfection, aged mice suffered 1000-fold higher pulmonary bacterial burden, 2.2-fold higher levels of neutrophil recruitment to the lung, and a 2.25-fold higher rate of lethal septicemia. Strikingly, α-Toc supplementation of aged mice resulted in a 1000-fold lower bacterial lung burden and full control of infection. This α-Toc–induced resistance to pneumococcal challenge was associated with a 2-fold fewer pulmonary neutrophils, a level comparable to S. pneumoniae–challenged, conventionally fed young mice. α-Toc directly inhibited neutrophil egress across epithelial cell monolayers in vitro in response to pneumococci or hepoxilin-A3, an eicosanoid required for pneumococcus-elicited neutrophil trans-epithelial migration. α-Toc altered expression of multiple epithelial and neutrophil adhesion molecules involved in migration, including CD55, CD47, CD18/CD11b, and ICAM-1. These findings suggest that α-Toc enhances resistance of aged mice to bacterial pneumonia by modulating the innate immune response, a finding that has potential clinical significance in combating infection in aged individuals through nutritional intervention. PMID:25512603

  7. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    PubMed

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.

  8. Coffee and caffeine improve insulin sensitivity and glucose tolerance in C57BL/6J mice fed a high-fat diet.

    PubMed

    Matsuda, Yuji; Kobayashi, Misato; Yamauchi, Rie; Ojika, Makoto; Hiramitsu, Masanori; Inoue, Takashi; Katagiri, Takao; Murai, Atsushi; Horio, Fumihiko

    2011-01-01

    We have previously demonstrated that coffee and caffeine ameliorated hyperglycemia in spontaneously diabetic KK-A(y) mice. This present study evaluates the antidiabetic effects of coffee and caffeine on high-fat-diet-induced impaired glucose tolerance in C57BL/6J mice. C57BL/6J mice fed a high-fat diet were given regular drinking water (control group), or a 2.5-fold-diluted coffee or caffeine solution (200 mg/L) for 17 weeks. The ingestion of coffee or caffeine improved glucose tolerance, insulin sensitivity, and hyperinsulinemia when compared with mice in the control group. The adipose tissue mRNA levels of inflammatory adipocytokines (MCP-1 and IL-6) and the liver mRNA levels of genes related to fatty acid synthesis were lower in the coffee and caffeine groups than those in the control group. These results suggest that coffee and caffeine exerted an ameliorative effect on high-fat-diet-induced impaired glucose tolerance by improving insulin sensitivity. This effect might be attributable in part to the reduction of inflammatory adipocytokine expression.

  9. Reduced Oxidant Stress and Extended Lifespan in Mice Exposed to a Low Glycotoxin Diet

    PubMed Central

    Cai, Weijing; He, John Cijiang; Zhu, Li; Chen, Xue; Wallenstein, Sylvan; Striker, Gary E.; Vlassara, Helen

    2007-01-01

    Aging is accompanied by increased oxidative stress (OS) and accumulation of advanced glycation end products (AGEs). AGE formation in food is temperature-regulated, and ingestion of nutrients prepared with excess heat promotes AGE formation, OS, and cardiovascular disease in mice. We hypothesized that sustained exposure to the high levels of pro-oxidant AGEs in normal diets (RegAGE) contributes to aging via an increased AGE load, which causes AGER1 dysregulation and depletion of anti-oxidant capacity, and that an isocaloric, but AGE-restricted (by 50%) diet (LowAGE), would decrease these abnormalities. C57BL6 male mice with a life-long exposure to a LowAGE diet had higher than baseline levels of tissue AGER1 and glutathione/oxidized glutathione and reduced plasma 8-isoprostanes and tissue RAGE and p66shc levels compared with mice pair-fed the regular (RegAGE) diet. This was associated with a reduction in systemic AGE accumulation and amelioration of insulin resistance, albuminuria, and glomerulosclerosis. Moreover, lifespan was extended in LowAGE mice, compared with RegAGE mice. Thus, OS-dependent metabolic and end organ dysfunction of aging may result from life-long exposure to high levels of glycoxidants that exceed AGER1 and anti-oxidant reserve capacity. A reduced AGE diet preserved these innate defenses, resulting in decreased tissue damage and a longer lifespan in mice. PMID:17525257

  10. Comparative evaluation of anti-obesity effect of Aloe vera and Gymnema sylvestre supplementation in high-fat diet fed C57BL/6J mice.

    PubMed

    Pothuraju, Ramesh; Sharma, Raj Kumar; Rather, Sarver Ahmed; Singh, Satvinder

    2016-01-01

    The aim of the present study was to investigate, anti-obesity effect of Aloe vera (AV), and Gymnema sylvestre (GS) whole extract powders administration to high-fat diet (HFD) fed C57BL/6J mice for 12 weeks. At the end of experiment, different parameters such as body weight, feed intake, organ weights, fasting blood glucose, oral glucose tolerance test, plasma lipid levels, and expression analysis of adipocytokines were evaluated. At the end of experimental period, oral administration of both herbs showed a significant ( P < 0.05 and P < 0.001) decrease in the plasma glucose and lipid levels in HFD fed mice. In addition, increased in the epididymal fat (E. fat) weight in the HFD group was significantly ( P < 0.05) reduced on GS administration alone. Finally, quantitative mRNA expression analysis of adiponectin gene was significantly up-regulated in AV supplementation. Further, no effect was observed with the both herbs on pro-inflammatory cytokines (interleukin 6 and tumor necrosis factor-a) in the E. fat tissue of HFD fed group. The anti-obesity and other metabolic studies depend on the type of diet, different parts of herbal extractions, and animal models used. Further studies are required in this area to strengthen the anti-obesity effects of herbs with active component, and it can be used a pro-drug instead of whole extract.

  11. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice.

    PubMed

    Shih, Chun-Ching; Shlau, Min-Tzong; Lin, Cheng-Hsiu; Wu, Jin-Bin

    2014-03-01

    Momordica charantia Linn. (Cucurbitaceae) fruit is commonly known as bitter melon. C57BL/6J mice were firstly divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% high-fat (HF) diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and still on HF diet and was given orally M. charantia extract (MCE) or rosiglitazone (Rosi) or not for 4 weeks. M. charantia decreased the weights of visceral fat and caused glucose lowering. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. MCE significantly increases the hepatic protein contents of AMPK phosphorylation by 126.2-297.3% and reduces expression of phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Most importantly, MCE decreased expression of hepatic 11beta hydroxysteroid dehydroxygenase (11beta-HSD1) gene, which contributed in attenuating diabetic state. Furthermore, MCE lowered serum triglycerides (TGs) by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein 1c and fatty acid synthase mRNA leading to reduction in TGs synthesis. This study demonstrates M. charantia ameliorates diabetic and hyperlipidemic state in HF-fed mice occurred by regulation of hepatic PEPCK, 11beta-HSD1 and AMPK phosphorylation. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Antilithiasic and Hypolipidaemic Effects of Raphanus sativus L. var. niger on Mice Fed with a Lithogenic Diet

    PubMed Central

    Castro-Torres, Ibrahim Guillermo; Naranjo-Rodríguez, Elia Brosla; Domínguez-Ortíz, Miguel Ángel; Gallegos-Estudillo, Janeth; Saavedra-Vélez, Margarita Virginia

    2012-01-01

    In Mexico, Raphanus sativus L. var. niger (black radish) has uses for the treatment of gallstones and for decreasing lipids serum levels. We evaluate the effect of juice squeezed from black radish root in cholesterol gallstones and serum lipids of mice. The toxicity of juice was analyzed according to the OECD guidelines. We used female C57BL/6 mice fed with a lithogenic diet. We performed histopathological studies of gallbladder and liver, and measured concentrations of cholesterol, HDL cholesterol and triglycerides. The juice can be considered bioactive and non-toxic; the lithogenic diet significantly induced cholesterol gallstones; increased cholesterol and triglycerides levels, and decreased HDL levels; gallbladder wall thickness increased markedly, showing epithelial hyperplasia and increased liver weight. After treatment with juice for 6 days, cholesterol gallstones were eradicated significantly in the gallbladder of mice; cholesterol and triglycerides levels decreased too, and there was also an increase in levels of HDL (P < 0.05). Gallbladder tissue continued to show epithelial hyperplasia and granulocyte infiltration; liver tissue showed vacuolar degeneration. The juice of black radish root has properties for treatment of cholesterol gallstones and for decreasing serum lipids levels; therefore, we confirm in a preclinical study the utility that people give it in traditional medicine. PMID:23093836

  13. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    USDA-ARS?s Scientific Manuscript database

    Consumption of an obesigenic / high-fat (HF) diet is associated with a high colon cancer risk, and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed a HF (45% energy) or low-fat (LF) (...

  14. Psychological stress exposure to aged mice causes abnormal feeding patterns with changes in the bout number.

    PubMed

    Yamada, Chihiro; Mogami, Sachiko; Hattori, Tomohisa

    2017-11-09

    Stress responses are affected by aging. However, studies on stress-related changes in feeding patterns with aging subject are minimal. We investigated feeding patterns induced by two psychological stress models, revealing characteristics of stress-induced feeding patterns as "meal" and "bout" (defined as the minimum feeding behavior parameters) in aged mice. Feeding behaviors of C57BL/6J mice were monitored for 24 h by an automatic monitoring device. Novelty stress reduced the meal amount over the 24 h in both young and aged mice, but as a result of a time course study it was persistent in aged mice. In addition, the decreased bout number was more pronounced in aged mice than in young mice. The 24-h meal and bout parameters did not change in either the young or aged mice following water avoidance stress (WAS). However, the meal amount and bout number increased in aged mice for 0-6 h after WAS exposure but remained unchanged in young mice. Our findings suggest that changes in bout number may lead to abnormal stress-related feeding patterns and may be one tool for evaluating eating abnormality in aged mice.

  15. Suppression of Oxidative Stress by Resveratrol After Isometric Contractions in Gastrocnemius Muscles of Aged Mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Williamson, Courtney L.; Dabkowski, Erinne R.; Hollander, John M.

    2010-01-01

    This study tested the hypothesis that resveratrol supplementation would lower oxidative stress in exercised muscles of aged mice. Young (3 months) and aged (27 months) C57BL/6 mice received a control or a 0.05% trans-resveratrol-supplemented diet for 10 days. After 7 days of dietary intervention, 20 maximal electrically evoked isometric contractions were obtained from the plantar flexors of one limb in anesthetized mice. Exercise was conducted for three consecutive days. Resveratrol supplementation blunted the exercise-induced increase in xanthine oxidase activity in muscles from young (25%) and aged (53%) mice. Resveratrol lowered H2O2 levels in control (13%) and exercised (38%) muscles from aged animals, reduced Nox4 protein in both control and exercised muscles of young (30%) and aged mice (40%), and increased the ratio of reduced glutathione to oxidized glutathione in exercised muscles from young (38%) and aged (135%) mice. Resveratrol prevented the increase in lipid oxidation, increased catalase activity, and increased MnSOD activity in exercised muscles from aged mice. These data show that dietary resveratrol suppresses muscle indicators of oxidative stress in response to isometric contractions in aged mice. PMID:20507922

  16. Nrf2 Deficiency Exacerbates Obesity-Induced Oxidative Stress, Neurovascular Dysfunction, Blood-Brain Barrier Disruption, Neuroinflammation, Amyloidogenic Gene Expression, and Cognitive Decline in Mice, Mimicking the Aging Phenotype.

    PubMed

    Tarantini, Stefano; Valcarcel-Ares, M Noa; Yabluchanskiy, Andriy; Tucsek, Zsuzsanna; Hertelendy, Peter; Kiss, Tamas; Gautam, Tripti; Zhang, Xin A; Sonntag, William E; de Cabo, Rafael; Farkas, Eszter; Elliott, Michael H; Kinter, Michael T; Deak, Ferenc; Ungvari, Zoltan; Csiszar, Anna

    2018-06-14

    Obesity has deleterious effects on cognitive function in the elderly adults. In mice, aging exacerbates obesity-induced oxidative stress, microvascular dysfunction, blood-brain barrier (BBB) disruption, and neuroinflammation, which compromise cognitive health. However, the specific mechanisms through which aging and obesity interact to remain elusive. Previously, we have shown that Nrf2 signaling plays a critical role in microvascular resilience to obesity and that aging is associated with progressive Nrf2 dysfunction, promoting microvascular impairment. To test the hypothesis that Nrf2 deficiency exacerbates cerebromicrovascular dysfunction induced by obesity Nrf2+/+ and Nrf2-/-, mice were fed an adipogenic high-fat diet (HFD). Nrf2 deficiency significantly exacerbated HFD-induced oxidative stress and cellular senescence, impairment of neurovascular coupling responses, BBB disruption, and microglia activation, mimicking the aging phenotype. Obesity in Nrf2-/- mice elicited complex alterations in the amyloidogenic gene expression profile, including upregulation of amyloid precursor protein. Nrf2 deficiency and obesity additively reduced long-term potentiation in the CA1 area of the hippocampus. Collectively, Nrf2 dysfunction exacerbates the deleterious effects of obesity, compromising cerebromicrovascular and brain health by impairing neurovascular coupling mechanisms, BBB integrity and synaptic function and promoting neuroinflammation. These results support a possible role for age-related Nrf2 dysfunction in the pathogenesis of vascular cognitive impairment and Alzheimer's disease.

  17. Coordinated improvement in glucose tolerance, liver steatosis and obesity-associated inflammation by cannabinoid 1 receptor antagonism in fat Aussie mice.

    PubMed

    Bell-Anderson, K S; Aouad, L; Williams, H; Sanz, F R; Phuyal, J; Larter, C Z; Farrell, G C; Caterson, I D

    2011-12-01

    Fat Aussie mice (foz/foz) are morbidly obese, glucose intolerant and have liver steatosis that develops into steatohepatitis on a high-fat diet. The cannabinoid 1 receptor (CB1) antagonist SR141716 has been shown to improve obesity-associated metabolic complications in humans and rodent models. The aim of this study was to assess the effect of SR141716 in foz/foz mice. Male wildtype (WT) and foz/foz mice were fed a chow or high-fat diet (45% saturated fat). Vehicle or SR141716 (10 mg kg(-1) per day) was administered in jelly once daily for 4 weeks from 4 months of age. Foz/foz mice were obese but had less epididymal adipose tissue mass than fat-fed WT mice despite being significantly heavier. Liver weight was increased by twofold in foz/foz compared with WT mice and showed significant steatogenesis associated with impaired liver function. Foz/foz and fat-fed WT mice were glucose intolerant as determined by oral glucose tolerance test. In chow-fed foz/foz mice, SR141716 reduced body weight, liver weight, reversed hepatosteatosis and glucose intolerance. Subcutaneous white adipose tissue gene expression of the macrophage-specific marker Cd68 reflected the improvements in the metabolic status by SR141716 in these mice. The results are consistent with the hypothesis that foz/foz mice have defective lipid metabolism, are unable to adequately store fat in adipose tissue but instead sequester fat ectopically in other metabolic tissues (liver) leading to insulin resistance and hepatic steatosis associated with inflammation. Our findings suggest that SR141716 can improve liver lipid metabolism in foz/foz mice in line with improved insulin sensitivity and adipose tissue inflammation.

  18. Sod2 haploinsufficiency does not accelerate aging of telomere dysfunctional mice

    PubMed Central

    Guachalla, Luis Miguel; Ju, Zhenyu; Koziel, Rafal; von Figura, Guido; Song, Zhangfa; Fusser, Markus; Epe, Bernd; Jansen-Dűrr, Pidder; Rudolph, K. Lenhard

    2009-01-01

    Telomere shortening represents a causal factor of cellular senescence. At the same time, several lines of evidence indicate a pivotal role of oxidative DNA damage for the aging process in vivo. A causal connection between the two observations was suggested by experiments showing accelerated telomere shorting under conditions of oxidative stress in cultured cells, but has never been studied in vivo. We therefore have analysed whether an increase in mitochondrial derived oxidative stress in response to heterozygous deletion of superoxide dismutase (Sod2+/-) would exacerbate aging phenotypes in telomere dysfunctional (mTerc-/-) mice. Heterozygous deletion of Sod2 resulted in reduced SOD2 protein levels and increased oxidative stress in aging telomere dysfunctional mice, but this did not lead to an increase in basal levels of oxidative nuclear DNA damage, an accumulation of nuclear DNA breaks, or an increased rate of telomere shortening in the mice. Moreover, heterozygous deletion of Sod2 did not accelerate the depletion of stem cells and the impairment in organ maintenance in aging mTerc-/- mice. In agreement with these observations, Sod2 haploinsufficiency did not lead to a further reduction in lifespan of mTerc-/- mice. Together, these results indicate that a decrease in SOD2-dependent antioxidant defence does not exacerbate aging in the context of telomere dysfunction. PMID:20195488

  19. Rapamycin Increases Mortality in db/db Mice, a Mouse Model of Type 2 Diabetes.

    PubMed

    Sataranatarajan, Kavithalakshmi; Ikeno, Yuji; Bokov, Alex; Feliers, Denis; Yalamanchili, Himabindu; Lee, Hak Joo; Mariappan, Meenalakshmi M; Tabatabai-Mir, Hooman; Diaz, Vivian; Prasad, Sanjay; Javors, Martin A; Ghosh Choudhury, Goutam; Hubbard, Gene B; Barnes, Jeffrey L; Richardson, Arlan; Kasinath, Balakuntalam S

    2016-07-01

    We examined the effect of rapamycin on the life span of a mouse model of type 2 diabetes, db/db mice. At 4 months of age, male and female C57BLKSJ-lepr (db/db) mice (db/db) were placed on either a control diet, lacking rapamycin or a diet containing rapamycin and maintained on these diets over their life span. Rapamycin was found to reduce the life span of the db/db mice. The median survival of male db/db mice fed the control and rapamycin diets was 349 and 302 days, respectively, and the median survival of female db/db mice fed the control and rapamycin diets was 487 and 411 days, respectively. Adjusting for gender differences, rapamycin increased the mortality risk 1.7-fold in both male and female db/db mice. End-of-life pathological data showed that suppurative inflammation was the main cause of death in the db/db mice, which is enhanced slightly by rapamycin treatment. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Suppression of oral tolerance by Lactococcus lactis in mice.

    PubMed

    Sakai, Tohru; Hirota, Yuko; Nakamoto, Mariko; Shuto, Emi; Hosaka, Toshio; Makino, Seiya; Ikegami, Shuji

    2011-01-01

    Although oral ovabumin (OVA) administration suppressed the antibody (Ab) response in OVA-immunized mice, Lactococcus lactis increased OVA-specific IgG2a in these mice. L. lactis increased the casein-specific IgG level in NC/Nga mice fed on a casein diet. The percentage of CD4(+)CD25(+) cells was increased in DO11.10 mice orally given OVA, but this increase of CD4(+)CD25(+) cells were suppressed in L. lactis-fed DO11.10 mice.

  1. Aging-related changes in respiratory system mechanics and morphometry in mice.

    PubMed

    Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C

    2016-07-01

    Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice. Copyright © 2016 the American Physiological Society.

  2. Sex differences in neurochemical markers that correlate with behavior in aging mice.

    PubMed

    Frick, K M; Burlingame, L A; Delaney, S S; Berger-Sweeney, J

    2002-01-01

    Sex differences in neurochemical markers that correlate with behavior in aging mice NEUROBIOL AGING. We examined whether the enzymatic activities of choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) were altered similarly with age in male and female mice, and whether these changes were correlated with age-related alterations in memory and anxiety. ChAT and GAD activities were measured in neocortex, hippocampus, and striatum of behaviorally characterized male and female C57BL/6 mice (5, 17, and 25 months). Generally, ChAT activity was increased, and GAD activity decreased, with age. However, disparate changes were revealed between the sexes; activities of both enzymes were decreased in 17-month males, whereas alterations in females were not observed until 25-months. Furthermore, enzyme-behavior correlations differed between the sexes; in males, ChAT activity was related to one behavioral task, whereas in females, activities of both enzymes were correlated with multiple tasks. Significant enzyme-behavior correlations were most evident at 17 months of age, likely the result of behavioral and enzymatic sex differences at this age. These data represent the first comprehensive report illustrating differential alterations of ChAT and GAD activities in aging male and female mice.

  3. Anti-inflammatory effects of sucrose-derived oligosaccharides produced by a constitutive mutant L. mesenteroides B-512FMCM dextransucrase in high fat diet-fed mice.

    PubMed

    Kang, Min-Gyung; Lee, Hee Jae; Cho, Jae-Young; Kim, Kanghwa; Yang, Soo Jin; Kim, Doman

    2016-08-26

    Oligosaccharide (OS) is used as a sugar replacement as well as an ingredient in functional foods because of its beneficial effects, mainly on reducing calorie content and promoting intestinal health. By contrast, the effects of OS on inflammation are less well investigated. The purpose of this study was to investigate the effects of sucrose-derived OS on glucose control and inflammation in high fat (HF) diet-fed mice. Male C57BL6 mice were randomly assigned to six treatment groups (n = 10-14 mice per group): 1) lean control (CON), 2) HF control, 3) HF-low sucrose (LS, 100 mg/kg/day), 4) HF-high sucrose (HS, 1000 mg/kg/day), 5) HF-low OS (LOS, 100 mg/kg/day), and 6) HF-high OS (HOS, 1000 mg/kg/day). PBS (vehicle), sucrose, and OS were administered by stomach gavage. Body weight, food intake, and markers of liver function (activities of aspartate aminotransferase and alanine aminotransferase) were not affected by the treatments. HOS treatment decreased levels of serum glucose, insulin, and homeostasis model assessment-insulin resistance compared with sucrose treatment. However, serum adiponectin levels of the HOS group were higher than those of the sucrose groups. Serum levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and fetuin-A were lower in the HOS group than in the sucrose groups. Hepatic gene expression levels of pro-inflammatory cytokines and related factors (fetuin-A, NF-κB, TLR4, TNF-alpha, and IL-6) were decreased and the levels of insulin signaling-related molecules (sirtuin 1, insulin receptor, and Akt) were increased in HOS-treated mice as compared with sucrose-treated mice. These results demonstrate that OS treatment is effective in improving glucose control and inflammation in high fat diet-fed mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cuprizone-induced demyelination in mice: age-related vulnerability and exploratory behavior deficit.

    PubMed

    Wang, Hongkai; Li, Chengren; Wang, Hanzhi; Mei, Feng; Liu, Zhi; Shen, Hai-Ying; Xiao, Lan

    2013-04-01

    Schizophrenia is a mental disease that mainly affects young individuals (15 to 35 years old) but its etiology remains largely undefined. Recently, accumulating evidence indicated that demyelination and/or dysfunction of oligodendrocytes is an important feature of its pathogenesis. We hypothesized that the vulnerability of young individuals to demyelination may contribute to the onset of schizophrenia. In the present study, three different age cohorts of mice, i.e. juvenile (3 weeks), young-adult (6 weeks) and middle-aged (8 months), were subjected to a 6-week diet containing 0.2% cuprizone (CPZ) to create an animal model of acute demyelination. Then, age-related vulnerability to CPZ-induced demyelination, behavioral outcomes, and myelination-related molecular biological changes were assessed. We demonstrated: (1) CPZ treatment led to more severe demyelination in juvenile and young-adult mice than in middle-aged mice in the corpus callosum, a region closely associated with the pathophysiology of schizophrenia; (2) the higher levels of demyelination in juvenile and young-adult mice were correlated with a greater reduction of myelin basic protein, more loss of CC-1-positive mature oligodendrocytes, and higher levels of astrocyte activation; and (3) CPZ treatment resulted in a more prominent exploratory behavior deficit in juvenile and young-adult mice than in middle-aged mice. Together, our data demonstrate an age-related vulnerability to demyelination with a concurrent behavioral deficit, providing supporting evidence for better understanding the susceptibility of the young to the onset of schizophrenia.

  5. Impact of pioglitazone and bradykinin type 1 receptor antagonist on type 2 diabetes in high-fat diet-fed C57BL/6J mice.

    PubMed

    El Akoum, S; Haddad, Y; Couture, R

    2017-09-01

    Type 2 diabetes (T2D) is a major complication of obesity and a leading cause of morbidity and mortality. Antagonizing bradykinin type 1 receptor (B1R) improved body and tissue fat mass and reversed vascular and adipose tissue inflammation in a rat model of insulin resistance. This study aimed at evaluating further the role of B1R in a mouse model of T2D by comparing the antidiabetic and anti-inflammatory effects of the B1R antagonist SSR240612 (SSR) in adipose tissue with those of pioglitazone (TZD), an activator of peroxisome proliferator-activated receptor gamma. C57BL/6J mice were fed with high-fat diet (HFD) or standard diet (control) for 20 weeks. Yet, during the last 4 weeks, HFD-fed mice were administered SSR and TZD (10 mg kg -1  d -1 each) as monotherapy or combined therapy subcutaneously. The impact of treatments was measured on metabolic hormones levels (ELISA), adipose tissue inflammatory status and the expression of candidate genes involved in T2D (quantitative real-time polymerase chain reaction and western blot). SSR240612 and TZD treatments improved hyperglycaemia, hyperinsulinaemia, insulin resistance, adipose tissue inflammation (expression of B1R, chemokine ligand 2, F4/80 and tumour necrosis factor) and modulated adipogenesis (peroxisome proliferator-activated receptor gamma, adipocytes' protein 2 and CD40 expressions) in HFD-fed mice. Yet, SSR was more effective than TZD to reduce visceral fat mass and resistin. TZD/SSR combined treatment had an additive effect to improve insulin sensitivity and glucose intolerance. Bradykinin type 1 receptor antagonism could represent a promising therapeutic tool in combination with TZD for the treatment of T2D, obesity and insulin resistance.

  6. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice

    PubMed Central

    García, Mayra; Misplon, Julia A.; Price, Graeme E.; Lo, Chia-Yun; Epstein, Suzanne L.

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234

  7. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice.

    PubMed

    García, Mayra; Misplon, Julia A; Price, Graeme E; Lo, Chia-Yun; Epstein, Suzanne L

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11-17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life.

  8. Mitochondrial-nuclear genome interactions in nonalcoholic fatty liver disease in mice

    PubMed Central

    Betancourt, Angela M.; King, Adrienne L.; Fetterman, Jessica L.; Millender-Swain, Telisha; Finley, Rachel D.; Oliva, Claudia R.; Crowe, David Ralph; Ballinger, Scott W.; Bailey, Shannon M.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation, and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. Herein, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, Mitochondrial-Nuclear eXchange (MNX) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared to wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation, and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD. PMID:24758559

  9. Altered left ventricular performance in aging physically active mice with an ankle sprain injury.

    PubMed

    Turner, Michael J; Guderian, Sophie; Wikstrom, Erik A; Huot, Joshua R; Peck, Bailey D; Arthur, Susan T; Marino, Joseph S; Hubbard-Turner, Tricia

    2016-02-01

    We assessed the impact of differing physical activity levels throughout the lifespan, using a musculoskeletal injury model, on the age-related changes in left ventricular (LV) parameters in active mice. Forty male mice (CBA/J) were randomly placed into one of three running wheel groups (transected CFL group, transected ATFL/CFL group, SHAM group) or a SHAM Sedentary group (SHAMSED). Before surgery and every 6 weeks after surgery, LV parameters were measured under 2.5 % isoflurane inhalation. Group effects for daily distance run was significantly greater for the SHAM and lesser for the ATLF/CFL mice (p = 0.013) with distance run decreasing with age for all mice (p < 0.0001). Beginning at 6 months of age, interaction (group × age) was noted with LV posterior wall thickness-to-radius ratios (h/r) where h/r increased with age in the ATFL/CFL and SHAMSED mice while the SHAM and CFL mice exhibited decreased h/r with age (p = 0.0002). Passive filling velocity (E wave) was significantly greater in the SHAM mice and lowest for the ATFL/CFL and SHAMSED mice (p < 0.0001) beginning at 9 months of age. Active filling velocity (A wave) was not different between groups (p = 0.10). Passive-to-active filling velocity ratio (E/A ratio) was different between groups (p < 0.0001), with higher ratios for the SHAM mice and lower ratios for the ATFL/CFL and SHAMSED mice in response to physical activity beginning at 9 months of age. Passive-to-active filling velocity ratio decreased with age (p < 0.0001). Regular physical activity throughout the lifespan improved LV structure, passive filling velocity, and E/A ratio by 6 to 9 months of age and attenuated any negative alterations throughout the second half of life. The diastolic filling differences were found to be significantly related to the amount of activity performed by 9 months and at the end of the lifespan.

  10. Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice

    PubMed Central

    Sawin, Emily A.; Stroup, Bridget M.; Murali, Sangita G.; O’Neill, Lucas M.; Ntambi, James M.

    2016-01-01

    Background Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. Objective To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. Methods Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. Results Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat

  11. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice

    PubMed Central

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato (Lycopersicon esculentum) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders. PMID:27792185

  12. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice.

    PubMed

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho

    2016-10-26

    A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato ( Lycopersicon esculentum ) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders.

  13. Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders.

    PubMed

    Poon, H Fai; Farr, Susan A; Thongboonkerd, Visith; Lynn, Bert C; Banks, William A; Morley, John E; Klein, Jon B; Butterfield, D Allan

    2005-01-01

    Free radical-mediated damage to neuronal membrane components has been implicated in the etiology of Alzheimer's disease (AD) and aging. The senescence accelerated prone mouse strain 8 (SAMP8) exhibits age-related deterioration in memory and learning along with increased oxidative markers. Therefore, SAMP8 is a suitable model to study brain aging and, since aging is the major risk factor for AD and SAMP8 exhibits many of the biochemical findings of AD, perhaps as a model for and the early phase of AD. Our previous studies reported higher oxidative stress markers in brains of 12-month-old SAMP8 mice when compared to that of 4-month-old SAMP8 mice. Further, we have previously shown that injecting the mice with alpha-lipoic acid (LA) reversed brain lipid peroxidation, protein oxidation, as well as the learning and memory impairments in SAMP8 mice. Recently, we reported the use of proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. In order to understand how LA reverses the learning and memory deficits of aged SAMP8 mice, in the current study, we used proteomics to compare the expression levels and specific carbonyl levels of proteins in brains from 12-month-old SAMP8 mice treated or not treated with LA. We found that the expressions of the three brain proteins (neurofilament triplet L protein, alpha-enolase, and ubiquitous mitochondrial creatine kinase) were increased significantly and that the specific carbonyl levels of the three brain proteins (lactate dehydrogenase B, dihydropyrimidinase-like protein 2, and alpha-enolase) were significantly decreased in the aged SAMP8 mice treated with LA. These findings suggest that the improved learning and memory observed in LA-injected SAMP8 mice may be related to the restoration of the normal condition of specific proteins in aged SAMP8 mouse brain. Moreover, our current study implicates neurofilament triplet L protein, alpha-enolase, ubiquitous mitochondrial

  14. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice1

    PubMed Central

    Selvaratnam, Johanna S.; Robaire, Bernard

    2016-01-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat−/−) and SOD1-null (Sod−/−) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod−/− mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod−/− mice, while aged Cat−/− mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat−/− mice but was consistently low in young and aged Sod−/− mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod−/− and Cat−/− mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat−/− and in Sod−/− mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod−/− mice and with age in all mice. These studies show that aged Sod−/− mice display severe redox dysfunction, while wild-type and Cat−/− mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. PMID:27465136

  15. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    PubMed Central

    Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  16. Dietary Blueberry Attenuates Whole-Body Insulin Resistance in High Fat-Fed Mice by Reducing Adipocyte Death and Its Inflammatory Sequelae1–3

    PubMed Central

    DeFuria, Jason; Bennett, Grace; Strissel, Katherine J.; Perfield, James W.; Milbury, Paul E.; Greenberg, Andrew S.; Obin, Martin S.

    2009-01-01

    Adipose tissue (AT) inflammation promotes insulin resistance (IR) and other obesity complications. AT inflammation and IR are associated with oxidative stress, adipocyte death, and the scavenging of dead adipocytes by proinflammatory CD11c+ AT macrophages (ATMΦ). We tested the hypothesis that supplementation of an obesitogenic (high-fat) diet with whole blueberry (BB) powder protects against AT inflammation and IR. Male C57Bl/6j mice were maintained for 8 wk on 1 of 3 diets: low-fat (10% of energy) diet (LFD), high-fat (60% of energy) diet (HFD) or the HFD containing 4% (wt:wt) whole BB powder (1:1 Vaccinium ashei and V. corymbosum) (HFD+B). BB supplementation (2.7% of total energy) did not affect HFD-associated alterations in energy intake, metabolic rate, body weight, or adiposity. We observed an emerging pattern of gene expression in AT of HFD mice indicating a shift toward global upregulation of inflammatory genes (tumor necrosis factor-α, interleukin-6, monocyte chemoattractant protein 1, inducible nitric oxide synthase), increased M1-polarized ATMΦ (CD11c+), and increased oxidative stress (reduced glutathione peroxidase 3). This shift was attenuated or nonexistent in HFD+B-fed mice. Furthermore, mice fed the HFD+B were protected from IR and hyperglycemia coincident with reductions in adipocyte death. Salutary effects of BB on adipocyte physiology and ATMΦ gene expression may reflect the ability of BB anthocyanins to alter mitogen-activated protein kinase and nuclear factor-κB stress signaling pathways, which regulate cell fate and inflammatory genes. These results suggest that cytoprotective and antiinflammatory actions of dietary BB can provide metabolic benefits to combat obesity-associated pathology. PMID:19515743

  17. Sex-related differences in the wheel-running activity of mice decline with increasing age.

    PubMed

    Bartling, Babett; Al-Robaiy, Samiya; Lehnich, Holger; Binder, Leonore; Hiebl, Bernhard; Simm, Andreas

    2017-01-01

    Laboratory mice of both sexes having free access to running wheels are commonly used to study mechanisms underlying the beneficial effects of physical exercise on health and aging in human. However, comparative wheel-running activity profiles of male and female mice for a long period of time in which increasing age plays an additional role are unknown. Therefore, we permanently recorded the wheel-running activity (i.e., total distance, median velocity, time of breaks) of female and male mice until 9months of age. Our records indicated higher wheel-running distances for females than males which were highest in 2-month-old mice. This was mainly reached by higher running velocities of the females and not by longer running times. However, the sex-related differences declined in parallel to the age-associated reduction in wheel-running activities. Female mice also showed more variances between the weekly running distances than males, which were recorded most often for females being 4-6months old but not older. Additional records of 24-month-old mice of both sexes indicated highly reduced wheel-running activities at old age. Surprisingly, this reduction at old age resulted mainly from lower running velocities and not from shorter running times. Old mice also differed in their course of night activity which peaked later compared to younger mice. In summary, we demonstrated the influence of sex on the age-dependent activity profile of mice which is somewhat contrasting to humans, and this has to be considered when transferring exercise-mediated mechanism from mouse to human. Copyright © 2016. Published by Elsevier Inc.

  18. Raspberry promotes brown and beige adipocyte development in mice fed high-fat diet through activation of AMP-activated protein kinase (AMPK) α1.

    PubMed

    Zou, Tiande; Wang, Bo; Yang, Qiyuan; de Avila, Jeanene M; Zhu, Mei-Jun; You, Jinming; Chen, Daiwen; Du, Min

    2018-05-01

    Development of brown and beige/brite adipocytes increases thermogenesis and helps to reduce obesity and metabolic syndrome. Our previous study suggests that dietary raspberry can ameliorate metabolic syndromes in diet-induced obese mice. Here, we further evaluated the effects of raspberry on energy expenditure and adaptive thermogenesis and determined whether these effects were mediated by AMP-activated protein kinase (AMPK). Mice deficient in the catalytic subunit of AMPKα1 and wild-type (WT) mice were fed a high-fat diet (HFD) or HFD supplemented with 5% raspberry (RAS) for 10 weeks. The thermogenic program and related regulatory factors in adipose tissue were assessed. RAS improved the insulin sensitivity and reduced fat mass in WT mice but not in AMPKα1 -/- mice. In the absence of AMPKα1, RAS failed to increase oxygen consumption and heat production. Consistent with this, the thermogenic gene expression in brown adipose tissue and brown-like adipocyte formation in subcutaneous adipose tissue were not induced by RAS in AMPKα1 -/- mice. In conclusion, AMPKα1 is indispensable for the effects of RAS on brown and beige/brite adipocyte development, and prevention of obesity and metabolic dysfunction. Copyright © 2018. Published by Elsevier Inc.

  19. Oxygen saturation and heart rate during feeding in breast-fed infants at 1 week and 2 months of age.

    PubMed

    Suiter, Debra M; Ruark-McMurtrey, Jacki

    2007-12-01

    To gather normative data about cardiopulmonary changes during feeding in breast-fed infants at 1 week and 2 months of age. Prospective cohort study. General community. Twenty-two term-born, breast-fed infants. Not applicable. Oxygen saturation (SpO2), the percentage of oxygenized hemoglobin, and heart rate were monitored and recorded every 30 seconds for 5 minutes before oral feeding, during the first 10 minutes of feeding, and the first 10 minutes immediately after feeding. The observations were made at 1 week and 2 months of age. Mean SpO2 levels were significantly higher in 2-month-old infants (mean, 97.57) than in 1-week-old infants (mean, 96.35) (P=.001). SpO2 was not affected by any of the 3 trials (before, during, and after feeding). Heart rate was significantly affected by trial. Mean heart rate during feeding (mean, 152.45) was significantly higher than heart rate prefeeding (mean, 146.51) (P<.001), and heart rate postfeeding (mean, 147.12) (P=.002). Heart rate was not affected by age. Little is known about the association between feeding and cardiopulmonary status in term-born, breast-fed infants. This longitudinal study contributes to our knowledge about feeding-related cardiopulmonary changes in term-born, breast-fed infants.

  20. Triticale Bran Alkylresorcinols Enhance Resistance to Oxidative Stress in Mice Fed a High-Fat Diet

    PubMed Central

    Agil, Rania; Patterson, Zachary R.; Mackay, Harry; Abizaid, Alfonso; Hosseinian, Farah

    2016-01-01

    Triticale (× Triticosecale Whitm.) is a cereal grain with high levels of alkyresorcinols (AR) concentrated in the bran. These phenolic lipids have been shown to reduce or inhibit triglyceride accumulation and protect against oxidation; however, their biological effects have yet to be evaluated in vivo. The purpose of this study was to determine the effects of ARs extracted from triticale bran (TB) added to a high–fat diet on the development of obesity and oxidative stress. CF-1 mice were fed a standard low-fat (LF) diet, a 60% high-fat diet (HF) and HF diets containing either 0.5% AR extract (HF-AR), 10% TB (HF-TB), or 0.5% vitamin E (HF-VE). Energy intake, weight gain, glucose tolerance, fasting blood glucose (FBG) levels, and body composition were determined. Oxygen radical absorbance capacity (ORAC), superoxide dismutase (SOD) activity, and glutathione (GSH) assays were performed on mice liver and heart tissues. The findings suggest that ARs may serve as a preventative measure against risks of oxidative damage associated with high-fat diets and obesity through their application as functional foods and neutraceuticals. Future studies aim to identify the in vivo mechanisms of action of ARs and the individual homologs involved in their favorable biological effects. PMID:28231100

  1. Regulation of mitochondrial trifunctional protein modulates nonalcoholic fatty liver disease in mice

    PubMed Central

    Nassir, Fatiha; Arndt, Justin J.; Johnson, Sarah A.

    2018-01-01

    Mitochondrial trifunctional protein (MTP) plays a critical role in the oxidation of long-chain fatty acids. We previously reported that aging mice (>9 months old) heterozygous for an MTP defect (MTP+/−) develop nonalcoholic fatty liver disease (NAFLD). We tested whether a high-fat diet (HFD) accelerates NAFLD in young MTP+/−mice, and whether overexpression of the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin 3 (SIRT3) deacetylates MTP and improves mitochondrial function and NAFLD. Three-month-old WT and MTP+/− mice were fed HFD (60% cal fat) for 16 weeks and livers were assessed for fatty acid oxidation (FAO) and NAFLD. Compared with WT, MTP+/− mice displayed reduced hepatic SIRT3 levels and reduced FAO, with increased hepatic steatosis and the inflammatory marker CD68. Hepatic overexpression of SIRT3 in HFD-fed MTP+/− mice increased hepatic MTP protein levels at the posttranscriptional level. Immunoprecipitation of MTP from liver mitochondria followed by Western blot with acetyl-lysine antibody showed higher acetylation of MTP in MTP+/− compared with WT mice. Overexpression of SIRT3 in MTP+/− mice significantly reduced the acetylation of MTP compared with β-galactosidase controls, increased mitochondrial FAO, and reduced hepatic steatosis, CD68, and serum ALT levels. Taken together, our data indicate that deacetylation of MTP by SIRT3 improves mitochondrial function and rescues NAFLD in MTP+/− mice. PMID:29581157

  2. RADIATION INDUCED AGING IN MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, H.J.; Gebhard, K.L.

    1958-10-31

    . Experiments were undertaken in an effort to determine the degree of similarity between natural and radiation induced aging, and to determine the causes for the latter. Several severe non-specific stresses were applied to mice either as single massive doses or as smaller doses administered over a large fraction of the life span of the animals. Stresses used included typhoid vaccine, tetanus toxin and tetanus toxoid and turpentine. None of these produced any premature aging comparable to that produced by radiation. The somatic mutation theory of aging and expecially radiationinduced aging has been tested by applying the chemical mutatgen, nitrogenmore » mustard, either as a massive single dose or as smaller single doses repeated over long periods of time. No shortening of the life span has been observed and it is concluded that the somatic mutation theory is untenable. Experiments designed to determine the organ system responsible for radiation induced aging have demonstrated that the hematopoietic system is not primarily involved in this phenomenon. (auth)« less

  3. Influence of chewing behaviour on memory and spatial learning in albino BALB/c mice.

    PubMed

    Aguirre Siancas, E E

    2017-05-01

    Since the relationship between chewing and cognitive functions has not been fully elucidated, this study aimed to determine the impact of chewing behaviour on spatial learning and memory in albino male BALB/c mice. Twenty mice aged 8 weeks were divided into 2 equal groups. The regular chewing group was fed with uncrushed grains (the same diet given to all 20 mice since they were weaned) and the limited chewing group was fed with crushed grains. At 16 weeks of age, the mice were evaluated over 5 days, including a 4-day acquisition phase prior to a probe test of spatial learning and memory in the Morris water maze on the fifth day. A comparison of the regular chewing group and the limited chewing group found no significant differences in either the acquisition phase or the probe test. However, there were significant differences in the acquisition phase for just the regular chewing group when comparing results from the first day to those from the other 3 days. The results suggest that regular chewing affects spatial learning and memory since mice in the regular chewing group decreased their times to find the hidden platform during the acquisition phase. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment.

    PubMed

    Wang, Tina; Tsui, Brian; Kreisberg, Jason F; Robertson, Neil A; Gross, Andrew M; Yu, Michael Ku; Carter, Hannah; Brown-Borg, Holly M; Adams, Peter D; Ideker, Trey

    2017-03-28

    Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of mammalian aging; however, epigenetic clocks have thus far been formulated only in humans. We first examined whether mice and humans experience similar patterns of change in the methylome with age. We found moderate conservation of CpG sites for which methylation is altered with age, with both species showing an increase in methylome disorder during aging. Based on this analysis, we formulated an epigenetic-aging model in mice using the liver methylomes of 107 mice from 0.2 to 26.0 months old. To examine whether epigenetic aging signatures are slowed by longevity-promoting interventions, we analyzed 28 additional methylomes from mice subjected to lifespan-extending conditions, including Prop1 df/df dwarfism, calorie restriction or dietary rapamycin. We found that mice treated with these lifespan-extending interventions were significantly younger in epigenetic age than their untreated, wild-type age-matched controls. This study shows that lifespan-extending conditions can slow molecular changes associated with an epigenetic clock in mice livers.

  5. Idh2 deficiency accelerates renal dysfunction in aged mice.

    PubMed

    Lee, Su Jeong; Cha, Hanvit; Lee, Seoyoon; Kim, Hyunjin; Ku, Hyeong Jun; Kim, Sung Hwan; Park, Jung Hyun; Lee, Jin Hyup; Park, Kwon Moo; Park, Jeen-Woo

    2017-11-04

    The free radical or oxidative stress theory of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species (ROS) that are produced as by-products of normal metabolic processes in mitochondria. The oxidative stress may arise as a result of either increased ROS production or decreased ability to detoxify ROS. The availability of the mitochondrial NADPH pool is critical for the maintenance of the mitochondrial antioxidant system. The major enzyme responsible for generating mitochondrial NADPH is mitochondrial NADP + -dependent isocitrate dehydrogenase (IDH2). Depletion of IDH2 in mice (idh2 -/- ) shortens life span and accelerates the degeneration of multiple age-sensitive traits, such as hair grayness, skin pathology, and eye pathology. Among the various internal organs tested in this study, IDH2 depletion-induced acceleration of senescence was uniquely observed in the kidney. Renal function and structure were greatly deteriorated in 24-month-old idh2 -/- mice compared with wild-type. In addition, disruption of redox status, which promotes oxidative damage and apoptosis, was more pronounced in idh2 -/- mice. These data support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice, and thus support the oxidative stress theory of aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hexim1 heterozygosity stabilizes atherosclerotic plaque and decreased steatosis in ApoE null mice fed atherogenic diet.

    PubMed

    Dhar-Mascareno, Manya; Rozenberg, Inna; Iqbal, Jahangir; Hussain, M Mahmood; Beckles, Daniel; Mascareno, Eduardo

    2017-02-01

    Hexim-1 is an inhibitor of RNA polymerase II transcription elongation. Decreased Hexim-1 expression in animal models of chronic diseases such as left ventricular hypertrophy, obesity and cancer triggered significant changes in adaptation and remodeling. The main aim of this study was to evaluate the role of Hexim1 in lipid metabolism focused in the progression of atherosclerosis and steatosis. We used the C57BL6 apolipoprotein E (ApoE null) crossed bred to C57BL6Hexim1 heterozygous mice to obtain ApoE null - Hexim1 heterozygous mice (ApoE-HT). Both ApoE null backgrounds were fed high fat diet for twelve weeks. Then, we evaluated lipid metabolism, atherosclerotic plaque formation and liver steatosis. In order to understand changes in the transcriptome of both backgrounds during the progression of steatosis, we performed Affymetrix mouse 430 2.0 microarray. After 12 weeks of HFD, ApoE null and ApoE-HT showed similar increase of cholesterol and triglycerides in plasma. Plaque composition was altered in ApoE-HT. Additionally, liver triglycerides and steatosis were decreased in ApoE-HT mice. Affymetrix analysis revealed that decreased steatosis might be due to impaired inducible SOCS3 expression in ApoE-HT mice. In conclusion, decreased Hexim-1 expression does not alter cholesterol metabolism in ApoE null background after HFD. However, it promotes stable atherosclerotic plaque and decreased steatosis by promoting the anti-inflammatory TGFβ pathway and blocking the expression of the inducible and pro-inflammatory expression of SOCS3 respectively. Published by Elsevier Ltd.

  7. Effects of escin mixture from the seeds of Aesculus hippocastanum on obesity in mice fed a high fat diet.

    PubMed

    Avci, Gülcan; Küçükkurt, Ismail; Küpeli Akkol, Esra; Yeşilada, Erdem

    2010-03-01

    Escins, a triterpene glycoside mixture obtained from the ethanol extract of Aesculus hippocastanum L. (Hippocastanaceae) seed, was evaluated for its in vivo effects on the plasma levels of some hormones (leptin, insulin, FT(3), FT(4)) and biochemical parameters (glucose, triglyceride, total cholesterol, HDL-C, LDL-C concentrations) in mice fed with a high fat diet for 5 weeks. A high fat diet induced a remarkable increment in the plasma leptin (p <0.01), total cholesterol (p <0.01) and LDL-C (p <0.001) concentrations compared to control group animals. Combined administration of a high-fat diet with escins decreased leptin (31.6%) (p<0.05) and FT(4) (36.0%) (p<0.05) levels, increased HDL-C concentration (17.0%), while remained ineffective on LDL-C concentration in mice. Results have shown that escins may have beneficial effects in the understanding of obesity.

  8. Effects of cereal fiber on leptin resistance and sensitivity in C57BL/6J mice fed a high-fat/cholesterol diet.

    PubMed

    Zhang, Ru; Jiao, Jun; Zhang, Wei; Zhang, Zheng; Zhang, Weiguo; Qin, Li-Qiang; Han, Shu-Fen

    2016-01-01

    Cereal fiber is reported to be associated with obesity and metabolic diseases. However, whether cereal fiber improves leptin resistance and sensitivity remains unclear. For 24 weeks, 48 male C57BL/6J mice were randomly given a normal chow diet (Chow), high-fat/cholesterol diet (HFD), HFD with 0.8% oat fiber (H-oat) or HFD with 0.8% wheat bran fiber (H-wheat). At the end of feeding period, both the serum insulin and leptin levels were determined by ELISA kits. Western blotting was used to assess the protein expressions of the leptin receptor (LepR) and the leptin-signaling pathway in the adipose tissues. Our results suggested that mice fed oat or wheat bran fiber exhibited lower body weight, serum lipids, as well as insulin and leptin levels. The two cereal fibers potently increased the protein expressions of LepR in the adipose tissue. In addition, protein expressions of Janus kinase 2 (JAK2) and transcription 3 (STAT3) (induced by LepR), which enhances leptin signaling, were significantly higher and the expression of cytokine signaling-3 (SOCS3), which inhibits leptin signaling, was significantly lower in the two cereal fiber groups than in the HFD group. Taken together, our findings suggest that cereal fiber can improve leptin resistance and sensitivity by the JAK2/STAT3 pathway in C57BL/6J mice fed a HFD; furthermore, oat fiber is more effective in the improvement of leptin sensitivity than wheat bran fiber, in this murine model.

  9. Impact of Age-Dependent Adventitia Inflammation on Structural Alteration of Abdominal Aorta in Hyperlipidemic Mice

    PubMed Central

    Sakamoto, Sumiharu; Tsuruda, Toshihiro; Hatakeyama, Kinta; Imamura, Takuroh; Asada, Yujiro; Kitamura, Kazuo

    2014-01-01

    Background The adventitia is suggested to contribute to vascular remodeling; however, the site-selective inflammatory responses in association with the development of atherosclerosis remain to be elucidated. Methods and Results Wild-type or apolipoprotein E knockout male C57BL/6J background mice were fed standard chow for 16, 32, and 52 weeks, and the morphology of the aortic arch, descending aorta, and abdominal aorta was compared. Atheromatous plaque formation progressed with age, particularly in the aortic arch and abdominal aorta but not in the descending aorta. In addition, we found that the numbers of macrophages, T-lymphocytes, and microvessels, assessed by anti-F4/80, CD3, and CD31 antibodies, were higher in the adventitia of the abdominal aorta at 52 weeks. These numbers were positively correlated with plaque formation, but negatively correlated with elastin content, resulting in the enlargement of the total vessel area. In aortic tissues, interleukin-6 levels increased in the atheromatous plaque with age, whereas the level of regulated on activation, normal T cell expressed and secreted (RANTES) increased with age, and compared with other sites, it was particularly distributed in inflammatory cells in the adventitia of the abdominal aorta. Conclusion This study suggests that adventitial inflammation contributes to the age-dependent structural alterations, and that the activation/inactivation of cytokines/chemokines is involved in the process. PMID:25153991

  10. Involvement of the mitochondrial permeability transition pore in chronic ethanol-mediated liver injury in mice

    PubMed Central

    King, Adrienne L.; Swain, Telisha M.; Mao, Zhengkuan; Udoh, Uduak S.; Oliva, Claudia R.; Betancourt, Angela M.; Griguer, Corrine E.; Crowe, David R.; Lesort, Mathieu

    2013-01-01

    Chronic ethanol consumption increases sensitivity of the mitochondrial permeability transition (MPT) pore induction in liver. Ca2+ promotes MPT pore opening, and genetic ablation of cyclophilin D (CypD) increases the Ca2+ threshold for the MPT. We used wild-type (WT) and CypD-null (CypD−/−) mice fed a control or an ethanol-containing diet to investigate the role of the MPT in ethanol-mediated liver injury. Ca2+-mediated induction of the MPT and mitochondrial respiration were measured in isolated liver mitochondria. Steatosis was present in WT and CypD−/− mice fed ethanol and accompanied by increased terminal deoxynucleotidyl transferase dUTP-mediated nick-end label-positive nuclei. Autophagy was increased in ethanol-fed WT mice compared with ethanol-fed CypD−/− mice, as reflected by an increase in the ratio of microtubule protein 1 light chain 3B II to microtubule protein 1 light chain 3B I. Higher levels of p62 were measured in CypD−/− than WT mice. Ethanol decreased mitochondrial respiratory control ratios and select complex activities in WT and CypD−/− mice. Ethanol also increased CypD protein in liver of WT mice. Mitochondria from control- and ethanol-fed WT mice were more sensitive to Ca2+-mediated MPT pore induction than mitochondria from their CypD−/− counterparts. Mitochondria from ethanol-fed CypD−/− mice were also more sensitive to Ca2+-induced swelling than mitochondria from control-fed CypD−/− mice but were less sensitive than mitochondria from ethanol-fed WT mice. In summary, CypD deficiency was associated with impaired autophagy and did not prevent ethanol-mediated steatosis. Furthermore, increased MPT sensitivity was observed in mitochondria from ethanol-fed WT and CypD−/− mice. We conclude that chronic ethanol consumption likely lowers the threshold for CypD-regulated and -independent characteristics of the ethanol-mediated MPT pore in liver mitochondria. PMID:24356880

  11. A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice.

    PubMed

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Poursharifi, Pegah; Zhao, Shangang; Zhang, Dongwei; Morin, Johane; Pineda, Marco; Wang, Shupei; Dumortier, Olivier; Ruderman, Neil B; Mitchell, Grant A; Simons, Brigitte; Madiraju, S R Murthy; Joly, Erik; Prentki, Marc

    2016-12-01

    To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions. Atgl flox/flox mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT /+ ;Atgl flox/flox mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD. ND-fed male B-Atgl-KO mice showed decreased insulinaemia and glucose-induced insulin secretion (GSIS) in vivo. Changes in GSIS correlated with the islet content of long-chain saturated monoacylglycerol (MAG) species that have been proposed to be metabolic coupling factors for insulin secretion. Exogenous MAGs restored GSIS in B-Atgl-KO islets. B-Atgl-KO male mice fed an HFD showed reduced insulinaemia, glycaemia in the fasted and fed states and after glucose challenge, as well as enhanced insulin sensitivity. Moreover, decreased insulinaemia in B-Atgl-KO mice was associated with increased energy expenditure, and lipid metabolism in brown (BAT) and white (WAT) adipose tissues, leading to reduced fat mass and body weight. ATGL in beta cells regulates insulin secretion via the production of signalling MAGs. Decreased insulinaemia due to lowered GSIS protects B-Atgl-KO mice from diet-induced obesity, improves insulin sensitivity, increases lipid mobilisation from WAT and causes BAT activation. The results support the concept that fuel excess can drive obesity and diabetes via hyperinsulinaemia, and that an islet beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion.

  12. Comparative evaluation of anti-obesity effect of Aloe vera and Gymnema sylvestre supplementation in high-fat diet fed C57BL/6J mice

    PubMed Central

    Pothuraju, Ramesh; Sharma, Raj Kumar; Rather, Sarver Ahmed; Singh, Satvinder

    2016-01-01

    Background: The aim of the present study was to investigate, anti-obesity effect of Aloe vera (AV), and Gymnema sylvestre (GS) whole extract powders administration to high-fat diet (HFD) fed C57BL/6J mice for 12 weeks. Materials and Methods: At the end of experiment, different parameters such as body weight, feed intake, organ weights, fasting blood glucose, oral glucose tolerance test, plasma lipid levels, and expression analysis of adipocytokines were evaluated. Results: At the end of experimental period, oral administration of both herbs showed a significant (P < 0.05 and P < 0.001) decrease in the plasma glucose and lipid levels in HFD fed mice. In addition, increased in the epididymal fat (E. fat) weight in the HFD group was significantly (P < 0.05) reduced on GS administration alone. Finally, quantitative mRNA expression analysis of adiponectin gene was significantly up-regulated in AV supplementation. Further, no effect was observed with the both herbs on pro-inflammatory cytokines (interleukin 6 and tumor necrosis factor-a) in the E. fat tissue of HFD fed group. Conclusions: The anti-obesity and other metabolic studies depend on the type of diet, different parts of herbal extractions, and animal models used. Further studies are required in this area to strengthen the anti-obesity effects of herbs with active component, and it can be used a pro-drug instead of whole extract. PMID:27757271

  13. Oral Glutamine Supplementation Protects Female Mice from Nonalcoholic Steatohepatitis.

    PubMed

    Sellmann, Cathrin; Jin, Cheng Jun; Degen, Christian; De Bandt, Jean-Pascal; Bergheim, Ina

    2015-10-01

    Genetic factors, a diet rich in fat and sugar, and an impaired intestinal barrier function are critical in the development of nonalcoholic steatohepatitis (NASH). The nonessential amino acid glutamine (Gln) has been suggested to have protective effects on intestinal barrier function but also against the development of liver diseases of various etiologies. The effect of oral Gln supplementation on the development of Western-style diet (WSD)-induced NASH in mice was assessed. Female 6- to 8-wk-old C57BL/6J mice were pair-fed a control (C) diet or a WSD alone or supplemented with 2.1 g l-Gln/kg body weight for 6 wk (C+Gln or WSD+Gln). Indexes of liver damage, lipid peroxidation, and glucose metabolism and endotoxin concentrations were measured. Although Gln supplementation had no effect on the loss of the tight junction protein occludin, the increased portal endotoxin and fasting glucose concentrations found in WSD-fed mice, markers of liver damage (e.g., nonalcoholic fatty liver disease activity score and number of neutrophils in the liver) were significantly lower in the WSD+Gln group than in the WSD group (~47% and ~60% less, respectively; P < 0.05). Concentrations of inducible nitric oxide synthase (iNOS) protein and 3-nitrotyrosin protein adducts were significantly higher in livers of WSD-fed mice than in all other groups (~8.6- and ~1.9-fold higher, respectively, compared with the C group; P < 0.05) but did not differ between WSD+Gln-, C-, and C+Gln-fed mice. Hepatic tumor necrosis factor α and plasminogen activator inhibitor 1 concentrations were significantly higher in WSD-fed mice (~1.6- and ~1.8-fold higher, respectively; P < 0.05) but not in WSD+Gln-fed mice compared with C mice. Our data suggest that the protective effects of oral Gln supplementation on the development of WSD-induced NASH in mice are associated with protection against the induction of iNOS and lipid peroxidation in the liver. © 2015 American Society for Nutrition.

  14. High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation[S

    PubMed Central

    McGrath, Kristine C.; Li, Xiao Hong; Whitworth, Phillippa T.; Kasz, Robert; Tan, Joanne T.; McLennan, Susan V.; Celermajer, David S.; Barter, Philip J.; Rye, Kerry-Anne; Heather, Alison K.

    2014-01-01

    Obesity-induced liver inflammation can drive insulin resistance. HDL has anti-inflammatory properties, so we hypothesized that low levels of HDL would perpetuate inflammatory responses in the liver and that HDL treatment would suppress liver inflammation and insulin resistance. The aim of this study was to investigate the effects of lipid-free apoAI on hepatic inflammation and insulin resistance in mice. We also investigated apoAI as a component of reconstituted HDLs (rHDLs) in hepatocytes to confirm results we observed in vivo. To test our hypothesis, C57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks and administered either saline or lipid-free apoAI. Injections of lipid-free apoAI twice a week for 2 or 4 weeks with lipid-free apoAI resulted in: i) improved insulin sensitivity associated with decreased systemic and hepatic inflammation; ii) suppression of hepatic mRNA expression for key transcriptional regulators of lipogenic gene expression; and iii) suppression of nuclear factor κB (NF-κB) activation. Human hepatoma HuH-7 cells exposed to rHDLs showed suppressed TNFα-induced NF-κB activation, correlating with decreased NF-κB target gene expression. We conclude that apoAI suppresses liver inflammation in HFD mice and improves insulin resistance via a mechanism that involves a downregulation of NF-κB activation. PMID:24347528

  15. Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice

    ERIC Educational Resources Information Center

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…

  16. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers.

    PubMed

    Kim, Dong-Hyeon; Kim, Hyunsook; Jeong, Dana; Kang, Il-Byeong; Chon, Jung-Whan; Kim, Hong-Seok; Song, Kwang-Young; Seo, Kun-Ho

    2017-06-01

    Kefir is a probiotic beverage containing over 50 species of lactic acid bacteria and yeast. In this study, the anti-obesity and anti-non-alcoholic fatty liver disease (NAFLD) effects of kefir were comprehensively addressed along with targeted and untargeted community analysis of the fecal microbiota in a high-fat diet (HFD)-induced obese mouse model. HFD-fed C57BL/6 mice were orally administrated either kefir or milk (control) once a day for 12 weeks, and body and organ weight, fecal microbiota and mycobiota, histopathology, blood cholesterol and cytokines and gene expressions were analyzed. Compared to the control, mice in the kefir group exhibited a significantly lower body weight (34.18 g vs. 40.24 g; p=0.00004) and histopathological liver lesion score (1.13 vs. 3.25; p=0.002). Remarkably, the kefir-fed mice also harbored more Lactobacillus/Lactococcus (7.01 vs. 6.32 log CFU/g), total yeast (6.07 vs. 5.01 log CFU/g) and Candida (5.56 vs. 3.88 log CFU/g). Kefir administration also up-regulated genes related to fatty acid oxidation, PPARα and AOX, in both the liver and adipose tissue (PPARα, 2.95- and 2.15-fold; AOX, 1.89- and 1.9-fold, respectively). The plasma concentration of IL-6, a proinflammatory marker, was significantly reduced following kefir consumption (50.39 pg/ml vs. 111.78 pg/ml; p=0.03). Strikingly, the populations of Lactobacillus/Lactococcus, total yeast and Candida were strongly correlated with PPARα gene expression in adipose and hepatic tissue (r=0.599, 0.580 and 0.562, respectively). These data suggest that kefir consumption modulates gut microbiota and mycobiota in HFD-fed mice, which prevents obesity and NAFLD via promoting fatty acid oxidation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mitochondrial-nuclear genome interactions in non-alcoholic fatty liver disease in mice.

    PubMed

    Betancourt, Angela M; King, Adrienne L; Fetterman, Jessica L; Millender-Swain, Telisha; Finley, Rachel D; Oliva, Claudia R; Crowe, David R; Ballinger, Scott W; Bailey, Shannon M

    2014-07-15

    NAFLD (non-alcoholic fatty liver disease) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. In the present study, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, MNX (mitochondrial-nuclear exchange) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared with wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR (respiratory control ratio) when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD.

  18. Locomotor activity and gait in aged mice deficient for type IX collagen

    PubMed Central

    Costello, Kerry E.; Guilak, Farshid; Griffin, Timothy M.

    2010-01-01

    Osteoarthritis (OA) is a risk factor for physical inactivity and impaired mobility, but it is not well understood how these locomotor behaviors are affected by the age of onset of OA and disease severity. Male mice homozygous for a Col9a1 gene inactivation (Col9a1−/−) develop early onset knee OA, increased tactile pain sensitivity, and gait alterations by 9 mo of age. We hypothesized that aged Col9a1−/− mice would reduce joint pain by adopting locomotor behaviors that reduce both the magnitude and daily frequency of joint loading. We tested this hypothesis by evaluating gait and spontaneous locomotor activity in 15- to 17-mo-old male Col9a1−/− (n = 5) and Col9a1+/+(WT) (n = 5) mice using well-controlled measures of voluntary activity in overground and running wheel conditions, as well as studies of gait in a velocity-controlled treadmill. We found no difference due to genotype in freely chosen locomotor velocity, stride frequency, hindfoot duty factor, dark phase activity time, or dark-phase travel distance during overground, running wheel, or speed-matched treadmill locomotion. Interpretation of these findings is potentially confounded by the observation that WT mice have greater knee OA than Col9a1−/− mice in the lateral tibial plateau by 17 mo of age. When accounting for individual differences in knee OA, functional locomotor impairments in aged Col9a1−/− and WT mice are manifested as reductions in total locomotor activity levels (e.g., both distance traveled and time active), particularly for wheel running. These results support the concept that current disease status, rather than age of disease onset, is the primary determinant of impaired locomotor activity with aging. PMID:20360435

  19. Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling.

    PubMed

    Delire, Bénédicte; Lebrun, Valérie; Selvais, Charlotte; Henriet, Patrick; Bertrand, Amélie; Horsmans, Yves; Leclercq, Isabelle A

    2016-12-09

    Clinical data identify age as a factor for severe liver fibrosis. We evaluate whether and how aging modulates the fibrotic response in a mouse model. Liver fibrosis was induced by CCl 4 injections (thrice weekly for 2 weeks) in 7 weeks- and 15 months-old mice (young and old, respectively). Livers were analyzed for fibrosis, inflammation and remodeling 48 and 96 hours after the last injection. Old mice developed more severe fibrosis compared to young ones as evaluated by sirius red morphometry. Expression of pro-fibrogenic genes was equally induced in the two age-groups but enhanced fibrolysis in young mice was demonstrated by a significantly higher Mmp13 induction and collagenase activity. While fibrosis resolution occurred in young mice within 96 hours, no significant fibrosis attenuation was observed in old mice. Although recruitment of monocytes-derived macrophages was similar in young and old livers, young macrophages had globally a remodeling phenotype while old ones, a pro-fibrogenic phenotype. Moreover, we observed a higher proportion of thick fibers and enhanced expression of enzymes involved in collagen maturation in old mice. Impaired fibrolysis of a matrix less prone to remodeling associated with a pro-inflammatory phenotype of infiltrated macrophages contribute to a more severe fibrosis in old mice.

  20. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice.

    PubMed

    Calvo-Rubio, Miguel; Burón, M Isabel; López-Lluch, Guillermo; Navas, Plácido; de Cabo, Rafael; Ramsey, Jon J; Villalba, José M; González-Reyes, José A

    2016-06-01

    Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age-related diseases in a wide range of animals, including non-human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age-related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. High-fat simple carbohydrate (HFSC) diet impairs hypothalamic and corpus striatal serotonergic metabolic pathway in metabolic syndrome (MetS) induced C57BL/6J mice.

    PubMed

    Stephen, DSouza Serena; Abraham, Asha

    2017-07-26

    To study the effect of specially formulated high-fat simple carbohydrate diet (HFSC) on the serotonin metabolic pathway in male C57BL/6J mice. Previous studies from our laboratory have shown that specially formulated HFSC induces metabolic syndrome in C57BL/6J mice. In the present investigation, 5-hydroxytryptophan, serotonin and 5-hydroxyindoleacetic acid were analyzed in two brain regions (hypothalamus, corpus striatum), urine and plasma of HFSC-fed mice on a monthly basis up to 5 months using high-performance liquid chromatography fitted with electrochemical detector. The data were analyzed using Graph pad Prism v7.3 by two-way ANOVA and post hoc Tukey's test (to assess the effect of time on the serotonergic metabolic pathway). HFSC feed was observed to lower the hypothalamic serotonergic tone as compared to the age-matched control-fed C57BL/6J mice. Although the hypothalamic serotonergic tone was unaltered over time due to consumption of diet per se, hypothalamic 5-HTP levels were observed to be lower on consumption of HFSC feed over duration of 5 months as compared to 1st month of consumption of HFSC feed. The striatal 5-HTP levels were lowered in the HFSC-fed mice after 4 months of feeding as compared to the age-matched control-fed mice. The striatal 5-HTP levels were also lower in both control and HFSC-fed mice due to consumption of the respective diet over a duration of 5 months. Increased plasma 5-HTP levels were observed due to consumption of HFSC feed over duration of 5 months in the HFSC-fed group. However, higher breakdown of serotonin was observed in both the plasma and urine of HFSC-fed C57BL/6J mice as per the turnover studies. The central and peripheral serotonergic pathway is affected differentially by both the type of diet consumed and the duration for which the diet is consumed. The hypothalamic, striatal and plasma serotonergic pathway were altered both by the type of feed consumed and the duration of feeding. The urine serotonergic pathway was

  2. Induction of olfaction and cancer-related genes in mice fed a high-fat diet as assessed through the mode-of-action by network identification analysis.

    PubMed

    Choi, Youngshim; Hur, Cheol-Goo; Park, Taesun

    2013-01-01

    The pathophysiological mechanisms underlying the development of obesity and metabolic diseases are not well understood. To gain more insight into the genetic mediators associated with the onset and progression of diet-induced obesity and metabolic diseases, we studied the molecular changes in response to a high-fat diet (HFD) by using a mode-of-action by network identification (MNI) analysis. Oligo DNA microarray analysis was performed on visceral and subcutaneous adipose tissues and muscles of male C57BL/6N mice fed a normal diet or HFD for 2, 4, 8, and 12 weeks. Each of these data was queried against the MNI algorithm, and the lists of top 5 highly ranked genes and gene ontology (GO)-annotated pathways that were significantly overrepresented among the 100 highest ranked genes at each time point in the 3 different tissues of mice fed the HFD were considered in the present study. The 40 highest ranked genes identified by MNI analysis at each time point in the different tissues of mice with diet-induced obesity were subjected to clustering based on their temporal patterns. On the basis of the above-mentioned results, we investigated the sequential induction of distinct olfactory receptors and the stimulation of cancer-related genes during the development of obesity in both adipose tissues and muscles. The top 5 genes recognized using the MNI analysis at each time point and gene cluster identified based on their temporal patterns in the peripheral tissues of mice provided novel and often surprising insights into the potential genetic mediators for obesity progression.

  3. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets

    PubMed Central

    2011-01-01

    Background Obesity can be linked to disease risks such as diabetes and cardiovascular disorders, but recently, the adipose tissue (AT) macrophage also emerges as actively participating in inflammation and immune function, producing pro- and anti-inflammatory factors. Connections between the AT and chronic lung diseases, like emphysema and asthma and a protective role of adipocyte-derived proteins against acute lung injury were suggested. In this study we addressed the question, whether a diet challenge increases the inflammatory response in the alveolar and the blood compartment in response to carbon nanoparticles (CNP), as a surrogate for ambient/urban particulate air pollutants. Methods Mice were fed a high caloric carbohydrate-rich (CA) or a fat-rich (HF) diet for six weeks and were compared to mice kept on a purified low fat (LF) diet, respectively. Bronchoalveolar lavage (BAL) and blood samples were taken 24 h after intratracheal CNP instillation and checked for cellular and molecular markers of inflammation. Results and discussion The high caloric diets resulted in distinct effects when compared with LF mice, respectively: CA resulted in increased body and fat mass without affecting blood cellular immunity. Conversely, HF activated the blood system, increasing lymphocyte and neutrophil counts, and resulted in slightly increased body fat content. In contrast to higher pro-inflammatory BAL Leptin in CA and HF mice, on a cellular level, both diets did not lead to an increased pro-inflammatory basal status in the alveolar compartment per se, nor did result in differences in the particle-triggered response. However both diets resulted in a disturbance of the alveolar capillary barrier as indicated by enhanced BAL protein and lactate-dehydrogenase concentrations. Systemically, reduced serum Adiponectin in HF mice might be related to the observed white blood cell increase. Conclusion The increase in BAL pro-inflammatory factors in high caloric groups and reductions

  4. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets.

    PubMed

    Götz, Alexander A; Rozman, Jan; Rödel, Heiko G; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Klingenspor, Martin; Stoeger, Tobias

    2011-09-27

    Obesity can be linked to disease risks such as diabetes and cardiovascular disorders, but recently, the adipose tissue (AT) macrophage also emerges as actively participating in inflammation and immune function, producing pro- and anti-inflammatory factors. Connections between the AT and chronic lung diseases, like emphysema and asthma and a protective role of adipocyte-derived proteins against acute lung injury were suggested.In this study we addressed the question, whether a diet challenge increases the inflammatory response in the alveolar and the blood compartment in response to carbon nanoparticles (CNP), as a surrogate for ambient/urban particulate air pollutants. Mice were fed a high caloric carbohydrate-rich (CA) or a fat-rich (HF) diet for six weeks and were compared to mice kept on a purified low fat (LF) diet, respectively. Bronchoalveolar lavage (BAL) and blood samples were taken 24 h after intratracheal CNP instillation and checked for cellular and molecular markers of inflammation. The high caloric diets resulted in distinct effects when compared with LF mice, respectively: CA resulted in increased body and fat mass without affecting blood cellular immunity. Conversely, HF activated the blood system, increasing lymphocyte and neutrophil counts, and resulted in slightly increased body fat content. In contrast to higher pro-inflammatory BAL Leptin in CA and HF mice, on a cellular level, both diets did not lead to an increased pro-inflammatory basal status in the alveolar compartment per se, nor did result in differences in the particle-triggered response. However both diets resulted in a disturbance of the alveolar capillary barrier as indicated by enhanced BAL protein and lactate-dehydrogenase concentrations. Systemically, reduced serum Adiponectin in HF mice might be related to the observed white blood cell increase. The increase in BAL pro-inflammatory factors in high caloric groups and reductions in serum concentrations of anti-inflammatory factors

  5. Mid-aged and aged wild-type and progestin receptor knockout (PRKO) mice demonstrate rapid progesterone and 3alpha,5alpha-THP-facilitated lordosis.

    PubMed

    Frye, C A; Sumida, K; Lydon, J P; O'Malley, B W; Pfaff, D W

    2006-05-01

    Progesterone (P) and its 5alpha-reduced metabolite, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP), facilitate sexual behavior of rodents via agonist-like actions at intracellular progestin receptors (PRs) and membrane GABA(A)/benzodiazepine receptor complexes (GBRs), respectively. Given that ovarian secretion of progestins declines with aging, whether or not senescent mice are responsive to progestins was of interest. Homozygous PR knockout (PRKO) or wild-type mice that were between 10-12 (mid-aged) or 20-24 (aged) months of age were administered P or 3alpha,5alpha-THP, and the effect on lordosis were examined. Effects of a progestin-priming regimen that enhances PR-mediated (experiment 1) or more rapid, PR-independent effects of progestins (experiments 2 and 3) on sexual behavior were examined. Levels of P, 3alpha,5alpha-THP, and muscimol binding were examined in tissues from aged mice (experiment 4). Wild-type, but not PRKO, mice were responsive when primed with 17beta-estradiol (E(2); 0.5 microg) and administered P (500 microg, subcutaneously). Mid-aged wild-type mice demonstrated greater increases in lordosis 6 h later compared to their pre-P, baseline test than did aged wild-type mice (experiment 1). Lordosis of younger and older wild-type, but not PRKO, mice was significantly increased within 5 min of intravenous (IV) administration of P (100 ng), compared with E(2)-priming alone (experiment 2). However, wild-type and PRKO mice demonstrated significant increases in lordosis 5 min after IV administration of 3alpha,5alpha-THP, an effect which was more pronounced in mid-aged than in aged animals (100 ng-experiment 3). In tissues from aged wild-type and PRKO mice, levels of P, 3alpha,5alpha-THP, and muscimol binding were increased by P administration (experiment 4). PR binding was lower in the cortex of PRKO than that of wild-type mice. Mid-aged and aged PRKO and wild-type mice demonstrated rapid P or 3alpha,5alpha-THP-facilitated lordosis that may be

  6. PGC-1α repression and high fat diet induce age-related macular degeneration-like phenotypes in mice.

    PubMed

    Zhang, Meng; Chu, Yi; Mowery, Joseph; Konkel, Brandon; Galli, Susana; Theos, Alexander C; Golestaneh, Nady

    2018-06-20

    Age-related macular degeneration (AMD) is the major cause of blindness in the elderly in developed countries and its prevalence is increasing with the aging population. AMD initially affects the retinal pigment epithelium (RPE) and gradually leads to secondary photoreceptor degeneration. Recent studies have associated mitochondrial damage with AMD, and we have observed mitochondrial and autophagic dysfunction and repressed peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α in native RPE from AMD donor eyes and their respective induced pluripotent stem cell-derived RPE (AMD RPE-iPSC-RPE). To further investigate the effect of PGC-1α repression we have established a mouse model by feeding PGC-1α + /- mice with high fat diet (HFD) and investigated the RPE and retinal health. Here we show that when mice expressing lower levels of Pgc-1α are exposed to HFD, they present AMD-like abnormalities in RPE and retinal morphology and function. These abnormalities include basal laminar deposits, thickening of Bruch's membrane (BM) with drusen marker-containing deposits, RPE and photoreceptor degeneration, decreased mitochondrial activity, increased ROS levels, decreased autophagy dynamics/ flux, and increased inflammatory response in the RPE/retina. Our study show that the PGC-1α is important in outer retina biology and that PGC-1α + /- mouse fed with HFD is a promising model to study AMD and opens doors for novel treatment strategies in AMD. © 2018. Published by The Company of Biologists Ltd.

  7. The effect of methylmercury exposure on behavior and cerebellar granule cell physiology in aged mice.

    PubMed

    Bellum, Sairam; Thuett, Kerry A; Bawa, Bhupinder; Abbott, Louise C

    2013-09-01

    Epidemiology studies have clearly documented that the central nervous system is highly susceptible to methylmercury toxicity, and exposure to this neurotoxicant in humans primarily results from consumption of contaminated fish. While the effects of methylmercury exposure have been studied in great detail, comparatively little is known about the effects of moderate to low dose methylmercury toxicity in the aging central nervous system. We examined the toxic effects of a moderate dose of methylmercury on the aging mouse cerebellum. Male and female C57BL/6 mice at 16-20 months of age were exposed to methylmercury by feeding a total dose of 5.0 mg kg(-1) body weight and assessed using four behavioral tests. Methylmercury-treated aged mice performed significantly worse in open field, footprint analysis and the vertical pole test compared with age-matched control mice. Isolated cerebellar granule cells from methylmercury-treated aged mice exhibited higher levels of reactive oxygen species and reduced mitochondrial membrane potentials, but no differences in basal intracellular calcium ion levels compared with age-matched control mice. When aged mice were exposed to a moderate dose of methylmercury, they exhibited a similar degree of impairment when compared with young adult mice exposed to the same moderate dose of methylmercury, as reported in earlier studies from this laboratory. Thus, at least in mice, exposure of the aged brain to moderate concentrations methylmercury does not pose greater risk compared with the young adult brain exposed to similar concentrations of methylmercury. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Reduced COX-2 expression in aged mice is associated with impaired fracture healing.

    PubMed

    Naik, Amish A; Xie, Chao; Zuscik, Michael J; Kingsley, Paul; Schwarz, Edward M; Awad, Hani; Guldberg, Robert; Drissi, Hicham; Puzas, J Edward; Boyce, Brendan; Zhang, Xinping; O'Keefe, Regis J

    2009-02-01

    The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.

  9. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging.

    PubMed

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null ( Col6a1 -/- ) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1 -/- mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1 -/- mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1 -/- mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1 -/- mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1 -/- diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1 -/- gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased microtubule

  10. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  11. Age-dependent effects on sensory axonal excitability in normal mice.

    PubMed

    Banzrai, Chimeglkham; Nodera, Hiroyuki; Higashi, Saki; Okada, Ryo; Osaki, Yusuke; Mori, Atsuko; Kaji, Ryuji

    2016-01-12

    Serial recordings were performed to measure sensory excitability in peripheral nerves and elucidate age-dependent changes in neuronal ion currents in the peripheral sensory nervous system. The threshold tracking technique was used to measure multiple excitability indices in the tail sensory nerves of five normal male mice at four time points (6, 10, 14, and 19 weeks of age). A separate group of four mice was also measured at 43 weeks and at 60 weeks of age. Maturation was accompanied by an increase in early hyperpolarization and superexcitability at 10 weeks. At 60 weeks, the hyperpolarizing electrotonus shifted downward, while superexcitability became greater and subexcitability (double stimuli) decreased. Computer modeling showed that the most notable age-related interval changes in excitability parameters were Barrett-Barrett, H, and slow K(+) conductances. Understanding age-related changes in the excitability of sensory axons may provide a platform for understanding age-dependent sensory symptoms and developing age-specific channel-targeting therapies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Iron restriction inhibits renal injury in aldosterone/salt-induced hypertensive mice.

    PubMed

    Sawada, Hisashi; Naito, Yoshiro; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Masuyama, Tohru

    2015-05-01

    Excess iron is associated with the pathogenesis of several renal diseases. Aldosterone is reported to have deleterious effects on the kidney, but there have been no reports of the role of iron in aldosterone/salt-induced renal injury. Therefore, we investigated the effects of dietary iron restriction on the development of hypertension and renal injury in aldosterone/salt-induced hypertensive mice. Ten-week-old male C57BL/6J mice were uninephrectomized and infused with aldosterone for four weeks. These were divided into two groups: one fed a high-salt diet (Aldo) and the other fed a high-salt with iron-restricted diet (Aldo-IR). Vehicle-infused mice without a uninephrectomy were also divided into two groups: one fed a normal diet (control) and the other fed an iron-restricted diet (IR) for 4 weeks. As compared with control and IR mice, Aldo mice showed an increase in both systolic blood pressure and urinary albumin/creatinine ratio, but these increases were reduced in the Aldo-IR group. In addition, renal histology revealed that Aldo mice exhibited glomerulosclerosis and tubulointerstitial fibrosis, whereas these changes were attenuated in Aldo-IR mice. Expression of intracellular iron transport protein transferrin receptor 1 was increased in the renal tubules of Aldo mice compared with control mice. Dietary iron restriction attenuated the development of hypertension and renal injury in aldosterone/salt-induced hypertensive mice.

  13. Immunologic and metabolic effects of high-refined carbohydrate-containing diet in food allergic mice.

    PubMed

    Yamada, Letícia Tamie Paiva; de Oliveira, Marina Chaves; Batista, Nathália Vieira; Fonseca, Roberta Cristelli; Pereira, Rafaela Vaz Sousa; Perez, Denise Alves; Teixeira, Mauro Martins; Cara, Denise Carmona; Ferreira, Adaliene Versiani Matos

    2016-02-01

    Allergic mice show a reduction in body weight and adiposity with a higher inflammatory response in the adipose tissue similar to obese fat tissue. This study aimed to evaluate whether the low-grade inflammatory milieu of mice with diet-induced mild obesity interferes with the allergic response induced by ovalbumin (OVA). BALB/c mice were divided into four groups: 1) non-allergic (OVA-) mice fed chow diet, 2) allergic (OVA+) mice fed chow diet, 3) OVA- mice fed high-refined carbohydrate-containing (HC) diet, and 4) OVA+ mice fed HC diet. After 5 wk, allergic groups were sensitized with OVA and received a booster 14 d later. All groups received an oral OVA challenge 7 d after the booster. Allergic groups showed increased serum levels of total IgE, anti-OVA IgE, and IgG1; a high disease activity index score; aversion to OVA; and increased intestinal eosinophil infiltration. Non-allergic mild-obese mice also showed aversion to OVA and an increased number of eosinophils in the proximal jejunum. After the allergic challenge, OVA+ mice fed chow diet showed weight loss and lower adiposity in several adipose tissue depots. OVA+ mice fed HC diet showed a loss of fat mass only in the mesenteric adipose tissue. Furthermore, increased levels of TNF, IL-6, and IL-10 were observed in this tissue. Our data show that mild-obese allergic mice do not present severe pathologic features of food allergy similar to those exhibited by lean allergic mice. Mild obesity promoted by HC diet ingestion causes important intestinal disorders that appear to modulate the inflammatory response during the antigen challenge. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet

    PubMed Central

    Xia, Shu-Fang; Le, Guo-Wei; Wang, Peng; Qiu, Yu-Yu; Jiang, Yu-Yu; Tang, Xue

    2016-01-01

    Myricetin is an effective antioxidant in the treatment of obesity and obesity-related metabolic disorders. The objective of this study was to explore the regressive effect of myricetin on pre-existing hepatic steatosis induced by high-fat diet (HFD). C57BL/6 mice were fed either a standard diet or a HFD for 12 weeks and then half of the mice were treated with myricetin (0.12% in the diet, w/w) while on their respective diets for further 12 weeks. Myricetin treatment significantly alleviated HFD-induced steatosis, decreased hepatic lipid accumulation and thiobarbituric acid reactive substance (TBARS) levels, and increased antioxidative enzyme activities, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Microarray analysis of hepatic gene expression profiles showed that myricetin significantly altered the expression profiles of 177 genes which were involved in 12 biological pathways, including the peroxisome proliferator activated receptor (PPAR) signaling pathway and peroxisome. Further research indicated that myricetin elevated hepatic nuclear Nrf2 translocation, increased the protein expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1), reduced the protein expression of PPARγ, and normalized the expressions of genes that were involved in peroxisome and the PPAR signaling pathway. Our data indicated that myricetin might represent an effective therapeutic agent to treat HFD-induced hepatic steatosis via activating the Nrf2 pathway and the PPAR signaling pathway. PMID:27973423

  15. Nonalcoholic Fatty Liver Disease Is Exacerbated in High-Fat Diet-Fed Gnotobiotic Mice by Colonization with the Gut Microbiota from Patients with Nonalcoholic Steatohepatitis

    PubMed Central

    Chiu, Chien-Chao; Ching, Yung-Hao; Li, Yen-Peng; Liu, Ju-Yun; Huang, Yen-Te; Huang, Yi-Wen; Yang, Sien-Sing; Huang, Wen-Ching

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a serious liver disorder associated with the accumulation of fat and inflammation. The objective of this study was to determine the gut microbiota composition that might influence the progression of NAFLD. Germ-free mice were inoculated with feces from patients with nonalcoholic steatohepatitis (NASH) or from healthy persons (HL) and then fed a standard diet (STD) or high-fat diet (HFD). We found that the epididymal fat weight, hepatic steatosis, multifocal necrosis, and inflammatory cell infiltration significantly increased in the NASH-HFD group. These findings were consistent with markedly elevated serum levels of alanine transaminase, aspartate transaminase, endotoxin, interleukin 6 (IL-6), monocyte chemotactic protein 1 (Mcp1), and hepatic triglycerides. In addition, the mRNA expression levels of Toll-like receptor 2 (Tlr2), Toll-like receptor 4 (Tlr4), tumor necrosis factor alpha (Tnf-α), Mcp1, and peroxisome proliferator-activated receptor gamma (Ppar-γ) significantly increased. Only abundant lipid accumulation and a few inflammatory reactions were observed in group HL-HFD. Relative abundance of Bacteroidetes and Firmicutes shifted in the HFD-fed mice. Furthermore, the relative abundance of Streptococcaceae was the highest in group NASH-HFD. Nevertheless, obesity-related Lactobacillaceae were significantly upregulated in HL-HFD mice. Our results revealed that the gut microbiota from NASH Patients aggravated hepatic steatosis and inflammation. These findings might partially explain the NAFLD progress distinctly was related to different compositions of gut microbiota. PMID:29113135

  16. Effects of Nonpurified and Choline Supplemented or Nonsupplemented Purified Diets on Hepatic Steatosis and Methionine Metabolism in C3H Mice

    PubMed Central

    Syed, Raisa; Shibata, Noreene M.; Kharbanda, Kusum K.; Su, Ruijun J.; Olson, Kristin; Yokoyama, Amy; Rutledge, John C.; Chmiel, Kenneth J.; Kim, Kyoungmi; Halsted, Charles H.

    2016-01-01

    Abstract Background: Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. Methods: We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. Results: Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. Conclusions: Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals. PMID:26881897

  17. Effects of Nonpurified and Choline Supplemented or Nonsupplemented Purified Diets on Hepatic Steatosis and Methionine Metabolism in C3H Mice.

    PubMed

    Syed, Raisa; Shibata, Noreene M; Kharbanda, Kusum K; Su, Ruijun J; Olson, Kristin; Yokoyama, Amy; Rutledge, John C; Chmiel, Kenneth J; Kim, Kyoungmi; Halsted, Charles H; Medici, Valentina

    2016-05-01

    Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals.

  18. Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age.

    PubMed

    Weidner, Kate L; Buenaventura, Diego F; Chadman, Kathryn K

    2014-07-15

    Evidence from clinical studies suggests that abnormal activity of brain derived neurotrophic factor (BDNF) contributes to the pathogenesis of autism spectrum disorders (ASDs). A genetically modified line of mice over-expressing a BDNF transgene in forebrain neurons was used to investigate if this mutation leads to changes in behavior consistent with ASD. The mice used in these experiments were behaviorally tested past 5 months of age when spontaneous seizures were evident. These seizures were not observed in age-matched wildtype (WT) mice or younger mice from this transgenic line. The BDNF mice in these experiments weighed less than their WT littermates. The BDNF transgenic (BDNF-tg) mice demonstrated similar levels of sociability in the social approach test. Conversely, the BDNF-tg mice demonstrated less obsessive compulsive-like behavior in the marble burying test, less anxiety-like behavior in the elevated plus maze test, and less depressive-like behavior in the forced swim test. Changes in behavior were found in these older mice that have not been observed in younger mice from this transgenic line, which may be due to the development of seizures as the mice age. These mice do not have an ASD phenotype but may be useful to study adult onset epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice.

    PubMed

    Higashimura, Yasuki; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Ushiroda, Chihiro; Ohnogi, Hiromu; Kudo, Yoko; Yasui, Madoka; Inui, Seina; Hisada, Takayoshi; Honda, Akira; Matsuzaki, Yasushi; Yoshikawa, Toshikazu

    2016-03-15

    High-fat diet (HFD)-induced alteration in the gut microbial composition, known as dysbiosis, is increasingly recognized as a major risk factor for various diseases, including colon cancer. This report describes a comprehensive investigation of the effect of agaro-oligosaccharides (AGO) on HFD-induced gut dysbiosis, including alterations in short-chain fatty acid contents and bile acid metabolism in mice. C57BL/6N mice were fed a control diet or HFD, with or without AGO. Terminal restriction fragment-length polymorphism (T-RFLP) analysis produced their fecal microbiota profiles. Profiles of cecal organic acids and serum bile acids were determined, respectively, using HPLC and liquid chromatography-tandem mass spectrometry systems. T-RFLP analyses showed that an HFD changed the gut microbiota significantly. Changes in the microbiota composition induced by an HFD were characterized by a decrease in the order Lactobacillales and by an increase in the Clostridium subcluster XIVa. These changes of the microbiota community generated by HFD treatment were suppressed by AGO supplementation. As supported by the data of the proportion of Lactobacillales order, the concentration of lactic acid increased in the HFD + AGO group. Data from the serum bile acid profile showed that the level of deoxycholic acid, a carcinogenic secondary bile acid produced by gut bacteria, was increased in HFD-receiving mice. The upregulation tended to be suppressed by AGO supplementation. Finally, results show that AGO supplementation suppressed the azoxymethane-induced generation of aberrant crypt foci in the colon derived from HFD-treated mice. Our results suggest that oral intake of AGO prevents HFD-induced gut dysbiosis, thereby inhibiting colon carcinogenesis. Copyright © 2016 the American Physiological Society.

  20. The Cardioprotective Effect of Vitamin E (Alpha-Tocopherol) Is Strongly Related to Age and Gender in Mice

    PubMed Central

    Li, Yan; Lin, Ze-Bang; Liu, Xiang; Wang, Jing-Feng; Chen, Yang-Xin; Wang, Zhi-Ping; Zhang, Xi; Ou, Zhi-Jun; Ou, Jing-Song

    2015-01-01

    Vitamin E (VitE) only prevented cardiovascular diseases in some patients and the mechanisms remain unknown. VitE levels can be affected by aging and gender. We hypothesize that age and gender can influence VitE’s cardioprotective effect. Mice were divided into 4 groups according to age and gender, and each group of mice were divided into a control group and a VitE group. The mice were administered water or VitE for 21 days; Afterward, the cardiac function and myocardial infarct size and cardiomyocyte apoptosis were measured after myocardial ischemia reperfusion(MI/R). VitE may significantly improved cardiac function in young male mice and aged female mice by enhancing ERK1/2 activity and reducing JNK activity. Enhanced expression of HSP90 and Bcl-2 were also seen in young male mice. No changes in cardiac function and cardiac proteins were detected in aged male mice and VitE was even liked to exert a reverse effect in cardiac function in young mice by enhancing JNK activity and reducing Bcl-2 expression. Those effects were in accordance with the changes of myocardial infarction size and cardiomyocyte apoptosis in each group of mice. VitE may reduce MI/R injury by inhibiting cardiomyocyte apoptosis in young male mice and aged female mice but not in aged male mice. VitE was possibly harmful for young female mice, shown as increased cardiomyocyte apoptosis after MI/R. Thus, we speculated that the efficacy of VitE in cardiac protection was associated with age and gender. PMID:26331272

  1. Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice.

    PubMed

    Von Linstow, C U; Severino, M; Metaxas, A; Waider, J; Babcock, A A; Lesch, K P; Gramsbergen, J B; Finsen, B

    2017-09-01

    Aging is the greatest single risk factor of the neurodegenerative disorder Alzheimer's disease (AD). The monoaminergic system, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) modulates cognition, which is affected in AD. Changes in monoamine levels have been observed in AD, but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APP SWE /PS1 ΔE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice. In combination, these findings indicate that aging alone is not sufficient to affect brain monoamine levels, unlike the APP SWE /PS1 ΔE9 genotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    PubMed

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  3. Chronic Intermittent Fasting Improves Cognitive Functions and Brain Structures in Mice

    PubMed Central

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals. PMID:23755298

  4. Effect of aged garlic extract on immune responses to experimental fibrosarcoma tumor in BALB/c mice.

    PubMed

    Tabari, M Abouhosseini; Ebrahimpour, S

    2014-01-01

    Aged garlic extract (AGE) has many biological activities including radical scavenging, antioxidative and immunomodulative effects. In this research work, the antitumor and immunomodulatory effects of AGE against fibrosarcoma implanted tumor were studied. WEHI-164 fibrosarcoma cells were implanted subcutaneously on day 0 into the right flank of 40 BALB/c mice at age of 8 weeks. Mice were randomly categorized in two separate groups: First received AGE (100 mg/kg, IP), second group as the control group received phosphate buffered saline. Treatments were carried out 3 times/week. Tumor growth was measured and morbidity was recorded. Subpopulations of CD4+/CD8+ T cells were determined using flow cytometry. WEHI-164 cell specific cytotoxicity of splenocytes and in vitro production of interferon gamma (IFN-γ) and interleukin-4 cytokines were measured. The mice received AGE had significantly longer survival time compared with the control mice. The inhibitory effect on tumor growth was seen in AGE treated mice. The CD4+/CD8+ ratio and in vitro IFN-γ production of splenocytes were significantly increased in AGE group. WEHI-164 specific cytotoxicity of splenocytes from AGE mice was also significantly increased at 25:1 E: T ratio. Administration of AGE resulted in improved immune responses against experimentally implanted fibrosarcoma tumors in BALB/c mice. AGE showed significant effects on inhibition of tumor growth and longevity of survival times.

  5. Hydrodynamic Delivery of FGF21 Gene Alleviates Obesity and Fatty Liver in Mice Fed a High-fat Diet

    PubMed Central

    Gao, Mingming; Ma, Yongjie; Cui, Ran; Liu, Dexi

    2014-01-01

    FGF21 is a secreted protein that plays critical roles in regulating glucose and lipid metabolism. In this study, we evaluated the effects of FGF21 gene transfer on C57BL/6 mice fed a high fat diet (HFD). We demonstrate that transfer of the FGF21 gene using a hydrodynamics-based procedure increased mRNA levels of FGF21 exclusively in the liver, consequently generating a sustained high level of FGF21 protein in blood that peaked at 500 ng/ml one day after injection, leading to a variety of beneficial effects including blockade of HFD-induced obesity, alleviation of fatty liver and improvement in glucose homeostasis. These effects were associated with altered expression of Ucp1, Dio2, Pgc1α, Pparγ2, Mgat1, F4/80, Mcp1 and Tnfα, which are involved in thermogenesis, lipogensis and chronic inflammation in the liver and adipose tissues. Transfer of the FGF21 gene in HFD-induced obese mice greatly increased expression of thermogenic genes in adipose tissue, resulting in similar improvements in systemic metabolism including reduction of adiposity, alleviation of fatty liver and attenuation of insulin resistance. Mechanistic studies on the effects of FGF21 gene transfer in lean mice revealed that mice transferred with FGF21 gene displayed suppressed lipogenesis in the liver and enhanced thermogenesis in brown adipose tissue which was coincident with a significant improvement in glucose tolerance. Collectively, our results suggest transfer of the FGF21 gene could be considered a promising approach for treating obesity and its complications. PMID:24747761

  6. Flow cytometry and immunomorphological characteristics of apoptosis in hepatocytes of white mice during aging.

    PubMed

    Gujabidze, N; Rukhadze, R

    2006-08-01

    Apoptosis, sometimes called "programmed cell death", the process that goes on continuously throughout life has received phenomenal attention in the past few years. In the process of aging of organism, most of organs undergo morphological and functional changes at various frequencies. Initially, the role of apoptosis regarding aging was evaluated negatively, however, at present the issue is in the process of reconsideration. The experiments were performed on 74 white mice, distributed in three age groups (juveniles, adults, and senescents). Apoptotic nuclei were detected by immunomorphological and flow cytometry assay. So, the analysis of the data obtained that apoptosis in hepatocytes of white mice decreases with age and afterwards increases in a credible way. The maximum value is reached in the senescent mice. It has been considered, that aging increases the susceptibility of hepatocytes to apoptosis in white mice.

  7. Subacute ibuprofen treatment rescues the synaptic and cognitive deficits in advanced-aged mice

    PubMed Central

    Rogers, Justin T.; Liu, Chia-Chen; Zhao, Na; Wang, Jian; Putzke, Travis; Yang, Longyu; Shinohara, Mitsuru; Fryer, John D.; Kanekiyo, Takahisa; Bu, Guojun

    2017-01-01

    Aging is accompanied by increased neuroinflammation, synaptic dysfunction and cognitive deficits both in rodents and humans, yet the onset and progression of these deficits throughout the life span remain unknown. These aging-related deficits affect the quality of life and present challenges to our aging society. Here, we defined age-dependent and progressive impairments of synaptic and cognitive functions and showed that reducing astrocyte-related neuroinflammation through anti-inflammatory drug treatment in aged mice reverses these events. By comparing young (3 months), middle-aged (18 months), aged (24 months) and advanced-aged wild-type mice (30 months), we found that the levels of an astrocytic marker, GFAP, progressively increased after 18 months of age, which preceded the decreases of the synaptic marker PSD-95. Hippocampal long-term potentiation (LTP) was also suppressed in an age-dependent manner, where significant deficits were observed after 24 months of age. Fear conditioning tests demonstrated that associative memory in the context and cued conditions was decreased starting at the ages of 18 and 30 months, respectively. When the mice were tested on hidden platform water maze, spatial learning memory was significantly impaired after 24 months of age. Importantly, subacute treatment with the anti-inflammatory drug ibuprofen suppressed astrocyte activation, and restored synaptic plasticity and memory function in advanced-aged mice. These results support the critical contribution of aging-related inflammatory responses to hippocampal-dependent cognitive function and synaptic plasticity, in particular during advanced aging. Our findings provide strong evidence that suppression of neuroinflammation could be a promising treatment strategy to preserve cognition during aging. PMID:28254590

  8. Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice.

    PubMed

    Zhao, Shou-Cai; Wang, Chun; Xu, Heng; Wu, Wen-Qian; Chu, Zhao-Hu; Ma, Ling-Song; Zhang, Ying-Dong; Liu, Fudong

    2017-11-01

    Stroke is a disease that mainly affects the elderly. Since the age-related differences in stroke have not been well studied, modeling stroke in aged animals is clinically more relevant. The inflammatory responses to stroke are a fundamental pathological procedure, in which microglial activation plays an important role. Interferon regulatory factor-5 (IRF5) and IRF4 regulate M1 and M2 activation of macrophages, respectively, in peripheral inflammation; but it is unknown whether IRF5/IRF4 are also involved in cerebral inflammatory responses to stroke and whether age-related differences of the IRF5/IRF4 signaling exist in ischemic brain. Here, we investigated the influences of aging on IRF5/IRF4 signaling and post-stroke inflammation in mice. Both young (9-12 weeks) and aged (18 months) male mice were subjected to middle cerebral artery occlusion (MCAO). Morphological and biochemical changes in the ischemic brains and behavior deficits were assessed on 1, 3, and 7 d post-stroke. After MCAO, the aged mice showed smaller infarct sizes but higher neurological deficits and corner test scores than young mice. Young mice had higher levels of IRF4 and CD206 microglia in the ischemic brains, whereas the aged mice expressed more IRF5 and MHCII microglia. After MCAO, serum pro-inflammatory cytokines (TNF-α, iNOS, IL-6) were more prominently up-regulated in aged mice, whereas serum anti-inflammatory cytokines (TGF-β, IL-4, IL-10) were more prominently up-regulated in young mice. Our results demonstrate that aging has a significant influence on stroke outcomes in mice, which is probably mediated by age-specific inflammatory responses.

  9. Histone deacetylase inhibitors reverse age-related increases in side effects of haloperidol in mice.

    PubMed

    Montalvo-Ortiz, Janitza L; Fisher, Daniel W; Rodríguez, Guadalupe; Fang, Deyu; Csernansky, John G; Dong, Hongxin

    2017-08-01

    Older patients can be especially susceptible to antipsychotic-induced side effects, and the pharmacodynamic mechanism underlying this phenomenon remains unclear. We hypothesized that age-related epigenetic alterations lead to decreased expression and functionality of the dopamine D2 receptor (D2R), contributing to this susceptibility. In this study, we treated young (2-3 months old) and aged (22-24 months old) C57BL/6 mice with the D2R antagonist haloperidol (HAL) once a day for 14 days to evaluate HAL-induced motor side effects. In addition, we pretreated separate groups of young and aged mice with histone deacetylase (HDAC) inhibitors valproic acid (VPA) or entinostat (MS-275) and then administered HAL. Our results show that the motor side effects of HAL are exaggerated in aged mice as compared to young mice and that HDAC inhibitors are able to reverse the severity of these deficits. HAL-induced motor deficits in aged mice are associated with an age- and drug-dependent decrease in striatal D2R protein levels and functionality. Further, histone acetylation was reduced while histone tri-methylation was increased at specific lysine residues of H3 and H4 within the Drd2 promoter in the striatum of aged mice. HDAC inhibitors, particularly VPA, restored striatal D2R protein levels and functionality and reversed age- and drug-related histone modifications at the Drd2 promoter. These results suggest that epigenetic changes at the striatal Drd2 promoter drive age-related increases in antipsychotic side effect susceptibility, and HDAC inhibitors may be an effective adjunct treatment strategy to reduce side effects in aged populations.

  10. Haploinsufficiency in the PPAR{alpha} and LDL receptor genes leads to gender- and age-specific obesity and hyperinsulinemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Eiko; Tanaka, Naoki; Nakajima, Tamie

    2006-11-17

    When preparing peroxisome proliferator-activated receptor (PPAR){alpha}:low-density lipoprotein receptor (LDLR) (-/-) double knockout mice, we unexpectedly found a unique gender- and age-specific obesity in the F1 generation, PPAR{alpha} (+/-):LDLR (+/-), even in mice fed standard chow. Body weights of the male heterozygous mice increased up to about 60 g at 75 weeks of age, then decreased by about 30 g at 100 weeks of age. More than 95% of the heterozygous mice between 35- and 75-week-olds were overweight. Of interest, the obese heterozygous mice also exhibited hyperinsulinemia correlating with moderate insulin resistance. Hepatic gene expression of LDLR was lower than expectedmore » in the heterozygous mice, particularly at 50 and 75 weeks of age. In contrast, the hepatic expression of PPAR{alpha} was higher than expected in obese heterozygous mice, but decreased in non-obese older heterozygous mice. Modulated expression of these genes may be partially associated with the onset of the hyperinsulinemia.« less

  11. Age-related decline in oligodendrogenesis retards white matter repair in mice.

    PubMed

    Miyamoto, Nobukazu; Pham, Loc-Duyen D; Hayakawa, Kazuhide; Matsuzaki, Toshinori; Seo, Ji Hae; Magnain, Caroline; Ayata, Cenk; Kim, Kyu-Won; Boas, David; Lo, Eng H; Arai, Ken

    2013-09-01

    Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask whether, compared with young brains, white matter regions in older brains may be more vulnerable in part because of decreased rates of compensatory oligodendrogenesis after injury. A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month-old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells to sublethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Baseline myelin density in the corpus callosum was similar in 2-month and 8-month-old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in cyclic AMP response element-binding protein signaling may be involved because activating cyclic AMP response element-binding protein with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of oligodendrocyte precursor cells, alleviated myelin loss, and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of oligodendrocyte precursor cells. An age-related decline in cyclic AMP response element-binding protein-mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate cyclic AMP response element-binding protein signaling provide a potential therapeutic approach for treating white matter injury in aging brains.

  12. Short-term food restriction followed by controlled refeeding promotes gorging behavior, enhances fat deposition, and diminishes insulin sensitivity in mice

    PubMed Central

    Kliewer, Kara L.; Ke, Jia-Yu; Stout, Michael B.; Cole, Rachel; Samuel, Varman T.; Shulman, Gerald I.; Belury, Martha A.

    2015-01-01

    Rodents are commonly used in food restriction-refeeding studies to investigate weight regain. Mice that are rationed food every 24 hours may consume all allocated food in a short time (gorge) and therefore undergo a brief well-fed period followed by an extended fasted period until the next day’s food allotment. These exaggerated metabolic states are not typical in ad-libitum fed (nibbling) mice. The aim of the current study was to elucidate the intraday and cumulative metabolic consequences of gorging (induced by food restriction) in mice during controlled refeeding. Accordingly, following a temporary food restriction, mice were fed rations similar to intakes of ad-libitum fed controls. Temporary food restriction initiated gorging behavior that persisted during refeeding; consequently, metabolism-related measurements were obtained in the gorging mice during their daily fed and fasted metabolic states. Robust differences in adipose tissue lipogenic and inflammatory gene expression were found in the gorging mice by metabolic state (fed versus fasted). Additionally, despite a reduced cumulative food intake compared to ad-libitum fed mice, restriction-induced gorging mice had increased intra-abdominal fat accumulation, diminished hepatic and peripheral insulin sensitivity, and a gene expression profile favoring lipid deposition. Our findings highlight the intraday differences in gene expression in gorging mice before and after feeding that confound comparisons with ad-libitum fed, or nibbling, mice. The present study also provides evidence that weight regain following food restriction is associated with cumulative metabolic and behavioral abnormalities in mice. PMID:25913018

  13. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  14. Acetaminophen hepatotoxicity in mice: Effect of age, frailty and exposure type

    PubMed Central

    Kane, Alice E.; Mitchell, Sarah J.; Mach, John; Huizer-Pajkos, Aniko; McKenzie, Catriona; Jones, Brett; Cogger, Victoria; Le Couteur, David G.; de Cabo, Rafael; Hilmer, Sarah N.

    2018-01-01

    Acetaminophen is a commonly used analgesic that can cause severe hepatotoxicity in overdose. Despite old age and frailty being associated with extensive and long-term utilization of acetaminophen and a high prevalence of adverse drug reactions, there is limited information on the risks of toxicity from acetaminophen in old age and frailty. This study aimed to assess changes in the risk and mechanisms of hepatotoxicity from acute, chronic and sub-acute acetaminophen exposure with old age and frailty in mice. Young and old male C57BL/6 mice were exposed to either acute (300 mg/kg via oral gavage), chronic (100 mg/kg/day in diet for six weeks) or sub-acute (250 mg/kg, t.i.d., for three days) acetaminophen, or saline control. Pre-dosing mice were scored for the mouse clinical frailty index, and after dosing serum and liver tissue were collected for assessment of toxicity and mechanisms. There were no differences with old age or frailty in the degree of hepatotoxicity induced by acute, chronic or subacute acetaminophen exposure as assessed by serum liver enzymes and histology. Age-related changes in the acetaminophen toxicity pathways included increased liver GSH concentrations, increased NQO1 activity and an increased pro- and anti-inflammatory response to acetaminophen in old age. Frailty-related changes included a negative correlation between frailty index and serum protein, albumin and ALP concentrations for some mouse groups. In conclusion, although there were changes in some pathways that would be expected to influence susceptibility to acetaminophen toxicity, there was no overall increase in acetaminophen hepatotoxicity with old age or frailty in mice. PMID:26615879

  15. Evaluation of Neuropathological Effects of a High-Fat Diet in a Presymptomatic Alzheimer's Disease Stage in APP/PS1 Mice.

    PubMed

    Ettcheto, Miren; Petrov, Dmitry; Pedrós, Ignacio; Alva, Norma; Carbonell, Teresa; Beas-Zarate, Carlos; Pallas, Merce; Auladell, Carme; Folch, Jaume; Camins, Antoni

    2016-07-14

    Alzheimer's disease (AD) is currently an incurable aging-related neurodegenerative disorder. Recent studies give support to the hypotheses that AD should be considered as a metabolic disease. The present study aimed to explore the relationship between hippocampal neuropathological amyloid-β (Aβ) plaque formation and obesity at an early presymptomatic disease stage (3 months of age). For this purpose, we used APPswe/PS1dE9 (APP/PS1) transgenic mice, fed with a high-fat diet (HFD) in order to investigate the potential molecular mechanisms involved in both disorders. The results showed that the hippocampus from APP/PS1 mice fed with a HFD had an early significant decrease in Aβ signaling pathway specifically in the insulin degrading enzyme protein levels, an enzyme involved in (Aβ) metabolism, and α-secretase. These changes were accompanied by a significant increase in the occurrence of plaques in the hippocampus of these mice. Furthermore, APP/PS1 mice showed a significant hippocampal decrease in PGC-1α levels, a cofactor involved in mitochondrial biogenesis. However, HFD does not provoke changes in neither insulin receptors gene expression nor enzymes involved in the signaling pathway. Moreover, there are no changes in any enzymes (kinases) involved in tau phosphorylation, such as CDK5, and neither in brain oxidative stress production. These results suggest that early changes in brains of APP/PS1 mice fed with a HFD are mediated by an increase in Aβ1 ‒ 42, which induces a decrease in PKA levels and alterations in the p-CREB/ NMDA2B /PGC1-α pathway, favoring early AD neuropathology in mice.

  16. CoQ10 plasmatic levels in breast-fed infants compared to formula-fed infants.

    PubMed

    Compagnoni, G; Giuffrè, B; Lista, G; Mosca, F; Marini, A

    2004-01-01

    Coenzyme Q10 has been recognized as an important antioxidant factor besides its main role in bioenergetic metabolism. CoQ10 tissue levels depend both on exogenous dietetic intake and on endogenous biosynthesis, as this compound can be partly synthesized in human cells. Q10 plasma levels reflect the tissue content of the coenzyme and can be used to evaluate the presence of this compound in the human organism. Aim of the study was to measure CoQ10 plasmatic levels in a newborn breast-fed population and to compare them to CoQ10 levels in a newborn formula-fed population in order to verify whether changes in CoQ10 plasmatic contents could be related to a different dietetic intakes. We measured CoQ10 plasmatic levels in 25 healthy term neonates with different dietetic intakes: 15 breast-fed and 10 bottle-fed with a common infant formula. These infants were evaluated prospectively during the first month of life. The analyses were performed on the mothers' blood samples and cord blood samples at the time of delivery, then on infants at 4 and 28 days of age. Our results showed markedly reduced Q10 levels in cord blood samples compared to maternal Q10 plasmatic levels at the time of delivery, suggesting placental impermeability towards this molecule or increased fetal utilization during labor and delivery. At 4 days of age Q10 levels had increased in both groups of neonates, but significantly more in breast-fed infants compared to formula-fed babies (p <0.05). At 4 weeks of age no significant changes occurred in breast-fed infants, while values increased significantly in formula-fed infants (p <0.05). The content of Q10 in breast milk samples was lower than in infant formula. The results of this study show that CoQ10 plasmatic levels are at least partly influenced by the exogenous dietetic supply.

  17. Anti-obesity effects of hot water extract from Wasabi (Wasabia japonica Matsum.) leaves in mice fed high-fat diets

    PubMed Central

    Ogawa, Tetsuro; Wang, Li; Katsube, Takuya; Yamasaki, Yukikazu; Sun, Xufeng; Shiwaku, Kuninori

    2013-01-01

    The anti-obesity effects of a hot water extract from wasabi (Wasabia japonica Matsum.) leaves (WLE), without its specific pungent constituents, such as allyl-isothiocyanate, were investigated in high fat-diet induced mice. C57J/BL mice were fed a high-fat diet (control group) or a high-fat diet supplemented with 5% WLE (WLE group). Physical parameters and blood profiles were determined. Gene expression associated with lipid metabolism in liver and white adipose tissue were analyzed. After 120 days of feeding, significantly lower body weight gain, liver weight and epididymal white adipose tissue weight was observed in the WLE group compared to the control group. In liver gene expression within the WLE group, PPARα was significantly enhanced and SREBP-1c was significantly suppressed. Subsequent downstream genes controlled by these regulators were significantly suppressed. In epididymal white adipose tissue of the WLE group, expression of leptin, PPARγ, and C/EBPα were significantly suppressed and adiponectin was significantly enhanced. Acox, related to fatty acid oxidization in adipocytes, was also enhanced. Our results demonstrate that the WLE dietary supplement induces mild suppression of obesity in a high-fat diet induced mice, possibly due to suppression of lipid accumulation in liver and white adipose tissue. PMID:23964313

  18. Anti-obesity effects of hot water extract from Wasabi (Wasabia japonica Matsum.) leaves in mice fed high-fat diets.

    PubMed

    Yamasaki, Masayuki; Ogawa, Tetsuro; Wang, Li; Katsube, Takuya; Yamasaki, Yukikazu; Sun, Xufeng; Shiwaku, Kuninori

    2013-08-01

    The anti-obesity effects of a hot water extract from wasabi (Wasabia japonica Matsum.) leaves (WLE), without its specific pungent constituents, such as allyl-isothiocyanate, were investigated in high fat-diet induced mice. C57J/BL mice were fed a high-fat diet (control group) or a high-fat diet supplemented with 5% WLE (WLE group). Physical parameters and blood profiles were determined. Gene expression associated with lipid metabolism in liver and white adipose tissue were analyzed. After 120 days of feeding, significantly lower body weight gain, liver weight and epididymal white adipose tissue weight was observed in the WLE group compared to the control group. In liver gene expression within the WLE group, PPARα was significantly enhanced and SREBP-1c was significantly suppressed. Subsequent downstream genes controlled by these regulators were significantly suppressed. In epididymal white adipose tissue of the WLE group, expression of leptin, PPARγ, and C/EBPα were significantly suppressed and adiponectin was significantly enhanced. Acox, related to fatty acid oxidization in adipocytes, was also enhanced. Our results demonstrate that the WLE dietary supplement induces mild suppression of obesity in a high-fat diet induced mice, possibly due to suppression of lipid accumulation in liver and white adipose tissue.

  19. Protective effect of cinnamon polyphenols against STZ-diabetic mice fed high-sugar, high-fat diet and its underlying mechanism.

    PubMed

    Li, Rong; Liang, Tao; Xu, Lingyuan; Li, Yongwen; Zhang, Shijun; Duan, Xiaoqun

    2013-01-01

    This study was designed to investigate the potential effects of 14days' intragastrically given of cinnamon polyphenols (CPS) in treating diabetic mice induced by intraperitoneal injection of streptozotocin (150mgkg(-1)) and fed high-sugar, high-fat diet. The diabetic mice model was successfully established through determining on fasting blood-glucose (FBG) test. As revealed by glucose oxidase (GOD) and radioimmunoassay (RIA), both dimethyldiguanide (DC, 0.6gkg(-1)d(-1)) and CPS (0.3, 0.6, 1.2gkg(-1)d(-1)) treatments significantly resulted in down-regulation of blood glucose and insulin levels in serum, while the levels of oxidative stress markers were markedly lowered through ELISA assay. Meanwhile, the pathological damage in islet with pancreatic beta cells was ameliorated by treatment of CPS at different doses, as shown in HE stain. At the same time, the treatments also caused notable reduction of iNOS, NF-κB expressions showing in Western blot analysis. These findings demonstrate that cinnamon polyphenols can exert the hypoglycemic and hypolipidemic effects through the mechanisms that may be associated with repairing pancreatic beta cells in diabetic mice and improving its anti-oxidative capacity, as well as attenuating cytotoxicity via inhibition of iNOS, NF-κB activation. Published by Elsevier Ltd.

  20. Collagen VI Null Mice as a Model for Early Onset Muscle Decline in Aging

    PubMed Central

    Capitanio, Daniele; Moriggi, Manuela; De Palma, Sara; Bizzotto, Dario; Molon, Sibilla; Torretta, Enrica; Fania, Chiara; Bonaldo, Paolo; Gelfi, Cecilia; Braghetta, Paola

    2017-01-01

    Collagen VI is an extracellular matrix (ECM) protein playing a key role in skeletal muscles and whose deficiency leads to connective tissue diseases in humans and in animal models. However, most studies have been focused on skeletal muscle features. We performed an extensive proteomic profiling in two skeletal muscles (diaphragm and gastrocnemius) of wild-type and collagen VI null (Col6a1−/−) mice at different ages, from 6- (adult) to 12- (aged) month-old to 24 (old) month-old. While in wild-type animals the number of proteins and the level of modification occurring during aging were comparable in the two analyzed muscles, Col6a1−/− mice displayed a number of muscle-type specific variations. In particular, gastrocnemius displayed a limited number of dysregulated proteins in adult mice, while in aged muscles the modifications were more pronounced in terms of number and level. In diaphragm, the differences displayed by 6-month-old Col6a1−/− mice were more pronounced compared to wild-type mice and persisted at 12 months of age. In adult Col6a1−/− mice, the major variations were found in the enzymes belonging to the glycolytic pathway and the tricarboxylic acid (TCA) cycle, as well as in autophagy-related proteins. When compared to wild-type animals Col6a1−/− mice displayed a general metabolic rewiring which was particularly prominent the diaphragm at 6 months of age. Comparison of the proteomic features and the molecular analysis of metabolic and autophagic pathways in adult and aged Col6a1−/− diaphragm indicated that the effects of aging, culminating in lipotoxicity and autophagic impairment, were already present at 6 months of age. Conversely, the effects of aging in Col6a1−/− gastrocnemius were similar but delayed becoming apparent at 12 months of age. A similar metabolic rewiring and autophagic impairment was found in the diaphragm of 24-month-old wild-type mice, confirming that fatty acid synthase (FASN) increment and decreased

  1. Impact of β-hydroxy β-methylbutyrate (HMB) on age-related functional deficits in mice.

    PubMed

    Munroe, Michael; Pincu, Yair; Merritt, Jennifer; Cobert, Adam; Brander, Ryan; Jensen, Tor; Rhodes, Justin; Boppart, Marni D

    2017-01-01

    β-Hydroxy β-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine. Recent studies demonstrate a decline in plasma HMB concentrations in humans across the lifespan, and HMB supplementation may be able to preserve muscle mass and strength in older adults. However, the impact of HMB supplementation on hippocampal neurogenesis and cognition remains largely unexplored. The purpose of this study was to simultaneously evaluate the impact of HMB on muscle strength, neurogenesis and cognition in young and aged mice. In addition, we evaluated the influence of HMB on muscle-resident mesenchymal stem/stromal cell (Sca-1 + CD45 - ; mMSC) function to address these cells potential to regulate physiological outcomes. Three month-old (n=20) and 24 month-old (n=18) female C57BL/6 mice were provided with either Ca-HMB or Ca-Lactate in a sucrose solution twice per day for 5.5weeks at a dose of 450mg/kg body weight. Significant decreases in relative peak and mean force, balance, and neurogenesis were observed in aged mice compared to young (age main effects, p≤0.05). Short-term HMB supplementation did not alter activity, balance, neurogenesis, or cognitive function in young or aged mice, yet HMB preserved relative peak force in aged mice. mMSC gene expression was significantly reduced with age, but HMB supplementation was able to recover expression of select growth factors known to stimulate muscle repair (HGF, LIF). Overall, our findings demonstrate that while short-term HMB supplementation does not appear to affect neurogenesis or cognitive function in young or aged mice, HMB may maintain muscle strength in aged mice in a manner dependent on mMSC function. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Fish oil concentrate delays sensitivity to thermal nociception in mice

    PubMed Central

    Veigas, Jyothi M.; Williams, Paul J.; Halade, Ganesh; Rahman, Mizanur M.; Yoneda, Toshiyuki; Fernandes, Gabriel

    2011-01-01

    Fish oil has been used to alleviate pain associated with inflammatory conditions such as rheumatoid arthritis. The anti-inflammatory property of fish oil is attributed to the n-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid. Contrarily, vegetable oils such as safflower oil are rich in n-6 fatty acids which are considered to be mediators of inflammation. This study investigates the effect of n-3 and n-6 fatty acids rich oils as dietary supplements on the thermally induced pain sensitivity in healthy mice. C57Bl/6J mice were fed diet containing regular fish oil, concentrated fish oil formulation (CFO) and safflower oil (SO) for 6 months. Pain sensitivity was measured by plantar test and was correlated to the expression of acid sensing ion channels (ASICs), transient receptor potential vanilloid 1 (TRPV1) and c-fos in dorsal root ganglion cells. Significant delay in sensitivity to thermal nociception was observed in mice fed CFO compared to mice fed SO (p<0.05). A significant diminution in expression of ion channels such as ASIC1a (64%), ASIC13 (37%) and TRPV1 (56%) coupled with reduced expression of c-fos, a marker of neuronal activation, was observed in the dorsal root ganglion cells of mice fed CFO compared to that fed SO. In conclusion, we describe here the potential of fish oil supplement in reducing sensitivity to thermal nociception in normal mice. PMID:21345372

  3. Betaine improved adipose tissue function in mice fed a high-fat diet: a mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease

    PubMed Central

    Wang, Zhigang; Yao, Tong; Pini, Maria; Zhou, Zhanxiang; Fantuzzi, Giamila

    2010-01-01

    Adipose tissue dysfunction, featured by insulin resistance and/or dysregulated adipokine production, plays a central role not only in disease initiation but also in the progression to nonalcoholic steatohepatitis and cirrhosis. Promising beneficial effects of betaine supplementation on nonalcoholic fatty liver disease (NAFLD) have been reported in both clinical investigations and experimental studies; however, data related to betaine therapy in NAFLD are still limited. In this study, we examined the effects of betaine supplementation on hepatic fat accumulation and injury in mice fed a high-fat diet and evaluated mechanisms underlying its hepatoprotective effects. Male C57BL/6 mice weighing 25 ± 0.5 (SE) g were divided into four groups (8 mice/group) and started on one of four treatments: control diet, control diet supplemented with betaine, high-fat diet, and high-fat diet supplemented with betaine. Betaine was supplemented in the drinking water at a concentration of 1% (wt/vol) (anhydrous). Our results showed that long-term high-fat feeding caused NAFLD in mice, which was manifested by excessive neutral fat accumulation in the liver and elevated plasma alanine aminotransferase levels. Betaine supplementation alleviated hepatic pathological changes, which were concomitant with attenuated insulin resistance as shown by improved homeostasis model assessment of basal insulin resistance values and glucose tolerance test, and corrected abnormal adipokine (adiponectin, resistin, and leptin) productions. Specifically, betaine supplementation enhanced insulin sensitivity in adipose tissue as shown by improved extracellular signal-regulated kinases 1/2 and protein kinase B activations. In adipocytes freshly isolated from mice fed a high-fat diet, pretreatment of betaine enhanced the insulin signaling pathway and improved adipokine productions. Further investigation using whole liver tissues revealed that betaine supplementation alleviated the high-fat diet

  4. Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice.

    PubMed

    Druart, Céline; Neyrinck, Audrey M; Dewulf, Evelyne M; De Backer, Fabienne C; Possemiers, Sam; Van de Wiele, Tom; Moens, Frédéric; De Vuyst, Luc; Cani, Patrice D; Larondelle, Yvan; Delzenne, Nathalie M

    2013-09-28

    In vitro experiments have shown that isolated human gut bacteria are able to metabolise PUFA into conjugated PUFA like conjugated linoleic acids (CLA). The hypothesis of the present paper was that high-fat (HF) diet feeding and supplementation with fermentable carbohydrates that have prebiotic properties modulate the in vivo production of CLA by the mouse gut microbiota. Mice were treated for 4 weeks as follows: control (CT) groups were fed a standard diet; HF groups were fed a HF diet rich in linoleic acid (18 : 2n-6); the third groups were fed with the HF diet supplemented with either inulin-type fructans (HF-ITF) or arabinoxylans (HF-Ax). HF diet feeding increased rumenic acid (cis-9,trans-11-18 : 2 CLA) content both in the caecal and liver tissues compared with the CT groups. ITF supplementation had no major effect compared with the HF diet whereas Ax supplementation increased further rumenic acid (cis-9,trans-11-18 : 2 CLA) in the caecal tissue. These differences between both prebiotics may be linked to the high fat-binding capacity of Ax that provides more substrates for bacterial metabolism and to differential modulation of the gut microbiota (specific increase in Roseburia spp. in HF-Ax v. HF). In conclusion, these experiments supply the proof of concept that the mouse gut microbiota produces CLA in vivo, with consequences on the level of CLA in the caecal and liver tissues. We postulate that the CLA-producing bacteria could be a mediator to consider in the metabolic effects of both HF diet feeding and prebiotic supplementation.

  5. Innate Immune Dysfunctions in Aged Mice Facilitate the Systemic Dissemination of Methicillin-Resistant S. aureus

    PubMed Central

    Tseng, Ching Wen; Kyme, Pierre A.; Arruda, Andrea; Ramanujan, V. Krishnan; Tawackoli, Wafa; Liu, George Y.

    2012-01-01

    Elderly humans show increased susceptibility to invasive staphylococcal disease after skin and soft tissue infection. However, it is not understood how host immunity changes with aging, and how that predisposes to invasive disease. In a model of severe skin infection, we showed that aged mice (16- to 20-month-old) exhibit dramatic bacterial dissemination compared with young adult mice (2-month-old). Bacterial dissemination was associated with significant reductions of CXCL1 (KC), polymorphonuclear cells (PMNs), and extracellular DNA traps (NETs) at the infection site. PMNs and primary skin fibroblasts isolated from aged mice showed decreased secretion of CXCL2 (MIP-2) and KC in response to MRSA, and in vitro analyses of mitochondrial functions revealed that the mitochondrial electron transport chain complex I plays a significant role in induction of chemokines in the cells isolated from young but not old mice. Additionally, PMNs isolated from aged mice have reduced ability to form NETs and to kill MRSA. Expression of nuclease by S. aureus led to increased bacterial systemic dissemination in young but not old mice, suggesting that defective NETs formation in elderly mice permitted nuclease and non-nuclease expressing S. aureus to disseminate equally well. Overall, these findings suggest that gross impairment of both skin barrier function and innate immunity contributes to the propensity for MRSA to disseminate in aged mice. Furthermore, the study indicates that contribution of bacterial factors to pathogenicity may vary with host age. PMID:22844481

  6. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    PubMed

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  7. Impaired bile acid handling and aggravated liver injury in mice expressing a hepatocyte-specific RXRα variant lacking the DNA-binding domain.

    PubMed

    Kosters, Astrid; Felix, Julio C; Desai, Moreshwar S; Karpen, Saul J

    2014-02-01

    Retinoid X Receptor α (RXRα) is the principal heterodimerization partner of class II Nuclear Receptors (NRs), and a major regulator of gene expression of numerous hepatic processes, including bile acid (BA) homeostasis through multiple partners. Specific contributions of hepatic RXRα domains in heterodimer function in response to either BA load or ductular cholestasis are not fully characterized. Wild-type (WT) mice and mice expressing a hepatocyte-specific RXRα lacking the DNA-Binding-Domain (hs-RxrαΔex4(-/-)), which retains partial ability to heterodimerize with its partners, were fed a 1% cholic acid (CA) diet for 5 days, a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 3 weeks, or control diet. Serum ALT (6.5-fold; p<0.05), AST (9.3-fold; p=0.06) and BA (2.8-fold; p<0.05) were increased in CA-fed hs-RxαΔex4(-/-) mice compared to CA-fed WT mice, but were equally induced between genotypes by DDC-feeding. CA-feeding elevated total (4.4-fold; p=0.06) and unconjugated (2.2-fold; p<0.02) bilirubin levels in hs-RxrαΔex4(-/-) mice compared to WT mice, but not in DDC-fed hs-RxrαΔex4(-/-) mice. Increased necrosis and inflammation was observed in CA-fed, but not in DDC-fed hs-RxrαΔex4(-/-) mice. Apoptotic markers DR5, CK8, CK18 RNA were increased in CA- and DDC-fed hs-RxrαΔex4(-/-) mice. Cleaved caspase 3, CK18 and p-JNK protein were elevated in CA-fed but not in DDC-fed hs-RxrαΔex4(-/-) mice. Induction of Ostβ and Cyp2b10 RNA was impaired in CA-fed and DDC-fed hs-RxrαΔex4(-/-) mice. Surprisingly, DDC-fed hs-RxrαΔex4(-/-) mice showed attenuated fibrosis compared to DDC-fed WT mice. These two models of cholestasis identify common and injury-specific roles for RXRα heterodimers and the functional relevance of an intact RXRα-DBD in the hepatocytic adaptive cholestatic response. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice

    PubMed Central

    Ferguson, Melissa; Sohal, Barbara H.; Forster, Michael J.; Sohal, Rajindar S.

    2007-01-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice. PMID:17822741

  9. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice.

    PubMed

    Ferguson, Melissa; Sohal, Barbara H; Forster, Michael J; Sohal, Rajindar S

    2007-10-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice.

  10. Intestinal epithelial cell surface glycosylation in mice. I. Effect of high-protein diet.

    PubMed

    Gupta, R; Jaswal, V M; Meenu Mahmood, A

    1992-01-01

    The effects of variation in dietary protein content have been investigated on brush border glycosylation and enzyme activities in mice small intestine. The comparison of different parameters was made between the mice fed 30% (high protein, HP) and 18% protein (pair-fed, PF, and ad libitum-fed) for 21 days. The activities of brush border sucrase, lactase, p-nitrophenyl (PNP)-beta-D-glucosidase and PNP-beta-D-galactosidase were reduced in the HP diet-fed mice compared to PF and ad libitum-fed controls. Alkaline phosphatase and leucine amino-peptidase activities were significantly enhanced while gamma-glutamyl transpeptidase activity was unaltered under these conditions. Total hexoses and sialic acid content in the brush borders were reduced significantly in the test group compared to the controls while hexosamine and fucose contents remained essentially similar in different groups. The results on the binding of wheat germ agglutinin and Ulex europaeus agglutininI to microvillus membranes corroborated the chemical analysis data on sialic acid and fucose contents of the membranes. Peanut agglutinin binding was enhanced in mice from the HP group. Incorporation of (14C)-mannose into membranes was significantly less in HP diet-fed mice. These results indicate that the feeding of HP diet to mice brings about marked alterations in small intestinal epithelial cell surface glycosylation and enzyme functions.

  11. Moro orange juice prevents fatty liver in mice.

    PubMed

    Salamone, Federico; Li Volti, Giovanni; Titta, Lucilla; Puzzo, Lidia; Barbagallo, Ignazio; La Delia, Francesco; Zelber-Sagi, Shira; Malaguarnera, Michele; Pelicci, Pier Giuseppe; Giorgio, Marco; Galvano, Fabio

    2012-08-07

    To establish if the juice of Moro, an anthocyanin-rich orange, may improve liver damage in mice with diet-induced obesity. Eight-week-old mice were fed a high-fat diet (HFD) and were administrated water or Moro juice for 12 wk. Liver morphology, gene expression of lipid transcription factors, and metabolic enzymes were assessed. Mice fed HFD displayed increased body weight, insulin resistance and dyslipidemia. Moro juice administration limited body weight gain, enhanced insulin sensitivity, and decreased serum triglycerides and total cholesterol. Mice fed HFD showed liver steatosis associated with ballooning. Dietary Moro juice markedly improved liver steatosis by inducing the expression of peroxisome proliferator-activated receptor-α and its target gene acylCoA-oxidase, a key enzyme of lipid oxidation. Consistently, Moro juice consumption suppressed the expression of liver X receptor-α and its target gene fatty acid synthase, and restored liver glycerol-3-phosphate acyltransferase 1 activity. Moro juice counteracts liver steatogenesis in mice with diet-induced obesity and thus may represent a promising dietary option for the prevention of fatty liver.

  12. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals; our lab has demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against put...

  13. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet.

    PubMed

    Bargut, Thereza Cristina Lonzetti; Santos, Larissa Pereira; Machado, Daiana Guimarães Lopes; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to be beneficial for many diseases, including those associated with the metabolic syndrome (e.g. insulin resistance and hypertension). Nevertheless, not only their actions are not entirely understood, but also their only effects were not yet elucidated. Therefore, we aimed to compare the effects of EPA and DHA, alone or in combination, on the epididymal white adipose tissue (WAT) metabolism in mice fed a high-fructose diet. 3-mo-old C57Bl/6 mice were fed a control diet (C) or a high-fructose diet (HFru). After three weeks on the diets, the HFru group was subdivided into four new groups for another five weeks: HFru, HFru+EPA, HFru+DHA, and HFru-EPA+DHA (n=10/group). Besides evaluating biometric and metabolic parameters of the animals, we measured the adipocyte area and performed molecular analyses (inflammation and lipolysis) in the epididymal WAT. The HFru group showed adipocyte hypertrophy, inflammation, and uncontrolled lipolysis. The treated animals showed a reversion of adipocyte hypertrophy, inhibition of inflammation with activation of anti-inflammatory mediators, and regularization of lipolysis. Overall, the beneficial effects were more marked with DHA than EPA. Although the whole-body metabolic effects were similar between EPA and DHA, DHA appeared to be the central actor in WAT metabolism, modulating pro and anti-inflammatory pathways and alleviating adipocytes abnormalities. Therefore, when considering fructose-induced adverse effects in WAT, the most prominent actions were observed with DHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Eicosapentaenoic acid prevents arterial calcification in klotho mutant mice.

    PubMed

    Nakamura, Kazufumi; Miura, Daiji; Saito, Yukihiro; Yunoki, Kei; Koyama, Yasushi; Satoh, Minoru; Kondo, Megumi; Osawa, Kazuhiro; Hatipoglu, Omer F; Miyoshi, Toru; Yoshida, Masashi; Morita, Hiroshi; Ito, Hiroshi

    2017-01-01

    The klotho gene was identified as an "aging-suppressor" gene that accelerates arterial calcification when disrupted. Serum and vascular klotho levels are reduced in patients with chronic kidney disease, and the reduced levels are associated with arterial calcification. Intake of eicosapentaenoic acid (EPA), an n-3 fatty acid, reduces the risk of fatal coronary artery disease. However, the effects of EPA on arterial calcification have not been fully elucidated. The aim of this study was to determine the effect of EPA on arterial calcification in klotho mutant mice. Four-week-old klotho mutant mice and wild-type (WT) mice were given a diet containing 5% EPA (EPA food, klotho and WT: n = 12, each) or not containing EPA (control food, klotho and WT: n = 12, each) for 4 weeks. Calcium volume scores of thoracic and abdominal aortas assessed by computed tomography were significantly elevated in klotho mice after 4 weeks of control food, but they were not elevated in klotho mice after EPA food or in WT mice. Serum levels of EPA and resolvin E1, an active metabolite of EPA, in EPA food-fed mice were significantly increased compared to those in control food-fed mice. An oxidative stress PCR array followed by quantitative PCR revealed that NADPH oxidase-4 (NOX4), an enzyme that generates superoxide, gene expression was up-regulated in arterial smooth muscle cells (SMCs) of klotho mice. Activity of NOX was also significantly higher in SMCs of klotho mice than in those of WT mice. EPA decreased expression levels of the NOX4 gene and NOX activity. GPR120, a receptor of n-3 fatty acids, gene knockdown by siRNA canceled effects of EPA on NOX4 gene expression and NOX activity in arterial SMCs of klotho mice. EPA prevents arterial calcification together with reduction of NOX gene expression and activity via GPR120 in klotho mutant mice.

  15. Effect of Lactobacillus johnsonii La1 on immune function and serum albumin in aged and malnourished aged mice.

    PubMed

    Kaburagi, Tomoko; Yamano, Toshihiko; Fukushima, Yoichi; Yoshino, Haruka; Mito, Natsuko; Sato, Kazuto

    2007-04-01

    Protein-energy malnutrition (PEM) is a serious nutritional problem that causes immune dysfunction in elderly people. Probiotic lactic acid bacteria may potentially modify immunity; however, there is little evidence to elucidate the influence of these bacteria on PEM in the elderly. The immune modulation effects of lactic acid bacterium Lactobacillus johnsonii La1 (La1) were examined in aged mice and aged mice with PEM. Twenty-month-old male 57BL6/n mice (n = 28) were divided into four groups and received the following diet for 14 d: a complete diet (20% protein) without Lal (control) or with Lal or a low-protein diet (5% protein) to induce PEM, with or without La1. All mice were immunized with diphtheria toxin (DT) with alfacalciferol at 7 d and sacrificed 14 d after starting the experimental diets. Serum albumin concentrations and body weight, both of which were reduced by the low-protein diet, were ameliorated by La1 intake and were the same as in mice receiving the control diet. Anti-DT immunoglobulin (Ig) A in fecal extract was increased by La1 intake in mice receiving the complete and low-protein diets. Serum anti-DT IgA, IgG, splenocyte proliferation, and CD8(+) T cells were reduced by the low-protein diet and restored by La1 intake. La1 enhances intestinal IgA production and helps recover nutritional status and systemic immune responses in aged mice with PEM. It is possible that La1 may contribute to immune system recovery in immunocompromised hosts such as elderly humans with PEM.

  16. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice

    PubMed Central

    Castellano, Joseph M.; Mosher, Kira I.; Abbey, Rachelle J.; McBride, Alisha A.; James, Michelle L.; Berdnik, Daniela; Shen, Jadon C.; Zou, Bende; Xie, Xinmin S.; Tingle, Martha; Hinkson, Izumi V.; Angst, Martin S.; Wyss-Coray, Tony

    2017-01-01

    Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation1, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation2, 3, 4 and downregulated in the aged brain5, 6, 7, 8. In addition to revitalizing other aged tissues9, 10, 11, 12, 13, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters14, 15, 16, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown17. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high

  17. BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet

    PubMed Central

    Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert

    2016-01-01

    Objective This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE-/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). Background D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacological activities have been made including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory, and anti-atherosclerotic effects. To our knowledge this is the first study that combines D-tagatose and BSN723 for the treatment of hyperlipidemia and the prevention of atherosclerosis. Methods ApoE-deficient mice were randomized into five groups with equivalent mean body weights. The mice were given the following diets for 8 weeks: Group 1 - Standard diet; Group 2 - Western diet; Group 3 - Western diet formulated with D-tagatose; Group 4 - Western diet formulated with BSN723; Group 5 - Western diet formulated with BSN723T. Mice were measured for weight gain, tissue and organ weights, total serum cholesterol and triglycerides and formation of atherosclerosis. Results The addition of D-tagatose, either alone or in combination with BSN723, prevented the increase in adipose tissue and weight gain brought on by the Western diet. Both D-tagatose and BSN723 alone reduced total cholesterol and the formation of atherosclerosis in the aorta compared to mice on the Western diet. Addition of BSN723 to D-tagatose (BSN723T) did not increase efficacy in prevention of increases in cholesterol or atherosclerosis compared to D-tagatose alone. Conclusion Addition of either D-tagatose or BSN723 alone to a Western diet prevented weight gain, increases in total serum cholesterol and triglycerides, and the formation of atherosclerosis. However, there was no additive or synergistic effect on the

  18. BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet.

    PubMed

    Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert

    This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE -/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacological activities have been made including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory, and anti-atherosclerotic effects. To our knowledge this is the first study that combines D-tagatose and BSN723 for the treatment of hyperlipidemia and the prevention of atherosclerosis. ApoE-deficient mice were randomized into five groups with equivalent mean body weights. The mice were given the following diets for 8 weeks: Group 1 - Standard diet; Group 2 - Western diet; Group 3 - Western diet formulated with D-tagatose; Group 4 - Western diet formulated with BSN723; Group 5 - Western diet formulated with BSN723T. Mice were measured for weight gain, tissue and organ weights, total serum cholesterol and triglycerides and formation of atherosclerosis. The addition of D-tagatose, either alone or in combination with BSN723, prevented the increase in adipose tissue and weight gain brought on by the Western diet. Both D-tagatose and BSN723 alone reduced total cholesterol and the formation of atherosclerosis in the aorta compared to mice on the Western diet. Addition of BSN723 to D-tagatose (BSN723T) did not increase efficacy in prevention of increases in cholesterol or atherosclerosis compared to D-tagatose alone. Addition of either D-tagatose or BSN723 alone to a Western diet prevented weight gain, increases in total serum cholesterol and triglycerides, and the formation of atherosclerosis. However, there was no additive or synergistic effect on the measured parameters with the combination BSN

  19. Excess Maternal Fructose Consumption Increases Fetal Loss and Impairs Endometrial Decidualization in Mice

    PubMed Central

    Saben, Jessica L.; Asghar, Zeenat; Rhee, Julie S.; Drury, Andrea; Scheaffer, Suzanne

    2016-01-01

    The most significant increase in metabolic syndrome over the previous decade occurred in women of reproductive age, which is alarming given that metabolic syndrome is associated with reproductive problems including subfertility and early pregnancy loss. Individuals with metabolic syndrome often consume excess fructose, and several studies have concluded that excess fructose intake contributes to metabolic syndrome development. Here, we examined the effects of increased fructose consumption on pregnancy outcomes in mice. Female mice fed a high-fructose diet (HFrD) for 6 weeks developed glucose intolerance and mild fatty liver but did not develop other prominent features of metabolic syndrome such as weight gain, hyperglycemia, and hyperinsulinemia. Upon mating, HFrD-exposed mice had lower pregnancy rates and smaller litters at midgestation than chow-fed controls. To explain this phenomenon, we performed artificial decidualization experiments and found that HFrD consumption impaired decidualization. This appeared to be due to decreased circulating progesterone as exogenous progesterone administration rescued decidualization. Furthermore, HFrD intake was associated with decreased bone morphogenetic protein 2 expression and signaling, both of which were restored by exogenous progesterone. Finally, expression of forkhead box O1 and superoxide dismutase 2 [Mn] proteins were decreased in the uteri of HFrD-fed mice, suggesting that HFrD consumption promotes a prooxidative environment in the endometrium. In summary, these data suggest that excess fructose consumption impairs murine fertility by decreasing steroid hormone synthesis and promoting an adverse uterine environment. PMID:26677880

  20. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    PubMed

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Retinal accumulation of zeaxanthin, lutein, and β-carotene in mice deficient in carotenoid cleavage enzymes.

    PubMed

    Li, Binxing; Vachali, Preejith P; Shen, Zhengqing; Gorusupudi, Aruna; Nelson, Kelly; Besch, Brian M; Bartschi, Alexis; Longo, Simone; Mattinson, Ty; Shihab, Saeed; Polyakov, Nikolay E; Suntsova, Lyubov P; Dushkin, Alexander V; Bernstein, Paul S

    2017-06-01

    Carotenoid supplementation can prevent and reduce the risk of age-related macular degeneration (AMD) and other ocular disease, but until now, there has been no validated and well-characterized mouse model which can be employed to investigate the protective mechanism and relevant metabolism of retinal carotenoids. β-Carotene oxygenases 1 and 2 (BCO1 and BCO2) are the only two carotenoid cleavage enzymes found in animals. Mutations of the bco2 gene may cause accumulation of xanthophyll carotenoids in animal tissues, and BCO1 is involved in regulation of the intestinal absorption of carotenoids. To determine whether or not mice deficient in BCO1 and/or BCO2 can serve as a macular pigment mouse model, we investigated the retinal accumulation of carotenoids in these mice when fed with zeaxanthin, lutein, or β-carotene using an optimized carotenoid feeding method. HPLC analysis revealed that all three carotenoids were detected in sera, livers, retinal pigment epithelium (RPE)/choroids, and retinas of all of the mice, except that no carotenoid was detectable in the retinas of wild type (WT) mice. Significantly higher amounts of zeaxanthin and lutein accumulated in the retinas of BCO2 knockout (bco2 -/- ) mice and BCO1/BCO2 double knockout (bco1 -/- /bco2 -/- ) mice relative to BCO1 knockout (bco1 -/- ) mice, while bco1 -/- mice preferred to take up β-carotene. The levels of zeaxanthin and lutein were higher than β-carotene levels in the bco1 -/- /bco2 -/- retina, consistent with preferential uptake of xanthophyll carotenoids by retina. Oxidative metabolites were detected in mice fed with lutein or zeaxanthin but not in mice fed with β-carotene. These results indicate that bco2 -/- and bco1 -/- /bco2 -/- mice could serve as reasonable non-primate models for macular pigment function in the vertebrate eye, while bco1 -/- mice may be more useful for studies related to β-carotene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterizing age-related decline of recognition memory and brain activation profile in mice.

    PubMed

    Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale

    2018-06-01

    Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Dietary protein, aging and nutritional geometry.

    PubMed

    Simpson, Stephen J; Le Couteur, David G; Raubenheimer, David; Solon-Biet, Samantha M; Cooney, Gregory J; Cogger, Victoria C; Fontana, Luigi

    2017-10-01

    Nearly a century of research has shown that nutritional interventions can delay aging and age- related diseases in many animal models and possibly humans. The most robust and widely studied intervention is caloric restriction, while protein restriction and restriction of various amino acids (methionine, tryptophan) have also been shown to delay aging. However, there is still debate over whether the major impact on aging is secondary to caloric intake, protein intake or specific amino acids. Nutritional geometry provides new perspectives on the relationship between nutrition and aging by focusing on calories, macronutrients and their interactions across a landscape of diets, and taking into account compensatory feeding in ad libitum-fed experiments. Nutritional geometry is a state-space modelling approach that explores how animals respond to and balance changes in nutrient availability. Such studies in insects and mice have shown that low protein, high carbohydrate diets are associated with longest lifespan in ad libitum fed animals suggesting that the interaction between macronutrients may be as important as their total intake. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Microalgal Oil Supplementation Has an Anti-Obesity Effect in C57BL/6J Mice Fed a High Fat Diet

    PubMed Central

    Yook, Jin-Seon; Kim, Kyung-Ah; Park, Jeong Eun; Lee, Seon-Hwa; Cha, Youn-Soo

    2015-01-01

    This study investigated the impact of microalgal oil (MO) on body weight management in C57BL/6J mice. Obesity was induced for 8 weeks and animals were orally supplemented with the following for 8 additional weeks: beef tallow (BT), corn oil, fish oil (FO), microalgal oil (MO), or none, as a high fat diet control group (HD). A normal control group was fed with a normal diet. After completing the experiment, the FO and MO groups showed significant decreases in body weight gain, epididymal fat pad weights, serum triglycerides, and total cholesterol levels compared to the HD and BT groups. A lower mRNA expression level of lipid anabolic gene and higher levels of lipid catabolic genes were observed in both FO and MO groups. Serum insulin and leptin concentrations were lower in the MO group. These results indicated that microalgal oil has an anti-obesity effect that can combat high fat diet-induced obesity in mice. PMID:26770909

  5. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    PubMed

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  6. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

    PubMed Central

    Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-01-01

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202

  7. Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR- 34a/SIRT1 axis in mice

    USDA-ARS?s Scientific Manuscript database

    To investigate the different effects of isocaloric high-fat diet (HFD) and high-carbohydrate diet (HCD) on hepatic steatosis and the underlying mechanisms, especially the role of microRNA- 34a/silent information regulator T1 (SIRT1) axis, C57BL/6J mice (n = 12/group) were isocaloric pair-fed with Li...

  8. Age and exposure to arsenic alter base excision repair transcript levels in mice.

    PubMed

    Osmond, Megan J; Kunz, Bernard A; Snow, Elizabeth T

    2010-09-01

    Arsenic (As) induces DNA-damaging reactive oxygen species. Most oxidative DNA damage is countered by base excision repair (BER), the capacity for which may be reduced in older animals. We examined whether age and consumption of As in lactational milk or drinking water influences BER gene transcript levels in mice. Lactating mothers and 24-week-old mice were exposed (24 h or 2 weeks) to As (2 or 50 p.p.m.) in drinking water. Lung tissue was harvested from adults, neonates (initially 1 week old) feeding from lactating mothers and untreated animals 1-26 weeks old. Transcripts encoding BER proteins were quantified. BER transcript levels decreased precipitously with age in untreated mice but increased in neonates whose mothers were exposed to 50 p.p.m. As for 24 h or 2 weeks. Treatment of 24-week-old mice with 2 or 50 p.p.m. As for 2 weeks decreased all transcript levels measured. Exposure to As attenuated the age-related transcript level decline for only one BER gene. We conclude that aging is associated with a rapid reduction of BER transcript levels in mice, which may contribute to decreased BER activity in older animals. Levels of As that can alter gene expression are transmitted to neonatal mice in lactational milk produced by mothers drinking water containing As, raising concerns about breastfeeding in countries having As-contaminated groundwater. Reduction of BER transcript levels in 24-week-old mice exposed to As for 2 weeks suggests As may potentiate sensitivity to itself in older animals.

  9. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice.

    PubMed

    Zeng, Huawei; Ishaq, Suzanne L; Zhao, Feng-Qi; Wright, André-Denis G

    2016-09-01

    Consumption of an obesigenic/high-fat diet (HFD) is associated with a high colon cancer risk and may alter the gut microbiota. To test the hypothesis that long-term high-fat (HF) feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed HFD (45% energy) or a low-fat (LF) diet (10% energy) for 36 weeks. At the end of the study, body weights in the HF group were 35% greater than those in the LF group. These changes were associated with dramatic increases in body fat composition, inflammatory cell infiltration, inducible nitric oxide synthase protein concentration and cell proliferation marker (Ki67) in ileum and colon. Similarly, β-catenin expression was increased in colon (but not ileum). Consistent with gut inflammation phenotype, we also found that plasma leptin, interleukin 6 and tumor necrosis factor α concentrations were also elevated in mice fed the HFD, indicative of chronic inflammation. Fecal DNA was extracted and the V1-V3 hypervariable region of the microbial 16S rRNA gene was amplified using primers suitable for 454 pyrosequencing. Compared to the LF group, the HF group had high proportions of bacteria from the family Lachnospiraceae/Streptococcaceae, which is known to be involved in the development of metabolic disorders, diabetes and colon cancer. Taken together, our data demonstrate, for the first time, that long-term HF consumption not only increases inflammatory status but also accompanies an increase of colonic β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of C57BL/6 mice. Published by Elsevier Inc.

  10. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice.

    PubMed

    Tsuchida, Takuma; Shiraishi, Muneshige; Ohta, Tetsuya; Sakai, Kaoru; Ishii, Shinichi

    2012-07-01

    Type 2 diabetes mellitus is frequently accompanied by fatty liver/nonalcoholic fatty liver disease. Hence, accumulation of lipids in the liver is considered to be one of the risk factors for insulin resistance and metabolic syndrome. Ursodeoxycholic acid (UDCA) is widely used for the treatment of liver dysfunction. We investigated the therapeutic effects of UDCA on type 2 diabetes mellitus exacerbating hepatic steatosis and the underlying mechanisms of its action using KK-A(y) mice fed a high-fat diet. KK-A(y) mice were prefed a high-fat diet; and 50, 150, and 450 mg/kg of UDCA was orally administered for 2 or 3 weeks. Administration of UDCA decreased fasting hyperglycemia and hyperinsulinemia. Hyperinsulinemic-euglycemic clamp analyses showed that UDCA improved hepatic (but not peripheral) insulin resistance. Hepatic triglyceride and cholesterol contents were significantly reduced by treatment with UDCA, although the genes involved in the synthesis of fatty acids and cholesterol, including fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, were upregulated. Fecal levels of bile acids, neutral sterols, fatty acids, and phospholipids were significantly increased by UDCA treatment. The gene expression levels and protein phosphorylation levels of endoplasmic reticulum stress markers were not changed by UDCA treatment. These results indicate that UDCA ameliorates hyperglycemia and hyperinsulinemia by improving hepatic insulin resistance and steatosis in high-fat diet-fed KK-A(y) mice. Reduction of hepatic lipids might be due to their excretion in feces, followed by enhanced utilization of glucose for the synthesis of fatty acids and cholesterol. Ursodeoxycholic acid should be effective for the treatment of type 2 diabetes mellitus accompanying hepatic steatosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Memory Deficits Are Associated with Impaired Ability to Modulate Neuronal Excitability in Middle-Aged Mice

    ERIC Educational Resources Information Center

    Kaczorowski, Catherine C.; Disterhoft, John F.

    2009-01-01

    Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…

  12. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance

    PubMed Central

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-01-01

    Background: The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. Methods: To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Results: Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Conclusions: Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to

  13. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance.

    PubMed

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-02-01

    The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to manage obesity and obesity-mediated metabolic

  14. Diet-Induced Obesity Modulates Epigenetic Responses to Ionizing Radiation in Mice

    PubMed Central

    Vares, Guillaume; Wang, Bing; Ishii-Ohba, Hiroko; Nenoi, Mitsuru; Nakajima, Tetsuo

    2014-01-01

    Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress. PMID:25171162

  15. Impact of chocolate liquor on vascular lesions in apoE-knockout mice.

    PubMed

    Yazdekhasti, Narges; Brandsch, Corinna; Hirche, Frank; Kühn, Julia; Schloesser, Anke; Esatbeyoglu, Tuba; Huebbe, Patricia; Wolffram, Siegfried; Rimbach, Gerald; Stangl, Gabriele I

    2017-10-15

    Cocoa polyphenols are thought to reduce the risk of cardiovascular diseases. Thus, cocoa-containing foods may have significant health benefits. Here, we studied the impact of chocolate liquor on vascular lesion development and plaque composition in a mouse model of atherosclerosis. Apolipoprotein E (apoE)-knockout mice were assigned to two groups and fed a Western diet that contained 250 g/kg of either chocolate liquor or a polyphenol-free isoenergetic control paste for 16 weeks. In addition to fat, protein, and fibers, the chocolate liquor contained 2 g/kg of polyphenols. Compared with the control group, mice fed the chocolate liquor had larger plaque areas in the descending aorta and aortic root, which were attributed to a higher mass of vascular smooth muscle cells (VSMCs) and collagen. Vascular lipid deposits and calcification areas did not differ between the two groups. The aortic tissue level of interleukin-6 (IL-6) mRNA was 5-fold higher in the mice fed chocolate liquor than in the control mice. Chocolate-fed mice exhibited an increased hepatic saturated to polyunsaturated fatty acid ratio than the controls. Although the chocolate liquor contained 14 µg/kg of vitamin D 2 , the chocolate liquor-fed mice did not have measurable 25-hydroxyvitamin D 2 in the serum. These mice even showed a 25% reduction in the level of 25-hydroxyvitamin D 3 compared with the control mice. Overall, present data may contribute to our understanding how chocolate constituents can impact vascular lesion development. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Haploinsufficiency of the Myc regulator Mtbp extends survival and delays tumor development in aging mice.

    PubMed

    Grieb, Brian C; Boyd, Kelli; Mitra, Ramkrishna; Eischen, Christine M

    2016-10-30

    Alterations of specific genes can modulate aging. Myc, a transcription factor that regulates the expression of many genes involved in critical cellular functions was shown to have a role in controlling longevity. Decreased expression of Myc inhibited many of the deleterious effects of aging and increased lifespan in mice. Without altering Myc expression, reduced levels of Mtbp, a recently identified regulator of Myc, limit Myc transcriptional activity and proliferation, while increased levels promote Myc-mediated effects. To determine the contribution of Mtbp to the effects of Myc on aging, we studied a large cohort of Mtbp heterozygous mice and littermate matched wild-type controls. Mtbp haploinsufficiency significantly increased longevity and maximal survival in mice. Reduced levels of Mtbp did not alter locomotor activity, litter size, or body size, but Mtbp heterozygous mice did exhibit elevated markers of metabolism, particularly in the liver. Mtbp +/- mice also had a significant delay in spontaneous cancer development, which was most prominent in the hematopoietic system, and an altered tumor spectrum compared to Mtbp +/+ mice. Therefore, the data suggest Mtbp is a regulator of longevity in mice that mimics some, but not all, of the properties of Myc in aging.

  17. Cold hypersensitivity increases with age in mice with sickle cell disease.

    PubMed

    Zappia, Katherine J; Garrison, Sheldon R; Hillery, Cheryl A; Stucky, Cheryl L

    2014-12-01

    Sickle cell disease (SCD) is associated with acute vaso-occlusive crises that trigger painful episodes and frequently involves ongoing, chronic pain. In addition, both humans and mice with SCD experience heightened cold sensitivity. However, studies have not addressed the mechanism(s) underlying the cold sensitization or its progression with age. Here we measured thermotaxis behavior in young and aged mice with severe SCD. Sickle mice had a marked increase in cold sensitivity measured by a cold preference test. Furthermore, cold hypersensitivity worsened with advanced age. We assessed whether enhanced peripheral input contributes to the chronic cold pain behavior by recording from C fibers, many of which are cold sensitive, in skin-nerve preparations. We observed that C fibers from sickle mice displayed a shift to warmer (more sensitive) cold detection thresholds. To address mechanisms underlying the cold sensitization in primary afferent neurons, we quantified mRNA expression levels for ion channels thought to be involved in cold detection. These included the transient receptor potential melastatin 8 (Trpm8) and transient receptor potential ankyrin 1 (Trpa1) channels, as well as the 2-pore domain potassium channels, TREK-1 (Kcnk2), TREK-2 (Kcnk10), and TRAAK (Kcnk4). Surprisingly, transcript expression levels of all of these channels were comparable between sickle and control mice. We further examined transcript expression of 83 additional pain-related genes, and found increased mRNA levels for endothelin 1 and tachykinin receptor 1. These factors may contribute to hypersensitivity in sickle mice at both the afferent and behavioral levels. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice.

    PubMed

    Kübeck, Raphaela; Bonet-Ripoll, Catalina; Hoffmann, Christina; Walker, Alesia; Müller, Veronika Maria; Schüppel, Valentina Luise; Lagkouvardos, Ilias; Scholz, Birgit; Engel, Karl-Heinz; Daniel, Hannelore; Schmitt-Kopplin, Philippe; Haller, Dirk; Clavel, Thomas; Klingenspor, Martin

    2016-12-01

    Gut microbiota may promote positive energy balance; however, germfree mice can be either resistant or susceptible to diet-induced obesity (DIO) depending on the type of dietary intervention. We here sought to identify the dietary constituents that determine the susceptibility to body fat accretion in germfree (GF) mice. GF and specific pathogen free (SPF) male C57BL/6N mice were fed high-fat diets either based on lard or palm oil for 4 wks. Mice were metabolically characterized at the end of the feeding trial. FT-ICR-MS and UPLC-TOF-MS were used for cecal as well as hepatic metabolite profiling and cecal bile acids quantification, respectively. Hepatic gene expression was examined by qRT-PCR and cecal gut microbiota of SPF mice was analyzed by high-throughput 16S rRNA gene sequencing. GF mice, but not SPF mice, were completely DIO resistant when fed a cholesterol-rich lard-based high-fat diet, whereas on a cholesterol-free palm oil-based high-fat diet, DIO was independent of gut microbiota. In GF lard-fed mice, DIO resistance was conveyed by increased energy expenditure, preferential carbohydrate oxidation, and increased fecal fat and energy excretion. Cecal metabolite profiling revealed a shift in bile acid and steroid metabolites in these lean mice, with a significant rise in 17β-estradiol, which is known to stimulate energy expenditure and interfere with bile acid metabolism. Decreased cecal bile acid levels were associated with decreased hepatic expression of genes involved in bile acid synthesis. These metabolic adaptations were largely attenuated in GF mice fed the palm-oil based high-fat diet. We propose that an interaction of gut microbiota and cholesterol metabolism is essential for fat accretion in normal SPF mice fed cholesterol-rich lard as the main dietary fat source. This is supported by a positive correlation between bile acid levels and specific bacteria of the order Clostridiales (phylum Firmicutes ) as a characteristic feature of normal SPF mice

  19. Green tea extracts ameliorate high-fat diet-induced muscle atrophy in senescence-accelerated mouse prone-8 mice.

    PubMed

    Onishi, Shintaro; Ishino, Mayu; Kitazawa, Hidefumi; Yoto, Ai; Shimba, Yuki; Mochizuki, Yusuke; Unno, Keiko; Meguro, Shinichi; Tokimitsu, Ichiro; Miura, Shinji

    2018-01-01

    Muscle atrophy (loss of skeletal muscle mass) causes progressive deterioration of skeletal function. Recently, excessive intake of fats was suggested to induce insulin resistance, followed by muscle atrophy. Green tea extracts (GTEs), which contain polyphenols such as epigallocatechin gallate, have beneficial effects on obesity, hyperglycemia, and insulin resistance, but their effects against muscle atrophy are still unclear. Here, we found that GTEs prevented high-fat (HF) diet-induced muscle weight loss in senescence-accelerated mouse prone-8 (SAMP8), a murine model of senescence. SAMP8 mice were fed a control diet, an HF diet, or HF with 0.5% GTEs (HFGT) diet for 4 months. The HF diet induced muscle weight loss with aging (measured as quadriceps muscle weight), whereas GTEs prevented this loss. In HF diet-fed mice, blood glucose and plasma insulin concentrations increased in comparison with the control group, and these mice had insulin resistance as determined by homeostasis model assessment of insulin resistance (HOMA-IR). In these mice, serum concentrations of leukocyte cell-derived chemotaxin 2 (LECT2), which is known to induce insulin resistance in skeletal muscle, were elevated, and insulin signaling in muscle, as determined by the phosphorylation levels of Akt and p70 S6 kinases, tended to be decreased. In HFGT diet-fed mice, these signs of insulin resistance and elevation of serum LECT2 were not observed. Although our study did not directly show the effect of serum LECT2 on muscle weight, insulin resistance examined using HOMA-IR indicated an intervention effect of serum LECT2 on muscle weight, as revealed by partial correlation analysis. Accordingly, GTEs might have beneficial effects on age-related and HF diet-induced muscle weight loss, which correlates with insulin resistance and is accompanied by a change in serum LECT2.

  20. Age-Related Decrease in Stress Responsiveness and Proactive Coping in Male Mice.

    PubMed

    Oh, Hee-Jin; Song, Minah; Kim, Young Ki; Bae, Jae Ryong; Cha, Seung-Yun; Bae, Ji Young; Kim, Yeongmin; You, Minsu; Lee, Younpyo; Shim, Jieun; Maeng, Sungho

    2018-01-01

    Coping is a strategic approach to dealing with stressful situations. Those who use proactive coping strategies tend to accept changes and act before changes are expected. In contrast, those who use reactive coping are less flexible and more likely to act in response to changes. However, little research has assessed how coping style changes with age. This study investigated age-related changes in coping strategies and stress responsiveness and the influence of age on the processing of conditioned fear memory in 2-, 12- and 23-month-old male mice. Coping strategy was measured by comparing the escape latency in an active avoidance test and by comparing responses to a shock prod. The results showed that proactivity in coping response gradually decreased with age. Stress responsiveness, measured by stress-induced concentration of corticosterone, was also highest in 2-month-old mice and decreased with age. Consolidation of fear memory was highest in 12-month-old mice and was negatively correlated with the degree of stress responsiveness and proactivity in coping. Fear extinction did not differ among age groups and was not correlated with stress responsiveness or the proactivity of coping. However, the maintenance of extinct fear memory, which was best in 2-month-old mice and worst in 12-month-old mice, was negatively correlated with stress responsiveness but not with coping style. Age-dependent changes in the expression of glucocorticoid receptor (GR) and its regulatory co-chaperones, which are accepted mechanisms for stress hormone stimulation, were measured in the hippocampus. The expression of GR was increased at 12 months compared to other age groups. There were no differences in Hsp70 and BAG1 expression by age. These results can be summarized as follows: (1) stress responsiveness and proactivity in coping decreased with age class; (2) consolidation of fear memory was negatively correlated with both stress responsiveness and proactivity; however, maintenance of

  1. Age-Related Decrease in Stress Responsiveness and Proactive Coping in Male Mice

    PubMed Central

    Oh, Hee-Jin; Song, Minah; Kim, Young Ki; Bae, Jae Ryong; Cha, Seung-Yun; Bae, Ji Young; Kim, Yeongmin; You, Minsu; Lee, Younpyo; Shim, Jieun; Maeng, Sungho

    2018-01-01

    Coping is a strategic approach to dealing with stressful situations. Those who use proactive coping strategies tend to accept changes and act before changes are expected. In contrast, those who use reactive coping are less flexible and more likely to act in response to changes. However, little research has assessed how coping style changes with age. This study investigated age-related changes in coping strategies and stress responsiveness and the influence of age on the processing of conditioned fear memory in 2-, 12- and 23-month-old male mice. Coping strategy was measured by comparing the escape latency in an active avoidance test and by comparing responses to a shock prod. The results showed that proactivity in coping response gradually decreased with age. Stress responsiveness, measured by stress-induced concentration of corticosterone, was also highest in 2-month-old mice and decreased with age. Consolidation of fear memory was highest in 12-month-old mice and was negatively correlated with the degree of stress responsiveness and proactivity in coping. Fear extinction did not differ among age groups and was not correlated with stress responsiveness or the proactivity of coping. However, the maintenance of extinct fear memory, which was best in 2-month-old mice and worst in 12-month-old mice, was negatively correlated with stress responsiveness but not with coping style. Age-dependent changes in the expression of glucocorticoid receptor (GR) and its regulatory co-chaperones, which are accepted mechanisms for stress hormone stimulation, were measured in the hippocampus. The expression of GR was increased at 12 months compared to other age groups. There were no differences in Hsp70 and BAG1 expression by age. These results can be summarized as follows: (1) stress responsiveness and proactivity in coping decreased with age class; (2) consolidation of fear memory was negatively correlated with both stress responsiveness and proactivity; however, maintenance of

  2. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice.

    PubMed

    Vaughan, Sydney K; Stanley, Olivia L; Valdez, Gregorio

    2017-06-01

    The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Age-related differential sensitivity to MK-801-induced locomotion and stereotypy in C57BL/6 mice

    PubMed Central

    Qi, Chunting; Zou, Hong; Zhang, Ruizhong; Zhao, Guoping; Jin, Meilei; Yu, Lei

    2009-01-01

    Psychomotor effects elicited by systemic administration of the noncompetitive NMDA (N-methyl-D-aspartate) receptor antagonist MK-801 (dizocilpine maleate) represent perturbation of glutamatergic pathways, providing an animal model for psychotic symptoms of schizophrenia. Hyperlocomotion and stereotypy are the two main psychomotor behaviors induced by MK-801. This study compared MK-801-induced hyperlocomotion and stereotypy in young (1-month old) and aged mice (12-month old), in order to determine how the aging process may influence these behaviors. The tested MK-801 doses ranged from 0.015 to 1 mg/kg. The data indicated that MK-801 impacted the aged mice more pronouncedly than the young mice, as both hyperlocomotion and stereotypy were increased significantly more in the aged mice relative to the young mice. These results suggest an age-related increase in MK-801 sensitivity in mice. PMID:18053981

  4. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    PubMed

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. © 2013 The Anatomical Society and John Wiley & Sons Ltd.

  5. The increase of anterior pituitary dopamine in aging C57BL/6J female mice is caused by ovarian steroids, not intrinsic pituitary aging.

    PubMed

    Telford, N; Mobbs, C V; Sinha, Y N; Finch, C E

    1986-01-01

    We describe how the increase of anterior pituitary dopamine (DA) during aging in female mice is related to altered secretion of ovarian steroids during reproductive senescence. A number of age-correlated neuroendocrine changes in female rodents result from cumulative exposure to ovarian steroids over a lifetime of estrous cycles, or from the altered pattern of ovarian steroid secretion concomitant with reproductive senescence. Pituitary DA has been shown to increase with age in female rats. To examine how the age-correlated increase of pituitary DA may depend on estradiol (E2), we measured pituitary DA and serum prolactin (PRL) in the following groups of female mice: young (7 months) cycling, middle-aged (14 months) cycling and non-cycling, old (17 months) non-cycling, old (17 months) ovariectomized (OVX) at 4 months, and young mice given 0.2 mg E2 valerate or E2 implants. Mice from some of these groups were OVX 1, 4 or 8 weeks before sacrifice. Compared with young controls, 14-month-old cycling or non-cycling mice had 3-fold higher pituitary DA, and 17-month-old non-cycling mice had 5-fold higher pituitary DA. OVX for 2 or 13 months before sacrifice abolished the effect of age; OVX of young mice had no effect on pituitary DA. Three weeks after implantation of E2 into OVX young mice or 7 weeks after injection of E2 valerate in intact young mice, pituitary DA was elevated. The E2-sensitive fraction of pituitary DA does not appear to decrease PRL secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Oral feeding with polyunsaturated fatty acids fosters hematopoiesis and thrombopoiesis in healthy and bone marrow-transplanted mice.

    PubMed

    Limbkar, Kedar; Dhenge, Ankita; Jadhav, Dipesh D; Thulasiram, Hirekodathakallu V; Kale, Vaijayanti; Limaye, Lalita

    2017-09-01

    Hematopoietic stem cells play the vital role of maintaining appropriate levels of cells in blood. Therefore, regulation of their fate is essential for their effective therapeutic use. Here we report the role of polyunsaturated fatty acids (PUFAs) in regulating hematopoiesis which has not been explored well so far. Mice were fed daily for 10 days with n-6/n-3 PUFAs, viz. linoleic acid (LA), arachidonic acid (AA), alpha-linolenic acid and docosahexanoic acid (DHA) in four separate test groups with phosphate-buffered saline fed mice as control set. The bone marrow cells of PUFA-fed mice showed a significantly higher hematopoiesis as assessed using side population, Lin-Sca-1 + ckit+, colony-forming unit (CFU), long-term culture, CFU-spleen assay and engraftment potential as compared to the control set. Thrombopoiesis was also stimulated in PUFA-fed mice. A combination of DHA and AA was found to be more effective than when either was fed individually. Higher incorporation of PUFAs as well as products of their metabolism was observed in the bone marrow cells of PUFA-fed mice. A stimulation of the Wnt, CXCR4 and Notch1 pathways was observed in PUFA-fed mice. The clinical relevance of this study was evident when bone marrow-transplanted recipient mice, which were fed with PUFAs, showed higher engraftment of donor cells, suggesting that the bone marrow microenvironment may also be stimulated by feeding with PUFAs. These data indicate that oral administration of PUFAs in mice stimulates hematopoiesis and thrombopoiesis and could serve as a valuable supplemental therapy in situations of hematopoietic failure. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Intermittent fasting favored the resolution of Salmonella typhimurium infection in middle-aged BALB/c mice.

    PubMed

    Campos-Rodríguez, Rafael; Godínez-Victoria, Marycarmen; Reyna-Garfias, Humberto; Arciniega-Martínez, Ivonne Maciel; Reséndiz-Albor, Aldo Arturo; Abarca-Rojano, Edgar; Cruz-Hernández, Teresita Rocío; Drago-Serrano, Maria Elisa

    2016-02-01

    Intermittent fasting (IF) reportedly increases resistance and intestinal IgA response to Salmonella typhimurium infection in mature mice. The aim of this study was to explore the effect of aging on the aforementioned improved immune response found with IF. Middle-aged male BALB/c mice were submitted to IF or ad libitum (AL) feeding for 40 weeks and then orally infected with S. typhimurium. Thereafter, infected animals were all fed AL (to maximize their viability) until sacrifice on day 7 or 14 post-infection. We evaluated body weight, bacterial load (in feces, Peyer's patches, spleen and liver), total and specific intestinal IgA, lamina propria IgA+ plasma cells, plasma corticosterone, and messenger RNA (mRNA) expression of α-chain, J-chain, and the polymeric immunoglobulin receptor (pIgR) in liver and intestinal mucosa. In comparison with the infected AL counterpart, the infected IF group (long-term IF followed by post-infection AL feeding) generally had lower intestinal and systemic bacterial loads as well as higher total IgA on both post-infection days. Both infected groups showed no differences in corticosterone levels, body weight, or food and caloric intake. The increase in intestinal IgA was associated with enhanced pIgR mRNA expression in the intestine (day 7) and liver. Thus, to maintain body weight and caloric intake, IF elicited metabolic signals that possibly induced the increased hepatic and intestinal pIgR mRNA expression found. The increase in IgA probably resulted from intestinal IgA transcytosis via pIgR. This IgA response along with phagocyte-induced killing of bacteria in systemic organs (not measured) may explain the resolution of the S. typhimurium infection.

  8. Western Diet-Induced Dysbiosis in Farnesoid X Receptor Knockout Mice Causes Persistent Hepatic Inflammation after Antibiotic Treatment.

    PubMed

    Jena, Prasant K; Sheng, Lili; Liu, Hui-Xin; Kalanetra, Karen M; Mirsoian, Annie; Murphy, William J; French, Samuel W; Krishnan, Viswanathan V; Mills, David A; Wan, Yu-Jui Yvonne

    2017-08-01

    Patients who have liver cirrhosis and liver cancer also have reduced farnesoid X receptor (FXR). The current study analyzes the effect of diet through microbiota that affect hepatic inflammation in FXR knockout (KO) mice. Wild-type and FXR KO mice were on a control (CD) or Western diet (WD) for 10 months. In addition, both CD- and WD-fed FXR KO male mice, which had hepatic lymphocyte and neutrophil infiltration, were treated by vancomycin, polymyxin B, and Abx (ampicillin, neomycin, metronidazole, and vancomycin). Mice were subjected to morphological analysis as well as gut microbiota and bile acid profiling. Male WD-fed FXR KO mice had the most severe steatohepatitis. FXR KO also had reduced Firmicutes and increased Proteobacteria, which could be reversed by Abx. In addition, Abx eliminated hepatic neutrophils and lymphocytes in CD-fed, but not WD-fed, FXR KO mice. Proteobacteria and Bacteroidetes persisted in WD-fed FXR KO mice even after Abx treatment. Only polymyxin B could reduce hepatic lymphocytes in WD-fed FXR KO mice. The reduced hepatic inflammation by antibiotics was accompanied by decreased free and conjugated secondary bile acids as well as changes in gut microbiota. Our data revealed that Lactococcus, Lactobacillus, and Coprococcus protect the liver from inflammation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice.

    PubMed

    Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra

    2016-01-01

    Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µM dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role. © 2016 International Union of Biochemistry and Molecular Biology.

  10. Dietary rice component, Oryzanol, inhibits tumor growth in tumor-bearing Mice

    USDA-ARS?s Scientific Manuscript database

    Scope: We investigated the effects of rice bran and components on tumor growth in mice. Methods and results: Mice fed standard diets supplemented with rice bran, '-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet fo...

  11. [Long-chain polyunsaturated fatty acids in breast-fed and formula fed healthy infants].

    PubMed

    Decsi, T; Adamovich, K; Szász, M; Berthold, K

    1995-03-26

    While human milk contains considerable amounts of long-chain polyunsaturated fatty acids (LCP), most formulae contain only the precursors of LCP synthesis (linoleic and alpha-linolenic acids) but are devoid of preformed dietary LCP such as are arachidonic and docosahexaenoic acids. LCP contents in plasma phospholipids (PL), triglycerides (TG) and sterol esters (STE) were measured by high resolution capillary gas-liquid chromatography in healthy, term infants fed human milk of formula. Percentage contributions of the precursor fatty acids were similar or higher in plasma lipids in formula fed than in breast-fed infants, meanwhile values of the intermediary metabolites of LCP synthesis did not differ between the two groups. Percentage contributions of arachidonic acid were higher in breast-fed than in formula fed infants at the ages of 2 weeks (PL: 9.39 +/- 1.00 vs. 6.91 +/- 0.38, TG: 0.61 +/- 0.03 vs. 0.41 +/- 0.05, %weight/weight, mean +/- SEM), 1 month (PL: 9.06 +/- 1.04 vs. 6.16 +/- 0.35, TG: 0.62 +/- 0.10 vs. 0.32 +/- 0.04, STE: 4.50 +/- 0.45 vs. 2.84 +/- 0.39) and 2 months (PL: 8.41 +/- 1.19 vs. 5.74 +/- 0.37). Similarly, docosahexaenoic acid values were at the ages of 1 month (PL: 1.94 +/- 0.21 vs. 1.19 +/- 0.21, TG: 0.12 +/- 0.03 vs. 0.04 +/- 0.02) and 2 months (PL: 2.02 +/- 0.36 vs. 0.99 +/- 0.07) significantly higher in breast-fed infants than in those receiving formula.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.

    PubMed

    Philip, Bincy; Roland, Christina L; Daniluk, Jaroslaw; Liu, Yan; Chatterjee, Deyali; Gomez, Sobeyda B; Ji, Baoan; Huang, Haojie; Wang, Huamin; Fleming, Jason B; Logsdon, Craig D; Cruz-Monserrate, Zobeida

    2013-12-01

    Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), but it is not clear how obesity contributes to pancreatic carcinogenesis. The oncogenic form of KRAS is expressed during early stages of PDAC development and is detected in almost all of these tumors. However, there is evidence that mutant KRAS requires an additional stimulus to activate its full oncogenic activity and that this stimulus involves the inflammatory response. We investigated whether the inflammation induced by a high-fat diet, and the accompanying up-regulation of cyclooxygenase-2 (COX2), increases Kras activity during pancreatic carcinogenesis in mice. We studied mice with acinar cell-specific expression of KrasG12D (LSL-Kras/Ela-CreERT mice) alone or crossed with COX2 conditional knockout mice (COXKO/LSL-Kras/Ela-CreERT). We also studied LSL-Kras/PDX1-Cre mice. All mice were fed isocaloric diets with different amounts of fat, and a COX2 inhibitor was administered to some LSL-Kras/Ela-CreERT mice. Pancreata were collected from mice and analyzed for Kras activity, levels of phosphorylated extracellular-regulated kinase, inflammation, fibrosis, pancreatic intraepithelial neoplasia (PanIN), and PDACs. Pancreatic tissues from LSL-Kras/Ela-CreERT mice fed high-fat diets (HFDs) had increased Kras activity, fibrotic stroma, and numbers of PanINs and PDACs than LSL-Kras/Ela-CreERT mice fed control diets; the mice fed the HFDs also had shorter survival times than mice fed control diets. Administration of a COX2 inhibitor to LSL-Kras/Ela-CreERT mice prevented these effects of HFDs. We also observed a significant reduction in survival times of mice fed HFDs. COXKO/LSL-Kras/Ela-CreERT mice fed HFDs had no evidence for increased numbers of PanIN lesions, inflammation, or fibrosis, as opposed to the increases observed in LSL-Kras/Ela-CreERT mice fed HFDs. In mice, an HFD can activate oncogenic Kras via COX2, leading to pancreatic inflammation and fibrosis and development of PanINs and PDAC. This

  13. Effect of age on susceptibility to Salmonella Typhimurium infection in C57BL/6 mice.

    PubMed

    Ren, Zhihong; Gay, Raina; Thomas, Adam; Pae, Munkyong; Wu, Dayong; Logsdon, Lauren; Mecsas, Joan; Meydani, Simin Nikbin

    2009-12-01

    Ageing is associated with a decline in immune function, which predisposes the elderly to a higher incidence of infections. Information on the mechanism of the age-related increase in susceptibility to Salmonella enterica serovar Typhimurium (S. Typhimurium) is limited. In particular, little is known regarding the involvement of the immune response in this age-related change. We employed streptomycin (Sm)-pretreated C57BL/6 mice to develop a mouse model that would demonstrate age-related differences in susceptibility and immune response to S. Typhimurium. In this model, old mice inoculated orally with doses of 3 x 10(8) or 1 x 10(6) c.f.u. S. Typhimurium had significantly greater S. Typhimurium colonization in the ileum, colon, Peyer's patches, spleen and liver than young mice. Old mice had significantly higher weight loss than young mice on days 1 and 2 post-infection. In response to S. Typhimurium infection, old mice failed to increase ex vivo production of IFN-gamma and TNF-alpha in the spleen and mesenteric lymph node cells to the same degree as observed in young mice; this was associated with their inability to maintain the presence of neutrophils and macrophages at a 'youthful' level. These results indicate that Sm-pretreated C57BL/6 old mice are more susceptible to S. Typhimurium infection than young mice, which might be due to impaired IFN-gamma and TNF-alpha production as well as a corresponding change in the number of neutrophils and macrophages in response to S. Typhimurium infection compared to young mice.

  14. Salt-Sensitive Hypertension and Cardiac Hypertrophy in Transgenic Mice Expressing a Corin Variant Identified in African Americans

    PubMed Central

    Wang, Wei; Cui, Yujie; Shen, Jianzhong; Jiang, Jingjing; Chen, Shenghan; Peng, Jianhao; Wu, Qingyu

    2012-01-01

    African Americans represent a high risk population for salt-sensitive hypertension and heart disease but the underlying mechanism remains unclear. Corin is a cardiac protease that regulates blood pressure by activating natriuretic peptides. A corin gene variant (T555I/Q568P) was identified in African Americans with hypertension and cardiac hypertrophy. In this study, we test the hypothesis that the corin variant contributes to the hypertensive and cardiac hypertrophic phenotype in vivo. Transgenic mice were generated to express wild-type or T555I/Q568P variant corin in the heart under the control of α-myosin heavy chain promoter. The mice were crossed into a corin knockout background to create KO/TgWT and KO/TgV mice that expressed WT or variant corin, respectively, in the heart. Functional studies showed that KO/TgV mice had significantly higher levels of pro-atrial natriuretic peptide in the heart compared with that in control KO/TgWT mice, indicating that the corin variant was defective in processing natriuretic peptides in vivo. By radiotelemetry, corin KO/TgV mice were found to have hypertension that was sensitive to dietary salt loading. The mice also developed cardiac hypertrophy at 12–14 months of age when fed a normal salt diet or at a younger age when fed a high salt diet. The phenotype of salt-sensitive hypertension and cardiac hypertrophy in KO/TgV mice closely resembles the pathological findings in African Americans who carry the corin variant. The results indicate that corin defects may represent an important mechanism in salt-sensitive hypertension and cardiac hypertrophy in African Americans. PMID:22987923

  15. Testosterone suppresses the expression of regulatory enzymes of fatty acid synthesis and protects against hepatic steatosis in cholesterol-fed androgen deficient mice.

    PubMed

    Kelly, Daniel M; Nettleship, Joanne E; Akhtar, Samia; Muraleedharan, Vakkat; Sellers, Donna J; Brooke, Jonathan C; McLaren, David S; Channer, Kevin S; Jones, T Hugh

    2014-07-30

    Non-alcoholic fatty liver disease and its precursor hepatic steatosis is common in obesity and type-2 diabetes and is associated with cardiovascular disease (CVD). Men with type-2 diabetes and/or CVD have a high prevalence of testosterone deficiency. Testosterone replacement improves key cardiovascular risk factors. The effects of testosterone on hepatic steatosis are not fully understood. Testicular feminised (Tfm) mice, which have a non-functional androgen receptor (AR) and very low serum testosterone levels, were used to investigate testosterone effects on high-cholesterol diet-induced hepatic steatosis. Hepatic lipid deposition was increased in Tfm mice and orchidectomised wild-type littermates versus intact wild-type littermate controls with normal androgen physiology. Lipid deposition was reduced in Tfm mice receiving testosterone treatment compared to placebo. Oestrogen receptor blockade significantly, but only partially, reduced the beneficial effects of testosterone treatment on hepatic lipid accumulation. Expression of key regulatory enzymes of fatty acid synthesis, acetyl-CoA carboxylase alpha (ACACA) and fatty acid synthase (FASN) were elevated in placebo-treated Tfm mice versus placebo-treated littermates and Tfm mice receiving testosterone treatment. Tfm mice on normal diet had increased lipid accumulation compared to littermates but significantly less than cholesterol-fed Tfm mice and demonstrated increased gene expression of hormone sensitive lipase, stearyl-CoA desaturase-1 and peroxisome proliferator-activated receptor-gamma but FASN and ACACA were not altered. An action of testosterone on hepatic lipid deposition which is independent of the classic AR is implicated. Testosterone may act in part via an effect on the key regulatory lipogenic enzymes to protect against hepatic steatosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice.

    PubMed

    Razzaque, Mohammed S; Lanske, Beate

    2006-07-01

    The essential role of low levels of vitamin D during aging is well documented. However, possible effects of high levels of vitamin D on the aging process are not yet clear. Recent in vivo genetic-manipulation studies have shown increased serum level of vitamin D and altered mineral-ion homeostasis in mice that lack either fibroblast growth factor 23 (Fgf23) or klotho (Kl) genes. These mice develop identical phenotypes consistent with premature aging. Elimination or reduction of vitamin-D activity from Fgf23 and Kl mutant mice, either by dietary restriction or genetic manipulation could rescue premature aging-like features and ectopic calcifications, resulting in prolonged survival of both mutants. Such in vivo experimental studies indicated that excessive vitamin-D activity and altered mineral-ion homeostasis could accelerate the aging process.

  17. Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress.

    PubMed

    Xia, Shu-Fang; Xie, Zhen-Xing; Qiao, Yi; Li, Li-Rong; Cheng, Xiang-Rong; Tang, Xue; Shi, Yong-Hui; Le, Guo-Wei

    2015-01-01

    High fat diets induce oxidative stress which may be involved in neurodegenerative diseases. Quercetin is a kind of antioxidant that has neuroprotective effects and potent7ial pro-oxidant effects as well. In this study, we evaluated cognitive function in mice fed with high fat diets and basic diets with or without quercetin. Male Chinese Kunming (KM) mice were randomly assigned to five groups fed with basic diet (Control), basic diet with 0.005% (w/w) quercetin (CQ1), high fat diet (HFD), HFD with 0.005% (w/w) quercetin (HFDQ1) and 0.01% (w/w) quercetin (HFDQ2) for 13weeks. At the end of the study period, fasting blood glucose (FBG), plasma and hippocampal markers of oxidative stress, plasma lipid status, Morris water maze as well as hippocampal relative mRNA expression of akt, bdnf, camkII, creb, gsk-3β, nrf2 and pi3k were examined. The results suggested that in comparison to the control group, the escape latency was increased and percent time spent in the target quadrant was decreased, with increased reactive carbonyls, malondialdehyde (MDA) and declined expression of pi3k, akt, nrf2, creb and bdnf in the hippocampus of HFD and CQ1 groups. Conversely, higher quercetin supplemented to HFD improved antioxidant capacity and reversed cognitive decline completely. Significant correlations between the redox status and cognition-related gene expression were observed as well (P<0.05). Thus, in the case of oxidative stress, an appropriate dose of quercetin can attenuate oxidative stress to improve hippocampus dependent cognition. But under a balanced situation, quercetin exerts pro-oxidant effects to impair cognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Effect of long-term dietary sphingomyelin supplementation on atherosclerosis in mice

    PubMed Central

    Chung, Rosanna W. S.; Wang, Zeneng; Bursill, Christina A.; Wu, Ben J.; Barter, Philip J.

    2017-01-01

    Sphingomyelin (SM) levels in the circulation correlate positively with atherosclerosis burden. SM is a ubiquitous component of human diets, but it is unclear if dietary SM increases circulating SM levels. Dietary choline increases atherosclerosis by raising circulating trimethylamine N-oxide (TMAO) levels in mice and humans. As SM has a choline head group, we ask in this study if dietary SM accelerates atherosclerotic lesion development by increasing circulating SM and TMAO levels. Three studies were performed: (Study 1) C57BL/6 mice were maintained on a high fat diet with or without SM supplementation for 4 weeks prior to quantification of serum TMAO and SM levels; (Study 2) atherosclerosis was studied in apoE-/- mice after 16 weeks of a high fat diet without or with SM supplementation and (Study 3) apoE-/- mice were maintained on a chow diet for 19 weeks without or with SM supplementation and antibiotic treatment prior to quantification of atherosclerotic lesions and serum TMAO and SM levels. SM consumption did not increase circulating SM levels or atherosclerosis in high fat-fed apoE-/- mice. Serum TMAO levels in C57BL/6 mice were low and had no effect atherosclerosis lesion development. Dietary SM supplementation significantly reduced atherosclerotic lesion area in the aortic arch of chow-fed apoE-/- mice. This study establishes that dietary SM does not affect circulating SM levels or increase atherosclerosis in high fat-fed apoE-/- mice, but it is anti-atherogenic in chow-fed apoE-/- mice. PMID:29240800

  19. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice.

    PubMed

    Smith, Bryon M; Yao, Xinyue; Chen, Kelly S; Kirby, Elizabeth D

    2018-01-01

    The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function.

  20. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice

    PubMed Central

    Smith, Bryon M.; Yao, Xinyue; Chen, Kelly S.; Kirby, Elizabeth D.

    2018-01-01

    The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function. PMID:29904345

  1. Preservation of blood glucose homeostasis in slow-senescing somatotrophism-deficient mice subjected to intermittent fasting begun at middle or old age.

    PubMed

    Arum, Oge; Saleh, Jamal K; Boparai, Ravneet K; Kopchick, John J; Khardori, Romesh K; Bartke, Andrzej

    2014-06-01

    Poor blood glucose homeostatic regulation is common, consequential, and costly for older and elderly populations, resulting in pleiotrophically adverse clinical outcomes. Somatotrophic signaling deficiency and dietary restriction have each been shown to delay the rate of senescence, resulting in salubrious phenotypes such as increased survivorship. Using two growth hormone (GH) signaling-related, slow-aging mouse mutants we tested, via longitudinal analyses, whether genetic perturbations that increase survivorship also improve blood glucose homeostatic regulation in senescing mammals. Furthermore, we institute a dietary restriction paradigm that also decelerates aging, an intermittent fasting (IF) feeding schedule, as either a short-term or a sustained intervention beginning at either middle or old age, and assess its effects on blood glucose control. We find that either of the two genetic alterations in GH signaling ameliorates fasting hyperglycemia; additionally, both longevity-inducing somatotrophic mutations improve insulin sensitivity into old age. Strikingly, we observe major and broad improvements in blood glucose homeostatic control by IF: IF improves ad libitum-fed hyperglycemia, glucose tolerance, and insulin sensitivity, and reduces hepatic gluconeogenesis, in aging mutant and normal mice. These results on correction of aging-resultant blood glucose dysregulation have potentially important clinical and public health implications for our ever-graying global population, and are consistent with the Longevity Dividend concept.

  2. The effects on weight loss and gene expression in adipose and hepatic tissues of very-low carbohydrate and low-fat isoenergetic diets in diet-induced obese mice.

    PubMed

    Yamazaki, Tomomi; Okawa, Sumire; Takahashi, Mayumi

    2016-01-01

    Obesity is caused by excessive fat or carbohydrate intake. The improvement of obesity is an important issue, especially in Western societies. Both low-carbohydrate diet (LCD) and low-fat diet (LFD) are used to achieve weight loss in humans. To clarify the mechanisms underlying LCD-induced weight loss, especially in early stage, we compared the gene expression in liver, white adipose tissue (WAT) and brown adipose tissue (BAT) of a very-low carbohydrate diet (VLCD)- and LFD-fed diet-induced obese (DIO) mice. DIO male ddY mice were divided into high-fat diet (HFD), and isoenergetic VLCD and LFD groups. Pair-feeding was performed in the VLCD and LFD groups. Three weeks later, the body, liver, WAT and BAT were weighed and the serum and hepatic lipids, the mRNA expression levels in each tissue, and energy metabolism were analyzed. The caloric intake of the VLCD-fed mice was initially reduced but was subsequently restored. The total energy intake was similar in the VLCD- and LFD-fed mice. There was a similar decrease in the BW of the VLCD- and LFD-fed mice. The VLCD-fed mice had elevated levels of serum fibroblast growth factor 21 (FGF21) and ketone bodies, which are known to increase energy expenditure. The browning of WAT was observed to a greater extent in the VLCD-fed mice. Moreover, in the VLCD-fed mice, BAT activation was observed, the weight of the BAT was decreased, and the expression of G-protein-coupled receptor 120, type 2 iodothyronine deiodinase, and FGF21 in BAT was extremely increased. Although the energy expenditure of the VLCD- and LFD-fed mice did not differ, that of the VLCD-fed mice was sometimes higher during the dark cycle. Hepatic TG accumulation was reduced in LFD-fed mice due to their decreased fatty acid uptake but not in the VLCD-fed mice. The pro-inflammatory macrophage ratio was increased in the WAT of VLCD-fed mice. After 3 weeks, the isoenergetic VLCD- and LFD-fed DIO mice showed similar weight loss. The VLCD-fed mice increased serum

  3. Chronic high-sucrose diet increases fibroblast growth factor 21 production and energy expenditure in mice.

    PubMed

    Maekawa, Ryuya; Seino, Yusuke; Ogata, Hidetada; Murase, Masatoshi; Iida, Atsushi; Hosokawa, Kaori; Joo, Erina; Harada, Norio; Tsunekawa, Shin; Hamada, Yoji; Oiso, Yutaka; Inagaki, Nobuya; Hayashi, Yoshitaka; Arima, Hiroshi

    2017-11-01

    Excess carbohydrate intake causes obesity in humans. On the other hand, acute administration of fructose, glucose or sucrose in experimental animals has been shown to increase the plasma concentration of anti-obesity hormones such as glucagon-like peptide 1 (GLP-1) and Fibroblast growth factor 21 (FGF21), which contribute to reducing body weight. However, the secretion and action of GLP-1 and FGF21 in mice chronically fed a high-sucrose diet has not been investigated. To address the role of anti-obesity hormones in response to increased sucrose intake, we analyzed mice fed a high-sucrose diet, a high-starch diet or a normal diet for 15 weeks. Mice fed a high-sucrose diet showed resistance to body weight gain, in comparison with mice fed a high-starch diet or control diet, due to increased energy expenditure. Plasma FGF21 levels were highest among the three groups in mice fed a high-sucrose diet, whereas no significant difference in GLP-1 levels was observed. Expression levels of uncoupling protein 1 (UCP-1), FGF receptor 1c (FGFR1c) and β-klotho (KLB) mRNA in brown adipose tissue were significantly increased in high sucrose-fed mice, suggesting increases in FGF21 sensitivity and energy expenditure. Expression of carbohydrate responsive element binding protein (ChREBP) mRNA in liver and brown adipose tissue was also increased in high sucrose-fed mice. These results indicate that FGF21 production in liver and brown adipose tissue is increased in high-sucrose diet and participates in resistance to weight gain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. VDR deficiency affects alveolar bone and cementum apposition in mice.

    PubMed

    Zhang, Xueming; Rahemtulla, Firoz; Zhang, Ping; Thomas, Huw F

    2011-07-01

    To compare the mineralisation density (MD), morphology and histology of alveolar bone and cementum amongst VDR +/+, VDR -/-, and VDR -/- groups supplemented with a diet TD 96348, containing 20% lactose, 2.0% calcium and 1.25% phosphorous. Four groups of mice (6 mice/group) were identified by genotyping: VDR +/+ mice (VDR wild type), VDR -/- mice (VDR deficient), VDR -/- offsprings derived from VDR -/- parents receiving a supplemental diet (early rescued), and VDR -/- mice fed with a supplemental diet beginning at age one month (late rescued). All mice were sacrificed at age 70.5 days. Micro-CT was used to compare MD and morphology of alveolar bone and cementum. H-E and Toluidine blue staining was used to examine the ultrastructure of the alveolar bone and cementum at matched locations. In VDR -/- group, alveolar bone and cementum failed to mineralise normally. Early rescue increased MD of alveolar bone in VDR -/- mice with excessive alveolar bone formation, but which not observed in late rescue group. MD and morphology of cementum-dentine complex in both early and late rescue groups were comparable with VDR +/+ group when feeding with high-calcium rescue diet. VDR affects alveolar bone mineralisation and formation systemically and locally. However, cementum apposition and mineralisation is mainly regulated by calcium concentrations in serum. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice

    NASA Astrophysics Data System (ADS)

    Xu, Zhipeng; Dong, Yuanlin; Wang, Hui; Culley, Deborah J.; Marcantonio, Edward R.; Crosby, Gregory; Tanzi, Rudolph E.; Zhang, Yiying; Xie, Zhongcong

    2014-01-01

    Post-operative cognitive dysfunction (POCD) is associated with increased cost of care, morbidity, and mortality. However, its pathogenesis remains largely to be determined. Specifically, it is unknown why elderly patients are more likely to develop POCD and whether POCD is dependent on general anesthesia. We therefore set out to investigate the effects of peripheral surgery on the cognition and Alzheimer-related neuropathology in mice with different ages. Abdominal surgery under local anesthesia was established in the mice. The surgery induced post-operative elevation in brain β-amyloid (Aβ) levels and cognitive impairment in the 18 month-old wild-type and 9 month-old Alzheimer's disease transgenic mice, but not the 9 month-old wild-type mice. The Aβ accumulation likely resulted from elevation of beta-site amyloid precursor protein cleaving enzyme and phosphorylated eukaryotic translation initiation factor 2α. γ-Secretase inhibitor compound E ameliorated the surgery-induced brain Aβ accumulation and cognitive impairment in the 18 month-old mice. These data suggested that the peripheral surgery was able to induce cognitive impairment independent of general anesthesia, and that the combination of peripheral surgery with aging- or Alzheimer gene mutation-associated Aβ accumulation was needed for the POCD to occur. These findings would likely promote more research to investigate the pathogenesis of POCD.

  6. The nigrostriatal dopamine system of aging GFRα-1 heterozygous mice: neurochemistry, morphology and behavior

    PubMed Central

    Zaman, Vandana; Boger, Heather A.; Granholm, Ann-Charlotte; Rohrer, Baerbel; Moore, Alfred; Buhusi, Mona; Gerhardt, Greg A.; Hoffer, Barry J.; Middaugh, Lawrence D.

    2009-01-01

    Given the established importance of glial cell line-derived neurotrophic factor (GDNF) in maintaining dopaminergic neurotransmitter systems, the nigrostriatal system and associated behaviors of mice with genetic reduction of its high-affinity receptor, GDNF receptor (GFR)α-1 (GFRα-1+/−), were compared with wild-type controls. Motor activity and the stimulatory effects of a dopamine (DA) D1 receptor agonist (SKF 82958) were assessed longitudinally at 8 and 18 months of age. Monoamine concentrations and dopaminergic nerve terminals in the striatum and the number of dopaminergic neurons in the substantia nigra (SN) were assessed. The results support the importance of GFRα-1 in maintaining normal function of the nigrostriatal dopaminergic system, with deficits being observed for GFRα-1+/− mice at both ages. Motor activity was lower and the stimulatory effects of the DA agonist were enhanced for the older GFRα-1+/− mice. DA in the striatum was reduced in the GFRα-1+/− mice at both ages, and tyrosine hydroxylase-positive cell numbers in the SN were reduced most substantially in the older GFRα-1+/− mice. The combined behavioral, pharmacological probe, neurochemical and morphological measures provide evidence of abnormalities in GFRα-1+/− mice that are indicative of an exacerbated aging-related decline in dopaminergic system function. The noted deficiencies, in turn, suggest that GFRα-1 is necessary for GDNF to maintain normal function of the nigrostriatal dopaminergic system. Although the precise mechanism(s) for the aging-related changes in the dopaminergic system remain to be established, the present study clearly establishes that genetic reductions in GFRα-1 can contribute to the degenerative changes observed in this system during the aging process. PMID:18973577

  7. Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice.

    PubMed

    Bedrosian, Tracy A; Herring, Kamillya L; Weil, Zachary M; Nelson, Randy J

    2011-07-12

    Both normal aging and dementia are associated with dysregulation of the biological clock, which contributes to disrupted circadian organization of physiology and behavior. Diminished circadian organization in conjunction with the loss of cholinergic input to the cortex likely contributes to impaired cognition and behavior. One especially notable and relatively common circadian disturbance among the aged is "sundowning syndrome," which is characterized by exacerbated anxiety, agitation, locomotor activity, and delirium during the hours before bedtime. Sundowning has been reported in both dementia patients and cognitively intact elderly individuals living in institutions; however, little is known about temporal patterns in anxiety and agitation, and the neurobiological basis of these rhythms remains unspecified. In the present study, we explored the diurnal pattern of anxiety-like behavior in aged and amyloid precursor protein (APP) transgenic mice. We then attempted to treat the observed behavioral disturbances in the aged mice using chronic nightly melatonin treatment. Finally, we tested the hypothesis that time-of-day differences in acetylcholinesterase and choline acetyltransferase expression and general neuronal activation (i.e., c-Fos expression) coincide with the behavioral symptoms. Our results show a temporal pattern of anxiety-like behavior that emerges in elderly mice. This behavioral pattern coincides with elevated locomotor activity relative to adult mice near the end of the dark phase, and with time-dependent changes in basal forebrain acetylcholinesterase expression. Transgenic APP mice show a similar behavioral phenomenon that is not observed among age-matched wild-type mice. These results may have useful applications to the study and treatment of age- and dementia-related circadian behavioral disturbances, namely, sundowning syndrome.

  8. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice.

    PubMed

    Santos, Izabelle Barcellos; de Bem, Graziele Freitas; Cordeiro, Viviane Silva Cristino; da Costa, Cristiane Aguiar; de Carvalho, Lenize Costa Reis Marins; da Rocha, Ana Paula Machado; da Costa, Gisele França; Ognibene, Dayane Teixeira; de Moura, Roberto Soares; Resende, Angela Castro

    2017-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. The Vitis vinifera L. grape skin extract (ACH09) is an important source of polyphenols, which are related to its antioxidant and antihyperglycemic activities. We hypothesized that ACH09 could also exert beneficial effects on metabolic disorders associated with obesity and evaluated ACH09's influence on high-fat (HF) diet-induced hepatic steatosis and insulin resistance in C57BL/6 mice. The animals were fed a standard diet (10% fat, control) or an HF diet (60% fat, HF) with or without ACH09 (200mg/[kg d]) for 12weeks. Our results showed that ACH09 reduced HF diet-induced body weight gain, prevented hepatic lipid accumulation and steatosis, and improved hyperglycemia and insulin resistance. The underlying mechanisms of these beneficial effects of ACH09 may involve the activation of hepatic insulin-signaling pathway because the expression of phosphorylated insulin receptor substrate-1, phosphatidylinositol 3-kinase, phosphorylated Akt serine/threonine kinase 1, and glucose transporter 2 was increased by ACH09 and correlated with improvement of hyperglycemia, hyperinsulinemia, and insulin resistance. ACH09 reduced the expression of the lipogenic factor sterol regulatory-element binding protein-1c in the liver and upregulated the lipolytic pathway (phosphorylated liver kinase B1/phosphorylated adenosine-monophosphate-activated protein kinase), which was associated with normal hepatic levels of triglyceride and cholesterol and prevention of steatosis. ACH09 prevented the hepatic oxidative damage in HF diet-fed mice probably by restoration of antioxidant activity. In conclusion, ACH09 protected mice from HF diet-induced obesity, insulin resistance, and hepatic steatosis. The regulation of hepatic insulin signaling pathway, lipogenesis, and oxidative stress may contribute to ACH09's protective effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Palatability of wethers fed an 80% barley diet processed at different ages and of yearling wethers grazed on native range.

    PubMed

    Hatfield, P G; Field, R A; Hopkins, J A; Kott, R W

    2000-07-01

    Seasonal availability of lamb in the Western United States contributes to a large fluctuation in lamb supply and value. However, alternatives to fall marketing may not be practical unless palatability traits are acceptable. A 3-yr study was conducted to investigate 1) the effects of slaughter age (7 to 8; 10 to 11; or 14 to 15 mo) on carcass and palatability characteristics of wethers fed an 80% barley diet (Exp. 1); and 2) the effects of finishing on range or on an 80% barley diet on carcass and palatability traits of 14- to 15-mo-old wethers (Exp. 2). In Exp. 1, no differences (P = .27) were detected in flavor intensity or longissimus muscle area among slaughter age groups, but fat depth was greater (P < .05) for 7- to 8-mo-old wethers than for 10- to 11- or 14- to 15-mo-old wethers. Year x slaughter age interactions were detected (P < .10) for hot carcass weight, Warner-Bratzler shear value, body wall thickness, and percentage kidney fat. Hot carcass weight was greater (P < .05) for 14- to 15-mo-old wethers than for both groups of younger wethers in yr 1, did not differ (P = .53) among slaughter ages in yr 2, and was greater (P < .05) for 10- to 11- than for 14- to 15-mo-old wethers in yr 3. Warner-Bratzler shear values did not differ (P > .10) among slaughter ages in yr 1 and 3, but shear values for 14- to 15-mo-old wethers were greater (P < .05) than for both younger slaughter age groups in yr 2. Percentage kidney fat was lower (P < .05) for 14- to 15- than for 7- to 8-mo-old wethers in all years. In Exp. 2, flavor intensity of the meat did not differ (P = .35) between finishing systems, but longissimus muscle area was greater (P = .02) for range-finished wethers than for wethers fed an 80% barley diet. Year x finishing treatment interactions were detected (P < .10) for shear values, body wall thickness, percentage kidney fat, and fat depth. Shear values were greater (P = .10) for range-finished wethers than for wethers fed an 80% barley diet in yr 1, but did

  10. Efficacy and immunogenicity of live-attenuated human rotavirus vaccine in breast-fed and formula-fed European infants.

    PubMed

    Vesikari, Timo; Prymula, Roman; Schuster, Volker; Tejedor, Juan-C; Cohen, Robert; Bouckenooghe, Alain; Damaso, Silvia; Han, Htay Htay

    2012-05-01

    Rotavirus is the main cause of severe gastroenteritis and diarrhea in infants and young children less than 5 years of age. Potential impact of breast-feeding on the efficacy and immunogenicity of human rotavirus G1P[8] vaccine was examined in this exploratory analysis. Healthy infants (N = 3994) aged 6-14 weeks who received 2 doses of human rotavirus vaccine/placebo according to a 0-1 or 0-2 month schedule were followed for rotavirus gastroenteritis during 2 epidemic seasons. Rotavirus IgA seroconversion rate (anti-IgA antibody concentration ≥ 20 mIU/mL) and geometric mean concentrations were measured prevaccination and 1-2 months post-dose 2. Vaccine efficacy against any and severe rotavirus gastroenteritis was analyzed according to the infants being breast-fed or exclusively formula-fed at the time of vaccination. Antirotavirus IgA seroconversion rate was 85.5% (95% confidence interval [CI]: 82.4-88.3) in breast-fed and 89.2% (95% CI: 84.2-93) in exclusively formula-fed infants; geometric mean concentrations in the respective groups were 185.8 U/mL (95% CI: 161.4-213.9) and 231.5 U/mL (95% CI: 185.9-288.2). Vaccine efficacy was equally high in breast-fed and exclusively formula-fed children in the first season but fell in breast-fed infants in the second rotavirus season. During the combined 2-year efficacy follow-up period, vaccine efficacy against any rotavirus gastroenteritis was 76.2% (95% CI: 68.7-82.1) and 89.8% (95% CI: 77.6-95.9) and against severe rotavirus gastroenteritis 88.4% (95% CI: 81.6-93) and 98.1% (95% CI: 88.2-100) in the breast-fed and exclusively formula-fed infants, respectively. The difference in immunogenicity of human rotavirus vaccine in breast-fed and exclusively formula-fed infants was small. Vaccine efficacy was equally high in breast-fed and exclusively formula-fed children in the first season. Breast-feeding seemed to reduce slightly the efficacy in the second season.

  11. Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice.

    PubMed

    Mustroph, M L; Merritt, J R; Holloway, A L; Pinardo, H; Miller, D S; Kilby, C N; Bucko, P; Wyer, A; Rhodes, J S

    2015-01-01

    Recent evidence suggests that wheel running can abolish conditioned place preference (CPP) for cocaine in mice. Running significantly increases the number of new neurons in the hippocampus, and new neurons have been hypothesised to enhance plasticity and behavioral flexibility. Therefore, we tested the hypothesis that increased neurogenesis was necessary for exercise to abolish cocaine CPP. Male nestin-thymidine kinase transgenic mice were conditioned with cocaine, and then housed with or without running wheels for 32 days. Half of the mice were fed chow containing valganciclovir to induce apoptosis in newly divided neurons, and the other half were fed standard chow. For the first 10 days, mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. On the last 4 days, mice were tested for CPP, and then euthanized for measurement of adult hippocampal neurogenesis by counting the number of BrdU-positive neurons in the dentate gyrus. Levels of running were similar in mice fed valganciclovir-containing chow and normal chow. Valganciclovir significantly reduced the numbers of neurons (BrdU-positive/NeuN-positive) in the dentate gyrus of both sedentary mice and runner mice. Valganciclovir-fed runner mice showed similar levels of neurogenesis as sedentary, normal-fed controls. However, valganciclovir-fed runner mice showed the same abolishment of CPP as runner mice with intact neurogenesis. The results demonstrate that elevated adult hippocampal neurogenesis resulting from running is not necessary for running to abolish cocaine CPP in mice. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Aged mice receiving caffeine since adulthood show distinct patterns of anxiety-related behavior.

    PubMed

    Botton, Paulo Henrique S; Pochmann, Daniela; Rocha, Andreia S; Nunes, Fernanda; Almeida, Amanda S; Marques, Daniela M; Porciúncula, Lisiane O

    2017-03-01

    Caffeine is the psychostimulant most consumed worldwide. Anxiogenic effects of caffeine have been described in adult animals with controversial findings about its anxiogenic potential. Besides, the effects of caffeine on anxiety with aging are still poorly known. In this study, adult mice (6months old) started to receive caffeine (0.3 and 1.0mg/mL, drinking water) during 12-14months only in the light cycle and at weekdays. The open field (OF) and elevated plus maze (EPM) testing were used to determine the effects of caffeine on anxiety-related behavior in adult and aged mice (18-20months old). Because aging alters synaptic proteins, we also evaluated SNAP-25 (as a nerve terminals marker), GFAP (as an astrocyte marker) and adenosine A 1 and A 2A receptors levels in the cortex. According to the OF analysis, caffeine did not change both hypolocomotion and anxiety with aging. However, aged mice showed less anxiety behavior in the EPM, but after receiving caffeine (0.3mg/mL) during adulthood they were anxious as adult mice. While SNAP-25 and adenosine A 2A receptors increased with aging, both GFAP and adenosine A 1 receptors were not affected. Caffeine at moderate dose prevented the age-related increase of the SNAP-25, with no effect on adenosine A 2A receptors. The absence of effect for the highest dose suggests that tolerance to caffeine may have developed over time. Aged mice showed high responsiveness to the OF, being difficult to achieve any effect of caffeine. On the other hand this substance sustained the adult anxious behavior over time in a less stressful paradigm, and this effect was coincident with changes in the SNAP-25, suggesting the involvement of this synaptic protein in the ability of caffeine to preserve changes related to emotionality with aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXRalpha-null mice.

    PubMed

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He, Lin; Klaassen, Curtis D; Wan, Yu-Jui Yvonne

    2009-01-15

    Retinoid X receptor-alpha (RXRalpha) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXRalpha deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXRalpha-null (H-RXRalpha-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid beta-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXRalpha-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXRalpha-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXRalpha-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXRalpha-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXRalpha-null mice. In conclusion, these data suggest a critical role for RXRalpha in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.

  14. Characterization of AD-like phenotype in aged APPSwe/PS1dE9 mice.

    PubMed

    Huang, Huang; Nie, Sipei; Cao, Min; Marshall, Charles; Gao, Junying; Xiao, Na; Hu, Gang; Xiao, Ming

    2016-08-01

    Transgenic APPSwe/PS1dE9 (APP/PS1) mice that overproduce amyloid beta (Aβ) are extensively used in the studies of pathogenesis and experimental therapeutics and new drug screening for Alzheimer's disease (AD). However, most of the current literature uses young or adult APP/PS1 mice. In order to provide a broader view of AD-like phenotype of this animal model, in this study, we systematically analyzed behavioral and pathological profiles of 24-month-old male APP/PS1 mice. Aged APP/PS1 mice had reference memory deficits as well as anxiety, hyperactivity, and social interaction impairment. Consistently, there was obvious deposition of amyloid plaques in the dorsal hippocampus with decreased expression of insulin-degrading enzyme, a proteolytic enzyme responsible for degradation of intracellular Aβ. Furthermore, decreases in hippocampal volume, neuronal number and synaptophysin expression, and astrocyte atrophy were also observed in aged APP/PS1 mice. This finding suggests that aged APP/PS1 mice can well replicate cognitive and noncognitive behavioral abnormalities, hippocampal atrophy, and neuronal and astrocyte degeneration in AD patients, to enable more objective and refined preclinical evaluation of therapeutic drugs and strategies for AD treatment.

  15. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    PubMed

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  16. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses

    PubMed Central

    Clark, Erica S.; Flannery, Brenna M.; Gardner, Elizabeth M.; Pestka, James J.

    2015-01-01

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes. PMID:26492270

  17. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses.

    PubMed

    Clark, Erica S; Flannery, Brenna M; Gardner, Elizabeth M; Pestka, James J

    2015-10-19

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  18. Ultraviolet radiation-induced cataract in mice: the effect of age and the potential biochemical mechanism.

    PubMed

    Zhang, Jie; Yan, Hong; Löfgren, Stefan; Tian, Xiaoli; Lou, Marjorie F

    2012-10-19

    To study the effect of age on the morphologic and biochemical alterations induced by in vivo exposure of ultraviolet radiation (UV). Young and old C57BL/6 mice were exposed to broadband UVB+UVA and euthanized after 2 days. Another batch of UV-exposed young mice was monitored for changes after 1, 2, 4, and 8 days. Age-matched nonexposed mice served as controls. Lens changes were documented in vivo by slit-lamp biomicroscopy and dark field microscopy photographs ex vivo. Lens homogenates were analyzed for glutathione (GSH) level, and the activities of thioredoxin (Trx), thioltransferase (TTase), and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Glutathionylated lens proteins (PSSGs) were detected by immunoblotting using GSH antibody. Western blot analysis was also done for the expression levels of TTase and Trx. Both age groups developed epithelial and superficial anterior subcapsular cataract at 2 days postexposure. The lens GSH level and G3PD activity were decreased, and PSSGs were elevated in both age groups, but more prominent in the older mice. TTase and Trx activity and protein expression were elevated only in the young mice. Interestingly, lens TTase and Trx in the young mice showed a transient increase, peaking at 2 days after UV exposure and returning to baseline at day 8, corroborated by lens transparency. The lenses of old mice were more susceptible to UV radiation-induced cataract. The upregulated TTase and Trx likely provided oxidation damage repair in the young mice.

  19. Bisphenol A Promotes Adiposity and Inflammation in a Nonmonotonic Dose-response Way in 5-week-old Male and Female C57BL/6J Mice Fed a Low-calorie Diet.

    PubMed

    Yang, Minglan; Chen, Maopei; Wang, Jiqiu; Xu, Min; Sun, Jichao; Ding, Lin; Lv, Xiaofei; Ma, Qinyun; Bi, Yufang; Liu, Ruixin; Hong, Jie; Ning, Guang

    2016-06-01

    A growing body of epidemiological research show that Bisphenol A (BPA) is positively correlated with obesity and metabolic disorders. However, the mechanisms of BPA on adiposity remain largely unknown. In this study, we found that 5-week-old male and female C57BL/6J mice exposed to four dosages of BPA (5, 50, 500, and 5000 μg/kg/d) by oral intake for 30 days showed significantly increased body weight and fat mass in a nonmonotonic dose-dependent manner when fed a chow diet. The effect occurred even at the lowest concentration (5μg/kg/d), lower than the tolerable daily intake of 50 μg/kg/day for BPA. However, no significant difference in body weight and fat mass was observed in either male or female mice fed a high-fat diet, suggesting that BPA may interact with diet in promoting obesity risk. In vitro study showed that BPA treatment drives the differentiation of white adipocyte progenitors from the stromal vascular fraction, partially through glucocorticoid receptor. BPA exposure increased circulating inflammatory factors and the local inflammation in white adipose tissues in both genders fed a chow diet, but not under high-fat diet. We further found that BPA concentration was associated with increased circulating inflammatory factors, including leptin and TNFα, in lean female subjects (body mass index < 23.0 kg/m(2)) but not in lean male subjects or in both sexes of overweight/obese subjects (body mass index > 25.0 kg/m(2)). In conclusion, we demonstrated the nonmonotonic dose effects of BPA on adiposity and chronic inflammation in 5-week-old mice, which is related to caloric uptake.

  20. Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice.

    PubMed

    Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice ( n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD.

  1. Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice

    PubMed Central

    Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice (n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD. PMID:28217289

  2. Data on the effect of oral feeding of Arachidonic acid or Docosahexanoic acid on haematopoiesis in mice.

    PubMed

    Limbkar, Kedar; Dhenge, Ankita; Jadhav, Dipesh D; Thulasiram, Hirekodathakallu V; Kale, Vaijayanti; Limaye, Lalita

    2017-10-01

    Stem cells have peculiar property to self-renew and differentiate. It is important to control their fate in safe and effective ways for their therapeutic use. The mediators of essential polyunsaturated fatty acids (PUFAs) namely Arachidonic acid (AA) and Docosahexanoic acid (DHA) are known to play a role in haematopoiesis via various metabolic pathways [1]. However the direct effect of purified AA or DHA on haematopoiesis has not been well investigated yet. We have reported that oral administration of PUFAs enhanced haematopoiesis in mice [2]. Signaling Leukocyte Antigen Molecule (SLAM) (CD48 - CD150 + ) phenotype consists of pure population of haematopoietic stem cells (HSCs). Herein we observed higher percentage of SLAM (CD48 - CD150 + ) phenotype in the bone marrow (BM) cells of mice fed with AA or DHA compared to PBS fed control mice. Data from engraftment study depicts that BM from AA/DHA-fed mice showed higher absolute number of donor cells in recipient mice compared to control. The enhanced hematopoiesis observed in AA/DHA-fed mice was returned to normal when the mice were kept on normal diet for six weeks (after ten days of oral feeding). We confirmed GCMS (Gas Chromatography-Mass Spectroscopy) retention times of AA and DHA by co-injecting fatty acid extract from AA or DHA fed mice with purified AA or DHA standards respectively. Representative flow cytometry profile of Lin - Sca-1 + c-kit + (LSK) cells showed higher expression of CXCR4 protein and ligands of Wnt, Notch1 signaling in BM of AA/DHA-fed mice.

  3. Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria1234

    PubMed Central

    Kieffer, Dorothy A; Piccolo, Brian D; Marco, Maria L; Kim, Eun Bae; Goodson, Michael L; Keenan, Michael J; Dunn, Tamara N; Knudsen, Knud Erik Bach; Adams, Sean H; Martin, Roy J

    2016-01-01

    Background: Enzyme-treated wheat bran (ETWB) contains a fermentable dietary fiber previously shown to decrease liver triglycerides (TGs) and modify the gut microbiome in mice. It is not clear which mechanisms explain how ETWB feeding affects hepatic metabolism, but factors (i.e., xenometabolites) associated with specific microbes may be involved. Objective: The objective of this study was to characterize ETWB-driven shifts in the cecal microbiome and to identify correlates between microbial changes and diet-related differences in liver metabolism in diet-induced obese mice that typically display steatosis. Methods: Five-week-old male C57BL/6J mice fed a 45%-lard–based fat diet supplemented with ETWB (20% wt:wt) or rapidly digestible starch (control) (n = 15/group) for 10 wk were characterized by using a multi-omics approach. Multivariate statistical analysis was used to identify variables that were strong discriminators between the ETWB and control groups. Results: Body weight and liver TGs were decreased by ETWB feeding (by 10% and 25%, respectively; P < 0.001), and an index of liver reactive oxygen species was increased (by 29%; P < 0.01). The cecal microbiome showed an increase in Bacteroidetes (by 42%; P < 0.05) and a decrease in Firmicutes (by 16%; P < 0.05). Metabolites that were strong discriminators between the ETWB and control groups included decreased liver antioxidants (glutathione and α-tocopherol); decreased liver carbohydrate metabolites, including glucose; lower hepatic arachidonic acid; and increased liver and plasma β-hydroxybutyrate. Liver transcriptomics revealed key metabolic pathways affected by ETWB, especially those related to lipid metabolism and some fed- or fasting-regulated genes. Conclusions: Together, these changes indicate that dietary fibers such as ETWB regulate hepatic metabolism concurrently with specific gut bacteria community shifts in C57BL/6J mice. It is proposed that these changes may elicit gut-derived signals that reach

  4. Soybean meal fermented by Aspergillus awamori increases the cytochrome P-450 content of the liver microsomes of mice.

    PubMed

    Kishida, T; Ataki, H; Takebe, M; Ebihara, K

    2000-04-01

    The effect of soybean meal fermented by Aspergillus awamori on the acute lethality of acetaldehyde, pentobarbital sleeping time, and cytochrome P-450 content of the hepatic microsomes was studied in mice. Most of the daidzin and genistin in soybean meal (SBM) were converted into the respective aglycones, daidzein and genistein, by fermentation. In experiment 1, mice were fed isonitrogenic test diets with one of the following five protein sources for 28 d: casein, SBM, fermented and hot-air-dried SBM (FSBM-HD), fermented and freeze-dried SBM (FSBM-FD), or methanol-extracted FSBM-FD (FSMB-FD-R). The acute lethality of acetaldehyde in mice fed the FSBM-FD diet was significantly lower than that in mice fed the SBM, FSBM-HD, or FSBM-FD-R diet. In experiments 2 and 3, mice were fed isonitrogenic test diets with one of the following four protein sources for 28 d: casein, SBM, FSBM-FD, and FSBM-FD-R. The pentobarbital sleeping time was significantly shorter and the cytochrome P-450 content was significantly higher in the mice fed the FSBM-FD diet than the respective value in mice fed the other test diets. In experiment 4, mice were fed one of eight diets which contained different levels of aglycone obtained by varying the proportion of FSBM-FD and FSBM-FD-R, for 28 d. The cytochrome P-450 content in hepatic microsomes increased as the dietary level of isoflavonoid aglycones increased, but there was a saturation phenomenon. These results suggest that soy isoflavonoid aglycones are more potent inducers of cytochrome P-450 than isoflavonoid glycosides.

  5. High Intensity Interval Training Improves Physical Performance and Frailty in Aged Mice.

    PubMed

    Seldeen, Kenneth Ladd; Lasky, Ginger; Leiker, Merced Marie; Pang, Manhui; Personius, Kirkwood Ely; Troen, Bruce Robert

    2018-03-14

    Sarcopenia and frailty are highly prevalent in older individuals, increasing the risk of disability and loss of independence. High intensity interval training (HIIT) may provide a robust intervention for both sarcopenia and frailty by achieving both strength and endurance benefits with lower time commitments than other exercise regimens. To better understand the impacts of HIIT during aging, we compared 24-month-old C57BL/6J sedentary mice with those that were administered 10-minute uphill treadmill HIIT sessions three times per week over 16 weeks. Baseline and end point assessments included body composition, physical performance, and frailty based on criteria from the Fried physical frailty scale. HIIT-trained mice demonstrated dramatic improvement in grip strength (HIIT 10.9% vs -3.9% in sedentary mice), treadmill endurance (32.6% vs -2.0%), and gait speed (107.0% vs 39.0%). Muscles from HIIT mice also exhibited greater mass, larger fiber size, and an increase in mitochondrial biomass. Furthermore, HIIT exercise led to a dramatic reduction in frailty scores in five of six mice that were frail or prefrail at baseline, with four ultimately becoming nonfrail. The uphill treadmill HIIT exercise sessions were well tolerated by aged mice and led to performance gains, improvement in underlying muscle physiology, and reduction in frailty.

  6. Blocking very late antigen-4 integrin decreases leukocyte entry and fatty streak formation in mice fed an atherogenic diet.

    PubMed

    Shih, P T; Brennan, M L; Vora, D K; Territo, M C; Strahl, D; Elices, M J; Lusis, A J; Berliner, J A

    1999-02-19

    Atherosclerotic lesion development is characterized by the recruitment of leukocytes, principally monocytes, to the vessel wall. Considerable interest has been focused on the adhesion molecule(s) involved in leukocyte/endothelial interactions. The goal of the present study was to determine the role of the very late antigen-4 (VLA-4) integrin/ligand interaction in fatty streak development using murine models. Because alpha4 null mice are not viable, a peptidomimetic was used to block VLA-4-mediated leukocyte binding. The ability of a synthetic peptidomimetic of connecting segment-1 (CS-1 peptide) to block the recruitment of leukocytes and the accumulation of lipid in the aortic sinus of either wild-type mice (strain C57BL/6J) or mice with a low-density lipoprotein null mutation (LDLR-/-) maintained on an atherogenic diet was assessed. The active (Ac) CS-1 peptide or scrambled (Sc) CS-1 peptide was delivered subcutaneously into mice using a mini osmotic pump. Mice were exposed to the peptide for 24 to 36 hours before the onset of the atherogenic diet. In C57BL/6J mice, leukocyte entry into the aortic sinus, as assessed by en face preparations, was inhibited by the active peptide (Ac=28+/-4, Sc=54+/-6 monocytes/valve; P=0.004). Additionally, frozen sections stained with Oil Red O were analyzed to assess lipid accumulation in the aortic sinus. C57BL/6J mice that received the (Ac) compound demonstrated significantly reduced lesion areas as compared with mice that received the (Sc) peptide (Ac=4887+/-4438 microm2, Sc=15 009 +/-5619 microm2; P<0.0001). In a separate study, LDLR-/- mice were implanted with pumps containing either the (Ac) or (Sc) peptide before initiation of the atherogenic diet. Because LDLR-/- mice fed a chow diet displayed small lesions at 14 weeks, the effects of the peptide seen in these animals represented a change in early lipid accumulation rather than initiation. By using whole-mount preparations, the (Ac) but not the (Sc) peptide significantly

  7. NF-κB inhibition delays DNA damage–induced senescence and aging in mice

    PubMed Central

    Tilstra, Jeremy S.; Robinson, Andria R.; Wang, Jin; Gregg, Siobhán Q.; Clauson, Cheryl L.; Reay, Daniel P.; Nasto, Luigi A.; St Croix, Claudette M.; Usas, Arvydas; Vo, Nam; Huard, Johnny; Clemens, Paula R.; Stolz, Donna B.; Guttridge, Denis C.; Watkins, Simon C.; Garinis, George A.; Wang, Yinsheng; Niedernhofer, Laura J.; Robbins, Paul D.

    2012-01-01

    The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB–activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging. PMID:22706308

  8. Restoration of the immune functions in aged mice by supplementation with a new herbal composition, HemoHIM.

    PubMed

    Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee; Yee, Sung-Tae

    2008-01-01

    The effect of a new herbal composition, HemoHIM, on immune functions was examined in aged mice, in which various immune responses had been impaired. The composition HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Supplementation to the aged mice with HemoHIM restored the proliferative response and cytokine production of splenocytes with a response to ConA. Also, HemoHIM recovered the NK cell activity which had been impaired in the aged mice. Meanwhile aging is known to reduce the Th1-like function, but not the Th2-like function, resulting in a Th1/Th2 imbalance. HemoHIM restored the Th1/Th2 balance in the aged mice through enhanced IFN-gamma and IgG2a production, and conversely a reduced IL-4 and IgG1 production. It was found that one factor for the Th1/Th2 imbalance in the aged mice was a lower production of IL-12p70. However, HemoHIM restored the IL-12p70 production in the aged mice. These results suggested that HemoHIM was effective for the restoration of impaired immune functions of the aged mice and therefore could be a good recommendation for immune restoration in elderly humans. Copyright (c) 2007 John Wiley & Sons, Ltd.

  9. Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides.

    PubMed

    Xu, Xiaofei; Yang, Jiguo; Ning, Zhengxiang; Zhang, Xuewu

    2016-01-01

    Lentinula edodes-derived polysaccharides are well known for their immunomodulation and antitumor activities. However, the mechanisms of action have not been fully elucidated. This study presents proteomic analysis of the colon and small intestine from mice fed with an immunostimulating heteropolysaccharide L2 from the fruit body of L. edodes. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS were employed to characterize the protein profiles. Twenty nine gel spots representing 20 proteins in colon tissues and 38 gel spots in small intestine tissues representing 23 proteins were identified as showing significant changes in abundance. These differential proteins in abundance are mainly involved in metabolism, binding, structural components, and response to stimulus. Protein-protein interaction network analysis demonstrated mapping of the 20 colon proteins to a 7-protein and a 3-protein sub-network, and mapping of the 23 small intestine proteins to a 9-protein and a 5-protein sub-network. All the 40 altered proteins were integrated into a unified network containing 25 proteins, suggesting the existence of a concerted mechanism, although acting on the colon and small intestine separately. These findings facilitate the understanding of the regulatory mechanism in response to L2 treatment.

  10. Comparison between pre-exercise casein peptide and intact casein supplementation on glucose tolerance in mice fed a high-fat diet.

    PubMed

    Matsunaga, Yutaka; Tamura, Yuki; Sakata, Yasuyuki; Nonaka, Yudai; Saito, Noriko; Nakamura, Hirohiko; Shimizu, Takashi; Takeda, Yasuhiro; Terada, Shin; Hatta, Hideo

    2018-04-01

    We hypothesized that along with exercise, casein peptide supplementation would have a higher impact on improving glucose tolerance than intact casein. Male 6-week-old ICR mice were provided a high-fat diet to induce obesity and glucose intolerance. The mice were randomly divided into 4 treatment groups: control (Con), endurance training (Tr), endurance training with intact casein supplementation (Cas+Tr), and endurance training with casein peptide supplementation (CP+Tr). The mice in each group were orally administrated water, intact casein, or casein peptide (1.0 mg/g body weight, every day), and then subjected to endurance training (15-25 m/min, 60 min, 5 times/week for 4 weeks) on a motor-driven treadmill 30 min after ingestion. Our results revealed that total intra-abdominal fat was significantly lower in CP+Tr than in Con (p < 0.05). Following an oral glucose tolerance test, the blood glucose area under the curve (AUC) was found to be significantly smaller for CP+Tr than for Con (p < 0.05). Moreover, in the soleus muscle, glucose transporter 4 (GLUT4) protein levels were significantly higher in CP+Tr than in Con (p < 0.01). However, intra-abdominal fat, blood glucose AUC, and GLUT4 protein content in the soleus muscle did not alter in Tr and Cas+Tr when compared with Con. These observations suggest that pre-exercise casein peptide supplementation has a higher effect on improving glucose tolerance than intact casein does in mice fed a high-fat diet.

  11. Aged Tg2576 mice are impaired on social memory and open field habituation tests.

    PubMed

    Deacon, R M J; Koros, E; Bornemann, K D; Rawlins, J N P

    2009-02-11

    In a previous publication [Deacon RMJ, Cholerton LL, Talbot K, Nair-Roberts RG, Sanderson DJ, Romberg C, et al. Age-dependent and -independent behavioral deficits in Tg2576 mice. Behav Brain Res 2008;189:126-38] we found that very few cognitive tests were suitable for demonstrating deficits in Tg2576 mice, an amyloid over-expression model of Alzheimer's disease, even at 23 months of age. However, in a retrospective analysis of a separate project on these mice, tests of social memory and open field habituation revealed large cognitive impairments. Controls showed good open field habituation, but Tg2576 mice were hyperactive and failed to habituate. In the test of social memory for a juvenile mouse, controls showed considerably less social investigation on the second meeting, indicating memory of the juvenile, whereas Tg2576 mice did not show this decrement.As a control for olfactory sensitivity, on which social memory relies, the ability to find a food pellet hidden under wood chip bedding was assessed. Tg2576 mice found the pellet as quickly as controls. As this test requires digging ability, this was independently assessed in tests of burrowing and directly observed digging. In line with previous results and the hippocampal dysfunction characteristic of aged Tg2576 mice, they both burrowed and dug less than controls.

  12. Anti-obesity effect of milk fermented by Lactobacillus plantarum NCDC 625 alone and in combination with herbs on high fat diet fed C57BL/6J mice.

    PubMed

    Pothuraju, R; Sharma, R K; Kavadi, P K; Chagalamarri, J; Jangra, S; Bhakri, G; De, S

    2016-06-01

    The effect of dietary supplementation of milk fermented with indigenous probiotic Lactobacillus plantarum (LP625) alone and in combination with herbs (Aloe vera and Gymnema sylvestre) was investigated on high fat diet (HFD, 60 kcal% fat) fed mice for 12 weeks. Administration of LP625 alone or in combination with both herbs lowered the final body weight, however, a significant difference was observed with LP625 supplemented Gymnema sylvestre only as compared to the HFD fed group (25.06±0.18 vs 27.29±0.72 g, P<0.05). Similarly, the epididymal fat mass, fasting blood glucose and serum insulin levels were significantly (P<0.05) decreased by all treatment groups. In addition, a protective effect against the rise in serum and liver triglycerides, and in liver total cholesterol levels was found with the consumption of LP625 alone or in combination with herbs. Furthermore, the HFD fed mice showed a remarkable increase in the epididymal fat cell size, whereas administration of LP625 alone or in combination with herbs exhibited a significant decrease in the size. Finally, a significant increase in the relative mRNA expression of thermogenic proteins, i.e. uncoupling protein-2 (UCP-2, 1.16±0.25 fold change, P<0.05) and a decrease in pro-inflammatory markers, such as tumour necrosis factor-α and interleukin-6 (1.55±0.18 and 3.10±0.58 fold change, respectively, P<0.05) were due to LP625 supplementation in the HFD fed group. This shows that LP625 alone or supplemented with herbs seems to protect against diet induced obesity by decreasing the body and epididymal fat weight through upregulation of UCP-2 expression and reduced expression of pro-inflammatory cytokines.

  13. Diacylglycerol Lipase α Knockout Mice Demonstrate Metabolic and Behavioral Phenotypes Similar to Those of Cannabinoid Receptor 1 Knockout Mice

    PubMed Central

    Powell, David R.; Gay, Jason P.; Wilganowski, Nathaniel; Doree, Deon; Savelieva, Katerina V.; Lanthorn, Thomas H.; Read, Robert; Vogel, Peter; Hansen, Gwenn M.; Brommage, Robert; Ding, Zhi-Ming; Desai, Urvi; Zambrowicz, Brian

    2015-01-01

    After creating >4,650 knockouts (KOs) of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1) KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase α or β (Dagla or Daglb), which catalyze biosynthesis of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG), or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 47 and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. By contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight (BW) similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride, and total cholesterol levels, and after glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: (1) the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; (2) in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and (3) small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower BW and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric side

  14. Exercise training attenuates neutrophil infiltration and elastase expression in adipose tissue of high-fat-diet-induced obese mice

    PubMed Central

    Kawanishi, Noriaki; Niihara, Hiroyuki; Mizokami, Tsubasa; Yada, Koichi; Suzuki, Katsuhiko

    2015-01-01

    The innate immune system is associated with the development of local inflammation. Neutrophils play an essential role in the development of the adipose tissue (AT) inflammation associated with obesity by producing elastase, which can promote the activation and infiltration of macrophages. Exercise training attenuates AT inflammation via suppression of macrophage infiltration. However, the mechanisms driving this phenomenon remains to be elucidated. Here, we evaluated the effects of exercise training on the infiltration of neutrophils and elastase expression in an obese mouse model. Four-week-old male C57BL/6J mice were randomly assigned to one of three groups that either received a normal diet (ND) plus sedentary activity (n = 15), a high-fat diet (HFD) plus sedentary activity (n = 15), or a HFD plus exercise training (n = 15). Mice were fed the ND or HFD from the age of 4 weeks until 20 weeks. Mice in the exercise group ran on a treadmill for 60 min/day, 5 days/week over the same experimental period. Mice fed with the HFD had increased content of macrophages in the AT and increased inflammatory cytokine mRNA levels, which were reduced by exercise training. Similarly, AT from the HFD sedentary mice contained more neutrophils than AT from the ND mice, and the amount of neutrophils in this tissue in HFD-fed mice was lowered by exercise training. The mRNA levels of neutrophil elastase in AT were lower in the HFD exercise-trained mice than those in the HFD sedentary mice. These results suggest that exercise training plays a critical role in reducing macrophage infiltration and AT inflammation by regulating the infiltration of neutrophils. PMID:26341995

  15. Dietary Green Pea Protects against DSS-Induced Colitis in Mice Challenged with High-Fat Diet.

    PubMed

    Bibi, Shima; de Sousa Moraes, Luís Fernando; Lebow, Noelle; Zhu, Mei-Jun

    2017-05-18

    Obesity is a risk factor for developing inflammatory bowel disease. Pea is unique with its high content of dietary fiber, polyphenolics, and glycoproteins, all of which are known to be health beneficial. We aimed to investigate the impact of green pea (GP) supplementation on the susceptibility of high-fat diet (HFD)-fed mice to dextran sulfate sodium (DSS)-induced colitis. Six-week-old C57BL/6J female mice were fed a 45% HFD or HFD supplemented with 10% GP. After 7-week dietary supplementation, colitis was induced by adding 2.5% DSS in drinking water for 7 days followed by a 7-day recovery period. GP supplementation ameliorated the disease activity index score in HFD-fed mice during the recovery stage, and reduced neutrophil infiltration, mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and inflammatory markers interleukin (IL)-6, cyclooxygenase-2 (COX-2), IL-17, interferon-γ (IFN-γ), and inducible nitric oxide synthase (iNOS) in HFD-fed mice. Further, GP supplementation increased mucin 2 content and mRNA expression of goblet cell differentiation markers including Trefoil factor 3 (Tff3), Krüppel-like factor 4 (Klf4), and SAM pointed domain ETS factor 1 (Spdef1) in HFD-fed mice. In addition, GP ameliorated endoplasmic reticulum (ER) stress as indicated by the reduced expression of Activating transcription factor-6 (ATF-6) protein and its target genes chaperone protein glucose-regulated protein 78 (Grp78), the CCAAT-enhancer-binding protein homologous protein (CHOP), the ER degradation-enhancing α-mannosidase-like 1 protein (Edem1), and the X-box binding protein 1 (Xbp1) in HFD-fed mice. In conclusion, GP supplementation ameliorated the severity of DSS-induced colitis in HFD-fed mice, which was associated with the suppression of inflammation, mucin depletion, and ER stress in the colon.

  16. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance.

  17. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  18. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    PubMed Central

    2011-01-01

    Background We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust

  19. Reference memory, anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex.

    PubMed

    Frick, K M; Burlingame, L A; Arters, J A; Berger-Sweeney, J

    2000-01-01

    Age-related changes in learning and memory are common in rodents. However, direct comparisons of the effects of aging on learning and memory in both males and females are lacking. The present study examined whether memory deteriorates with increasing age in C57BL/6NIA mice, and whether age-related changes in learning and memory are similar in both sexes. Male and female mice (five, 17 and 25 months of age) were tested in a battery of behavioral tasks including the Morris water maze (spatial and non-spatial reference memory), simple odor discrimination (olfactory reference memory), plus maze (anxiety/exploration), locomotor activity, and basic reflexes. Five-month-old mice learned the water maze and odor discrimination tasks rapidly. Relative to five-month-old mice, 25-month-old mice exhibited impaired spatial and olfactory reference memory, but intact non-spatial reference memory. The spatial reference memory of 17-month-old mice was also impaired, but less so than 25-month mice. Seventeen-month-old mice exhibited intact non-spatial (visual and olfactory) reference memory. Five and 25-month-old mice had similar levels of plus maze exploration and locomotor activity, whereas 17-month-old mice were more active than both groups and were slightly less exploratory than five-month-old mice. Although sex differences were not observed in the five- and 25-month groups, 17-month-old females exhibited more impaired spatial reference memory and increased anxiety relative to 17-month-old males. Estrous cycling in females deteriorated significantly with increased age; all 25-month-old females had ceased cycling and 80% of 17-month-old females displayed either irregular or absent estrous cycling. This study is the first to directly compare age-related mnemonic decline in male and female mice. The results suggest that: (i) aged mice exhibit significant deficits in spatial and olfactory reference memory relative to young mice, whereas middle-aged mice exhibit only a moderate

  20. Dietary supplementation with docosahexanoic acid (DHA) increases red blood cell membrane flexibility in mice with sickle cell disease.

    PubMed

    Wandersee, Nancy J; Maciaszek, Jamie L; Giger, Katie M; Hanson, Madelyn S; Zheng, Suilan; Guo, YiHe; Mickelson, Barbara; Hillery, Cheryl A; Lykotrafitis, George; Low, Philip S; Hogg, Neil

    2015-02-01

    Humans and mice with sickle cell disease (SCD) have rigid red blood cells (RBCs). Omega-3 fatty acids, such as docosahexanoic acid (DHA), may influence RBC deformability via incorporation into the RBC membrane. In this study, sickle cell (SS) mice were fed natural ingredient rodent diets supplemented with 3% DHA (DHA diet) or a control diet matched in total fat (CTRL diet). After 8weeks of feeding, we examined the RBCs for: 1) stiffness, as measured by atomic force microscopy; 2) deformability, as measured by ektacytometry; and 3) percent irreversibly sickled RBCs on peripheral blood smears. Using atomic force microscopy, it is found that stiffness is increased and deformability decreased in RBCs from SS mice fed CTRL diet compared to wild-type mice. In contrast, RBCs from SS mice fed DHA diet had markedly decreased stiffness and increased deformability compared to RBCs from SS mice fed CTRL diet. Furthermore, examination of peripheral blood smears revealed less irreversibly sickled RBCs in SS mice fed DHA diet as compared to CTRL diet. In summary, our findings indicate that DHA supplementation improves RBC flexibility and reduces irreversibly sickled cells by 40% in SS mice. These results point to potential therapeutic benefits of dietary omega-3 fatty acids in SCD. Copyright © 2014 Elsevier Inc. All rights reserved.