Sample records for ageing heat treatments

  1. Effect of heat treatments on machinability of gold alloy with age-hardenability at intraoral temperature.

    PubMed

    Watanabe, I; Baba, N; Watanabe, E; Atsuta, M; Okabe, T

    2004-01-01

    This study investigated the effect of heat treatment on the machinability of heat-treated cast gold alloy with age-hardenability at intraoral temperature using a handpiece engine with SiC wheels and an air-turbine handpiece with carbide burs and diamond points. Cast gold alloy specimens underwent various heat treatments [As-cast (AC); Solution treatment (ST); High-temperature aging (HA), Intraoral aging (IA)] before machinability testing. The machinability test was conducted at a constant machining force of 0.784N. The three circumferential speeds used for the handpiece engine were 500, 1,000 and 1,500 m/min. The machinability index (M-index) was determined as the amount of metal removed by machining (volume loss, mm(3)). The results were analyzed by ANOVA and Scheffé's test. When an air-turbine handpiece was used, there was no difference in the M-index of the gold alloy among the heat treatments. The air-turbine carbide burs showed significantly (p<0.05) higher M-indexes than the diamond points after any heat treatments. With the SiC wheels, increasing the circumferential speed increased the M-index values for each heat treatment. The specimens heat-treated with AC, HA and IA had similar M-indexes at the lower speeds (500 and 1,000 m/min). The ST specimens exhibited the lowest M-index at the lower speeds. However, at the highest speed (1,500 m/min), there were no significant differences in the M-indexes among the heat treatments except for HA, which showed the highest M-index. There was no effect of heat treatment on the machinability of the gold alloy using the air-turbine handpiece. The heat treatments had a small effect on the M-index of the gold alloy machined with a SiC wheel for a handpiece engine.

  2. Developing a two-step heat treatment for inactivating desiccation-adapted Salmonella spp. in aged chicken litter.

    PubMed

    Chen, Zhao; Wang, Hongye; Jiang, Xiuping

    2015-02-01

    The effectiveness of a two-step heat treatment for eliminating desiccation-adapted Salmonella spp. in aged chicken litter was evaluated. The aged chicken litter with 20, 30, 40, and 50% moisture contents was inoculated with a mixture of four Salmonella serotypes for a 24-h adaptation. Afterwards, the inoculated chicken litter was added into the chicken litter with the adjusted moisture content for a 1-h moist-heat treatment at 65 °C and 100% relative humidity inside a water bath, followed by a dry-heat treatment in a convection oven at 85 °C for 1 h to the desired moisture level (<10-12%). After moist-heat treatment, the populations of Salmonella in aged chicken litter at 20 and 30% moisture contents declined from ≈6.70 log colony-forming units (CFU)/g to 3.31 and 3.00 log CFU/g, respectively. After subsequent 1-h dry-heat treatment, the populations further decreased to 2.97 and 2.57 log CFU/g, respectively. Salmonella cells in chicken litter with 40% and 50% moisture contents were only detectable by enrichment after 40 and 20 min of moist-heat treatment, respectively. Moisture contents in all samples were reduced to <10% after a 1-h dry-heat process. Our results demonstrated that the two-step heat treatment was effective in reducing >5.5 logs of desiccation-adapted Salmonella in aged chicken litter with moisture content at or above 40%. Clearly, the findings from this study may provide the chicken litter processing industry with an effective heat treatment method for producing Salmonella-free chicken litter.

  3. Effect of heat treatment on mechanical properties of age-hardenable gold alloy at intraoral temperature.

    PubMed

    Watanabe, I; Watanabe, E; Cai, Z; Okabe, T; Atsuta, M

    2001-09-01

    The aim of this study was to investigate the effect of various heat treatments on the mechanical properties of gold alloys capable of age-hardening at intraoral temperature. Dumbbell-shaped patterns (ISO 6871) were cast with three gold alloys (Sofard; NC Type-IV; Aurum Cast, NihombashiTokuriki Co.). The Sofard alloy is age-hardenable at intraoral temperature. The castings underwent various heat treatments [as-cast (AC); solution treatment (ST); high-temperature aging (HA); intraoral aging (IA)]. After these heat treatments, ultimate tensile strength (UTS), 0.2% offset yield strength (YS), and elongation (EL) were measured at a strain rate of 1.7x10(-4)/s. Fracture surfaces of the specimens after tensile testing were observed using SEM. Vickers hardness was also measured after heat treating. After IA, the hardness values of the Sofard alloy increased and reached values similar to the hardness of the Sofard specimens aged at high temperature (HA). The hardness values of the NC Type-IV and Aurum Cast specimens slightly increased after IA, but did not reach the values of the specimens after HA. All the Sofard, NC Type-IV and Aurum Cast specimens showed significantly (P<0.05) greater hardness values after HA, compared with the values after any other heat treatments (AC, ST and IA). The UTS and YS of the specimens indicated a tendency similar to the results obtained for hardness. The Sofard specimens with ST showed the greatest elongation compared to the corresponding NC Type-IV and Aurum Cast specimens. However, the elongation of the Sofard specimens was abruptly reduced after intraoral aging. Intraoral aging significantly improved the mechanical properties and hardness of the Sofard alloy.

  4. Heat treatment study 2

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The microstructural variations in nickel based superalloys that result from modifications in processing were examined. These superalloys include MAR-M246(HF) and PWA1480. Alternate heat treatments for equiaxed as-cast specimens were studied and a sample matrix of 42 variations in the heat treatments were processed, as well as different directional solidification parameters. Variation in temperature and times for both solution and aging were performed. Photomicrographs were made of the microstructure and volume fraction analysis of primary gamma-prime and aged gamma-prime precipitates were performed. The results of the heat treatment, cooling rate, and directional solidification experiments are discussed.

  5. Experimental heat treatment of silcrete implies analogical reasoning in the Middle Stone Age.

    PubMed

    Wadley, Lyn; Prinsloo, Linda C

    2014-05-01

    Siliceous rocks that were not heated to high temperatures during their geological formation display improved knapping qualities when they are subjected to controlled heating. Experimental heat treatment of South African silcrete, using open fires of the kind used during the Middle Stone Age, shows that the process needed careful management, notwithstanding recent arguments to the contrary. Silcrete blocks fractured when heated on the surface of open fires or on coal beds, but were heated without mishap when buried in sand below a fire. Three silcrete samples, a control, a block heated underground with maximum temperature between 400 and 500 °C and a block heated in an open fire with maximum temperature between 700 and 800 °C, were analysed with X-ray powder diffraction (XRD), X-ray fluorescence (XRF), optical microscopy, and both Fourier transform infrared (FTIR) and Raman spectroscopy. The results show that the volume expansion during the thermally induced α- to β-quartz phase transformation and the volume contraction during cooling play a major role in the heat treatment of silcrete. Rapid heating or cooling through the phase transformation at 573 °C will cause fracture of the silcrete. Successful heat treatment requires controlling surface fire temperatures in order to obtain the appropriate underground temperatures to stay below the quartz inversion temperature. Heat treatment of rocks is a transformative technology that requires skilled use of fire. This process involves analogical reasoning, which is an attribute of complex cognition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    NASA Astrophysics Data System (ADS)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-06-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{{s}} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  7. The heat treatment of duralumin

    NASA Technical Reports Server (NTRS)

    Nelson, WM

    1927-01-01

    When certain light aluminum alloys are heat-treated, quenched and aged, there is considerable improvement in their tensile properties. This paper presents different methods of accomplishing these heat treatments.

  8. Characterizing precipitate evolution of an Al–Zn–Mg–Cu-based commercial alloy during artificial aging and non-isothermal heat treatments by in situ electrical resistivity monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Fulin; Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7; Zurob, Hatem S., E-mail: zurobh@mcmaster.ca

    In situ electrical resistivity monitoring technique was employed to continuously evaluate the precipitate evolution of an Al–Zn–Mg–Cu-based commercial alloy during typical artificial aging treatments. The effects of artificial aging on the precipitates stability during non-isothermal heat treatments were also explored. Conventional hardness test, transmission electron microscopy and differential scanning calorimetry were also adopted to verify the electrical resistivity results. The results indicated that both the precipitation process and its timely rate could be followed by the monitored electrical resistivity during artificial aging treatments. The electrical resistivity results gave overall information on continuous precipitation and dissolution processes, especially under high heatingmore » rates. Samples artificial aging heat treated at 120 °C for 24 h followed by aging at 150 °C for 24 h presented more stable state and coarser precipitates than the samples only artificial aging heat treated at 120 °C for 24 h or triple artificial aging heat treated at 120 °C/24 h + 195 °C/15 min + 120 °/24 h. While the incoherent η precipitates in the samples artificial aging heat treated at 120 °C for 24 h followed by aging at 150 °C for 24 h were more easiness to coarsening and dissolve during non-isothermal heat treatments as well. - Highlights: • In situ electrical resistivity monitoring technique was employed on an Al-Zn-Mg-Cu alloy. • The precipitate evolution during typical artificial aging treatments was studied. • The precipitate stability during non-isothermal heat treatments was explored. • The electrical resistivity wonderfully monitored continuous precipitation and dissolution. • The alloy submitted to a T7 treatment presents a more stable state during heating due to incoherent η precipitates.« less

  9. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints

    NASA Astrophysics Data System (ADS)

    Peng, Dong; Shen, Jun; Tang, Qin; Wu, Cui-ping; Zhou, Yan-bing

    2013-03-01

    Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175°C for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.

  10. Solar-simulated radiation and heat treatment induced metalloproteinase-1 expression in cultured dermal fibroblasts via distinct pathways: implications on reduction of sun-associated aging.

    PubMed

    Lan, Cheng-Che E; Wu, Ching-Shang; Yu, Hsin-Su

    2013-12-01

    Sun exposure is an important environmental factor affecting human beings. Most knowledge regarding solar aging focused on light radiation (photoaging), and little emphasis has been placed on heat, a factor that is also closely associated with sun exposure. This study was launched to evaluate the effects of simulated solar radiation (SSR) and environmental heat on skin fibroblasts in terms of dermal aging. Cultured human dermal fibroblasts were treated with moderate amount of SSR (200J/cm(2)) and heat (+2°C). The metalloproteinase-1 (MMP-1) expression was used as a surrogate marker for dermal aging and the involved regulatory mechanisms were explored. Both treatment conditions did not affect viability but significantly increased the expressions of MMP-1. In parallel, both treatments increased the intracellular levels of reactive oxygen species (ROS), but the increase induced by SSR is much greater than heat. In contrast, transient receptor potential vanilloid 1 (TRPV-1), the sensor of environmental heat, was upregulated by heat but not SSR treatment. Pretreating fibroblasts with antioxidant abrogated the SSR-induced MMP-1 but has limited effect on heat-induced MMP-1. On the other hand, TRPV-1 antagonist pretreatment reduced heat-induced MMP-1 in fibroblasts but not their SSR-treated counterparts. Both SSR and heat induced MMP-1 expression in dermal fibroblasts but through different pathways. As current strategies for reducing sun-related aging focused on filtering of light and use of antioxidants, future strategies design to reduce solar aging should also incorporate heat-induced aging into consideration. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Surface conditions of Nitinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment.

    PubMed

    Shabalovskaya, S A; Anderegg, J; Laab, F; Thiel, P A; Rondelli, G

    2003-04-15

    The surface conditions of Nitinol wires and tubing were evaluated with the use of X-ray photoelectron spectroscopy, high-resolution Auger spectroscopy, electron backscattering, and scanning-electron microscopy. Samples were studied in the as-received state as well as after chemical etching, aging in boiling water, and heat treatment, and compared to a mechanically polished 600-grit-finish Nitinol surface treated similarly. General regularities in surface behavior induced by the examined surface treatments are similar for wires, tubing, and studied as-cast alloy, though certain differences in surface Ni concentration were observed. Nitinol wires and tubing from various suppliers demonstrated great variability in Ni surface concentration (0.5-15 at.%) and Ti/Ni ratio (0.4-35). The wires in the as-received state, with the exception of those with a black oxide originating in the processing procedure, revealed nickel and titanium on the surface in both elemental and oxidized states, indicating a nonpassive surface. Shape-setting heat treatment at 500 degrees C for 15 min resulted in tremendous increase in the surface Ni concentration and complete Ni oxidation. Preliminary chemical etching and boiling in water successfully prevented surface enrichment in Ni, initially resulting from heat treatment. A stoichiometric uniformly amorphous TiO(2) oxide generated during chemical etching and aging in boiling water was reconstructed at 700 degrees C, revealing rutile structure. Copyright 2003 Wiley Periodicals, Inc.

  12. Heat Treatment Development for a Rapidly Solidified Heat Resistant Cast Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Kasprzak, W.; Chen, D. L.; Shaha, S. K.

    2013-07-01

    Existing heat treatment standards do not properly define tempers for thin-walled castings that solidified with high solidification rates. Recently emerged casting processes such as vacuum high pressure die casting should not require long solution treatment times due to the fine microstructures arising from rapid solidification rates. The heat treatment studies involving rapidly solidified samples with secondary dendrite arm spacing between 10 and 35 μm were conducted for solution times between 30 min and 9 h and temperatures of 510 and 525 °C and for various aging parameters. The metallurgical analysis revealed that an increase in microstructure refinement could enable a reduction of solution time up to 88%. Solution treatment resulted in the dissolution of Al2Cu and Al5Mg8Si6Cu2, while Fe- and TiZrV-based phases remained partially in the microstructure. The highest strength of approximately 351 ± 9.7 and 309 ± 3.4 MPa for the UTS and YS, respectively, was achieved for a 2-step solution treatment at 510 and 525 °C in the T6 peak aging conditions, i.e., 150 °C for 100 h. The T6 temper did not yield dimensionally stable microstructure since exceeding 250 °C during in-service operation could result in phase transformation corresponding to the over-aging reaction. The microstructure refinement had a statistically stronger effect on the alloy strength than the increase in solutionizing time. Additionally, thermal analysis and dilatometer results were presented to assess the dissolution of phases during solution treatment, aging kinetics as well as dimensional stability.

  13. Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates

    NASA Technical Reports Server (NTRS)

    Petter, George E.; Figert, John D.; Rybicki, Daniel J.; Burns, Timothy

    2006-01-01

    A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility. This method of heat treatment is a superior alternative to a specification-required heat treatment that caused the formation of large columnar grains, which are undesired. Workpieces subjected to the prior heat treatment exhibited elongations <2 percent, and standard three-point bend specimens shattered. The development of the present heat treatment method was guided partly by the principles that (1) by minimizing grain sizes and relieving deformation stresses, one can minimize or eliminate stress corrosion cracking and (2) the key to maximizing strength and eliminating residual stresses is to perform post-weld solution heating for as long a time as possible while incurring little or no development of large columnar grains in friction stir weld nuggets. It is necessary to perform some of the solution heat treatment (to soften the alloy and improve machine welding parameters) before welding. The following is an example of thickness- dependent pre- and post-weld heat treatments according to the present method: For plates 0.270 in. (approx.6.86 mm) thick milled from plates 4.5 in. (114.3 mm) thick, perform pre-weld solution heating at 890 F (477 C) for 1 hour, then cool in air. After friction stir welding, perform solution heating for 10 minutes, quench, hold at room temperature for 96 hours, then age at 250 F (121 C) for 5 hours followed by 325 F (163 C) for 27 hours.

  14. The effect of Sn addition on phase stability and phase evolution during aging heat treatment in Ti–Mo alloys employed as biomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mello, Mariana G. de, E-mail: marianagm@fem.unicamp.br; Salvador, Camilo F., E-mail: csalvador@fem.unicamp.br; Cremasco, Alessandra, E-mail: alessandra@fem.unicamp.br

    Increases in life expectancy and improvements in necessary healthcare attach great importance to the development of biomaterials. Ti alloys containing β stabilizing elements are often used as biomaterials due to their high specific strength, high corrosion resistance, unusual biocompatibility and low elastic moduli, which benefit bone tissues close to an implant. This study deals with phase stability in β Ti–Mo–Sn alloys processed under different conditions and was performed according to the following steps: a study of the effect of Sn content (a) on phase stability in Ti–Mo alloys, (b) on the suppression of α″ and ω phase precipitation; (c) onmore » α-phase precipitation during aging heat treatments and (d) on mechanical properties, including the elastic modulus, as measured using tensile tests and acoustic techniques. The alloys were prepared by arc melting under a controlled atmosphere followed by homogenization heat treatment and hot rolling. Optical microscopy, scanning and transmission electron microscopy, X-ray diffraction and differential scanning calorimetry were employed for characterization purposes. Samples were also submitted to solution treatment above the β transus temperature and aging heat treatments under a controlled atmosphere. The results suggest that Sn suppresses the formation of the ω and α″ phases in Ti–Mo system. - Highlights: • Sn addition to Ti alloys decreases elastic modulus by suppressing ω phase precipitation. • Sn addition decreases the temperature of martensite decomposition. • Sn addition decreases the temperature of α phase precipitation and β transus. • Mechanical strength decreases with increasing Sn content.« less

  15. 2. SALEMBROSIUS CONTINUOUS GASFIRED HEAT TREATING LINE AT HEAT TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SALEM-BROSIUS CONTINUOUS GAS-FIRED HEAT TREATING LINE AT HEAT TREATMENT PLANT OF THE DUQUESNE WORKS. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. The Effects of Heat Treatment and Microstructure Variations on Disk Superalloy Properties at High Temperature

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Telesman, Jack; Garg, Anita

    2008-01-01

    The effects of heat treatment and resulting microstructure variations on high temperature mechanical properties were assessed for a powder metallurgy disk superalloy LSHR. Blanks were consistently supersolvus solution heat treated and quenched at two cooling rates, than aged at varying temperatures and times. Tensile, creep, and dwell fatigue crack growth tests were then performed at 704 C. Gamma' precipitate microstructures were quantified. Relationships between heat treatment-microstructure, heat treatment-mechanical properties, and microstructure-mechanical properties were assessed.

  17. Aging and heat tolerance at rest or during work.

    PubMed

    Pandolf, K B

    1991-01-01

    Collectively, the literature on heat tolerance suggests that middle-aged (45-64 year old) men and women are more work-heat intolerant, and suffer more physiological strain during heat acclimation, than do younger individuals. However, it is unclear whether the age differences in work-heat intolerance and physiological strain during heat acclimation are related to age per se or associated with other factors such as certain disease states, decreased physical activity, and/or lowered aerobic fitness. In contrast, the work-heat tolerance and physiological responses during heat acclimation of habitually active or aerobically trained middle-aged men are the same or better than younger individuals. The reviewed studies emphasize the importance of aerobic fitness and pertinent morphological factors, such as body fat, body weight, and surface area in maintaining work-heat tolerance with aging. Recent studies suggest that middle-aged and older men and women may be more susceptible to greater heat strain at physiologically significant levels of dehydration than those younger. However, additional research appears necessary to support this hypothesis. When the effects of chronic debilitating diseases in the elderly (greater than 64 years old) are minimized, their heat tolerance and thermoregulatory responses are comparable to those younger. In fact, healthy and well-acclimated elderly men and women appear to perform as well as those younger during desert walks in dry heat. This review shall discuss experimental observations from previously published studies concerning aging and heat tolerance or the physiological heat strain during heat acclimation at rest or during work; and, will suggest future research efforts needed to advance the area.

  18. 29 CFR 1919.36 - Heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...

  19. 29 CFR 1919.36 - Heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...

  20. 29 CFR 1919.36 - Heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...

  1. 29 CFR 1919.36 - Heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...

  2. 29 CFR 1919.36 - Heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...

  3. 29 CFR 1919.80 - Heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out in...

  4. 29 CFR 1919.80 - Heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out in...

  5. 29 CFR 1919.80 - Heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out in...

  6. 29 CFR 1919.80 - Heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out in...

  7. 29 CFR 1919.80 - Heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out in...

  8. Recombinant HSP70 and mild heat shock stimulate growth of aged mesenchymal stem cells.

    PubMed

    Andreeva, N V; Zatsepina, O G; Garbuz, D G; Evgen'ev, M B; Belyavsky, A V

    2016-07-01

    Heat shock proteins including the major stress protein HSP70 support intracellular homeostasis and prevent protein damage after a temperature increase and other stressful environmental stimuli, as well as during aging. We have shown earlier that prolonged administration of recombinant human HSP70 to mice exhibiting Alzheimer's-like neurodegeneration as well as during sepsis reduces the clinical manifestations of these pathologies. Herein, we studied the action of recombinant human HSP70 on young and aged mouse mesenchymal stem cells (MSCs) in culture. The results obtained indicate that HSP70 at concentrations of 2 μg/ml and higher significantly stimulates growth of aged but not young MSCs. A similar effect is produced by application of a mild heat shock (42 °C 5 min) to the cells. Importantly, responses of young and aged MSCs to heat shock treatment of various durations differed drastically, and aged MSCs were significantly more sensitive to higher heat stress exposures than the young cells. Western blotting and protein labeling experiments demonstrated that neither mild heat shock nor exogenous HSP70 administration resulted in significant endogenous HSP70 induction in young and aged MSCs, whereas mild heat shock increased HSC70 levels in aged MSCs. The results of this study suggest that the administration of exogenous HSP70 and the application of mild heat stress may produce a certain "rejuvenating" effect on MSCs and possibly other cell types in vivo, and these interventions may potentially be used for life extension by delaying various manifestations of aging at the molecular and cellular level.

  9. Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel

    NASA Astrophysics Data System (ADS)

    Walker, Jacob D.

    Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces requires welding in the assembly; this drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment. As with most metallic materials grade 91 steel requires a very specific heat treatment process. This process includes a specific temperature and duration at that temperature to achieve the heat treatment desired. Extensive research has been done to determine the proper temperatures and duration to provide the proper microstructure for the superior mechanical properties that are inherent to Grade 91 steel. The welded sections are typically large structures that require local heat treatments and cannot be placed in an oven. The locations of these structures vary from indoors in a controlled environment to outdoors with unpredictable environments. These environments can be controlled somewhat, however in large part the surrounding conditions are unchangeable. Therefore, there is a need to develop methods to accurately apply the surrounding conditions and geometries to a theoretical model in order to provide the proper requirements for the local heat treatment procedure. Within this requirement is the requirement to define unknowns used in the heat transfer equations so that accurate models can be produced and accurate results predicted. This study investigates experimentally and numerically the heat transfer and temperature fields of Grade 91 piping in a local heat treatment. The objective of this thesis research is to determine all of the needed heat transfer coefficients. The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing a ceramic heat blanket. This will be done

  10. Feasibility of in situ controlled heat treatment (ISHT) of Inconel 718 during electron beam melting additive manufacturing

    DOE PAGES

    Sames, William J.; Unocic, Kinga A.; Helmreich, Grant W.; ...

    2016-10-07

    A novel technique was developed to control the microstructure evolution in Alloy 718 processed using Electron Beam Melting (EBM). In situ solution treatment and aging of Alloy 718 was performed by heating the top surface of the build after build completion scanning an electron beam to act as a planar heat source during the cool down process. Results demonstrate that the measured hardness (478 ± 7 HV) of the material processed using in situ heat treatment similar to that of peak-aged Inconel 718. Large solidification grains and cracks formed, which are identified as the likely mechanism leading to failure ofmore » tensile tests of the in situ heat treatment material under loading. Despite poor tensile performance, the technique proposed was shown to successively age Alloy 718 (increase precipitate size and hardness) without removing the sample from the process chamber, which can reduce the number of process steps in producing a part. Lastly, tighter controls on processing temperature during layer melting to lower process temperature and selective heating during in situ heat treatment to reduce over-sintering are proposed as methods for improving the process.« less

  11. In situ heat treatment process utilizing a closed loop heating system

    DOEpatents

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  12. Pre-weld heat treatment improves welds in Rene 41

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1968-01-01

    Cooling of Rene 41 prior to welding reduces the incidence of cracking during post-weld heat treatment. The microstructure formed during the slow cooling rate favors elevated temperature ductility. Some vestiges of this microstructure are apparently retained during welding and thus enhance strain-age crack resistance in air.

  13. 7 CFR 305.8 - Heat treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Heat treatment requirements. 305.8 Section 305.8... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS § 305.8 Heat treatment requirements. (a... operations conducted at the facility. In order to be certified, a heat treatment facility must: (1) Have...

  14. 7 CFR 305.8 - Heat treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Heat treatment requirements. 305.8 Section 305.8... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS § 305.8 Heat treatment requirements. (a... operations conducted at the facility. In order to be certified, a heat treatment facility must: (1) Have...

  15. 7 CFR 305.8 - Heat treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Heat treatment requirements. 305.8 Section 305.8... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS § 305.8 Heat treatment requirements. (a... operations conducted at the facility. In order to be certified, a heat treatment facility must: (1) Have...

  16. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.400-12 Section 179... and 107A) § 179.400-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not... be attached before postweld heat treatment. Welds securing the following need not be postweld heat...

  17. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    PubMed

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  18. Moist-Heat Resistance, Spore Aging, and Superdormancy in Clostridium difficile▿†

    PubMed Central

    Rodriguez-Palacios, Alexander; LeJeune, Jeffrey T.

    2011-01-01

    Clostridium difficile spores can survive extended heating at 71°C (160°F), a minimum temperature commonly recommended for adequate cooking of meats. To determine the extent to which higher temperatures would be more effective at killing C. difficile, we quantified (D values) the effect of moist heat at 85°C (145°F, for 0 to 30 min) on C. difficile spores and compared it to the effects at 71 and 63°C. Fresh (1-week-old) and aged (≥20-week-old) C. difficile spores from food and food animals were tested in multiple experiments. Heating at 85°C markedly reduced spore recovery in all experiments (5 to 6 log10 within 15 min of heating; P < 0.001), regardless of spore age. In ground beef, the inhibitory effect of 85°C was also reproducible (P < 0.001), but heating at 96°C reduced 6 log10 within 1 to 2 min. Mechanistically, optical density and enumeration experiments indicated that 85°C inhibits cell division but not germination, but the inhibitory effect was reversible in some spores. Heating at 63°C reduced counts for fresh spores (1 log10, 30 min; P < 0.04) but increased counts of 20-week-old spores by 30% (15 min; P < 0.02), indicating that sublethal heat treatment reactivates superdormant spores. Superdormancy is an increasingly recognized characteristic in Bacillus spp., and it is likely to occur in C. difficile as spores age. The potential for reactivation of (super)dormant spores with sublethal temperatures may be a food safety concern, but it also has potential diagnostic value. Ensuring that food is heated to >85°C would be a simple and important intervention to reduce the risk of inadvertent ingestion of C. difficile spores. PMID:21398481

  19. Characterization of Aluminum Magnesium Alloy Reverse Sensitized via Heat Treatment

    DTIC Science & Technology

    2016-09-01

    been on ships that had seen an unknown cycle of painting - stripping -repainting, so some variation was expected. 16 The exact age and range of...Figure 44. Effect of Temperature on Al-Mg Alloys. Adapted from [9]. d. Other heat treatment techniques – high power diode laser (HPDL) arrays Because...25] B. Baker et. al, "Use of High-Power diode Laser Arrays for Pre- and Post- Weld Heating During Friction Stir Welding of Steels," in Friction

  20. 29 CFR 1919.16 - Heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains (other... material other than wrought iron or steel shall be heat treated when necessary in accordance with § 1919.36...

  1. 29 CFR 1919.16 - Heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains (other... material other than wrought iron or steel shall be heat treated when necessary in accordance with § 1919.36...

  2. 29 CFR 1919.16 - Heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains (other... material other than wrought iron or steel shall be heat treated when necessary in accordance with § 1919.36...

  3. 29 CFR 1919.16 - Heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains (other... material other than wrought iron or steel shall be heat treated when necessary in accordance with § 1919.36...

  4. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.220-11 Section 179... Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld heat treatment of the cylindrical portions of the outer shell to which the anchorage...

  5. Heat treatment furnace

    DOEpatents

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  6. The response of cobalt-free Udimet 700 type alloy to modified heat treatments

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1986-01-01

    A superalloy based on Udimet 700, in which all of the cobalt was replaced by nickel, was prepared from hot isostatically pressed prealloyed powders. This material was given various heat treatments consisting of partial solutioning and aging in a sequence of four different temperatures. Comparisons were made of microstructures and mechanical properties. Best results were obtained by partially solutioning at 1145 deg C and aging through a sequence of 870, 1030, 650 and 760 deg C. This heat treatment also provided significantly improved properties for wrought material of the same composition. The results suggest that cobalt free Udimet 700 should be considered as a substitute for Udimet 700 with the standard 17 percent cobalt content.

  7. The response of cobalt-free Udimet 700 type alloy to modified heat treatments

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    A superalloy based on Udimet 700, in which all of the cobalt was replaced by nickel, was prepared from hot isostatically pressed prealloyed powders. This material was given various heat treatments consisting of partial solutioning and aging in a sequence of four different temperatures. Comparisons were made of microstructures and mechanical properties. Best results were obtained by partially solutioning at 1145 deg C and aging through a sequence of 870, 1030, 650 and 760 deg C. This heat treatment also provided significantly improved properties for wrought material of the same composition. The results suggest that cobalt free Udimet 700 should be considered as a substitute for Udimet 700 with the standard 17 percent cobalt content.

  8. 7 CFR 305.29 - Vacuum heat treatment schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Vacuum heat treatment schedule. 305.29 Section 305.29... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.29 Vacuum heat treatment... vacuum at 8 hours. Maintain the vacuum until the end of the treatment. Gradually increase the temperature...

  9. Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica.

    PubMed

    Marias, Danielle E; Meinzer, Frederick C; Still, Christopher

    2017-02-01

    Given future climate predictions of increased temperature, and frequency and intensity of heat waves in the tropics, suitable habitat to grow ecologically, economically, and socially valuable Coffea arabica is severely threatened. We investigated how leaf age and heat stress duration impact recovery from heat stress in C. arabica . Treated plants were heated in a growth chamber at 49°C for 45 or 90 min. Physiological recovery was monitored in situ using gas exchange, chlorophyll fluorescence (the ratio of variable to maximum fluorescence, F V / F M ), and leaf nonstructural carbohydrate (NSC) on mature and expanding leaves before and 2, 15, 25, and 50 days after treatment. Regardless of leaf age, the 90-min treatment resulted in greater F V / F M reduction 2 days after treatment and slower recovery than the 45-min treatment. In both treatments, photosynthesis of expanding leaves recovered more slowly than in mature leaves. Stomatal conductance ( g s ) decreased in expanding leaves but did not change in mature leaves. These responses led to reduced intrinsic water-use efficiency with increasing heat stress duration in both age classes. Based on a leaf energy balance model, aftereffects of heat stress would be exacerbated by increases in leaf temperature at low g s under full sunlight where C. arabica is often grown, but also under partial sunlight. Starch and total NSC content of the 45-min group significantly decreased 2 days after treatment and then accumulated 15 and 25 days after treatment coinciding with recovery of photosynthesis and F V / F M . In contrast, sucrose of the 90-min group accumulated at day 2 suggesting that phloem transport was inhibited. Both treatment group responses contrasted with control plant total NSC and starch, which declined with time associated with subsequent flower and fruit production. No treated plants produced flowers or fruits, suggesting that short duration heat stress can lead to crop failure.

  10. Aging impairs heat loss, but when does it matter?

    PubMed Central

    Stapleton, Jill M.; Poirier, Martin P.; Flouris, Andreas D.; Boulay, Pierre; Sigal, Ronald J.; Malcolm, Janine

    2014-01-01

    Aging is associated with an attenuated physiological ability to dissipate heat. However, it remains unclear if age-related impairments in heat dissipation only occur above a certain level of heat stress and whether this response is altered by aerobic fitness. Therefore, we examined changes in whole body evaporative heat loss (HE) as determined using whole body direct calorimetry in young (n = 10; 21 ± 1 yr), untrained middle-aged (n = 10; 48 ± 5 yr), and older (n = 10; 65 ± 3 yr) males matched for body surface area. We also studied a group of trained middle-aged males (n = 10; 49 ± 5 yr) matched for body surface area with all groups and for aerobic fitness with the young group. Participants performed intermittent aerobic exercise (30-min exercise bouts separated by 15-min rest) in the heat (40°C and 15% relative humidity) at progressively greater fixed rates of heat production equal to 300 (Ex1), 400 (Ex2), and 500 (Ex3) W. Results showed that HE was significantly lower in middle-aged untrained (Ex2: 426 ± 34; and Ex3: 497 ± 17 W) and older (Ex2: 424 ± 38; and Ex3: 485 ± 44 W) compared with young (Ex2: 472 ± 42; and Ex3: 558 ± 51 W) and middle-aged trained (474 ± 21; Ex3: 552 ± 23 W) males at the end of Ex2 and Ex3 (P < 0.05). No differences among groups were observed during recovery. We conclude that impairments in HE in older and middle-aged untrained males occur at exercise-induced heat loads of ≥400 W when performed in a hot environment. These impairments in untrained middle-aged males can be minimized through regular aerobic exercise training. PMID:25505030

  11. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment. 179.400-12 Section 179...-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not required. (b) The... postweld heat treated as prescribed in AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of...

  12. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.400-12 Section 179...-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not required. (b) The... postweld heat treated as prescribed in AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of...

  13. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.400-12 Section 179...-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not required. (b) The... postweld heat treated as prescribed in AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of...

  14. 49 CFR 179.400-12 - Postweld heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment. 179.400-12 Section 179...-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not required. (b) The... postweld heat treated as prescribed in AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of...

  15. Heat treatment versus properties studies associated with the Inconel 718 PBF acoustic filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolik, G.R.; Reuter, W.G.

    PBF acoustic filter Unit No. 1 cracked when heat treatment was attempted. The effects of prior thermal cycling, solution anneal temperature, and cooling rate from solution anneals were investigated. The investigations concerned influences of the above variables upon both 1400$sup 0$F stress rupture solution- annealed properties and room temperature age-hardened properties. 1400$sup 0$F stress rupture properties were of interest to assist the prevention of cracking during heat treatments. Room temperature age-hardened properties were needed to ensure that design requirement would be provided. Prior thermal cycling was investigated to determine if extra thermal cycles would be detrimental to the repaired filter.more » Slow furnace cools were considered as a means of reducing thermal stresses. Effects of solution annealing at 2000 and 1900$sup 0$F were also determined. Test results showed that slow cooling rates would not only reduce thermal stresses but also improve 1400$sup 0$F ductility. A modified aging treatment was established which provided the required 145 ksi room temperature yield strength for the slowly cooled material. Prior cooling did not degrade final age-hardened room temperature tensile or impact properties. (auth)« less

  16. 29 CFR 1919.16 - Heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains (other...

  17. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.200-11 Section 179.200-11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment...

  18. Sympathetic activity during passive heat stress in healthy aged humans

    PubMed Central

    Gagnon, Daniel; Schlader, Zachary J; Crandall, Craig G

    2015-01-01

    Abstract Cardiovascular adjustments during heat stress are generally attenuated in healthy aged humans, which could be due to lower increases in sympathetic activity compared to the young. We compared muscle sympathetic nerve activity (MSNA) between 11 young (Y: 28 ± 4 years) and 10 aged (A: 70 ± 5 years) subjects prior to and during passive heating. Furthermore, MSNA responses were compared when a cold pressor test (CPT) and lower body negative pressure (LBNP) were superimposed upon heating. Baseline MSNA burst frequency (Y: 15 ± 4 vs. A: 31 ± 3 bursts min−1, P ≤ 0.01) and burst incidence (Y: 26 ± 8 vs. A: 50 ± 7 bursts (100 cardiac cycles (CC))−1, P ≤ 0.01) were greater in the aged. Heat stress increased core temperature to a similar extent in both groups (Y: +1.2 ± 0.1 vs. A: +1.2 ± 0.0°C, P = 0.99). Absolute levels of MSNA remained greater in the aged during heat stress (burst frequency: Y: 47 ± 6 vs. A: 63 ± 11 bursts min−1, P ≤ 0.01; burst incidence: Y: 48 ± 8 vs. A: 67 ± 9 bursts (100 CC)−1, P ≤ 0.01); however, the increase in both variables was similar between groups (both P ≥ 0.1). The CPT and LBNP further increased MSNA burst frequency and burst incidence, although the magnitude of increase was similar between groups (both P ≥ 0.07). These results suggest that increases in sympathetic activity during heat stress are not attenuated in healthy aged humans. Key points Cardiovascular adjustments to heat stress are attenuated in healthy aged individuals, which could contribute to their greater prevalence of heat-related illnesses and deaths during heat waves. The attenuated cardiovascular adjustments in the aged could be due to lower increases in sympathetic nerve activity during heat stress. We examined muscle sympathetic nerve activity (MSNA) and plasma catecholamine concentrations in healthy young and aged individuals during whole-body passive heat stress. The main finding

  19. 7 CFR 305.8 - Heat treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Heat treatment requirements. 305.8 Section 305.8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS § 305.8 Heat treatment requirements. (a...

  20. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld...

  1. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld...

  2. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld...

  3. Assessment of NASA Dual Microstructure Heat Treatment Method for Multiple Forging Batch Heat Treatment

    NASA Technical Reports Server (NTRS)

    Gayda, John (Technical Monitor); Lemsky, Joe

    2004-01-01

    NASA dual microstructure heat treatment technology previously demonstrated on single forging heat treat batches of a generic disk shape was successfully demonstrated on a multiple disk batch of a production shape component. A group of four Rolls-Royce Corporation 3rd Stage AE2100 forgings produced from alloy ME209 were successfully dual microstructure heat treated as a single heat treat batch. The forgings responded uniformly as evidenced by part-to-part consistent thermocouple recordings and resultant macrostructures, and from ultrasonic examination. Multiple disk DMHT processing offers a low cost alternative to other published dual microstructure processing techniques.

  4. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment. 179.200-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-11 Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment must be in compliance...

  5. 9 CFR 590.575 - Heat treatment of dried whites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Heat treatment of dried whites. 590..., Processing, and Facility Requirements § 590.575 Heat treatment of dried whites. Heat treatment of dried... and at such temperatures as will result in salmonella negative product. (a) The product to be heat...

  6. 9 CFR 590.575 - Heat treatment of dried whites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Heat treatment of dried whites. 590..., Processing, and Facility Requirements § 590.575 Heat treatment of dried whites. Heat treatment of dried... and at such temperatures as will result in salmonella negative product. (a) The product to be heat...

  7. 9 CFR 590.575 - Heat treatment of dried whites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Heat treatment of dried whites. 590..., Processing, and Facility Requirements § 590.575 Heat treatment of dried whites. Heat treatment of dried... and at such temperatures as will result in salmonella negative product. (a) The product to be heat...

  8. Evaluation of Subsequent Heat Treatment Routes for Near-β Forged TA15 Ti-Alloy

    PubMed Central

    Sun, Zhichao; Wu, Huili; Yang, He

    2016-01-01

    TA15 Ti-alloy is widely used to form key load-bearing components in the aerospace field, where excellent service performance is needed. Near-β forging technology provides an attractive way to form these complicated Ti-alloy components but subsequent heat treatment has a great impact on the final microstructure and mechanical properties. Therefore evaluation and determination of the heat treatment route is of particular significance. In this paper, for the near-β forged TA15 alloy, the formation and evolution of microstructures under different subsequent heat treatment routes (annealing, solution and aging, toughening and strengthening) were studied and the cooling mode after forging was also considered. Then, the type and characteristics of the obtained microstructures were discussed through quantitative metallographic analysis. The corresponding mechanical properties (tensile, impact toughness, and fracture toughness) and effects of microstructural characteristics were investigated. Finally, for a required microstructure and performance a reasonable heat treatment route was recommended. The work is of importance for the application and development of near-β forging technology. PMID:28773994

  9. The effect of heat treatment on microstructure evolution in artificially aged carbon nanotube/Al2024 composites synthesized by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez-Bustamante, R.

    Although carbon nanotubes/aluminum (CNT/Al) composites are promising materials in the production of structural components, their mechanical behavior under overaging conditions has not been considered. In this paper the effect of CNTs on the microstructural and mechanical behavior of a 2024 aluminum alloy (Al2024) synthesized by mechanical alloying (MA) and powder metallurgy routes is discussed, as well as the effect of aging heat treatments at different temperatures and aging times. The mechanical behavior of composites was screened by hardness measurements as function of aging time. After 96 h of aging time, composites showed mechanical stability in their hardness performance. Images frommore » transmission electron microscopy showed that the mechanical stability of composites was due to a homogeneous dispersion of CNTs in the aluminum matrix and a subsequent alteration in the kinetics of precipitation is due to their presence in the aluminum matrix. Even though strengthening precipitation took place during aging, this was not the main strengthening mechanism observed in composites. - Highlights: • Dispersion of carbon nanotubes during mechanical alloying • Microstructural evolution observed by HRTEM. • Mechanical performance evaluated through micro-hardness test. • Increased mechanical performance at high working temperatures • Acceleration of kinetics of precipitation due to CNTs, and milling conditions.« less

  10. 29 CFR 1919.17 - Exemptions from heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Exemptions from heat treatment. 1919.17 Section 1919.17... from heat treatment. Gear made of steel, or gear which contains (as in ball bearings swivels), or is permanently attached to (as with blocks) equipment made of materials which cannot be subjected to heat...

  11. 29 CFR 1919.17 - Exemptions from heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Exemptions from heat treatment. 1919.17 Section 1919.17... from heat treatment. Gear made of steel, or gear which contains (as in ball bearings swivels), or is permanently attached to (as with blocks) equipment made of materials which cannot be subjected to heat...

  12. 29 CFR 1919.17 - Exemptions from heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Exemptions from heat treatment. 1919.17 Section 1919.17... from heat treatment. Gear made of steel, or gear which contains (as in ball bearings swivels), or is permanently attached to (as with blocks) equipment made of materials which cannot be subjected to heat...

  13. 29 CFR 1919.17 - Exemptions from heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Exemptions from heat treatment. 1919.17 Section 1919.17... from heat treatment. Gear made of steel, or gear which contains (as in ball bearings swivels), or is permanently attached to (as with blocks) equipment made of materials which cannot be subjected to heat...

  14. 29 CFR 1919.17 - Exemptions from heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Exemptions from heat treatment. 1919.17 Section 1919.17... from heat treatment. Gear made of steel, or gear which contains (as in ball bearings swivels), or is permanently attached to (as with blocks) equipment made of materials which cannot be subjected to heat...

  15. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.300-10 Section 179... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-10 Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be postweld heat treated...

  16. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.300-10 Section 179... Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-10 Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be postweld heat treated...

  17. Microstructure characterization and charpy toughness of P91 weldment for as-welded, post-weld heat treatment and normalizing & tempering heat treatment

    NASA Astrophysics Data System (ADS)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Giri, A.

    2017-09-01

    The effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied. The P91 pipe weldments were subjected to subcritical post weld heat treatment (760 °C-2 h) and normalizing/tempering conditions (normalized-1040 °C/40 min, air cooled; tempered 760 °C/2 h, air cooled) were employed. The influence of subsequent PWHT and N&T treatment on the microstructure of various zone of P91 pipe weldments were also investigated. The present investigation also described the effect of PWHT and N&T treatment on hardness, grain size, precipitate size, inter-particle spacing and fraction area of precipitates present in each zone of P91 pipe weldments. The result indicated great impact of heat treatment on the Charpy toughness and microstructure evolution of P91 weldments. The N&T treatment was found to be more effective heat treatment compared to subsequent PWHT. Charpy toughness value was found to be higher for narrow-groove design as compared to conventional V-groove design.

  18. 49 CFR 179.500-6 - Heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-6 Heat treatment. (a... normalizing and tempering for Class I, Class II and Class III steel or oil quenching and tempering for Class III steel. Tempering temperatures shall not be less than 1000 °F. Heat treatment of alternate steels...

  19. 49 CFR 179.500-6 - Heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-6 Heat treatment. (a... normalizing and tempering for Class I, Class II and Class III steel or oil quenching and tempering for Class III steel. Tempering temperatures shall not be less than 1000 °F. Heat treatment of alternate steels...

  20. 49 CFR 179.500-6 - Heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-6 Heat treatment. (a... normalizing and tempering for Class I, Class II and Class III steel or oil quenching and tempering for Class III steel. Tempering temperatures shall not be less than 1000 °F. Heat treatment of alternate steels...

  1. 49 CFR 179.500-6 - Heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-6 Heat treatment. (a... normalizing and tempering for Class I, Class II and Class III steel or oil quenching and tempering for Class III steel. Tempering temperatures shall not be less than 1000 °F. Heat treatment of alternate steels...

  2. 49 CFR 179.100-10 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.100-10 Section 179...-10 Postweld heat treatment. (a) After welding is complete, steel tanks and all attachments welded... treatment is prohibited. (c) Tank and welded attachments, fabricated from ASTM A 240/A 240M (IBR, see § 171...

  3. Effects of heat treatment on shape-setting and non-linearmechanical properties of Nitinol stent

    NASA Astrophysics Data System (ADS)

    Liu, Xiaopeng; Wang, Yinong; Qi, Min; Yang, Dazhi

    2007-07-01

    NiTi shape memory alloy is a temperature sensitive material with non-linear mechanical properties and good biocompatibility, which can be used for medical devices such as stent, catheter guide wire and orthodontic wire. The majority of nitinol stents are of the self-expanding type basing on the superelasticity. Nitinol stents are shape set into the open condition and compressed and inserted into the delivery catheter. Additional the shape-setting treatment can be used as a tool to accurately tune the transformation temperatures and mechanical properties. In this study, different heat treatments have been performed on the Ti-50.7at%Ni alloy wires. And results of shape-setting, austenite transformation finish temperature and non-linear mechanical property of NiTi shape memory alloy at body temperature have been investigated. The experimental results show that the proper shape-setting temperature should be chosen between 450-550 °C. And the shape-setting results were stabilization when the NiTi wires were constrain-treated at 500 and 550°C and ageing time longer than 10 minutes. The austenite finish temperatures increased with ageing time and increased first and then decreased with ageing temperature. The peak values were obtained at 400°C. When the heat treatments was performed at the same temperature, both the upper plateau stresses and lower plateau stresses decreased with the ageing time. Most of treated nitinol wires owned good recovery ability at body temperature and the permanent sets were less than 0.05% when short time ageing treatment was performed at 500°C.

  4. Post-cure heat treatments for composites: properties and fractography.

    PubMed

    Ferracane, J L; Condon, J R

    1992-09-01

    Two commercial and four experimental composites were subjected to post-cure heat treatments of 10 min and 3 h duration immediately after light-curing. Fracture toughness, flexural modulus, microhardness and degree of conversion (FTIR) were evaluated 24 h later. The results showed that post-cure heat treatments at 120 degrees C of short or long duration can be used to produce significant improvements in the degree of cure and the mechanical properties of dental composites used as inlays. A 10 min heat treatment was as effective as a 3 h treatment in enhancing properties and degree of cure. In addition, a 3 h heat treatment carried out 7 days after the initial light-curing was capable of improving properties and cure to almost the same extent as the immediate heat treatments. The improvement in properties, in conjunction with the fractography, indicate a toughening of the filled resin matrix and possibly an improved filler/matrix adhesion in the microfills. The changes appear to be predominantly the result of an increase in degree of cure.

  5. The Effect of a Two-Stage Heat-Treatment on the Microstructural and Mechanical Properties of a Maraging Steel

    PubMed Central

    Sun, Lin; Galvin, Deri Rhys; Hill, Paul; Rawson, Martin; Gilbert, Elliot Paul; Bhadeshia, Harshad; Perkins, Karen

    2017-01-01

    Maraging steels gain many of their beneficial properties from heat treatments which induce the precipitation of intermetallic compounds. We consider here a two-stage heat-treatment, first involving austenitisation, followed by quenching to produce martensite and then an ageing treatment at a lower temperature to precipitation harden the martensite of a maraging steel. It is shown that with a suitable choice of the initial austenitisation temperature, the steel can be heat treated to produce enhanced toughness, strength and creep resistance. A combination of small angle neutron scattering, scanning electron microscopy, electron back-scattered diffraction, and atom probe tomography were used to relate the microstructural changes to mechanical properties. It is shown that such a combination of characterisation methods is necessary to quantify this complex alloy, and relate these microstructural changes to mechanical properties. It is concluded that a higher austenitisation temperature leads to a greater volume fraction of smaller Laves phase precipitates formed during ageing, which increase the strength and creep resistance but reduces toughness. PMID:29168800

  6. Heat Treatment of Tools in Light Industry

    NASA Astrophysics Data System (ADS)

    Petukhov, V. A.

    2005-09-01

    Heat treatment processes for some tools (knitting needles, travelers for thimbles of spinning and doubling frames, thread-forming spinnerets) used for the production of cloths, hosiery, and other articles) in the knitting and textile industries are considered. Problems of the choice of steel and the kind and parameters of heat treatment are discussed in connection with the special features of tool design and operating conditions.

  7. Heat shock treatment improves Trametes versicolor laccase production.

    PubMed

    Wang, Feng; Guo, Chen; Wei, Tao; Zhang, Tian; Liu, Chun-Zhao

    2012-09-01

    An efficient heat shock strategy has been developed to improve laccase production in submerged Trametes versicolor cultures. The optimized heat shock strategy consists of subjecting T. versicolor mycelial pellets to three heat shock treatments at 45 °C for 45 min, starting at culture day 0, with a 24-h interval between treatments. Laccase production increased by more than 1.6-fold relative to the control in both flasks and a 5-L bioreactor because the expression of the laccase gene was enhanced by heat shock induction. The present work demonstrates that heat shock induction is a promising method because it both improves fungal laccase production and has a good potential in industrial application.

  8. Heat Treatment. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Filer, Herb; Broste, Dale

    This lesson was developed for a course in sludge treatment and disposal. The lesson describes the Porteous heat treatment method of sludge conditioning and compares that system to the Zimpro wet air oxidation process. The theory of heat treatment, system of components and functions, and concepts of operation are addressed in the lesson. The…

  9. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.300-10 Section 179.300-10 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be...

  10. Digestive evaluation of soy isolate protein as affected by heat treatment and soy oil inclusion in broilers at an early age.

    PubMed

    Zhang, Xianglun; Lu, Peng; Xue, Wenyue; Wu, Dawei; Wen, Chao; Zhou, Yanmin

    2016-10-01

    Soy protein isolate (SPI) mixed with soybean oil (SPIO) incubated at 100°C for 8 h was used to evaluate changes of solubility and digestibility of SPI in vitro and digestive function in broilers at an early age. Arbor Acres broilers were allocated to three groups with six replicates of 12 birds, receiving basal diet (CON), 8 h heat-oxidized SPI diet (HSPI) and 8 h heat-oxidized mixture of SPI and 2% soybean oil diet (HSPIO) for 21 days, respectively. Nitrogen solubility index (NSI) declined and soybean oil accelerated the decline of NSI during incubation (P < 0.05). Decreased in vitro digestibility of dry matter (DM) and crude protein (CP) were observed in SPIO (P < 0.05). HSPI and HSPIO decreased body weight gain, relative jejunum weight and pancreatic trypsin activity at day 21 (P < 0.05). HSPIO decreased anterior intestinal trypsin activity at day 14 and amylase and trypsin activity at day 21, pancreatic amylase activity at day 21 and apparent digestibility of DM, organic matter and CP of broilers from days 18 to 20 (P < 0.05). Heat treatment and soybean oil could induce oxidative modification of SPI, and oxidized SPI negatively affected growth and digestion of broilers. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  11. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    DOEpatents

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  12. Green Chemical Treatments for Heating and Cooling Systems

    DTIC Science & Technology

    2006-09-01

    Legionella pneumophila bacterium, which causes Legion- naire’s Disease. 2.3 Steam Line Treatment The third and final product in the Green Chemistry...ER D C/ CE R L TR -0 6 -2 9 Green Chemical Treatments for Heating and Cooling Systems Susan A. Drozdz and Vincent F. Hock September...CERL TR-06-29 September 2006 Green Chemical Treatments for Heating and Cooling Systems Susan A. Drozdz and Vincent F. Hock Construction

  13. Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.

    1998-01-01

    The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.

  14. Heat Treatments of ZnSe Starting Materials for Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Palosz, W.; Feth, S.; Lehoczky, S. L.

    1997-01-01

    The effect of different heat treatments on stoichiometry and residual gas pressure in ZnSe physical vapor transport system was investigated. The dependence of the amount and composition of the residual gas on various heat treatment procedures is reported. Heat treatment of ZnSe starting materials by baking under the condition of dynamic vacuum to adjust its stoichiometry was performed and the effectiveness of the treatment was confirmed by the measurements of the partial pressure of Se2, P(sub Se2), in equilibrium with the heat treated samples. Optimum heat treatment procedures on the ZnSe starting material for the physical vapor transport process are discussed and verified experimentally.

  15. In-Line Heat Treatment and Hot Rolling

    NASA Astrophysics Data System (ADS)

    Raudensky, M.; Horsky, J.; Hnizdil, M. P.; Pohanka, Kotrbacek M.

    2011-01-01

    In-line heat treatment of rolled materials is becoming increasingly used at hot rolling plants. The advantage of this method is the achievement of required material structure without the necessity of reheating. This paper describes a design procedure for cooling sections for the purpose of obtaining the required structure and mechanical properties. The procedure is typically used for the cooling of tubes, rails, long products and plates. Microstructure and nature of grains, grain size and composition determine the overall mechanical behaviour of steel. Heat treatment provides an efficient way to manipulate the properties of steel by controlling the cooling rate. The rate of cooling is defined by a heat transfer coefficient (HTC). Good controllability of HTC can be reached using either air-water or water nozzles. Thus, an on-line heat treatment with the assistance of spray nozzles enables a manufacturing process that can improve product performance by increasing steel strength, hardness and other desirable characteristics. These techniques also allow selective hardening, such that selective areas of a single object can be subjected to different treatments. An experimental stand designed for the study of cooling steel samples has been built at the Brno University of Technology. The stand comprises a movable trolley containing a test sample which moves under the spray at a given velocity. Sensors indicate the temperature history of the tested material. This experimental stand enables simulation of a variety of cooling regimes and evaluates the final structure of tested samples. The same experimental stand is also a tool for use in the design of cooling sections in order to find the required heat treatment procedure and final structure. Examples of the cooling of rails and tubes are given in the paper.

  16. Low temperature catalytic oxidative aging of LDPE films in response to heat excitation.

    PubMed

    Luo, Xuegang; Zhang, Sizhao; Ding, Feng; Lin, Xiaoyan

    2015-09-14

    The waste treatment of polymer materials is often conducted using the photocatalytic technique; however, complete decomposition is frequently inhibited owing to several shortcomings such as low quantum yield and the requirement of ultraviolet irradiation. Herein, we report a strategy to implement moderate management of polymeric films via thermocatalytic oxidative route, which is responsive to heat stimulus. Diverse LDPE-matrix films together with as-prepared thermal catalysts (TCs) or initiators were synthesized to further investigate heat-dependent-catalytic degradation effects. After artificial ageing, structural textures of the as-synthesized films could be chemically deteriorated, followed by a huge increase in surface roughness values, and appreciable loss was also found in the average molecular weights and mechanical parameters. We found an emergent phenomenon in which crystallization closely resembled two-dimensional (2D) growth, which displayed rod-like or disc-type crystal shapes. New chemical groups generated on film surfaces were monitored, and led to a higher limiting oxygen index because of strong catalytic oxidation, thus demonstrating the success of catalytic oxidative ageing by heat actuation. The underlying mechanism responsible for thermocatalytic oxidative pattern is also discussed. Accordingly, these findings may have important implications for better understanding the development of polymeric-matrix waste disposal.

  17. Field Heat Treatment Technician: Competency Profile. Apprenticeship and Industry Training. 20908.1

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    The graduate of the Field Heat Treatment Technician apprenticeship program is a certified journeyperson who will be able: (1) use heat treatment equipment to apply heat to materials in order to change a material's properties; (2) Use their knowledge of the properties of heat, industry codes and specifications to determine how heat treatment will…

  18. THE EFFECTS OF HYDROGEN, TRITIUM, AND HEAT TREATMENT ON THE DEFORMATION AND FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M.; Tosten, M.; Chapman, G.

    2013-09-06

    The deformation and fracture toughness properties of forged stainless steels pre-charged with tritium were compared to the deformation and fracture toughness properties of the same steels heat treated at 773 K or 873 K and precharged with hydrogen. Forged stainless steels pre-charged with tritium exhibit an aging effect: Fracture toughness values decrease with aging time after precharging because of the increase in concentration of helium from tritium decay. This study shows that forged stainless steels given a prior heat treatment and then pre-charged with hydrogen also exhibit an aging effect: Fracture toughness values decrease with increasing time at temperature. Amore » microstructural analysis showed that the fracture toughness reduction in the heat-treated steels was due to patches of recrystallized grains that form within the forged matrix during the heat treatment. The combination of hydrogen and the patches of recrystallized grains resulted in more deformation twinning. Heavy deformation twinning on multiple slip planes was typical for the hydrogen-charged samples; whereas, in the non-charged samples, less twinning was observed and was generally limited to one slip plane. Similar effects occur in tritium pre-charged steels, but the deformation twinning is brought on by the hardening associated with decay helium bubbles in the microstructure.« less

  19. Hardness and Second Phase Percentage of Ni-Ti-Hf Compounds After Heat Treatment at 700C

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2017-01-01

    The Vickers hardness and second phase precipitation of three ternary intermetallic Ni-Ti-Hf compounds containing either 1, 3 or 5 at.% Hf were compared to 60-Nitinol (55 at.% Ni - 45 at.% Ti). Heat treatment either at 700 C or with a subsequent aging step, hardened the 3 and 5 at.% Hf-containing ternaries to approximately 620 HV (56 HRC). Heat treatment increased the hardness of the 1 at.% Hf compound by more than 25 percent. Average hardness of the 3 and 5 at.% Hf ternaries, though higher than that of the binary Ni-Ti or the Ni-Ti-Hf compound containing 1 at.% Hf, appeared to be fairly insensitive to the different heat treatments. There was a drastic reduction of fatigue-enhancing second phase precipitates for the 5 at.% Hf ternaries compared to the other compounds. These results should guide materials selection for development of aerospace componentry.

  20. Microstructure Evolution and Mechanical Properties of 2219 Al Alloy During Aging Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Yi, Youping; Huang, Shiquan

    2017-04-01

    Hardness and tensile properties of 2219 Al alloys were tested at various temperature (150, 165, 175 °C) and subjected to T6 temper heat treatment to identify the peak aging time at various temperature. Microstructure evolution and precipitate behavior were analyzed with transmission electron microscope (TEM), differential scanning calorimetry (DSC) and x-ray diffraction (XRD). It is found that the peak aging time is 24 h at 150 °C and does not vary down to 165 °C. When the aging temperature rise to 175 °C, the peak aging time down to 12 h. Considering the strength and elongation, the optimum aging treatment is at 165 °C for 24 h after the solution treatment at 535 °C for 1.5 h. Compared with that of only water-quenched sample, after aged at 165 °C for 24 h, the tensile strength of the 2219 Al alloy increases from 324.5 to 411.8 MPa, yield strength from 168 to 310.8 MPa, respectively. The improvement in the mechanical performance is mainly attributed to the precipitation strengthening of the GP zones, θ″ and θ' phases.

  1. Characterization of polyparaphenylene subjected to different heat treatment temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.D.M.; Matthews, M.J.; Marucci, A.

    1998-07-01

    The authors investigated the structural and electronic properties of samples of polyparaphenylene (PPP), derived from two synthesis methods (the Kovacic and Yamamoto methods). These samples have been subjected to different heat-treatment temperatures (650 C {le} T{sub HT} {le} 2,000 C) and their properties are compared to the polymer prior to heat-treatment (T{sub HT} = 0 C). The photoluminescence (PL) spectra of heat-treated PPP based on the two synthesis methods reflects the differences in electronic structure of the starting polymers. The PL emission from the heat-treated Yamamoto polymer is quenched at much lower T{sub HT} than from the Kovacic material. However,more » Raman spectra taken of the material resulting from heat-treatment of the polymer (using both preparation methods) indicate the presence of phonon modes for PPP in samples at T{sub HT} up to 650 C.« less

  2. Efficacy of heat treatment for disinfestation of concrete grain silos

    USDA-ARS?s Scientific Manuscript database

    Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50°C for at least 6 h. Ventilated plastic containers with a capacity of...

  3. New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Baker, Andrew H.; Collins, Peter C.; Williams, James C.

    2017-07-01

    The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.

  4. Laboratory tests on heat treatment of ballast water using engine waste heat.

    PubMed

    Balaji, Rajoo; Lee Siang, Hing; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri Bin; Ismail, Nasrudin Bin; Ahmad, Badruzzaman Bin; Ismail, Mohd Arif Bin; Wan Nik, W B

    2018-05-01

    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.

  5. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for...

  6. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for...

  7. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for...

  8. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for...

  9. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Heat treatment of bends and formed components. 56.80-15... PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-15 Heat treatment of bends and formed... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for...

  10. 49 CFR 179.100-10 - Postweld heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment. 179.100-10 Section 179... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank Cars...

  11. Age of air and heating rates: comparison of ERA-40 with ERA-Interim

    NASA Astrophysics Data System (ADS)

    Legras, B.; Fueglistaler, S.

    2009-04-01

    The age of air in the stratosphere is often used as a test for the good representation of the Brewer-Dobson circulation by atmospheric models. This is a critical requirement to modelize the distribution of long-lived species in chemical models. It is often advocated that using heating rates for vertical transport in the stratosphere performs better that standard analysed velocities from weather centers. This work is based on an extensive comparison of the age of air using 5 years of heating rates from the ERA-40 reanalysis and from the new ERA-interim reanalysis built with 4D-Var assimilation. The ERA-40 exhibits both too young ages with analyzed velocities and too old ages with heating rates. The reason for too young ages is spurious transport associated with too noisy wind, as a result of 3D-Var assimilation. Heating rates provide a much less noisy meridional circulation and preserve transport barriers and polar vortex confinement. However, excessive cooling near 30 hPa in the tropics blocks the ascending motion within the tropical pipe over extended periods of time inducing very old ages. This effect is usually corrected by an empirical correction which can exceed in some regions the calculated heating rate in magnitude, with opposite sign. We relate this correction to the assimilation temperature increment that is required to compensate the bias of the model, notably the excessive negative heat transport due to the noisy vertical velocities and the lack of mass conservation in the isentropic frame. The new ERA-interim exhibits much reduced noise in the vertical velocity and is ten times less diffusive than the ERA-40 in the tropics. Age of air is then found to be slightly older than given by the observations. The biases in the heating rate have also been considerably reduced with respect to ERA-40 and the assimilation increment is now only a fraction of the heating rate. The age of air is in fairly good aggreement with the observations at 20 km and higher

  12. Effect of Heat Treatment on Chemical Segregation in CMSX-4 Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Szczotok, A.; Chmiela, B.

    2014-08-01

    Superalloys display a strong tendency toward chemical segregation during solidification. Therefore, it is of great importance to develop appropriate techniques for the melting and casting of superalloys. Elements partitioning between the γ and γ' phases in single crystal superalloys have been investigated by several authors using electron probe microanalysis (Hemmersmeier and Feller-Kniepmeier Mater Sci Eng A 248:87-97, 1998; Kearsey et al. Intermetallics 12:903-910, 2004; Kearsey et al. Superalloys 2004, pp 801-810, 2004; D'Souza et al. Mater Sci Eng A 490:258-265, 2008). We examined the effect of the particular stages of standard heat treatment (solution treatment and ageing) applied to CMSX-4 single crystal superalloy on chemical segregation that occurs between dendrites and interdendritic areas. Dendritic structures were observed using a scanning electron microscope. Analyses of the chemical composition were performed using energy dispersive x-ray spectroscopy. The obtained qualitative and quantitative results for the concentrations of elements enabled us to confirm the dendritic segregation in as-cast CMSX-4 superalloy. The concentrations of some refractory elements (tungsten, rhenium) were much greater in dendrites than in interdendritic areas. However, these differences in chemical composition gradually decreased during heat treatment. The results obtained in this study warrant further examination of the diffusion processes of elements during heat treatment of the investigated superalloy, and of the kinetics of diffusion.

  13. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    PubMed

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P < 0.01). Taken together, these data suggest that acute lower limb heating improves both macro- and microvascular dilator function in an age dependent manner. We demonstrate that lower limb heating acutely improves macro- and microvascular dilator function within the atherosclerotic prone vasculature of the leg in aged adults. These findings provide evidence for a potential therapeutic use of chronic lower limb heating to improve vascular health in primary aging and various disease conditions. Copyright © 2017 the American Physiological Society.

  14. 1. VIEW LOOKING SOUTHEAST INSIDE OF THE HEAT TREATMENT BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTHEAST INSIDE OF THE HEAT TREATMENT BUILDING AT BATCH FURNACES, QUENCHING PIT IN FOREGROUND. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. Effects of heat treatment on the mechanical properties of kenaf fiber

    NASA Astrophysics Data System (ADS)

    Carada, Paulo Teodoro D. L.; Fujii, Toru; Okubo, Kazuya

    2016-05-01

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  16. Heat Pre-Treatment of Beverages Wastewater on Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Uyub, S. Z.; Mohd, N. S.; Ibrahim, S.

    2017-06-01

    At present, a large variety of alternative fuels have been investigated and hydrogen gas is considered as the possible solution for the future due to its unique characteristics. Through dark fermentation process, several factors were found to have significant impact on the hydrogen production either through process enhancement or inhibition and degradation rates or influencing parameters. This work was initiated to investigate the optimum conditions for heat pre-treatment and initial pH for the dark fermentative process under mesophilic condition using a central composite design and response surface methodology (RSM). Different heat treatment conditions and pH were performed on the seed sludge collected from the anaerobic digester of beverage wastewater treatment plant. Heat treatment of inoculum was optimized at different exposure times (30, 90, 120 min), temperatures (80, 90 and 100°C) and pH (4.5, 5.5, 6.5) in order to maximize the biohydrogen production and methanogens activity inhibition. It was found that the optimum heat pre-treatment condition and pH occurred at 100°C for 50 min and the pH of 6.00. At this optimum condition the hydrogen yield was 63.0476 ml H2/mol glucose (H2 Yield) and the COD removal efficiency was 90.87%. In conclusion, it can be hypothesized that different heat treatment conditions led to differences in the initial microbial communities (hydrogen producing bacteria) which resulted in the different hydrogen yields.

  17. 7 CFR 58.236 - Pasteurization and heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-heat. The finished product shall not exceed 1.5 mg. undenatured whey protein nitrogen per gram of... “high-heat” and “low-heat” (1.51 to 5.99 mg.). (3) Low-heat. The finished product shall show not less... 7 Agriculture 3 2013-01-01 2013-01-01 false Pasteurization and heat treatment. 58.236 Section 58...

  18. 7 CFR 58.236 - Pasteurization and heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-heat. The finished product shall not exceed 1.5 mg. undenatured whey protein nitrogen per gram of... “high-heat” and “low-heat” (1.51 to 5.99 mg.). (3) Low-heat. The finished product shall show not less... 7 Agriculture 3 2012-01-01 2012-01-01 false Pasteurization and heat treatment. 58.236 Section 58...

  19. 7 CFR 58.236 - Pasteurization and heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-heat. The finished product shall not exceed 1.5 mg. undenatured whey protein nitrogen per gram of... “high-heat” and “low-heat” (1.51 to 5.99 mg.). (3) Low-heat. The finished product shall show not less... 7 Agriculture 3 2011-01-01 2011-01-01 false Pasteurization and heat treatment. 58.236 Section 58...

  20. 7 CFR 58.236 - Pasteurization and heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-heat. The finished product shall not exceed 1.5 mg. undenatured whey protein nitrogen per gram of... “high-heat” and “low-heat” (1.51 to 5.99 mg.). (3) Low-heat. The finished product shall show not less... 7 Agriculture 3 2014-01-01 2014-01-01 false Pasteurization and heat treatment. 58.236 Section 58...

  1. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    NASA Astrophysics Data System (ADS)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-11-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  2. Spin-rolling, welding, and heat treatment of aluminium 2219 for Ariane 5 GAM high pressure vessel liners

    NASA Astrophysics Data System (ADS)

    Radtke, W.

    1992-10-01

    Cylindrical liners made of Al 2219 may be spinrolled if both recrystallization and metastable precipitates can be avoided during forging or preparatory heat treatment. So welding is to be limited to circumferential joints. Pore-free welds are attainable immediately after hydroxide layer removal by diamond cutting without grease application. The EB vacuum is favorable to porosity suppression. A complete heat treatment of the liner incorporating solutionizing, water quenching and ageing leads to 100 percent weld efficiency. Pressure stabilization avoids buckling. Subsequent carbon fiber winding, curing and plastic prestressing of the liner results in an efficient high pressure vessel for hydrogen service.

  3. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocci, Marialaura, E-mail: m.tocci@unibs.it

    In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affectedmore » by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.« less

  4. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  5. Effect of Heat Treatment on the Microstructure and Wear Properties of Al-Zn-Mg-Cu/In-Situ Al-9Si-SiCp/Pure Al Composite by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Yu, Byung Chul; Bae, Ki-Chang; Jung, Je Ki; Kim, Yong-Hwan; Park, Yong Ho

    2018-05-01

    This study examined the effects of heat treatment on the microstructure and wear properties of Al-Zn-Mg-Cu/in-situ Al-9Si-SiCp/pure Al composites. Pure Al powder was used to increase densification but it resulted in heterogeneous precipitation as well as differences in hardness among the grains. Heat treatment was conducted to solve this problem. The heat treatment process consisted of three stages: solution treatment, quenching, and aging treatment. After the solution treatment, the main dissolved phases were η'(Mg4Zn7), η(MgZn2), and Al2Cu phase. An aging treatment was conducted over the temperature range, 100-240 °C, for various times. The GP zone and η'(Mg4Zn7) phase precipitated at a low aging temperature of 100-160 °C, whereas the η(MgZn2) phase precipitated at a high aging temperature of 200-240 °C. The hardness of the sample aged at 100-160 °C was higher than that aged at 200-240 °C. The wear test was conducted under various linear speeds with a load of 100 N. The aged composite showed a lower wear rate than that of the as-sintered composite under all conditions. As the linear speed was increased to 1.0 m/s, the predominant wear behavior changed from abrasive to adhesive wear in all composites.

  6. Effects of heat treatment on the mechanical properties of kenaf fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carada, Paulo Teodoro D. L.; Fujii, Toru; Okubo, Kazuya

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. Themore » aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.« less

  7. Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice.

    PubMed

    Leizerson, Shirly; Shimoni, Eyal

    2005-05-04

    The scope of this study is the effect of ohmic heating thermal treatment on liquid fruit juice made of oranges. Effects of ohmic heating on the quality of orange juice were examined and compared to those of heat pasteurization at 90 degrees C for 50 s. Orange juice was treated at temperatures of 90, 120, and 150 degrees C for 1.13, 0.85, and 0.68 s in an ohmic heating system. Microbial counts showed complete inactivation of bacteria, yeast, and mold during ohmic and conventional treatments. The ohmic heating treatment reduced pectin esterase activity by 98%. The reduction in vitamin C was 15%. Ohmic-heated orange juice maintained higher amounts of the five representative flavor compounds than did heat-pasteurized juice. Sensory evaluation tests showed no difference between fresh and ohmic-heated orange juice. Thus, high-temperature ohmic-heating treatment can be effectively used to pasteurize fresh orange juice with minimal sensory deterioration.

  8. Age-velocity dispersion relations and heating histories in disc galaxies

    NASA Astrophysics Data System (ADS)

    Aumer, Michael; Binney, James; Schönrich, Ralph

    2016-10-01

    We analyse the heating of stellar discs by non-axisymmetric structures and giant molecular clouds (GMCs) in N-body simulations of growing disc galaxies. The analysis resolves long-standing discrepancies between models and data by demonstrating the importance of distinguishing between measured age-velocity dispersion relations (AVRs) and the heating histories of the stars that make up the AVR. We fit both AVRs and heating histories with formulae ∝tβ and determine the exponents βR and βz derived from in-plane and vertical AVRs and tilde{β }_R and tilde{β }_z from heating histories. Values of βz are in almost all simulations larger than values of tilde{β }_z, whereas values of βR are similar to or mildly larger than values of tilde{β }_R. Moreover, values of βz (tilde{β }_z) are generally larger than values of βR (tilde{β }_R). The dominant cause of these relations is the decline over the life of the disc in importance of GMCs as heating agents relative to spiral structure and the bar. We examine how age errors and biases in solar neighbourhood surveys influence the measured AVR: they tend to decrease β values by smearing out ages and thus measured dispersions. We compare AVRs and velocity ellipsoid shapes σz/σR from simulations to solar neighbourhood data. We conclude that for the expected disc mass and dark halo structure, combined GMC and spiral/bar heating can explain the AVR of the Galactic thin disc. Strong departures of the disc mass or the dark halo structure from expectation spoil fits to the data.

  9. Maraging superalloys and heat treatment processes

    DOEpatents

    Korenko, Michael K.; Gelles, David S.; Thomas, Larry E.

    1986-01-01

    Described herein are nickel-chromium-iron maraging, gamma prime strengthened superalloys containing about 18 to 25 weight percent nickel, about 4 to 8 weight percent chromium, gamma prime forming elements such as aluminum and/or titanium, and a solid solution strengthening element, such as molybdenum. After heat treatment, which includes at least one ausaging treatment and at least one maraging treatment, a microstructure containing gamma prime phase and decomposed Fe-Ni-Cr type martensite is produced.

  10. Very high-vacuum heat treatment facility

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Moody, M. V.; Richard, J.-P.

    1987-01-01

    A vacuum heat treatment facility, with hot zone dimensions of 12 x 19 x 19 cm, has been designed and constructed at a cost substantially below that of a commercial unit. The design incorporates efficient water cooling and a resistive heating element. A vacuum pressure of 1.5 x 10 to the -8th torr at room temperature has been obtained after baking. The temperature limit is approximately 1900 C. This limit results from the choice of niobium as the hot zone material.

  11. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly thereto must be postweld heat treated as a unit at the proper temperature except as indicated below. Tanks...

  12. 46 CFR 54.25-7 - Requirement for postweld heat treatment (modifies UCS-56).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Requirement for postweld heat treatment (modifies UCS-56... for postweld heat treatment (modifies UCS-56). (a) Postweld heat treatment is required for all carbon... the storage or transportation of liquefied compressed gases shall be postweld heat treated regardless...

  13. 46 CFR 54.25-7 - Requirement for postweld heat treatment (modifies UCS-56).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Requirement for postweld heat treatment (modifies UCS-56... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-7 Requirement for postweld heat treatment (modifies UCS-56). (a) Postweld heat treatment is required for all carbon...

  14. 46 CFR 54.25-7 - Requirement for postweld heat treatment (modifies UCS-56).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Requirement for postweld heat treatment (modifies UCS-56... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-7 Requirement for postweld heat treatment (modifies UCS-56). (a) Postweld heat treatment is required for all carbon...

  15. 46 CFR 54.25-7 - Requirement for postweld heat treatment (modifies UCS-56).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Requirement for postweld heat treatment (modifies UCS-56... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-7 Requirement for postweld heat treatment (modifies UCS-56). (a) Postweld heat treatment is required for all carbon...

  16. 46 CFR 54.25-7 - Requirement for postweld heat treatment (modifies UCS-56).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Requirement for postweld heat treatment (modifies UCS-56... ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-7 Requirement for postweld heat treatment (modifies UCS-56). (a) Postweld heat treatment is required for all carbon...

  17. Optimization of heat treatment parameters for additive manufacturing and gravity casting AlSi10Mg alloy

    NASA Astrophysics Data System (ADS)

    Girelli, L.; Tocci, M.; Montesano, L.; Gelfi, M.; Pola, A.

    2017-11-01

    Additive manufacturing of metals is a production process developed in the last few years to realize net shape components with complex geometry and high performance. AlSi10Mg is one of the most widely used aluminium alloys, both in this field and in conventional foundry processes, for its significant mechanical properties combined with good corrosion resistance. In this paper the effect of heat treatment on AlSi10Mg alloy was investigated. Solution and ageing treatments were carried out with different temperatures and times on samples obtained by direct metal laser sintering and gravity casting in order to compare their performance. Microstructural analyses and hardness tests were performed to investigate the effectiveness of the heat treatment. The results were correlated to the sample microstructure and porosity, analysed by means of optical microscopy and density measurements. It was found that, in the additive manufactured samples, the heat treatment can reduce significantly the performance of the alloy also because of the increase of porosity due to entrapped gas during the deposition technique and that the higher the solution temperature the higher the increase of such defects. A so remarkable effect was not found in the conventional cast alloy.

  18. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  19. The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    This paper describes an extension of NASA's AST and IDPAT Programs which sought to predict the effect of stabilization heat treatments on residual stress and subsequent machining distortions in the advanced disk alloy, ME-209. Simple "pancake" forgings of ME-209 were produced and given four heat treats: 2075F(SUBSOLVUS)/OIL QUENCH/NO AGE; 2075F/OIL QUENCH/1400F@8HR;2075F/OIL QUENCH/1550F@3HR/l400F@8HR; and 2160F(SUPERSOLVUS)/OIL QUENCH/1550F@3HR/ 1400F@8HR. The forgings were then measured to obtain surface profiles in the heat treated condition. A simple machining plan consisting of face cuts from the top surface followed by measurements of the surface profile opposite the cut were made. This data provided warpage maps which were compared with analytical results. The analysis followed the IDPAT methodology and utilized a 2-D axisymmetric, viscoplastic FEA code. The analytical results accurately tracked the experimental data for each of the four heat treatments. The 1550F stabilization heat treatment was found to significantly reduce residual stresses and subsequent machining distortions for fine grain (subsolvus) ME209, while coarse grain (supersolvus) ME209 would require additional time or higher stabilization temperatures to attain the same degree of stress relief.

  20. Hormetic protection of Drosophila melanogaster middle-aged male flies from heat stress by mildly stressing them at young age

    NASA Astrophysics Data System (ADS)

    Bourg, Éric

    2005-06-01

    Previous studies have shown that exposing flies to hypergravity (3g or 5g) for the first 2 weeks of adult life slightly increases longevity of male flies and survival time at 37°C for both sexes, and delays an age-linked behavioral change. The present experiment tested whether the hypergravity could also protect flies from four successive deleterious non-lethal heat shocks at 4 and 5 weeks of age. Males that lived in hypergravity for the first 2 weeks of adult life lived slightly longer (ca. +15% or 1.2 day) after heat shocks (30 min or 45 min at 37°C) than flies that always lived at 1g, but this positive effect of hypergravity was not observed in females. Therefore, hypergravity exposure at young age can help the male flies recovering from a heat shock at older ages.

  1. Tool Steel Heat Treatment Optimization Using Neural Network Modeling

    NASA Astrophysics Data System (ADS)

    Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz

    2016-11-01

    Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.

  2. Charpy impact toughness of martensitic steels irradiated in FFTF: Effect of heat treatment

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Alexander, D. J.

    Charpy tests were made on plates of 9Cr-1MoVNb and 12Cr-1MoVW steels given four different normalizing-and-tempering treatments. One-third-size Charpy specimens from each steel were irradiated to 7.4 - 8 (times) 10(sup 26) n/m(sup 2) (about 34 - 37 dpa) at 420 C in the Materials Open Test Assembly of the Fast Flux Test Facility. Specimens were also thermally aged to 20000 h at 400 C to determine the effect of aging during irradiation. Previous work on these steels irradiated to 4 - 5 dpa at 365 C in MOTA were reexamined in light of the new results. The tests indicated that prior austenite grain size, which was varied by different normalizing treatments, had an effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. Conclusions are presented on how heat treatment can be used to optimize properties.

  3. 9 CFR 590.575 - Heat treatment of dried whites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and at such temperatures as will result in salmonella negative product. (a) The product to be heat... less than 7 days and until it is salmonella negative. (2) Pan dried albumen shall be heated throughout... days and until it is salmonella negative. (3) Methods of heat treatment of spray dried or pan dried...

  4. 9 CFR 590.575 - Heat treatment of dried whites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and at such temperatures as will result in salmonella negative product. (a) The product to be heat... less than 7 days and until it is salmonella negative. (2) Pan dried albumen shall be heated throughout... days and until it is salmonella negative. (3) Methods of heat treatment of spray dried or pan dried...

  5. Cyclic Strain Amplitude and Heat Treatment Effects on the High Damping Behavior of INCRAMUTE Alloy under Random Vibration Loading in the 50-1000 Hz Frequency Range

    DTIC Science & Technology

    1986-09-01

    for each mode and heat treament condition are plotted versus the average peak strain, £_) ea ^. in Figures 4.10, 4.11, and 4.12. For Mode 1 resonance...specimen reversed its relative position to the other heat treament conditions (i.e., it showed the lowest damping levels in Modes 2 and 3). However, as...LATTICE PARAMETERS FOR EACH HEAT TREATMENT CONDITION OF INCRAMUTE Heat Treament Lattice Parameter (Angstrons) AQ 3.7484 1 Hour Age 3.737864 2 Hour Age

  6. Estimating risks of heat strain by age and sex: a population-level simulation model.

    PubMed

    Glass, Kathryn; Tait, Peter W; Hanna, Elizabeth G; Dear, Keith

    2015-05-18

    Individuals living in hot climates face health risks from hyperthermia due to excessive heat. Heat strain is influenced by weather exposure and by individual characteristics such as age, sex, body size, and occupation. To explore the population-level drivers of heat strain, we developed a simulation model that scales up individual risks of heat storage (estimated using Myrup and Morgan's man model "MANMO") to a large population. Using Australian weather data, we identify high-risk weather conditions together with individual characteristics that increase the risk of heat stress under these conditions. The model identifies elevated risks in children and the elderly, with females aged 75 and older those most likely to experience heat strain. Risk of heat strain in males does not increase as rapidly with age, but is greatest on hot days with high solar radiation. Although cloudy days are less dangerous for the wider population, older women still have an elevated risk of heat strain on hot cloudy days or when indoors during high temperatures. Simulation models provide a valuable method for exploring population level risks of heat strain, and a tool for evaluating public health and other government policy interventions.

  7. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    PubMed Central

    2011-01-01

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877

  8. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.

    PubMed

    Ramesh, Gopalan; Prabhu, Narayan Kotekar

    2011-04-14

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  9. Age effects on pain thresholds, temporal summation and spatial summation of heat and pressure pain.

    PubMed

    Lautenbacher, Stefan; Kunz, Miriam; Strate, Peter; Nielsen, Jesper; Arendt-Nielsen, Lars

    2005-06-01

    Experimental data on age-related changes in pain perception have so far been contradictory. It has appeared that the type of pain induction method is critical in this context, with sensitivity to heat pain being decreased whereas sensitivity to pressure pain may be even enhanced in the elderly. Furthermore, it has been shown that temporal summation of heat pain is more pronounced in the elderly but it has remained unclear whether age differences in temporal summation are also evident when using other pain induction methods. No studies on age-related changes in spatial summation of pain have so far been conducted. The aim of the present study was to provide a comprehensive survey on age-related changes in pain perception, i.e. in somatosensory thresholds (warmth, cold, vibration), pain thresholds (heat, pressure) and spatial and temporal summation of heat and pressure pain. We investigated 20 young (mean age 27.1 years) and 20 elderly (mean age 71.6 years) subjects. Our results confirmed and extended previous findings by showing that somatosensory thresholds for non-noxious stimuli increase with age whereas pressure pain thresholds decrease and heat pain thresholds show no age-related changes. Apart from an enhanced temporal summation of heat pain, pain summation was not found to be critically affected by age. The results of the present study provide evidence for stimulus-specific changes in pain perception in the elderly, with deep tissue (muscle) nociception being affected differently by age than superficial tissue (skin) nociception. Summation mechanisms contribute only moderately to age changes in pain perception.

  10. Gear distortion analysis due to heat treatment process

    NASA Astrophysics Data System (ADS)

    Guterres, Natalino F. D. S.; Rusnaldy, Widodo, Achmad

    2017-01-01

    One way to extend the life time of the gear is minimizing the distortion during the manufacturing process. One of the most important processes in manufacturing to produce gears is heat treatment process. The purpose of this study is to analyze the distortion of the gear after heat treatment process. The material of gear is AISI 1045, and it was designed with the module (m) 1.75, and a number of teeth (z) 29. Gear was heat-treated in the furnace at a temperature of 800°C, holding time of 30 minutes, and then quenched in water. Furthermore, surface hardening process was also performed on gear teeth at a temperature of 820°C and holding time of 35 seconds and the similar procedure of analysis was conducted. The hardness of gear after heat treatment average 63.2 HRC and the teeth surface hardness after gear to induction hardening was 64.9 HRC at the case depth 1 mm. The microstructure of tested gear are martensitic and pearlite. The highest distortion on tooth thickness to upper than 0.063 can cause high precision at the tooth contact is not appropriate. Besides the shrinkage of tooth thickness will also affect to contact angle because the size of gear tolerance was not standardized.

  11. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    NASA Astrophysics Data System (ADS)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  12. Efficacy of heat treatment for disinfestation of concrete grain silos.

    PubMed

    Opit, G P; Arthur, F H; Bonjour, E L; Jones, C L; Phillips, T W

    2011-08-01

    Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50 degrees C for at least 6 h. Ventilated plastic containers with a capacity of 100 g of wheat, Triticum aestivum L., held Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Polyvinyl chloride containers with a capacity of 300 g of wheat held adults of Liposcelis corrodens (Heymons) (Psocoptera: Liposcelididae) and Liposcelis decolor (Pearman), which were contained in 35-mm Petri dishes within the grain. Containers were fastened to a rope suspended from the top of the silo at depths of 0 m (just under the top manhole), 10 m, 20 m, and 30 m (silo floor). When the highest temperature achieved was approximately 50 degrees C for 6 h, parental mortality ofR. dominica and T. castaneum, and both psocid species was 98-100%. Progeny production of R. dominica occurred when there was parental survival, but in general R. dominica seemed less impacted by the heat treatment than T. castaneum. There was 100% mortality of L. corrodens at all depths in the heat treatments but only 92.5% mortality for L. decolor, with most survivors located in the bioassay containers at the top of the silo. Results show wheat kernels may have an insulating effect and heat treatment might be more effective when used in conjunction with sanitation and cleaning procedures.

  13. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Heat treatment (modifies PW-10). 52.05-15 Section 52.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels and...

  14. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Heat treatment (modifies PW-10). 52.05-15 Section 52.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels and...

  15. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Heat treatment (modifies PW-10). 52.05-15 Section 52.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels and...

  16. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Heat treatment (modifies PW-10). 52.05-15 Section 52.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels and...

  17. 46 CFR 52.05-15 - Heat treatment (modifies PW-10).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Heat treatment (modifies PW-10). 52.05-15 Section 52.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding § 52.05-15 Heat treatment (modifies PW-10). (a) Vessels and...

  18. Effect of Melt Superheating Treatment on the Latent Heat Release of Sn

    NASA Astrophysics Data System (ADS)

    Xu, Junfeng; Dang, Bo; Fan, Dandan; Jian, Zengyun

    2017-03-01

    The accuracy of the baseline evaluation is of importance for calculating the transition enthalpy such as the latent heat of the crystallization. This study demonstrates the modified method of the equivalent non-latent heat baseline, by which the transition enthalpy can be measured accurately according to the transition peak in differential scanning calorimetric curve. With this method, the effect of melt superheating treatment time on the latent heat release upon the solidification of tin is investigated. The results show that the latent heat increases by increasing the treatment time, and is close to a constant when the treatment time is large enough, indicating the homogeneous system. And then, a simple model is established to describe the changes of the crystallization latent heat with the treatment time, which is confirmed by the experimental data of Sn.

  19. Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress.

    PubMed

    Notley, Sean R; Poirier, Martin P; Hardcastle, Stephen G; Flouris, Andreas D; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2017-11-01

    This study was designed to determine whether age-related impairments in whole-body heat loss, which are known to exist in dry heat, also occur in humid heat in women. To evaluate this possibility, 10 young (25 ± 4 yr) and 10 older (51 ± 7 yr) women matched for body surface area (young, 1.69 ± 0.11; older, 1.76 ± 0.14 m, P = 0.21) and peak oxygen consumption (V˙O2peak) (young, 38.6 ± 4.6; older, 34.8 ± 6.6 mL·kg·min, P = 0.15) performed four 15-min bouts of cycling at a fixed metabolic heat production rate (300 W; equivalent to ~45% V˙O2peak), each separated by a 15-min recovery, in dry (35°C, 20% relative humidity) and humid heat (35°C, 60% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and loss. Total heat loss was lower in humid conditions compared with dry conditions during all exercise bouts in both groups (all P < 0.05), resulting in 49% and 39% greater body heat storage in young and older women, respectively (both P < 0.01). Total heat loss was also lower in older women compared with young women during exercise bouts 1, 2 and 3 in dry heat (all P < 0.05) and bouts 1 and 2 in humid heat (both P < 0.05). Consequently, body heat storage was 29% and 16% greater in older women compared with young women in dry and humid conditions, respectively (both P < 0.05). Increasing ambient humidity reduces heat loss capacity in young and older women. However, older women display impaired heat loss relative to young women in both dry and humid heat, and may therefore be at greater risk of heat-related injury during light-to-moderate activity.

  20. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots.

    PubMed

    Kok, H Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D; Stalpers, Lukas J A; Crezee, Johannes

    2017-11-15

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. Online application of hyperthermia treatment planning is

  1. Evaluating the heat pump alternative for heating enclosed wastewater treatment facilities in cold regions

    NASA Astrophysics Data System (ADS)

    Martel, C. J.; Phetteplace, G. E.

    1982-05-01

    This report presents a five-step procedure for evaluating the technical and economic feasibility of using heat pumps to recover heat from treatment plant effluent. The procedure is meant to be used at the facility planning level by engineers who are unfamiliar with this technology. An example of the use of the procedure and general design information are provided. Also, the report reviews the operational experience with heat pumps at wastewater plants located in Fairbanks, Alaska, Madison, Wisconsin, and Wilton, Maine.

  2. Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment.

    PubMed

    Chen, J; Tong, W; Cao, Y; Feng, J; Zhang, X

    1997-01-01

    The purpose of this study was to evaluate the effect of atmosphere on the phase transformation in hydroxyapatite (HA) coatings during heat treatment by varying the atmosphere in the furnace pipe. Heat treatment always increased the crystallinity of HA coatings regardless of the kind of atmosphere. Water molecules in atmosphere further promoted HA recrystallization during heat treatment. In a dry atmosphere, tricalcium phosphate (TCP) and tetracalcium phosphate (TTCP) were more stable than HA, so heat treatment could not convert them into HA. However, in a humid atmosphere, heat treatment would transform TCP and TTCP into HA by hydrolytic reactions.

  3. Effect of heat treatment and ball milling on MnBi magnetic materials

    NASA Astrophysics Data System (ADS)

    Li, Chunhong; Guo, Donglin; Shao, Bin; Li, Kejian; Li, Bingbing; Chen, Dengming

    2018-01-01

    MnBi alloy was prepared using arc melting, and was then heated at various temperatures and times. The alloy was ball milled for various lengths of time, following a heat treatment at 573 K for 20 h. The effects of the heat treatment and the ball milling on the magnetic performances of the material were investigated by analyzing the phases, the particle sizes, and the grain sizes. Results showed that the mass percentage of the LTP MnBi phase increased as the heat treatment time increased. The mass percentage initially increased and then decreased as the heat treatment temperature increased. The saturation magnetization increased quickly as the mass percentage of the LTP MnBi increased following the heat treatment. The value rose as high as 71.39 emu g-1 at 573 K for 30 h. The magnetization decreased, due to the decomposition of MnBi phases after ball milling. The coercivity increased simultaneously, due to the grain refinement, the presence of stresses, defects, and an amorphous phase. This value was improved from 0.09 to 14.65 KOe after ball milling for 24 h.

  4. Early Evidence for the Extensive Heat Treatment of Silcrete in the Howiesons Poort at Klipdrift Shelter (Layer PBD, 65 ka), South Africa

    PubMed Central

    Douze, Katja; Wurz, Sarah; Bellot-Gurlet, Ludovic; Conard, Nicholas J.; Nickel, Klaus G.; van Niekerk, Karen L.; Henshilwood, Christopher S.

    2016-01-01

    Heating stone to enhance its flaking qualities is among the multiple innovative adaptations introduced by early modern human groups in southern Africa, in particular during the Middle Stone Age Still Bay and Howiesons Poort traditions. Comparatively little is known about the role and impact of this technology on early modern human behaviors and cultural expressions, due, in part, to the lack of comprehensive studies of archaeological assemblages documenting the heat treatment of stone. We address this issue through an analysis of the procedure used for heating and a technological analysis of a lithic assemblage recovered from one Howiesons Poort assemblage at Klipdrift Shelter (southern Cape, South Africa). The resulting data show extensive silcrete heat treatment, which adds a new dimension to our understanding of fire-related behaviors during the Howiesons Poort, highlighting the important role played by a heat treatment stage in the production of silcrete blades. These results are made possible by our new analytical procedure that relies on the analysis of all silcrete artifacts. It provides direct evidence of a controlled use of fire which took place during an early stage of core exploitation, thereby impacting on all subsequent stages of the lithic chaîne opératoire, which, to date, has no known equivalent in the Middle Stone Age or Middle Paleolithic record outside of southern Africa. PMID:27760210

  5. A Study of Ballast Water Treatment Using Engine Waste Heat

    NASA Astrophysics Data System (ADS)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  6. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment.

    PubMed

    Qin, Yang; Liu, Chengzhen; Jiang, Suisui; Cao, Jinmiao; Xiong, Liu; Sun, Qingjie

    2016-01-01

    Glutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p < 0.05). Meanwhile, dry heating remarkably increased the apparent viscosities of both GRF and GRS. Importantly, compared with GRS samples, the storage modulus (G') and loss modulus (G") values of modified GRF increased more greatly and the tanδ values decreased more remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of GRF is a more effective method than that of GRS, which omits the complex and tedious process for purifying GRS, and thereby has more practical applications in the food industry.

  7. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment

    PubMed Central

    Qin, Yang; Liu, Chengzhen; Jiang, Suisui; Cao, Jinmiao; Xiong, Liu; Sun, Qingjie

    2016-01-01

    Glutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p < 0.05). Meanwhile, dry heating remarkably increased the apparent viscosities of both GRF and GRS. Importantly, compared with GRS samples, the storage modulus (G') and loss modulus (G") values of modified GRF increased more greatly and the tanδ values decreased more remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of GRF is a more effective method than that of GRS, which omits the complex and tedious process for purifying GRS, and thereby has more practical applications in the food industry. PMID:27537844

  8. Gas injection to inhibit migration during an in situ heat treatment process

    DOEpatents

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  9. Simulations of Precipitate Microstructure Evolution during Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul

    Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.

  10. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    NASA Astrophysics Data System (ADS)

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-01

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  11. Experimental and Modelling Study of the Denaturation of Milk Protein by Heat Treatment

    PubMed Central

    Qian, Fang; Sun, Jiayue; Cao, Di; Tuo, Yanfeng; Jiang, Shujuan; Mu, Guangqing

    2017-01-01

    Heat treatment of milk aims to inhibit the growth of microbes, extend the shelf-life of products and improve the quality of the products. Heat treatment also leads to denaturation of whey protein and the formation of whey protein-casein polymer, which has negative effects on milk product. Hence the milk heat treatment conditions should be controlled in milk processing. In this study, the denaturation degree of whey protein and the combination degree of whey protein and casein when undergoing heat treatment were also determined by using the Native-PAGE and SDS-PAGE analysis. The results showed that the denaturation degree of whey protein and the combination degree of whey protein with casein extended with the increase of the heat-treated temperature and time. The effects of the heat-treated temperature and heat-treated time on the denaturation degree of whey protein and on the combination degree of whey protein and casein were well described using the quadratic regression equation. The analysis strategy used in this study reveals an intuitive and effective measure of the denaturation degree of whey protein, and the changes of milk protein under different heat treatment conditions efficiently and accurately in the dairy industry. It can be of great significance for dairy product proteins following processing treatments applied for dairy product manufacturing. PMID:28316470

  12. New Trends for the Evaluation of Heat Treatments of Milk

    PubMed Central

    Di Costanzo, Maria Gabriella; Mattera, Maria

    2017-01-01

    Milk is generally very rich in nutrients and this may lead it to be an ideal growth environment for many microorganisms, including pathogens, so effective measurements aiming to ensure total microbiological safety of milk and minimize the risk to human health are needed. Milk heat treatments are the most common practices carried out to inhibit the microbial growth; therefore it is necessary to have analytical procedures that are more and more up-to-date and capable of detecting the effectiveness of the heat treatments. Most of the reference and official methods to assess heat treatment in milk are based on the evaluation of the modifications of some milk components following the thermal process, such as the determination of enzyme activities (alkaline phosphatase and lactoperoxidase), whey proteins, Maillard reaction compounds (generally furosine), and lactulose. Besides the most common techniques (liquid and gas chromatography, capillary electrophoresis, or spectroscopy) used for the detection of single thermal indicators, new approaches, such as chemometric studies or more recent techniques, including size-exclusion chromatography with online electrospray mass spectrometry or stable isotope ratio mass spectrometry, are discussed in this review in order to evaluate heat treatment in milk. PMID:29230345

  13. Integrated modeling and heat treatment simulation of austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Hepp, E.; Hurevich, V.; Schäfer, W.

    2012-07-01

    The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.

  14. Effect of T6 heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg alloys

    NASA Astrophysics Data System (ADS)

    Patel, Dhruv; Davda, Chintan; Solanki, P. S.; Keshvani, M. J.

    2016-05-01

    In this communication, it is aimed to optimize the conditions for T6 heat treatment of permanent die cast Al-Si-Cu-Mg alloys. Various solutionizing temperatures, aging treatments and soaking times were used to improve / modify the mechanical properties of presently studied alloys. Formation mechanism of the particles was understood by carrying out optical microscopy and energy dispersive X-ray (EDX) spectroscopy measurements. Spherical particles of alloys were studied for their microstructural properties using scanning electron microscopy (SEM). Microhardness test was performed to investigate their mechanical properties. Dependence of cluster formation and microhardness of the alloys on the adequate solutionizing temperature, aging treatment and soaking time has been discussed in detail.

  15. Impact Toughness and Heat Treatment for Cast Aluminum

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A (Inventor)

    2016-01-01

    A method for transforming a cast component made of modified aluminum alloy by increasing the impact toughness coefficient using minimal heat and energy. The aluminum alloy is modified to contain 0.55%-0.60% magnesium, 0.10%-0.15% titanium or zirconium, less than 0.07% iron, a silicon-tomagnesium product ratio of 4.0, and less than 0.15% total impurities. The shortened heat treatment requires an initial heating at 1,000deg F. for up to I hour followed by a water quench and a second heating at 350deg F. to 390deg F. for up to I hour. An optional short bake paint cycle or powder coating process further increase.

  16. Effect of heat treatment On Microstructure of steel AISI 01 Tools

    NASA Astrophysics Data System (ADS)

    Dyanasari Sebayang, Melya; Yudo, Sesmaro Max; Silitonga, Charlie

    2018-03-01

    This study discusses the influence of quenching, normalizing, and annealing to changes in hardness, tensile, and microstructure of materials tool steel AISI 01 after the material undergo heat treatment process. This heat treatment process includes an initial warming of 600° C and a 5-minute detention time, followed by heating to an austenisation temperature of 850°C. After that a different cooling process, including annealing process, normalizing and quenching oil SAE 40. Tests performed include tensile, hard, and microstructure with shooting using SEM (Scanning Electron Microscope). This is done to see the effect of different heat treatment and cooling process. The result of this research is difference of tensile test value, hard, and micro structure from influence of difference of each process. The quenching process obtains the highest tensile and hard values followed by the normalizing process, annealing, and the lowest is in the starting material, this is because the initial material does not undergo heat treatment process. The resulting microstructure is pearlit and cementite, the difference seen from the shape and size of the grains. The larger the grain size, the greater the hardness.

  17. Heat treatment condition of EN AW-7075 influencing the anodic oxidation process and coating properties

    NASA Astrophysics Data System (ADS)

    Morgenstern, R.; Scharf, I.; Lampke, T.

    2018-06-01

    The age-hardenable aluminium alloy EN AW-7075 exhibits outstanding specific mechanical properties and therefore offers a high potential for lightweight construction. Anodising in aqueous oxalic acid solutions is suitable to produce a protective oxide ceramic conversion layer on this alloy. This study examines the influence of the precipitation state of the substrate alloy on microstructure and properties of anodic oxide layers. Therefore, EN AW-7075 sheets in the heat treatment conditions T4, T6 and T73 were anodized in 0.8 M oxalic acid solution at constant voltage. The current efficiency was determined on the basis of the electrical charge quantity, coating thickness and coating mass. Instrumented indentation tests were applied in order to evaluate the coating hardness. The microstructure of the anodic oxide layer was illustrated using field emission electron microscopy. It was shown that the current efficiency strongly depends on the heat treatment condition.

  18. Heat treatment as a universal technical solution for silcrete use? A comparison between silcrete from the Western Cape (South Africa) and the Kalahari (Botswana).

    PubMed

    Schmidt, Patrick; Nash, David J; Coulson, Sheila; Göden, Matthias B; Awcock, Graeme J

    2017-01-01

    Heat treatment was one of the first transformative technologies in the southern African Middle Stone Age (MSA), with many studies in the Cape coastal zone of South Africa identifying it as an essential step in the preparation of silcrete prior to its use in stone tool manufacture. To date, however, no studies have investigated whether heat treatment is necessary for all silcrete types, and how geographically widespread heat treatment was in the subcontinent. The aim of this study is to investigate experimentally whether heat treatment continued further north into the Kalahari Desert of Botswana and northernmost South Africa, the closest area with major silcrete outcrops to the Cape. For this we analyse the thermal transformations of silcrete from both regions, proposing a comprehensive model of the chemical, crystallographic and 'water'-related processes taking place upon heat treatment. For the first time, we also explore the mobility of minor and trace elements during heat treatment and introduce a previously undescribed mechanism-steam leaching-causing depletion of a limited number of elements. The results of this comparative study reveal the Cape and Kalahari silcrete to respond fundamentally differently to heat treatment. While the former can be significantly improved by heat, the latter is deteriorated in terms of knapping quality. These findings have important implications for our understanding of the role of fire as a technical solution in MSA stone tool knapping, and for the extension of its use in southern Africa. Silcrete heat treatment-at least in the form we understand it today-may have been a strictly regional phenomenon, confined to a narrow zone along the west and south coast of the Cape. On the basis of our findings, silcrete heat treatment should not be added as a new trait on the list of behaviours that characterise the MSA of the southern African subcontinent.

  19. Heat inactivation of wine spoilage yeast Dekkera bruxellensis by hot water treatment.

    PubMed

    Fabrizio, V; Vigentini, I; Parisi, N; Picozzi, C; Compagno, C; Foschino, R

    2015-08-01

    Cell suspensions of four Dekkera bruxellensis strains (CBS 2499, CBS 2797, CBS 4459 and CBS 4601) were subjected to heat treatment in deionized water at four different temperatures (55·0, 57·5, 60·0 and 62·5°C) to investigate their thermal resistance. The decimal reduction times at a specific temperature were calculated from the resulting inactivation curves: the D-values at 55·0°C ranged from 63 to 79·4 s, at 57·5°C from 39·6 to 46·1 s, at 60·0°C from 19·5 to 20·7 s, at 62·5°C from 10·2 to 13·7 s. The z-values were between 9·2 and 10·2°C, confirming that heat resistance is a strain-dependent character. A protocol for the sanitization of 225 l casks by immersion in hot water was set up and applied to contaminated 3-year-old barrels. The heat penetration through the staves was evaluated for each investigated temperature by positioning a thermal probe at 8 mm deep. A treatment at 60°C for an exposure time of 19 min allowed to eliminate the yeast populations up to a log count reduction of 8. Brettanomyces/Dekkera bruxellensis is the main yeast involved in red wine spoilage that occurs during ageing in barrel, generating considerable economic losses. Current sanitization protocols, performed using different chemicals, are ineffective due to the porous nature of the wood. The thermal inactivation of D. bruxellensis cells by hot water treatment proves to be efficacious and easy to perform, provided that the holding time at the killing temperature takes into account the filling time of the vessel and the time for the heat penetration into the wood structure. © 2015 The Society for Applied Microbiology.

  20. The Tensile Properties of Advanced Nickel-Base Disk Superalloys During Quenching Heat Treatments

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, Pete T.; Biles, Tiffany; Konkel, William

    2001-01-01

    There is a need to increase the temperature capabilities of superalloy turbine disks. This would allow full utilization of higher temperature combustor and airfoil concepts under development. One approach to meet this goal is to modify the processing and chemistry of advanced alloys, while preserving the ability to use rapid cooling supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is to understand the key high temperature tensile properties of advanced alloys as they exist during supersolvus heat treatments. This could help in projecting cracking tendencies of disks during quenches from supersolvus heat treatments. The objective of this study was to examine the tensile properties of two advanced disk superalloys during simulated quenching heat treatments. Specimens were cooled from the solution heat treatment temperatures at controlled rates, interrupted, and immediately tensile tested at various temperatures. The responses and failure modes were compared and related to the quench cracking tendencies of disk forgings.

  1. Effect of heat treatment and storage conditions on mead composition.

    PubMed

    Kahoun, David; Řezková, Soňa; Královský, Josef

    2017-03-15

    The effects of heat treatment and storage conditions on the composition of pure mead (honey wine) made from only honey and water were investigated. Heat treatment experiments were performed at 7 different temperatures ranging from 40°C to100°C with 10°C increments for 60min. Storage condition experiments were performed at room temperature (20-25°C) in daylight without direct sunlight and in darkness in a refrigerator at 4°C for 1, 2, 4 and 12weeks. The parameters evaluated were phenolic compounds, peak area of unidentified compounds, 5-hydroxymethylfurfural content and antioxidant capacity. Significant changes in compound content were observed in the case of 6 identified compounds and 9 unidentified compounds. However, the antioxidant activity was not affected by the heat treatments or storage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification

    PubMed Central

    Spinelli Sanchez, Océane; Kind, Claus-Joachim

    2017-01-01

    The Early Mesolithic of southwestern Germany, the so-called Beuronian (9600–7100 BC), is a period of important transformations in the way people lived, in their subsistence and in the stone tools they produced. One of the perhaps most spectacular re-inventions of that time is heat treatment of stones prior to their manufacture into tools. Although heat treatment has been understood as one of the defining characteristics of the Beuronian of southwestern Germany, and although its existence has been known for almost 30 years now, relatively few systematic studies on it are available. In this paper, we present such a study, aiming to shed light on two questions: (1) what technique and heating parameters were used in the Beuronian and (2) how reliable are the macroscopic proxies traditionally used to identify heat treatment in this context? We investigate these questions using a non-destructive archaeometric technique for measuring past heating temperatures of heat-treated stones and a quantitative surface roughness analysis aiming to understand the relations between surface aspect and heat treatment. These methods are applied to 46 Jurassic chert artefacts from the site Helga-Abri located in the Swabian Alb region of southwestern Germany. Our results document that an opportunistic low-investment procedure was used to heat stone, probably relying on the use of the above-ground part of regular camp-fires. We also found that the traditionally used macroscopic criteria, such as colour and surface gloss, cannot be unambiguously used to identify heat treatment in assemblages made from Jurassic chert. These findings have important implications for our understanding of the Beuronian lithic chaîne opératoire in terms of the investment in time and resources necessary, and for the refinement of archaeological techniques used to identify heat treatment in the Mesolithic of the Swabian Alb. PMID:29211749

  3. Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification.

    PubMed

    Schmidt, Patrick; Spinelli Sanchez, Océane; Kind, Claus-Joachim

    2017-01-01

    The Early Mesolithic of southwestern Germany, the so-called Beuronian (9600-7100 BC), is a period of important transformations in the way people lived, in their subsistence and in the stone tools they produced. One of the perhaps most spectacular re-inventions of that time is heat treatment of stones prior to their manufacture into tools. Although heat treatment has been understood as one of the defining characteristics of the Beuronian of southwestern Germany, and although its existence has been known for almost 30 years now, relatively few systematic studies on it are available. In this paper, we present such a study, aiming to shed light on two questions: (1) what technique and heating parameters were used in the Beuronian and (2) how reliable are the macroscopic proxies traditionally used to identify heat treatment in this context? We investigate these questions using a non-destructive archaeometric technique for measuring past heating temperatures of heat-treated stones and a quantitative surface roughness analysis aiming to understand the relations between surface aspect and heat treatment. These methods are applied to 46 Jurassic chert artefacts from the site Helga-Abri located in the Swabian Alb region of southwestern Germany. Our results document that an opportunistic low-investment procedure was used to heat stone, probably relying on the use of the above-ground part of regular camp-fires. We also found that the traditionally used macroscopic criteria, such as colour and surface gloss, cannot be unambiguously used to identify heat treatment in assemblages made from Jurassic chert. These findings have important implications for our understanding of the Beuronian lithic chaîne opératoire in terms of the investment in time and resources necessary, and for the refinement of archaeological techniques used to identify heat treatment in the Mesolithic of the Swabian Alb.

  4. Proteomic profiling of camel and cow milk proteins under heat treatment.

    PubMed

    Felfoul, Imène; Jardin, Julien; Gaucheron, Frédéric; Attia, Hamadi; Ayadi, M A

    2017-02-01

    Cow and camel milk proteins before and after heat treatment at 80°C for 60min were identified using LC/MS and LC-MS/MS following monodimensional electrophoresis. The database used for the identification of camel and cow proteins was set from http://www.uniprot.org/. The obtained results showed that, after heating, camel milk at 80°C for 60min, camel α-lactalbumin (α-la) and peptidoglycan recognition protein (PGRP) were not detected while camel serum albumin (CSA) was significantly diminished. When heating cow milk at 80°C for 60min, α-lactalbumin (α-la) and β-lactoglobulin (β-lg) were not significantly detected. Moreover, 19 protein bands from SDS-PAGE were analyzed and a total of 45 different proteins were identified by LC-MS/MS. Casein fractions were kept intact under a heat treatment of 80°C during 60min of both camel and cow milks. Camel and bovine whey proteins were affected by a heat treatment of 80°C for 60min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  6. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  7. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  8. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...

  9. Heat treatment as a universal technical solution for silcrete use? A comparison between silcrete from the Western Cape (South Africa) and the Kalahari (Botswana)

    PubMed Central

    Nash, David J.; Coulson, Sheila; Göden, Matthias B.; Awcock, Graeme J.

    2017-01-01

    Heat treatment was one of the first transformative technologies in the southern African Middle Stone Age (MSA), with many studies in the Cape coastal zone of South Africa identifying it as an essential step in the preparation of silcrete prior to its use in stone tool manufacture. To date, however, no studies have investigated whether heat treatment is necessary for all silcrete types, and how geographically widespread heat treatment was in the subcontinent. The aim of this study is to investigate experimentally whether heat treatment continued further north into the Kalahari Desert of Botswana and northernmost South Africa, the closest area with major silcrete outcrops to the Cape. For this we analyse the thermal transformations of silcrete from both regions, proposing a comprehensive model of the chemical, crystallographic and ‘water’-related processes taking place upon heat treatment. For the first time, we also explore the mobility of minor and trace elements during heat treatment and introduce a previously undescribed mechanism—steam leaching—causing depletion of a limited number of elements. The results of this comparative study reveal the Cape and Kalahari silcrete to respond fundamentally differently to heat treatment. While the former can be significantly improved by heat, the latter is deteriorated in terms of knapping quality. These findings have important implications for our understanding of the role of fire as a technical solution in MSA stone tool knapping, and for the extension of its use in southern Africa. Silcrete heat treatment—at least in the form we understand it today—may have been a strictly regional phenomenon, confined to a narrow zone along the west and south coast of the Cape. On the basis of our findings, silcrete heat treatment should not be added as a new trait on the list of behaviours that characterise the MSA of the southern African subcontinent. PMID:28723941

  10. The effect of aging treatment on the fracture toughness and impact strength of injection molded Ni-625 superalloy parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özgün, Özgür, E-mail: oozgun@bingol.edu.tr; Yılmaz, Ramazan; Özkan Gülsoy, H.

    In this study, the effect of aging heat treatment on fracture toughness and impact strength of Ni-625 superalloy fabricated by using powder injection molding (PIM) method was examined. After a feedstock was prepared by mixing the prealloyed Ni-625 superalloy powder, which was fabricated by gas atomisation, with a polymeric binder system and then it was granulated, it was shaped through the use of injection. The molded specimens were sintered at 1300 °C for 3 h after a two-stage debinding process. Once the sintered specimens were treated in the solution at 1150 °C for 2 h, they were quenched. Aging treatmentmore » was performed by keeping specimens at 745 °C for 22 h. Fracture toughness and impact tests were performed on sintered and aged specimens. Microstructure examinations were performed by using optical microscope, scanning electron microscope, and transmission electron microscope. The results revealed that aging heat treatment led to the formation of some carbides and intermetallic phases in the microstructure. While the hardness of the aged specimens increased due to these phases, their fracture toughness and impact strength values decreased. - Highlights: • Ni-625 superalloy components were produced by means of powder injection molding. • The produced components were subjected to aging treatment. • Aging process provided approximately 50% increase in the hardness of components. • Intermetallic precipitates, carbides and TCP phases occurred within the aged parts. • Fracture toughness and impact strength values decreased due to the hard phases.« less

  11. Bioactive Titanate Layers Formed on Titanium and Its Alloys by Simple Chemical and Heat Treatments

    PubMed Central

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    To reveal general principles for obtaining bone-bonding bioactive metallic titanium, Ti metal was heat-treated after exposure to a solution with different pH. The material formed an apatite layer at its surface in simulated body fluid when heat-treated after exposure to a strong acid or alkali solution, because it formed a positively charged titanium oxide and negatively charged sodium titanate film on its surface, respectively. Such treated these Ti metals tightly bonded to living bone. Porous Ti metal heat-treated after exposure to an acidic solution exhibited not only osteoconductive, but also osteoinductive behavior. Porous Ti metal exposed to an alkaline solution also exhibits osteoconductivity as well as osteoinductivity, if it was subsequently subjected to acid and heat treatments. These acid and heat treatments were not effective for most Ti-based alloys. However, even those alloys exhibited apatite formation when they were subjected to acid and heat treatment after a NaOH treatment, since the alloying elements were removed from the surface by the latter. The NaOH and heat treatments were also not effective for Ti-Zr-Nb-Ta alloys. These alloys displayed apatite formation when subjected to CaCl2 treatment after NaOH treatment, forming Ca-deficient calcium titanate at their surfaces after subsequent heat and hot water treatments. The bioactive Ti metal subjected to NaOH and heat treatments has been clinically used as an artificial hip joint material in Japan since 2007. A porous Ti metal subjected to NaOH, HCl and heat treatments has successfully undergone clinical trials as a spinal fusion device. PMID:25893014

  12. Coarsening Kinetics and Morphological Evolution in a Two-Phase Titanium Alloy During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Jianwei; Zeng, Weidong; Jia, Zhiqiang; Sun, Xin; Zhao, Yawei

    2016-03-01

    The effects of alpha/beta heat treatment on microstructure evolution of Ti-17 alloy with a lamellar colony structure are established. Heat treatment experiments are conducted at 1103 or 1063 K for times ranging from 10 min to 8 h. The main features of microstructure evolution during heat treatment comprise static globularization and coarsening of primary alpha phase. Such behaviors can be accelerated by higher heat treatment temperature. Furthermore, globularization and coarsening behaviors show a faster rate at higher prestrain. In order to better understand the microstructure evolution of Ti-17 alloy during alpha/beta heat treatment, static globularization and coarsening behaviors are modeled in the theoretical frame of the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) and Lifshitz-Slyozov-Wagner (LSW) theories, respectively. The JMAK and LSW kinetics parameters are derived under different experimental conditions. Agreements between measurements and predictions are found, indicating that the JMAK and LSW theories can be used to predict and trace static globularization and coarsening processes of Ti-17 alloy during alpha/beta heat treatment.

  13. Optimized postweld heat treatment procedures for 17-4 PH stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaduri, A.K.; Sujith, S.; Srinivasan, G.

    1995-05-01

    The postweld heat treatment (PWHT) procedures for 17-4 PH stainless steel weldments of matching chemistry was optimized vis-a-vis its microstructure prior to welding based on microstructural studies and room-temperature mechanical properties. The 17-4 PH stainless steel was welded in two different prior microstructural conditions (condition A and condition H 1150) and then postweld heat treated to condition H900 or condition H1150, using different heat treatment procedures. Microstructural investigations and room-temperature tensile properties were determined to study the combined effects of prior microstructural and PWHT procedures.

  14. Heat Treatment of Tantalum and Niobium Powders Prepared by Magnesium-Thermic Reduction

    NASA Astrophysics Data System (ADS)

    Orlov, V. M.; Prokhorova, T. Yu.

    2017-11-01

    Changes in the specific surface area and porous structure of tantalum and niobium powders, which were prepared by magnesium-thermic reduction of Ta2O5, Mg4Ta2O9, and Mg4Nb2O9 oxide compounds and subjected to heat treatments at temperatures of 600-1500°C, have been studied. It is noted that, owing to the mesoporous structure of the magnesium-thermic powders, the decrease in the surface area during heat treatment, first of all, is related to a decrease in the amount of pores less than 10 nm in size. The heat treatment of a reacting mass is shown to allow us to correct the specific surface area of the powder without any increase in the oxygen content in it. Data on the effect of heat treatment conditions on the specific charge of capacitor anodes are reported.

  15. Age-related effects of heat stress on protective enzymes for peroxides and microsomal monooxygenase in rat liver.

    PubMed Central

    Ando, M; Katagiri, K; Yamamoto, S; Wakamatsu, K; Kawahara, I; Asanuma, S; Usuda, M; Sasaki, K

    1997-01-01

    To evaluate the age-related response of essential cell functions against peroxidative damage in hyperthermia, we studied the biochemical response to heat stress in both young and aged rats. Passive hyperthermia was immediately observed in rats after exposure to hot environments. In aged rats, the rectal temperature maintained thermal homeostasis and increased to the same degree as in young rats. In these aged animals, the damage from heat stress was more serious than in young animals. In aged rats under normal environmental conditions, hepatic cytosolic glutathione peroxidase (GSH peroxidase) activities were markedly higher than those activities in younger rats. Hepatic cytosolic GSH peroxidase activities were induced by heat stress in young rats but were decreased by hot environments in aged rats. Hepatic catalase activities in young rats were not affected by hot environments, whereas in aged rats, hepatic catalase activities were seriously decreased. Catalase activities in the kidney of aged rats were also reduced by hot environments. Lipid peroxidation in the liver was markedly induced in both young and aged rats. Because the protective enzymes for oxygen radicals in aged rats were decreased by hot environments, lipid peroxidation in the liver was highly induced. In aged rats, lipid peroxidation in intracellular structures such as mitochondria and microsomes was also markedly induced by hot environments. In both young and aged rats, hyperthermia greatly increased the development of hypertrophy and vacuolated degeneration in hepatic cells. In aged rats, both mitochondria and endoplasmic reticulum of the hepatic cells showed serious distortion in shape as a result of exposures to hot environments. Microsomal electron transport systems, such as cytochrome P450 monooxygenase activities, were seriously decreased by heat stress in aged rats but not in young rats. Although the mitochondrial electron transport systems were not affected by acute heat stress in young rats

  16. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    PubMed

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-04-01

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  17. Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) wood

    Treesearch

    Xianjun Li; Zhiyong Cai; Qunying Mou; Yiqiang Wu; Yuan Liu

    2011-01-01

    In this study the effect of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) was investigated. Wood specimens were subjected to heat treatment at 160, 180, 200 and 220°C for 1, 2, 3 and 4h. The results show that heat treatment resulted in a darkened color, decreased moisture performance and increased dimensional stability of...

  18. Aging management guideline for commercial nuclear power plants - heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, S.; Lehnert, D.; Daavettila, N.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activitiesmore » to the more generic results and recommendations presented herein.« less

  19. The effect of aging on conductive heat exchange in the skin at two environmental temperatures.

    PubMed

    Petrofsky, Jerrold S; Lohman, Everett; Suh, Hye Jin; Garcia, Jason; Anders, Alexa; Sutterfield, Cassandra; Khandge, Chetan

    2006-10-01

    Ageing diminishes the blood flow (BF) response of the skin to autonomic stressors. While the diminished response of skin BF to global heating has been well documented, the effect of this reduction in skin BF on the ability of the skin to dissipate heat has not. When heat is added to the skin by the application of hot packs, if heat is not adequately removed, the skin can become dangerously hot and become damaged. The present investigation examined the heat dissipating properties of the skin in older individuals. This study has importance for the therapeutic application of hot packs which might cause burns easier in older people. In the present investigation, 10 younger and 10 older subjects were examined. The average age of the younger group was 25.9+/-3.4 years and the older group was 60 +/- 5.8 years. Heat was applied through a 49 gram brass probe that was heated to 41 degrees C and by a Peltier junction in a cool and warm environment. Skin required about 20 calories of heat to raise skin temperature 1 degrees C the cool room and double this Figure in the warm room. Ageing reduced the caloric requirement to increase skin temperature under both conditions (p < 0.01). The results of the experiments showed that older individuals had impaired ability of the skin to dissipate heat in both environments. Special precautions should be taken in physical therapy when applying hot packs in older populations.

  20. Compositions produced using an in situ heat treatment process

    DOEpatents

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2013-05-28

    Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  1. Compositions produced using an in situ heat treatment process

    DOEpatents

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Nair, Vijay [Katy, TX; Munsterman, Erwin Henh [Amsterdam, NL; Van Bergen, Petrus Franciscus [Amsterdam, NL; Van Den Berg, Franciscus Gondulfus Antonius

    2009-10-20

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  2. A Study on Infrared Local Heat Treatment for AA5083 to Improve Formability and Automotive Part Forming

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Ho; Yang, Dong-Yol; Ko, SeJin

    2017-10-01

    Automotive industries are increasingly employing aluminum alloys for auto parts to reduce vehicle weight. However, the low formability of aluminum alloys has been an obstacle to their application. To resolve the formability problem, some studies involving heat treatments under laboratory conditions have been reported. However, for industrial applications, the heat treatment sequence, heating energy efficiency, and a commercial part test should be studied. This work shows an infrared (IR) local heat treatment, heating only small areas where the heat treatment is required, for an aluminum alloy to improve the formability with a reduction of heating energy. The experiment shows that the formability drastically increases when the aluminum alloy is heat treated between two forming stages, referred to as intermediate heat treatment. The microstructures of the test pieces are evaluated to identify the cause of the increase in the formability. For an industrial application, an aluminum tailgate, which cannot be manufactured without heat treatment, was successfully manufactured by the IR local heat treatment with a reduction of energy. A simulation was also conducted with a stress-based forming limit diagram, which is not affected by the strain path and heat treatment histories. The simulation gives a good prediction of the formability improvement.

  3. Intercritical heat treatments in ductile iron and steel

    NASA Astrophysics Data System (ADS)

    Aristizabal, Ricardo E.

    Materials such as dual phase (DP) steels, transformation induced plasticity (TRIP) steels and dual phase ductile irons are produced by intercritical heat treatments. These materials can provide significant weight savings in the automotive industry. The goal of this dissertation is to study intercritical heat treatments in ductile iron and steel to optimize the production parameters. Three different aspects were addressed. First, common steels were intercritically austenitized and austempered (intercritically austempered) under a variety conditions. The results showed that common grade steels that were intercritically austempered exhibited tensile properties in the same range as DP and TRIP steels. The second study consisted of determining the effect of heat treatment conditions on the tensile properties of intercritically austenitized, quenched and tempered ductile iron (IAQ&TDI). The results showed that (1) ultimate tensile strength (UTS) and yield strength (YS) were determined by the volume fraction of martensite, (2) tempering improved the elongation 1.7-2.5 times with only a slight decrease in strength, (3) the carbon in austenite formed during the intercritical heat treatment of ductile iron with a ferritic-pearlitic matrix came from the carbon available in the matrix and that carbon diffusion from the graphite nodules was restricted, and (4) limited segregation of substitutional elements occurred during intercritical austenitizing. Finally, intercritically austempered ductile iron (IADI) alloyed with different amounts of manganese and nickel was produced. Tensile properties and microstructure were determined. Also, the stability of the austenite during deformation and the lattice strains of the ferrite and the austenite phases were determined using x-ray diffraction (XRD) and neutron diffraction. The results indicated that: 1) high manganese concentrations produced materials with large blocky, low carbon austenite particles at the intercellular boundaries

  4. Effect of heat treatment on stainless steel lingual arch appliances.

    PubMed

    Nagatani, S S; Fisher, J G; Hondrum, S O

    1996-01-01

    This study evaluated the effect of heat treatment on 0.036" diameter stainless steel wire. Forty wires were bent into arch forms (20 experimental and 20 control). The arch width changes were measured and the forces generated were determined over an eight week period. Heat treatment resulted in immediate and significant expansion (p < 0.001) followed by stabilization of arch width. The control wires continued to expand throughout the study. The force generated by the control group and experimental group expansion was capable of producing tooth movement.

  5. Evaluation of heat treatment schedules for emerald ash borer (Coleoptera: Buprestidae).

    PubMed

    Myers, Scott W; Fraser, Ivich; Mastro, Victor C

    2009-12-01

    The thermotolerance of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), was evaluated by subjecting larvae and prepupae to a number of time-temperature regimes. Three independent experiments were conducted during 2006 and 2007 by heating emerald ash borer infested firewood in laboratory ovens. Heat treatments were established based on the internal wood temperature. Treatments ranged from 45 to 65 degrees C for 30 and 60 min, and the ability of larvae to pupate and emerge as adults was used to evaluate the success of each treatment. A fourth experiment was conducted to examine heat treatments on exposed prepupae removed from logs and subjected to ambient temperatures of 50, 55, and 60 degrees C for 15, 30, 45, and 60 min. Results from the firewood experiments were consistent in the first experiment. Emergence data showed emerald ash borer larvae were capable of surviving a temperatures-time combination up to 60 degrees C for 30 min in wood. The 65 degrees C for 30 min treatment was, however, effective in preventing emerald ash borer emergence on both dates. Conversely, in the second experiment using saturated steam heat, complete mortality was achieved at 50 and 55 degrees C for both 30 and 60 min. Results from the prepupae experiment showed emerald ash borer survivorship in temperature-time combinations up to 55 degrees C for 30 min, and at 50 degrees C for 60 min; 60 degrees C for 15 min and longer was effective in preventing pupation in exposed prepupae. Overall results suggest that emerald ash borer survival is variable depending on heating conditions, and an internal wood temperature of 60 degrees C for 60 min should be considered the minimum for safe treatment for firewood.

  6. Effect of heat treatment on the microstructure of Co-Cr-W alloy fabricated by laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Ren, Bo; Chen, Changjun; Zhang, Min

    2018-04-01

    Stellite 6 cobalt-based alloy powder was used to produce Co-Cr-W alloy using laser additive manufacturing technology, and then different heat treatment strategies were carried out on the deposited sample. The characteristics of microstructure under different heat treatment conditions were investigated using scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscope, and x-ray diffraction. The results show that the as-deposited sample has few cracks or pores, and the microstructure is typical dendritic structure, and lamellar eutectic carbides are rich in Cr in interdendritic. The matrix mainly consists of γ phases and a few ɛ phases. Some γ phases transform into ɛ phases after 900°C/6 h aging treatment and lamellar eutectic carbides transform into blocky carbides presenting as a network, most of the carbides are rich in Cr and a few are rich in W. When heat treated at 1200°C/1 h followed by water cooling and then treated at 900°C/6 h followed by furnace cooling, it can be found that some γ phases transform into ɛ phases. The carbides transform into elliptical M23C6 carbides that are rich in Cr with the size of 1 to 3 μm and a part of W-rich carbides.

  7. [The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].

    PubMed

    Wang, Ya-Mei; Ma, Shu-Ling; Feng, Li-Qun

    2014-03-01

    Wood preservative treatment can improve defects of plantation wood such as easy to corrupt and moth eaten. Among them heat-treatment is not only environmental and no pollution, also can improve the corrosion resistance and dimension stability of wood. In this test Poplar and Mongolian Seoteh Pine was treated by soybean oil as heat-conducting medium, and the heat treatment wood was studied for indoor decay resistance; wood chemical components before and after treatment, the effect of heat treatment on wood decay resistance performance and main mechanism of action were analysed by Fourier infrared spectrometric. Results showed that the mass loss rate of poplar fell from 19.37% to 5% and Mongolian Seoteh Pine's fell from 8.23% to 3.15%, so oil heat treatment can effectively improve the decay resistance. Infrared spectrum analysis shows that the heat treatment made wood's hydrophilic groups such as hydroxyl groups in largely reduced, absorbing capacity decreased and the moisture of wood rotting fungi necessary was reduced; during the heat treatment wood chemical components such as cellulose, hemicellu lose were degraded, and the nutrient source of wood rotting fungi growth necessary was reduced. Wood decay fungi can grow in the wood to discredit wood is because of that wood can provide better living conditions for wood decay fungi, such as nutrients, water, oxygen, and so on. The cellulose and hemicellulose in wood is the main nutrition source of wood decay fungi. So the oil heat-treatment can reduce the cellulose, hemicellulose nutrition source of wood decay fungi so as to improve the decay resistance of wood.

  8. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    NASA Astrophysics Data System (ADS)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  9. Improved Heat Treatment Of Steel Alloy 4340

    NASA Technical Reports Server (NTRS)

    Cooper, Lawrence B.

    1993-01-01

    New process takes significantly less time than prior heat-treatment processes. Involves placing steel plate directly in furnace and heat-treating. Plate then quenched in slowly moving oil to reduce stresses. Any deflection then pressed out. Possible uses of 4340 steel include new and improved bulletproof vests for military and police personnel and armor for bulletproof automobiles for military, police, diplomatic, and private users. Also used in other military land vehicles as tanks and in both military and civilian aircraft. Lighter armorplate enables land vehicles and aircraft to attain greater speed and maneuverability, consume less fuel, and afford better protection from snipers or terrorists.

  10. Weld repair of carbon-moly coke drums without postweld heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, D.E.

    1996-06-01

    Investigations to evaluate weld repair of C-{1/2}Mo coke drums without postweld heat treatment (PWHT) are discussed in this paper. These investigations showed that shielded metal-arc welding (SMAW) without PWHT produced heat-affected zones (HAZ) and weld deposits with Charpy V-notch (CVN) impact toughness that exceeded the toughness of ex-service plate material. PWHT de-embrittles strain age-embrittled ex-service plate material. However, warming of drums to 200 F before putting in feed compensates for the omission of the de-embrittling PWHT. Additional testing showed that the de-embrittling PWHT did not significantly improve the fatigue properties of the ex-service plate material. As-welded SMAW repairs were foundmore » to be feasible for coke drums, and repairs have now been in service successfully for up to 2 years. The as-welded SMAW repairs were qualified on the basis of a 300 F preheat using small diameter electrodes for the first pass followed by larger diameter electrodes to temper the HAZ of the first pass. A half-bead technique was not used. Heat input is not precisely controlled as would be required for controlled deposition welding. Following the implementation of SMAW repairs without PWHT, the author extended the work to include as-welded repairs with automatic gas metal-arc welding (GMAW).« less

  11. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  12. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE PAGES

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  13. The use of fluidized sand bed as an innovative technique for heat treating aluminum based castings

    NASA Astrophysics Data System (ADS)

    Ragab, Khaled

    The current study was carried out to arrive at a better understanding of the influences of the fluidized sand bed heat treatment on the tensile properties and quality indices of A356.2 and B319.2 casting alloys. For the purposes of validating the use of fluidized sand bed furnaces in industrial applications for heat treatment of 356 and 319 castings, the tensile properties and the quality indices of these alloys were correlated with the most common metallurgical parameters, such as strontium modification, grain refining, solutionizing time, aging parameters and quenching media. Traditional heat treatment technology, employing circulating air convection furnaces, was used to establish a relevant comparison with fluidized sand beds for the heat treatment of the alloys investigated, employing T6 continuous aging cycles or multi-temperature aging cycles. Quality charts were used to predict and/or select the best heat treatment conditions and techniques to be applied in industry in order to obtain the optimum properties required for particular engineering applications. The results revealed that the strength values achieved in T6-tempered 319 and 356 alloys are more responsive to fluidized bed (FB) heat treatment than to conventional convection furnace (CF) treatment for solution treatment times of up to 8 hours. Beyond this solution time, no noticeable difference in properties is observed with the two techniques. A significant increase in strength is observed in the FB heat-treated samples after short aging times of 0.5 and 1 hour, the trend continuing up to 5 hours. The 319 alloys show signs of overaging after 8 hours of aging using a conventional furnace, whereas with a fluidized bed, overaging occurs after 12 hours. Analysis of the tensile properties in terms of quality index charts showed that both modified and non-modified 319 and 356 alloys display the same, or better, quality, after only a 2-hr treatment in an FB compared to 10 hours when using a CF. The quality

  14. Why Was Silcrete Heat-Treated in the Middle Stone Age? An Early Transformative Technology in the Context of Raw Material Use at Mertenhof Rock Shelter, South Africa.

    PubMed

    Schmidt, Patrick; Mackay, Alex

    2016-01-01

    People heat treated silcrete during the Middle Stone Age (MSA) in southern Africa but the spatial and temporal variability of this practice remains poorly documented. This paucity of data in turn makes it difficult to interrogate the motive factors underlying the application of this technique. In this paper we present data on heat treatment of silcrete through the Howiesons Poort and post-Howiesons Poort of the rock shelter site Mertenhof, located in the Western Cape of South Africa. In contrast to other sites where heat treatment has been documented, distance to rock source at Mertenhof can be reasonably well estimated, and the site is known to contain high proportions of a diversity of fine grained rocks including silcrete, hornfels and chert at various points through the sequence. Our results suggest the prevalence of heat treatment is variable through the sequence but that it is largely unaffected by the relative abundance of silcrete prevalence. Instead there is a strong inverse correlation between frequency of heat treatment in silcrete and prevalence of chert in the assemblage, and a generally positive correlation with the proportion of locally available rock. While it is difficult to separate individual factors we suggest that, at Mertenhof at least, heat treatment may have been used to improve the fracture properties of silcrete at times when other finer grained rocks were less readily available. As such, heat treatment appears to have been a component of the MSA behavioural repertoire that was flexibly deployed in ways sensitive to other elements of technological organisation.

  15. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert.

    PubMed

    Chen, W G; Chen, Z M; Chen, Z Y; Huang, P C; He, P; Zhu, J W

    2011-10-01

    The heat treatment of Nb(3)Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.

  16. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert

    NASA Astrophysics Data System (ADS)

    Chen, W. G.; Chen, Z. M.; Chen, Z. Y.; Huang, P. C.; He, P.; Zhu, J. W.

    2011-10-01

    The heat treatment of Nb3Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.

  17. Effects of Mead Wort Heat Treatment on the Mead Fermentation Process and Antioxidant Activity.

    PubMed

    Czabaj, Sławomir; Kawa-Rygielska, Joanna; Kucharska, Alicja Z; Kliks, Jarosław

    2017-05-14

    The effects of mead wort heat treatment on the mead fermentation process and antioxidant activity were tested. The experiment was conducted with the use of two different honeys (multiflorous and honeydew) collected from the Lower Silesia region (Poland). Heat treatment was performed with the use of a traditional technique (gently boiling), the more commonly used pasteurization, and without heat treatment (control). During the experiment fermentation dynamics were monitored using high performance liquid chromatography with refractive index detection (HPLC-RID). Total antioxidant capacity (TAC) and total phenolic content (TPC) were estimated for worts and meads using UV/Vis spectrophotometric analysis. The formation of 5-hydroxymethylfurfural (HMF) was monitored by HPLC analyses. Heat treatment had a great impact on the final antioxidant capacity of meads.

  18. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.

    PubMed

    Zhang, Xiaobo; Yuan, Guangyin; Mao, Lin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-03-01

    Mechanical properties at room temperature and biocorrosion behaviors in simulated body fluid (SBF) at 37 °C of a new type of patented Mg-3Nd-0.2Zn-0.4Zr (hereafter, denoted as JDBM) alloy prepared at different extrusion temperatures, as well as heat treatment, were studied. The mechanical properties of this magnesium alloy at room temperature were improved significantly after extrusion and heat treatment compared to an as-cast alloy. The results of mechanical properties show that the yield strength (YS) decreases with increasing extrusion temperature. The tensile elongation decreases a little while the ultimate tensile strength (UTS) has no obvious difference. The yield strength and ultimate tensile strength were improved clearly after heat treatment at 200 °C for 10 h compared with that at the extrusion state, which can be mainly contributed to the precipitation strengthening. The biocorrosion behaviors of the JDBM alloy were studied using immersion tests and electrochemical tests. The results reveal that the extruded JDBM alloy and the aging treatment on the extruded alloy show much better biocorrosion resistance than that at solid solution state (T4 treatment), and the JDBM exhibited favorable uniform corrosion mode in SBF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawel, Steven J; Hsu, Julia

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C weremore » found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.« less

  20. Effect of heat treatment on the antioxidant activity of extracts from citrus peels.

    PubMed

    Jeong, Seok-Moon; Kim, So-Young; Kim, Dong-Ryul; Jo, Seong-Chun; Nam, K C; Ahn, D U; Lee, Seung-Cheol

    2004-06-02

    The effect of heat treatment on the antioxidant activity of extracts from Citrus unshiu peels was evaluated. Citrus peels (CP) (5 g) were placed in Pyrex Petri dishes (8.0 cm diameter) and heat-treated at 50, 100, or 150 degrees C for 10, 20, 30, 40, 50, and 60 min in an electric muffle furnace. After heat treatment, 70% ethanol extract (EE) and water extract (WE) (0.1 g/10 mL) of CP were prepared, and total phenol contents (TPC), radical scavenging activity (RSA), and reducing power of the extracts were determined. The antioxidant activities of CP extracts increased as heating temperature increased. For example, heat treatment of CP at 150 degrees C for 60 min increased the TPC, RSA, and reducing power of EE from 71.8 to 171.0 microM, from 29.64 to 64.25%, and from 0.45 to 0.82, respectively, compared to non-heat-treated control. In the case of WE from CP heat-treated at the same conditions (150 degrees C for 60 min), the TPC, RSA, and reducing power also increased from 84.4 to 204.9 microM, from 15.81 to 58.26%, and from 0.27 to 0.96, respectively. Several low molecular weight phenolic compounds such as 2,3-diacetyl-1-phenylnaphthalene, ferulic acid, p-hydroxybenzaldoxime, 5-hydroxyvaleric acid, 2,3-diacetyl-1-phenylnaphthalene, and vanillic acid were newly formed in the CP heated at 150 degrees C for 30 min. These results indicated that the antioxidant activity of CP extracts was significantly affected by heating temperature and duration of treatment on CP and that the heating process can be used as a tool for increasing the antioxidant activity of CP.

  1. Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2016-08-01

    Friction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.

  2. Numerical analysis of heat treatment of TiCN coated AA7075 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Srinath, M. K.; Prasad, M. S. Ganesha

    2018-04-01

    The Numerical analysis of heat treatments of TiCN coated AA7075 aluminium alloys is presented in this paper. The Convection-Diffusion-Reaction (CDR) equation with solutions in the Streamlined-Upward Petrov-Galerkin (SUPG) method for different parameters is provided for the understanding of the process. An experimental process to improve the surface properties of AA-7075 aluminium alloy was attempted through the coatings of TiCN and subsequent heat treatments. From the experimental process, optimized temperature and time was obtained which gave the maximum surface hardness and corrosion resistance. The paper gives an understanding and use of the CDR equation for application of the process. Expression to determine convection, diffusion and reaction parameters are provided which is used to obtain the overall expression of the heat treatment process. With the substitution of the optimized temperature and time, the governing equation may be obtained. Additionally, the total energy consumed during the heat treatment process is also developed to give a mathematical formulation of the energy consumed.

  3. Effect of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Pulsed Plasma Arc Deposition

    NASA Astrophysics Data System (ADS)

    Xu, Fujia; Lv, Yaohui; Liu, Yuxin; Xu, Binshi; He, Peng

    Pulsed plasma arc deposition (PPAD) was successfully used to fabricate the Ni-based superalloy Inconel 625 samples. The effects of three heat treatment technologies on microstructure and mechanical properties of the as-deposited material were investigated. It was found that the as-deposited structure exhibited homogenous cellular dendrite structure, which grew epitaxially along the deposition direction. Moreover, some intermetallic phases including Laves phase and MC carbides were precipitated in the interdendritic region as a result of Nb segregation. Compared with the as-deposited microstructure, the direct aged (DA) microstructure changed little except the precipitation of hardening phases γ' and γ" (Ni3Nb), which enhanced the hardness and tensile strength. But the plastic property was inferior due to the existence of brittle Laves phase. After solution and aging heat treatment (STA), a large amount of Laves particles in the interdendritic regions were dissolved, resulting in the reduction of Nb segregation and the precipitation of needle-like δ (Ni3Nb) in the interdendritic regions and grain boundaries. The hardness and tensile strength were improved without sacrificing the ductility. By homogenization and STA heat treatment (HSTA), Laves particles were dissolved into the matrix completely and resulted in recrystallized large grains with bands of annealing twins. The primary MC particles and remaining phase still appeared in the matrix and grain boundaries. Compared with the as-deposited sample, the mechanical properties decreased severely as a result of the grain growth coarsening. The failure modes of all the tensile specimens were analyzed with fractography.

  4. Influence of Heat Treatments on Microstructure and Magnetic Domains in Duplex Stainless Steel S31803

    NASA Astrophysics Data System (ADS)

    Dille, Jean; Pacheco, Clara Johanna; Camerini, Cesar Giron; Malet, Loic Charles; Nysten, Bernard; Pereira, Gabriela Ribeiro; De Almeida, Luiz Henrique; Alcoforado Rebello, João Marcos

    2018-06-01

    The influence of heat treatments on microstructure and magnetic domains in duplex stainless steel S31803 is studied using an innovative structural characterization protocol. Electron backscatter diffraction (EBSD) maps as well as magnetic force microscopy (MFM) images acquired on the same region of the sample, before and after heat treatment, are compared. The influence of heat treatments on the phase volumetric fractions is studied, and several structural modifications after heat treatment are highlighted. Three different mechanisms for the decomposition of ferrite into sigma phase and secondary austenite are observed during annealing at 800 °C. MFM analysis reveals that a variety of magnetic domain patterns can exist in one ferrite grain.

  5. Radio Frequency Heat Treatments to Disinfest Dried Pulses of Cowpea Weevil

    USDA-ARS?s Scientific Manuscript database

    To explore the potential of radio frequency (RF) heat treatments as an alternative to chemical fumigants for disinfestation of dried pulses, the relative heat tolerance and dielectric properties of different stages of the cowpea weevil (Callosobruchus maculatus) was determined. Among the immature st...

  6. Heat treatment induced bacterial changes in irrigation water and their implications for plant disease management.

    PubMed

    Hao, W; Hong, C X

    2014-05-01

    A new heat treatment for recycled irrigation water using 48 °C for 24 h to inactivate Phytophthora and bacterial plant pathogens is estimated to reduce fuel cost and environmental footprint by more than 50 % compared to current protocol (95 °C for 30 s). The objective of this study was to determine the impact of this new heat treatment temperature regime on bacterial community structure in water and its practical implications. Bacterial communities in irrigation water were analyzed before and after heat treatment using both culture-dependent and -independent strategies based on the 16S ribosomal DNA. A significant shift was observed in the bacterial community after heat treatment. Most importantly, bacteria with biological control potential--Bacillus and Paenibacillus, and Pseudomonas species became more abundant at both 48 and 42 °C. These findings imply that the new heat treatment procedure not only controls existing plant pathogens but also may make the heat-treated irrigation water a more antagonistic environment against plant pathogens, promoting sustainable disease management.

  7. Structural transformations and properties of titanium-aluminum composite during heat treatment

    NASA Astrophysics Data System (ADS)

    Pervukhin, L. B.; Kryukov, D. B.; Krivenkov, A. O.; Chugunov, S. N.

    2017-08-01

    The link between the parameters of heat treatment of a layered titanium-aluminum composite material obtained by explosive welding with the formation of intermetallic compounds in it has been analyzed. The results of measurements of the microhardness of the composite and the thickness of the interlayer of the intermetallic phase obtained using different regimes of heat treatment have been discussed. Special attention has been paid to estimating the composition of the intermetallic phase in the composite prepared by explosive welding.

  8. Design and development of a smart knee pain relief pad based on vibration and alternate heating and cooling treatments.

    PubMed

    Priya, L; Krishnan, V; Vignesh, V; Ajeesh, R P

    2018-03-28

    Knee pain is one of the main health issue faced by different people in the different parts of the world. Over one fourth of the people above the age of fifty suffer from knee pain. Though there are several physiotherapy treatments for treating knee pain they are not self-applicable and those which are self-applicable by the patient are not highly efficient. This paper deals with an approach towards the use of combining two effective physiotherapy treatments which includes vibrations at acupressure points on knee and alternate heating and cooling treatments. These treatments are controlled using a smart phone in which the user can choose their setting depending on intensity and places of pain. The knee pad controlled using the smart phone serves as a self-applicable and effective knee pain treatment especially for the elderly. Heating and cooling combination therapy will be a suitable alternative for treatment of musculoskeletal diseases, decrease muscle spasms, muscular pain/tension and also increase the speed of nerve conduction, thus improving range of motion. This methodology also helps to relief the sinusitis pain, chronic low back pain and muscular sprain in athletes.

  9. Genetic characterization of Listeria monocytogenes isolates from food processing facilities before and after postcook chiller heat treatment.

    PubMed

    Eglezos, Sofroni; Dykes, Gary A; Huang, Bixing; Turner, Mark S; Seale, Richard

    2013-08-01

    Possible selection for and establishment of stress-resistant Listeria monocytogenes variants as a consequence of heating interventions is of concern to the food industry. Lineage analysis and multilocus variable number tandem repeat analysis (MLVA) was performed on 20 L. monocytogenes isolates, of which 15 were obtained before and 5 were obtained after heat treatment of a postcook meat chiller. The ctsR gene (a class III heat shock gene regulator) from 14 isolates was amplified and sequenced because previous work has indicated that spontaneous mutations can occur in this gene during heat treatment. Heat treatment of the meat chiller did not significantly change the relative abundance of the various L. monocytogenes lineages; lineage II strains (less-heat-resistant isolates) dominated both before and after heat treatment. MLVA typing confirmed that some isolates of L. monocytogenes occur both before and after heat treatment of the chiller. No isolate of L. monocytogenes indicated any likely functionally significant mutations in ctsR. This study indicates the absence of any obvious difference in the profiles of L. monocytogenes strains obtained before and after heat treatment of a meat chiller, based on the characteristics examined. Although this finding supports the effectiveness of heat treatment, the limited number of strains used and characteristics examined mean that further study on a larger scale is required before firm conclusions can be drawn.

  10. Effects of Heat Treatment on Tribological Behavior of Electroless Ni-B Coating at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Arkadeb; Barman, Tapan Kumar; Sahoo, Prasanta

    The present work investigates the effects of heat treatment on friction and wear behavior of electroless Ni-B coatings at elevated temperatures. Coating is deposited on AISI 1040 steel specimens and subjected to heat treatments at 350∘C, 400∘C and 450∘C. Coating characterization is done using scanning electron microscope, energy dispersive X-Ray analysis and X-Ray diffraction analysis. Improvement in microhardness is observed for the heat treated deposits. Further, the effect of heat treatment on the tribological behavior of the coatings at room temperature, 100∘C, 300∘C and 500∘C are analyzed on a pin-on-disc setup. Heat treatment at 350∘C causes a significant improvement in the tribological behavior at elevated temperatures. Higher heat treatment temperatures cause deterioration in the wear resistance and coefficient of friction. The wear mechanism at 100∘C is observed to be predominantly adhesive along with abrasion. While at 300∘C, abrasive wear is seen to be the governing wear phenomenon. Formation of mechanically mixed layers is noticed at both the test temperatures of 100∘C and 300∘C for the coatings heat treated at 400∘C and 450∘C test temperature. The predominant wear mechanisms at 500∘C are abrasive and fatigue for as-deposited and heat treated coatings, respectively.

  11. Heat Treatment Devices and Method of Operation Thereof to Produce Dual Microstructure Superalloys Disks

    NASA Technical Reports Server (NTRS)

    Gayda, John (Inventor); Gabb, Timothy P. (Inventor); Kantzos, Peter T. (Inventor)

    2003-01-01

    A heat treatment assembly and heat treatment methods are disclosed for producing different microstructures in the bore and rim portions of nickel-based superalloy disks, particu- larly suited for gas turbine applications. The heat treatment assembly is capable of being removed from the furnace and disassembled to allow rapid fan or oil quenching of the disk. For solutioning heat treatments of the disk, temperatures higher than that of this solvus temperature of the disk are used to produce coarse grains in the rim of each disk so as to give maximum creep and dwell crack resistance at the rim service temperature. At the same time, solution temperature lower than the solvus temperature of the disk are provided to produce fine grain in the bore of the disk so as to give maximum strength and low cycle fatigue resistance.

  12. Effect of heat treatment duration on tribological behavior of electroless Ni-(high)P coatings

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Das, S. K.; Sahoo, P.

    2016-09-01

    Electroless nickel coating occurs through an autocatalytic chemical reaction and without the aid of electricity. From tribological perspective, it is recommended due to its high hardness, wear resistance, lubricity and corrosion resistance properties. In this paper electroless Ni-P coatings with high phosphorous weight percentages are developed on mild steel (AISI 1040) substrates. The coatings are subjected to heat treatment at 300°C and 500°C for time durations up to 4 hours. The effect of heat treatment duration on the hardness as well as tribological properties is discussed in detail. Hardness is measured in a micro hardness tester while the tribological tests are carried out on a pin-on-disc tribotester. Wear is reported in the form of wear rates of the sample subjected to the test. As expected, heat treatment of electroless Ni-P coating results in enhancement in its hardness which in turn increases its wear resistance. The present study also finds that duration of heat treatment has quite an effect on the properties of the coating. Increase in heat treatment time in general results in increase in the hardness of the coating. Coefficient of friction is also found to be lesser for the samples heat treated for longer durations (4 hour). However, in case of wear, similar trend is not observed. Instead samples heat treated for 2 to 3 hour display better wear resistance compared to the same heat treated for 4 hour duration. The microstructure of the coating is also carried out to ensure about its proper development. From scanning electron microscopy (SEM), the coating is found to possess the conventional nodular structure while energy dispersive X-ray analysis (EDX) shows that the phosphorous content in the coating to be greater than 9%. This means that the current coating belongs to the high phosphorous category. From X-ray diffraction analysis (XRD), it is found that coating is amorphous in as-deposited condition but transforms into a crystalline structure with

  13. Effects of heat treatment on oil-binding ability of rice flour.

    PubMed

    Tabara, Aya; Nakagawa, Mariko; Ushijima, Yuki; Matsunaga, Kotaro; Seguchi, Masaharu

    2015-01-01

    Heat-treated (120 °C for 120 min) rice flour showed high affinity to oil (oil-binding ability). This oil-binding ability could be observed by shaking the heat-treated rice flour (2.0 g), oil (4.0 mL), and water (20 mL) vigorously in a test tube, and the oil bound to the rice flour sank into the water. To examine the time-dependent levels of the oil-binding ability, rice flour was heat-treated at 120 °C for 10, 20, 40, 60, and 120 min, and the precipitated volume of oil/rice flour complex increased with an increase of the heating time. The oil-binding ability of the rice flour was not affected by the treatments with diethyl ether or boiled chloroform/methanol (2:1) solutions, which suggested no relationship to the oil in the rice flour, but was lost upon alkali (0.2% NaOH solution) or pepsin treatment, which suggested its relationship to the rice proteins.

  14. Effect of heat treatment and enzymatic digestion on the B cell epitopes of cow's milk proteins.

    PubMed

    Morisawa, Y; Kitamura, A; Ujihara, T; Zushi, N; Kuzume, K; Shimanouchi, Y; Tamura, S; Wakiguchi, H; Saito, H; Matsumoto, K

    2009-06-01

    Processing milk leads to changes in clinical allergenicity. However, the mechanism by which heat treatment affects the allergenicity of milk proteins is not fully understood. We investigated the effect of heat treatment and enzymatic digestion on the allergenicity of B cell epitopes of milk proteins using a histamine release assay. Human basophils were passively sensitized using sera from 10 patients with allergies to cow's milk. All the patients experienced symptoms immediately after ingesting milk. The human basophils were obtained from umbilical cord blood mononuclear cells after culturing the mononuclear cells for 3-4 weeks in the presence of IL-3. After sensitization with 10% patient sera for 48 h, the cells were stimulated with untreated, heat-treated, or heat-treated and pepsin-and-trypsin-digested beta-lactoglobulin or alpha-casein for 1 h. The histamine concentrations in the supernatants were then measured by radioimmunoassay. Heat treatment alone did not alter the molecular weight of beta-lactoglobulin or alpha-casein. Heat treatment of beta-lactoglobulin significantly increased its susceptibility to enzymatic digestion in a time- and temperature-dependent manner and reduced its ability to induce histamine release from sensitized basophils. Similar findings were not observed for alpha-casein. The combination of heat treatment and enzymatic digestion reduced the abilities of both beta-lactoglobulin and alpha-casein to induce histamine release from passively sensitized basophils. Heat treatment reduced the allergenicity of beta-lactoglobulin by inducing conformational changes and by increasing its susceptibility to enzymatic digestion, both of which disrupted B cell epitopes, whereas heat treatment alone did not alter the allergenicity of alpha-casein.

  15. Conjugate heat transfer analysis of an ultrasonic molten metal treatment system

    NASA Astrophysics Data System (ADS)

    Zhu, Youli; Bian, Feilong; Wang, Yanli; Zhao, Qian

    2014-09-01

    In piezoceramic ultrasonic devices, the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material. While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber, so that it is difficult to experimentally measure the temperature of the transducer and its variation with time, which bring heavy difficulty to the design of the ultrasonic molten metal treatment system. To find a way out, conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method. In modeling of the system, the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation. Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution. Numerical results show that, after about 350 s of working time, temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling. At 240 s, The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2, while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2, which indicates the effectiveness of heat insulation of the asbestos pad. Transient heat transfer film coefficient and its distribution, which are difficult to be measured experimentally are also obtained through numerical simulation. At 240 s, the heat transfer film coefficient in the surface of the transducer ranges from -17.86 to 20.17 W/(m2 · K). Compared with the trial and error method based on the test, the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.

  16. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamum, Md Abdullah A.; Elmustafa, Abdelmageed A,; Stutzman, Marcy L.

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed amore » significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.« less

  17. Influence of Dispersant and Heat Treatment on the Morphology of Nanocrystalline Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Pan, Yusong; Xiong, Dangsheng

    2010-10-01

    Natural biological hard tissues are biocomposites of proteins and hydroxyapatite (HA) with superior strength. Nanometer scale HAp is the key material to manufacture bone substitute. In this work, nano-sized HA particles were synthesized by a wet method using orthophosphoric acid and calcium hydroxide as raw materials. The prepared nanocrystalline HAp was characterized for its phase purity and nano-scale morphological structure by XRD, TEM, and FTIR. The influences of heat treatment temperature and dispersant on the properties of HAp were also investigated. The results indicated that nano-particles were pure single-phase HAp with a diameter of 25-70 nm and length of 50-180 nm depending on heat treatment temperature. The morphology and crystallite size of HAp change with heat treatment temperature. After heat treating, the crystallinity of these nano-particles increased and its morphology transformed from needle-like to sphere-like structure. The dispersant is beneficial to prevent the growth of HA particles and provide a uniform particle size distribution. Moreover, the HAp tends to form small agglomerates in the absence of dispersant.

  18. Corrosion performance of 7075 alloy under laser heat treatment

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Su, Ruiming; Qu, Yingdong; Li, Rongde

    2018-05-01

    Microstructure, exfoliation corrosion (EXCO), intergranular corrosion (IGC) and potentidynamic polarization test of the 7075 aluminum alloy after retrogression and re-aging (RRA) treatment, and laser retrogression and re-aging (LRRA), respectively, were studied by using scanning electron microscope, and transmission electron microscope (TEM). The results show that after pre-aging, laser treatment (650 W, 2 mm s‑1) and re-aging a lot of matrix precipitates of alloy were precipitated again. The semi-continuous grain boundary precipitates and the wider precipitate-free zones (PFZ) improve the corrosion resistance of the alloy. The corrosion properties of the alloy after LRRA (650 W, 2 mm s‑1) treatment are better than that after RRA treatment.

  19. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1986-01-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistant as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  20. Treatment and prevention of pediatric heat-related illnesses at mass gatherings and special events.

    PubMed

    Bernardo, Lisa Marie; Crane, Patricia A; Veenema, Tener Goodwin

    2006-01-01

    Pediatric heat-related illnesses are likely to occur during mass gatherings and special events. Because critical care nurses may be called upon to provide care during such events, education in the recognition, treatment, and prevention of these illnesses is essential. This article describes the pathophysiology of heat-related illnesses and their recognition and treatment at mass gatherings and special events. Interventions to prevent heat-related illnesses at these events are discussed.

  1. Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment

    NASA Astrophysics Data System (ADS)

    Lu, Yu-Peng; Song, Yi-Zhong; Zhu, Rui-Fu; Li, Mu-Sen; Lei, Ting-Quan

    2003-02-01

    Heat treatment was expected to enhance the long-term reliability of hydroxyapatite (HA) coatings on metal substrates. In this study, factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment were carefully analyzed. The phases were characterized by using X-ray diffraction (XRD), the OH - ion contents were determined by Fourier transform infrared (FTIR) spectroscopy. Of the involved factors, heating temperature is of more importance. The appropriate heat treatments is (600- 700 ° C)×2 h for coatings made from fine particles (10-20 μm) and 600 ° C×2 h for coatings made from coarse particles (50-80 μm). The excessive high temperatures and long holding times were unfavorable for the structural integrity of HA.

  2. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-10 Postweld heat treatment... as a unit in compliance with the requirements of AAR Specifications for Tank Cars, appendix W (IBR...

  3. 49 CFR 179.300-10 - Postweld heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-10 Postweld heat treatment... as a unit in compliance with the requirements of AAR Specifications for Tank Cars, appendix W (IBR...

  4. The effects of heat treatment on technological properties in Red-bud maple (Acer trautvetteri Medw.) wood.

    PubMed

    Korkut, Süleyman; Kök, M Samil; Korkut, Derya Sevim; Gürleyen, Tuğba

    2008-04-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on technological properties of Red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures (120 degrees C, 150 degrees C and 180 degrees C) and for varying durations (2h, 6h and 10h). The technological properties of heat-treated wood samples and control samples were tested. Compression strength parallel to grain, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength, and tension strength perpendicular to grain were determined. The results showed that technological strength values decreased with increasing treatment temperature and treatment times. Red-bud maple wood could be utilized by using proper heat treatment techniques with minimal losses in strength values in areas where working, and stability such as in window frames, are important factors.

  5. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment.

    PubMed

    Bao, Mianmian; Liu, Ying; Wang, Xiaoyan; Yang, Lei; Li, Shengyi; Ren, Jing; Qin, Gaowu; Zhang, Erlin

    2018-03-01

    Previous study has shown that Ti-3Cu alloy shows good antibacterial properties (>90% antibacterial rate), but the mechanical properties still need to be improved. In this paper, a series of heat-treatment processes were selected to adjust the microstructure in order to optimize the properties of Ti-3Cu alloy. Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy at different conditions was systematically investigated by X-ray diffraction, optical microscope, scanning electron microscope, transmission electron microscopy, electrochemical measurements, tensile test, fatigue test and antibacterial test. Heat treatment could significantly improve the mechanical properties, corrosion resistance and antibacterial rate due to the redistribution of copper elements and precipitation of Ti 2 Cu phase. Solid solution treatment increased the yield strength from 400 to 740 MPa and improved the antibacterial rate from 33% to 65.2% while aging treatment enhanced the yield strength to 800-850 MPa and antibacterial rate (>91.32%). It was demonstrated that homogeneous distribution and fine Ti 2 Cu phase plays a very important role in mechanical properties, corrosion resistance and antibacterial properties.

  6. Age predicts cardiovascular, but not thermoregulatory, responses to humid heat stress.

    PubMed

    Havenith, G; Inoue, Y; Luttikholt, V; Kenney, W L

    1995-01-01

    Cross-section comparisons of the effect of age on physiological responses to heat stress have yielded conflicting results, in part because of the inability to separate chronological age from factors which change in concert with the biological aging process. The present study was designed to examine the relative influence of age on cardiovascular and thermoregulatory responses to low intensity cycle exercise (60 W for 1 h) in a warm humid environment (35 degrees C, 80% relative humidity). Specifically, the relative importance of age compared to other individual characteristics [maximal oxygen uptake (VO2max), physical activity level, anthropometry, and adiposity] was determined by multiple regression analysis in a heterogeneous sample of 56 subjects in which age (20-73 years) and VO2max (1.86-4.44 l.min-1) were not interrelated. Dependent variables (with ranges) included final values of thermoregulatory responses [rectal temperature (Tre, 37.8-39.2 degrees C), calculated heat storage (S, 3.4-8.1 J.g-1), sweat loss (238-847 g.m-2)] and cardiovascular responses [heart rate (HR, 94-176 beats.min-1), forearm blood flow (FBF, 5.3-31.3 ml.100 ml-1.min-1), mean arterial blood pressure (MAP, 68-122 mmHg), and forearm vascular conductance (FVC = FBF.MAP-1, 0.06-0.44 ml.100 ml-1.min-1.mmHg-1). Age had no significant influence on Tre, S, or sweat loss, all of which were closely related to VO2max. On the other hand, HR, MAP, FBF, and FVC were related to both age and VO2max. Anthropometric variables and adiposity had secondary, but statistically significant, effects on MAP, FBF, FVC, and sweat loss.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity

    PubMed Central

    Wright Beatty, Heather E.; Keillor, Jocelyn M.; Hardcastle, Stephen G.; Boulay, Pierre; Kenny, Glen P.

    2015-01-01

    Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) m·s−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. PMID:25874223

  8. Microstructure evolution of heat treated NiTi alloys

    NASA Astrophysics Data System (ADS)

    Losertová, M.; Štencek, M.; Matýsek, D.; Štefek, O.; Drápala, J.

    2017-11-01

    Superelastic behavior of off-stoichiometric NiTi alloys is significantly affected by microstructure changes due to heat treatment. Applying appropriate thermal treatments important effects on microstructural changes, transformation temperatures and thermomechanical properties of final NiTi products can be achieved. The experimental samples of NiTi alloy with 55.8 wt.% Ni were submitted to heat treatment and the microstructures before and after the treatment were observed. The thermal regimes consisted of annealing treatment at 600 °C for 1 hour followed by water quenching and of ageing at eight different temperatures (250, 270, 290, 300, 350, 400, 450 and 500 °C) for 30 minutes. Microstructure features studied by means of optical and scanning electron microscopies, EDX microanalyses, X-ray diffraction analyses and microhardness measurement, have shown that higher ageing temperatures led to microstructure changes and corresponding increase in microhardness.

  9. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-11 Postweld heat treatment... with the requirements of AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of this...

  10. 49 CFR 179.220-11 - Postweld heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment... attached must comply with AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of this subchapter...

  11. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-11 Postweld heat treatment... with the requirements of AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of this...

  12. 49 CFR 179.200-11 - Postweld heat treatment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-11 Postweld heat treatment... with the requirements of AAR Specifications for Tank Cars, appendix W (IBR, see § 171.7 of this...

  13. Anodic Oxidative Modification of Egg White for Heat Treatment.

    PubMed

    Takahashi, Masahito; Handa, Akihiro; Yamaguchi, Yusuke; Kodama, Risa; Chiba, Kazuhiro

    2016-08-31

    A new functionalization of egg white was achieved by an electrochemical reaction. The method involves electron transfer from thiol groups of egg white protein to form disulfide bonds. The oxidized egg white produced less hydrogen sulfide during heat treatment; with sufficient application of electricity, almost no hydrogen sulfide was produced. In addition, gels formed by heating electrochemically oxidized egg white exhibited unique properties, such as a lower gelation temperature and a softened texture, presumably due to protein aggregation and electrochemically mediated intramolecular disulfide bond formation.

  14. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.

    PubMed

    Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker

    2008-04-01

    Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens.

  15. Influence of different heat treatment methods of titania film on performance of DSSCs

    NASA Astrophysics Data System (ADS)

    More, Venumadhav; Mokurala, Krishna; Bhargava, Parag

    2018-04-01

    Titania mesoporous film is a key component of dye-sensitized solar cells (DSSCs) as it transfers electrons from dye molecule to external circuit through the transparent conducting oxide (TCO). Interparticle connectivity, porosity and cracks in the titania films play an important role in determining the performance of DSSCs. The heating schedule with respect to the repetitive coating to build up titania film thickness impacts the titania film characteristics. In the present study, experiments were designed to carry out heat treatments with expectation of improving connectivity and healing cracks. Repetitive screen printing was carried out with either heat treatment after each print step (multiple sintering) or the heat treatment was carried out just once after the desired thickness had been attained (single-step sintering). Interconnectivity of the titania particles in the sintered titania film was analyzed by impedance spectroscopy and nanoindentation. Titania films sintered by MS showed better performance in terms of higher efficiency for the corresponding DSSCs than those prepared using titania films sintered by SS.

  16. Effects of Pressure, Temperature, Treatment Time, and Storage on Rheological, Textural, and Structural Properties of Heat-Induced Chickpea Gels

    PubMed Central

    Alvarez, María Dolores; Fuentes, Raúl; Canet, Wenceslao

    2015-01-01

    Pressure-induced gelatinization of chickpea flour (CF) was studied in combination with subsequent temperature-induced gelatinization. CF slurries (with 1:5 flour-to-water ratio) and CF in powder form were treated with high hydrostatic pressure (HHP), temperature (T), and treatment time (t) at three levels (200, 400, 600 MPa; 10, 25, 50 °C; 5, 15, 25 min). In order to investigate the effect of storage (S), half of the HHP-treated CF slurries were immediately analyzed for changes in oscillatory rheological properties under isothermal heating at 75 °C for 15 min followed by cooling to 25 °C. The other half of the HHP-treated CF slurries were refrigerated (at 4 °C) for one week and subsequently analyzed for changes in oscillatory properties under the same heating conditions as the unrefrigerated samples. HHP-treated CF in powder form was analyzed for changes in textural properties of heat-induced CF gels under isothermal heating at 90 °C for 5 min and subsequent cooling to 25 °C. Structural changes during gelatinization were investigated using microscopy. Pressure had a more significant effect on rheological and textural properties, followed by T and treatment t (in that order). Gel aging in HHP-treated CF slurries during storage was supported by rheological measurements. PMID:28231191

  17. Effects of heat treatment on crystallographic and magnetic properties of magnetic steels

    NASA Astrophysics Data System (ADS)

    Battistini, L.; Benasciutti, R.; Tassi, A.

    1994-05-01

    The keeper and the head of a modern electrovalve for electronic injection can be succesfully realized using AISI 430 ferromagnetic steel. Important improvements in the performance of the device, mainly in terms of its regularity and energy savings, are possible by means of a better comprehension of the origins of the steel's magnetic properties. The magnetic behaviour of the AISI 430 steel upon different heat treatments was investigated, looking for the best compromise between time saving in the heat treatments and the ensuing magnetic properties of the material. In particular, the relationships between the structural effects of the heat treatments and the magnetic behaviour of the samples were studied. Values of the coercive force Hc, residual induction Br, maximum permeability μ max and the approach to saturation values for H and B were determined by mean of a computerized permeameter, based on a Sanford-Bennet closed yoke for differently shaped samples.

  18. Evaluation of focused ultrasound algorithms: Issues for reducing pre-focal heating and treatment time.

    PubMed

    Yiannakou, Marinos; Trimikliniotis, Michael; Yiallouras, Christos; Damianou, Christakis

    2016-02-01

    Due to the heating in the pre-focal field the delay between successive movements in high intensity focused ultrasound (HIFU) are sometimes as long as 60s, resulting to treatment time in the order of 2-3h. Because there is generally a requirement to reduce treatment time, we were motivated to explore alternative transducer motion algorithms in order to reduce pre-focal heating and treatment time. A 1 MHz single element transducer with 4 cm diameter and 10 cm focal length was used. A simulation model was developed that estimates the temperature, thermal dose and lesion development in the pre-focal field. The simulated temperature history that was combined with the motion algorithms produced thermal maps in the pre-focal region. Polyacrylimde gel phantom was used to evaluate the induced pre-focal heating for each motion algorithm used, and also was used to assess the accuracy of the simulation model. Three out of the six algorithms having successive steps close to each other, exhibited severe heating in the pre-focal field. Minimal heating was produced with the algorithms having successive steps apart from each other (square, square spiral and random). The last three algorithms were improved further (with small cost in time), thus eliminating completely the pre-focal heating and reducing substantially the treatment time as compared to traditional algorithms. Out of the six algorithms, 3 were successful in eliminating the pre-focal heating completely. Because these 3 algorithms required no delay between successive movements (except in the last part of the motion), the treatment time was reduced by 93%. Therefore, it will be possible in the future, to achieve treatment time of focused ultrasound therapies shorter than 30 min. The rate of ablated volume achieved with one of the proposed algorithms was 71 cm(3)/h. The intention of this pilot study was to demonstrate that the navigation algorithms play the most important role in reducing pre-focal heating. By evaluating in

  19. Impact of heat treatment on miscibility of proteins and disaccharides in frozen solutions.

    PubMed

    Izutsu, Ken-ichi; Yomota, Chikako; Okuda, Haruhiro; Kawanishi, Toru; Randolph, Theodore W; Carpenter, John F

    2013-10-01

    The purpose of this study was to elucidate the effect of heat treatment (annealing) on the miscibility of concentrated protein and disaccharide mixtures in the freezing segment of lyophilization. Frozen solutions containing a protein (e.g., recombinant human albumin, chicken egg lysozyme, bovine plasma immunoglobulin G, or a humanized IgG1k monoclonal antibody) and a non-reducing disaccharide (e.g., sucrose or trehalose) showed single thermal transitions of the solute mixtures (glass transition temperature of maximally freeze-concentrated solutes: T(g)(')) in their first heating scans. Heat treatment (e.g., -5 °C, 30 min) of some disaccharide-rich mixture frozen solutions at temperatures far above their T(g)(') induced two-step T(g)(') transitions in the subsequent scans, suggesting the separation of the solutes into concentrated protein-disaccharide mixture phase and disaccharide phase. Other frozen solutions showed a single transition of the concentrated solute mixture both before and after heat treatment. The apparent effects of the heat treatment temperature and time on the changes in thermal properties suggest molecular reordering of the concentrated solutes from a kinetically fixed mixture state to a more thermodynamically favorable state as a result of increased mobility. The implications of these phenomena on the quality of protein formulations are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Heat Treatment Improves Glucose Tolerance and Prevents Skeletal Muscle Insulin Resistance in Rats Fed a High-Fat Diet

    PubMed Central

    Gupte, Anisha A.; Bomhoff, Gregory L.; Swerdlow, Russell H.; Geiger, Paige C.

    2009-01-01

    OBJECTIVE—Heat treatment and overexpression of heat shock protein 72 (HSP72) have been shown to protect against high-fat diet–induced insulin resistance, but little is known about the underlying mechanism or the target tissue of HSP action. The purpose of this study is to determine whether in vivo heat treatment can prevent skeletal muscle insulin resistance. RESEARCH DESIGN AND METHODS—Male Wistar rats were fed a high-fat diet (60% calories from fat) for 12 weeks and received a lower-body heat treatment (41°C for 20 min) once per week. RESULTS—Our results show that heat treatment shifts the metabolic characteristics of rats on a high-fat diet toward those on a standard diet. Heat treatment improved glucose tolerance, restored insulin-stimulated glucose transport, and increased insulin signaling in soleus and extensor digitorum longus (EDL) muscles from rats fed a high-fat diet. Heat treatment resulted in decreased activation of Jun NH2-terminal kinase (JNK) and inhibitor of κB kinase (IKK-β), stress kinases implicated in insulin resistance, and upregulation of HSP72 and HSP25, proteins previously shown to inhibit JNK and IKK-β activation, respectively. Mitochondrial citrate synthase and cytochrome oxidase activity decreased slightly with the high-fat diet, but heat treatment restored these activities. Data from L6 cells suggest that one bout of heat treatment increases mitochondrial oxygen consumption and fatty acid oxidation. CONCLUSIONS—Our results indicate that heat treatment protects skeletal muscle from high-fat diet–induced insulin resistance and provide strong evidence that HSP induction in skeletal muscle could be a potential therapeutic treatment for obesity-induced insulin resistance. PMID:19073766

  1. The influence of distal-end heat treatment on deflection of nickel-titanium archwire.

    PubMed

    Silva, Marcelo Faria da; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. There were no statistically significant differences between the tested groups with the same size and brand of wire. Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions.

  2. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    NASA Astrophysics Data System (ADS)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  3. Heat treatment stabilizes welded aluminum jigs and tool structures

    NASA Technical Reports Server (NTRS)

    Mehnert, R. S.

    1966-01-01

    Heat treatment processes, applied after welding but before machining, imparts above normal stability to welded aluminum jigs and tool structures. Weight saving will not be realized in these tools if rigidity equal to that of a comparable steel tool is required.

  4. Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat

    USDA-ARS?s Scientific Manuscript database

    Eco-friendly approaches to postharvest disease management in harvested commodities, such as heat treatments and biological control utilizing antagonistic yeasts, is an active research field. The current review focuses on the physiological and molecular aspects of heat treatment on all the major par...

  5. Effect of heat treatment of wood on the morphology, surface roughness and penetration of simulated and human blood.

    PubMed

    Rekola, J; Lassila, L V J; Nganga, S; Ylä-Soininmäki, A; Fleming, G J P; Grenman, R; Aho, A J; Vallittu, P K

    2014-01-01

    Wood has been used as a model material for the development of novel fiber-reinforced composite bone substitute biomaterials. In previous studies heat treatment of wood was perceived to significantly increase the osteoconductivity of implanted wood material. The objective of this study was to examine some of the changing attributes of wood materials that may contribute to improved biological responses gained with heat treatment. Untreated and 140°C and 200°C heat-treated downy birch (Betula pubescens Ehrh.) were used as the wood materials. Surface roughness and the effect of pre-measurement grinding were measured with contact and non-contact profilometry. Liquid interaction was assessed with a dipping test using two manufactured liquids (simulated blood) as well as human blood. SEM was used to visualize possible heat treatment-induced changes in the hierarchical structure of wood. The surface roughness was observed to significantly decrease with heat treatment. Grinding methods had more influence on the surface contour and roughness than heat treatment. The penetration of the human blood in the 200°C heat-treated exceeded that in the untreated and 140°C heat-treated materials. SEM showed no significant change due to heat treatment in the dry-state morphology of the wood. The results of the liquid penetration test support previous findings in literature concerning the effects of heat treatment on the biological response to implanted wood. Heat-treatment has only a marginal effect on the surface contour of wood. The highly specialized liquid conveyance system of wood may serve as a biomimetic model for the further development of tailored fiber-composite materials.

  6. Effects of Heat Treatment on SiC-SiC Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Knauf, Michael W.

    Residual stresses resulting from the manufacturing process found within a silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite were thoroughly investigated through the use of high-energy X-ray diffraction and Raman microspectroscopy. The material system studied was a Rolls-Royce composite produced with Hi-Nicalon fibers woven into a five harness satin weave, coated with boron nitride and silicon carbide interphases, and subsequently infiltrated with silicon carbide particles and a silicon matrix. Constituent stress states were measured before, during, and after heat treatments ranging from 900 °C to 1300 °C for varying times between one and sixty minutes. Stress determination methods developed through these analyses can be utilized in the development of ceramic matrix composites and other materials employing boron-doped silicon. X-ray diffraction experiments were performed at the Argonne National Laboratory Advanced Photon Source to investigate the evolution of constituent stresses through heat treatment, and determine how stress states are affected at high temperature through in situ measurements during heat treatments up to 1250 °C for 30 minutes. Silicon carbide particles in the as-received condition exhibited a nearly isotropic stress state with average tensile stresses of approximately 300 MPa. The silicon matrix exhibited a complimentary average compressive stress of approximately 300 MPa. Strong X-ray diffraction evidence is presented demonstrating solid state boron diffusion and increased boron solubility found in silicon throughout heat treatment. While the constituent stress states did evolve through the heat treatment cycles, including approaching nearly stress-free conditions at temperatures close to the manufacturing temperature, no permanent relaxation of stress was observed. Raman spectroscopy was utilized to investigate stresses found within silicon carbide particles embedded within the matrix and the silicon matrix as an alternate

  7. Laser heat treatment of welds for various stainless steels

    NASA Astrophysics Data System (ADS)

    Dontu, O.; Ganatsios, S.; Alexandrescu, N.; Predescu, C.

    2008-03-01

    The paper presents a study concerning the post - weld heat treatment of a duplex stainless steel. Welded joint samples were surface - treated using the same laser source adopted during welding in order to counterbalance the excess of ferrite formed in the welding process.

  8. Impact of heat treatment on the physical properties of noncrystalline multisolute systems concentrated in frozen aqueous solutions.

    PubMed

    Izutsu, Ken-ichi; Yomota, Chikako; Kawanishi, Toru

    2011-12-01

    The purpose of this study was to elucidate the effect of heat treatment on the miscibility of multiple concentrated solutes that mimic biopharmaceutical formulations in frozen solutions. The first heating thermal analysis of frozen solutions containing either a low-molecular-weight saccharide (e.g., sucrose, trehalose, and glucose) or a polymer (e.g., polyvinylpyrrolidone and dextran) and their mixtures from -70°C showed a single transition at glass transition temperature of maximally freeze-concentrated solution (T(g) ') that indicated mixing of the freeze-concentrated multiple solutes. The heat treatment of single-solute and various polymer-rich mixture frozen solutions at temperatures far above their T(g) ' induced additional ice crystallization that shifted the transitions upward in the following scan. Contrarily, the heat treatment of frozen disaccharide-rich solutions induced two-step heat flow changes (T(g) ' splitting) that suggested separation of the solutes into multiple concentrated noncrystalline phases, different in the solute compositions. The extent of the T(g) ' splitting depended on the heat treatment temperature and time. Two-step glass transition was observed in some sucrose and dextran mixture solids, lyophilized after the heat treatment. Increasing mobility of solute molecules during the heat treatment should allow spatial reordering of some concentrated solute mixtures into thermodynamically favorable multiple phases. Copyright © 2011 Wiley-Liss, Inc.

  9. Evaluation of dry heat treatment of soft wheat flour for the production of high ratio cakes.

    PubMed

    Keppler, S; Bakalis, S; Leadley, C E; Sahi, S S; Fryer, P J

    2018-05-01

    An accurate method to heat treat flour samples has been used to quantify the effects of heat treatment on flour functionality. A variety of analytical methods has been used such as oscillatory rheology, rheomixer, solvent retention capacity tests, and Rapid Visco Analysis (RVA) in water and in aqueous solutions of sucrose, lactic acid, and sodium carbonate. This work supports the hypothesis that heat treatment facilitates the swelling of starch granules at elevated temperature. Results furthermore indicated improved swelling ability and increased interactions of flour polymers (in particular arabinoxylans) of heat treated flour at ambient conditions. The significant denaturation of the proteins was indicated by a lack of gluten network formation after severe heat treatments as shown by rheomixer traces. Results of these analyses were used to develop a possible cake flour specification. A method was developed using response surfaces of heat treated flour samples in the RVA using i) water and ii) 50% sucrose solution. This can uniquely characterise the heat treatment a flour sample has received and to establish a cake flour specification. This approach might be useful for the characterisation of processed samples, rather than by baking cakes. Hence, it may no longer be needed to bake a cake after flour heat treatment to assess the suitability of the flour for high ratio cake production, but 2 types of RVA tests suffice. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel

    NASA Astrophysics Data System (ADS)

    Avishan, Behzad

    2017-09-01

    The microstructural evolution and consequent changes in strength and ductility of advanced NANOBAIN steel during prolonged isothermal heat-treatment stages were investigated. The microstructure and mechanical properties of nanostructured bainite were not expected to be influenced by extending the heat-treatment time beyond the optimum value because of the autotempering phenomenon and high tempering resistance. However, experimental results indicated that the microstructure was thermodynamically unstable and that prolonged austempering resulted in carbon depletion from high-carbon retained austenite and carbide precipitations. Therefore, austenite became thermally less stable and partially transformed into martensite during cooling to room temperature. Prolonged austempering did not lead to the typical tempering sequence of bainite, and the sizes of the microstructural constituents were independent of the extended heat-treatment times. This independence, in turn, resulted in almost constant ultimate tensile strength values. However, microstructural variations enhanced the yield strength and the hardness of the material at extended isothermal heat-treatment stages. Finally, although microstructural changes decreased the total elongation and impact toughness, considerable combinations of mechanical properties could still be achieved.

  11. Susceptibility of Plodia interpunctella (Lepidoptera: Pyralidae) developmental stages to high temperatures used during structural heat treatments.

    PubMed

    Mahroof, R; Subramanyam, B

    2006-12-01

    Heating the ambient air of a whole, or a portion of a food-processing facility to 50 to 60 degrees C and maintaining these elevated temperatures for 24 to 36 h, is an old technology, referred to as heat treatment. There is renewed interest in adopting heat treatments around the world as a viable insect control alternative to fumigation with methyl bromide. There is limited published information on responses of the Indian meal moth, Plodia interpunctella (Hübner), exposed to elevated temperatures typically used during heat treatments. Time-mortality relationships were determined for eggs, fifth-instars (wandering-phase larvae), pupae, and adults of P. interpunctella exposed to five constant temperatures between 44 and 52 degrees C. Mortality of each stage increased with increasing temperature and exposure time. In general, fifth-instars were the most heat-tolerant stage at all temperatures tested. Exposure for a minimum of 34 min at 50 degrees C was required to kill 99% of the fifth-instars. It is proposed that heat treatments aimed at controlling fifth-instars should be able to control all other stages of P. interpunctella.

  12. The influence of distal-end heat treatment on deflection of nickel-titanium archwire

    PubMed Central

    da Silva, Marcelo Faria; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    Objective: The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. Material and Methods: A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. Results: There were no statistically significant differences between the tested groups with the same size and brand of wire. Conclusions: Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions. PMID:27007766

  13. Cytotoxicity of denture base resins: effect of water bath and microwave postpolymerization heat treatments.

    PubMed

    Jorge, Janaina Habib; Giampaolo, Eunice Teresinha; Vergani, Carlos Eduardo; Machado, Ana Lúcia; Pavarina, Ana Cláudia; Carlos, Iracilda Zeppone

    2004-01-01

    This study compared the effect of two postpolymerization heat treatments on the cytotoxicity of three denture base resins on L929 cells using 3H-thymidine incorporation and MTT assays. Sample disks of Lucitone 550, QC 20, and Acron MC resins were fabricated under aseptic conditions and stored in distilled water at 37 degrees C for 48 hours. Specimens were then divided into three groups: (1) heat treated in microwave oven for 3 minutes at 500 W; (2) heat treated in water bath at 55 degrees C for 60 minutes; and (3) no heat treatment. Eluates were prepared by placing three disks into a sterile glass vial with 9 mL of Eagle's medium and incubating at 37 degrees C for 24 hours. The cytotoxic effect from the eluates was evaluated using the 3H-thymidine incorporation and MTT assays, which reflect DNA synthesis levels and cell metabolism, respectively. The components leached from the resins were cytotoxic to L929 cells when 3H-thymidine incorporation assay was employed. In contrast, eluates from all resins revealed noncytotoxic effects as measured by MTT assay. For both MTT assay and 3H-thymidine incorporation, the heat treatments did not decrease the cytotoxicity of the materials tested. Resins were graded by 3H-thymidine incorporation assay as slightly cytotoxic and by MTT assay as noncytotoxic. Cytotoxicity of the denture base materials was not influenced by microwave or water bath heat treatment.

  14. The effects of cold rolling and the subsequent heat treatments on the shape memory and the superelasticity characteristics of Cu73Al16Mn11 shape memory alloy

    NASA Astrophysics Data System (ADS)

    Babacan, N.; Ma, J.; Turkbas, O. S.; Karaman, I.; Kockar, B.

    2018-01-01

    In the present study, the effect of thermo-mechanical treatments on the shape memory and the superelastic characteristics of Cu73Al16Mn11 (at%) shape memory alloy were investigated. 10%, 50% and 70% cold rolling and subsequent heat treatment processes were conducted to achieve strengthening via grain size refinement. 70% grain size reduction compared to the homogenized condition was obtained using 70% cold rolling and subsequent recrystallization heat treatment technique. Moreover, 10% cold rolling was applied to homogenized specimen to reveal the influence of the low percentage cold rolling reduction with no heat treatment on shape memory properties of Cu73Al16Mn11 (at%) alloy. Stress free transformation temperatures, monotonic tension and superelasticity behaviors of these samples were compared with those of the as-aged sample. Isobaric heating-cooling experiments were also conducted to see the dimensional stability of the samples as a function of applied stress. The 70% grain-refined sample exhibited better dimensional stability showing reduced residual strain levels upon thermal cycling under constant stress compared with the as-aged material. However, no improvement was achieved with grain size reduction in the superelasticity experiments. This distinctive observation was attributed to the difference in the magnitude of the stress levels achieved during two different types of experiments which were the isobaric heating-cooling and superelasticity tests. Intergranular fracture due to the stress concentration overcame the strengthening effect via grain refinement in the superelasticity tests at higher stress values. On the other hand, the strength of the material and resistance of material against plastic deformation upon phase transformation were increased as a result of the grain refinement at lower stress values in the isobaric heating-cooling experiments.

  15. Effect of isothermal heat treatment on microstructure and mechanical properties of Reduced Activation Ferritic Martensitic steel

    NASA Astrophysics Data System (ADS)

    Chandravathi, K. S.; Sasmal, C. S.; Laha, K.; Parameswaran, P.; Nandagopal, M.; Vijayanand, V. D.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2013-04-01

    Hardness, tensile properties and microstructural changes in 9Cr-1W-0.06Ta-0.22V-0.08C Reduced Activation Ferritic-Martensitic steel have been investigated after subjecting the steel with isothermal heat treatments for 5 min at temperatures in the range 973-1473 K (below Ac1 to above Ac3 transformation temperatures) followed by oil quenching and tempering at 1033 K for 1 h. These studies have been carried out in an effort to assess the strength of the steel at different microstructural conditions. Optical, scanning and transmission electron microscopic investigations have been carried out to assess the microstructural changes of the steel upon various heat treatments. The steel developed predominantly tempered martensitic structure after the heat treatments. The hardness, tensile strength and the prior austenitic grain size of the steel exhibited minimum values for soaking heat treatment in the intercritical temperature range (i.e.) between Ac1 and Ac3; whereas the ductility was maximum. With increase in isothermal heat treatment temperature above Ac3, hardness, tensile strength and grain size of the steel were found to increase with consequent decrease in tensile ductility. TEM investigations revealed that the coarsening of subgrain and precipitates at grain and sub-grain boundaries on heat treatment of the steel in the inter-critical temperature range. The tensile properties of the steel have been correlated with microstructure.

  16. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingerich, Daniel B; Bartholomew, Timothy V; Mauter, Meagan S

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient tomore » passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without

  17. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels

    NASA Astrophysics Data System (ADS)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1985-01-01

    In the previous papers, a new heat treatment for improving the lower temperature mechanical propertise of the ultrahigh strength low alloy steels was suggested by the authors which produces a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite through isothermal transformation at 593 K for a short time followed by water quenching (after austenitization at 1133 K). In this paper, two commercial Japanese ultrahigh strength steels, 0.40 pct C-Ni-Cr-Mo (AISI 4340 type) and 0.40 pct C-Cr-Mo (AISI 4140 type), have been studied to determine the effect of the modified heat treatment, coupled above new heat treatment with γ ⇆ α' repctitive heat treatment, on the mechanical properties from ambient temperature (287 K) to 123 K. The results obtained for various test temperatures have been compared with those for the new heat treatment reported previously and the conventional 1133 K direct water quenching treatment. The incorporation of intermediate four cyclic γ ⇆ α' repctitive heat treatment steps (after the initial austenitization at 1133 K and oil quenching) into the new heat treatment reported previously, as compared with the conventional 1133 K direct water quenching treatment, significantly improved 0.2 pct proof stress as well as notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel at similar fracture ductility levels from 287 to 123 K. Also, this heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved both 0.2 pct proof stress and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel with increased fracture ductility at 203 K and above. The microstructure consists of mixed areas of ultrafine grained martensite, within which is the refined blocky, highly dislocated structure, and the second phase lower bainite (about 15 vol pct), which appears in acicular form and partitions prior austenite grains. This newly developed heat treatment makes it possible to modify

  18. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Ming-Liang, E-mail: mlzhu@ecust.edu.cn; Wang, De-Qiang; Xuan, Fu-Zhen

    2014-01-15

    Evolution of microstructure, micro-hardness and micro-tensile strength behavior was investigated in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint after the artificial aging at 350 °C for 3000 h. After detailed characterization of microstructures in optical microscopy, scanning electron microscopy and transmission electron microscopy, it is revealed that the change of martensite–bainite constituent promotes more homogeneous microstructure distribution. The aging treatment facilitates redistribution of carbon and chromium elements along the welded joint, and the micro-hardness is increased slightly through the welds due to enrichment of carbon. The types of precipitates in the weldment mainly include M{sub 3}C, MC, M{submore » 2}C and M{sub 23}C{sub 6}. The carbides in base metal, weld metal and coarse-grained heat-affected zone are prone to change from ellipsoidal to platelet form whereas more uniform spherical carbides are observed in the fine-grained zone. Precipitation and coarsening of M{sub 23}C{sub 6} near the fusion line, and formation of MC and M{sub 2}C, are responsible for the tensile strength decrease and its smooth distribution in the aged heat-affected zone. This implies that the thermal aging can relieve strength mismatch in the weldments. - Highlights: • Microstructure homogeneity improved in HAZ after long-term aging. • Tensile strength decreased in HAZ due to precipitation and coarsening of M{sub 23}C{sub 6}. • Strength mismatch in NiCrMoV steel welds was relieved after aging at 350 °C × 3000 h.« less

  19. Effect of heat-moisture treatment on the structural, physicochemical, and rheological characteristics of arrowroot starch.

    PubMed

    Pepe, Larissa S; Moraes, Jaqueline; Albano, Kivia M; Telis, Vânia R N; Franco, Célia M L

    2016-04-01

    The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100 ℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch. © The Author(s) 2015.

  20. Heart rate variability during exertional heat stress: effects of heat production and treatment.

    PubMed

    Flouris, Andreas D; Bravi, Andrea; Wright-Beatty, Heather E; Green, Geoffrey; Seely, Andrew J; Kenny, Glen P

    2014-04-01

    We assessed the efficacy of different treatments (i.e., treatment with ice water immersion vs. natural recovery) and the effect of exercise intensities (i.e., low vs. high) for restoring heart rate variability (HRV) indices during recovery from exertional heat stress (EHS). Nine healthy adults (26 ± 3 years, 174.2 ± 3.8 cm, 74.6 ± 4.3 kg, 17.9 ± 2.8 % body fat, 57 ± 2 mL·kg·(-1) min(-1) peak oxygen uptake) completed four EHS sessions incorporating either walking (4.0-4.5 km·h(-1), 2 % incline) or jogging (~7.0 km·h(-1), 2 % incline) on a treadmill in a hot-dry environment (40 °C, 20-30 % relative humidity) while wearing a non-permeable rain poncho for a slow or fast rate of rectal temperature (T re) increase, respectively. Upon reaching a T re of 39.5 °C, participants recovered until T re returned to 38 °C either passively or with whole-body immersion in 2 °C water. A comprehensive panel of 93 HRV measures were computed from the time, frequency, time-frequency, scale-invariant, entropy and non-linear domains. Exertional heat stress significantly affected 60/93 HRV measures analysed. Analyses during recovery demonstrated that there were no significant differences between HRV measures that had been influenced by EHS at the end of passive recovery vs. whole-body cooling treatment (p > 0.05). Nevertheless, the cooling treatment required statistically significantly less time to reduce T re (p < 0.001). While EHS has a marked effect on autonomic nervous system modulation and whole-body immersion in 2 °C water results in faster cooling, there were no observed differences in restoration of autonomic heart rate modulation as measured by HRV indices with whole-body cold-water immersion compared to passive recovery in thermoneutral conditions.

  1. Correcting anthropogenic ocean heat uptake estimates for the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Gebbie, Geoffrey

    2017-04-01

    Estimates of anthropogenic ocean heat uptake typically assume that the ocean was in equilibrium during the pre-industrial era. Recent reconstructions of the Common Era, however, show a multi-century surface cooling trend before the Industrial Revolution. Using a time-evolving state estimation method, we find that the 1750 C.E. ocean must have been out of equilibrium in order to fit the H.M.S. Challenger, WOCE, and Argo hydrographic data. When the disequilibrated ocean conditions are taken into account, the inferred ocean heat uptake from 1750-2014 C.E. is revised due to the deep ocean memory of Little Ice Age surface forcing. These effects of ocean disequilibrium should also be considered when interpreting climate sensitivity estimates.

  2. Effect of heat treatment on absorption and fluorescence properties of PbS-doped silica optical fibre

    NASA Astrophysics Data System (ADS)

    Qin, Fu; Dong, Yanhua; Wen, Jianxiang; Pang, Fufei; Luo, Yanhua; Peng, Gang-Ding; Chen, Zhenyi; Wang, Tingyun

    2017-02-01

    The effect of heat treatment on the optical properties of a PbS-doped silica optical fibre was investigated. The experimental results showed that the absorption peak of the fibre red shifted from 1032 to 1133 nm when the heat treatment temperatures were carried out at 900, 950, 1000, and 1100 °C for 1 h, respectively. At the same time, when the heat treatment at 900 °C was carried out for 2, 5, 10, 20, and 40 h, the absorption spectra of the fibre showed a red shift from 1074 to 1143 nm. In addition, the intensity of the absorption peak increased from 0.258 to 1.384 dB/m and the full width at half maximum (FWHM) became narrower (from 130 to 50 nm) as the heat treatment proceeded. Moreover, the photoluminescence (PL) intensity in the wavelength range of 1100-1500 nm decreased with an increase in the heat treatment temperature. The theoretical analysis, using an effective mass method, showed that the effective band gap energy and average size of the lead sulphide (PbS) quantum dots (QDs) in the silica fibre core varied from 1.199 to 1.083 eV and from 4.28 to 4.81 nm, respectively. The results indicate that the size of the PbS QDs present in the silica fibre core could be controlled by a proper heat treatment, which is of great interest in optical fibre amplifiers and other fibre optic devices.

  3. Physical aspects of thermotherapy: A study of heat transport with a view to treatment optimisation

    NASA Astrophysics Data System (ADS)

    Olsrud, Johan Karl Otto

    1998-12-01

    Local treatment with the aim to destruct tissue by heating (thermotherapy) may in some cases be an alternative or complement to surgical methods, and has gained increased interest during the last decade. The major advantage of these, often minimally-invasive methods, is that the disease can be controlled with reduced treatment trauma and complications. The extent of thermal damage is a complex function of the physical properties of tissue, which influence the temperature distribution, and of the biological response to heat. In this thesis, methods of obtaining a well-controlled treatment have been studied from a physical point of view, with emphasis on interstitial laser-induced heating of tumours in the liver and intracavitary heating as a treatment for menorrhagia. Hepatic inflow occlusion, in combination with temperature-feedback control of the output power of the laser, resulted in well defined damaged volumes during interstitial laser thermotherapy in normal porcine liver. In addition, phantom experiments showed that the use of multiple diffusing laser fibres allows heating of clinically relevant tissue volumes in a single session. Methods for numerical simulation of heat transport were used to calculate the temperature distribution and the results agreed well with experiments. It was also found from numerical simulation that the influence of light transport on the damaged volume may be negligible in interstitial laser thermotherapy in human liver. Finite element analysis, disregarding light transport, was therefore proposed as a suitable method for 3D treatment planning. Finite element simulation was also used to model intracavitary heating of the uterus, with the purpose of providing an increased understanding of the influence of various treatment parameters on blood flow and on the depth of tissue damage. The thermal conductivity of human uterine tissue, which was used in these simulations, was measured. Furthermore, magnetic resonance imaging (MRI) was

  4. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  5. Deposition, Heat Treatment And Characterization of Two Layer Bioactive Coatings on Cylindrical PEEK

    PubMed Central

    Durham, John W.; Rabiei, Afsaneh

    2015-01-01

    Polyether ether ketone (PEEK) rods were coated via ion beam asssited deposition (IBAD) at room temperature. The coating consists of a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to increase bioactivity. A rotating substrate holder was designed to deposit an even coating on the cylindrical surface of PEEK rods; the uniformity is verified by cross-sectional measurements using scanning electron microscopy (SEM). Deposition is followed by heat treatment of the coating using microwave annealing and autoclaving. Transmission electron microscopy (TEM) showed a dense, uniform columnar grain structure in the YSZ layer that is well bonded to the PEEK substrate, while the calcium phosphate layer was amorphous and pore-free in its as-deposited state. Subsequent heat treatment via microwave energy introduced HA crystallization in the calcium phosphate layer and additional autoclaving further expanded the crystallization of the HA layer. Chemical composition evaluation of the coating indicated the Ca/P ratios of the HA layer to be near that of stoichiometric HA, with minor variations through the HA layer thickness. The adhesion strength of as-deposited HA/YSZ coatings on smooth, polished PEEK surfaces was mostly unaffected by microwave heat treatment, but decreased with additional autoclave treatment. Increasing surface roughness showed improvement of bond strength. PMID:27713592

  6. Investigation on the optimized heat treatment procedure for laser fabricated IN718 alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Yang, Li; Chen, Tingyi; Zhang, Weihui; Huang, Xiwang; Dai, Jun

    2017-12-01

    The laser fabricated IN718 alloys were prepared by laser cladding system. The microstructure and microhardness of laser fabricated IN718 alloys were investigated after heat treatment. The microstructure and the elevated temperature mechanical properties of laser fabricated IN718 alloys were analyzed. The results showed that the microstructure of laser fabricated IN718 alloy consisted of austenitic matrix and dendritic Laves/γ eutectic. Most all Laves/γ eutectic was dissolved into austenitic matrix, and the complete recrystallization and the large grains occurred in the laser fabricated IN718 alloy after homogenization at 1080-1140 °C for 1 h, the dendritic Laves/γ eutectic was refined and the partial recrystallization occurred during the solid solution at 940-1000 °C for 1.5 h, the microhardness of the double aging (DA) alloys was about more than twice that of as-fabricated IN718 alloy. The recrystallized microstructure was obtained in the heat-treated laser fabricated IN718 alloy after 1100 °C/1 h air cooling (AC), 980 °C/1.5 h (AC), 700 °C/8 h furnace cooling (FC, 100 °C/h) to 600 °C/8 h (AC). The microhardness and the elevated temperature tensile strength were more than twice that of as-fabricated IN718 alloy due to a large concentration of γ″ phase precipitation to improve the transgranular strength and large grain to guarantee the grain boundary strength. The fracture morphologies of as-fabricated and heat-treated laser fabricated IN718 alloys were presented as the fiber dimples, the fracture mechanism of as-fabricated and heat-treated laser fabricated IN718 alloys was ductile fracture.

  7. [Effect of different heat treatment on mechanical properties and microstructure of laser welding CoCr-NiCr dissimilar alloys].

    PubMed

    Liang, Rui-ying; Li, Chang-yi; Han, Ya-jing; Hu, Xin; Zhang, Lian-yun

    2008-11-01

    To evaluate the effect of heat treatment and porcelain-fused-to-metal (PFM) processing on mechanical properties and microstructure of laser welding CoCr-NiCr dissimilar alloys. Samples of CoCr-NiCr dissimilar alloys with 0.5 mm thickness were laser-welded single-side under the setting parameters of 280 V, 10 ms pulse duration. After being welded, samples were randomly assigned to three groups, 10 each. Group1 and 2 received heat treatment and PFM processing, respectively. Group 3 was control group without any treatment. Tensile strength, microstructure and element distribution of samples in the three groups were tested and observed using tensile test, metallographic examinations, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS) analysis. After heat treatment and PFM processing, tensile strength of the samples were (537.15 +/- 43.91) MPa and (534.58 +/- 48.47) MPa respectively, and elongation rates in Group 1 and 2 were (7.65 +/- 0.73)% and (7.40 +/- 0.45)%. Ductile structure can be found on tensile fracture surface of samples and it was more obvious in heat treatment group than in PFM group. The results of EDS analysis indicated that certain CoCr alloy diffused towards fusion zone and NiCr side after heat treatment and PFM processing. Compared with PFM processing group, the diffusion in the heat treatment group was more obvious. Heat treatment and PFM processing can improve the mechanical properties and microstructure of welded CoCr-NiCr dissimilar alloy to a certain degree. The improvements are more obvious with heat treatment than with porcelain treatment.

  8. Effect of age on response to amblyopia treatment in children

    PubMed Central

    Holmes, Jonathan M.; Lazar, Elizabeth L.; Melia, B. Michele; Astle, William F.; Dagi, Linda R.; Donahue, Sean P.; Frazier, Marcela G.; Hertle, Richard W.; Repka, Michael X.; Quinn, Graham E.; Weise, Katherine K.

    2011-01-01

    Objective To determine whether age at initiation of amblyopia treatment influences the response among children 3 to <13 years of age with unilateral amblyopia 20/40 to 20/400. Methods A meta-analysis of individual subject data from 4 recently completed randomized amblyopia treatment trials was performed to evaluate the relationship between age and improvement in logMAR amblyopic eye visual acuity. Analyses were adjusted for baseline amblyopic eye visual acuity, spherical equivalent refractive error in the amblyopic eye, type of amblyopia, prior amblyopia treatment, study treatment, and protocol. Age was categorized (3 to <5 years, 5 to <7 years, and 7 to <13 years) because there was a non-linear relationship between age and improvement in amblyopic eye acuity. Results Subjects 7 to <13 years were significantly less responsive to treatment compared with younger age groups (3 to <5 years, 5 to <7 years) for moderate and severe amblyopia (P<0.04 for all four comparisons). There was no difference in treatment response between subjects age 3 to <5 years and 5 to <7 years for moderate amblyopia (P=0.67), but there was a suggestion of greater responsiveness of 3- to <5-year olds compared with 5- to <7-year olds for severe amblyopia (P=0.09). Conclusions Amblyopia is more responsive to treatment among children younger than age 7 years. Although the average treatment response is smaller in 7- to <13-year olds, some individuals show a marked response to treatment. PMID:21746970

  9. Automated system of devising and choosing economically effective technological processes of heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, V.P.; Tkacheva, O.N.

    1986-03-01

    Heat treatment entails considerable expenditure of power and often requires expensive equipment. One of the fundamental problems arising in the elaboration of heat treatment technology is the selection of the economically optimal process, which also has to ensure the quality of finished parts required by the customer. To correctly determine the expenditures on the basic kinds of resources it is necessary to improve the methods of calculating prime costs and to carry out such a calculation at the earliest stages of the technological preparation of production. A new method of optimizing synthesis of the structure of devising technological processes ofmore » heat treatment using the achievements of cybernetics and the possibilities of computerization is examined in this article. The method makes it possible to analyze in detail the economy of all possible variants of a technological process when one parameter is changed, without recalculating all items of prime cost.« less

  10. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.

    PubMed

    Meng, Long-Yue; Park, Soo-Jin

    2010-12-15

    In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wei; Chen, Gaoqiang; Chen, Jian

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zonemore » mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.« less

  12. Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics

    NASA Astrophysics Data System (ADS)

    Im, Ui-Su; Kim, Jiyoung; Lee, Seon Ho; Lee, Byung-Rok; Peck, Dong-Hyun; Jung, Doo-Hwan

    2017-12-01

    In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.

  13. Treatment of Cancer in the Older Aged Person.

    PubMed Central

    Balducci, Lodovico

    2010-01-01

    Cancer is a disease of aging.1 Currently 50% of all malignancies occur in individuals 65 and over1 and by the year 2030 older individuals will account for 70% of all neoplasms. With the aging of the population the management of cancer in the older person with chemotherapy is beoming increasingly common. This treatment may be safe and effective if some appropriate measures are taken, including, an assessment of the physiologic age of each patient, modification of doses according to the renal function, use of meyelopoietic growth factors prophylactically in presence of moderately toxic chemotherapy, and provision of an adequate caregiver. Cure, prolongation of survival, and symptom palliation are universal goals of medical treatment. Prolongation of active life expectancy should be added to the treatment goal of the older aged person. PMID:21415975

  14. Effect of Heat Input and Post-Weld Heat Treatment on the Mechanical and Metallurgical Characteristics of Laser-Welded Maraging Steel Joints

    NASA Astrophysics Data System (ADS)

    Karthikeyan, R.; Saravanan, M.; Singaravel, B.; Sathiya, P.

    This paper investigates the impact of heat input and post-weld aging behavior at different temperatures on the laser paper welded maraging steel grade 250. Three different levels of heat inputs were chosen and CO2 laser welding was performed. Aging was done at six different temperatures: 360∘C, 400∘C, 440∘C, 480∘C, 520∘C and 560∘C. The macrostructure and microstructure of the fusion zone were obtained using optical microscope. The microhardness test was performed on the weld zone. Tensile tests and impact tests were carried out for the weld samples and different age-treated weld samples. Fracture surfaces were investigated by scanning electron microscopy (SEM). Microhardness values of the fusion zone increased with increasing aging temperature, while the base metal microhardness value decreased. Tensile properties increased with aging temperature up to 480∘C and reduced for 520∘C and 560∘C. This was mainly due to the formation of reverted austenite beyond 500∘C. XRD analysis confirmed the formation of reverted austenite.

  15. Influence of lactic acid and post-treatment recovery time on the heat resistance of Listeria monocytogenes.

    PubMed

    Omori, Yasuo; Miake, Kiyotaka; Nakamura, Hiromi; Kage-Nakadai, Eriko; Nishikawa, Yoshikazu

    2017-09-18

    The aim of this study was to evaluate the effect of lactic acid (LA) with and without organic material at various post-treatment recovery times on the heat resistance of Listeria monocytogenes (Lm). LA decreased Lm numbers; however, the effect was remarkably attenuated by the presence of organic matter. Five strains of Lm were treated with LA and the listericidal effects were compared. The effect of LA varied depending on the strain, with ≥3.0% (w/w) LA required to kill the Lm strains in a short time. The heat resistance of Lm treated with LA was examined with respect to the time interval between the acid treatment and the subsequent manufacturing step. The heat resistance of Lm was shown to significantly increase during the post-treatment period. Heat tolerance (D value) increased up to 3.4-fold compared with the non-treated control bacteria. RNA sequencing and RT-PCR analyses suggested that several stress chaperones, proteins controlled by RecA and associated with high-temperature survival, were involved in the mechanism of enhanced heat resistance. These results are applicable to manufacturers when LA and heat treatment methods are utilized for the effective control of Lm in foods. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Induction hardening: Differences to a conventional heat treatment process and optimization of its parameters

    NASA Astrophysics Data System (ADS)

    Vieweg, A.; Ressel, G.; Prevedel, P.; Raninger, P.; Panzenböck, M.; Marsoner, S.; Ebner, R.

    2016-03-01

    The possibility of obtaining similar mechanical properties with faster heating processes than the conventional ones has been of interest for several years. In the present study, investigations were performed in terms of the influences of such fast heat-treatments on the microstructure and mechanical properties of the material. This investigation compares an inductive with a conventional furnace heat treating process of a 50CrMo4 steel, however only the austenitizing treatment was changed and subsequent quenching and tempering was done in the same way. To this end experiments with a middle frequency generator, using different heating rates and austenitizing temperatures, were conducted and followed by oil quenching of the workpieces. The resulting structures were characterized regarding their microstructures and mechanical properties in order to gather a better understanding of the differences between the inductive and the conventional heat treating process. As a main result it was found, that the fast austenitized samples exhibited worse ductility than the conventional treated material.

  17. Significance of heat-moisture treatment conditions on the pasting and gelling behaviour of various starch-rich cereal and pseudocereal flours.

    PubMed

    Collar, Concha

    2017-10-01

    The impact of heat-moisture treatment processing conditions (15%, 25%, and 35% moisture content; 1, 3, and 5 h heating time at 120 ℃) on the viscosity pasting and gelling profiles of different grain flours matrices (barley, buckwheat, sorghum, high β-glucan barley, and wheat) was investigated by applying successive cooking and cooling cycles to rapid visco analyser canisters with highly hydrated samples (3.5:25, w:w). At a milder heat-moisture treatment conditions (15% moisture content, 1 h heating time), except for sorghum, heat-moisture treatment flours reached much higher viscosity values during earlier pasting and subsequent gelling than the corresponding native counterparts. Besides heat-moisture treatment wheat flour, the described behaviour found also for non-wheat-treated flours has not been previously reported in the literature. An increased hydrophobicity of prolamins and glutelins in low moisture-short heating time heat-moisture treatment of non-wheat flours with high protein content (12.92%-19.95%) could explain the enhanced viscosity profile observed.

  18. [Occlusion treatment for amblyopia. Age dependence and dose-response relationship].

    PubMed

    Fronius, M

    2016-04-01

    Based on clinical experience and studies on animal models the age of 6-7 years was regarded as the limit for treatment of amblyopia, although functional improvement was also occasionally reported in older patients. New technical developments as well as insights from clinical studies and the neurosciences have attracted considerable attention to this topic. Various aspects of the age dependence of amblyopia treatment are discussed in this article, e. g. prescription, electronic monitoring of occlusion dosage, calculation of indicators for age-dependent plasticity of the visual system, and novel, alternative treatment approaches. Besides a discussion of the recent literature, results of studies by our "Child Vision Research Unit" in Frankfurt are presented: results of a questionnaire about prescription habits concerning age limits of patching, electronic recording of occlusion in patients beyond the conventional treatment age, calculation of dose-response function and efficiency of patching and their age dependence. The results of the questionnaire illustrate the uncertainty about age limits of prescription with significant deviations from the guideline of the German Ophthalmological Society (DOG). Electronic recording of occlusion allowed the quantification of declining dose-response function and treatment efficiency between 5 and 16 years of age. Reports about successful treatment with conventional and novel methods in adults are at variance with the notion of a rigid adult visual system lacking plasticity. Electronic recording of patching allowed new insights into the age-dependent susceptibility of the visual system and contributes to a more evidence-based treatment of amblyopia. Alternative approaches for adults challenge established notions about age limits of amblyopia therapy. Further studies comparing different treatment options are urgently needed.

  19. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood.

    PubMed

    Korkut, Derya Sevim; Guller, Bilgin

    2008-05-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and durations. The physical properties of heat-treated samples were compared against controls in order to determine their; oven-dry density, air-dry density, and swelling properties. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, were made in the direction perpendicular to the fiber. Three main roughness parameters; mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), and maximum roughness (Rmax) obtained from the surface of wood, were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant differences were determined (p>0.05) between surface roughness parameters (Ra, Rz, Rmax) at three different temperatures and three periods of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Red-bud maple wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.

  20. Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae

    2016-04-01

    The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.

  1. Research on Crack-Filling Heat Treatment and Hydrogen Permeation Test of Self-healing Tritium Permeation Barriers

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wang, Yan; Zhang, Ying; Ouyang, Taoyuan; Zhou, Tong; Fang, Xuanwei; Suo, Jinping

    2018-04-01

    A TiC + mixture (TiC/Al2O3 (1:1 wt.%)) +Al2O3 self-healing triple layer coating (TLC) was designed and manufactured by our group, and the crack-filling heat treatment process had been roughly explored in the past. In this work, the accelerating test with a thick TiC + mixture (TiC/Al2O3 (1:1 wt.%)) double-layer coating (DLC) was carried out. The DLC coating warped when the heat treatment temperature was lower than 550 °C, which was rare in similar researches, and it crushed into fan-shaped pieces when the treatment temperature was higher than 650 °C. The two different spalling failures were explained by weight gain, porosity and stress analyses. The heating rate had a significant effect. The bonding strength and hydrogen permeation of the TLC samples were also tested. Remaining at 650 °C for 40 h was proved to be an optimal crack-filling heat treatment process, considering the hydrogen resistance.

  2. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours.

    PubMed

    Bucsella, Blanka; Takács, Ágnes; Vizer, Viktoria; Schwendener, Urs; Tömösközi, Sándor

    2016-01-01

    Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The effect of pH and heat treatments on the foaming properties of purified α-lactalbumin from camel milk.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2017-08-01

    The effect of pH (4.3 or 6.5) and heat treatment (70°C or 90°C for 30min) on the foaming and interfacial properties of α-lactalbumin extracted from camel milk were studied. The increased temperature treatment changed the foaming properties of camel α-lactalbumin solution and its ability to unfold at the air-water interface. At neutral pH, heat treatment was found to improve foamability, whereas at acid pH (4.3) this property decreased. Foams were more stable after a heat treatment at pH 4.3 than at 6.5, due to higher levels of protein aggregation at low pH. Heat treatment at 90°C for 30min affected the physicochemical properties of the camel α-lactalbumin by increasing free thiol group concentration at pH 6.5. Heat treatment also caused changes in α-lactalbumin's surface charge. These results also confirm the pronounced aggregation of heated camel α-lactalbumin solution at acid pH. Copyright © 2017. Published by Elsevier B.V.

  4. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments

    PubMed Central

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-01-01

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti–6Al–4V, Ti–15Mo–5Zr–3Al and Ti–15Zr–4Nb–4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone. PMID:28946646

  5. Quality of mango nectar processed by high-pressure homogenization with optimized heat treatment.

    PubMed

    Tribst, Alline Artigiani Lima; Franchi, Mark Alexandrow; de Massaguer, Pilar Rodriguez; Cristianini, Marcelo

    2011-03-01

    This work aimed to evaluate the effect of high-pressure homogenization (HPH) with heat shock on Aspergillus niger, vitamin C, and color of mango nectar. The nectar was processed at 200 MPa followed by heat shock, which was optimized by response surface methodology by using mango nectar ratio (45 to 70), heat time (10 to 20), and temperature (60 to 85 °C) as variables. The color of mango nectar and vitamin C retention were evaluated at the optimized treatments, that is, 200 MPa + 61.5 °C/20 min or 73.5 °C/10 min. The mathematical model indicates that heat shock time and temperature showed a positive effect in the mould inactivation, whereas increasing ratio resulted in a protective effect on A. niger. The optimized treatments did not increase the retention of vitamin C, but had positive effect for the nectar color, in particular for samples treated at 200 MPa + 61.5 °C/20 min. The results obtained in this study show that the conidia can be inactivated by applying HPH with heat shock, particularly to apply HPH as an option to pasteurize fruit nectar for industries.

  6. Research Findings on Heat Treatment of Pathogens and Indicator Organisms

    EPA Science Inventory

    Heat or thermal treatment has been used for many years for reducing the densities of pathogens in food and beverages. Its application for disinfection of municipal sludges has occurred only recently. One method for achieving Class A biosolids is to thermally treat sludges either ...

  7. Effects of heat and high-pressure treatments on the solubility and immunoreactivity of almond proteins.

    PubMed

    Zhang, Yan; Zhang, Jieqiong; Sheng, Wei; Wang, Shuo; Fu, Tong-Jen

    2016-05-15

    The effects of dry and moist heat, autoclave sterilization and high-pressure treatment on the biochemical characteristics and immunological properties of almond proteins were investigated. Changes in the solubility and immunoreactivity of almond proteins extracted from treated almond flour were evaluated using a total protein assay, indirect competitive inhibition enzyme-linked immunosorbent assay (IC-ELISA), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Almond proteins were stable during dry-heat treatment at temperatures below 250°C. Dry heat at 400°C, boiling, autoclave sterilization and high-pressure treatment in the presence of water at ⩾ 500 MPa greatly reduced the solubility and immunoreactivity of almond proteins. SDS-PAGE revealed that the protein profiles of almond flour samples treated under these conditions also changed significantly. The synergistic effects of heat, pressure and the presence of water contributed to significant changes in solubility and immunoreactivity of almond proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. On board short-time high temperature heat treatment of ballast water: a field trial under operational conditions.

    PubMed

    Quilez-Badia, Gemma; McCollin, Tracy; Josefsen, Kjell D; Vourdachas, Anthony; Gill, Margaret E; Mesbahi, Ehsan; Frid, Chris L J

    2008-01-01

    A ballast water short-time high temperature heat treatment technique was applied on board a car-carrier during a voyage from Egypt to Belgium. Ballast water from three tanks was subjected for a few seconds to temperatures ranging from 55 degrees C to 80 degrees C. The water was heated using the vessel's heat exchanger steam and a second heat exchanger was used to pre-heat and cool down the water. The treatment was effective at causing mortality of bacteria, phytoplankton and zooplankton. The International Maritime Organization (IMO) standard was not agreed before this study was carried out, but comparing our results gives a broad indication that the IMO standard would have been met in some of the tests for the zooplankton, in all the tests for the phytoplankton; and probably on most occasions for the bacteria. Passing the water through the pump increased the kill rate but increasing the temperature above 55 degrees C did not improve the heat treatment's efficacy.

  9. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic.

    PubMed

    de Carvalho, Rodrigo Furtado; Cotes, Caroline; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa Pereira; Özcan, Mutlu

    2015-01-01

    This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP.

  10. Gas Furnace with Pulsed Feeding of the Heating Agent for Volume Precision Heat Treatment of CCM Rolls

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Egorova, V. M.; Gusev, S. V.

    2001-05-01

    A standard chamber batch furnace of the Severstal' plant has been modified for precision heat treatment of CCM rolls. The certification tests of a charge of rolls from steel 24KhM1F have shown the technical and economical advantages of the new design.

  11. Pressurized heat treatment of glass ceramic

    DOEpatents

    Kramer, D.P.

    1984-04-19

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  12. Effects of heat treatment on mechanical properties of h13 steel

    NASA Astrophysics Data System (ADS)

    Guanghua, Yan; Xinmin, Huang; Yanqing, Wang; Xingguo, Qin; Ming, Yang; Zuoming, Chu; Kang, Jin

    2010-12-01

    Heat treatment on the mechanical properties of H13 hot working die steel for die casting is discussed. The H13 steel for die casting was treated by different temperatures of vacuum quenching, tempering, and secondary tempering to investigate its mechanical properties. Strength, plasticity, hardness, and impact toughness of the H13 hot working die steel for die casting were measured. Microstructure, grain size, and carbide particle size after heat treatment have a great impact on the mechanical properties of H13 hot working die steel for die casting. The microstructure of the H13 was analyzed by scanning electron microscopy (SEM) and by a metallographic microscope. It is found that H13 exhibits excellent mechanical properties after vacuum quenching at 1050°C and twice tempering at 600°C.

  13. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2012-06-15

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less

  14. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less

  15. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.

    PubMed

    Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  16. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves.

    PubMed

    Luo, Hai-Bo; Ma, Ling; Xi, Hui-Feng; Duan, Wei; Li, Shao-Hua; Loescher, Wayne; Wang, Jun-Fang; Wang, Li-Jun

    2011-01-01

    The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.

  17. Inter- and intra-species variability in heat resistance and the effect of heat treatment intensity on subsequent growth of Byssochlamys fulva and Byssochlamys nivea.

    PubMed

    Santos, Juliana L P; Samapundo, Simbarashe; Gülay, Sonay M; Van Impe, Jan; Sant'Ana, Anderson S; Devlieghere, Frank

    2018-04-21

    The major aims of this study were to assess inter- and intra-species variability of heat resistant moulds (HRMs), Byssochlamys fulva and Byssochlamys nivea, with regards to (i) heat resistance and (ii) effect of heat treatment intensity on subsequent outgrowth. Four-week-old ascospores were suspended in buffered glucose solution (13° Brix, pH 3.5) and heat treated in a thermal cycler adjusted at 85 °C, 90 °C and 93 °C. Two variants of the Weibull model were fitted to the survival data and the following inactivation parameters estimated: b (inactivation rate, min -1 ), n (curve shape) and δ (the time taken for first decimal reduction, min). In addition to the assessment of heat resistance, outgrowth of Byssochlamys sp. from ascospores heated at 70 °C, 75 °C, 80 °C, 85 °C and 90 °C for 10 min and at 93 °C for 30 and 70 s was determined at 22 °C for up to 30 days. The Baranyi and Roberts model was fitted to the growth data to estimate the radial growth rates (μ max , mm.day -1 ) and lag times (λ, days). Inter-species variability and significant differences (p < 0.05) were observed for both inactivation and growth estimated parameters among B. fulva and B. nivea strains. The effect of heat treatment intensity on outgrowth of B. fulva strains was more apparent at the most intense heat treatment evaluated (90 °C/10 min), which was also the condition in which greater dispersion of the estimated kinetic parameters was observed. On the other hand, B. nivea strains were more affected by heating, resulting in greater variability of growth parameters estimated at different heating intensities and in very long lag phases (up to 25 days). The results show that inter- and intra-species variability in the kinetic parameters of Byssochlamys sp. needs to be taken into account for more accurate spoilage prediction. Furthermore, the effect of thermal treatments on subsequent outgrowth from ascospores should be explored in

  18. The effect of ageing and heat treatment on microstructure evolution of a commercial cement paste

    NASA Astrophysics Data System (ADS)

    Sabeur, Hassen; Platret, Gérard; Vincent, Julien

    2017-08-01

    This paper reports the microstructural changes on a 2 year-old cement paste, unprotected from contact with air, heated to various temperature regimes up to 1000 °C in steps of 100 °C for a constant period of 6 h. This work has been carried out using a thermal analysis technique and XRD. The parameter involved in this study is the state of the samples: powdered samples and blocks of paste. As a result, it is possible to monitor the major features of the experiments, i.e. the phase's existence domains and their growing of hydrated calcium silicate, portlandite, calcite as well as their decaying: alite, belite and lime. The result shows higher amounts of portlandite and carbonate calcium for the aged cement paste compared to fresh OPC. The carbonation is more marked for the blocks of paste while the crystallinity degree is higher for the powdered cement paste samples. The new portlandite formed during cooling continues to exist until the 1000 °C temperature plateau. Nevertheless, this portlandite is less crystalline than the original one, and its temperature of thermal decomposition gets lower. An increase in the total weight loss and in the crystallinity at 900 and 1000 °C, compared to 800 °C is also noted. The CSH dehydration to β-C2S and C3S become significant above 600 °C and the corresponding rate increases with increasing temperature.

  19. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel

    NASA Astrophysics Data System (ADS)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1983-11-01

    In the previous paper, it was reported that isothermal heat treatment of a commercial Japanese 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel (AISI 4340 type) at 593 K for a short time followed by water quenching, in which a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite is produced, results in the improvement of low temperature mechanical properties (287 to 123 K). The purpose of this paper is to study whether above new heat treatment will still be effective in commercial practice for improving low temperature mechanical properties of the ultrahigh strength steel when applied to a commercial Japanese 0.40 pct C-Cr-Mo ultrahigh strength steel which is economical because it lacks the expensive nickel component (AISI 4140 type). At and above 203 K this new heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved the strength, tensile ductility, and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel. At and above 203 K the new heat treatment also produced superior fracture ductility and notch toughness results at similar strength levels as compared to those obtained by using γ α' repetitive heat treatment for the same steel. However, the new heat treatment remarkably decreased fracture ductility and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel below 203 K, and thus no significant improvement in the mechanical properties was noticeable as compared with the properties produced by the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment. This contrasts with the fact that the new heat treatment, as compared with the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment, dramatically improved the notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel, providing a better combination of strength and ductility throughout the 287 to 123 K temperature range. The difference

  20. Screening apatites for (U-Th)/He thermochronometry via continuous ramped heating: He age components and implications for age dispersion

    NASA Astrophysics Data System (ADS)

    McDannell, Kalin T.; Zeitler, Peter K.; Janes, Darwin G.; Idleman, Bruce D.; Fayon, Annia K.

    2018-02-01

    Old slowly-cooled apatites often yield dispersed (U-Th)/He ages for a variety of reasons, some well understood and some not. Analytical protocols like careful grain selection can reduce the impact of this dispersion but add costs in time and resources and too often have proven insufficient. We assess a new analytical protocol that utilizes static-gas measurement during continuous ramped heating (CRH) as a means to rapidly screen apatite samples. In about the time required for a conventional total-gas analysis, this method can discriminate between samples showing expected volume-diffusion behavior and those showing anomalous release patterns inconsistent with their direct use in thermochronologic applications. This method also appears able to discriminate between the radiogenic and extraneous 4He fractions released by a sample, potentially allowing ages to be corrected. Well-behaved examples such as the Durango standard and other apatites with good age reproducibility show the expected smooth, sigmoidal gas-release curves predicted for volume diffusion using typical apatite kinetics, with complete exhaustion by ∼900 °C for linear heating at 20 °C/min. Secondary factors such as U and Th zoning and alpha-loss distribution have a relatively minor impact on such profiles. In contrast, samples having greater age dispersion show significant He release in the form of outgassing spikes and He release deferred to higher temperatures. Screening results for a range of samples permit us to assess the degree to which CRH screening can identify misbehaving grains, give insight into the source of extraneous He, and suggest that in some cases it may be possible to correct ages for the presence of such components.

  1. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Treesearch

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  2. Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica

    Treesearch

    Danielle E. Marias; Frederick C. Meinzer; Christopher Still

    2017-01-01

    Given future climate predictions of increased temperature, and frequency and intensity of heat waves in the tropics, suitable habitat to grow ecologically, economically, and socially valuable Coffea arabica is severely threatened. We investigated how leaf age and heat stress duration impact recovery from heat stress in C. arabica...

  3. On the approach to Mott's transition in glass-ceramic nanocomposite due to heat treatment

    NASA Astrophysics Data System (ADS)

    Mahdy, Iman A.; Heikal, Sh.; Abd-Rabo, A. S.; Abdel Ghany, A.; Bahgat, A. A.

    2015-07-01

    In the present work, the glass-ceramic nanocomposite (GCNC) of the composition 30[0.75 BaTiO3+0.25 PbTiO3]+70 V2O5 (mol. %) was prepared from the parent glass by isothermal heat treatment (HT) at 723 K for different time intervals 0.25, 0.5, 1.5, 2, and 2.5 h, respectively. The bulk density and some related parameters were calculated. X-ray diffraction and Hi-Resolution Transmission Electron Microscope (HRTEM) were used to identify different phases as well as particle size of the precipitated nanocrystals during the heat treatment process. The DC electrical conductivity was enhanced three orders of magnitudes (3×103) by increasing HT time. The resistivity measurements on the other hand as a function of time show an approach to nonmetallic-metallic transition for the prepared NCGC samples. Mott's VRH conduction mechanism was predicted as a result of the increase of the heat treatment time.

  4. HEAT TREATMENT OF ELECTROPLATED URANIUM

    DOEpatents

    Hoglund, P.F.

    1958-07-01

    A method is described for improving electroplated coatings on uranium. Such coatings are often porous, and in an effort to remedy this, the coatings are heat treated by immersing the coated specimen ln a bath of fused salt or molten methl. Since the hase metal, uranium, is an active metal, such a procedure often results in reactions between the base metal and the heating medium. This difficulty can be overcome by using liquid organopolysiloxanes as the heating medium.

  5. Performance of repair welds on aged Cr-Mo piping girth welds

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Gandy, D. W.

    1999-10-01

    This article documents the results of an industry survey of weld repair practices and describes the results of experimental evaluations performed on service-aged 21/4 Cr-1Mo steel piping using SMAW with both conventional postweld heat treatments and temper bead repair techniques. The overall results of this program provide substantial evidence that service-aged piping systems can be successfully weld repaired with and without postweld heat treatments and that life extension by several decades is achievable under the right design and repair conditions. Weld repairs performed on degraded exservice welds resulted in restoration or improvement of tensile and creep properties. Microhardness test results within the heat-affected zone of each weldment indicated that the temper bead weld repairs produced only slightly higher peak hardness values than those measured for the fully postweld heat treated repairs. Finally, in terms of toughness, temper bead weld repairs consistently produced higher impact properties than those measured for the postweld heat treated weldments. Gas tungsten arc weld repairs with postweld heat treatment resulted in the best combination of tensile strength, uniform microhardness distribution across the weld, Charpy toughness, and creep rupture life.

  6. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract.

    PubMed

    Xu, Guihua; Ye, Xingqian; Chen, Jianchu; Liu, Donghong

    2007-01-24

    This paper reports the effects of heat treatment on huyou (Citrus paradisi Changshanhuyou) peel in terms of phenolic compounds and antioxidant capacity. High-performance liquid chromatography (HPLC) coupled with a photodiode array (PDA) detector was used in this study for the analysis of phenolic acids (divided into four fractions: free, ester, glycoside, and ester-bound) and flavanone glycosides (FGs) in huyou peel (HP) before and after heat treatment. The results showed that after heat treatment, the free fraction of phenolic acids increased, whereas ester, glycoside, and ester-bound fractions decreased and the content of total FGs declined (P < 0.05). Furthermore, the antioxidant activity of methanol extract of HP increased (P < 0.05), which was evaluated by total phenolics contents (TPC) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS*+) method, and ferric reducing antioxidant power (FRAP) assay. The correlation coefficients among TPC, ABTS, FRAP assay, and total cinnamics and benzoics (TCB) in the free fraction were significantly high (P < 0.05), which meant that the increase of total antioxidant capacity (TAC) of HP extract was due at least in part to the increase of TCB in free fraction. In addition, FGs may be destroyed when heated at higher temperature for a long time (for example, 120 degrees C for 90 min or 150 degrees C for 30 min). Therefore, it is suggested that a proper and reasonable heat treatment could be used to enhance the antioxidant capacity of citrus peel.

  7. Sour gas injection for use with in situ heat treatment

    DOEpatents

    Fowler, Thomas David [Houston, TX

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  8. New method of processing heat treatment experiments with numerical simulation support

    NASA Astrophysics Data System (ADS)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  9. Effects of aging temperature on microstructural evolution at dissimilar metal weld interfaces

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Taeho; Bahn, Chi Bum; Kim, Ji Hyun

    2015-07-01

    From the earlier study which characterized the region of a fusion boundary between a low-alloy steel (LAS) and a Ni-based weld metal of as-welded and aged samples at 450 °C for a 30-y-equivalent time, it was observed in the microstructure that the aging treatment induced the formation and growth of Cr precipitates in the fusion boundary region because of the thermodynamic driving force. Now, this research extends the text matrix and continues the previous study by compiling all the test data, with an additional aging heat treatment conducted at 400 °C for 15- and 30-y-equivalent times (6450 and 12,911 h, respectively). The results for the extended test matrix primarily represent the common features of and disparities in the effects of thermal aging on the aged samples at two different heat-treatment temperatures (400 and 450 °C). Although no difference was expected between the samples, because the heat treatment conditions simulate thermal aging effects during the same service time of 30 y, the sample aged at 450 °C exhibited slightly more severe effects of thermal aging than the sample aged at 400 °C. Nevertheless, the trends for these effects are similar and the simulation of thermal aging effects for a light-water reactor appears to be reliable. However, according to a simulation of the same degree of thermal aging effects, it appears that the activation energy for Cr diffusion should be larger than the numerical value used in this study.

  10. Age Modulates Physiological Responses during Fan Use under Extreme Heat and Humidity.

    PubMed

    Gagnon, Daniel; Romero, Steven A; Cramer, Matthew N; Kouda, Ken; Poh, Paula Y S; Ngo, Hai; Jay, Ollie; Crandall, Craig G

    2017-11-01

    We examined the effect of electric fan use on cardiovascular and thermoregulatory responses of nine young (26 ± 3 yr) and nine aged (68 ± 4 yr) adults exposed to extreme heat and humidity. While resting at a temperature of 42°C, relative humidity increased from 30% to 70% in 2% increments every 5 min. On randomized days, the protocol was repeated without or with fan use. HR, core (Tcore) and mean skin (Tsk) temperatures were measured continuously. Whole-body sweat loss was measured from changes in nude body weight. Other measures of cardiovascular (cardiac output), thermoregulatory (local cutaneous and forearm vascular conductance, local sweat rate), and perceptual (thermal and thirst sensations) responses were also examined. When averaged over the entire protocol, fan use resulted in a small reduction of HR (-2 bpm, 95% confidence interval [CI], -8 to 3), and slightly greater Tcore (+0.05°C; 95% CI, -0.13 to 0.23) and Tsk (+0.03°C; 95% CI, -0.36 to 0.42) in young adults. In contrast, fan use resulted in greater HR (+5 bpm; 95% CI, 0-10), Tcore (+0.20°C; 95% CI, 0.00-0.41), and Tsk (+0.47°C; 95% CI, 0.18-0.76) in aged adults. A greater whole-body sweat loss during fan use was observed in young (+0.2 kg; 95% CI, -0.2 to 0.6) but not aged (0.0 kg; 95% CI, -0.2 to 0.2) adults. Greater local sweat rate and cutaneous vascular conductance were observed with fan use in aged adults. Other measures of cardiovascular, thermoregulatory, and perceptual responses were unaffected by fan use in both groups. During extreme heat and humidity, fan use elevates physiological strain in aged, but not young, adults.

  11. Durable polyorganosiloxane superhydrophobic films with a hierarchical structure by sol-gel and heat treatment method

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenlin; Fang, Shuying; Wang, Chaosheng; Wang, Huaping; Ji, Chengchang

    2016-12-01

    For a surface to be superhydrophobic a combination of surface roughness and low surface energy is required. In this study, polyorganosiloxane superhydrophobic surfaces were fabricated using a sol-gel and heat treatment process followed by coating with a nanosilica (SiO2) sol and organosiloxane 1, 1, 1, 3, 5, 5, 5-heptamethyl-3-[2-(trimethoxysilyl)ethyl]-trisiloxane (β-HPEOs). The nano-structure was superimposed using self-assembled, surface-modified silica nanoparticles, forming two-dimensional hierarchical structures. The water contact angle (WCA) of polyorganosiloxane superhydrophobic surface was 143.7 ± 0.6°, which was further increased to 156.7 ± 1.1° with water angle hysteresis of 2.5 ± 0.6° by superimposing nanoparticles using a heat treatment process. An analytical characterization of the surface revealed that the nano-silica and polyorganosiloxane formed a micro/nano structure on the films and the wetting behaviour of the films changed from hydrophilic to superhydrophobic. The WCA of these films were 143.7 ± 0.6° and at heat treatment temperatures of less than 400 °C, the WCA increased from 144.5 ± 0.7° to 156.7 ± 1.1°. The prepared superhydrophobic films were stable even after heat treatment at 430 °C for 30 min and their superhydrophobicity was durable for more than 120 days. The effects of heat treatment process on the surface chemistry structure, wettability and morphology of the polyorganosiloxane superhydrophobic films were investigated in detail. The results indicated that the stability of the chemical structure was required to yield a thermally-stable superhydrophobic surface.

  12. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  13. Heat treatment of human esophageal tissues: Effect on esophageal cancer detection using oxygenated hemoglobin diffuse reflectance ratio

    NASA Astrophysics Data System (ADS)

    Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.

    2011-03-01

    The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.

  14. The effect of post-mortem ageing and heating on water retention in bovine muscles.

    PubMed

    Kołczak, Tadeusz; Krzysztoforski, Krzysztof; Palka, Krystyna

    2007-04-01

    The muscles semitendinosus (ST) and psoas major (PM) were removed from chilled young bull carcasses 24h after slaughter and stored at 4°C. At the 1st, 6th and 12th day of post-mortem ageing the chemical composition (moisture, fat, protein, collagen) and contents of free, immobilized and unfreezable water in the muscles were estimated. The muscle steaks were boiled at 100°C, roasted at 170°C or fried at 160°C to an internal temperature of 75°C, and the amounts of total, free, immobilized, and unfreezable water in heated muscles were evaluated. The unfreezable water was estimated by DSC. In the raw muscles immobilized water constituted 74-75%, free water 16.6-17.6% and unfreezable water 7-8% of the total water. Independent of time of ageing, PM muscle contained significantly more free water than ST muscle. During post-mortem ageing, changes in free, immobilized and unfreezable water in muscles were not significant. The level of free water was highest in boiled and least in fried meat, however the amount of immobilized water was highest in fried and lowest in boiled meat. The amount of unfreezable water in muscles heated after 12 days of post-mortem ageing decreased.

  15. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    NASA Astrophysics Data System (ADS)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  16. Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Crowther, B.; Gubbels, G.; Senden, R.

    2013-09-01

    Aluminum mirrors and telescopes can be built to perform well if the material is processed correctly and can be relatively low cost and short schedule. However, the difficulty of making high quality aluminum telescopes increases as the size increases, starting with uniform heat treatment through the thickness of large mirror substrates. A risk reduction effort was started to build and test a ½ meter diameter super polished aluminum mirror. Material selection, the heat treatment process and stabilization are the first critical steps to building a successful mirror. In this study, large aluminum blanks of both conventional AA-6061 per AMS-A-22771 and RSA AA-6061 were built, heat treated and stress relieved. Both blanks were destructively tested with a cut through the thickness. Hardness measurements and tensile tests were completed. We present our results in this paper and make suggestions for modification of procedures and future work.

  17. Heat treatment of welded joints of steel 0.3С-1Cr-1Si produced by high-power fiber lasers

    NASA Astrophysics Data System (ADS)

    Kuryntsev, S. V.; Gilmutdinov, A. Kh.

    2015-11-01

    The effect of heat treatment on the welded joints of steel grade 0.3С-1Cr-1Si produced by 30 kW power fiber lasers was investigated in the paper. The speed of the welding process was 20 mm/s. Heat treatment was carried out on two levels, quenching with subsequent middle tempering and high tempering. The samples were examined before and after heat treatment, macro- and microstructure were studied using SEM, UTS, three points bent test, microhardness. The effect of heat treatment was significant: it allowed reduction of the weld hardness of considerably and enhancement of its ductility.

  18. Heat treatment of unclarified Escherichia coli homogenate improved the recovery efficiency of recombinant hepatitis B core antigen.

    PubMed

    Ng, Michelle Y T; Tan, Wen Siang; Abdullah, Norhafizah; Ling, Tau Chuan; Tey, Beng Ti

    2006-10-01

    Heat precipitation procedure has been regularly incorporated as a selective purification step in various thermostable proteins expressed in different hosts. This method is efficient in precipitation of most of the host proteins and also deactivates various host proteases that can be harmful to the desired gene products. In this study, introduction of heat treatment procedure in the purification of hepatitis B core antigen (HBcAg) produced in Escherichia coli has been investigated. Thermal treatment of the cell homogenate at 60 degrees C for 30 min prior to subsequent clarification steps has resulted in 1.4 times and 18% higher in purity and recovery yield, respectively, compared to the non-heat-treated cell homogenate. In direct capture of HBcAg by using anion-exchangers from unclarified feedstock, pre-conditioning the feedstock by heat treatment at 60 degrees C for 45 min has increased the recovery yield of HBcAg by 2.9-fold and 42% in purity compared to that treated for 10 min. Enzyme-linked immunosorbent assay (ELISA) analysis showed that the antigenicity of the core particles was not affected by the heat treatment process.

  19. Number of Heat Wave Deaths by Diagnosis, Sex, Age Groups, and Area, in Slovenia, 2015 vs. 2003

    PubMed Central

    Perčič, Simona; Kukec, Andreja; Cegnar, Tanja; Hojs, Ana

    2018-01-01

    Background: Number of deaths increases during periods of elevated heat. Objectives: To examine whether differences in heat-related deaths between 2003 and 2015 occurred in Slovenia. Materials and Methods: We estimated relative risks for deaths for the observed diagnoses, sex, age, and area, as well as 95% confidence intervals and excess deaths associated with heat waves occurring in 2015 and 2003. For comparison between 2015 and 2003, we calculated relative risks ratio and 95% confidence intervals. Results: Statistically significant in 2015 were the following: age group 75+, all causes of deaths (RR = 1.10, 95% CI 1.00–1.22); all population, circulatory system diseases (RR = 1.14, 95% CI 1.01–1.30) and age group 75+, diseases of circulatory system (RR = 1.17, 95% CI 1.01–1.34). Statistically significant in 2003 were the following: female, age group 5–74, circulatory system diseases (RR = 1.69, 95% CI 1.08–2.62). Discussion: Comparison between 2015 and 2003, all, circulatory system diseases (RRR = 1.25, 95% CI 1.01–1.55); male, circulatory system diseases (RRR = 1.85, 95% CI 1.41–2.43); all, age group 75+ circulatory system diseases (RRR = 1.34, 95% CI 1.07–1.69); male, age group 75+, circulatory system diseases (RRR = 1.52, 95% CI 1.03–2.25) and female, age group 75+, circulatory system diseases (RRR = 1.43, 95% CI 1.08–1.89). Conclusions: Public health efforts are urgent and should address circulatory system causes and old age groups. PMID:29361792

  20. Increasing age is a major risk factor for susceptibility to heat stress during physical activity.

    PubMed

    McGinn, Ryan; Poirier, Martin P; Louie, Jeffrey C; Sigal, Ronald J; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2017-11-01

    We evaluated the extent to which age, cardiorespiratory fitness, and body fat can independently determine whole-body heat loss (WBHL) in 87 otherwise healthy adults. We show that increasing age is a major predictor for decreasing WBHL in otherwise healthy adults (aged 20-70 years), accounting for 40% of the variation in the largest study to date. While greater body fat also had a minor detrimental impact on WBHL, there was no significant role for cardiorespiratory fitness.

  1. Photocatalytic activity and reusability of ZnO layer synthesised by electrolysis, hydrogen peroxide and heat treatment.

    PubMed

    Akhmal Saadon, Syaiful; Sathishkumar, Palanivel; Mohd Yusoff, Abdull Rahim; Hakim Wirzal, Mohd Dzul; Rahmalan, Muhammad Taufiq; Nur, Hadi

    2016-08-01

    In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.

  2. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    NASA Astrophysics Data System (ADS)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  3. Effects of Variations in Heat Treatment on the Mechanical Properties and Microstructure of ASTM A710 Grade A Class 3 Steel.

    DTIC Science & Technology

    1983-05-01

    CLASS 3 STEEL - by G. E. Hitcho *L. C. Smith S. Singhal R. J. Fields U.S. Department of Commerce National Bureau of Standards Fracture and Deformation...IN HEAT TREATMENT ON THE Research & Development MECHANICAL PROPERTIES AND MICROSTRUCTURE OF ASTM A710 GRADE A CLASS 3 STEEL 4. PERFORMING ORGM REPORT...NOTES SIS 1IS. KEY MaR05 (C~ueus ee m. .E If .eum Edalr br Slek ami.) Age hardening steel Microstructure Cleavage fracture Precipitate Ductile

  4. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment

    PubMed Central

    Baars, Destiny L.; Pelegri, Francisco

    2016-01-01

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole duplication, this method results in a precise cell division stall during the second cell cycle. The precise one-cycle division stall, coupled to unaffected DNA duplication, results in whole genome duplication. Protocols associated with this method include egg and sperm collection, UV treatment of sperm, in vitro fertilization and heat pulse to cause a one-cell cycle division delay and ploidy duplication. A modified version of this protocol could be applied to induce ploidy changes in other animal species. PMID:28060351

  5. Effect of Heat Treatment on the Properties of CoCrMo Alloy Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Junxin, Li; Xiaoyu, Zhou; Jin, Li; Anmin, Wang

    2018-04-01

    To obtain medical implants with better mechanical properties, it is necessary to conduct studies on the heat treatment process of the selective laser melting (SLM) manufacturing parts. The differential scanning calorimetry method was used to study the heat treatment process of the phase transition of SLM CoCrMo alloy parts. The tensile properties were tested with a tensile test machine, the quantity of carbide precipitated after heat treatment was measured by energy-dispersive x-ray spectroscopy, and the tensile fracture morphology of the parts was investigated using SEM. The obtained results were: Mechanical properties in terms of elongation and tensile strength of CoCrMo alloy manufactured by SLM that had been heat-treated at 1200 °C for 2 h followed by cooling with water were not only higher than the national standard but also higher than the experimental results of the same batch of castings. The mechanism of fracture of parts manufactured by SLM without heat treatment was brittle fracture, whereas parts which had been heat-treated at 1200 °C for 2 h combined with water cooling and at 1200 °C for 1 h with furnace cooling suffered ductile fracture. This study provides the basis for defining the applications for which CoCrMo alloys manufactured by SLM are suitable within the field of medical implants.

  6. Effect of Heat Treatment on the Properties of CoCrMo Alloy Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Junxin, Li; Xiaoyu, Zhou; Jin, Li; Anmin, Wang

    2018-05-01

    To obtain medical implants with better mechanical properties, it is necessary to conduct studies on the heat treatment process of the selective laser melting (SLM) manufacturing parts. The differential scanning calorimetry method was used to study the heat treatment process of the phase transition of SLM CoCrMo alloy parts. The tensile properties were tested with a tensile test machine, the quantity of carbide precipitated after heat treatment was measured by energy-dispersive x-ray spectroscopy, and the tensile fracture morphology of the parts was investigated using SEM. The obtained results were: Mechanical properties in terms of elongation and tensile strength of CoCrMo alloy manufactured by SLM that had been heat-treated at 1200 °C for 2 h followed by cooling with water were not only higher than the national standard but also higher than the experimental results of the same batch of castings. The mechanism of fracture of parts manufactured by SLM without heat treatment was brittle fracture, whereas parts which had been heat-treated at 1200 °C for 2 h combined with water cooling and at 1200 °C for 1 h with furnace cooling suffered ductile fracture. This study provides the basis for defining the applications for which CoCrMo alloys manufactured by SLM are suitable within the field of medical implants.

  7. Effect of Parental Age on Treatment Response in Adolescents with Schizophrenia

    PubMed Central

    Opler, Mark; Malaspina, Dolores; Gopal, Srihari; Nuamah, Isaac; Savitz, Adam J; Singh, Jaskaran; Hough, David

    2013-01-01

    Background Advanced paternal age (APA) is associated with increased risk for schizophrenia, but its effect on treatment response has not been longitudinally studied. Methods Association of parental ages at the time of the child's birth with age of onset, initial symptom severity and treatment response (to placebo and three different weight-based doses of paliperidone ER) in adolescents with schizophrenia was assessed in a post-hoc analysis using data from a 6-week double-blind study, the primary results of which are published (NCT 00518323). Results The mean (SD) paternal age was 29.2 (6.2) years, range (16-50) and maternal age was 26.8 (5.7) years, range (17-42) at childbirth for the 201 adolescents (ages 12-17 years) included in the analysis. While parental ages were uncorrelated with age of onset or initial symptom severity, both maternal and paternal age showed significant effects on treatment response (p < 0.03) of all paliperidone ER arms versus placebo. Paternal age was significantly correlated to improvement in positive symptoms and maternal age significantly related to negative symptoms, although only paternal age remained significantly associated with the treatment response in analyses that included both parents’ ages. Conclusions APA was associated with greater treatment response to both paliperidone ER and placebo, but not to age of onset or initial symptom severity in adolescents with schizophrenia. The results support the contention that APA-related schizophrenia has distinct underpinnings from other cases. Further studies are required to explore the role of genetic and environmental factors, and their interactions, in treatment response in this complex disorder. PMID:24144440

  8. The influence of heat treatments on several types of base-metal removable partial denture alloys.

    PubMed

    Morris, H F; Asgar, K; Rowe, A P; Nasjleti, C E

    1979-04-01

    Four removable partial denture alloys, Vitallium (Co-Cr alloy), Dentillium P.D. (Fe-Cr alloy), Durallium L.G. (Co-Cr-Ni alloy), and Ticonium 100 (Ni-Cr alloy), were evaluated in the as-cast condition and after heat treatment for 15 minutes at 1,300 degrees, 1,600 degrees, 1,900 degrees, and 2,200 degrees F followed by quenching in water. The following properties were determined and compared for each alloy at each heat treatment condition: the yield strengths at 0.01%, 0.1%, and 0.2% offsets, the ultimate tensile strength, the percent elongation, the modulus of elasticity, and the Knoop microhardness. The results were statistically analyzed. Photomicrographs were examined for each alloy and test condition. The following conclusions were made: 1. The "highest values" were exhibited by the as-cast alloy. 2. Heat treatment of the partial denture alloys tested resulted in reductions in strength, while the elongations varied. This study demonstrates that, in practice, one should avoid (a) prolonged "heat-soaking" while soldering and (b) grinding or polishing of the casting until the alloy is "red hot". 3. Durallium L.G. was the least affected by the various heat treatment conditions. 4. Conventional reporting of the yield strength at 0.2% offset, the ultimate tensile strength, and percent elongation are not adequate to completely describe and compare the mechanical behavior of alloys. The reporting of the yield strength at 0.01% offset, in addition to the other reported properties, will provide a more complete description of the behavior of the dental alloys.

  9. Improvement of biomaterials used in tissue engineering by an ageing treatment.

    PubMed

    Acevedo, Cristian A; Díaz-Calderón, Paulo; Enrione, Javier; Caneo, María J; Palacios, Camila F; Weinstein-Oppenheimer, Caroline; Brown, Donald I

    2015-04-01

    Biomaterials based on crosslinked sponges of biopolymers have been extensively used as scaffolds to culture mammal cells. It is well known that single biopolymers show significant change over time due to a phenomenon called physical ageing. In this research, it was verified that scaffolds used for skin tissue engineering (based on gelatin, chitosan and hyaluronic acid) express an ageing-like phenomenon. Treatments based on ageing of scaffolds improve the behavior of skin-cells for tissue engineering purposes. Physical ageing of dry scaffolds was studied by differential scanning calorimetry and was modeled with ageing kinetic equations. In addition, the physical properties of wet scaffolds also changed with the ageing treatments. Scaffolds were aged up to 3 weeks, and then skin-cells (fibroblasts) were seeded on them. Results indicated that adhesion, migration, viability, proliferation and spreading of the skin-cells were affected by the scaffold ageing. The best performance was obtained with a 2-week aged scaffold (under cell culture conditions). The cell viability inside the scaffold was increased from 60% (scaffold without ageing treatment) to 80%. It is concluded that biopolymeric scaffolds can be modified by means of an ageing treatment, which changes the behavior of the cells seeded on them. The ageing treatment under cell culture conditions might become a bioprocess to improve the scaffolds used for tissue engineering and regenerative medicine.

  10. Evolution of Micro-Pores in a Single-Crystal Nickel-Based Superalloy During Solution Heat Treatment

    NASA Astrophysics Data System (ADS)

    Li, Xiangwei; Wang, Li; Dong, Jiasheng; Lou, Langhong; Zhang, Jian

    2017-06-01

    Evolution of micro-pores in a third-generation single-crystal nickel-based superalloy during solution heat treatment at 1603 K (1330 °C) was investigated by X-ray computed tomography. 3D information including morphology, size, number, and volume fraction of micro-pores formed during solidification (S-pores) and solution (H-pores) was analyzed. The growth behaviors of both S-pores and H-pores can be related to the vacancy formation and diffusion during heat treatment.

  11. Thermotolerance and responses to short duration heat stress in tropical and temperate species

    NASA Astrophysics Data System (ADS)

    Marias, D.; Meinzer, F. C.; Still, C. J.

    2017-12-01

    Temperature and heat waves are predicted to increase throughout the 21st century in both tropical and temperate regions. Tropical species are vulnerable to heat stress because of the higher radiation load and the narrower distribution of temperatures typically experienced compared to extratropical species. Germinant seedlings are also vulnerable to heat stress because they inhabit the boundary layer close to the soil surface where intense heating occurs. We quantified the effect of leaf age and heat stress duration (45 min, 90 min) on leaf thermotolerance and whole plant physiological responses to heat stress in Coffea arabica (COAR) saplings. We also evaluated leaf thermotolerance and whole plant responses to heat stress of seedlings in two populations each of Pinus ponderosa (PIPO) and Pseudotsuga menziesii (PSME) from contrasting climates. Thermotolerance of detached leaves/needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. After exposure of whole plants to a simulated heat wave in a growth chamber, we monitored FV/FM, photosynthesis (A), stomatal conductance (gs), non-structural carbohydrates (NSCs), and carbon isotope ratios (δ13C). In COAR, thermotolerance and rate of recovery increased with leaf age. Following heat treatment, reductions in A and gs led to reduced intrinsic water use efficiency (iWUE) and increased leaf temperatures. NSC results suggested that starch was converted to sugars for recovery from heat stress and phloem transport was inhibited. Plants failed to flower in both heat stress duration treatments. In PIPO and PSME, heat treatment induced significant reductions in FV/FM and A. NSC results suggested that starch was converted to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites had greater δ13C values than those from wetter sites, consistent with higher iWUE of populations from drier climates. Thermotolerance and heat stress responses appeared to be

  12. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster

    PubMed Central

    Landis, Gary; Shen, Jie; Tower, John

    2012-01-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging. PMID:23211361

  13. The Effect of Post-heat Treatment on the Microstructures of Single Crystal DD6 Superalloy

    NASA Astrophysics Data System (ADS)

    Li, Dongfan; Gao, Hangshan; Wen, Zhixun; Li, Zhenwei; Yue, Zhufeng

    2016-09-01

    Various thermal cycles at the end of solution heat treatment and their influences on microstructure of single crystal superalloy DD6 were studied by experiments. During various thermal cycles, the qualitative and quantitative microstructure of samples quenched of the transformations is microscopically characterized. This completely includes the large changes in volume fraction, size distribution and morphology of gamma prime precipitate experienced in the upper temperature transformation. Noticeable deviation from the equilibrium volume fraction of γ' phase is detected in both the dissolution and precipitation processes above 1,120°C for both moderate cooling and heating rate; differences were mainly attributed to the unsteady nature of the turbulent flow. The growth and alignment of the γ' precipitates are deeply influenced by several factors, e.g. ageing time, cooling rate and quenching temperature. In addition, interesting findings such as "labyrinth" and "cluster" morphologies were observed by scanning electron microscope. During precipitation processes, the complicated microstructure evolution is illustrated by considering the consecutive equilibrium shapes of a coherent precipitate, which grows under the interaction with its neighbors and the coherency of the precipitates improves their potential to resist dissolution.

  14. [Effect of heat treatment on the structure of a Cu-Zn-Al-Ni system dental alloy].

    PubMed

    Guastaldi, A C; Adorno, A T; Beatrice, C R; Mondelli, J; Ishikiriama, A; Lacefield, W

    1990-01-01

    This article characterizes the structural phases present in the copper-based metallic alloy system "Cu-Zn-Al-Ni" developed for dental use, and relates those phases to other properties. The characterization was obtained after casting (using the lost wax process), and after heat treatment. In order to obtain better corrosion resistance by changing the microstructure, the castings were submitted to 30, 45 and 60 minutes of heat treatment at the following temperatures: 750 degrees C, 800 degrees C, and 850 degrees C. The various phases were analyzed using X-ray diffraction and scanning electron microscopy (SEM). The results after heat treatment showed a phase (probably Cu3Al), that could be responsible for the improvement in the alloy's resistance to corrosion as compared to the as-cast structure.

  15. Vitamin content of breast milk from HIV-1-infected mothers before and after flash-heat treatment.

    PubMed

    Israel-Ballard, Kiersten A; Abrams, Barbara F; Coutsoudis, Anna; Sibeko, Lindiwe N; Cheryk, Lynn A; Chantry, Caroline J

    2008-08-01

    World Health Organization advocates heat treatment of expressed breastmilk (EBM) as one method to reduce postnatal transmission of human immunodeficiency virus (HIV) in developing countries. Flash-heat is a simple heat treatment method shown to inactivate cell-free HIV. To determine the effect of flash-heat on vitamin content of milk. Fresh EBM was collected from 50 HIV+ mothers in Durban, South Africa. Mothers washed their hands and then manually expressed 75-150 mL EBM into sterile jars. Milk was aliquoted to unheated controls or flash-heat (50 mL EBM in a glass jar heated in a 450-mL water jacket in an aluminum pan until water boiled, then EBM removed) simulating field conditions with an open flame. Samples were stored at -70 degrees C and then analyzed for the effect of flash-heat on vitamins [A, ascorbic acid, riboflavin (B2), pyridoxal-5-phosphate (B6), folate, and B12]. Vitamin A was not significantly affected by flash-heat and vitamins B12 and C and folate increased significantly. Vitamins B2 and B6 were decreased to 59% (95% confidence interval 44 to 81) and 96% (95% confidence interval 92 to 99), respectively, of that found in unheated milk. The percentage remaining after flash-heat suggests that most vitamin concentrations are retained after heating. Flash-heat may be a practical and nutritious infant feeding method for mothers in developing countries.

  16. Numerical simulation of thermal disposition with induction heating used for oncological hyperthermic treatment.

    PubMed

    Dughiero, F; Corazza, S

    2005-01-01

    Hyperthermia plays an important role in oncological therapies, most often being used in combination with radiotherapy, chemotherapy and immunotherapy. The success of this therapy is strongly dependent on the precision and control of thermal deposition. Hyperthermia based on induction heating, with thermally self-regulating thermoseeds inserted into the tumorous mass, is used for interstitial treatment. The technique was the subject of the numerical study presented in the paper. The analysis was carried out using coupled electromagnetic heating and thermo-fluid dynamic FEM simulations. During thermal deposition by induction heating of inserted seeds, the simulations estimated the thermal field inside and outside the tumour, as well as the sensitivity of the thermal field to variations regarding seed temperature, configuration and proximity to vessels. The method, for which accurate anatomical patient's information is essential, is suitable for providing useful qualitative and quantitative information about thermal transients and power density distribution for hyperthermic treatment. Several grid steps were analysed and compared. A 1 cm seed grid was resulted in good homogeneity and effectiveness of the thermal deposition. The cold spot effect caused by large vessels was demonstrated and quantified. Simulations of the heating of a tumorous mass in the liver showed that an indcutor generator operating at 200 kHz frequency and 500 A current, producing a pulsating magnetic field of H = 60 A cm(-1), was adequate for the treatment. The seeds that perform best among those tested (Nicu (28% Cu), PdNi (27.2% Ni), PdCo (6.15% Co) and ferrite core) were the PdNi (1 mm radius, 10 mm length), as they have a low Curie temperature (52 degrees C), which is the closest to the desired treatment temperature and thus reduces the risk of hot spots.

  17. Effects of Heat Treatment on Interface Microstructure and Mechanical Properties of Explosively Welded Ck60/St37 Plates

    NASA Astrophysics Data System (ADS)

    Yazdani, Majid; Toroghinejad, Mohammad Reza; Hashemi, Seyyed Mohammad

    2016-12-01

    This study explores the effects of heat treatment on the microstructure and mechanical properties of explosively welded Ck60 steel/St37 steel. The objective is to find an economical way for manufacturing bimetallic plates that can be used in the rolling stand of hot rolling mill units. The explosive ratio and stand-off distance are set at 1.7 and 1.5 t ( t = flyer thickness), respectively. Since explosive welding is accompanied by such undesirable metallurgical effects as remarkable hardening, severe plastic deformation, and even formation of local melted zones near the interface, heat treatment is required to overcome or alleviate these adverse effects. For this purpose, the composites are subjected to heat treatment in a temperature range of 600-700 °C at a rate of 90 °C/h for 1 h. Results demonstrate well-bonded composite plates with a wavy interface. In the as-welded case, vortex zones are formed along the interface; however, they are transformed into fine grains upon heat treatment. Microhardness is also observed to be maximum near the interface in the welded case before it decreases with increasing temperature. Shear strength is the highest in the as-welded specimen, which later decreases as a result of heat treatment. Moreover, the energy absorbed by the heat-treated specimens is observed to increase with increasing temperature so that the lowest value of absorbed energy belongs to the as-welded specimen. Finally, fractography is carried out using the scanning electron microscope to examine the specimens subjected to shear and impact tests. As a result of heat treatment, fracture surfaces exhibit dimpled ruptures and fail in the mixed mode, while failure in the as-welded specimens predominantly occurs in the brittle mode.

  18. Assessment of heat treatment of dairy products by MALDI-TOF-MS.

    PubMed

    Meltretter, Jasmin; Birlouez-Aragon, Inès; Becker, Cord-Michael; Pischetsrieder, Monika

    2009-12-01

    The formation of the Amadori product from lactose (protein lactosylation) is a major parameter to evaluate the quality of processed milk. Here, MALDI-TOF-MS was used for the relative quantification of lactose-adducts in heated milk. Milk was heated at a temperature of 70, 80, and 100 degrees C between 0 and 300 min, diluted, and subjected directly to MALDI-TOF-MS. The lactosylation rate of alpha-lactalbumin increased with increasing reaction temperature and time. The results correlated well with established markers for heat treatment of milk (concentration of total soluble protein, soluble alpha-lactalbumin and beta-lactoglobulin at pH 4.6, and fluorescence of advanced Maillard products and soluble tryptophan index; r=0.969-0.997). The method was also applied to examine commercially available dairy products. In severely heated products, protein pre-purification by immobilized metal affinity chromatography improved spectra quality. Relative quantification of protein lactosylation by MALDI-TOF-MS proved to be a very fast and reliable method to monitor early Maillard reaction during milk processing.

  19. Solution and Aging of MAR-M246 Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Baldan, Renato; da Silva, Antonio Augusto Araújo Pinto; Nunes, Carlos Angelo; Couto, Antonio Augusto; Gabriel, Sinara Borborema; Alkmin, Luciano Braga

    2017-02-01

    Solution and aging heat-treatments play a key role for the application of the superalloys. The aim of this work is to evaluate the microstructure of the MAR-M246 nickel-based superalloy solutioned at 1200 and 1250 °C for 330 min and aged at 780, 880 and 980 °C for 5, 20 and 80 h. The γ' solvus, solidus and liquidus temperatures were calculated with the aid of the JMatPro software (Ni database). The as-cast and heat-treated samples were characterized by SEM/EDS and SEM-FEG. The γ' size precipitated in the aged samples was measured and compared with JMatPro simulations. The results have shown that the sample solutioned at 1250 °C for 330 min showed a very homogeneous γ matrix with carbides and cubic γ' precipitates uniformly distributed. The mean γ' size of aged samples at 780 and 880 °C for 5, 20 and 80 h did not present significant differences when compared to the solutioned sample. However, a significant increasing in the γ' particles was observed at 980 °C, evidenced by the large mean size of these particles after 80 h of aging heat-treatment.

  20. Dimensional changes of Nb 3Sn Rutherford cables during heat treatment

    DOE PAGES

    Rochepault, E.; Ferracin, P.; Ambrosio, G.; ...

    2016-06-01

    In high field magnet applications, Nb 3Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb 3Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. In addition, this paper summarizes measurements of dimensional changes on strands, single Rutherford cables,more » cable stacks, and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb 3Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.« less

  1. Heat Treatment of Cold-Sprayed C355 Al for Repair: Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Murray, J. W.; Zuccoli, M. V.; Hussain, T.

    2018-01-01

    Cold gas dynamic spraying of commercially pure aluminum is widely used for dimensional repair in the aerospace sector as it is capable of producing oxide-free deposits of hundreds of micrometer thickness with strong bonding to the substrate, based on adhesive pull-off tests, and often with enhanced hardness compared to the powder prior to spraying. There is significant interest in extending this application to structural, load-bearing repairs. Particularly, in the case of high-strength aluminum alloys, cold spray deposits can exhibit high levels of porosity and microcracks, leading to mechanical properties that are inadequate for most load-bearing applications. Here, heat treatment was investigated as a potential means of improving the properties of cold-sprayed coatings from Al alloy C355. Coatings produced with process conditions of 500 °C and 60 bar were heat-treated at 175, 200, 225, 250 °C for 4 h in air, and the evolution of the microstructure and microhardness was analyzed. Heat treatment at 225 and 250 °C revealed a decreased porosity ( 0.14% and 0.02%, respectively) with the former yielding slightly reduced hardness (105 versus 130 HV0.05 as-sprayed). Compressive residual stress levels were approximately halved at all depths into the coating after heat treatment, and tensile testing showed an improvement in ductility.

  2. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    NASA Astrophysics Data System (ADS)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.

  3. Comparison of chemical and heating methods to enhance latent fingerprint deposits on thermal paper.

    PubMed

    Bond, John W

    2014-03-01

    A comparison is made of proprietary methods to develop latent fingerprint deposits on the inked side of thermal paper using either chemical treatment (Thermanin) or the application of heat to the paper (Hot Print System). Results with a trial of five donors show that the application of heat produces statistically significantly more fingerprint ridge detail than the chemical treatment for both fingerprint deposits aged up to 4 weeks and for a nine sequence depletion series. Subjecting the thermal paper to heat treatment with the Hot Print System did not inhibit subsequent ninhydrin chemical development of fingerprint deposits on the noninked side of the paper. A further benefit of the application of heat is the rapid development of fingerprint deposits (less than a minute) compared with up to 12 h for the Thermanin chemical treatment.

  4. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

    NASA Astrophysics Data System (ADS)

    Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.

    2018-06-01

    Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters ( i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

  5. Osteoporosis in the aging male: Treatment options

    PubMed Central

    Tuck, Stephen P; Datta, Harish K

    2007-01-01

    In elderly women, loss in bone mass and micro-architectural changes are generally attributed to the onset of menopause. Men do not experience menopause, they do, however, experience age-related acceleration in bone loss and micro-architecture deterioration. The incidence of osteoporotic fractures in elderly men, just as in aged women, increases exponentially with age; the rise in men, however, is some 5–10 years later than in women. Up to 50% of male osteoporotics have no identifiable etiology; however elderly males have much higher likelihood of having an identifiable secondary cause than younger men. Therefore, clinical and laboratory evaluation of aged male osteoporotics must be thorough and should be aimed at identifying lifestyle or conditions contributing to bone loss and fragility. It is essential to identify and treat secondary causes and ensure adequate vitamin D and calcium intake before embarking upon treatment with pharmacological agents. The evidence from a limited number of trials suggests that bisphosphonates, especially alendronate and risedronate, are effective in improving BMD, and seem to be the treatments of choice in aged men with osteoporosis. In cases where bisphosphonates are contra-indicated or ineffective, teriparatide or alternatives such as strontium should be considered. PMID:18225452

  6. Influence of prolonged storage process, pasteurization, and heat treatment on biologically-active human milk proteins.

    PubMed

    Chang, Jih-Chin; Chen, Chao-Huei; Fang, Li-Jung; Tsai, Chi-Ren; Chang, Yu-Chuan; Wang, Teh-Ming

    2013-12-01

    The bioactive proteins in human milk may be influenced by prolonged storage process, pasteurization, and heat treatment. This study was conducted to evaluate the effects of these procedures. Three forms of human milk - freshly expressed, frozen at -20°C for a prolonged duration, and pasteurized milk - were collected from 14 healthy lactating mothers and a milk bank. The concentrations of major bioactive proteins (secretory immunoglobulin A, lactoferrin, lysozyme, and leptin) were quantified using enzyme-linked immunosorbent assay kits. Changes in these proteins by heat treatment at 40°C or 60°C for 30 minutes were further evaluated. The mean concentrations of lactoferrin and secretory immunoglobulin A were significantly reduced by 66% and 25.9%, respectively, in pasteurized milk compared with those in freshly-expressed milk. Heat treatment at 40°C or 60°C did not cause significant changes in lactoferrin and secretory immunoglobulin A, but there was an apparent increase in lysozyme (p = 0.016). There were no significant differences in leptin level among these three forms of milk prior to (p = 0.153) or after heat treatment (p = 0.053). Various freezing/heating/pasteurization processes applied to human milk prior to delivery to neonates could affect the concentration of immunomodulatory proteins, especially lactoferrin, secretory immunoglobulin A, and lysozyme. Leptin was unaffected by the various handling processes tested. Fresh milk was found to be the best food for neonates. Further studies are warranted to evaluate the functional activity of these proteins and their effects on infants' immunological status. Copyright © 2013. Published by Elsevier B.V.

  7. Ground-layer plant community responses to even-age and uneven-age silvicultural treatments in Wisconsin northern hardwood forests

    Treesearch

    Cristel C. Kern; Brian J. Palik; Terry F. Strong

    2006-01-01

    We evaluated ground-layer plant diversity and community composition in northern hardwood forests among uncut controls and stands managed with even-age or uneven-age silvicultural systems. Even-age treatments included diameter-limit cuttings (20-cm diameter at 30-cm stem height) in 1952 and shelterwood removals in 1964. Uneven-age treatments included three intensities...

  8. Chronic corticosterone treatment enhances extinction-induced depression in aged rats.

    PubMed

    Huston, Joseph P; Komorowski, Mara; de Souza Silva, Maria A; Lamounier-Zepter, Valéria; Nikolaus, Susanne; Mattern, Claudia; Müller, Christian P; Topic, Bianca

    2016-11-01

    Withdrawal and avoidance behavior are common symptoms of depression and can appear as a consequence of absence of reward, i.e. extinction-induced depression (EID). This is particularly relevant for the aged organism subjected to pronounced loss of former rewards. Avoidance of the former site of reward and increased withdrawal into a distant compartment accompany extinction of food-rewarded behavior in rodent models. During extinction, behavioral markers for re-learning dissociate from indicators of extinction-induced depression. Here we examined the effect of a chronic treatment with corticosterone (CORT), a well-known inducer of depression-related behavior, on EID in adult and aged rats. Adult (3-4months) and aged (18months) male rats were treated with CORT via drinking water for 3weeks prior to extinction of a cued food-reward task. CORT treatment increased the distance from the site of reward and decreased goal tracking behavior during extinction, especially in the aged rats. Plasma hormone levels measured before and after restraint stress showed a decline in basal ACTH- and CORT-levels after chronic CORT treatment in aged animals. The treatment significantly impaired the HPA-axis activation after acute stress in both, adult and aged animals, alike. Altogether, these findings show an enhancement of EID after chronic CORT treatment in the aged organism, which may be mediated by an impaired HPA-axis sensitivity. These findings may have special relevance for the investigation of human geriatric depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Resistance of Legionella and Acanthamoeba mauritaniensis to heat treatment as determined by relative and quantitative polymerase chain reactions.

    PubMed

    Dobrowsky, Penelope H; Khan, Sehaam; Khan, Wesaal

    2017-10-01

    Legionella and Acanthamoeba spp. persist in harvested rainwater pasteurized at high temperatures (> 72°C) and the interaction mechanisms exhibited between these organisms need to be elucidated. The resistance of two Legionella reference strains (Legionella pneumophila ATCC 33152 and Legionella longbeachae ATCC 33462), three environmental strains [Legionella longbeachae (env.), Legionella norrlandica (env.) and Legionella rowbothamii (env.)] and Acanthamoeba mauritaniensis ATCC 50676 to heat treatment (50-90°C) was determined by monitoring culturability and viability [ethidium monoazide quantitative polymerase chain reaction (EMA-qPCR)]. The expression of metabolic and virulence genes of L. pneumophila ATCC 33152 (lolA, sidF, csrA) and L. longbeachae (env.) (lolA) in co-culture with A. mauritaniensis ATCC 50676 during heat treatment (50-90°C) was monitored using relative qPCR. While the culturability (CFU/mL) and viability (gene copies/mL) of the Legionella strains reduced significantly (p < 0.05) following heat treatment (60-90°C), L. longbeachae (env.) and L. pneumophila ATCC 33152 were culturable following heat treatment at 50-60°C. Metabolically active trophozoites and dormant cysts of A. mauritaniensis ATCC 50676 were detected at 50°C and 60-90°C, respectively. For L. pneumophila ATCC 33152, lolA expression remained constant, sidF expression increased and the expression of csrA decreased during co-culture with A. mauritaniensis ATCC 50676. For L. longbeachae (env.), while lolA was up-regulated at 50-70°C, expression was not detected at 80-90°C and in co-culture. In conclusion, while heat treatment may reduce the number of viable Legionella spp. in monoculture, results indicate that the presence of A. mauritaniensis increases the virulence of L. pneumophila during heat treatment. The virulence of Legionella spp. in co-culture with Acanthamoeba spp. should thus be monitored in water distribution systems where temperature (heat) is utilized for treatment

  10. Microstructural Evolution in Solution Heat Treatment of Gas-Atomized Al Alloy (7075) Powder for Cold Spray

    NASA Astrophysics Data System (ADS)

    Sabard, A.; de Villiers Lovelock, H. L.; Hussain, T.

    2018-01-01

    Cold gas dynamic spray is being explored as a repair technique for high-value metallic components, given its potential to produce pore and oxide-free deposits of between several micrometers and several millimeters thick with good levels of adhesion and mechanical strength. However, feedstock powders for cold spray experience rapid solidification if manufactured by gas atomization and hence can exhibit non-equilibrium microstructures and localized segregation of alloying elements. Here, we used sealed quartz tube solution heat treatment of a precipitation hardenable 7075 aluminum alloy feedstock to yield a consistent and homogeneous powder phase composition and microstructure prior to cold spraying, aiming for a more controllable heat treatment response of the cold spray deposits. It was shown that the dendritic microstructure and solute segregation in the gas-atomized powders were altered, such that the heat-treated powder exhibits a homogeneous distribution of solute atoms. Micro-indentation testing revealed that the heat-treated powder exhibited a mean hardness decrease of nearly 25% compared to the as-received powder. Deformation of the powder particles was enhanced by heat treatment, resulting in an improved coating with higher thickness ( 300 μm compared to 40 μm for untreated feedstock). Improved particle-substrate bonding was evidenced by formation of jets at the particle boundaries.

  11. Effects of heat treatment on the antioxidative and anti-inflammatory properties of orange by-products.

    PubMed

    Li, Chien-Chun; Hsu, Hui-Jin; Wang, Yu-Shiang; Cassidy, Jennifer; Sheen, Shiowshuh; Liu, Shih-Chuan

    2017-07-19

    This study investigated the changes in the functional components, antioxidative activities, antibacterial activities, anti-inflammatory activities of orange (Citrus sinensis (L.) Osbeck) by-products (OBP) on heat treatment at 50 and 100 °C (hereafter denoted 50D and 100D extracts, respectively). Optimal heating conditions were also investigated. The total phenolic content, flavonoid content and antioxidative activities of OBP extracts significantly increased on heat treatment. The lag time of Cu 2+ -induced oxidation of human LDL was increased by 2.61, 8.61 and 8.76-fold with the addition of 0.6, 0.8 and 1.0 mg ml -1 100D extracts, respectively. The 100D extracts may significantly inhibit the growth of E. coli O157, Salmonella typhimurium and Listeria monocytogenes. 1 μg mL -1 of 100D extract may suppress the TNF-α-induced ICAM-1 protein expression. The optimal heating time for OBP was 26 h at 100 °C, which resulted in the highest antioxidant activities.

  12. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)

    DOE PAGES

    Galarraga, Haize; Warren, Robert J.; Lados, Diana A.; ...

    2017-01-06

    Electron beam melting (EBM) is a metal powder bed fusion additive manufacturing (AM) technology that is used to fabricate three-dimensional near-net-shaped parts directly from computer models. Ti-6Al-4V is the most widely used and studied alloy for this technology and is the focus of this work in its ELI (Extra Low Interstitial) variation. The mechanisms of microstructure formation, evolution, and its subsequent influence on mechanical properties of the alloy in as-fabricated condition have been documented by various researchers. In the present work, the thermal history resulting in the formation of the as-fabricated microstructure was analyzed and studied by a thermal simulation.more » Subsequently different heat treatments were performed based on three approaches in order to study the effects of heat treatments on the singular and exclusive microstructure formed during the EBM fabrication process. In the first approach, the effect of cooling rate after the solutionizing process was studied. In the second approach, the variation of α lath thickness during annealing treatment and correlation with mechanical properties was established. In the last approach, several solutionizing and aging experiments were conducted.« less

  13. Decrease in the acrylamide content in canned coffee by heat treatment with the addition of cysteine.

    PubMed

    Narita, Yusaku; Inouye, Kuniyo

    2014-12-17

    Acrylamide (AA) is classified as a Group 2A carcinogen according to the International Agency for Research on Cancer. Although coffee contains a small amount of AA, it is a popular beverage worldwide. Approximately 10 billion canned coffees are consumed each year in Japan. In this study, we investigated how to decrease AA contained in canned coffee by modifying the heat treatment used for sterilization during the manufacturing process. The AA content of both types of canned coffee (black and milk) was decreased by approximately 95% by heat treatment with adding cysteine at 121 °C for 6 min. The content was also decreased by heat treatment with dithiothreitol, although that with cystine had no effect. Therefore, it is shown that thiol groups in cysteine and dithiothreitol might play an important role in decreasing the AA content.

  14. Effect of post weld heat treatment on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel weldments

    NASA Astrophysics Data System (ADS)

    Xin, Jijun; Fang, Chao; Song, Yuntao; Wei, Jing; Xu, Shen; Wu, Jiefeng

    2017-04-01

    The effect of postweld heat treatment (PWHT) on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel joints with ER316LMn filler material was investigated. PWHT aging was performed for 1 h at four different temperatures of 600 °C, 760 °C, 870 °C and 920 °C, respectively. The microstructure revealed the sigma phase precipitation occurred in the weld metals heat-treated at the temperature of 870 °C and 920 °C. The PWHT temperatures have the less effect on the tensile strength, and the maximum tensile strength of the joints is about 630 MPa, reaching the 95% of the base metal, whereas the elongation is enhanced with the rise of PWHT temperatures. Meanwhile, the sigma phase precipitation in the weld metals reduces the impact toughness.

  15. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures.

    PubMed Central

    Peck, M W; Lund, B M; Fairbairn, D A; Kaspersson, A S; Undeland, P C

    1995-01-01

    Spores of five type B, five type E, and two type F strains of nonproteolytic Clostridium botulinum were inoculated into tubes of an anaerobic meat medium plus lysozyme to give approximately 10(6) spores per tube. Sets of tubes were then subjected to a heat treatment, cooled, and incubated at 6, 8, 10, 12, and 25 degrees C for up to 60 days. Treatments equivalent to heating at 65 degrees C for 364 min, 70 degrees C for 8 min, and 75 degrees C for 27 min had little effect on growth and toxin formation. After a treatment equivalent to heating at 85 degrees C for 23 min, growth occurred at 6 and 8 degrees C within 28 to 40 days. After a treatment equivalent to heating at 80 degrees C for 19 min, growth occurred in some tubes at 6, 8, 10, or 12 degrees C within 28 to 53 days and at 25 degrees C in all tubes within 15 days. Following a treatment equivalent to heating at 95 degrees C for 15 mine, growth was detected in some tubes incubated at 25 degrees C for fewer than 60 days but not in tubes incubated at 6 to 12 degrees C. The results indicate that heat treatment of processed foods equivalent to maintenance at 85 degrees C for 19 min combined with storage below 12 degrees C and a shelf life of not more than 28 days would reduce the risk of growth from spores of nonproteolytic C. botulinum by a factor of 10(6).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7646016

  16. Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Krishna, N. Murali; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study mainly focuses on post weld heat treatment (PWHT) of AA5083 and AA6061 alloys by joining these using laser beam welding at three different laser power and two different beam spot sizes and three different welding speeds. Effects of these parameters on microstructural and mechanical properties like hardness, tensile strength were studied at PWHT condition and significant changes had been observed. The PWHT used was artificial aging technique. The microstructural observations revealed that there was a appreciable changes were taken place in the grain size. The microhardness observations proven that the change in the hardness profile in AA6061 was appreciable than in the AA5083. The tensile strength of 246 MPa was recorded as highest. The fractured surfaces observed are predominantly ductile in nature.

  17. Effect of Heat Treatment Parameters on the Microstructure and Properties of Inconel-625 Superalloy

    NASA Astrophysics Data System (ADS)

    Sukumaran, Arjun; Gupta, R. K.; Anil Kumar, V.

    2017-07-01

    Inconel-625 is a solid solution-strengthened alloy used for long-duration applications at high temperatures and moderate stresses. Different heat treatment cycles (temperatures of 625-1025 °C and time of 2-6 h) have been studied to obtain optimum mechanical properties suitable for a specific application. It has been observed that room temperature strength and, hardness decreased and ductility increased with increase in heat treatment temperature. The rate of change of these properties is found to be moderate for the samples heat-treated up to 850 °C, and thereafter, it increases rapidly. It is attributed to the microstructural changes like dissolution of carbides, recrystallization and grain growth. Microstructures are found to be predominantly single-phase austenitic with the presence of fine alloy carbides. The presence of twins is observed in samples heat-treated at lower temperature, which act as nucleation sites for recrystallization at 775 °C. Beyond 850 °C, the role of carbides present in the matrix is subsided by the coarsening of recrystallized grains and finally at 1025 °C, significant dissolution of carbide results in substantial reduction in strength and increase in ductility. Elongation to an extent of >71% has been obtained in sample heat-treated at 1025 °C indicating excellent tendency for cold workability. Failure of heat-treated specimens is found to be mainly due to carbide particle-matrix decohesion which acts as locations for crack initiation.

  18. Effect of Cold Rolling and Heat Treatment on Microstructure and Mechanical Properties of Ti-4Al-1Mn Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Gaur, Rishi; Gupta, R. K.; AnilKumar, V.; Banwait, S. S.

    2018-05-01

    Mechanical behavior of Ti-4Al-1Mn titanium alloy has been studied in annealed, cold-rolled and heat-treated conditions. Room temperature tensile strength as well as % elongation has been found to be low with increasing amount of cold rolling. Lowering of strength in cold worked condition is attributed to premature failure. However, the same has been mitigated after heat treatment. Significant effect of cooling media (air and water) from heat treatment temperature on microstructure was not found except for the degree of fineness of α plates. Optimum properties (strength as well as ductility) were exhibited by samples subjected to 15% cold rolling and heat treatment below β transus temperature, which can be attributed to presence of recrystallized microstructure. In cold worked condition, the microstructure shows fine fragmented α plates/Widmanstätten morphology with high dislocation density along with a large amount of strain fields and twinning, which gets transformed to recrystallized equiaxed microstructure and with plate-like morphology after near β heat treatment. Prior cold work is found to have a significant effect on mechanical properties supported by evolution of microstructure. Twinning is found to be assisting in deformation as well as in recrystallization through the formation of deformation and annealing twins during cold working and heat treatment. Fracture analysis of the tested sample with prior cold work and heat-treated condition revealed quasi-ductile failure as compared to only ductile failure features seen for samples heat treated without prior cold work.

  19. Dry heat and hot water treatments for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum

    USDA-ARS?s Scientific Manuscript database

    The potential of low- and high-temperature dry heat, and hot water treatments, for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum was investigated. Naturally infected seeds from Louisiana were air-heated in incubators set at temperatures of 30, 35, and 40 degrees C for up to 24 we...

  20. Dry sliding wear of heat treated hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Naveed, Mohammed; Khan, A. R. Anwar

    2016-09-01

    In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites

  1. Case report: severe heat stroke with multiple organ dysfunction – a novel intravascular treatment approach

    PubMed Central

    Broessner, Gregor; Beer, Ronny; Franz, Gerhard; Lackner, Peter; Engelhardt, Klaus; Brenneis, Christian; Pfausler, Bettina; Schmutzhard, Erich

    2005-01-01

    Introduction We report the case of a patient who developed a severe post-exertional heat stroke with consecutive multiple organ dysfunction resistant to conventional antipyretic treatment, necessitating the use of a novel endovascular device to combat hyperthermia and maintain normothermia. Methods A 38-year-old male suffering from severe heat stroke with predominant signs and symptoms of encephalopathy requiring acute admission to an intensive care unit, was admitted to a ten-bed neurological intensive care unit of a tertiary care hospital. The patient developed consecutive multiple organ dysfunction with rhabdomyolysis, and hepatic and respiratory failure. Temperature elevation was resistant to conventional treatment measures. Aggressive intensive care treatment included forced diuresis and endovascular cooling to combat hyperthermia and maintain normothermia. Results Analyses of serum revealed elevation of proinflammatory cytokines (TNF alpha, IL-6), cytokines (IL-2R), anti-inflammatory cytokines (IL-4) and chemokines (IL-8) as well as signs of rhabdomyolysis and hepatic failure. Aggressive intensive care treatment as forced diuresis and endovascular cooling (CoolGard® and CoolLine®) to combat hyperthermia and maintain normothermia were used successfully to treat this severe heat stroke. Conclusion In this case of severe heat stroke, presenting with multiple organ dysfunction and elevation of cytokines and chemokines, which was resistant to conventional cooling therapies, endovascular cooling may have contributed significantly to the reduction of body temperature and, possibly, avoided a fatal result. PMID:16285034

  2. Age, splanchnic vasoconstriction, and heat stress during tilting

    NASA Technical Reports Server (NTRS)

    Minson, C. T.; Wladkowski, S. L.; Pawelczyk, J. A.; Kenney, W. L.

    1999-01-01

    During upright tilting, blood is translocated to the dependent veins of the legs and compensatory circulatory adjustments are necessary to maintain arterial pressure. For examination of the effect of age on these responses, seven young (23 +/- 1 yr) and seven older (70 +/- 3 yr) men were head-up tilted to 60 degrees in a thermoneutral condition and during passive heating with water-perfused suits. Measurements included heart rate (HR), cardiac output (Qc; acetylene rebreathing technique), central venous pressure (CVP), blood pressures, forearm blood flow (venous occlusion plethysmography), splanchnic and renal blood flows (indocyanine green and p-aminohippurate clearance), and esophageal and mean skin temperatures. In response to tilting in the thermoneutral condition, CVP and stroke volume decreased to a greater extent in the young men, but HR increased more, such that the fall in Qc was similar between the two groups in the upright posture. The rise in splanchnic vascular resistance (SVR) was greater in the older men, but the young men increased forearm vascular resistance (FVR) to a greater extent than the older men. The fall in Qc during combined heat stress and tilting was greater in the young compared with older men. Only four of the young men versus six of the older men were able to finish the second tilt without becoming presyncopal. In summary, the older men relied on a greater increase in SVR to compensate for a reduced ability to constrict the skin and muscle circulations (as determined by changes in FVR) during head-up tilting.

  3. Effects of alloy heat treatment on oxidation kinetics and scale morphology for Crofer 22 APU

    NASA Astrophysics Data System (ADS)

    Magdefrau, Neal J.; Chen, Lei; Sun, Ellen Y.; Aindow, Mark

    2013-11-01

    The effect of alloy heat treatment on the oxidation kinetics and oxide scale microstructure of Crofer 22 APU has been studied. Parabolic oxidation rate constants were measured for the as-received alloy and after pre-oxidation heat treatment in argon at 1050 °C for 1 and 4 h. The oxide scale microstructure was investigated using scanning electron microscopy, focused ion beam milling and transmission electron microscopy. It was found that the alloy forms a two-layer scale with a continuous chromia layer and a discontinuous MnCr2O4 overlayer. Two forms of internal oxides were also formed: subscale pockets of spinel and isolated TiOx precipitates in the underlying alloy. The pre-oxidation heat treatment had a profound effect on the grain size and morphology of the Cr2O3 and MnCr2O4 layers in the scale. The heat-treated samples exhibit a 3.5× lower parabolic oxidation rate constant than the as-received Crofer 22 APU. This improvement in oxidation resistance is attributed to the dramatic differences in the morphology of the oxide scale that forms during the earliest stages of oxidation (<5 h). The implications of these findings for oxidation mechanisms and long-term SOFC performance are discussed.

  4. Effects of Various Heat Treatments on the Ballistic Impact Properties of Inconel 718 Investigated

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2000-01-01

    Uncontained failures of aircraft engine fan blades are serious events that can cause equipment damage and loss of life. Federal Aviation Administration (FAA) certification requires that all engines demonstrate the ability to contain a released fan blade with the engine running at full power. However, increased protection generally comes at the expense of weight. Proper choice of materials is therefore imperative to an optimized design. The process of choosing a good casing material is done primarily through trial and error. This costly procedure could be minimized if there was a better understanding of the relationships among static material properties, impact properties, and failure mechanisms. This work is part of a program being conducted at the NASA Glenn Research Center at Lewis Field to study these relationships. Ballistic impact tests were conducted on flat, square sheets of Inconel 718 that had been subjected to different heat treatments. Two heat treatments and the as-received condition were studied. In addition, results were compared with those from an earlier study involving a fourth heat treatment. The heat treatments were selected on the basis of their effects on the static tensile properties of the material. The impact specimens used in this study were 17.8-cm square panels that were centered and clamped over a 15.2-cm square hole in a 1.27-cm-thick steel plate. Three nominal plate thickness dimensions were studied, 1.0, 1.8, and 2.0 mm. For each thickness, all the specimens were taken from the same sheet of material. The projectile was a Ti-6Al-4V cylinder with a length of 25.4 mm, a diameter of 12.7 mm, and a mass ranging from 14.05 to 14.20 g. The projectiles were accelerated toward the specimens at normal incidence using a gas gun with a 2-m-long, 12.7-mm inner-diameter barrel. The ballistic limit for each heat treatment condition and thickness was determined by conducting a number of impact tests that bracketed as closely as possible the velocity

  5. Endotoxin inactivation via steam-heat treatment in dilute simethicone emulsions used in biopharmaceutical processes.

    PubMed

    Britt, Keith A; Galvin, Jeffrey; Gammell, Patrick; Nti-Gyabaah, Joseph; Boras, George; Kolwyck, David; Ramirez, José G; Presente, Esther; Naugle, Gregory

    2014-01-01

    Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam-heat treatment was fit to a four-parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature-related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration-related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre-exponential factor was >10(12) s(-1) suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam-heat treatment decreased endotoxin levels by 1-2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam-heat treatment. The results from this study show that steam-heat treatment is a viable endotoxin control strategy that can be implemented to support large-scale biopharmaceutical manufacturing. © 2014 American Institute of Chemical Engineers.

  6. Effect of Heat Treatment on the Hardness and Wear of Grinding Balls

    NASA Astrophysics Data System (ADS)

    Aissat, Sahraoui; Sadeddine, Abdelhamid; Bradai, Mohand Amokrane; Younes, Rassim; Bilek, Ali; Benabbas, Abderrahim

    2017-09-01

    The effect quenching and tempering by different regimes on Rockwell hardness and wear processes of grinding balls 50 and 70 mm in diameter made of two melts of chromium-molybdenum cast iron is studied. The heating temperature for quenching is 850, 950, and 1050°C; the tempering temperature is 250, 400, and 600°C. Iron is analyzed in an electron microscope. Diffraction patterns are obtained. A model of cast iron wear is suggested and compared to the Davis model and to experimental results. An optimum heat treatment regime is proposed.

  7. Effects of annealing heat treatment on the corrosion resistance of Zn/Mg/Zn multilayer coatings

    NASA Astrophysics Data System (ADS)

    Bae, KiTae; La, JoungHyun; Lee, InGyu; Lee, SangYul; Nam, KyungHoon

    2017-05-01

    Zn coatings alloyed with magnesium offer superior corrosion resistance compared to pure Zn or other Zn-based alloy coatings. In this study, Zn/Mg/Zn multilayer coatings with various Mg layer thicknesses were synthesized using an unbalanced magnetron sputtering process and were annealed to form Zn-Mg intermetallic phases. The effects of the annealing heat treatment on the corrosion resistance of the Zn/Mg/Zn multilayer coatings were evaluated using electrochemical measurements. The extensive diffusion of magnesium species into the upper and lower zinc layer from the magnesium layer in the middle of the coating was observed after the heat treatment. This phenomenon caused (a) the porous microstructure to transition into a dense structure and (b) the formation of a MgZn2 intermetallic phase. The results of the electrochemical measurements demonstrated that the heat treated Zn/Mg/Zn multilayer coatings possessed higher levels of corrosion resistance than the non-heat treated coatings. A Zn/Mg/Zn multilayer coating with MgZn2 and (Zn) phases showed the best corrosion resistance among the heat treated coatings, which could be attributed to the reduced galvanic corrosion effects due to a small potential gradient between the MgZn2 and zinc.

  8. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles

    PubMed Central

    Zhang, Jinsong; Taylor, Ethan W; Wan, Xiaochun; Peng, Dungeng

    2012-01-01

    Background Elemental selenium nanoparticles have emerged as a novel selenium source with the advantage of reduced risk of selenium toxicity. The present work investigated whether heat treatment affects the size, structure, and bioactivity of selenium nanoparticles. Methods and results After a one-hour incubation of solution containing 80 nm selenium particles in a 90°C water bath, the nanoparticles aggregated into larger 110 nm particles and nanorods (290 nm × 70 nm), leading to significantly reduced bioavailability and phase II enzyme induction in selenium-deficient mice. When a solution containing 40 nm selenium nanoparticles was treated under the same conditions, the nanoparticles aggregated into larger 72 nm particles but did not transform into nanorods, demonstrating that the thermostability of selenium nanoparticles is size-dependent, smaller selenium nanoparticles being more resistant than larger selenium nanoparticles to transformation into nanorods during heat treatment. Conclusion The present results suggest that temperature and duration of the heat process, as well as the original nanoparticle size, should be carefully selected when a solution containing selenium nanoparticles is added to functional foods. PMID:22359458

  9. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    NASA Astrophysics Data System (ADS)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  10. Do people with anorexia nervosa use sauna baths? A reconsideration of heat-treatment in anorexia nervosa.

    PubMed

    Gutierrez, Emilio; Vazquez, Reyes; Beumont, Peter J V

    2002-01-01

    The paper addresses the absence of reports about the sauna use among the weight loss strategies of patients with anorexia nervosa (AN). Because AN entails a relentless pursuit of thinness, it might be expected that these patients would frequently resort to saunas. The paper sustains that the absence of reports should not be taken to mean that sauna use is irrelevant to AN. Support for this possibility is founded in the apparent progress shown by AN patients whose treatment consisted of different strategies of heat supply, which included a protocol of sauna sessions. First recommended by W. Gull, heat-treatment may be relevant to hyperactivity, a significant clinical characteristic in AN. This treatment was developed as an extrapolation from animal research model, where a simple manipulation of ambient temperature (AT) was found to impede and reverse excessive running in food-restricted rats. Sauna use may have been unreported either because it impedes the development of the syndrome, or its benefits have been attributed to conventional treatments. The elucidation of sauna experience among AN patients may have potential implications for the role of heat in the treatment of AN.

  11. Heat treatment effects in Cu2S-CdS heterojunction photovoltaic cells. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Fahrenbruch, A. L.

    1973-01-01

    The optical and electronic properties of single crystal Cu2S-CdS photovoltaic cells were investigated. In these cells trapped charge near the interface which is manifested by a persistent increase in junction capacitance (the photocapacitance) plays a significant role in determining the carrier transport properties. It was found that the severe degradation in short-circuit current observed in heat-treated cells can be separated into two components: (1) a relatively small thermal component occurring on heat-treatment in the dark, and (2) a much larger degradation caused by exposure to light at room temperature. By a short additional heat-treatment above approximately 100 C the cell can be completely restored to its condition before the optically caused degradation with no effect on the depletion layer width.

  12. Heat transfer from an oxidized large copper surface to liquid helium: Dependence on surface orientation and treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, A.; Mito, T.; Takahata, K.

    Heat transfer of large copper plates (18 x 76 mm) in liquid helium has been measured as a function of orientation and treatment of the heat transfer surface. The results relate to applications of large scale superconductors. In order to clarify the influence of the area where the surface treatment peels off, the authors studied five types of heat transfer surface areas including: (a) 100% polished copper sample, (b) and (c) two 50% oxidized copper samples having different patterns of oxidation, (d) 75% oxidized copper sample, (e) 90% oxidized copper sample, and (f) 100% oxidized copper sample. They observed thatmore » the critical heat flux depends on the heat transfer surface orientation. The critical heat flux is a maximum at angles of 0{degrees} - 30{degrees} and decreases monotonically with increasing angles above 30{degrees}, where the angle is taken in reference to the horizontal axis. On the other hand, the minimum heat flux is less dependent on the surface orientation. More than 75% oxidation on the surface makes the critical heat flux increase. The minimum heat fluxes of the 50 and 90% oxidized Cu samples approximately agree with that of the 100% oxidized Cu sample. Experiments and calculations show that the critical and the minimum heat fluxes are a bilinear function of the fraction of oxidized surface area.« less

  13. No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods.

    PubMed

    Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho

    2013-01-01

    Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.

  14. No Major Differences Found between the Effects of Microwave-Based and Conventional Heat Treatment Methods on Two Different Liquid Foods

    PubMed Central

    Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho

    2013-01-01

    Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well. PMID

  15. The influence of heat treatment on properties of cold rolled alloyed steel and nickel superalloys sheets used in aircraft industry

    NASA Astrophysics Data System (ADS)

    Zaba, K.; Dul, I.; Puchlerska, S.

    2017-02-01

    Superalloys based on nickel and selected steels are widely used in the aerospace industry, because of their excellent mechanical properties, heat resistance and creep resistance. Metal sheets of these materials are plastically deformed and applied, inter alia, to critical components of aircraft engines. Due to their chemical composition these materials are hardly deformable. There are various methods to improve the formability of these materials, including plastic deformation at an elevated or high temperature, or a suitable heat treatment before forming process. The paper presents results of the metal sheets testing after heat treatment. For the research, sheets of two types of nickel superalloys type Inconel and of three types of steel were chosen. The materials were subjected to multivariate heat treatment at different temperature range and time. After this step, mechanical properties were examined according to the metal sheet rolling direction. The results were compared and the optimal type of pre-trial softening heat treatment for each of the materials was determined.

  16. Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut Chokanan mango and Josephine pineapple.

    PubMed

    George, Dominic Soloman; Razali, Zuliana; Santhirasegaram, Vicknesha; Somasundram, Chandran

    2015-02-01

    The effects of ultraviolet (UV-C) and medium heat (70 °C) treatments on the quality of fresh-cut Chokanan mango and Josephine pineapple were investigated. Quality attributes included physicochemical properties (pH, titratable acidity, and total soluble solids), ascorbic acid content (vitamin C), antioxidant activity, as well as microbial inactivation. Consumers' acceptance was also investigated through sensory evaluation of the attributes (appearance, texture, aroma and taste). Furthermore, shelf-life study of samples stored at 4 ± 1 °C was conducted for 15 d. The fresh-cut fruits were exposed to UV-C for 0, 15, 30, and 60 min while heat treatments were carried out at 70 °C for 0, 5, 10 and 20 min. Both UV-C and medium heat treatments resulted in no significant changes to the physicochemical attributes of both fruits. The ascorbic acid content of UV-C treated fruits was unaffected; however, medium heat treatment resulted in deterioration of ascorbic acids in both fruits. The antioxidants were enhanced with UV-C treatment which could prove invaluable to consumers. Heat treatments on the other hand resulted in decreased antioxidant activities. Microbial count in both fruits was significantly reduced by both treatments. The shelf life of the fresh-cut fruits were also successfully extended to a maximum of 15 d following treatments. As for consumers' acceptance, UV-C treated fruits were the most accepted as compared to their heat-treated counterparts. The results obtained through this study support the use of UV-C treatment for better retention of quality, effective microbial inactivation and enhancement of health promoting compounds for the benefit of consumers. © 2015 Institute of Food Technologists®

  17. Aging Will Amplify the Heat-related Mortality Risk under a Changing Climate: Projection for the Elderly in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Tiantian; Horton, Radley M.; Bader, Daniel A.; Zhou, Maigeng; Liang, Xudong; Ban, Jie; Sun, Qinghua; Kinney, Patrick L.

    2016-06-01

    An aging population could substantially enhance the burden of heat-related health risks in a warming climate because of their higher susceptibility to extreme heat health effects. Here, we project heat-related mortality for adults 65 years and older in Beijing China across 31 downscaled climate models and 2 representative concentration pathways (RCPs) in the 2020s, 2050s, and 2080s. Under a scenario of medium population and RCP8.5, by the 2080s, Beijing is projected to experience 14,401 heat-related deaths per year for elderly individuals, which is a 264.9% increase compared with the 1980s. These impacts could be moderated through adaptation. In the 2080s, even with the 30% and 50% adaptation rate assumed in our study, the increase in heat-related death is approximately 7.4 times and 1.3 times larger than in the 1980s respectively under a scenario of high population and RCP8.5. These findings could assist countries in establishing public health intervention policies for the dual problems of climate change and aging population. Examples could include ensuring facilities with large elderly populations are protected from extreme heat (for example through back-up power supplies and/or passive cooling) and using databases and community networks to ensure the home-bound elderly are safe during extreme heat events.

  18. Analysis of Structure Destroyed Metal after Diffusion Heat Treatment

    NASA Astrophysics Data System (ADS)

    Apasov, A. M.; Kozlov, E. V.; Fedoseev, S. N.

    2016-08-01

    It was accomplished research of the structure steel which carbonitriding and subsequent heat treatment was exposed for its cause's destruction to discover. For measure quality field of metal were used methods optical, appearing electronic microscopy and X-ray diffraction. Therefore one of the principal problems were research phase composition, grain and dislocation structure of a metal the gear teeth. Mechanism of rising hear cracks in the gear teeth on different stages her making and their trajectories of evolution were determined.

  19. Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Li, G. J.; Li, J.; Luo, X.

    2015-01-01

    The composite coatings were produced on the Ti6Al4V alloy substrate by laser cladding. Subsequently, the coatings were heated at 500 °C for 1 h and 2 h and then cooled in air. Effects of post-heat treatment on microstructure, microhardness and fracture toughness of the coatings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), optical microscopy (OM). Wear resistance of the coatings was evaluated under the dry sliding reciprocating friction condition at room temperature. The results indicated that the coatings mainly consist of a certain amount of coarse white equiaxed WC particles surrounded by the white-bright W2C, a great deal of fine dark spherical TiC particles and the matrix composed of the α(Ti), Ti2Ni and TiNi phases. Effects of the post-heat treatment on phase constituents and microstructure of the coatings were almost negligible due to the low temperature. However, the post-heat treatment could decrease the residual stress and increase fracture toughness of the coatings, and fracture toughness of the coatings was improved from 2.77 MPa m1/2 to 3.80 MPa m1/2 and 4.43 MPa m1/2 with the heat treatment for 1 h and 2 h, respectively. The mutual role would contribute to the reduction in cracking susceptibility. Accompanied with the increase in fracture toughness, microhardness of the coatings was reduced slightly. The dominant wear mechanism for all the coatings was abrasive wear, characterized by micro-cutting or micro-plowing. The heat treatment could significantly decrease the average friction coefficient and reduce the fluctuation of the friction coefficient with the change in sliding time. The appropriate heat treatment time (approximately 1 h) had a minimal effect on wear mass loss and volume loss. Moreover, the improvement in fracture toughness will also be beneficial to wear resistance of the coatings under the long service.

  20. Influence of heat treatment on hole transfer dynamics in core-shell quantum dot/organic hole conductor hybrid films

    NASA Astrophysics Data System (ADS)

    Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing

    2017-08-01

    The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.

  1. Experience in Reconstructing the PT-60-90 Turbine by Reconditioning Heat Treatment of the High-Pressure Cylinder Shell

    NASA Astrophysics Data System (ADS)

    Ermolaev, V. V.; Zhuchenko, L. A.; Lyubimov, A. A.; Gladshtein, V. I.; Kremer, V. L.

    2018-06-01

    Experience in reconstructing the PT-60-90 turbine at Salavatskaya CHPP upon the operation for more than 350000 h is described. In the course of reconstruction, the life of the turbine was restored, its economic efficiency was increased, process extraction of 1.27-1.57 MPa was changed to uncontrolled extraction, and additional extraction of 3.43 MPa was arranged. The high-pressure cylinder (HPC) shell was restored by reconditioning heat treatment (RHT), and the rotor was replaced by a new modernized one. To select the optimal conditions of the reconditioning heat treatment of the HPC shell (of the PT-60-90 turbine) manufactured from 20CrMoPL grade steel, the results of previously conducted tests of the shell metal of the same grade were integrated. The heat treatment was carried out on modernized furnace equipment using means of and methods for controlling the temperature and heating and cooling rates. Detailed nondestructive inspection of the upper and lower HPC halves was performed. The locations, distribution, sizes, and types of the defects were identified. The detected defects and austenitic build-ups were removed, welded with pearlite electrodes, examined, and subjected to heat treatment (tempering). The actual heat treatment conditions were analyzed and, based on the obtained data on the mechanical properties of the metal, the tempering temperature and time were specified. Complete investigation of the metal of both HPC halves was conducted prior to the reconditioning heat treatment. The reliability of the metal of the cylinder shell after RHT was evaluated by the mechanical properties, such as tensile strength, critical ductile-to-brittle transition temperature (crack resistance), and stress-rupture strength. It was established that, after RHT, the characteristics of the metal, such as yield strength, ultimate strength, elongation per unit length, contraction ratio, hardness, and impact toughness, significantly improved and, on the whole, the quality of the

  2. Vitamin Content of Breast Milk From HIV-1–Infected Mothers Before and After Flash-Heat Treatment

    PubMed Central

    Israel-Ballard, Kiersten A.; Abrams, Barbara F.; Coutsoudis, Anna; Sibeko, Lindiwe N.; Cheryk, Lynn A.; Chantry, Caroline J.

    2010-01-01

    Background World Health Organization advocates heat treatment of expressed breastmilk (EBM) as one method to reduce postnatal transmission of human immunodeficiency virus (HIV) in developing countries. Flash-heat is a simple heat treatment method shown to inactivate cell-free HIV. Objective To determine the effect of flash-heat on vitamin content of milk. Methods Fresh EBM was collected from 50 HIV+ mothers in Durban, South Africa. Mothers washed their hands and then manually expressed 75–150 mL EBM into sterile jars. Milk was aliquoted to unheated controls or flash-heat (50 mL EBM in a glass jar heated in a 450-mL water jacket in an aluminum pan until water boiled, then EBM removed) simulating field conditions with an open flame. Samples were stored at −70°C and then analyzed for the effect of flash-heat on vitamins [A, ascorbic acid, riboflavin (B2), pyridoxal-5-phosphate (B6), folate, and B12]. Results Vitamin A was not significantly affected by flash-heat and vitamins B12 and C and folate increased significantly. Vitamins B2 and B6 were decreased to 59% (95% confidence interval 44 to 81) and 96% (95% confidence interval 92 to 99), respectively, of that found in unheated milk. Conclusions The percentage remaining after flash-heat suggests that most vitamin concentrations are retained after heating. Flash-heat may be a practical and nutritious infant feeding method for mothers in developing countries. PMID:18614920

  3. Facial dynamics and emotional expressions in facial aging treatments.

    PubMed

    Michaud, Thierry; Gassia, Véronique; Belhaouari, Lakhdar

    2015-03-01

    Facial expressions convey emotions that form the foundation of interpersonal relationships, and many of these emotions promote and regulate our social linkages. Hence, the facial aging symptomatological analysis and the treatment plan must of necessity include knowledge of the facial dynamics and the emotional expressions of the face. This approach aims to more closely meet patients' expectations of natural-looking results, by correcting age-related negative expressions while observing the emotional language of the face. This article will successively describe patients' expectations, the role of facial expressions in relational dynamics, the relationship between facial structures and facial expressions, and the way facial aging mimics negative expressions. Eventually, therapeutic implications for facial aging treatment will be addressed. © 2015 Wiley Periodicals, Inc.

  4. Improvement of bioinsecticides production through adaptation of Bacillus thuringiensis cells to heat treatment and NaCl addition.

    PubMed

    Ghribi, D; Zouari, N; Jaoua, S

    2005-01-01

    The present work aimed to increase yields of delta-endotoxin production through adaptation of Bacillus thuringiensis cells to heat shock and sodium chloride and to investigate their involvements in bioinsecticides production improvement. Growing B. thuringiensis cells were heat treated after different incubation times to study the response of the adaptative surviving cells in terms of delta-endotoxin synthesis. Similarly, adaptation of B. thuringiensis cells to sodium chloride was investigated. Adaptation to combined stressors was also evaluated. When applied separately in the glucose-based medium, 20-min heat treatment of 6-h-old cultures and addition of 7 g l(-1) NaCl at the beginning of the incubation gave respectively 38 and 27% delta-endotoxin production improvements. Heat shock improved toxin synthesis yields, while NaCl addition improved delta-endotoxin production by increasing the spore titres without significant effect on toxin synthesis yields. Cumulative improvements (66%) were obtained by combination of the two stressors at the conditions previously established for each one. Interestingly, when the similar approach was conducted by using the large scale production medium based on gruel and fish meal, 17, 8 and 29% delta-endotoxin production improvements were respectively, obtained with heat shock, NaCl and combined stressors. Heat treatment of vegetative B. thuringiensis cells and NaCl addition to the culture media improved bioinsecticides production. Heat treatment increased toxin synthesis yields, while addition of NaCl increased biomass production yields. Cumulative improvements of 66 and 29% were obtained in glucose and economic production media, respectively. Overproduction of bioinsecticides by B. thuringiensis could be obtained by the combination of heat treatment of vegetative cells and addition of NaCl to the culture medium. This should contribute to a significant reduction of the cost of B. thuringiensis bioinsecticides production and

  5. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A study on EMI shielding enhancement behaviors of Ni-plated CFs-reinforced polymer matrix composites by post heat treatment

    NASA Astrophysics Data System (ADS)

    Kim, Kwan-Woo; Han, Woong; Kim, Byoung-Suhk; Kim, Byung-Joo; An, Kay-Hyeok

    2017-09-01

    In order to develop the high quality electromagnetic interference shielding efficiency (EMI-SE) materials, Ni-plated carbon fiber fabrics (Ni-CFFs) were prepared by an electroless method. Effects of post heat-treatment conditions on EMI-SE and electrical conductivity of Ni-CFFs/epoxy composites were also investigated. The morphologies and structural properties of Ni-CFFs were measured by a SEM and a XRD. It was found that all the Ni peaks increased with increasing post-heat treatment temperature, indicating that some impurities were removed and nickel particle sharp crystalline peaks. Also, It was found that the EMI-SE of composites enhanced was increased after post heat-treatment. In the frequency range of electromagnetic wave occurred from appliances (3.0 × 107-6.0 × 108), EMI-SE of post-heat treatment Ni-CFs was increased. This result concludes that the EMI-SE of the composites can be enhanced according to the microstructure of Ni in the Ni-CFFs/epoxy composites.

  7. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2015-01-01

    The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    PubMed

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Analysis of phase transformations in Inconel 738C alloy after regenerative heat treatment

    NASA Astrophysics Data System (ADS)

    Kazantseva, N.; Davidov, D.; Vinogradova, N.; Ezhov, I.; Stepanova, N.

    2018-03-01

    Study is based on the characterization of the chemical composition the phase transformations in Inconel 738C gas turbine blade after standard regenerative heat treatment. The microstructure and chemical composition were examined by scanning electron microscope and transmission electron microscope equipped with an energy dispersive X-ray spectrometer. It was found the degradation of microstructure of the blade feather. Redistribution of the chemical elements decreasing the corrosion resistance was observed inside the blade feather. The carbide transformation and sigma phase were found in the structure of the blade feather. It is found that the standard regenerative heat treatment of the IN738 operative gas turbine blade does not effect on carbides transformation, TCP σ-phase dissolution, and thus do not guarantee the full recovery of the IN738 gas turbine blade.

  10. Aging and the Right to Terminate Medical Treatment

    ERIC Educational Resources Information Center

    Haug, Marie

    1978-01-01

    Belief in right to terminate medical care in case of irreversible terminal illness is analyzed by age, education, health, and attitudes to patient rights. Although age is related to supporting right to halt treatment, with those over 65 least supportive, relation to professional care in general has more explanatory power. (Author)

  11. Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment

    NASA Astrophysics Data System (ADS)

    Bai, J. Y.; Fan, C. L.; Lin, S. B.; Yang, C. L.; Dong, B. L.

    2017-04-01

    2219-Al parts were produced by gas tungsten arc-additive manufacturing and sequentially processed by an especial heat treatment. In order to investigate the effects of heat treatment on its mechanical properties, multiple tests were conducted. Hardness tests were carried out on part scale and layer scale along with tensile tests which were performed on welding and building directions. Results show that compared to conventional casting + T6 2219-Al, the current deposit + T6 2219-Al exhibits satisfying properties with regard to strength but unsatisfying results in plasticity. Additionally, anisotropy is significant. Fractures were observed and the cracks' propagating paths in both directional specimens are described. The effects of heat treatment on the cracks' initiation and propagation were also investigated. Ultimately, a revised formula was developed to calculate the strength of the deposit + T6 2219-Al. The aforementioned formula, which takes into consideration the belt-like porosities-distributing feature, can scientifically describe the anisotropic properties in the material.

  12. Artificial crystals with 3d metal and palladium particles subjected to high-temperature heat treatment

    NASA Astrophysics Data System (ADS)

    Rinkevich, A. B.; Nemytova, O. V.; Perov, D. V.; Samoylovich, M. I.; Kuznetsov, E. A.

    2018-04-01

    High-temperature heat treatment has valuable impact on the structure and physical properties of artificial crystals with 3d metal and palladium particles. Artificial crystals are obtained by means of introduction of particles into the interspherical voids of opal matrices. The magnetic properties are studied at the temperatures ranging from 2 to 300 K and in fields up to 350 kOe. Microwave properties are investigated in the millimeter frequency range. The complex dielectric permittivity of several nanocomposites is measured. The influence of heat treatment up to 960 °C on the structure of artificial crystals is clarified.

  13. Substance Abuse Treatment Admissions Aged 12 to 14. The TEDS Report

    ERIC Educational Resources Information Center

    Substance Abuse and Mental Health Services Administration, 2011

    2011-01-01

    This report uses data from the Treatment Episode Data Set (TEDS) for 2008 to provide information on the characteristics of youths aged 12 to 14 admitted to substance abuse treatment. In 2008, approximately 23,770 substance abuse treatment admissions were adolescents aged 12 to 14. The two most frequently reported primary substances of abuse among…

  14. Decreased survival of prostate cancer cells in vitro by combined treatment of heat and an antioxidant inhibitor diethyldithiocarbamate (DDC).

    PubMed

    Moriyama-Gonda, Nobuko; Igawa, Mikio; Shiina, Hiroaki; Urakami, Shinji; Terashima, Masaharu

    2003-11-01

    The aim of this study was to examine a modulation of thermotolerance by treatment with combination of heat and the antioxidant inhibitor diethyldithiocarbamate (DDC) of the PC-3 prostate cancer cells. To determine thermotolerance, cells were heated once or twice. Two 1 h exposures at 43 degrees C, with a recovery period in between, revealed better survival/recovery of cells after the second exposure than after the first (fig. 1A + 1B). Additional experiments were performed, heating cells twice (fig. 1B + 1C). First, cells were heated at 43 degrees C for 1 h and, after various recovery times (intervals) at 37 degree C, subsequently reheated at 44 degrees C for 1 h. To ensure effective cell killing, efficiency of the combined treatments of 1 mM DDC and heating at 43 or 44 degrees C for 1 h was estimated by measuring cell survival, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity and heat shock protein 70 (hsp 70) expression. To obtain a more effective method for subsequent heat exposure, cells were heated twice after a 24 h interval in the presence or absence of 1 mM DDC. ROS generation and SOD activity immediately increased correlating with duration of heating, but their levels gently decreased with time after discontinuation of heating. On the other hand, hsp 70 levels slowly increased, also correlating with duration of heating but continued to increase with time after discontinuation of heating for a certain period. DDC administration coupled with heating at 43 or 44 degrees C significantly decreased cell survival compared to heating alone (p < 0.05). Furthermore, significant decreases in numbers of viable cells were observed for cells after the first heat exposure when combined with DDC as compared to heat alone at 43 and 44 degrees C (p < 0.05). These findings suggest that heat combined with DDC could have potential benefits in the treatment of prostate cancer.

  15. Heat treatment effect on the mechanical properties of industrial drawn copper wires

    NASA Astrophysics Data System (ADS)

    Beribeche, Abdellatif; Boumerzoug, Zakaria; Ji, Vincent

    2013-12-01

    In this present investigation, the mechanical properties of industrial drawn copper wires have been studied by tensile tests. The effect of prior heat treatments at 500°C on the drawn wires behavior was the main goal of this investigation. We have found that the mechanical behavior of drawn wires depends strongly on those treatments. SEM observations of the wire cross section after tensile tests have shown that the mechanism of rupture was mainly controlled by the void formation.

  16. Prevalence of risk and protective factors associated with heat-related outcomes in Southern Quebec: A secondary analysis of the NuAge study.

    PubMed

    Laverdière, Émélie; Généreux, Mélissa; Gaudreau, Pierrette; Morais, José A; Shatenstein, Bryna; Payette, Hélène

    2015-06-18

    Heat vulnerability is increasing owing to climate change, aging and urbanization. This vulnerability may vary geographically. Our study examined the prevalence and distribution of risk and protective factors of heat-related outcomes among older adults across three health regions of Southern Quebec (Canada). This secondary cross-sectional study used data from the 1st follow-up of the NuAge longitudinal study, a cohort of community-dwelling older adults, aged 68-82 years at baseline, of three health regions: Eastern Townships, Montreal and Laval. Prevalence of factors, identified in Health Canada guidelines, was measured. An Older Adult Heat Vulnerability Index (OAHVI) simultaneously considering medical, social and environmental factors was constructed. The distribution of each factor and OAHVI was examined across the three regions. Results were weighted for age, sex (overall and region-specific analyses) and region (overall analyses). Ninety percent of participants had ≥1 risk factor, the most prevalent being: cardiovascular medication (50.8%), hypertension (46.7%), living alone (39.2%), cardiovascular disease (36.9%), living in an urban heat island (34.7%) and needing help in activities of daily living (26.5%). Two thirds of participants had ≥1 protective factor, the most prevalent being talking on the phone daily (70.9%). Heat vulnerability varied greatly by region and this variation was mainly attributable to social and environmental rather than medical factors. According to the OAHVI, 87.2% of participants cumulated ≥2 factors (median = 3.0 factors/participant). Our results support the need for small-scale assessment of heat vulnerability. This study could help stakeholders tackle heat-related illness and develop regionally tailored prevention programs.

  17. Effects of Heat Treatment on the Magnetic Properties of Polymer-Bound Iron Particle Cores

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Bryant, R. G.

    1998-01-01

    Spherical iron particles of three different size distributions, 6-10 microns in diameter, 100 mesh and 30-80 mesh, were mixed with 2.0 wt. % of soluble imide and compression molded at 300 C under 131 MPa. Post fabrication heat treatments were performed at 960 C for 6 hours resulting in a significant enhancement of the permeability in low field region for all the specimens except for the one made of 30-80 mesh particles. The rate of core loss of these specimens at a magnetic induction of 5 kG measured up to 1 kHz shows a noticeable increase after heat treatment which, along with the permeability enhancement, can be explained by the coalescence of particles forming a network of conductivity paths in the specimens. The scanning electron micrographs taken for the 6-10 micron particle specimens show no evidence of heat treatment-induced grain growth. The untreated specimens show a very weak f(sup 2) dependence of the core loss which clearly indicates a negligible contribution from the eddy current loss. In particular, an almost perfect linearity was found in the frequency dependence of the core loss of the untreated specimen made of 100 mesh iron particles.

  18. Effects of Heat Treatment on the Magnetic Properties of Polymer-Bound Iron Particle Cores

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Bryant, R. G.; Buchman, A.

    1998-01-01

    Spherical iron particles of three different size distributions, 6-10 micrometers in diameter, 100 mesh and 30-80 mesh, were mixed with 2.0 wt % of soluble imide and compression molded at 300 C under 131 MPa. Post-fabrication heat treatments were performed at 960 C for 6 h resulting in a significant enhancement of the permeability in low field region for all the specimens except for the one made of 30-80 mesh particles. The rate of core loss of these specimens at a magnetic induction of 5 kG measured up to 1 kHz shows a noticeable. increase after heat treatment which, along with the permeability enhancement, can be explained by the coalescence of particles forming a network of conductivity paths in the specimens. ne scanning electron micrographs taken for the 6-10 micrometer particle specimens show no evidence of heat treatment-induced grain growth. The untreated specimens show a very weak f(sup 2) -dependence of the core loss which clearly indicates a negligible contribution from the eddy current loss. In particular, an almost perfect linearity was found in the frequency dependence of the core loss of the untreated specimen made of 100 mesh iron particles.

  19. Electroconvulsive therapy and age: Age-related clinical features and effectiveness in treatment resistant major depressive episode.

    PubMed

    Socci, Chiara; Medda, Pierpaolo; Toni, Cristina; Lattanzi, Lorenzo; Tripodi, Beniamino; Vannucchi, Giulia; Perugi, Giulio

    2018-02-01

    This study was aimed to compare clinical features, treatments outcomes and tolerability between young (18-45 years), middle age (46-64 years) and old (≥ 65 years) patients treated with bilateral ECT for treatment resistant major depressive episode. 402 patients were evaluated 1 day prior to ECT and a week after the treatment termination using the Clinical Global Impression Scale (CGI), the Hamilton Rating Scale for Depression-17 items (HAM-D-17), the Brief Psychiatric Rating Scale (BPRS), the Young Mania Rating Scale (YMRS) and the Mini Mental State Examination (MMSE). Response was defined as a reduction of at least 50% from baseline on the HAM-D-17 score. Remission was defined as a score ≤ 7 on the HAM-D-17 at the final evaluation. Rates of response were not statistically different in the three groups (69.6% in old versus 63.5% in young and 55.5% in middle age groups). No significant differences were also observed in the proportions of remitters between the age groups (31.4% in young group, 27.7% in middle age group and 29.3% in old group). One week after the end of the ECT course the middle and old age groups showed a statistically significant increase in the MMSE score compared to baseline. We did not find significant differences between the three age groups in rates of premature drops-out due to ECT-related side effects. Our data support the use of ECT in elderly patients with treatment-resistant major depressive episode, with rates of response around 70% and effectiveness being independent from age. In the old age group the baseline cognitive impairment improved after ECT and no life-threatening adverse event was detected. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Creep Properties of the As-Cast Al-A319 Alloy: T4 and T7 Heat Treatment Effects

    NASA Astrophysics Data System (ADS)

    Erfanian-Naziftoosi, Hamid R.; Rincón, Ernesto J.; López, Hugo F.

    2016-08-01

    In this work, the creep behavior of a commercial Al-A319 alloy was investigated in the temperature range of 413 K to 533 K (140 °C to 260 °C). Tensile creep specimens in the as-cast condition and after heat treating by solid solution (T4) and by aging (T7) were tested in a stress range varying from 60 to 170 MPa. It was found that steady-state creep strain rate was significantly low in the T7 condition when compared with either the T4 or as-cast alloy conditions. As a result, the time to failure behavior considerably increased. The experimentally determined creep exponents measured from the stress-strain curves were 4 for the as-cast alloy, 7.5 in the solid solution, and 9.5 after aging. In particular, after solid solution a grain substructure was found to develop which indicated that creep in a constant subgrain structure was active, thus accounting for the n exponent of 7.5. In the aged condition, a stress threshold is considered to account for the power law creep exponent n of 9.5. Moreover, It was found that the creep activation energy values were rather similar for the alloys in the as-cast (134 kJ/mol) and T4 (146 kJ/mol) conditions. These values are close to the one corresponding to pure Al self-diffusion (143 kJ/mol). In the aged alloy, the apparent creep activation energy (202 kJ/mol) exceeded that corresponding to Al self-diffusion. This deviation in activation energy is attributed to the effect of temperature on the alloy elastic modulus. Microstructural observations using transmission electron microscopy provided further support for the various dislocation-microstructure interactions exhibited by the alloy under the investigated creep conditions and implemented heat treatments.

  1. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Svaasand, Lars O.; Aguilar, Guillermo; Nelson, J. Stuart

    2002-09-01

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  2. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment.

    PubMed

    Majaron, Boris; Svaasand, Lars O; Aguilar, Guillermo; Nelson, J Stuart

    2002-09-21

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  3. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  4. Improvement of mechanical properties on metastable stainless steels by reversion heat treatments

    NASA Astrophysics Data System (ADS)

    Mateo, A.; Zapata, A.; Fargas, G.

    2013-12-01

    AISI 301LN is a metastable austenitic stainless steel that offers an excellent combination of high strength and ductility. This stainless grade is currently used in applications where severe forming operations are required, such as automotive bodies. When these metastable steels are plastically deformed at room temperature, for example by cold rolling, austenite transforms to martensite and, as a result, yield strength increases but ductility is reduced. Grain refinement is the only method that allows improving strength and ductility simultaneously. Several researchers have demonstrated that fine grain AISI 301LN can be obtained by heat treatment after cold rolling. This heat treatment is called reversion because it provokes the reversion of strain induced martensite to austenite. In the present work, sheets of AISI 301LN previously subjected to 20% of cold rolling reduction were treated and a refined grain austenitic microstructure was obtained. Mechanical properties, including fatigue limit, were determined and compared with those corresponding to the steel both before and after the cold rolling.

  5. Evaluation of Residual Stress Measurements Before and After Post-Weld Heat Treatment in the Weld Repairs

    NASA Astrophysics Data System (ADS)

    Pardowska, Anna M.; Price, John W. H.; Finlayson, Trevor R.; Ibrahim, R.

    2010-11-01

    Welding repairs are increasingly a structural integrity concern for aging pressure vessel and piping components. It has been demonstrated that the residual stress distribution near repair welds can be drastically different from that of the original weld. Residual stresses have a significant effect on the lifetime performance of a weld, and a reduction of these stresses is normally desirable. The aim of this paper is to investigate residual stresses in various weld repair arrangements using the non-destructive neutron diffraction technique. This research is focused on characterization of the residual stress distribution: (i) in the original weld; (ii) in a shallow toe weld repair; and (iii) after conventional post-weld heat treatment. The focus of the measurements is on the values of the subsurface strain/stress variations across the weld.

  6. Effects of heat-moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: moisture and length of heating.

    PubMed

    Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong

    2015-04-15

    Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Influence of dimethyl dicarbonate on the resistance of Escherichia coli to a combined UV-Heat treatment in apple juice

    PubMed Central

    Gouma, Maria; Gayán, Elisa; Raso, Javier; Condón, Santiago; Álvarez, Ignacio

    2015-01-01

    Commercial apple juice inoculated with Escherichia coli was treated with UV-C, heat (55°C) and dimethyl dicarbonate – DMDC (25, 50, and 75 mg/L)-, applied separately and in combination, in order to investigate the possibility of synergistic lethal effects. The inactivation levels resulting from each treatment applied individually for a maximum treatment time of 3.58 min were limited, reaching 1.2, 2.9, and 0.06 log10 reductions for UV, heat, and DMDC (75 mg/L), respectively. However, all the investigated combinations resulted in a synergistic lethal effect, reducing the total treatment time and UV dose, with the synergistic lethal effect being higher when larger concentrations of DMDC were added to the apple juice. The addition of 75 mg/L of DMDC prior to the combined UV-C light treatment at 55°C resulted in 5 log10 reductions after only 1.8 min, reducing the treatment time and UV dose of the combined UV-Heat treatment by 44%. PMID:26042117

  8. Age alters the cardiovascular response to direct passive heating

    NASA Technical Reports Server (NTRS)

    Minson, C. T.; Wladkowski, S. L.; Cardell, A. F.; Pawelczyk, J. A.; Kenney, W. L.

    1998-01-01

    During direct passive heating in young men, a dramatic increase in skin blood flow is achieved by a rise in cardiac output (Qc) and redistribution of flow from the splanchnic and renal vascular beds. To examine the effect of age on these responses, seven young (Y; 23 +/- 1 yr) and seven older (O; 70 +/- 3 yr) men were passively heated with water-perfused suits to their individual limit of thermal tolerance. Measurements included heart rate (HR), Qc (by acetylene rebreathing), central venous pressure (via peripherally inserted central catheter), blood pressures (by brachial auscultation), skin blood flow (from increases in forearm blood flow by venous occlusion plethysmography), splanchnic blood flow (by indocyanine green clearance), renal blood flow (by p-aminohippurate clearance), and esophageal and mean skin temperatures. Qc was significantly lower in the older than in the young men (11.1 +/- 0.7 and 7.4 +/- 0.2 l/min in Y and O, respectively, at the limit of thermal tolerance; P < 0. 05), despite similar increases in esophageal and mean skin temperatures and time to reach the limit of thermal tolerance. A lower stroke volume (99 +/- 7 and 68 +/- 4 ml/beat in Y and O, respectively, P < 0.05), most likely due to an attenuated increase in inotropic function during heating, was the primary factor for the lower Qc observed in the older men. Increases in HR were similar in the young and older men; however, when expressed as a percentage of maximal HR, the older men relied on a greater proportion of their chronotropic reserve to obtain the same HR response (62 +/- 3 and 75 +/- 4% maximal HR in Y and O, respectively, P < 0.05). Furthermore, the older men redistributed less blood flow from the combined splanchnic and renal circulations at the limit of thermal tolerance (960 +/- 80 and 720 +/- 100 ml/min in Y and O, respectively, P < 0. 05). As a result of these combined attenuated responses, the older men had a significantly lower increase in total blood flow directed to

  9. Aging Will Amplify the Heat-Related Mortality Risk Under a Changing Climate: Projection for the Elderly in Beijing, China

    NASA Technical Reports Server (NTRS)

    Li, Tiantian; Horton, Radley M.; Bader, Daniel A.; Zhou, Maigeng; Liang, Xudong; Ban, Jie; Sun, Qinghua; Kinney, Patrick L.

    2016-01-01

    An aging population could substantially enhance the burden of heat-related health risks in a warming climate because of their higher susceptibility to extreme heat health effects. Here, we project heatrelated mortality for adults 65 years and older in Beijing China across 31 downscaled climate models and 2 representative concentration pathways (RCPs) in the 2020s, 2050s, and 2080s. Under a scenario of medium population and RCP8.5, by the 2080s, Beijing is projected to experience 14,401 heat-related deaths per year for elderly individuals, which is a 264.9% increase compared with the 1980s. These impacts could be moderated through adaptation. In the 2080s, even with the 30% and 50% adaptation rate assumed in our study, the increase in heat-related death is approximately 7.4 times and 1.3 times larger than in the 1980s respectively under a scenario of high population and RCP8.5. These findings could assist countries in establishing public health intervention policies for the dual problems of climate change and aging population. Examples could include ensuring facilities with large elderly populations are protected from extreme heat (for example through back-up power supplies and/or passive cooling) and using databases and community networks to ensure the home-bound elderly are safe during extreme heat events.

  10. Effect of Cr Contents and Heat Treating on Reverted Austenite in Maraging Steel Weldments

    NASA Astrophysics Data System (ADS)

    Kim, S. W.; Lee, H. W.

    2018-05-01

    By conducting flux cored arc welding (FCAW) on maraging steels with Cr contents of 1.4 and 5.2 wt%, this study observed the effects of Cr content and heat treating on reverted austenite formation in welded maraging steel. Aging treatment was carried out at the temperatures of 450, 480 and 530 °C for 3 h in each condition. As the aging temperature increased, reverted austenite was formed along the interdendritic and intercellular grain boundaries, and the proportion of reverted austenite increased with increasing Cr addition. The aging process led to the segregation of Ti and Mo along the interdendritic and intercellular grain boundaries. Some of the welded specimens were subjected to solution heat treatment at 820 and 1250 °C for 1 h after welding, resulting in a decrease in reverted austenite fraction.

  11. Effect of Cr Contents and Heat Treating on Reverted Austenite in Maraging Steel Weldments

    NASA Astrophysics Data System (ADS)

    Kim, S. W.; Lee, H. W.

    2018-03-01

    By conducting flux cored arc welding (FCAW) on maraging steels with Cr contents of 1.4 and 5.2 wt%, this study observed the effects of Cr content and heat treating on reverted austenite formation in welded maraging steel. Aging treatment was carried out at the temperatures of 450, 480 and 530 °C for 3 h in each condition. As the aging temperature increased, reverted austenite was formed along the interdendritic and intercellular grain boundaries, and the proportion of reverted austenite increased with increasing Cr addition. The aging process led to the segregation of Ti and Mo along the interdendritic and intercellular grain boundaries. Some of the welded specimens were subjected to solution heat treatment at 820 and 1250 °C for 1 h after welding, resulting in a decrease in reverted austenite fraction.

  12. Effect of cathode vibration and heat treatment on electromagnetic properties of flake-shaped diatomite coated with Ni-Fe alloy by electroplating

    NASA Astrophysics Data System (ADS)

    Lan, Mingming; Li, Huiqin; Huang, Weihua; Xu, Guangyin; Li, Yan

    2015-03-01

    In this paper, flake-shaped diatomite particles were used as forming templates for the fabrication of the ferromagnetic functional fillers by way of electroplating Ni-Fe alloy method. The effects of cathode vibration frequency on the content of Ni-Fe alloy in the coating and the surface morphologies of the coatings were evaluated. The electromagnetic properties of the coated diatomite particles before and after heat treatment were also investigated in detail. The results show that the core-shell flake-shaped diatomite particles with high content of Ni-Fe alloy and good surface qualities of the coatings can be obtained by adjusting cathode vibration frequency. The coated diatomite particles with heat treatment filled paraffin wax composites exhibit a superior microwave absorbing and electromagnetic properties compared to the non-heat treated samples. Additionally, the peaks of reflection loss are found to be able to shift to lower frequency by the heat treatment process, which indicates the heat treatment can adjust microwave absorbing frequency band.

  13. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    NASA Astrophysics Data System (ADS)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  14. Age-related macular degeneration: current treatments

    PubMed Central

    Hubschman, Jean Pierre; Reddy, Shantan; Schwartz, Steven D

    2009-01-01

    Purpose: Although important progress has been made in understanding age-related macular degeneration (AMD), management of the disease continues to be a challenge. AMD research has led to a widening of available treatment options and improved prognostic perspectives. This essay reviews these treatment options. Design: Interpretative essay. Methods: Literature review and interpretation. Results: Current treatments to preserve vision in patients with non-exudative AMD include antioxidant vitamins and mineral supplementations. Exudative AMD is currently most often treated monthly with anti-VEGF intravitreal injections. However, investigators are beginning to experiment with combination therapy and surgical approaches in an attempt to limit the number of treatment and reduce the financial burden on the health care system. Conclusion: By better understanding the basis and pathogenesis of AMD, newer therapies will continue to be developed that target specific pathways in patients with AMD, with the hoped for outcome of better management of the disease and improved visual acuity. PMID:19668560

  15. Influence of technical parameters of disk-shaped reactor on productivity of heat treatment of crushed wood

    NASA Astrophysics Data System (ADS)

    Safin, R. R.; Khasanshin, R. R.; Mukhametzyanov, S. R.

    2018-03-01

    The existing installations for heat treatment of the crushed wood are analyzed. The technology of heat treatment of the crushed wood in the devices of disk-shaped type is offered. The results of modeling for the purpose of determination of interrelation of the key design and technological parameters of the disk-shaped device are presented. It is established that the major factors, affecting duration of stay of the material in a device, are the speed of rotation of the mixer, the number of mixers and the number of rakes on the mixer.

  16. Microstructural evolution during the homogenization heat treatment of 6XXX and 7XXX aluminum alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee

    Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy and also hamper the age-hardenability and are hence dissolved during solution heat treatment. Microstructural development during homogenization and subsequent cooling occurs both at the length scale of the Secondary Dendrite Arm Spacing (SDAS) in micrometers and dispersoids in nanometers. Numerical tools to simulate microstructural development at both the length scales have been developed and validated against experiments. These tools provide easy and convenient means to study the process. A Cellular Automaton-Finite Volume-based model for evolution of interdendritic phases is coupled with a Particle Size Distribution-based model for precipitation of dispersoids across the grain. This comprehensive model has been used to study the effect of temperature, composition, as-cast microstructure, and cooling rates during post-homogenization quenching on microstructural evolution. The numerical study has been complimented with experiments involving Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction and Differential Scanning Calorimetry and a good agreement has with numerical results has been found. The current work aims to study the microstructural evolution during

  17. Simple Heat Treatment of Zirconia Ceramic Pre-Treated with Silane Primer to Improve Resin Bonding.

    PubMed

    Ha, Jung-Yun; Son, Jun Sik; Kim, Kyo-Han; Kwon, Tae-Yub

    2015-01-01

    Establishing a strong resin bond to dental zirconia ceramic remains difficult. Previous studies have shown that the conventional application of silane does not work well with zirconia. This paper reports that a silane pre-treatment of dental zirconia ceramic combined with subsequent heat treatment has potential as an adhesive cementation protocol for improving zirconia-resin bonding. Among the various concentrations (0.1 to 16 vol%) of experimental γ-methacryloxypropyltrimethoxysilane (γ-MPTS) primers assessed, the 1% solution was found to be the most effective in terms of the shear bond strength of the resin cement to dental zirconia ceramic. A high shear bond strength (approx. 30 MPa) was obtained when zirconia specimens were pre-treated with this primer and then heat-treated in a furnace for 60 min at 150 degrees C. Heat treatment appeared to remove the hydrophilic constituents from the silane film formed on the zirconia ceramic surface and accelerate the condensation reactions between the silanol groups of the hydrolyzed silane molecules at the zirconia/resin interface, finally making a more desirable surface for bonding with resin. This estimation was supported by Fourier transform infrared spectroscopy of the silanes prepared in this study.

  18. Calculation of {alpha}/{gamma} equilibria in SA508 grade 3 steels for intercritical heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.J.; Kim, H.D.; Hong, J.H.

    1998-05-01

    An attempt has been made to suggest an optimum temperature for intercritical heat treatment of an SA508 grade 3 steel for nuclear pressure vessels, based on thermodynamic calculation of the {alpha}/{gamma} phase equilibria. A thermodynamic database constructed for the Fe-Mn-Ni-Mo-Cr-Si-V-Al-C-N ten-component system and an empirical criterion that the amount of reformed austenite should be around 40 pct were used for thermodynamic calculation and derivation of the optimum heat-treatment temperature, respectively. The calculated optimum temperature, 720 C, was in good agreement with an experimentally determined temperature of 725 C obtained through an independent experimental investigation of the same steel. The agreementmore » between the calculated and measured fraction of reformed austenite during the intercritical heat treatment was also confirmed. Based on the agreement between calculation and experiment, it could be concluded that thermodynamic calculations can be successfully applied to the materials and/or process design as an additive tool to the already established technology, and that the currently constructed thermodynamic database for steel systems shows an accuracy that makes such applications possible.« less

  19. The Effect of Solution Heat Treatment on an Advanced Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Kantzos, P. T.

    2004-01-01

    Five heat treat options for an advanced nickel-base disk alloy, LSHR, have been investigated. These included two conventional solution heat treat cycles, subsolvus/oil quench and supersolvus/fan cool, which yield fine grain and coarse grain microstructure disks respectively, as well as three advanced dual microstructure heat treat (DMHT) options. The DMHT options produce disks with a fine grain bore and a coarse grain rim. Based on an overall evaluation of the mechanical property data, it was evident that the three DMHT options achieved a desirable balance of properties in comparison to the conventional solution heat treatments for the LSHR alloy. However, one of the DMHT options, SUB/DMHT, produced the best set of properties, largely based on dwell crack growth data. Further evaluation of the SUB/DMHT option in spin pit experiments on a generic disk shape demonstrated the advantages and reliability of a dual grain structure at the component level.

  20. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    PubMed Central

    Schvezov, Carlos Enrique; Ares, Alicia Esther

    2015-01-01

    The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment. PMID:25784939

  1. Hemodialysis Catheter Heat Transfer for Biofilm Prevention and Treatment.

    PubMed

    Richardson, Ian P; Sturtevant, Rachael; Heung, Michael; Solomon, Michael J; Younger, John G; VanEpps, J Scott

    2016-01-01

    Central line-associated bloodstream infections (CLABSIs) are not easily treated, and many catheters (e.g., hemodialysis catheters) are not easily replaced. Biofilms (the source of infection) on catheter surfaces are notoriously difficult to eradicate. We have recently demonstrated that modest elevations of temperature lead to increased staphylococcal susceptibility to vancomycin and significantly soften the biofilm matrix. In this study, using a combination of microbiological, computational, and experimental studies, we demonstrate the efficacy, feasibility, and safety of using heat as an adjuvant treatment for infected hemodialysis catheters. Specifically, we show that treating with heat in the presence of antibiotics led to additive killing of Staphylococcus epidermidis with similar trends seen for Staphylococcus aureus and Klebsiella pneumoniae. The magnitude of temperature elevation required is relatively modest (45-50°C) and similar to that used as an adjuvant to traditional cancer therapy. Using a custom-designed benchtop model of a hemodialysis catheter, positioned with tip in the human vena cava as well as computational fluid dynamic simulations, we demonstrate that these temperature elevations are likely achievable in situ with minimal increased in overall blood temperature.

  2. An overview of structure, mechanical properties, and treatment for age-related tendinopathy.

    PubMed

    Zhou, B; Zhou, Y; Tang, K

    2014-04-01

    Tendons transfer tensile loads from muscle to bone, which enable joint motions and stabilize joints. Tendons sustain large mechanical loads in vivo and as a result, tendons were frequently injured. Aging has been confirmed as a predisposing factor of tendinopathy and bad recovery quality following tendon repair. Current treatment methods are generally not effective and involve either symptomatic relief with non-steroidal antiinflammatory drugs and physical therapy or surgery when conservative treatments failed. The limitation in treatment options is due to our incomplete knowledge of age-related tendinopathy. Studies over the past decades have uncovered a number of important mechanical and cellular changes of aging tendon. However, the basis of aging as a major risk factor for tendon injury and impaired tendon healing remained poorly understood. The objectives of this review are to provide an overview of the current knowledge about the aging-associated changes of structure, mechanical properties and treatment in tendon and highlight causes and therapies for age-related tendinopathy.

  3. Heat Treatment of Closed-Cell A356 + 4 wt.%Cu + 2 wt.%Ca Foam and Its Effect on the Foam Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Mirbagheri, S. M. H.; Vali, H.; Soltani, H.

    2017-01-01

    In this investigation, aluminum-silicon alloy foam is developed by adding certain amounts of copper and calcium elements in A356 alloy. Addition of 4 wt.%Cu + 2 wt.%Ca to the melt changed bubbles morphology from ellipsoid to spherical by decreasing Reynolds number and increasing Bond number. Compression behavior and energy absorption of the foams are assessed before and after aging. Solid solution treatment and aging lead to the best mechanical properties with 170% enhancement in yield strength and 185% improvement in energy absorption capacity as compared to non-heat-treated foams. The metallographic observations showed that bubbles geometry and structure in the A356 + 4wt.% Cu + 2 wt.%Ca foam are more homogeneous than the A356 foam.

  4. Effect of aging heat time and annealing temperature on the properties of nanocrystalline tin dioxide thin films

    NASA Astrophysics Data System (ADS)

    Kadhim, Imad H.; Abu Hassan, H.

    2017-04-01

    Nanocrystalline tin dioxide (SnO2) thin films have been successfully prepared by sol-gel spin-coating technique on p-type Si (100) substrates. A stable solution was prepared by mixing tin(II) chloride dihydrate, pure ethanol, and glycerin. Temperature affects the properties of SnO2 thin films, particularly the crystallite size where the crystallization of SnO2 with tetragonal rutile structure is achieved when thin films that prepared under different aging heat times are annealed at 400∘C. By increasing aging heat time in the presence of annealing temperatures the FESEM images indicated that the thickness of the fabricated film was directly proportional to solution viscosity, increasing from approximately 380 nm to 744 nm, as well as the crystallization of the thin films improved and reduced defects.

  5. Effect of sputtering condition and heat treatment in Co/Cu/Co/FeMn spin valve

    NASA Astrophysics Data System (ADS)

    Kim, Hong Jin; Bae, Jun Soo; Lee, Taek Dong; Lee, Hyuck Mo

    2002-03-01

    The exchange field of Cu(50 Å)/FeMn(50 Å)/Co(50 Å) sputtered on Si substrate was studied in terms of surface roughness and phase formation of γ-FeMn under a variety of Ar pressures and powers in sputtering. It was found that the exchange field is stronger when the surface is smoother and the FeMn layer forms better. The exchange bias field increased by more than three times after heat treatment. The effect of heat treament on magnetoresistance (MR) and resistance of the top spin valve, substrate/Co(30 Å)/Cu(30 Å)/Co(30 Å)/FeMn(150 Å), was studied. It was observed that the MR started to increase with annealing temperature and the effect was significant at 150°C. The heat treatment led to the disappearance of the intermixed layer between Co and Cu, and the concentration profile of Cu became flat and smooth at this temperature.

  6. Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jianhua; Yi Danqing; Su Xuping

    2008-07-15

    The effects of deformation ageing treatment (DAT) on the microstructure and properties of aluminum alloy 2618 were investigated. The alloy was subjected to deformation ageing treatment which included solution treating at 535 deg. C quenching into water at room-temperature, cold rolling (10%) and further ageing to peak hardness level at 200 deg. C. The electron microscopic studies revealed that the treatment affects the ageing characteristics and the coarsening of ageing phase (S') at elevated-temperature. The dislocation-precipitate tangles substructure couldn't be found in alloy 2618. The tensile and hardness tests showed that deformation-ageing treatment causes a significant improvement in tensile strengthmore » and hardness to alloy 2618 at room- and elevated-temperature.« less

  7. Intensification of heat transfer during mild thermal treatment of dry-cured ham by using airborne ultrasound.

    PubMed

    Contreras, M; Benedito, J; Bon, J; Garcia-Perez, J V

    2018-03-01

    The application of power ultrasound (PuS) could be used as a novel technology with which to intensify thermal treatments using hot air. Mild thermal treatments have been applied to improve the soft texture of dry-cured ham caused by defective processing. In this regard, the aim of this study was to assess the kinetic intensification linked to the application of airborne PuS in the mild thermal treatment using hot air of dry-cured ham. For this purpose, vacuum packed cylindrical samples (2.52±0.11cm in diameter and 1.90±0.14cm in height) of dry-cured ham were heated using hot air at different temperatures (40, 45, 50°C) and air velocities (1, 2, 3, 4, 6m/s) with (22.3kHz, 50W) and without PuS application. Heat transfer was analyzed by considering that it was entirely controlled by conduction and the apparent thermal diffusivity was identified by fitting the model to the heating kinetics. The obtained results revealed that PuS application sped up the heat transfer, showing an increase in the apparent thermal diffusivity (up to 37%). The improvement in the apparent thermal diffusivity produced by PuS application was greater at high temperatures (50°C) but negligible at high air velocities (6m/s). Heating caused an increase in the hardness and elasticity of dry-cured ham, which would correct ham pastiness defects, while the influence of PuS on such textural parameters was negligible. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Association of race and age with treatment attendance and completion among adult marijuana users in community-based substance abuse treatment.

    PubMed

    Peters, Erica N; Hendricks, Peter S; Clark, C Brendan; Vocci, Frank J; Cropsey, Karen L

    2014-01-01

    African American youth who use marijuana are less likely to attend and complete treatment than white youth. Limited information is available on racial and age variation in treatment attendance and completion among adults who use marijuana. The current research examined differences in community-based substance abuse treatment attendance and completion between adult African American and white marijuana users in 2 independent samples from the US southeastern (N = 160; 70.6% African American) and mid-Atlantic (N = 450; 34.7% African American) regions. Attended at least 3 treatment sessions, successful treatment completion, number of days in treatment, and percentage of positive urine drug screens. Adjusted regression models examined the association of race, age, and the interaction of race and age with treatment attendance and completion. In the southeastern sample, successful treatment completion was significantly associated with the interaction of race and age (adjusted odds ratio = 1.35, 95% confidence interval = 1.08-1.69); whereas younger African Americans were less likely to complete treatment than older African Americans, age was unrelated to treatment completion among whites. In the mid-Atlantic sample, African Americans were significantly less likely to attend at least 3 treatment sessions (adjusted odds ratio = 0.37, 95% confidence interval = 0.23-0.58), and younger adult marijuana users were retained for fewer days in treatment (adjusted β = 0.13, 95% confidence interval = 0.27-2.48). Among African Americans, 37.9% (SD = 38.0) of urine drug screens tested positive for at least 1 illicit drug, and among whites, 34.2% (SD = 37.8%) tested positive; the percentage of positive urine drug screens was not associated with race or age. Among marijuana-using adults, treatment attendance and completion differ by race and age, and improvements in treatment completion may occur as some African Americans mature out of young adulthood.

  9. Effect of different heat treatments and disinfectants on the survival of Prototheca zopfii.

    PubMed

    Lassa, Henryka; Jagielski, Tomasz; Malinowski, Edward

    2011-03-01

    Bovine mastitis caused by the yeast-like alga Prototheca zopfii represents a serious veterinary problem and may result in heavy economic losses to particular dairy farms. The purpose of this study was to evaluate the survival of 50 isolates of P. zopfii in milk subjected to different heat treatments and the survival of further 106 P. zopfii isolates after exposure to three classes of teat disinfectants: iodine (Dipal), quaternary ammonium compounds (Teat), and dodecylbenzenesulphonic acid (Blu-gard). Of the 50 isolates tested for thermal tolerance, 29 (58%) survived heat treatment at 62 °C for 30 s and 13 (26% of all isolates) of those survived after heat treatment at 72 °C for 15 s. None of the 106 isolates were able to withstand the in-use concentrations of the three disinfectants tested. The highest disinfectant concentrations that permitted survival of at least one isolate were dilutions: 1:1,000 for Dipal (survival rate of 52.8-57.5%), 1:100 for Teat (88.7-90.6%), and 1:10 for Blu-gard (100%). No differences in the survival rates of P. zopfii were observed with respect to the duration of exposure to disinfectant. The results of this study support the previous findings that P. zopfii may resist high-temperature treatments, including that applied in the high-temperature, short-time (HTST) pasteurization process. The obtained data also demonstrate the efficacy of the three classes of teat disinfectants against P. zopfii, with the efficacy of iodine being most pronounced. The study emphasizes the necessity of using higher temperatures in the pasteurization of raw milk to kill the Prototheca algae, as well as the particular suitability of the iodine for the control procedures of protothecal mastitis.

  10. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    NASA Astrophysics Data System (ADS)

    Tian, Binghui; Luan, Zhaokun; Li, Mingming

    2005-08-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC.

  11. Hierarchical Cu precipitation in lamellated steel after multistage heat treatment

    NASA Astrophysics Data System (ADS)

    Liu, Qingdong; Gu, Jianfeng

    2017-09-01

    The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.

  12. Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Long; Liu, Xiu-Bo; Yu, Peng-Cheng; Zhai, Yong-Jie; Qiao, Shi-Jie; Wang, Ming-Di; Wang, Yong-Guang; Chen, Yao

    2015-11-01

    Laser clad Ni60/h-BN self-lubricating anti-wear composite coating on 304 stainless steel were heat treated at 600 °C (stress relief annealing) for 1 h and 2 h, respectively. Effects of the phase compositions, microstructure, microhardness, nano-indentation and tribological properties of the composite coatings with and without heat treatment had been investigated systemically. Results indicated that three coatings mainly consist of the matrix γ-(Ni, Fe) solid solution, the CrB ceramic phases and the h-BN lubricating phases. The maximum microhardness of the coatings was first increased from 667.7 HV0.5 to 765.0 HV0.5 after heat treatment for 1 h, and then decreased to 698.3 HV0.5 after heat treatment for 2 h. The hardness of γ-(Ni, Fe) solid solution without heat treatment and after heat treatment 1 h and 2 h were 5.09 GPa, 7.20 GPa and 3.77 GPa, respectively. Compared with the coating without heat treatment, the friction coefficients of the coating after heat treatment were decreased obviously. Effects of the heat treatment time on friction coefficient were negligible, but were significant on wear volume loss. Comparatively speaking, the laser clad self-lubricating anti-wear composite coating after heat treatment for 1 h presented the best anti-wear and friction reduction properties.

  13. Effect of Heat Treatment Technique on the Low Temperature Impact Toughness of Steel EQ70 for Offshore Structure

    NASA Astrophysics Data System (ADS)

    Tao, Su-Fen; Xia, Yun-Jin; Wang, Fu-Ming; Li, Jie; Fan, Ding-Dong

    2017-09-01

    Circle quenching and tempering (CQ&T), intercritical quenching and tempering (IQ&T) and regular quenching and tempering (Q&T) were used to study the influence of heat treatment techniques on the low temperature impact toughness of steel EQ70 for offshore structure. The steels with 2.10 wt. % Ni (steel A) and 1.47 wt. % Ni (steel B) were chosen to analyze the effect of Ni content on the low temperature impact toughness of steel EQ70 for offshore structure. The fracture morphologies were examined by using a scanning electron microscope (SEM, JSM-6480LV), and microstructures etched by 4 vol. % nitric acid were observed on a type 9XB-PC optical microscope. The results show that the impact toughness of steel A is higher than that of steel B at the same test temperature and heat treatment technique. For steel B, the energy absorbed is, in descending order, CQ&T, Q&T and IQ&T, while for steel A, that is CQ&T, IQ&T and Q&T. The effects of heat treatment on the low temperature impact toughness are different for steels A and B, the absorbed energy changes more obviously for steel A. The results can be significant references for actual heat treatment techniques in steel plant.

  14. The effect of air-abrasion and heat treatment on the fracture behavior of Y-TZP.

    PubMed

    Passos, Sheila P; Linke, Bernie; Major, Paul W; Nychka, John A

    2015-09-01

    This study evaluated how the flexural strength and fracture behavior of a zirconia-based ceramic (Y-TZP) were affected by pre- and post-sintering mechanical and thermal treatments. Treatments included sandblasting with different particle size and type (30μm SiO2; 50 and 110μm Al2O3) and thermal conditioning. Two hundred bar-shaped specimens of pre-sintered Y-TZP ceramic (Lava Frame, 3M) were prepared (specimen dimensions: 25mm length×4mm width×0.7mm thickness) and divided into three groups (before sintering, after sintering and after sintering with heating treatment). The before sintering group specimens were airborne-particle abraded prior to dense sintering. Specimens from the after sintering group were airborne-particle abraded after sintering. The after sintering with heating treatment group specimens were submitted to a heating procedure after airborne-particle abrasion. The controls were the specimens that were sintered and not treated with any conditioning procedures. The specimens from all experimental conditions were analyzed by SEM, CLSM and XRD. All specimens were tested in four-point bending. Data were statistically analyzed using one-way ANOVA and Post Hoc tests (α=0.05). A Weibull analysis was used to analyze the strength reliability. Sandblasting pre-sintered zirconia before sintering significantly decreased the flexural strength, except when the smallest blasting particles were used (30μm SiO2). Phase transformation (t-m) was observed after sandblasting and reverse transformation (m-t) was observed after heating. Sandblasting with 30μm SiO2 and 50μm Al2O3 allowed lower phase transformation. However, 30mm SiO2 presented better reliability. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Laboratory Investigation on Physical and Mechanical Properties of Granite After Heating and Water-Cooling Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhao, Jianjian; Hu, Dawei; Skoczylas, Frederic; Shao, Jianfu

    2018-03-01

    High-temperature treatment may cause changes in physical and mechanical properties of rocks. Temperature changing rate (heating, cooling and both of them) plays an important role in those changes. Thermal conductivity tests, ultrasonic pulse velocity tests, gas permeability tests and triaxial compression tests are performed on granite samples after a heating and rapid cooling treatment in order to characterize the changes in physical and mechanical properties. Seven levels of temperature (from 25 to 900 °C) are used. It is found that the physical and mechanical properties of granite are significantly deteriorated by the thermal treatment. The porosity shows a significant increase from 1.19% at the initial state to 6.13% for samples heated to 900 °C. The increase in porosity is mainly due to three factors: (1) a large number of microcracks caused by the rapid cooling rate; (2) the mineral transformation of granite through high-temperature heating and water-cooling process; (3) the rapid cooling process causes the mineral particles to weaken. As the temperature of treatment increases, the thermal conductivity and P-wave velocity decrease while the gas permeability increases. Below 200 °C, the elastic modulus and cohesion increase with temperature increasing. Between 200 and 500 °C, the elastic modulus and cohesion have no obvious change with temperature. Beyond 500 °C, as the temperature increases, the elastic modulus and cohesion obviously decrease and the decreasing rate becomes slower with the increase in confining pressure. Poisson's ratio and internal frictional coefficient have no obvious change as the temperature increases. Moreover, there is a transition from a brittle to ductile behavior when the temperature becomes high. At 900 °C, the granite shows an obvious elastic-plastic behavior.

  16. Age of onset of life-time mental disorders and treatment contact.

    PubMed

    Vaingankar, Janhavi Ajit; Rekhi, Gurpreet; Subramaniam, Mythily; Abdin, Edimansyah; Chong, Siow Ann

    2013-05-01

    Early onset of mental disorders is a major social and public health concern as it affects individuals in their most formative years. The impact is more pronounced when early onset is also associated with treatment delay. Little is known about the age of onset (AOO) for mental disorders and its predictors in Singapore. A national mental health survey was conducted among adult residents aged 18 years and above in Singapore. The composite international diagnostic interview (CIDI 3.0) was used to establish the life-time diagnosis of major depressive disorder (MDD), dysthymia, bipolar disorder, generalized anxiety disorder (GAD), obsessive compulsive disorder (OCD) and alcohol abuse and dependence, and the age of onset as well as any subsequent treatment contact. A total of 6,616 respondents (mean age of 43.9 years) participated in the survey giving a response rate of 75.9 %. The median AOO for having any one of the mental disorders was 22 years with variation among the different disorders. Predictors for AOO varied across the mental disorders. Only 8 % had sought any treatment in the first year after onset. Males, those belonging to Malay and Indian ethnicities and 50+ age cohorts were less likely to have made treatment contact in the year of onset. Nearly half of the respondents with any life-time mental disorder would have its onset by age of 22 years, and very few had sought treatment within the first year from onset. The study also identified socio-demographic predictors associated with AOO for mental disorders and delayed treatment contact, thus highlighting a vulnerable subpopulation that can be targeted for outreach and early interventions.

  17. The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Alpha crystallin was prepared from newborn and aged bovine lenses. SDS-PAGE and tryptic peptide mapping demonstrated that both preparations contained only the alpha-A and alpha-B chains, with no significant contamination of other crystallins. Compared with alpha crystallin from the aged lens, alpha crystallin from the newborn lens was much more effective in the inhibition of beta L crystallin denaturation and precipitation induced in vitro by heat. Together, these results demonstrate that during the aging process, the alpha crystallins lose their ability to protect against protein denaturation, consistent with the hypothesis that the alpha crystallins play an important role in the maintenance of protein native structure in the intact lens.

  18. Effect of Homogenizing Heat Treatment of Liquid Aluminum-Copper Alloys on the Structure of Rapidly Crystallized Specimens

    NASA Astrophysics Data System (ADS)

    Astaf'ev, V. V.; Kurochkin, A. R.; Yablonskikh, T. I.; Brodova, I. G.; Popel', P. S.

    2017-11-01

    Centrifugal casting into a massive slot chill mold was used to prepare two series of specimens of alloys of the Al - Cu system, containing from 10 to 32.2 at.% Cu. The first series was fabricated without a homogenizing heat treatment of the melt, while the second series was fabricated with heating of the melt to 1400°C. Both kinds of specimens were cast at the same temperature in order to provide for the same cooling rate of about 104 K/sec. The structures, phase compositions and microhardnesses of the structural components are compared. It is established that the homogenizing heat treatment changes the kinetics of crystallization and, hence, the proportion of phases in the alloy structure and the copper content in them.

  19. Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from Rene 80

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterle, W.; Krause, S.; Moelders, T.

    2008-11-15

    Turbine components from conventionally cast nickel-base alloy Rene 80 show different hot cracking susceptibilities depending on their heat treatment conditions leading to slightly different microstructures. Electron probe micro-analysis, focused ion beam technique and analytical transmission electron microscopy were applied to reveal and identify grain boundary precipitates and the {gamma}-{gamma}'-microstructure. The distribution of borides along grain boundaries was evaluated statistically by quantitative metallography. The following features could be correlated with an increase of cracking susceptibility: i) Increasing grain size, ii) increasing fraction of grain boundaries with densely spaced borides, iii) lack of secondary {gamma}'-particles in matrix channels between the coarse cuboidalmore » {gamma}'-precipitates. The latter feature seems to be responsible for linking-up of cracked grain boundary precipitates which occurred as an additional cracking mechanism after one heat treatment, whereas decohesion at the boride-matrix-interface in the heat affected zone of laser-drilled holes was observed for both heat treatments.« less

  20. Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle

    PubMed Central

    Tamura, Yuki; Kitaoka, Yu; Matsunaga, Yutaka; Hoshino, Daisuke; Hatta, Hideo

    2015-01-01

    Traumatic nerve injury or motor neuron disease leads to denervation and severe muscle atrophy. Recent evidence indicates that loss of mitochondria and the related reduction in oxidative capacity could be key mediators of skeletal muscle atrophy. As our previous study showed that heat stress increased the numbers of mitochondria in skeletal muscle, we evaluated whether heat stress treatment could have a beneficial impact on denervation-induced loss of mitochondria and subsequent muscle atrophy. Here, we report that daily heat stress treatment (mice placed in a chamber with a hot environment; 40°C, 30 min day−1, for 7 days) rescues the following parameters: (i) muscle atrophy (decreased gastrocnemius muscle mass); (ii) loss of mitochondrial content (decreased levels of ubiquinol–cytochrome c reductase core protein II, cytochrome c oxidase subunits I and IV and voltage-dependent anion channel protein); and (iii) reduction in oxidative capacity (reduced maximal activities of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase) in denervated muscle (produced by unilateral sciatic nerve transection). In order to gain a better understanding of the above mitochondrial adaptations, we also examined the effects of heat stress on autophagy-dependent mitochondrial clearance (mitophagy). Daily heat stress normalized denervation-activated induction of mitophagy (increased mitochondrial microtubule-associated protein 1A/1B-light chain3-II (LC3-II) with and without blocker of autophagosome clearance). The molecular basis of this observation was explained by the results that heat stress attenuated the denervation-induced increase in key proteins that regulate the following steps: (i) the tagging step of mitochondrial clearance (increased mitochondrial Parkin, ubiquitin-conjugated, P62/sequestosome 1 (P62/SQSTM1)); and (ii) the elongation step of autophagosome formation (increased Atg5–Atg12 conjugate and Atg16L). Overall, our results contribute to the better

  1. Influence of Heat Treatment on Fracture Toughness and Wear Resistance of Nicral-Zro2 Multilayered Thermal Barrier Coating

    NASA Astrophysics Data System (ADS)

    Ye, Zibo; Wang, Guanghong

    2018-04-01

    The chemical composition and fracture toughness of thermal barrier coatings (TBCs) before and after heat treatment were characterized, and the cracks around the interface between the coating and the substrate could be successfully eliminated and meanwhile the porosity of the coatings tended to reduce. The XRD analysis revealed the coatings were composed of non-transformable tetragonal t' phase of ZrO2 and γ -(Ni, Cr) with minor Ni3Al (γ') precipitates. Additionally, the relationship between the heat treatment and wear resistance was systematically studied. The results indicated that both the hardness and fracture toughness increased after quenching process. The oxidation wear became more prominent after heat treatment, which probably resulted from the better bonding strength of coatings. Dense and homogeneous microstructure introduced by vacuum oil-quenching improved stabilization of the weight gain during thermal cycle test.

  2. Minimally invasive vein therapy and treatment options for endovenous heat-induced thrombus.

    PubMed

    Frasier, Krista; Latessa, Victoria

    2008-06-01

    Radiofrequency ablation and endovenous laser therapy are types of minimally invasive techniques that have been used in the treatment of chronic venous insufficiency. In both procedures, high-intensity heat via thermal energy is produced and delivered via an endovenous catheter placed in the saphenous vein. This results in changes that therapeutically induce closure of the vein by denaturing the vessel wall with subsequent thrombus formation. Patients undergo ultrasound 48 to 72 hours postprocedure to confirm vessel occlusion and assess for possible extension of thrombus into the deep venous system. Thrombus is frequently visualized with the procedure in the tributaries, the venous dilations, and at times the saphenofemoral junction. In any other setting, thrombus at the saphenofemoral junction would warrant anticoagulation. However, the characteristics, composition, and behavior of endovenous heat-induced thrombus are different than de novo thrombosis. This postprocedure endovenous heat-induced thrombus is considered a normal consequence of the procedure and does not require traditional anticoagulation in most cases, depending on the location.

  3. The Effect of Stabilization Heat Treatments on the Tensile and Creep Behavior of an Advanced Nickel-Based Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    As part of NASA s Advanced Subsonic Technology Program, a study of stabilization heat treatment options for an advanced nickel-base disk alloy, ME 209, was performed. Using a simple, physically based approach, the effect of stabilization heat treatments on tensile and creep properties was analyzed in this paper. Solutions temperature, solution cooling rate, and stabilization temperature/time were found to have a significant impact on tensile and creep properties. These effects were readily quantified using the following methodology. First, the effect of solution cooling rate was assessed to determine its impact on a given property. The as-cooled property was then modified by using two multiplicative factors which assess the impact of solution temperature and stabilization parameters. Comparison of experimental data with predicted values showed this physically based analysis produced good results that rivaled the statistical analysis employed, which required numerous changes in the form of the regression equation depending on the property and temperature in question. As this physically based analysis uses the data for input, it should be noted that predictions which attempt to extrapolate beyond the bounds of the data must be viewed with skepticism. Future work aimed at expanding the range of the stabilization/aging parameters explored in this study would be highly desirable, especially at the higher solution cooling rates.

  4. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  5. Effect of Heat Treatment Process on Microstructure and Fatigue Behavior of a Nickel-Base Superalloy

    PubMed Central

    Zhang, Peng; Zhu, Qiang; Chen, Gang; Qin, Heyong; Wang, Chuanjie

    2015-01-01

    The study of fatigue behaviors for nickel-base superalloys is very significant because fatigue damage results in serious consequences. In this paper, two kinds of heat treatment procedures (Pro.I and Pro.II) were taken to investigate the effect of heat treatment on microstructures and fatigue behaviors of a nickel-base superalloy. Fatigue behaviors were studied through total strain controlled mode at 650 °C. Manson-Coffin relationship and three-parameter power function were used to predict fatigue life. A good link between the cyclic/fatigue behavior and microscopic studies was established. The cyclic deformation mechanism and fatigue mechanism were discussed. The results show that the fatigue resistance significantly drops with the increase of total strain amplitudes. Manson-Coffin relationship can well predict the fatigue life for total strain amplitude from 0.5% to 0.8%. The fatigue resistance is related with heat treatment procedures. The fatigue resistance performance of Pro.I is better than that of Pro.II. The cyclic stress response behaviors are closely related to the changes of the strain amplitudes. The peak stress of the alloy gradually increases with the increase of total strain amplitudes. The main fracture mechanism is inhomogeneous deformation and the different interactions between dislocations and γ′ precipitates. PMID:28793559

  6. Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field

    EPA Pesticide Factsheets

    This report presents the opportunities for combined heat and power (CHP) applications in the municipal wastewater treatment sector, and it documents the experiences of the wastewater treatment facility (WWTF) operators who have employed CHP.

  7. Microstructure and mechanical properties of heat-resistant 12% Cr ferritic-martensitic steel EK-181 after thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Polekhina, N. A.; Litovchenko, I. Yu.; Tyumentsev, A. N.; Astafurova, E. G.; Chernov, V. M.; Leontyeva-Smirnova, M. V.

    2015-10-01

    The effect of high-temperature thermomechanical treatment (TMT) with the deformation in the austenitic region on the features of microstructure, phase transformations and mechanical properties of low-activation 12% Cr ferritic-martensitic steel EK-181 is investigated. It is established, that directly after thermomechanical treatment (without tempering) the sizes and density of V(CN) particles are comparable with those after a traditional heat treatment (air quenching and tempering at 720°C, 3 h), where these particles are formed only during tempering. It causes the increasing of the yield strength of the steel up to ≈1450 MPa at room temperature and up to ≈430 MPa at the test temperature T = 650°C. The potential of microstructure modification by this treatment aimed at improving heat resistance of steel is discussed.

  8. Surface Oxide Net Charge of a Titanium Alloy; Comparison Between Effects of Treatment With Heat or Radiofrequency Plasma Glow Discharge

    PubMed Central

    MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.

    2010-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672

  9. Evolution of Heat Flow with Age on the Southern Flank of the Costa Rica Rift

    NASA Astrophysics Data System (ADS)

    Kolandaivelu, K. P.; Harris, R. N.; Lowell, R. P.; Wilson, D. J.; Hobbs, R. W.

    2017-12-01

    Analysis of 67 new conductive heat flow measurements at five sites ranging between ≈ 1.6 and 5.7 Ma on the southern flank of the Costa Rica Rift yields insight into factors that influence hydrothermal circulation in young oceanic crust. The heat flow measurements were collocated with a high-resolution multi-channel seismic line, extending from the ridge axis to ODP hole 504B. The mean conductive heat flow, qobs, 80 mWm-2, is ≈ 25% of the mean lithospheric heat flux, qth, predicted by half-space conductive cooling model. The ratio qobs/qth varies significantly from site to site indicating that advective heat loss may be influenced by the presence of high-angle, ridge-ward dipping normal faults, surface topography, and sediment thickness, which vary significantly along the profile. The 1.6 Ma heat flow site, which is located between two outcrops separated by 2 km and has thin sediment cover, yields qobs/qth » 0.08. The advective heat loss indicates a mass flux of 3 x 10-5 kgm-2s-1 and upper crustal permeabilities of 4 x 10-11 and 3 x 10-9 m2 for 1000 m and 100 m aquifer thicknesses, respectively. At the 2.6 Ma site with 75 m sediment cover, qobs/qth » 0.18 and heat flow is uniformly low, except for one high value near a fault. At the 3.5 Ma site, qobs/qth » 0.15. The heat flow deficit results from outcrop to outcrop flow, but subcritical cellular convection driven by local basement topography produces small heat flow highs and lows superimposed on the overall trend. At the 4.5 Ma site, qobs/qth » 0.06. The heat flow distribution indicates that discharge occurs through a large, thinly-sedimented topographical high, where estimated mass flux is 3 x 10-5 kgm-2s-1. At the oldest site of 5.7 Ma, qobs/qth » 1, but some heat flow values greater than qth occur near sparsely-sedimented basement outcrops, suggesting redistribution of heat by subsurface convection controlled by basement topography, similar to ODP Hole 504B. That qobs/qth » 1 at a much younger age than

  10. Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties

    NASA Astrophysics Data System (ADS)

    Leo, P.; D'Ostuni, S.; Casalino, G.

    2018-03-01

    This paper presents the effects of the post welding heat treatments (PWHT) performed at 350 °C and 450 °C on the microstructure evolution and mechanical properties of AA5754 and Ti6Al4V dissimilar laser welds. The microstructure and tensile properties of the welds before and after low temperature treatment were analyzed. The off-set welding technique was applied to limit the formation of brittle intermetallic compounds during the welding process. The laser beam was directed onto the titanium side at a small distance from the aluminum edge. The keyhole formed and the full penetration was reached in the titanium side of the weld. Thereafter, the aluminum side melted as the heat that formed the keyhole transferred from the titanium fused zone. Two different energy lines (32 J/mm and 76 J/mm) were used. In this manner, a fused and a heat affected zones was revealed on both sides of the weld. Several intermetallic compounds formed in the intermetallic layer between the two metals. The thickness and the composition of the intermetallic layer depended on the welding parameters and the post welding heat treatment. The hardness and tensile properties of the welds before and after the post welding heat treatment were measured and analyzed.

  11. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature operation—ferritic steels with properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and UHT-82...

  12. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature operation—ferritic steels with properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and UHT-82...

  13. 46 CFR 54.25-20 - Low temperature operation-ferritic steels with properties enhanced by heat treatment (modifies...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-ferritic steels with... VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-20 Low temperature operation—ferritic steels with properties enhanced by heat treatment (modifies UHT-5(c), UHT-6, UHT-23, and UHT-82...

  14. Study on the perception of orthodontic treatment according to age: A questionnaire survey.

    PubMed

    Kim, Yoonji

    2017-07-01

    This questionnaire study aimed to estimate the overall frequencies of positive perception towards orthodontic treatment among adults categorized according to age, sex, and area of living, and to identify barriers or negative perceptions preventing them from receiving orthodontic treatment. The participants included 598 adults aged over 20 years (230 men and 368 women) who visited the Dental Hospital of Seoul St. Mary's Hospital. The participants' opinions regarding their consideration of receiving orthodontic treatment were recorded using a specially designed questionnaire. The overall rate of positive perception towards orthodontic treatment was 48.5%. Compared to adults in their 20s (63.2%), those in their 40s and 50s had a lower percentage of interest in orthodontic treatment (46.2% and 45.1%, respectively; p < 0.05). Overall, women (52.2%) had a higher rate of interest than did men (42.6%; p < 0.05). The area of living had no effect on the percentage of interest. The order of priority of chief complaints differed according to age: protrusion for those in the 20s and 30s, and spacing for those in the 40s to 60s. Overall, the main reason for not seeking treatment was the treatment fee. Respondents aged over 40 considered themselves "too old" for orthodontic treatment. The middle-aged had a relatively high percentage of interest (above 45%) in orthodontic treatment. However, demographic characteristics were not significantly associated with the positive interest. These results highlight the need for educating the middle-aged about the limitations and possibilities of orthodontic treatment to increase its acceptance.

  15. Effects of hot extrusion and heat treatment on microstructure and properties of industrial large-scale spray-deposited 7055 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yang, Yonggang; Zhao, Yutao; Kai, Xizhou; Zhang, Zhen; Zhang, Hao; Tao, Ran; Chen, Gang; Yin, Houshang; Wang, Min

    2018-01-01

    The industrial large-scale 7055 aluminum alloy fabricated by spray forming technology was subjected to hot extrusion and heat treatment to achieve high strength and ductility. Microstructure of the as-deposited alloy indicates that higher density billets with equiaxed grains (20-40 μm) were fabricated rather than a typical dendritic microstructure of the as-cast alloy. The grains of the as-extruded alloy exhibit fibrous morphology, the original boundaries disappear and fined second phases with size about 0.5-5 μm distribute along with extrusion direction. Meanwhile, the defects could be eliminated by hot extrusion, which resulted in good strength as well as ductility. The ultimate tensile strength, yield strength and elongation of the as-extruded alloy are 345 MPa, 236 MPa and 18.5%, respectively. After heat treatment, the partial recrystallization is observed around the un-recrystallized grains and sub-grains. And the platelet/rod-shaped precipitates (MgZn2) show a uniform distribution in the matrix alloy. The alloy reaches the maximum tensile strength of 730 MPa after T6 temper treatment, associated with a fine precipitation (MgZn2). However, with further deepen aging degree (from T6 to T73 temper), the size of dominant precipitated phases (MgZn2) grows obviously, the grain boundary precipitates transform from continuous to individual ones and the width of precipitate free zone increases. The result shows that the alloy after T7X temper treatment exhibits higher electrical conductivity (>35 %IACS) and facture toughness (>25.6 MPa m1/2) although a 8%-17% reduction in strength compared with that at T6 temper.

  16. Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment

    PubMed Central

    2013-01-01

    Background From field harvest to the consumer’s table, fresh citrus fruit spends a considerable amount of time in shipment and storage. During these processes, physiological disorders and pathological diseases are the main causes of fruit loss. Heat treatment (HT) has been widely used to maintain fruit quality during postharvest storage; however, limited molecular information related to this treatment is currently available at a systemic biological level. Results Mature ‘Kamei’ Satsuma mandarin (Citrus unshiu Marc.) fruits were selected for exploring the disease resistance mechanisms induced by HT during postharvest storage. Proteomic analyses based on two-dimensional gel electrophoresis (2-DE), and metabolomic research based on gas chromatography coupled to mass spectrometry (GC-MS), and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) were conducted. The results show resistance associated proteins were up-regulated in heat treated pericarp, such as beta-1, 3-glucanase, Class III chitinase, 17.7 kDa heat shock protein and low molecular weight heat-shock protein. Also, redox metabolism enzymes were down-regulated in heat treated pericarp, including isoflavone reductase, oxidoreductase and superoxide dismutase. Primary metabolic profiling revealed organic acids and amino acids were down-regulated in heat treated pericarp; but significant accumulation of metabolites, including tetradecanoic acid, oleic acid, ornithine, 2-keto-d-gluconic acid, succinic acid, turanose, sucrose, galactose, myo-inositol, glucose and fructose were detected. Noticeably, H2O2 content decreased, while, lignin content increased in heat treated pericarp compared to the control, which might increase fruit resistibility in response to external stress. Also, flavonoids, substances which are well-known to be effective in reducing external stress, were up-regulated in heat treated pericarp. Conclusions This study provides a broad picture of differential

  17. Effect of heat treatment on microstructure and mechanical properties of Mg-4Y-1.6Nd-1Sm-0.5Zr alloy

    NASA Astrophysics Data System (ADS)

    Jia, Guilong; Guo, Erjun; Feng, Yicheng; Wang, Liping; Wang, Changliang

    2018-03-01

    Microstructure and mechanical properties of Mg-4Y-1.6Nd-1Sm-0.5Zr alloy during heat treatments were investigated, while the room-temperature tensile fractographs were observed and analyzed. The results show that the eutectic phases almost dissolve into the matrix after being solutionized at 525 °C for 8 h. The ultimate tensile strength, yield strength and elongation reach 300 MPa, 219 MPa, 6.5% respectively after being under-aged at 200 °C for 16 h. The ultimate tensile strength and yield strength of the alloy decrease gradually, while the elongation increases gradually with increasing the test temperatures. The room-temperature tensile fracture modes of the as-cast alloy, solutionized alloy, aged alloy are mixed fracture of transgranular and intergranular, transgranular cleavage fracture, transgranular fracture, respectively.

  18. Heat treatment of organics for increasing anaerobic biodegradability. Annual progress report, June 1, 1976-May 31, 1977. Civil engineering technical report No. 222

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Healy, J.B. Jr.; Owen, W.F.; Stuckey, D.C.

    1977-06-30

    This report represents the results of the first year of study on the heat treatment of organics to increase its biodegradability by anaerobic bacteria for the microbial production of methane. The purpose of this study is to develop a means for increasing the yield and reducing the cost of methane, a useful energy source. The procedures being evaluated are heat treatment at temperatures up to 250/sup 0/C, under pH ranges of 1 to 13. Included in this report are results on: (1) lignocellulose digestion and acclimation to its products from heat treatment; (2) the fate of waste activated sludge andmore » its cellular nitrogenous compounds; and (3) the biodegradability of model compounds likely to be formed during heat treatment.« less

  19. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    PubMed

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium

  20. The effect of nitrogen gas flow rate on heat treatment of AISI SS-430: Study of microstructure and hardness

    NASA Astrophysics Data System (ADS)

    Sebayang, Perdamean; Darmawan, Bobby Aditya; Simbolon, Silviana; Alfirano, Sudiro, Toto; Aryanto, Didik

    2018-05-01

    The aim of this research was to obtain the austenite phase from ferritic stainless steel through sample heat treatment. The AISI 430 ferritic steel with the thickness of about 0.4 mm was used. The heat treatment was conducted in a tube furnace at elevated temperature of 1150, 1200, 1250 °C and nitrogen gas flow rate of 0.57 and 0.73 l/s. The samples were then rapidly quenched in water bath. An optical microscope, XRD, SEM-EDS and micro vickers hardness tester were used to characterize the sample before and after het treatment. The presence of anneal twins indicated the formation of austenite phase in the sample. Its fraction was varied from 10.89 wt% to 35.10 wt%. In addition, the heat treatment temperature strongly affected the sample hardness. The optimum hardness obtained was about 542.69 HV. According to the results, this material can be considered for biomedical applications.

  1. Do bark beetles and wood borers infest lumber following heat treatment? The role of bark

    Treesearch

    Robert A. Haack; Toby R. Petrice; Pascal Nzokou

    2007-01-01

    Wood packing material (WPM) is an important pathway for the movement of bark- and wood-infesting insects (Haack 2006). New international standards for treating WPM, often referred to as "ISPM 15," were adopted in 2002 (FAO 2002). The two approved WPM treatments are heat treatment (56? C core temperature for 30 min) and fumigation with methyl bromide. These...

  2. Conjectures concerning cross-sex hormone treatment of aging transsexual persons.

    PubMed

    Gooren, Louis; Lips, Paul

    2014-08-01

    Guidelines for cross-sex hormone treatment of transsexual people are now in place. However, little attention has been paid to the issue of treatment suitability for older people. Does existing treatment need to be adapted as subjects age, and does it make a difference if treatment is only started when the subject is already older? To assess the necessity of adapting cross-sex hormone administration for elderly transsexual people. Risks/benefits of continued use of cross-sex hormones with regard to bone health, cardiovascular risks, and malignancies. Due to lack of data on the subject population, sex hormone treatment of other conditions in older non-transsexual people has been taken as the best available analogy to determine the extent to which these might be applicable to comparable transsexual persons. Findings in transsexual people receiving cross-sex hormone treatment sometimes modified the above approach of applying guidelines for the elderly to the aging transsexual population. Testosterone administration to female-to-male transsexual persons (FtoM) carries little risk with regard to cardiovascular disease and cancer. For those with high hematocrit or cardiac insufficiency the dose can be reduced. Administration of estrogens to male-to-female transsexual persons (MtoF), particularly when combined with progestins, does significantly increase the risk of developing cardiovascular disease (almost a twofold incidence compared with the general population). This may require dose adjustment or changing from oral to safer transdermal estrogens. Tumors of the breasts, prostate and pituitary may occur. In FtoM, breast cancer can occur even after breast ablation. Older subjects can commence cross-sex hormone treatment without disproportionate risks. Cross-sex hormones may be continued into old age but monitoring for cardiovascular disease and malignancies, both of the old and new sex, is recommended. MtoF will have more health complications in old age than Fto

  3. Aesthetic value improvement of the ruby stone using heat treatment and its synergetic surface study

    NASA Astrophysics Data System (ADS)

    Sahoo, Rakesh K.; Mohapatra, Birendra K.; Singh, Saroj K.; Mishra, Barada K.

    2015-02-01

    The surface behavior of the natural ruby stones before and after heat treatment with metal oxide additives like: zinc oxide (ZnO) and lead oxide (PbO) have been studied. The surface appearance of the ruby stones processed with the metal oxides changed whereas the bulk densities of the stones remained within the range of 3.9-4.0 g/cm3. The cracks healing and pores filling by the metal oxides on the surface of the ruby have been examined using scanning electron microscopy. The chemical compositions based on the XPS survey scans are in good agreement with the expected composition. The phase and crystallinity of the ruby stones original and heat-treated were obtained from their X-ray diffraction patterns. The change in peak separation between R1 and R2 - peaks in photoluminescence spectra and the contrary binding energy shift of the Al 2p peaks in the X-ray photoelectron spectra have been explicated. Moreover, in this work we describe the change in surface chemical and physical characteristics of the ruby stone before and after heat treatment.

  4. Effect of heat treatment on interfacial and mechanical properties of A6022/A7075/A6022 roll-bonded multi-layer Al alloy sheets

    NASA Astrophysics Data System (ADS)

    Cha, Joon-Hyeon; Kim, Su-Hyeon; Lee, Yun-Soo; Kim, Hyoung-Wook; Choi, Yoon Suk

    2016-09-01

    Multi-layered Al alloy sheets can exhibit unique properties by the combination of properties of component materials. A poor corrosion resistance of high strength Al alloys can be complemented by having a protective surface with corrosion resistant Al alloys. Here, a special care should be taken regarding the heat treatment of multi-layered Al alloy sheets because dissimilar Al alloys may exhibit unexpected interfacial reactions upon heat treatment. In the present study, A6022/A7075/A6022 sheets were fabricated by a cold roll-bonding process, and the effect of the heat treatment on the microstructure and mechanical properties was examined. The solution treatment gave rise to the diffusion of Zn, Mg, Cu and Si elements across the core/clad interface. In particular, the pronounced diffusion of Zn, which is a major alloying element (for solid-solution strengthening) of the A7075 core, resulted in a gradual hardness change across the core/clad interface. Mg2Si precipitates and the precipitate free zone were also formed near the interface after the heat treatment. The heat-treated sheet showed high strengths and reasonable elongation without apparent deformation misfit or interfacial delamination during the tensile deformation. The high strength of the sheet was mainly due to the T4 and T6 heat treatment of the A7075 core.

  5. [The golden age of rheumatoid arthritis treatment].

    PubMed

    Mercado, Ulises

    2014-01-01

    Today, we enjoy the golden age of rheumatology. In the 1970s, the paradigm for treating rheumatoid arthritis consisted in a pyramid. In the decade of the 1980s, and shortly after began a revolution in the understanding and treatment of rheumatic diseases. Methotrexate and tumor necrosis factor-blockers came on the scene.

  6. Longitudinal evaluation of the efficacy of heat treatment procedures against Legionella spp. in hospital water systems by using a flow cytometric assay.

    PubMed

    Allegra, Severine; Grattard, Florence; Girardot, Françoise; Riffard, Serge; Pozzetto, Bruno; Berthelot, Philippe

    2011-02-01

    Legionella spp. are frequently isolated in hospital water systems. Heat shock (30 min at 70°C) is recommended by the World Health Organization to control its multiplication. The aim of the study was to evaluate retrospectively the efficacy of heat treatments by using a flow cytometry assay (FCA) able to identify viable but nonculturable (VBNC) cells. The study included Legionella strains (L. pneumophila [3 clusters] and L. anisa [1 cluster]) isolated from four hot water circuits of different hospital buildings in Saint-Etienne, France, during a 20-year prospective surveillance. The strains recovered from the different circuits were not epidemiologically related, but the strains isolated within a same circuit over time exhibited an identical genotypic profile. After an in vitro treatment of 30 min at 70°C, the mean percentage of viable cells and VBNC cells varied from 4.6% to 71.7%. The in vitro differences in heat sensitivity were in agreement with the observed efficacy of preventive and corrective heating measures used to control water contamination. These results suggest that Legionella strains can become heat resistant after heating treatments for a long time and that flow cytometry could be helpful to check the efficacy of heat treatments on Legionella spp. and to optimize the decontamination processes applied to water systems for the control of Legionella proliferation.

  7. The foaming properties of camel and bovine whey: The impact of pH and heat treatment.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Cases, Eliane; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2018-02-01

    The effect of heat treatment (70°C or 90°C for 30min) on the foaming and interfacial properties of acid and sweet whey obtained from bovine and camel fresh milk was examined. The maximum foamability and foam stability were observed for acid whey when compared to sweet whey for both milks, with higher values for the camel whey. This behavior for acid whey was explained by the proximity of the pI of whey protein (4.9-5.2), where proteins were found to carry the lowest negative charge as confirmed by the zeta potential measurements. Interfacial properties of acid camel whey and acid bovine whey were preserved at air water interface even after a heat treatment at 90°C. These results confirmed the pronounced foaming and interfacial properties of acid camel whey, even if acid and sweet bovine whey exhibited the highest viscoelastic modulus after heating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Thermal Effects That Arise upon Different Heat Treatments in Austenitic Steels Alloyed with Titanium and Phosphorus

    NASA Astrophysics Data System (ADS)

    Arbuzov, V. L.; Berger, I. F.; Bobrovskii, V. I.; Voronin, V. I.; Danilov, S. E.; Kazantsev, V. A.; Kataev, N. V.; Sagaradze, V. V.

    2018-04-01

    Structural and microstructural changes that arise in the course of the heat treatment of Cr-Ni-Mo austenitic stainless steels with different concentrations of titanium and phosphorus have been studied. It has been found that the alloying with phosphorus decreases the lattice parameter of these steels. The phosphorus contribution to this effect is 0.015 ± 0.002 Å/at %. Aging at a temperature of 670 K for about 20 h leads to the precipitation of dispersed needle-like particles, which are most likely to be iron phosphides. In the temperature range of 700-800 K, in austenitic steels, the atomic separation of the solid solution occurs, the intensity of which decreases upon alloying with titanium or phosphorus at concentrations of 1.0 and 0.1 wt %, respectively. At higher temperatures (about 950 K), the formed precipitates of the Ni3Ti (γ') phase increase in size to 7-10 nm.

  9. Effect of Heat Treatment Process on Mechanical Properties and Microstructure of a 9% Ni Steel for Large LNG Storage Tanks

    NASA Astrophysics Data System (ADS)

    Zhang, J. M.; Li, H.; Yang, F.; Chi, Q.; Ji, L. K.; Feng, Y. R.

    2013-12-01

    In this paper, two different heat treatment processes of a 9% Ni steel for large liquefied natural gas storage tanks were performed in an industrial heating furnace. The former was a special heat treatment process consisting of quenching and intercritical quenching and tempering (Q-IQ-T). The latter was a heat treatment process only consisting of quenching and tempering. Mechanical properties were measured by tensile testing and charpy impact testing, and the microstructure was analyzed by optical microscopy, transmission electron microscopy, and x-ray diffraction. The results showed that outstanding mechanical properties were obtained from the Q-IQ-T process in comparison with the Q-T process, and a cryogenic toughness with charpy impact energy value of 201 J was achieved at 77 K. Microstructure analysis revealed that samples of the Q-IQ-T process had about 9.8% of austenite in needle-like martensite, while samples of the Q-T process only had about 0.9% of austenite retained in tempered martensite.

  10. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment.

    PubMed

    Espinosa, Ana; Di Corato, Riccardo; Kolosnjaj-Tabi, Jelena; Flaud, Patrice; Pellegrino, Teresa; Wilhelm, Claire

    2016-02-23

    The pursuit of innovative, multifunctional, more efficient, and safer treatments is a major challenge in preclinical nanoparticle-mediated thermotherapeutic research. Here, we report that iron oxide nanoparticles have the dual capacity to act as both magnetic and photothermal agents. We further explore every key aspect of this magnetophotothermal approach, choosing iron oxide nanocubes for their high efficiency for the magnetic hyperthermia modality itself. In aqueous suspension, the nanocubes' exposure to both: an alternating magnetic field and near-infrared laser irradiation (808 nm), defined as the DUAL-mode, amplifies the heating effect 2- to 5-fold by comparison with magnetic stimulation alone, yielding unprecedented heating powers (specific loss powers) up to 5000 W/g. In cancer cells, the laser excitation restores the optimal efficiency of magnetic hyperthermia, otherwise inhibited by intracellular confinement, resulting in a remarkable heating efficiency in the DUAL-mode (up to 15-fold amplification), with respect to the magnetophotothermal mode. As a consequence, the dual action yielded complete apoptosis-mediated cell death. In solid tumors in vivo, single-mode treatments (magnetic or laser hyperthermia) reduced tumor growth, while DUAL-mode treatment resulted in complete tumor regression, mediated by heat-induced tumoral cell apoptosis and massive denaturation of the collagen fibers, and a long-lasting thermal efficiency over repeated treatments.

  11. Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys

    NASA Astrophysics Data System (ADS)

    Liu, K.; Ma, H.; Chen, X. Grant

    2018-05-01

    In the present work, two-step heat treatments with preheating at different temperatures (175 °C, 250 °C, and 330 °C) as the first step followed by the peak precipitation treatment (375 °C/48 h) as the second step were performed in Al-Mn-Mg 3004 alloys to study their effects on the formation of dispersoids and the evolution of the elevated-temperature strength and creep resistance. During the two-step heat treatments, the microhardness is gradually increased with increasing time to a plateau after 24 hours when first treated at 250 °C and 330 °C, while there is a minor decrease with time when first treated at 175 °C. Results show that both the yield strength (YS) and creep resistance at 300 °C reach the peak values after the two-step treatment of 250 °C/24 h + 375 °C/48 h. The formation of dispersoids is greatly related to the type and size of pre-existing Mg2Si precipitated during the preheating treatments. It was found that coarse rodlike β ' -Mg2Si strongly promotes the nucleation of dispersoids, while fine needle like β ″-Mg2Si has less influence. Under optimized two-step heat treatment and modified alloying elements, the YS at 300 °C can reach as high as 97 MPa with the minimum creep rate of 2.2 × 10-9 s-1 at 300 °C in Al-Mn-Mg 3004 alloys, enabling them as one of the most promising candidates in lightweight aluminum alloys for elevated-temperature applications.

  12. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants

    PubMed Central

    March, Jordon K; Pratt, Michael D; Lowe, Chinn-Woan; Cohen, Marissa N; Satterfield, Benjamin A; Schaalje, Bruce; O'Neill, Kim L; Robison, Richard A

    2015-01-01

    This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking after disinfectant treatment that promotes the optimal recovery of spores deposited on carriers. Suspension tests were used to obtain inactivation kinetics for the disinfectants against three spore types. The effects of heat-shocking spores after disinfectant treatment were also determined. Generalized linear mixed models were used to estimate 6-log reduction times for each spore type, disinfectant, and heat treatment combination. Reduction times were compared statistically using the delta method. Carrier tests were performed according to AOAC Official Method 966.04 and a modified version that employed immediate heat-shocking after disinfectant treatment. Carrier test results were analyzed using Fisher's exact test. PAA-based disinfectants had significantly shorter 6-log reduction times than the GA-based disinfectant. Heat-shocking B. anthracis spores after PAA treatment resulted in significantly shorter 6-log reduction times. Conversely, heat-shocking B. subtilis spores after PAA treatment resulted in significantly longer 6-log reduction times. Significant interactions were also observed between spore type, disinfectant, and heat treatment combinations. Immediately heat-shocking spore carriers after disinfectant treatment produced greater spore recovery. Sporicidal activities of disinfectants were not consistent across spore species. The effects of heat-shocking spores after disinfectant treatment were dependent on both disinfectant and spore species. Caution must be used when extrapolating sporicidal data of disinfectants from one spore species to another. Heat

  13. Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function.

    PubMed

    Kim, Dong-Kyu; Lim, Hee-Sun; Kawasaki, Ichiro; Shim, Yhong-Hee; Vaikath, Nishant N; El-Agnaf, Omar M A; Lee, He-Jin; Lee, Seung-Jae

    2016-10-02

    Aging is the major risk factor for neurodegenerative diseases that are also associated with impaired proteostasis, resulting in abnormal accumulation of protein aggregates. However, the role of aging in development and progression of disease remains elusive. Here, we used Caenorhabditis elegans models to show that aging-promoting genetic variations accelerated the rate of cell-to-cell transmission of SNCA/α-synuclein aggregates, hallmarks of Parkinson disease, and the progression of disease phenotypes, such as nerve degeneration, behavioral deficits, and reduced life span. Genetic and pharmacological anti-aging manipulations slowed the spread of aggregates and the associated phenotypes. Lysosomal degradation was significantly impaired in aging models, while anti-aging treatments reduced the impairment. Transgenic expression of hlh-30p::hlh-30, the master controller of lysosomal biogenesis, alleviated intercellular transmission of aggregates in the aging model. Our results demonstrate that the rate of aging closely correlates with the rate of aggregate propagation and that general anti-aging treatments can slow aggregate propagation and associated disease progression by restoring lysosomal function.

  14. Time to first treatment: The significance of early treatment of exudative age-related macular degeneration.

    PubMed

    Rauch, Renate; Weingessel, Birgit; Maca, Saskia M; Vecsei-Marlovits, Pia V

    2012-07-01

    To determine whether the time span between initial symptoms and treatment with ranibizumab in patients with neovascular age-related macular degeneration has an effect on visual outcome. In this retrospective study, 45 patients with exudative age-related macular degeneration were split into 3 groups depending on the duration of visual symptoms--Group I: <1 month, Group II: 1 month to 6 months, and Group III: >6 months. Best-corrected visual acuity, clinical ophthalmologic examination, and central retinal thickness as measured by optical coherence tomography were recorded at baseline and 2 months later. Fluorescein angiography was performed at baseline. Treatment consisted of 2 intravitreal injections of 1.25 mg of ranibizumab at baseline and after 4 weeks. The mean time span between initial symptoms and treatment was 59 ± 62 days. In all groups, a reduction of retinal thickness was observed. Shorter disease duration, as estimated by persistence of visual symptoms, was correlated with a better visual outcome after treatment. Patients in Group I demonstrated a significant increase in best-corrected visual acuity (P = 0.007). Patients of Group II (P = 0.095) and Group III (P = 0.271) still achieved a visual improvement in best-corrected visual acuity, albeit not significant. The mean change in best-corrected visual acuity was 0.08 ± 0.1 in all patients and was not statistically significant between groups (P = 0.87). Duration of visual symptoms <1 month before treatment is associated with a better visual outcome. Treatment of new-onset wet age-related macular degeneration should be initiated as soon as possible.

  15. [Efficacy of using rivaroxaban for treatment of heat-induced thrombosis after endovenous laser ablation].

    PubMed

    Fokin, A A; Borsuk, D A; Kazachkov, E L

    The study was aimed at assessing efficacy of using rivaroxaban for treatment of endothermal heat-induced thrombosis (EHIT) after endovenous laser ablation (EVLA) of saphenous veins. Our prospective study included a total of 1,326 patients subjected to 1,514 EVLAs. In 1,091 (72.1%) cases the great saphenous vein (GSV) was ablated, in 124 (8.2%) cases the anterior accessory vein (AAV) was treated and in 299 (19.7%) cases the small saphenous vein (SSV) was treated. Heat-induced thrombosis developed in 21 (1.4%) cases: in 19 cases in the basin of the great saphenous vein and in 2 cases in the anterior accessory saphenous vein. No heat-induced thromboses in the basin of the small saphenous vein were observed. In 9 (0.6%) cases there was class 1 EHIT (according to the Kabnick classification), class 2 EHIT was noted in 10 (0.7%) cases and class 3 EHIT was observed in 2 (0.1%) cases. All patients with EHIT were given rivaroxaban: patients with class 1 EHIT received it at a single daily dose of 20 mg, patients with class 2 and 3 EHIT - at a dose of 15 mg twice daily. In one (4.8%) case the drug had to be discontinued on day two due to the development of dyspeptic events. All patients were found to have complete regression of the heat-induced thrombus within 6-25 days. No cases of clinical manifestations of pulmonary artery thromboembolism were observed. A conclusion was drawn that in clinical practice EHIT is an important and insufficiently studied problem. Rivaroxaban may be used as an oral agent for treatment of heat-induced thromboses after EVLA. Further studies are required to examine its efficacy and safety profile.

  16. Heat shock protein responses to aging and proteotoxicity in the olfactory bulb

    PubMed Central

    Posimo, Jessica M.; Mason, Daniel M.; Broeren, Matthew T.; Heinemann, Scott D.; Wipf, Peter; Brodsky, Jeffrey L.; Leak, Rehana K.

    2015-01-01

    The olfactory bulb is one of the most vulnerable brain regions in age-related proteinopathies. Proteinopathic stress is mitigated by the heat shock protein (Hsp) family of chaperones. Here we describe age-related decreases in Hsc70 in the olfactory bulb of the female rat and higher levels of Hsp70 and Hsp25 in middle and old age than at 2-4 months. In order to model proteotoxic and oxidative stress in the olfactory bulb, primary olfactory bulb cultures were treated with the proteasome inhibitors lactacystin and MG132 or the pro-oxidant paraquat. Toxin-induced increases were observed in Hsp70, Hsp25, and Hsp32. In order to determine the functional consequences of the increase in Hsp70, we attenuated Hsp70 activity with two mechanistically distinct inhibitors. The Hsp70 inhibitors greatly potentiated the toxicity of sublethal lactacystin or MG132 but not of paraquat. Although ubiquitinated protein levels were unchanged with aging in vivo or with sublethal MG132 in vitro, there was a large, synergistic increase in ubiquitinated proteins when proteasome and Hsp70 functions were simultaneously inhibited. Our study suggests that olfactory bulb cells rely heavily on Hsp70 chaperones to maintain homeostasis during mild proteotoxic, but not oxidative insults, and that Hsp70 prevents the accrual of ubiquitinated proteins in these cells. PMID:25640060

  17. Effects of heat treatment on antioxidative and anti-inflammatory properties of orange by-products

    USDA-ARS?s Scientific Manuscript database

    This study investigated the changes in functional components, antioxidative activities, antibacterial activities, anti-inflammatory activities of orange (Citrus sinensis (L.) Osbeck) by-products (OBP) by heat treatment at 50 and 100 degrees C (hereafter, 50D and 100D extracts, respectively). Optimal...

  18. A heat treatment procedure to produce fine-grained lamellar microstructures in a P/M titanium aluminide alloy

    NASA Astrophysics Data System (ADS)

    Au, Peter

    A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are

  19. The implementation of microstructural and heat treatment models to development of forming technology of critical aluminum-alloy parts

    NASA Astrophysics Data System (ADS)

    Biba, Nikolay; Alimov, Artem; Shitikov, Andrey; Stebunov, Sergei

    2018-05-01

    The demand for high performance and energy efficient transportation systems have boosted interest in lightweight design solutions. To achieve maximum weight reductions, it is not enough just to replace steel parts by their aluminium analogues, but it is necessary to change the entire concept of vehicle design. In this case we must develop methods for manufacturing a variety of critical parts with unusual and difficult to produce shapes. The mechanical properties of the material in these parts must also be optimised and tightly controlled to provide the best distribution within the part volume. The only way to achieve these goals is to implement technology development methods based on simulation of the entire manufacturing chain from preparing a billet through the forming operations and heat treatment of the product. The paper presents an approach to such technology development. The simulation of the technological chain starts with extruding a round billet. Depending on the extrusion process parameters, the billet can have different levels of material workout and variation of grain size throughout the volume. After extrusion, the billet gets formed into the required shape in a forging process. The main requirements at this stage are to get the near net shape of the product without defects and to provide proper configuration of grain flow that strengthens the product in the most critical direction. Then the product undergoes solution treatment, quenching and ageing. The simulation of all these stages are performed by QForm FEM code that provides thermo-mechanical coupled deformation of the material during extrusion and forging. To provide microstructure and heat treatment simulation, special subroutines has been developed by the authors. The proposed approach is illustrated by an industrial case study.

  20. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis.

    PubMed

    McConnell, Kevin W; Fox, Amy C; Clark, Andrew T; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A; Farris, Alton B; Buchman, Timothy G; Hunt, Clayton R; Coopersmith, Craig M

    2011-03-15

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation.