Sample records for agency mission jointly

  1. Joint NASA-ESA Outer Planet Mission study overview

    NASA Astrophysics Data System (ADS)

    Lebreton, J.-P.; Niebur, C.; Cutts, J.; Falkner, P.; Greeley, R.; Lunine, J.; Blanc, M.; Coustenis, A.; Pappalardo, R.; Matson, D.; Clark, K.; Reh, K.; Stankov, A.; Erd, C.; Beauchamp, P.

    2009-04-01

    evaluated by each agency between November 2008 and January 2009, and a joint decision as to which destination has been selected is expected to be announced in February 2009. The ESA Cosmic Vision selection process includes two additional competitive steps (that include two competing astronomy missions) before its contribution to the selected Outer Planet Mission is confirmed in 2012. NASA expects to proceed with the initial implementation of the mission in FY2009, while full implementation will start in FY2013, in line with ESA Cosmic Vision schedule. Should ESA select an astronomy mission instead, NASA would proceed in 2013 with the implementation of a NASA-only mission concept. This presentation will provide an overview of the selected Outer Planet Mission and outline the next steps towards its implementation.

  2. Mutual coordination strengthens the sense of joint agency in cooperative joint action.

    PubMed

    Bolt, Nicole K; Poncelet, Evan M; Schultz, Benjamin G; Loehr, Janeen D

    2016-11-01

    Philosophers have proposed that when people coordinate their actions with others they may experience a sense of joint agency, or shared control over actions and their effects. However, little empirical work has investigated the sense of joint agency. In the current study, pairs coordinated their actions to produce tone sequences and then rated their sense of joint agency on a scale ranging from shared to independent control. People felt more shared than independent control overall, confirming that people experience joint agency during joint action. Furthermore, people felt stronger joint agency when they (a) produced sequences that required mutual coordination compared to sequences in which only one partner had to coordinate with the other, (b) held the role of follower compared to leader, and (c) were better coordinated with their partner. Thus, the strength of joint agency is influenced by the degree to which people mutually coordinate with each other's actions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Apollo-Soyuz US-USSR joint mission results

    NASA Technical Reports Server (NTRS)

    Bean, A. L.; Evans, R. E.

    1975-01-01

    The technical and nontechnical objectives of the Apollo-Soyuz mission are briefly considered. The mission demonstrated that Americans and Russians can work together to perform a very complex operation, including rendezvous in space, docking, and the conduction of joint experiments. Certain difficulties which had to be overcome were partly related to differences concerning the role of the astronaut in the basic alignment and docking procedures for space vehicles. Attention is also given to the experiments conducted during the mission and the approach used to overcome the language barrier.

  4. SOHO Mission Interruption Joint NASA/ESA Investigation Board

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Contact with the SOlar Heliospheric Observatory (SOHO) spacecraft was lost in the early morning hours of June 25, 1998, Eastern Daylight Time (EDT), during a planned period of calibrations, maneuvers, and spacecraft reconfigurations. Prior to this the SOHO operations team had concluded two years of extremely successful science operations. A joint European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) engineering team has been planning and executing recovery efforts since loss of contact with some success to date. ESA and NASA management established the SOHO Mission Interruption Joint Investigation Board to determine the actual or probable cause(s) of the SOHO spacecraft mishap. The Board has concluded that there were no anomalies on-board the SOHO spacecraft but that a number of ground errors led to the major loss of attitude experienced by the spacecraft. The Board finds that the loss of the SOHO spacecraft was a direct result of operational errors, a failure to adequately monitor spacecraft status, and an erroneous decision which disabled part of the on-board autonomous failure detection. Further, following the occurrence of the emergency situation, the Board finds that insufficient time was taken by the operations team to fully assess the spacecraft status prior to initiating recovery operations. The Board discovered that a number of factors contributed to the circumstances that allowed the direct causes to occur. The Board strongly recommends that the two Agencies proceed immediately with a comprehensive review of SOHO operations addressing issues in the ground procedures, procedure implementation, management structure and process, and ground systems. This review process should be completed and process improvements initiated prior to the resumption of SOHO normal operations.

  5. Joint Space Operations Center (JSpOC) Mission System Increment 3 (JMS Inc 3)

    DTIC Science & Technology

    2016-03-01

    2016 Major Automated Information System Annual Report Joint Space Operations Center (JSpOC) Mission System Increment 3 (JMS Inc 3) Defense...1725 DSN Phone: DSN Fax: Date Assigned: May 16, 2014 Program Information Program Name Joint Space Operations Center (JSpOC) Mission System...approved program baseline; therefore, no Original Estimate has been established. JMS Inc 3 2016 MAR UNCLASSIFIED 4 Program Description The Joint Space

  6. Joint operations planning for space surveillance missions on the MSX satellite

    NASA Technical Reports Server (NTRS)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a

  7. 45 CFR 1321.53 - Mission of the area agency.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON AGING, OLDER AMERICANS PROGRAMS GRANTS TO STATE AND COMMUNITY PROGRAMS ON AGING Area Agency Responsibilities § 1321.53 Mission of the area agency. (a) The Older Americans Act intends that the area agency on aging shall be the leader...

  8. 45 CFR 1321.53 - Mission of the area agency.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON AGING, OLDER AMERICANS PROGRAMS GRANTS TO STATE AND COMMUNITY PROGRAMS ON AGING Area Agency Responsibilities § 1321.53 Mission of the area agency. (a) The Older Americans Act intends that the area agency on aging shall be the leader...

  9. 45 CFR 1321.53 - Mission of the area agency.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON AGING, OLDER AMERICANS PROGRAMS GRANTS TO STATE AND COMMUNITY PROGRAMS ON AGING Area Agency Responsibilities § 1321.53 Mission of the area agency. (a) The Older Americans Act intends that the area agency on aging shall be the leader...

  10. 45 CFR 1321.7 - Mission of the State agency.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON AGING, OLDER AMERICANS PROGRAMS GRANTS TO STATE AND COMMUNITY PROGRAMS ON AGING State Agency Responsibilities § 1321.7 Mission of the State agency. (a) The Older Americans Act intends that the State agency on aging shall be the leader relative to all...

  11. 45 CFR 1321.7 - Mission of the State agency.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON AGING, OLDER AMERICANS PROGRAMS GRANTS TO STATE AND COMMUNITY PROGRAMS ON AGING State Agency Responsibilities § 1321.7 Mission of the State agency. (a) The Older Americans Act intends that the State agency on aging shall be the leader relative to all...

  12. 45 CFR 1321.7 - Mission of the State agency.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON AGING, OLDER AMERICANS PROGRAMS GRANTS TO STATE AND COMMUNITY PROGRAMS ON AGING State Agency Responsibilities § 1321.7 Mission of the State agency. (a) The Older Americans Act intends that the State agency on aging shall be the leader relative to all...

  13. 40 CFR 255.23 - Joint identification of agencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Joint identification of agencies. 255.23 Section 255.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... all general purpose local governments within the State, all units of regional governance, all existing...

  14. Joint Agency Commercial Imagery Evaluation (JACIE)

    USGS Publications Warehouse

    Jucht, Carrie

    2010-01-01

    Remote sensing data are vital to understanding the physical world and to answering many of its needs and problems. The United States Geological Survey's (USGS) Remote Sensing Technologies (RST) Project, working with its partners, is proud to sponsor the annual Joint Agency Commercial Imagery Evaluation (JACIE) Workshop to help understand the quality and usefulness of remote sensing data. The JACIE program was formed in 2001 to leverage U.S. Federal agency resources for the characterization of commercial remote sensing data. These agencies sponsor and co-chair JACIE: U.S. Geological Survey (USGS) National Aeronautics and Space Administration (NASA) National Geospatial-Intelligence Agency (NGA) U.S. Department of Agriculture (USDA) JACIE is an effort to coordinate data assessments between the participating agencies and partners and communicate the knowledge and results of the quality and utility of the remotely sensed data available for government and private use.

  15. Results of the Simulation and Assimilation of Doppler Wind Lidar Observations in Preparation for European Space Agency's Aeolus Mission

    NASA Technical Reports Server (NTRS)

    McCarty, Will

    2011-01-01

    With the launch of the European Space Agency's Aeolus Mission in 2013, direct spaceborne measurements of vertical wind profiles are imminent via Doppler wind lidar technology. Part of the preparedness for such missions is the development of the proper data assimilation methodology for handling such observations. Since no heritage measurements exist in space, the Joint Observing System Simulation Experiment (Joint OSSE) framework has been utilized to generate a realistic proxy dataset as a precursor to flight. These data are being used for the development of the Gridpoint Statistical Interpolation (GSI) data assimilation system utilized at a number of centers through the United States including the Global Modeling and Assimilation Office (GMAO) at NASA/Goddard Space Flight Center and at the National Centers for Environmental Prediction (NOAA/NWS/NCEP) as an activity through the Joint Center for Satellite Data Assimilation. An update of this ongoing effort will be presented, including the methodology of proxy data generation, the limitations of the proxy data, the handling of line-of-sight wind measurements within the GSI, and the impact on both analyses and forecasts with the addition of the new data type.

  16. The Joint Agency Commercial Imagery Evaluation (JACIE) Team: Overview and IKONOS Joint Characterization Approach

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Ryan, Robert; Pagnutti, Mary; Baldridge, Braxton; Roylance, Spencer; Snyder, Greg; Lee, George; Stanley, Tom

    2002-01-01

    An overview of the Joint Agency Commercial Imagery Evalation (JACIE) team is presented. JACIE, composed of the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA), and the U.S. Geological Survey (USGS), was formed to leverage government agencies' capabilities for the characterization of commercial remote sensing data. Each JACIE agency purchases, or plans to purchase, commercial imagery to support its research and applications. It is critical that the data be assessed for its accuracy and utility. Through JACIE, NASA, NIMA, and USGS jointly characterized image products from Space Imaging's IKONOS satellite. Each JACIE agency performed an aspect of the characterization based on its expertise. NASA and its university partners performed a system characterization focusing on radiometric calibration, geopositional accuracy, and spatial resolution assessment; NIMA performed image interpretability and feature extraction evaluations; and USGS assessed geopositional accuracy of several IKONOS products. The JACIE team purchased IKONOS imagery of several study sites to perform the assessments and presented results at an industry-government workshop. Future plans for JACIE include the characterization of DigitalGlobe's QuickBird-2 image products.

  17. Command and Control of Joint Air Operations through Mission Command

    DTIC Science & Technology

    2016-06-01

    and outlines the C2 architecture systems, processes, and philosophy of com- mand required to enable mission command effectively. Mission Command...General Dempsey highlights the fact that “trust is the moral sinew that binds the distributed Joint Force 2020 together” and observes that “unless...con- fident about how their subordinates will make decisions and adapt to the dynamic battlespace environment. Processes, Systems, and Philosophy of

  18. Multilateral Biomedical Data Sharing in the One-year Joint US-Russian Mission on the International Space Station

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Haven, C.; Johnson-Throop, K.; Van Baalen, M.; McFather, J.

    2014-01-01

    The One Year Mission (1YM) by two astronauts on the International Space Station (ISS), starting in March 2015, offers a unique opportunity to expand multilateral collaboration by sharing data and resources among the partner agencies in preparation for planned space exploration missions beyond low Earth orbit. Agreements and protocols will be established for the collection, distribution, analysis and reporting of both research and clinical data. Data will be shared between the agencies sponsoring the investigators, and between the research and clinical medicine communities where common interests are identified. The assignment of only two astronauts, one Russian and the other American, to the 1YM necessitated creativity in bilateral efforts to maximize the biomedical return from the opportunity. Addition of Canadian, European and Japanese investigations make the effort even more integrative. There will be three types of investigations: joint, cross-participation and data-exchange. The joint investigations have US and Russian coprincipal investigators, and the data acquired will be their common responsibility. The other two types must develop data sharing agreements and processes specific to their needs. A multilateral panel of ISS partner space agencies will develop policies for international exchange of scientific information to meet their science objectives and priorities. They will promote archiving of space flight data and will inform each other and the scientific community at large about the results obtained from space life sciences studies. Integration tasks for the 1YM are based on current experience from the ISS and previous efforts on the Russian space station Mir. Closer coordination between international partners requires more common approaches to remove barriers to multilateral resource utilization on the ISS. Greater integration in implementation should increase utilization efficiency to benefit all participants in spaceflight human research. This

  19. AIDA: The Asteroid Impact & Deflection Assessment Mission

    NASA Astrophysics Data System (ADS)

    Galvez, A.; Carnelli, I.; Michel, P.; Cheng, A. F.; Reed, C.; Ulamec, S.; Biele, J.; Abell, P.; Landis, R.

    2013-09-01

    The Asteroid Impact and Deflection Assessment (AIDA) mission, a joint effort of ESA, JHU/APL, NASA, OCA, and DLR, is the first demonstration of asteroid deflection and assessment via kinetic impact. AIDA consists of two independent but mutually supporting mission elements, one of which is the asteroid kinetic impactor and the other is the characterization spacecraft. These two missions are, respectively, JHU/APL's Double Asteroid Redirection Test (DART) and the European Space Agency's Asteroid Investigation Mission (AIM) missions. As in the separate DART and AIM studies, the target of this mission is the binary asteroid [65803] Didymos in October, 2022. For a successful joint mission, one spacecraft, DART, would impact the secondary of the Didymos system while AIM would observe and measure any change in the relative orbit. AIM will be the first probe to characterise a binary asteroid, especially from the dynamical point of view, but also considering its interior and subsurface composition. The mission concept focuses on the monitoring aspects i.e., the capability to determine in-situ the key physical properties of a binary asteroid playing a role in the system's dynamic behavior. DART will be the first ever space mission to deflect the trajectory of an asteroid in a measurable way.- It is expected that the deflection can be measured as a change in the relative orbit period with a precision better than 10%. The joint AIDA mission will return vital data to determine the momentum transfer efficiency of the kinetic impact [1,2].

  20. 42 CFR 137.306 - How are Self-Governance Tribes recognized as having lead, cooperating, or joint lead agency status?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lead, cooperating, or joint lead agency status? 137.306 Section 137.306 Public Health PUBLIC HEALTH... recognized as having lead, cooperating, or joint lead agency status? Self-Governance Tribes may be recognized as having lead, cooperating, or joint lead agency status through funding or other agreements with...

  1. 42 CFR 137.306 - How are Self-Governance Tribes recognized as having lead, cooperating, or joint lead agency status?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lead, cooperating, or joint lead agency status? 137.306 Section 137.306 Public Health PUBLIC HEALTH... recognized as having lead, cooperating, or joint lead agency status? Self-Governance Tribes may be recognized as having lead, cooperating, or joint lead agency status through funding or other agreements with...

  2. 42 CFR 137.306 - How are Self-Governance Tribes recognized as having lead, cooperating, or joint lead agency status?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lead, cooperating, or joint lead agency status? 137.306 Section 137.306 Public Health PUBLIC HEALTH... recognized as having lead, cooperating, or joint lead agency status? Self-Governance Tribes may be recognized as having lead, cooperating, or joint lead agency status through funding or other agreements with...

  3. 42 CFR 137.306 - How are Self-Governance Tribes recognized as having lead, cooperating, or joint lead agency status?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lead, cooperating, or joint lead agency status? 137.306 Section 137.306 Public Health PUBLIC HEALTH... recognized as having lead, cooperating, or joint lead agency status? Self-Governance Tribes may be recognized as having lead, cooperating, or joint lead agency status through funding or other agreements with...

  4. 42 CFR 137.306 - How are Self-Governance Tribes recognized as having lead, cooperating, or joint lead agency status?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lead, cooperating, or joint lead agency status? 137.306 Section 137.306 Public Health PUBLIC HEALTH... recognized as having lead, cooperating, or joint lead agency status? Self-Governance Tribes may be recognized as having lead, cooperating, or joint lead agency status through funding or other agreements with...

  5. The German joint research project "concepts for future gravity satellite missions"

    NASA Astrophysics Data System (ADS)

    Reubelt, Tilo; Sneeuw, Nico; Fichter, Walter; Müller, Jürgen

    2010-05-01

    Within the German joint research project "concepts for future gravity satellite missions", funded by the Geotechnologies programme of the German Federal Ministry of Education and Research, options and concepts for future satellite missions for precise (time-variable) gravity field recovery are investigated. The project team is composed of members from science and industry, bringing together experts in geodesy, satellite systems, metrology, sensor technology and control systems. The majority of team members already contributed to former gravity missions. The composition of the team guarantees that not only geodetic aspects and objectives are investigated, but also technological and financial constraints are considered. Conversely, satellite, sensor and system concepts are developed and improved in a direct exchange with geodetic and scientific claims. The project aims to develop concepts for both near and mid-term future satellite missions, taking into account e.g. advanced satellite formations and constellations, improved orbit design, innovative metrology and sensor systems and advances in satellite systems.

  6. NATO Stanag Language Proficiency Levels for Joint Missions and Its Implementations at a State Organization

    ERIC Educational Resources Information Center

    Solak, Ekrem

    2013-01-01

    Turkish Armed Forces have been participating in joint missions together with other nations for decades. Since English is the medium of instruction in these missions, participating members should have NATO Standards in terms of language proficiency levels in four skills. Therefore, this study aims to specify personnel's views and their language…

  7. STS-89 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the STS-89 crew insignia, the link between the United States and Russia is symbolically represented by the Space Shuttle Endeavour and Russia's Mir Space Station orbiting above the Bering Strait between Siberia and Alaska. The success of the joint United States-Russian missions is depicted by the Space Shuttle and Mir colored by the rising sun in the background. A shadowed representation of the International Space Station (ISS) rising with the sun represents the future program for which the Shuttle-Mir missions are prototypes. The inside rim of the insignia describes the outline of the number eight representing STS-89 as the eighth Shuttle/Mir docking mission. The nine stars represent the nine joint missions to be flown of the program and when combined with the number eight in the rim, reflect the mission number. The nine stars also symbolize the children of the crew members who will be the future beneficiaries of the joint development work of the space programs of the two countries. Along the rim are the crew members' names with David A. Wolf's name on the left and Andrew S. W. Thomas' name on the right, the returning and upgoing cosmonaut guest researcher crew members. In between and at the bottom is the name of Salizan S. Sharipov, payload specialist representing Russian Space Agency (RSA), in Cyrillic alphabet. The other crew members are Terrence W. Wilcutt, commander; Joe F. Edwards, Jr., pilot; and mission specialists Michael P. Anderson, Bonnie J. Dunbar, and James F. Reilly. The red, white and blue of the rim reflect the colors of the American and Russian flags which are also represented in the rim on either side of the joined spacecraft.

  8. Basic Research in the Mission Agencies: Agency Perspectives on the Conduct and Support of Basic Research. Report of the National Science Board, 1978.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    A survey was conducted by the National Science Board of the basic research supported by executive branch agencies of the federal government. Most of the data came from information solicited by the Board from federal agencies involved in science. Fourteen mission agencies and two agencies not so classified and 20 subunits of these responded.…

  9. Selenide isotope generators for the Galileo Mission: SIG hermetic bimetal weld transition joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, W.J.

    1979-08-01

    The successful development of the commercial 6061-T651/Silver/304L explosive clad plate material as a bimetal weld transition joint material, as described herein, satisfies all SIG Galileo design requirements for hermetic weld attachment of stainless steel subassemblies to aluminum alloy generator housing or end cover structures. The application of this type weld transition joint to the hermetic attachment of stainless steel shell connectors is well-developed and tested. Based on on-going life tests of stainless steel receptacle/bimetal ring attachment assemblies and metallurgical characterization studies of this transition joint material, it appears evident that this transition joint material has more than adequate capability tomore » meet the 250 to 300/sup 0/F and 50,000 hr. design life of the SIG/Galileo mission. Its extended life temperture capability may well approach 350 to 400/sup 0/F.« less

  10. 42 CFR 137.305 - May Self-Governance Tribes act as lead, cooperating, or joint lead agencies for environmental...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false May Self-Governance Tribes act as lead, cooperating, or joint lead agencies for environmental review purposes? 137.305 Section 137.305 Public Health... Tribes act as lead, cooperating, or joint lead agencies for environmental review purposes? Yes, Self...

  11. 42 CFR 137.305 - May Self-Governance Tribes act as lead, cooperating, or joint lead agencies for environmental...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false May Self-Governance Tribes act as lead, cooperating, or joint lead agencies for environmental review purposes? 137.305 Section 137.305 Public Health... Tribes act as lead, cooperating, or joint lead agencies for environmental review purposes? Yes, Self...

  12. 42 CFR 137.305 - May Self-Governance Tribes act as lead, cooperating, or joint lead agencies for environmental...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false May Self-Governance Tribes act as lead, cooperating, or joint lead agencies for environmental review purposes? 137.305 Section 137.305 Public Health... Tribes act as lead, cooperating, or joint lead agencies for environmental review purposes? Yes, Self...

  13. 42 CFR 137.305 - May Self-Governance Tribes act as lead, cooperating, or joint lead agencies for environmental...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false May Self-Governance Tribes act as lead, cooperating, or joint lead agencies for environmental review purposes? 137.305 Section 137.305 Public Health... Tribes act as lead, cooperating, or joint lead agencies for environmental review purposes? Yes, Self...

  14. 42 CFR 137.305 - May Self-Governance Tribes act as lead, cooperating, or joint lead agencies for environmental...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false May Self-Governance Tribes act as lead, cooperating, or joint lead agencies for environmental review purposes? 137.305 Section 137.305 Public Health... Tribes act as lead, cooperating, or joint lead agencies for environmental review purposes? Yes, Self...

  15. 41 CFR 102-83.110 - When an agency's mission and program requirements call for the location in an urban area, are...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false When an agency's mission... REGULATION REAL PROPERTY 83-LOCATION OF SPACE Location of Space Urban Areas § 102-83.110 When an agency's mission and program requirements call for the location in an urban area, are Executive agencies required...

  16. 41 CFR 102-83.110 - When an agency's mission and program requirements call for the location in an urban area, are...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false When an agency's mission... REGULATION REAL PROPERTY 83-LOCATION OF SPACE Location of Space Urban Areas § 102-83.110 When an agency's mission and program requirements call for the location in an urban area, are Executive agencies required...

  17. 41 CFR 102-83.110 - When an agency's mission and program requirements call for the location in an urban area, are...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false When an agency's mission... REGULATION REAL PROPERTY 83-LOCATION OF SPACE Location of Space Urban Areas § 102-83.110 When an agency's mission and program requirements call for the location in an urban area, are Executive agencies required...

  18. 41 CFR 102-83.110 - When an agency's mission and program requirements call for the location in an urban area, are...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false When an agency's mission... REGULATION REAL PROPERTY 83-LOCATION OF SPACE Location of Space Urban Areas § 102-83.110 When an agency's mission and program requirements call for the location in an urban area, are Executive agencies required...

  19. 41 CFR 102-83.110 - When an agency's mission and program requirements call for the location in an urban area, are...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false When an agency's mission... REGULATION REAL PROPERTY 83-LOCATION OF SPACE Location of Space Urban Areas § 102-83.110 When an agency's mission and program requirements call for the location in an urban area, are Executive agencies required...

  20. The impact of the Tulane-HCA joint venture on academic and clinical missions.

    PubMed

    Whitecloud, T S; Smathers, J E; Barrack, R L

    2001-10-01

    As with any joint venture in any given industry, positive and negative impacts are felt. Tulane University School of Medicine experienced impacts on its academic and clinical missions as a result of the joint venture between Tulane University and HCA, a for-profit public company. The laws of business had entered the halls of medicine. Although patients, personnel, and physicians experienced culture shock and inconveniences, Tulane University School of Medicine has been able to maintain viable training programs, and its faculty physicians have a hospital and corporately run clinics across the street. In addition, multidisciplinary centers of excellence, long spoken of in the academic realm, came to fruition through the corporate world. This may not have been the case, had Tulane University not entered into ajoint venture with HCA. Is it worth the effort? For Tulane University, whether one likes the entire package or not, the answer must be yes. The greatest impact is that the orthopaedic surgeons still are in a position to fulfill their academic and clinical missions.

  1. 76 FR 41307 - NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Operations Committee and Exploration Committee; Joint Meeting AGENCY: National Aeronautics and Space... the Space Operations Committee and Exploration Committee of the NASA Advisory Council. DATES: Tuesday.../Exploration Systems Mission Directorate Merger Update. [[Page 41308

  2. High Energy Laser Joint Technology Office: a mission overview

    NASA Astrophysics Data System (ADS)

    Seeley, Don D.; Slater, John M.

    2004-10-01

    The High Energy Laser Joint Technology Office (HEL-JTO) was established in 2000 for the purpose of developing and executing a comprehensive investment strategy for HEL science and technology that would underpin weapons development. The JTO is currently sponsoring 80 programs across industry, academia, and government agencies with a budget of approximately $60 million. The competitively awarded programs are chosen to advance the current state of the art in HEL technology and fill technology gaps, thus providing a broad capability that can be harvested in acquisition programs by the military services.

  3. Topex/Poseidon satellite - Enabling a joint U.S.-French mission for global ocean study

    NASA Technical Reports Server (NTRS)

    Hall, Ralph L.

    1990-01-01

    A joint U.S./French mission, which represents a merging of the prior NASA Topex and CNES Poseidon progams, is described. The Topex/Poseidon satellite will contribute to two of the World Climate Research Program's phases: the World Ocean Circulation Experiment and the Tropical Ocean Global Atmosphere experiment. The satellite's instruments will measure the ocean currents and their variability on the global basis via satellite altimetry and precision orbit determinations. The paper describes the satellite configuration and characteristics and the mission instruments and system elements. The Topex/Poseidon's design diagrams and block diagrams are included.

  4. The joint Simon effect depends on perceived agency, but not intentionality, of the alternative action.

    PubMed

    Stenzel, Anna; Dolk, Thomas; Colzato, Lorenza S; Sellaro, Roberta; Hommel, Bernhard; Liepelt, Roman

    2014-01-01

    A co-actor's intentionality has been suggested to be a key modulating factor for joint action effects like the joint Simon effect (JSE). However, in previous studies intentionality has often been confounded with agency defined as perceiving the initiator of an action as being the causal source of the action. The aim of the present study was to disentangle the role of agency and intentionality as modulating factors of the JSE. In Experiment 1, participants performed a joint go/nogo Simon task next to a co-actor who either intentionally controlled a response button with own finger movements (agency+/intentionality+) or who passively placed the hand on a response button that moved up and down on its own as triggered by computer signals (agency-/intentionality-). In Experiment 2, we included a condition in which participants believed that the co-actor intentionally controlled the response button with a Brain-Computer Interface (BCI) while placing the response finger clearly besides the response button, so that the causal relationship between agent and action effect was perceptually disrupted (agency-/intentionality+). As a control condition, the response button was computer controlled while the co-actor placed the response finger besides the response button (agency-/intentionality-). Experiment 1 showed that the JSE is present with an intentional co-actor and causality between co-actor and action effect, but absent with an unintentional co-actor and a lack of causality between co-actor and action effect. Experiment 2 showed that the JSE is absent with an intentional co-actor, but no causality between co-actor and action effect. Our findings indicate an important role of the co-actor's agency for the JSE. They also suggest that the attribution of agency has a strong perceptual basis.

  5. Payload operations management of a planned European SL-Mission employing establishments of ESA and national agencies

    NASA Technical Reports Server (NTRS)

    Joensson, Rolf; Mueller, Karl L.

    1994-01-01

    Spacelab (SL)-missions with Payload Operations (P/L OPS) from Europe involve numerous space agencies, various ground infrastructure systems and national user organizations. An effective management structure must bring together different entities, facilities and people, but at the same time keep interfaces, costs and schedule under strict control. This paper outlines the management concept for P/L OPS of a planned European SL-mission. The proposal draws on the relevant experience in Europe, which was acquired via the ESA/NASA mission SL-1, by the execution of two German SL-missions and by the involvement in, or the support of, several NASA-missions.

  6. MFE/Magnolia - A joint CNES/NASA mission for the earth magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Runavot, Josette; Ousley, Gilbert W.

    1988-01-01

    The joint phase B study in the CNES/NASA MFE/Magnolia mission to study the earth's magnetic field are reported. The scientific objectives are summarized and the respective responsibilities of NASA and CNES are outlined. The MFE/Magnolia structure and power systems, mass and power budgets, attitude control system, instrument platform and boom, tape recorders, rf system, propellant system, and scientific instruments are described.

  7. European Space Agency (ESA) Mission Specialist Nicollier trains in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1987-01-01

    European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) is briefed by Randall S. McDaniel on Space Shuttle extravehicular activity (EVA) tools and equipment prior to donning an extravehicular mobility unit and participating in an underwater EVA simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Nicollier is holding the EMU mini workstation. Other equipment on the table includes EVA tool caddies and EVA crewmember safety tethers.

  8. Navigation of space VLBI missions: Radioastron and VSOP

    NASA Technical Reports Server (NTRS)

    Ellis, Jordan

    1993-01-01

    In the mid-1990s, Russian and Japanese space agencies will each place into highly elliptic earth orbit a radio telescope consisting of a large antenna and radio astronomy receivers. Very long baseline interferometry (VLBI) techniques will be used to obtain high resolution images of radio sources observed by the space and ground based antennas. Stringent navigation accuracy requirements are imposed on the space VLBI missions by the need to transfer an ultra-stable ground reference frequency standard to the spacecraft and by the demands of the VLBI correlation process. Orbit determination for the mission will be the joint responsibility of navigation centers in the U.S., Russia, and Japan with orbit estimates based on combining tracking data from NASA, Russian, and Japanese sites. This paper describes the operational plans, the inter-agency coordination, and data exchange between the navigation centers required for space VLBI navigation.

  9. The Ocean Surface Topography Mission (OSTM)

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Vaze, Parag V.

    2008-10-01

    The Ocean Surface Topography Mission (OSTM), also known as Jason-2, will extend into the next decade the continuous climate data record of sea surface height measurements begun in 1992 by the joint NASA/Centre National d'Etudes Spatiales (CNES) TOPEX/Poseidon mission and continued by the NASA/CNES Jason-1 mission in 2001. This multi-decadal record has already helped scientists study the issue of global sea level rise and better understand how ocean circulation and climate change are related. With OSTM, high-precision ocean altimetry has come of age. The mission will serve as a bridge to transition the collection of these measurements to the world's weather and climate forecasting agencies. The agencies will use them for short- and seasonal-to-long-range weather and climate forecasting. OSTM is designed to last at least three years. It will be placed in the same orbit (1,336 kilometers) as Jason-1 and will move along the same ground track at an inclination of 66 degrees to the equator. It will repeat its ground track every 10 days, covering 95 percent of the world's ice-free oceans. A tandem mission between Jason-1 and OSTM will be conducted to further improve tide models in coastal and shallow seas, and to better understand the dynamics of ocean currents and eddies. OSTM is an international and interagency mission developed and operated as a four-party collaboration among NASA, the National Oceanic and Atmospheric Administration (NOAA), CNES, and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). CNES is providing the spacecraft, NASA and CNES are jointly providing the payload instruments and NASA is providing the launch vehicle. After completing the onorbit commissioning of the spacecraft, CNES will hand over operation and control of the spacecraft to NOAA. NOAA and EUMETSAT will generate the near-real-time products and distribute them to users. OSTM was launched from Vandenberg Air Force Base, California on June 20, 2008

  10. Robotic Refueling Mission

    NASA Image and Video Library

    2017-12-08

    Goddard's Ritsko Wins 2011 SAVE Award The winner of the 2011 SAVE Award is Matthew Ritsko, a Goddard financial manager. His tool lending library would track and enable sharing of expensive space-flight tools and hardware after projects no longer need them. This set of images represents the types of tools used at NASA. To read more go to: www.nasa.gov/topics/people/features/ritsko-save.html The engineering mockup of the Robotic Refueling Mission (RRM) module is currently on display within the press building at the Kennedy Space Center in Florida. The RRM mission is a joint effort between NASA and the Canadian Space Agency designed to demonstrate and test the tools, technologies, and techniques needed to robotically refuel satellites in space. Reporters have the opportunity to get a close-up view of the replica module and tools that are a part of the final shuttle mission payload. SSCO engineers test an RRM tool. To learn more about the RRM go to: ssco.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram

  11. On-Orbit Performance of the TRMM Mission Mode

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy; Hashmall, Joseph A.; Glickman, Jonathan; Natanson, Gregory

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System along with detailed in-flight performance results of the TRMM Mission mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency of Japan designed to monitor and study tropical rainfall and the associated release of energy. Prior to calibration, the spacecraft attitude showed larger Sun sensor yaw updates than expected. This was traced to not just sensor misalignment but also to a misalignment between the two heads within each Sun sensor. In order to avoid alteration of the flight software, Sun sensor transfer function coefficients were determined to minimize the error due to head misalignment. This paper describes the design, on-orbit checkout, calibration and performance of the TRMM Mission Mode with respect to the mission level requirements.

  12. Apollo Soyuz mission planning and operations

    NASA Technical Reports Server (NTRS)

    Frank, M. P., III

    1976-01-01

    The paper describes the Apollo Soyuz project from the points of view of working group organization, mission plan definition, joint operations concept, and mission preparation. The concept for joint operations considered contingency situations as well as nominal operations. Preparations for the joint flight included cooperative tracking tests and combined training of the flight crews and mission control personnel.

  13. A Management Model for International Participation in Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.

    2005-01-01

    This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.

  14. Marco Polo : an Italian Mission Scoring a lot of Records

    NASA Astrophysics Data System (ADS)

    di Pippo, Simonetta; Bracciaferri, Fabio M.

    2002-01-01

    The first astronaut of the European Astronaut Corps of Italian nationality, Roberto Vittori, will fly on a Soyuz capsule at the end of April 2002, opening a new era of space flight. The mission, sponsored by the Italian Space Agency, has been developed in the framework of an ESA- ROSAVIAKOSMOS agreement, reached in order to give European astronauts additional possibilities to fly. It's the first mission of this kind. In addition to that, this is the real first time in which a Soyuz mission is in the hands of two cosmonauts, and one of them is non Russian. On the same flight, in fact, Mark Shuttleworth, the second tourist in the history of space activities, is going to fly, performing also a set of scientific experiments. Marco Polo is also the first mission in which the two Agencies, ASI and ESA, are developing a joint commercialisation program, devoted to attire sponsors for improving research and development activities in the Human Spaceflight area. This will allow the two agencies to improve also the quality of life on Earth. A comprehensive scientific program is also foreseen accompanying Vittori on board, mainly in the field of life science. Experiments devoted to neurophysiology, arms rehabilitation, test of new materials for dressing in space, evaluation of the behaviour of the Nobel Prize Montalcini discovery named NGF (Nerve Growth Factor) will be performed on board. A R&D payload for Blood Pressure Measurements could have in the future commercial spin-off. In addition, a possible institutional sponsorship of the World Health Organization is under discussion. It will be the real first time in which a space mission gets this kind of sponsorship, and this strictly related to the World Health Day this year, devoted in promoting health throughout movement, i.e. "Move for Health". The Italian Space Agency proposed a joint combination of the two slogans, coupling the "Move for Health" message with the Italian "Space for Health" one. This is because of the Marco

  15. One Mission-Centered, Market-Smart Globalization Response: A Case Study of the Georgia Tech-Emory University Biomedical Engineering Curricular Joint Venture

    ERIC Educational Resources Information Center

    Burriss, Annie Hunt

    2010-01-01

    One innovative, higher-education response to globalization and changing fiscal realities is the curricular joint venture (CJV), a formal collaboration between academic institutions that leverages missions through new joint degrees and research not previously offered by collaborating institutions (Eckel, 2003). In 1997, a pioneering biomedical…

  16. Sentinel-1 mission scientific exploitation activities

    NASA Astrophysics Data System (ADS)

    Desnos, Yves louis; Foumelis, Michael; Engdahl, Marcus

    2017-04-01

    The Sentinel-1 mission is the European Imaging Radar Observatory for the Copernicus joint initiative of the European Commission (EC) and the European Space Agency (ESA). Sentinel-1 mission is composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B (launched in April 2014 and April 2016, respectively), sharing the same orbital plane and featuring a short repeat cycle of 6 days optimised for Synthetic Aperture Radar (SAR) interferometry science and applications. The full operation capacity was achieved after the completion of the Sentinel-1B in-orbit commissioning on 14 September 2016. Sentinel-1 data are freely available via the ESA's Sentinels Scientific Data Hub since October 2014. The data uptake by the science community has been unprecedented and numerous results have been published to date. The objective of the current paper is to provide a brief overview of the latest ESA activities, in the frame of the Scientific Exploitation of Operational Missions (SEOM) programme, aimed to facilitate the scientific exploitation of Sentinel-1 mission as well as discuss future opportunities for research.

  17. The joint Simon effect depends on perceived agency, but not intentionality, of the alternative action

    PubMed Central

    Stenzel, Anna; Dolk, Thomas; Colzato, Lorenza S.; Sellaro, Roberta; Hommel, Bernhard; Liepelt, Roman

    2014-01-01

    A co-actor's intentionality has been suggested to be a key modulating factor for joint action effects like the joint Simon effect (JSE). However, in previous studies intentionality has often been confounded with agency defined as perceiving the initiator of an action as being the causal source of the action. The aim of the present study was to disentangle the role of agency and intentionality as modulating factors of the JSE. In Experiment 1, participants performed a joint go/nogo Simon task next to a co-actor who either intentionally controlled a response button with own finger movements (agency+/intentionality+) or who passively placed the hand on a response button that moved up and down on its own as triggered by computer signals (agency−/intentionality−). In Experiment 2, we included a condition in which participants believed that the co-actor intentionally controlled the response button with a Brain-Computer Interface (BCI) while placing the response finger clearly besides the response button, so that the causal relationship between agent and action effect was perceptually disrupted (agency−/intentionality+). As a control condition, the response button was computer controlled while the co-actor placed the response finger besides the response button (agency−/intentionality−). Experiment 1 showed that the JSE is present with an intentional co-actor and causality between co-actor and action effect, but absent with an unintentional co-actor and a lack of causality between co-actor and action effect. Experiment 2 showed that the JSE is absent with an intentional co-actor, but no causality between co-actor and action effect. Our findings indicate an important role of the co-actor's agency for the JSE. They also suggest that the attribution of agency has a strong perceptual basis. PMID:25140144

  18. Atlantis lifts off on mission STS-84

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Atlantis turns night into day for a few moments as it lifts off on May 15 at 4:07:48 a.m. EDT from Launch Pad 39A on the STS-84 mission. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew.

  19. Report of the Joint Scientific Mission Definition Team for an infrared astronomical satellite

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The joint effort is reported of scientists and engineers from the Netherlands, the United Kingdom, and the United States working as a team for the purpose of exploring the possibility of a cooperative venture. The proposed mission builds upon experience gained from the successful Astronomical Netherlands Satellite (ANS). This satellite will be in a polar orbit at an altitude of 900 km. It will carry an 0.6 m diameter telescope cooled with helium to a temperature near 10K. An array of approximately 100 detectors will be used to measure the infrared flux in four wavelength bands centered at 10, 20, 50, and 100 microns. Sources will be located on the sky with positional accuracy of 1/2 arcminute. The instrument should be able to investigate the structure of extended sources with angular scales up to 1.0 deg. The entire sky will be surveyed and the full lifetime of the mission of about one year will be necessary to complete the survey. Special observational programs will also be incorporated into the mission.

  20. 76 FR 77315 - Agency Information Collection Activities: Submission for OMB Review; Joint Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... clearance, the agencies, under the auspices of the Federal Financial Institutions Examination Council (FFIEC... CAMELS ratings and certain forward-looking financial measures to assess the risk such institutions pose... House, and the Financial Services Roundtable jointly commented. The Risk Management Association...

  1. The First Joint Report of the General Thomas P. Stafford Task Force and the Academician Vladimir F. Utkin Advisory Expert Council on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In October 1992, the National Aeronautics and Space Administration (NASA) and the Russian Space Agency (RSA) formally agreed to conduct a fundamentally new program of human cooperation in space. The 'Shuttle-Mir Program' encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz Test Module(TM), and Mir station spacecraft. At that time, NASA and RSA limited the project to: the STS-60 mission carrying the first Russian cosmonaut to fly on the U.S. Space Shuttle; the launch of the first U.S. astronaut on the Soyuz vehicle for a multi-month mission as a member of a Mir crew; and the change-out of the U.S.-Russian Mir crews with a Russian crew during a Shuttle rendezvous and docking mission with the Mir Station. The objectives of the Phase 1 Program are to provide the basis for the resolution of engineering and technical problems related to the implementation of the ISS and future U.S.-Russian cooperation in space. This, combined with test data generated during the course of the Shuttle flights to the Mir station and extended joint activities between U.S. astronauts and Russian cosmonauts aboard Mir, is expected to reduce the technical risks associated with the construction and operation of the ISS. Phase 1 will further enhance the ISS by combining space operations and joint space technology demonstrations. Phase 1 also provides early opportunities for extended U.S. scientific and research activities, prior to utilization of the ISS.

  2. Sentinel-2 mission status

    NASA Astrophysics Data System (ADS)

    Hoersch, Bianca

    2017-04-01

    The SENTINEL-2 mission is the European Multispectral Imaging Mission for the Copernicus joint initiative of the European Commission (EC) and the European Space Agency (ESA). The SENTINEL-2 mission includes 13-spectral band multispectral optical imager with different resolution (down to 10 m) and a swath width of 290km. It provides very short revisit times and rapid product delivery. The mission is composed of a constellation of two satellite units, SENTINEL-2A and SENTINEL-2B, sharing the same orbital plane and featuring a short repeat cycle of 5 days at the equator optimized to mitigate the impact of clouds for science and applications. SENTINEL-2 enables exploitation for a variety of land and coastal applications such as agriculture, forestry, land cover and land cover change, urban mapping, emergency, as well as inland water, ice, glaciers and also coastal zone and closed seas applications. Following the launch of the Sentinel-2A in June 2015 and successful operations and data delivery since December 2015, the Sentinel-2B satellite is set for launch in March 2017. The full operation capacity is foreseen after the in-orbit commissioning phase of the Sentinel-2B unit in early summer 2017. The objective of the talk is to provide information about the mission status, and the way to achieve full operational capacity with 2 satellites.

  3. Quality Assurance of Joint Degree Programs from the Perspective of Quality Assurance Agencies: Experience in East Asia

    ERIC Educational Resources Information Center

    Hou, Yung-Chi; Ince, Martin; Tsai, Sandy; Wang, Wayne; Hung, Vicky; Lin Jiang, Chung; Chen, Karen Hui-Jung

    2016-01-01

    Joint degree programs have gained popularity in East Asia, due to the growth of transnational higher education in the region since 2000. However, the external quality assurance (QA) and accreditation of joint degree programs is a challenge for QA agencies, as it normally involves the engagement of several institutions and multiple national…

  4. Joint Personnel Recovery Agency Joint Center for Operational Analysis and Lessons Learned Quarterly Bulletin, Volume 7, Issue 2, March 2005

    DTIC Science & Technology

    2005-03-01

    execute these dangerous and uncertain missions. iv In my recent travels in the U.S. Central Command area of operations I had the great fortune of meeting...jfcom.mil 1Joint Center for Operational Analysis and Lessons Learned (JCOA-LL) Bulletin “That others may live…to return with honor” The old Chinese ...information has to travel to meet GCC staff requirements increases the difficulty in handling and maintaining situational awareness on PR events

  5. Executive Report: JSOU (Joint Special Operations University) First Annual Symposium, 2-5 May 2006, Hurlburt Field, Florida

    DTIC Science & Technology

    2006-05-05

    NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Joint Special Operations University,357 Tully Street...Alison Building,Hurlburt Field,FL,32544 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...leadership. JSOU is a subordinate organization of the US Special Operations Command (USSOCOM), MacDill Air Force Base, Florida. The mission of the Joint

  6. Joint Europa Mission (JEM) : A multi-scale study of Europa to characterize its habitability and search for life.

    NASA Astrophysics Data System (ADS)

    Blanc, Michel; Prieto Ballesteros, Olga; Andre, Nicolas; Cooper, John F.

    2017-04-01

    -signature characterization experiments operating respectively in the solid and in the liquid phases, fed by a common articulated arm. The "Astrobiology Wet Laboratory" will be a specific European contribution. We propose an innovative distribution of roles to make JEM an appealing and affordable joint venture for the two agencies: while NASA would provide an SLS launcher, the lander stack and mission operations, ESA would provide the carrier-orbiter-relay platform. The delivery of the orbiter by ESA could take advantage of a double European heritage: an adaptation of the ORION ESM bus to JEM, complemented by avionics derived from JUICE.

  7. 75 FR 68856 - Agency Information Collection Activities: Submission for OMB Review; Joint Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... Information Collection Activities: Submission for OMB Review; Joint Comment Request AGENCY: Office of the..., Mailstop 2-3, Attention: 1557-0081, 250 E Street, SW., Washington, DC 20219. In addition, comments may be... 20552, Attention: ``1550-0023 (TFR: Schedule DI Revisions).'' Hand Delivery/Courier: Guard's Desk, East...

  8. 77 FR 5250 - Agency Information Collection Activities: Submission for OMB Review; Joint Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF THE TREASURY Office of The Comptroller of the Currency Federal Reserve System...; Joint Comment Request AGENCIES: Office of the Comptroller of the Currency (OCC), Treasury; Board of... the Comptroller of the Currency, Mailstop 2-3, Attention: 1557-0100, 250 E Street SW., Washington, DC...

  9. Mir Mission Chronicle

    NASA Technical Reports Server (NTRS)

    McDonald, Sue

    1998-01-01

    Dockings, module additions, configuration changes, crew changes, and major mission events are tracked for Mir missions 17 through 21 (November 1994 through August 1996). The international aspects of these missions are presented, comprising joint missions with ESA and NASA, including three U.S. Space Shuttle dockings. New Mir modules described are Spektr, the Docking Module, and Priroda.

  10. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    ,

    2003-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Imagery and Mapping Agency (NIMA), the U.S. Geological Survey (USGS) is now distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project between NASA and NIMA to map the Earth's land surface in three dimensions at a level of detail unprecedented for such a large area. Flown aboard the NASA Space Shuttle Endeavour February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface, for most of the area between 60? N. and 56? S. latitude. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected specifically with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  11. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    ,

    2009-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  12. Global Precipitation Measurement mission data released on This Week @NASA - September 5, 2014

    NASA Image and Video Library

    2014-09-05

    Precipitation information from the first six months of the Global Precipitation Measurement Core Observatory mission now is fully available to the public. Launched from Japan in February, the joint NASA and Japan Aerospace Exploration Agency mission works with international partner satellites to produce precise and standardized data sets on worldwide rainfall, snowfall and other precipitation. The data can be used to improve forecasts of extreme weather events like floods and help decision makers worldwide better manage water resources. Also, Earthquake data from the air, Next ISS crew trains, Talking STEM with students and OSIRIS-REx time capsule!

  13. A Successful Experiment in Collaboration: U.S. Science Agencies Forge Major Joint IPY Outreach Efforts

    NASA Astrophysics Data System (ADS)

    Cole, S.; Goldman, J.; West, P.

    2008-12-01

    The International Polar Year (IPY) provided U.S. agencies involved in polar research with a major outreach challenge: how to portray a unified view of the wealth of federal activity through a communications network dominated by agency-focused channels. To meet this challenge, 16 federal agencies joined together in an ongoing interagency working group, lead by the National Science Foundation's Office of Polar Programs, resulting in a series of successful media and public outreach endeavors. These included a unique interagency U.S. IPY web site (www.ipy.gov) that allowed participating agencies to independently upload relevant information every day; a major IPY kickoff event at the National Academies of Science; and a joint NASA/NSF/USGS televised press conference unveiling a new satellite map of Antarctica. Key to these successes was the interagency working group, which facilitated in-depth and sustained interaction between the agencies in coordinating development of outreach strategies both at the agency and federal level.

  14. Joint Enabling Capabilities Command

    Science.gov Websites

    Executive Director Chief of Staff Joint Planning Support Element Joint Communications Support Element mission Joint Enabling Capabilities Command provides decisive joint communications, planning and public and responsive support for joint communications, planning and public affairs. Priorities * Deliver

  15. Experiences in Interagency and International Interfaces for Mission Support

    NASA Technical Reports Server (NTRS)

    Dell, G. T.; Mitchell, W. J.; Thompson, T. W.; Cappellari, J. O., Jr.; Flores-Amaya, F.

    1996-01-01

    The Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GFSC) provides extensive support and products for Space Shuttle missions, expendable launch vehicle launches, and routine on-orbit operations for a variety of spacecraft. A major challenge in providing support for these missions is defining and generating the products required for mission support and developing the method by which these products are exchanged between supporting agencies. As interagency and international cooperation has increased in the space community, the FDD customer base has grown and with it the number and variety of external interfaces and product definitions. Currently, the FDD has working interfaces with the NASA Space and Ground Networks, the Johnson Space Center, the White Sands Complex, the Jet propulsion Laboratory (including the Deep Space Network), the United States Air Force, the Centre National d'Etudes Spatiales, the German Spaceflight Operations Center, the European Space Agency, and the National Space Development Agency of Japan. With the increasing spectrum of possible data product definitions and delivery methods, the FDD is using its extensive interagency experience to improve its support of established customers and to provide leadership in adapting/developing new interfaces. This paper describes the evolution of the interfaces between the FDD and its customers, discusses many of the joint activities ith these customers, and summarizes key lessons learned that can be applied to current and future support.

  16. Ensuring Payload Safety in Missions with Special Partnerships

    NASA Technical Reports Server (NTRS)

    Staubus, Calvert A.; Willenbring, Rachel C.; Blankenship, Michael D.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Expendable Launch Vehicle (ELV) payload space flight missions involve cooperative work between NASA and partners including spacecraft (or payload) contractors, universities, nonprofit research centers, Agency payload organization, Range Safety organization, Agency launch service organizations, and launch vehicle contractors. The role of NASA's Safety and Mission Assurance (SMA) Directorate is typically fairly straightforward, but when a mission's partnerships become more complex, to realize cost and science benefits (e.g., multi-agency payload(s) or cooperative international missions), the task of ensuring payload safety becomes much more challenging. This paper discusses lessons learned from NASA safety professionals working multiple-agency missions and offers suggestions to help fellow safety professionals working multiple-agency missions.

  17. STS-84 Mission Specialist C. Michael Foale in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-84 Mission Specialist C. Michael Foale prepares to enter the Space Shuttle Atlantis at Launch Pad 39A with help from white room closeout crew members. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew.

  18. STS-84 Mission Specialist Jean-Francois Clervoy in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-84 Mission Specialist Jean- Francois Clervoy prepares to enter the Space Shuttle Atlantis at Launch Pad 39A with help from white room closeout crew members. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew.

  19. STS-84 Mission Specialist Edward Tsang Lu in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-84 Mission Specialist Edward T. Lu prepares to enter the Space Shuttle Atlantis at Launch Pad 39A with help from white room closeout crew members. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew.

  20. STS-84 Mission Specialist Elena V. Kondakova in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-84 Mission Specialist Elena V. Kondakova prepares to enter the Space Shuttle Atlantis at Launch Pad 39A with help from white room closeout crew members. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew.

  1. STS-84 Mission Specialist Carlos I. Noriega in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-84 Mission Specialist Carlos I. Noriega prepares to enter the Space Shuttle Atlantis at Launch Pad 39A with help from white room closeout crew members. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew.

  2. Early Spacelab missions

    NASA Technical Reports Server (NTRS)

    Pace, R. E., Jr.; Craft, H. G., Jr.

    1977-01-01

    NASA has issued payload flight assignments for the first three Spacelab missions. The first two of these missions will have dual objectives, that of verifying Spacelab system performance and accomplishing meaningful space research. The first of these missions will be a joint NASA and ESA mission with a multidisciplinary payload. The second mission will verify a different Spacelab configuration while addressing the scientific disciplines of astrophysics. The third assigned mission will concentrate on utilizing the capabilities of Spacelab to perform meaningful experiments in space applications, primarily space processing. The paper describes these missions with their objectives, planned configuration and accommodation.

  3. TOPEX/POSEIDON joint verification plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    TOPEX/POSEIDON is a satellite mission that will use altimetry to make precise measurements of sea level with the primary goal of studying global ocean circulation. The mission is jointly conducted by the United States' National Aeronautics and Space Administration (NASA) and the French space agency, Centre National d'Etudes Spatiales (CNES). The current plans call for a launch of the satellite in August 1992. The primary mission will last 3 years, and provisions were made to extend the mission for an additional 2 years. The mission was coordinated with a number of international oceanographic and meteorological programs, including the World Ocean Circulation Experiment and the Tropical Ocean and Global Atmosphere Program, both of which are sponsored by the World Climate Research Program. The observations of TOPEX/POSEIDON are timed to provide a global perspective for interpreting the in situ measurements collected by these programs and in turn will be combined with observations of other satellites to achieve a global, four-dimensional description of the circulation of the world's oceans. In the autumn of 1987, an international team of 38 Principal Investigators was selected to participate in the mission. These scientists have been working closely with the TOPEX/POSEIDON Project to refine the mission design and science plans. During the first 6 months after launch, a number of these investigators will join with the project to conduct a wide range of oceanographic and geophysical investigations using the TOPEX/POSEIDON data. The purpose of these investigations is to demonstrate the scientific utility of the mission to the international scientific community.

  4. Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission

    NASA Astrophysics Data System (ADS)

    Ribes-Pleguezuelo, Pol; Inza, Andoni Moral; Basset, Marta Gilaberte; Rodríguez, Pablo; Rodríguez, Gemma; Laudisio, Marco; Galan, Miguel; Hornaff, Marcel; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2016-11-01

    A miniaturized diode-pumped solid-state laser (DPSSL) designed as part of the Raman laser spectrometer (RLS) instrument for the European Space Agency (ESA) Exomars mission 2020 is assembled and tested for the mission purpose and requirements. Two different processes were tried for the laser assembling: one based on adhesives, following traditional laser manufacturing processes; another based on a low-stress and organic-free soldering technique called solderjet bumping technology. The manufactured devices were tested for the processes validation by passing mechanical, thermal cycles, radiation, and optical functional tests. The comparison analysis showed a device improvement in terms of reliability of the optical performances from the soldered to the assembled by adhesive-based means.

  5. ISECG Mission Scenarios and Their Role in Informing Next Steps for Human Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Culbert, Christopher J.; Mongrard, Olivier; Satoh, Naoki; Goodliff, Kandyce; Seaman, Calvin H.; Troutman, Patrick; Martin, Eric

    2011-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy (GES): The Framework for Coordination developed by fourteen space agencies* and released in May 2007. This GES Framework Document recognizes that preparing for human space exploration is a stepwise process, starting with basic knowledge and culminating in a sustained human presence in deep space. ISECG has developed several optional global exploration mission scenarios enabling the phased transition from human operations in Low Earth Orbit (LEO) and utilization of the International Space Station (ISS) to human missions beyond LEO leading ultimately to human missions to cis-lunar space, the Moon, Near Earth Asteroids, Mars and its environs. Mission scenarios provide the opportunity for judging various exploration approaches in a manner consistent with agreed international goals and strategies. Each ISECG notional mission scenario reflects a series of coordinated human and robotic exploration missions over a 25-year horizon. Mission scenarios are intended to provide insights into next steps for agency investments, following on the success of the ISS. They also provide a framework for advancing the definition of Design Reference Missions (DRMs) and the concepts for capabilities contained within. Each of the human missions contained in the scenarios has been characterized by a DRM which is a top level definition of mission sequence and the capabilities needed to execute that mission. While DRMs are generally destination focused, they will comprise capabilities which are reused or evolved from capabilities used at other destinations. In this way, an evolutionary approach to developing a robust set of capabilities to sustainably explore our solar system is defined. Agencies also recognize that jointly planning for our next steps, building on the accomplishments of ISS, is important to ensuring the robustness and sustainability of any human

  6. East Meets West on "Double Star", a Joint Mission to Explore Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    2001-07-01

    ESA Director General Antonio Rodotà and Luan Enjie, Administrator of the CNSA, signed an official agreement that will enable European experiments to be flown on Chinese satellites for the first time. "This agreement marks a significant advance for international cooperation in the exploration and peaceful use of outer space," said Mr. Rodotà. "It is one of the most important landmarks in scientific collaboration since ESA and the People's Republic of China first agreed to exchange scientific information more than 20 years ago." "The Double Star programme will be just the first step in substantial cooperation between the Chinese National Space Administration and ESA" said Mr Luan Enjie. "The signing of today's agreement paves the way not only for reciprocal cooperation between scientists, but for the establishment of comprehensive cooperation between the two agencies". Double Star will follow in the footsteps of ESA's groundbreaking Cluster mission by studying the effects of the Sun on the Earth's environment. Conducting joint studies with Cluster and Double Star should increase the overall scientific return from both missions. A key aspect of ESA's participation in the Double Star project is the inclusion of 10 instruments that are identical to those currently flying on the four Cluster spacecraft. A further eight experiments will be provided by Chinese institutes. "We hope it will be possible to make coordinated measurements with both Cluster and Double Star." said Cluster Project Scientist Philippe Escoubet. "For example, we would hope to carry out a joint exploration of the magnetotail, a region where storms of high energy particles are generated. When these particles reach Earth, they can cause power cuts, damage satellites and disrupt communications." Six of the eleven Cluster principal investigators have agreed to provide flight spares or duplicates of the experiments that are currently revolutionising our understanding of near-Earth space. This reuse of

  7. STS payloads mission control study continuation phase A-1. Volume 2-C, task 3: Identification of joint activities and estimation of resources in preparation for joint flight operations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.

  8. Starting a European Space Agency Sample Analogue Collection for Robotic Exploration Missions

    NASA Astrophysics Data System (ADS)

    Smith, C. L.; Mavris, C.; Michalski, J. R.; Rumsey, M. S.; Russell, S. S.; Jones, C.; Schroeven-Deceuninck, H.

    2015-12-01

    The Natural History Museum is working closely with the European Space Agency (ESA) and the UK Space Agency to develop a European collection of analogue materials with appropriate physical/mechanical and chemical (mineralogical) properties which can support the development and verification of both spacecraft and scientific systems for potential science and exploration missions to Phobos/Deimos, Mars, C-type asteroids and the Moon. As an ESA Collection it will be housed at the ESA Centre based at Harwell, UK. The "ESA Sample Analogues Collection" will be composed of both natural and artificial materials chosen to (as closely as possible) replicate the surfaces and near-surfaces of different Solar System target bodies of exploration interest. The analogue samples will be fully characterised in terms of both their physical/mechanical properties (compressive strength, bulk density, grain shape, grain size, cohesion and angle of internal friction) and their chemical/mineralogical properties (texture, modal mineralogy, bulk chemical composition - major, minor and trace elements and individual mineralogical compositions). The Collection will be fully curated to international standards including implementation of a user-friendly database and will be available for use by engineers and scientists across the UK and Europe. Enhancement of the initial Collection will be possible through collaborations with other ESA and UK Space Agency supported activities, such as the acquisition of new samples during field trials.

  9. BEYOND REGULATION TO PROTECTION. THE APPLICATION OF NATIONAL RECONNAISSANCE SYSTEMS IN THE SCIENCE MISSION OF THE ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    The use of National Technical Means (NTM) data and advanced geospatial technologies has an important role in supporting the mission of the Environmental Protection Agency (EPA). EPA's responsibilities have grown beyond pollution compliance monitoring and enforcement to include t...

  10. The SENTINEL-3 Mission: Overview and Status

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Mecklenburg, S.

    2015-12-01

    The Copernicus Programme, being Europe's Earth Observation and Monitoring Programme led by the European Union, aims to provide, on a sustainable basis, reliable and timely services related to environmental and security issues. The Sentinel-3 mission forms part of the Copernicus Space Component. Its main objectives, building on the heritage and experience of the European Space Agency's (ESA) ERS and ENVISAT missions, are to measure sea-surface topography, sea- and land-surface temperature and ocean- and land-surface colour in support of ocean forecasting systems, and for environmental and climate monitoring. The series of Sentinel-3 satellites will ensure global, frequent and near-real time ocean, ice and land monitoring, with the provision of observation data in routine, long term (up to 20 years of operations) and continuous fashion, with a consistent quality and a high level of reliability and availability. The Sentinel-3 missions will be jointly operated by ESA and EUMETSAT. ESA will be responsible for the operations, maintenance and evolution of the Sentinel-3 ground segment on land related products and EUMETSAT for the marine products. The Sentinel-3 ground segment systematically acquires, processes and distributes a set of pre-defined core data products. Sentinel-3A is foreseen to be launched at the beginning of November 2015. The paper will give an overview on the mission, its instruments and objectives, the data products provided, the mechanisms to access the mission's data, and if available first results.

  11. Early Results from the Global Precipitation Measurement (GPM) Mission in Japan

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Kubota, Takuji; Masaki, Takeshi; Kaneko, Yuki; Kanemaru, Kaya; Oki, Riko; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2015-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The Dual-frequency Precipitation Radar (DPR) was developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and installed on the GPM Core Observatory. The GPM Core Observatory chooses a non-sun-synchronous orbit to carry on diurnal cycle observations of rainfall from the Tropical Rainfall Measuring Mission (TRMM) satellite and was successfully launched at 3:37 a.m. on February 28, 2014 (JST), while the Constellation Satellites, including JAXA's Global Change Observation Mission (GCOM) - Water (GCOM-W1) or "SHIZUKU," are launched by each partner agency sometime around 2014 and contribute to expand observation coverage and increase observation frequency JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map (GPM-GSMaP) algorithm, which is a latest version of the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. Major improvements in the GPM-GSMaP algorithm is; 1) improvements in microwave imager algorithm based on AMSR2 precipitation standard algorithm, including new land algorithm, new coast detection scheme; 2) Development of orographic rainfall correction method for warm rainfall in coastal area (Taniguchi et al., 2012); 3) Update of database, including rainfall detection over land and land surface emission database; 4) Development of microwave sounder algorithm over land (Kida et al., 2012); and 5) Development

  12. Joint IKI/ROSCOSMOS - NASA Science Definition Team and concept mission to Venus based on Venera-D

    NASA Astrophysics Data System (ADS)

    Zasova, L.; Senske, D.; Economou, T.; Eismont, N.; Esposito, L.; Gerasimov, M.; Gorinov, D.; Ignatiev, N.; Ivanov, M.; Jessup, K. Lea; Khatuntsev, I.; Korablev, O.; Kremic, T.; Limaye, S.; Lomakin, I.; Martynov, A.; Ocampo, A.; Vaisberg, O.; Burdanov, A.

    2017-09-01

    NASA and IKI/Roscosmos established in 2015 a Joint Science Definition Team (JSDT), a key task of which was to codify the synergy between the goals of Venera-D with those of NASA. In addition, the JSDT studied potential NASA provided mission augmentations (experiments /elements) that could to fill identified science gaps. The first report to NASA - IKI/Roscosmos was provided in January 2017. The baseline Venera-D concept includes two elements, and orbiter and a lander, with potential contributions consisting of an aerial platform/balloon, small long-lived surface stations or a sub-satellite.

  13. TVD, Thirsk collects data during LMS-1 Spacelab mission

    NASA Image and Video Library

    1996-07-09

    STS078-304-018 (20 June - 7 July 1996) --- Payload specialist Robert B. Thirsk, representing the Canadian Space Agency (CSA), performs a test on his arm using the Torque Velocity Dynamometer (TVD). Dr. Thirsk was measuring changes in muscle forces of the bicep and tricep in this particular view. The TVD hardware is also used to measure leg muscle forces and velocity at the ankle and elbow joints. Crew members for the mission performed all experiment protocols prior to flight to develop a baseline and will also perform post-flight tests to complete the analysis. Additionally, muscle biopsies were taken before the flight and will be conducted after the flight.

  14. NASA and Russian Space Agency sign agreement for additional Space Shuttle/Mir missions

    PubMed

    Huff, W

    1994-01-01

    On December 16, 1993 NASA Administrator Daniel S. Goldin [correction of Golden] and the Russian Space Agency (RSA) director Yuri Koptev signed a protocol agreeing to up to 10 Shuttle flights to Mir with a total of 24 months time aboard Mir for U.S. astronants, a program of scientific and technological research, and the upgrade and extension of the Mir lifetime during the period 1995-1997. This is the first of a three-phase program in human spaceflight cooperation which may culminate in the construction of an international Space Station. This agreement starts joint development of spacecraft environmental control and life support systems and potential common space suit.

  15. Sentinel-2 Mission status

    NASA Astrophysics Data System (ADS)

    Hoersch, Bianca; Colin, Olivier; Gascon, Ferran; Arino, Olivier; Spoto, Francois; Marchese, Franco; Krassenburg, Mike; Koetz, Benjamin

    2016-04-01

    Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. Within the Copernicus programme, ESA is responsible for the development of the Space Component, a fully operational space-based capability to supply earth-observation data to sustain environmental information Services in Europe. The Sentinel missions are Copernicus dedicated Earth Observation missions composing the essential elements of the Space Component. In the global Copernicus framework, they are complemented by other satellites made available by third-parties or by ESA and coordinated in the synergistic system through the Copernicus Data-Access system versus the Copernicus Services. The Copernicus Sentinel-2 mission provides continuity to services relying on multi-spectral high-resolution optical observations over global terrestrial surfaces. Sentinel-2 capitalizes on the technology and the vast experience acquired in Europe and the US to sustain the operational supply of data for services such as forest monitoring, land cover changes detection or natural disasters management. The Sentinel-2 mission offers an unprecedented combination of the following capabilities: ○ Systematic global coverage of land surfaces: from 56°South to 84°North, coastal waters and Mediterranean sea; ○ High revisit: every 5 days at equator under the same viewing conditions with 2 satellites; ○ High spatial resolution: 10m, 20m and 60m; ○ Multi-spectral information with 13 bands in the visible, near infra-red and short wave infra-red part of the spectrum; ○ Wide field of view: 290 km. The data from the Sentinel-2 mission are available openly and freely for all users with online easy access since December 2015. The presentation will give a status report on the Sentinel-2 mission, and outlook for the remaining ramp-up Phase, the

  16. Apollo Soyuz Mission: 5-Day Report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz Test Project mission objectives and technical investigations are summarized. Topics discussed include: spacecraft and crew systems performance; joint flight activities; scientific and applications experiments; in-flight demonstrations; biomedical considerations; and mission support performance.

  17. System concepts and enabling technologies for an ESA low-cost mission to Jupiter / Europa

    NASA Astrophysics Data System (ADS)

    Renard, P.; Koeck, C.; Kemble, Steve; Atzei, Alessandro; Falkner, Peter

    2004-11-01

    The European Space Agency is currently studying the Jovian Minisat Explorer (JME), as part of its Technology Reference Studies (TRS), used for its development plan of technologies enabling future scientific missions. The JME focuses on the exploration of the Jovian system and particularly of Europa. The Jupiter Minisat Orbiter (JMO) study concerns the first mission phase of JME that counts up to three missions using pairs of minisats. The scientific objectives are the investigation of Europa's global topography, the composition of its (sub)surface and the demonstration of existence of a subsurface ocean below its icy crust. The present paper describes the candidate JMO system concept, based on a Europa Orbiter (JEO) supported by a communications relay satellite (JRS), and its associated technology development plan. It summarizes an analysis performed in 2004 jointly by ESA and the EADS-Astrium Company in the frame of an industrial technical assistance to ESA.

  18. The OICETS mission

    NASA Astrophysics Data System (ADS)

    Jono, Takashi; Arai, Katsuyoshi

    2017-11-01

    The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.

  19. 48 CFR 702.170-11 - Mission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Mission. 702.170-11 Section 702.170-11 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL DEFINITIONS OF WORDS AND TERMS Definitions 702.170-11 Mission. Mission means the USAID mission or the...

  20. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  1. JPSS-1 Mission Science Briefing

    NASA Image and Video Library

    2017-11-12

    JPSS-1 Mission Science Briefing hosted by Steve Cole, NASA Communications, with Mitch Goldberg, Chief Program Scientist, NOAA Joint Polar Satellite System, Joe Pica, Director, NOAA National Weather Service Office of Observations, James Gleason, Senior Project Scientist, NASA Joint Polar Satellite System, and Jana Luis, Division Chief, CAL FIRE Predictive Services.

  2. Extracting Hydrologic Understanding from the Unique Space-time Sampling of the Surface Water and Ocean Topography (SWOT) Mission

    NASA Astrophysics Data System (ADS)

    Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.

  3. Joint Spacelab-J (SL-J) Activities at the Huntsville Operations Support Center (HOSC) Spacelab

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in joint ground activities during the SL-J mission are NASA/NASDA personnel at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  4. 40 CFR 255.23 - Joint identification of agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid waste and water quality management planning agencies, and all areawide agencies and the state... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for Identifying Regions and Agencies...

  5. Design and Performance of Tropical Rainfall Measuring Mission (TRMM) Super NiCd Batteries

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa J.; Rao, Gopalakrishna M.; Jallice, Doris E.; Moran Vickie E.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan. The observatory is designed to monitor and study tropical rainfall and the associated release of energy that helps to power the global atmospheric circulation shaping both weather and climate around the globe. The spacecraft was launched from Japan on November 27,1997 via the NASDA H-2 launch vehicle. The TRMM Power Subsystem is a Peak Power Tracking system that can support the maximum TRMM load of 815 watts at the end of its three year life. The Power Subsystem consists of two 50 Ampere Hour Super NiCd batteries, Gallium Arsenide Solar Array and the Power System Electronics. This paper describes the TRMM Power Subsystem, battery design, cell and battery ground test performance, and in-orbit battery operations and performance.

  6. STS-99 / Endeavour Mission Overview

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM). This radar system will produce unrivaled 3-D images of the Earth's Surface. This videotape presents a mission overview press briefing. The panel members are Dr. Ghassem Asrar, NASA Associate Administrator Earth Sciences; General James C. King, Director National Imagery and Mapping Agency (NIMA); Professor Achim Bachem, Member of the Executive Board, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), the German National Aerospace Research Center; and Professor Sergio Deiulio, President of the Italian Space Agency. Dr. Asrar opened with a summary of the history of Earth Observations from space, relating the SRTM to this history. This mission, due to cost and complexity, required partnership with other agencies and nations, and the active participation of the astronauts. General King spoke to the expectations of NIMA, and the use of the Synthetic Aperture Radar to produce the high resolution topographic images. Dr. Achim Bachem spoke about the international cooperation that this mission required, and some of the commercial applications and companies that will use this data. Dr Deiulio spoke of future plans to improve knowledge of the Earth using satellites. Questions from the press concerned use of the information for military actions, the reason for the restriction on access to the higher resolution data, the mechanism to acquire that data for scientific research, and the cost sharing from the mission's partners. There was also discussion about the mission's length.

  7. Establishing a Research and Evaluation Capability for the Joint Medical Education and Training Campus.

    PubMed

    Kirby, Sheila Nataraj; Marsh, Julie A; Thie, Harry J

    2011-01-01

    In calling for the transformation of military medical education and training, the 2005 Base Realignment and Closure Commission recommended relocating basic and specialty enlisted medical training to a single site to take advantage of economies of scale and the opportunity for joint training. As a result, a joint medical education and training campus (METC) has been established at Fort Sam Houston, Texas. Two of METC's primary long-term goals are to become a high-performing learning organization and to seek accreditation as a community college. Such goals require a clear model of organizational improvement with well-defined metrics for measuring its performance and using research and evaluation to assess and improve that performance. Lessons learned from a review of practices at institutions with similar missions-such as community colleges, corporate universities, the UK's Defence Medical Education and Training Agency, and other federal agencies, such as the Veterans Health Administration-establish a clear need for an office of institutional research to help METC attain its organizational goals. They also provide useful recommendations regarding the METC office's structure, scope, and governance.

  8. STS-91 Mission Specialist Kavandi visits Pad 39A before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Specialist Janet Kavandi, Ph.D., visits Launch Pad 39A from which she is scheduled to be launched aboard Space Shuttle Discovery on June 2 around 6:10 p.m. EDT. In her pocket are flowers intended as gifts for her two children whom she will be seeing shortly. STS-91 will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Franklin Chang-Diaz, Ph.D.; Wendy B. Lawrence; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.

  9. A Euclid, LSST and WFIRST Joint Processing Study

    NASA Astrophysics Data System (ADS)

    Chary, Ranga-Ram; Joint Processing Working Group

    2018-01-01

    Euclid, LSST and WFIRST are the flagship cosmological projects of the next decade. By mapping several thousand square degrees of sky and covering the electromagnetic spectrum from the optical to the NIR with (sub-)arcsec resolution, these projects will provide exciting new constraints on the nature of dark energy and dark matter. The ultimate cosmological, astrophysical and time-domain science yield from these missions, which will detect several billions of sources, requires joint processing at the pixel-level. Three U.S. agencies (DOE, NASA and NSF) are supporting an 18-month study which aims to 1) assess the optimal techniques to combine these, and ancillary data sets at the pixel level; 2) investigate options for an interface that will enable community access to the joint data products; and 3) identify the computing and networking infrastructure to properly handle and manipulate these large datasets together. A Joint Processing Working Group (JPWG) is carrying out this study and consists of US-based members from the community and science/data processing centers of each of these projects. Coordination with European partners is envisioned in the future and European Euclid members are involved in the JPWG as observers. The JPWG will scope the effort and resources required to build up the capabilities to support scientific investigations using joint processing in time for the start of science surveys by LSST and Euclid.

  10. Mission in the works promises precise global topographic data

    USGS Publications Warehouse

    Farr, T.; Evans, D.; Zebker, H.; Harding, D.; Bufton, J.; Dixon, T.; Vetrella, S.; Gesch, D.B.

    1995-01-01

    Significant deficiencies in the quality of today's topographic data severely limit scientific applications. Very few available data sets meet the stringent requirements of 10–30 m for global digital topography and 5 m or better vertical accuracy, and existing satellite systems are unlikely to fulfill these requirements. The Joint Topographic Science Working Group, appointed by NASA and the Italian Space Agency, concluded that radar interferometry coupled with a laser altimeter would be the most promising approach for improving data quality. By providing its own illumination at a wavelength Ion g enough to (e.g., λ = 25 cm) to penetrate clouds and rain, the interferometer would provide a global, uniform high-quality topographic data set. One mission under study, TOPSAT, is well positioned to fill this niche and promises to pave the way toward a more standardized and precise topographic database. TOPSAT would be an international mission, designed to make use of recent technology advances in such programs as NASA's New Millennium. It could be ready to launch by the end of this decade.

  11. A review of Spacelab mission management approach

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  12. 12 CFR 1265.3 - Core mission activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Core mission activities. 1265.3 Section 1265.3 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL HOME LOAN BANKS CORE MISSION ACTIVITIES § 1265.3 Core mission activities. The following Bank activities qualify as core mission activities: (a...

  13. The DUNE Mission

    NASA Astrophysics Data System (ADS)

    Castander, F. J.

    The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmological probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, and cluster counts. Besides its observational cosmology goals, the mission capabilities of DUNE allow the study of galaxy evolution, galactic structure and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands. The final data of the DUNE mission will form a unique legacy for the astronomy community. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept which combines wide-field deep imaging with low resolution multi-object spectroscopy.

  14. Mission operations update for the restructured Earth Observing System (EOS) mission

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  15. Lofty missions, down-to-earth plans.

    PubMed

    Rangan, V Kasturi

    2004-03-01

    Most nonprofits make program decisions based on a mission rather than a strategy. They rally under the banner of a particular cause, be it "fight homelessness" or "end hunger." And since their causes are so worthwhile, they support any programs that are related--even tangentially--to their core missions. It's hard to fault people for trying to improve the state of the world, but that approach to making decisions is misguided. Acting without a clear long-term strategy can stretch an agency's core capabilities and push it in unintended directions. The fundamental problem is that many nonprofits don't have a strategy; instead, they have a mission and a portfolio of programs. But they hardly make deliberate decisions about which programs to run, which to drop, and which to turn down for funding. What most nonprofits call "strategy" is really just an intensive exercise in resource allocation and program management. This article outlines for nonprofits a four-step process for developing strategy. The first step is to create a broad, inspiring mission statement. The second step is to translate that core mission into a smaller, quantifiable operational mission. For instance, an agency whose core mission is to fight homelessness must decide if its focus is rural or urban and if it should concentrate on low-income housing loans or on establishing more shelters. The third step is to create a strategy platform; that is, the nonprofit decides how it will achieve its operational mission. Decisions about funding and about client, program, and organizational development are all made here. Once that platform is established, the nonprofit is ready to move to step four--making reasoned, strategic decisions about which programs to run and how to run them. The agency that follows these steps will improve its focus and its effectiveness at fulfilling its mission.

  16. Simulations - Joint NASA-USSR Mission - JSC

    NASA Image and Video Library

    1975-02-25

    S75-22187 (25 Feb. 1975) --- Two ASTP crewmen look over food cans and packages in the Soyuz orbital module trainer in Building 35 during Apollo-Soyuz Test Project joint crew training at NASA's Johnson Space Center. They are astronaut Thomas P. Stafford (left), commander of the American ASTP prime crew; and cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP first (prime) crew. The training session simulated activity on the second day in Earth orbit.

  17. Mission Command in the Joint Task Force -- Port Opening

    DTIC Science & Technology

    2015-06-12

    a significant concern. The appearance of lack of disciplined initiative suggests a laissez - faire attitude on the part of DDOC personnel. A...Chiefs of Staff (CJCS) published the Mission Command White Paper on 03 April 2012, launching Mission Command to the forefront of Army leadership ...trust and leadership - subordinate close proximity; furthermore, research has also shown that the same level of trust was not inherent between leaders

  18. STS-90 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-90 crew patch reflects the dedication of the mission to neuroscience in celebration of the decade of the brain. Earth is revealed through a neuron-shaped window, which symbolizes new perspectives in the understanding of nervous system development, structure and function, both here on Earth and in the microgravity environment of space. The Space Shuttle Columbia is depicted with its open payload bay doors revealing the Spacelab within. An integral component of the mission, the laboratory/science module provided by the European Space Agency (ESA), signifies the strong international involvement in the mission. The seven crew members and two alternate payload specialists, Chiaki Naito-Mukai and Alexander W. Dunlap, are represented by the nine major stars of the constellation Cetus (the whale) in recognition of the International Year of the Ocean. The distant stars illustrate the far reaching implications of the mission science to the many sponsoring agencies, helping prepare for long-duration space flight aboard the International Space Station (ISS). The moon and Mars are depicted to reflect the crew's recognition that those two celestial bodies will be the next great challenges in human exploration of space and represent the key role that life science research will play in supporting such missions.

  19. Bion-11 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Skidmore, M.

    1999-01-01

    The Sensors 2000! Program, in support of the Space Life Sciences Payloads Office at NASA Ames Research Center developed a suite of bioinstrumentation hardware for use on the Joint US/Russian Bion I I Biosatellite Mission (December 24, 1996 - January 7, 1997). This spaceflight included 20 separate experiments that were organized into a complimentary and interrelated whole, and performed by teams of US, Russian, and French investigators. Over 40 separate parameters were recorded in-flight on both analog and digital recording media for later analysis. These parameters included; Electromyogram (7 ch), Electrogastrogram, Electrooculogram (2 ch), ECG/EKG, Electroencephlogram (2 ch), single fiber firing of Neurovestibular afferent nerves (7 ch), Tendon Force, Head Motion Velocity (pitch & yaw), P02 (in vivo & ambient), temperature (deep body, skin, & ambient), and multiple animal and spacecraft performance parameters for a total of 45 channels of recorded data. Building on the close cooperation of previous missions, US and Russian engineers jointly developed, integrated, and tested the physiologic instrumentation and data recording system. For the first time US developed hardware replaced elements of the Russian systems resulting in a US/Russian hybrid instrumentation and data system that functioned flawlessly during the 14 day mission.

  20. Agency Innovation Mission with Dava Newman

    NASA Image and Video Library

    2016-11-01

    Dr. Dava Newman, NASA's deputy administrator, speaks to employees at the Florida spaceport during the annual KickStart Innovation Expo. The event gives employees an opportunity to present proposals for new ideas and processes. A small amount of funding is awarded to those selected allowing individuals or teams to procure needed items to implement their projects. Kennedy employees are encouraged to look for ways to do their work better and to propose concepts for tackling future mission needs.

  1. Agency Innovation Mission with Dava Newman

    NASA Image and Video Library

    2016-11-01

    Kennedy Space Center Director Bob Cabana speaks to employees at the Florida spaceport during the annual KickStart Innovation Expo. The event gives employees an opportunity to present proposals for new ideas and processes. A small amount of funding is awarded to those selected allowing individuals or teams to procure needed items to implement their projects. Kennedy employees are encouraged to look for ways to do their work better and to propose concepts for tackling future mission needs.

  2. Agency Innovation Mission with Dava Newman

    NASA Image and Video Library

    2016-11-01

    Dr. Dava Newman, NASA's deputy administrator, speaks to employees at the Florida spaceport during the annual KickStart Innovation Expo The event gives employees an opportunity to present proposals for new ideas and processes. A small amount of funding is awarded to those selected allowing individuals or teams to procure needed items to implement their projects. Kennedy employees are encouraged to look for ways to do their work better and to propose concepts for tackling future mission needs.

  3. Development of Stable, Low Resistance Solder Joints for a Space-Flight HTS Lead Assemblies

    NASA Technical Reports Server (NTRS)

    Canavan, Edgar R.; Chiao, Meng; Panashchenko, Lyudmyla; Sampson, Michael

    2017-01-01

    The solder joints in spaceflight high temperature superconductor (HTS) lead assemblies for certain astrophysics missions have strict constraints on size and power dissipation. In addition, the joints must tolerate years of storage at room temperature, many thermal cycles, and several vibration tests between their manufacture and their final operation on orbit. As reported previously, solder joints between REBCO coated conductors and normal metal traces for the Astro-H mission showed low temperature joint resistance that grew approximately as log time over the course of months. Although the assemblies worked without issue in orbit, for the upcoming X-ray Astrophysics Recovery Mission we are attempting to improve our solder process to give lower, more stable, and more consistent joint resistance. We produce numerous sample joints and measure time- and thermal cycle-dependent resistance, and characterize the joints using x-ray and other analysis tools. For a subset of the joints, we use SEMEDS to try to understand the physical and chemical processes that effect joint behavior.

  4. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After nine days and 3.6 million miles in space, orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  5. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery lowers its nose wheel after touching down on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The STS-95 crew is composed of Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  6. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  7. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery touches down in a cloud of smoke on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  8. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After a successful mission of nearly nine days and 3.6 million miles, the orbiter Discovery glides to Earth on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The crew consisted of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA).

  9. One-Year Mission on ISS Is a Step Towards Interplanetary Missions.

    PubMed

    Fomina, Elena V; Lysova, Nataliya Yu; Kukoba, Tatyana B; Grishin, Alexey P; Kornienko, Mikhail B

    2017-12-01

    in the 1990s Russian cosmonauts performed six long-duration missions on Mir that went from 312 to 438 d. In 2015 a mission on the International Space Station that continued for 340 d, 8 h, and 47 min was successfully accomplished. It was a joint U.S./Russian mission completed by Scott Kelly and Mikhail Kornienko (KM). The intensity of in-flight physical exercises and postflight motor changes were measured in KM and in the six cosmonauts who made shorter flights (173.3 ± 13.8 d) on ISS while using similar countermeasures against the adverse effects of microgravity. It was found that both parameters varied similarly in spite of the difference in the duration of ISS missions. KM maintained adequate physical performance throughout the entire flight; moreover, the level of postflight changes he displayed was comparable to that recorded in the group of cosmonauts who completed 6-mo missions on ISS. In summary, the 1-yr mission has clearly demonstrated the high efficacy of the countermeasures used by KM.Fomina EV, Lysova NYu, Kukoba TB, Grishin AP, Kornienko MB. One-year mission on ISS is a step towards interplanetary missions. Aerosp Med Hum Perform. 2017; 88(12):1094-1099.

  10. Recent results of the Global Precipitation Measurement (GPM) mission in Japan

    NASA Astrophysics Data System (ADS)

    Kubota, Takuji; Oki, Riko; Furukawa, Kinji; Kaneko, Yuki; Yamaji, Moeka; Iguchi, Toshio; Takayabu, Yukari

    2017-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The GPM Core Observatory, launched on February 2014, carries the Dual-frequency Precipitation Radar (DPR) by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. The Japan Meteorological Agency (JMA) started the DPR assimilation in the meso-scale Numerical Weather Prediction (NWP) system on March 24 2016. This was regarded as the world's first "operational" assimilation of spaceborne radar data in the NWP system of meteorological agencies. JAXA also develops the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. The GSMaP near-real-time version (GSMaP_NRT) product is available 4-hour after observation through the "JAXA Global Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP) since 2008. The GSMaP_NRT product gives higher priority to data latency than accuracy, and has been used by various users for various purposes, such as rainfall monitoring, flood alert and warning, drought monitoring, crop yield forecast, and agricultural insurance. There is, however, a requirement for shortening of data latency time from GSMaP users. To reduce data latency, JAXA has developed the GSMaP realtime version (GSMaP_NOW) product for observation area of the geostationary satellite Himawari-8 operated by the Japan Meteorological Agency (JMA). GSMaP_NOW product was released to public in November 2, 2015 through the

  11. Aquarius and the Aquarius/SAC-D Mission

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Torrusio, S.

    2010-01-01

    Aquarius is a combination L-band radiometer and scatterometer designed to map the salinity field at the ocean surface from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA space agency (NASA) and Argentine space agency (CONAE). The mission is composed of two parts: (a) The Aquarius instrument being developed as part of NASA.s Earth System Science Pathfinder (ESSP) program; and (b) SAC-D the fourth spacecraft service platform in the CONAE Satellite de Aplicaciones Cientificas (SAC) program. The primary focus of the mission is to monitor the seasonal and interannual variations of the salinity field in the open ocean. The mission also meets the needs of the Argentine space program for monitoring the environment and for hazard detection and includes several instruments related to these goals.

  12. Joint experiments using ETS-5

    NASA Astrophysics Data System (ADS)

    Nakata, Mutsumi

    1993-03-01

    An overview of the PARTNERS (Pan-Pacific Regional Telecommunications Network Research Satellite) project, which is the post-mission utilization of the ETS-5 (Engineering Test Satellite-5) is presented. The project was registered at SAFISY (Space Agency Forum for International Space Year) and includes the following experiments: (1) research on radio propagation characteristics in satellite links in Pan-Pacific region; (2) joint study on development of rural satellite network using simple mobile station; (3) experiments on telecommunication using personal computers for academic network; (4) experiments on remote education and training through satellite networks; (5) experiments on remote medicine; (6) experiments on the operation of medical information data base; (7) experiments on transmission of the earth observation data; and (8) demonstration of real time transmission of Asia-Pacific ISY (International Space Year) Conference. The experiment systems consisting of space segment (ETS-5) and simple and low cost ground system composed of 1.2 m aperture parabolic antenna, TV (Television) conference system, and terminal equipment are outlined.

  13. 12 CFR 1265.2 - Mission of the Banks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Mission of the Banks. 1265.2 Section 1265.2 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL HOME LOAN BANKS CORE MISSION ACTIVITIES § 1265.2 Mission of the Banks. The mission of the Banks is to provide to their members' and housing...

  14. Activities During Spacelab-J Mission at Payload Operations and Control Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The group of Japanese researchers of the Spacelab-J (SL-J) were thumbs-up in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center after the successful launch of Space Shuttle Orbiter Endeavour that carried their experiments. The SL-J was a joint mission of NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted microgravity investigations in materials and life sciences. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, frogs, and frog eggs. The POCC was the air/ground communications channel between the astronauts and ground control teams during the Spacelab missions. The Spacelab science operations were a cooperative effort between the science astronaut crew in orbit and their colleagues in the POCC. Spacelab-J was launched aboard the Space Shuttle Orbiter Endeavour on September 12, 1992.

  15. Current Status of the International Lunar Network (ILN) Anchor Nodes Mission

    NASA Astrophysics Data System (ADS)

    Cohen, Barbara; Bassler, J.; Harris, D.; Morse, B.; Reed, C.; Kirby, K.; Eng, D.

    2009-09-01

    NASA's Science Mission Directorate's (SMD) International Lunar Network Anchor Nodes Mission continues its concept development and is scheduled to complete the first formal milestone gate of a Mission Concept Review (MCR) in late 2009. The mission will establish two-four nodes of the International Lunar Network (ILN), a network of lunar geophysical stations envisioned to be emplaced by the many nations collaborating on this joint endeavor. This mission will operate over six years or more and make significant progress in satisfying many of the National Research Council's lunar science objectives, while strategically contributing to the U.S. Vision for Space Exploration Policy's objective for a robust robotic lunar program. This paper will provide a status report on the ILN Anchor Nodes mission and overview of the concept to date, which is being implemented jointly by NASA's Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory.

  16. Tropical Rainfall Measurement Mission (TRMM) Operation Summary

    NASA Technical Reports Server (NTRS)

    Nio, Tomomi; Saito, Susumu; Stocker, Erich; Pawloski, James H.; Murayama, Yoshifumi; Ohata, Takeshi

    2015-01-01

    The Tropical Rainfall Measurement Mission (TRMM) is a joint U.S. and Japan mission to observe tropical rainfall, which was launched by H-II No. 6 from Tanegashima in Japan at 6:27 JST on November 28, 1997. After the two-month commissioning of TRMM satellite and instruments, the original nominal mission lifetime was three years. In fact, the operations has continued for approximately 17.5 years. This paper provides a summary of the long term operations of TRMM.

  17. Micro-Pressure Sensors for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    1996-01-01

    The joint research interchange effort was directed at the following principal areas: u further development of NASA-Ames' Mars Micro-meteorology mission concept as a viable NASA space mission especially with regard to the science and instrument specifications u interaction with the flight team from NASA's New Millennium 'Deep-Space 2' (DS-2) mission with regard to selection and design of micro-pressure sensors for Mars u further development of micro-pressure sensors suitable for Mars The research work undertaken in the course of the Joint Research Interchange should be placed in the context of an ongoing planetary exploration objective to characterize the climate system on Mars. In particular, a network of small probes globally-distributed on the surface of the planet has often been cited as the only way to address this particular science goal. A team from NASA Ames has proposed such a mission called the Micrometeorology mission, or 'Micro-met' for short. Surface pressure data are all that are required, in principle, to calculate the Martian atmospheric circulation, provided that simultaneous orbital measurements of the atmosphere are also obtained. Consequently, in the proposed Micro-met mission a large number of landers would measure barometric pressure at various locations around Mars, each equipped with a micro-pressure sensor. Much of the time on the JRI was therefore spent working with the engineers and scientists concerned with Micro-met to develop this particular mission concept into a more realistic proposition.

  18. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  19. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  20. Global Precipitation Measurement Mission: Architecture and Mission Concept

    NASA Technical Reports Server (NTRS)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  1. Microbial biodiversity assessment of the European Space Agency's ExoMars 2016 mission.

    PubMed

    Koskinen, Kaisa; Rettberg, Petra; Pukall, Rüdiger; Auerbach, Anna; Wink, Lisa; Barczyk, Simon; Perras, Alexandra; Mahnert, Alexander; Margheritis, Diana; Kminek, Gerhard; Moissl-Eichinger, Christine

    2017-10-25

    The ExoMars 2016 mission, consisting of the Trace Gas Orbiter and the Schiaparelli lander, was launched on March 14 2016 from Baikonur, Kazakhstan and reached its destination in October 2016. The Schiaparelli lander was subject to strict requirements for microbial cleanliness according to the obligatory planetary protection policy. To reach the required cleanliness, the ExoMars 2016 flight hardware was assembled in a newly built, biocontrolled cleanroom complex at Thales Alenia Space in Turin, Italy. In this study, we performed microbiological surveys of the cleanroom facilities and the spacecraft hardware before and during the assembly, integration and testing (AIT) activities. Besides the European Space Agency (ESA) standard bioburden assay, that served as a proxy for the microbiological contamination in general, we performed various alternative cultivation assays and utilised molecular techniques, including quantitative PCR and next generation sequencing, to assess the absolute and relative abundance and broadest diversity of microorganisms and their signatures in the cleanroom and on the spacecraft hardware. Our results show that the bioburden, detected microbial contamination and microbial diversity decreased continuously after the cleanroom was decontaminated with more effective cleaning agents and during the ongoing AIT. The studied cleanrooms and change room were occupied by very distinct microbial communities: Overall, the change room harboured a higher number and diversity of microorganisms, including Propionibacterium, which was found to be significantly increased in the change room. In particular, the so called alternative cultivation assays proved important in detecting a broader cultivable diversity than covered by the standard bioburden assay and thus completed the picture on the cleanroom microbiota. During the whole project, the bioburden stayed at acceptable level and did not raise any concern for the ExoMars 2016 mission. The cleanroom complex at

  2. The Cassini-Huygens Mission Overview

    NASA Technical Reports Server (NTRS)

    Vandermey, Nancy; Paczkowski, Brian G.

    2006-01-01

    The Cassini-Huygens Program is an international science mission to the Saturnian system. Three space agencies and seventeen nations contributed to building the Cassini spacecraft and Huygens probe. The Cassini orbiter is managed and operated by NASA's Jet Propulsion Laboratory. The Huygens probe was built and operated by the European Space Agency. The mission design for Cassini-Huygens calls for a four-year orbital survey of Saturn, its rings, magnetosphere, and satellites, and the descent into Titan's atmosphere of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 45 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that are performing a wide range of observations on a multitude of designated targets. The Huygens probe carried six additional instruments that provided in-situ sampling of the atmosphere and surface of Titan. The multi-national nature of this mission poses significant challenges in the area of flight operations. This paper will provide an overview of the mission, spacecraft, organization and flight operations environment used for the Cassini-Huygens Mission. It will address the operational complexities of the spacecraft and the science instruments and the approach used by Cassini-Huygens to address these issues.

  3. Peace-enforcement: Mission, strategy, and doctrine. Monograph report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, J.B.

    This monograph examines a new military mission-peace-enforcement. It does so through a five part strategic process that links national interests and national security strategy to tactical operations. it asserts that US national security strategy is evolving as a result of the end of the Cold War and that a new strategy will lead to new military missions. The monograph first describes a limited spectrum of military operations that comprise a peace-enforcement mission. Next, it reviews enduring US national interests then analyzes evolving national security strategy to determine if these elements of strategy support the need for a peace-enforcement mission. Themore » monograph then examines national military strategy, operational level strategy and joint guidance, and finally, US tactical doctrine to determine if peace-enforcement is a mission the US military can execute today. The monograph concludes that national interests and evolving national security strategy will emphasize promotion of democracy and stability in lieu of Cold War deterrence. The national military strategy partially supports this shift; support should increase as the Clinton administration clarifies its policy and solidifies the shift from containment. Lastly, the monograph finds there is sufficient operational and tactical level guidance to conduct the mission and recommends formal acceptance of the peace-enforcement mission into joint doctrine.« less

  4. Joint Center for Satellite Data Assimilation Overview and Research Activities

    NASA Astrophysics Data System (ADS)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  5. The Joint Agency Commercial Imagery Evaluation Team and Product Characterization Approach

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Pagnutti, Mary; Ryan, Robert E.; Snyder, Greg; Lehman, William; Roylance, Spencer

    2003-01-01

    The Joint Agency Commercial Imagery Evaluation (JACIE) team is a collaborative interagency group focused on the characterization of commercial remote sensing data products. The team members - the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA), and the U.S. Geological Survey (USGS) - each have a vested interest in the purchase and use of commercial imagery to support government research and operational applications. For both research and applications, commercial products must be well characterized for precision, accuracy, and repeatability. Since commercial systems are built and operated with no government insight or oversight, the JACIE team provides an independent product characterization of delivered image and image-derived end products. End product characterization differs from the systems calibration approach that is typically used with government systems, where detailed system design information is available. The product characterization approach addresses three primary areas of product performance: geopositional accuracy, image quality, and radiometric accuracy. The JACIE team utilizes well-characterized test sites to support characterization activities. To characterize geopositional accuracy, the team utilizes sites containing several "photo-identifiable" targets and compares their precisely known locations with those defined by the commercial image product. In the area of image quality, spatial response is characterized using edge targets and pulse targets to measure edge response and to estimate image modulation transfer function. Additionally, imagery is also characterized using the National Imagery Interpretability Rating Scale, a means of quantifying the ability to identify certain targets (e.g., rail-cars, airplanes) within an image product. Radiometric accuracy is characterized using reflectance-based vicarious calibration methods at several uniform sites. Each JACIE agency performs an aspect of

  6. 46 CFR 385.38 - Joint funding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Joint funding. 385.38 Section 385.38 Shipping MARITIME... AGREEMENTS REGULATIONS General Policies § 385.38 Joint funding. (a) Pursuant to section 10(c) of the Act, MarAd is authorized to participate in joint funded projects with other Federal agencies in any funding...

  7. 46 CFR 385.38 - Joint funding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Joint funding. 385.38 Section 385.38 Shipping MARITIME... AGREEMENTS REGULATIONS General Policies § 385.38 Joint funding. (a) Pursuant to section 10(c) of the Act, MarAd is authorized to participate in joint funded projects with other Federal agencies in any funding...

  8. 46 CFR 385.38 - Joint funding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Joint funding. 385.38 Section 385.38 Shipping MARITIME... AGREEMENTS REGULATIONS General Policies § 385.38 Joint funding. (a) Pursuant to section 10(c) of the Act, MarAd is authorized to participate in joint funded projects with other Federal agencies in any funding...

  9. 46 CFR 385.38 - Joint funding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Joint funding. 385.38 Section 385.38 Shipping MARITIME... AGREEMENTS REGULATIONS General Policies § 385.38 Joint funding. (a) Pursuant to section 10(c) of the Act, MarAd is authorized to participate in joint funded projects with other Federal agencies in any funding...

  10. 46 CFR 385.38 - Joint funding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Joint funding. 385.38 Section 385.38 Shipping MARITIME... AGREEMENTS REGULATIONS General Policies § 385.38 Joint funding. (a) Pursuant to section 10(c) of the Act, MarAd is authorized to participate in joint funded projects with other Federal agencies in any funding...

  11. Rigour and Rapport: a qualitative study of parents' and professionals' experiences of joint agency infant death investigation.

    PubMed

    Garstang, Joanna; Griffiths, Frances; Sidebotham, Peter

    2017-02-07

    In many countries there are now detailed Child Death Review (CDR) processes following unexpected child deaths. CDR can lead to a fuller understanding of the causes for each child's death but this potentially intrusive process may increase the distress of bereaved families. In England, a joint agency approach (JAA) is used where police, healthcare and social services investigate sudden child deaths together and a key part of this is the joint home visit (JHV) where specialist police and paediatricians visit the home with the parents to view the scene of death. This study aimed to learn of bereaved parents' experiences of JAA investigation following Sudden Unexpected Death in Infancy (SUDI). This was a qualitative study of joint agency investigation of SUDI by specialist police, healthcare and social services including case note analysis, parental questionnaires, and in-depth interviews with parents and professionals. Families were recruited at the conclusion of the JAA. Data were analysed using a Framework Approach. 21/113 eligible families and 26 professionals participated giving theoretical saturation of data. There was an inherent conflict for professionals trying to both investigate deaths thoroughly as well as support families. Bereaved parents appreciated the JAA especially for the information it provided about the cause of death but were frustrated with long delays waiting to obtain this. Many parents wanted more emotional support to be routinely provided. Most parents found the JHV helpful but a small minority of mothers found this intensely distressing. In comparison to JHVs, when police visited death scenes without paediatricians, information was missed and parents found these visits more upsetting. There were issues with uniformed non-specialist police traumatising parents by starting criminal investigations and preventing parents from accessing their home or collecting vital possessions. Overall most parents feel supported by professionals during the JAA

  12. Mars Curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Parents and children, such as Myron and Trey (age 3) Cummings, enjoyed exploring Mars using an interactive touch table. Midway through the day of activities, visitors in the Science on a Sphere auditorium also enjoyed a presentation on Mars and the Curiosity mission by Dr. Steven Williams, a NASA expert on Mars.

  13. Mars Together 2001: Joint US-Russian Team

    NASA Technical Reports Server (NTRS)

    Ulrich, P.; Kremnev, R.; Boyce, J.; Eremenko, A.; Bourke, R.; Linkin, V.; Campbell, J.; Martynov, B.; Haynes, N.; Mitrofanov, I.; hide

    1996-01-01

    While the US and USSR have collaborated in human space flight and Earth application missions, this is the first time in the cultural relations between our two countries that American and Russian specialists have been authorized to work together on a joint space science mission. A study was commissioned to investigate the possibility of a combined US/Russian mission in the 2001 opportunity. A basic option for a proposed mission (abbreviated as MT 2001) was adopted. This option is described.

  14. A mission planning concept and mission planning system for future manned space missions

    NASA Technical Reports Server (NTRS)

    Wickler, Martin

    1994-01-01

    The international character of future manned space missions will compel the involvement of several international space agencies in mission planning tasks. Additionally, the community of users requires a higher degree of freedom for experiment planning. Both of these problems can be solved by a decentralized mission planning concept using the so-called 'envelope method,' by which resources are allocated to users by distributing resource profiles ('envelopes') which define resource availabilities at specified times. The users are essentially free to plan their activities independently of each other, provided that they stay within their envelopes. The new developments were aimed at refining the existing vague envelope concept into a practical method for decentralized planning. Selected critical functions were exercised by planning an example, founded on experience acquired by the MSCC during the Spacelab missions D-1 and D-2. The main activity regarding future mission planning tasks was to improve the existing MSCC mission planning system, using new techniques. An electronic interface was developed to collect all formalized user inputs more effectively, along with an 'envelope generator' for generation and manipulation of the resource envelopes. The existing scheduler and its data base were successfully replaced by an artificial intelligence scheduler. This scheduler is not only capable of handling resource envelopes, but also uses a new technology based on neuronal networks. Therefore, it is very well suited to solve the future scheduling problems more efficiently. This prototype mission planning system was used to gain new practical experience with decentralized mission planning, using the envelope method. In future steps, software tools will be optimized, and all data management planning activities will be embedded into the scheduler.

  15. 76 FR 17622 - U.S. Education Mission to India

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... DEPARTMENT OF COMMERCE International Trade Administration U.S. Education Mission to India AGENCY... is organizing an education industry trade mission to India (New Delhi, Chennai, and Mumbai) from... regional accrediting bodies. This mission will seek to connect United States education institutions to...

  16. Apollo Soyuz test project, USA-USSR. [mission plan of spacecraft docking

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The mission plan of the docking of a United States Apollo and a Soviet Union Soyuz spacecraft in Earth orbit to test compatible rendezvous and docking equipment and procedures is presented. Space experiments conducted jointly by the astronauts and cosmonauts during the joint phase of the mission as well as experiments performed solely by the U.S. astronauts and spread over the nine day span of the flight are included. Biographies of the astronauts and cosmonauts are given.

  17. Clementine: An inexpensive mission to the Moon and Geographos

    NASA Astrophysics Data System (ADS)

    Shoemaker, Eugene M.; Nozette, Stewart

    1993-03-01

    The Clementine Mission, a joint project of the Strategic Defense Initiative Organization (SDIO) and NASA, has been planned primarily to test and demonstrate a suite of lightweight sensors and other lightweight spacecraft components under extended exposure to the space environment. Although the primary objective of the mission is to space-qualify sensors for Department of Defense applications, it was recognized in 1990 that such a mission might also be designed to acquire scientific observations of the Moon and of Apollo asteroid (1620) Geographos. This possibility was explored jointly by SDIO and NASA, including representatives from NASA's Discovery Program Science Working Group, in early 1991. Besides the direct return of scientific information, one of the benefits envisioned from a joint venture was the development of lightweight components for possible future use in NASA's Discovery-class spacecraft. In Jan. 1992, SDIO informed NASA of its intent to fly a 'Deep Space Program Science Experiment,' now popularly called Clementine; NASA then formed an advisory science working group to assist in the early development of the mission. The Clementine spacecraft is being assembled at the Naval Research Laboratory, which is also in charge of the overall mission design and mission operations. Support for mission design is being provided by GSFC and by JPL. NASA's Deep Space Network will be utilized in tracking and communicating with the spacecraft. Following a recommendation of the COMPLEX committee of the Space Science Board, NASA will issue an NRA and appoint a formal science team in early 1993. Clementine is a 3-axis stabilized, 200 kg (dry weight) spacecraft that will be launched on a refurbished Titan-2G. One of the goals has been to build two spacecraft, including the sensors, for $100M. Total time elapsed from the decision to proceed to the launch will be two years.

  18. Study of sealing practices for rigid pavement joints.

    DOT National Transportation Integrated Search

    1971-01-01

    The joint sealing materials and the rigid pavement joint sealing practices employed by Virginia and other highway agencies were studied. The studies showed that Virginia's sealant and joint designs were in need of updating and that higher quality pou...

  19. STS-81 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of the STS-81 Space Shuttle Orbiter Atlantis Commander Michael A. Baker, Pilot Brent W. Jett Jr., and Mission Specialists, John M. Grunsfeld, Marsha S. Ivins, Peter J.K. Wisoff, and John M. Linenger present an overview of their mission. Video footage includes the following: prelaunch and launch activities, the crew eating breakfast, shuttle launch, on orbit activities, rendezvous with Mir, Shuttle/Mir joint activities, undocking, and the shuttle landing.

  20. Mars Curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Parents and children, such as Myron and Trey (age 3) Cummings, enjoyed exploring Mars using an interactive touch table (top right photo). Midway through the day of activities, visitors in the Science on a Sphere auditorium also enjoyed a presentation on Mars and the Curiosity mission by Dr. Steven Williams, a NASA expert on Mars.

  1. Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Cheng, A.; Küppers, M.; Pravec, P.; Blum, J.; Delbo, M.; Green, S. F.; Rosenblatt, P.; Tsiganis, K.; Vincent, J. B.; Biele, J.; Ciarletti, V.; Hérique, A.; Ulamec, S.; Carnelli, I.; Galvez, A.; Benner, L.; Naidu, S. P.; Barnouin, O. S.; Richardson, D. C.; Rivkin, A.; Scheirich, P.; Moskovitz, N.; Thirouin, A.; Schwartz, S. R.; Campo Bagatin, A.; Yu, Y.

    2016-06-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to test the kinetic impactor technique to deflect an asteroid. The European Asteroid Impact Mission (AIM) is set to rendezvous with the asteroid system to fully characterize the smaller of the two binary components a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near-Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Having direct information on the surface and internal properties of small asteroids will allow us to understand how the various processes they undergo work and transform these small bodies as well as, for this particular case, how a binary system forms. Making these measurements from up close and comparing them with ground-based data from telescopes will also allow us to calibrate remote observations and improve our data interpretation of other systems. With DART, thanks to the characterization of the target by AIM, the mission will be the first fully documented impact experiment at asteroid scale, which will include the characterization of the target's properties and the outcome of the impact. AIDA will thus offer a great opportunity to test and refine our understanding and models at the actual scale of an asteroid, and to check whether the current extrapolations of material strength from laboratory-scale targets to the scale of AIDA's target are valid. Moreover, it will offer a first check of the

  2. 33 CFR 230.16 - Lead and cooperating agencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Lead and cooperating agencies..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.16 Lead and cooperating agencies. Lead agency, joint lead agency, and cooperating agency designation and responsibilities are covered in 40 CFR 1501.5...

  3. 33 CFR 230.16 - Lead and cooperating agencies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Lead and cooperating agencies..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.16 Lead and cooperating agencies. Lead agency, joint lead agency, and cooperating agency designation and responsibilities are covered in 40 CFR 1501.5...

  4. 33 CFR 230.16 - Lead and cooperating agencies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Lead and cooperating agencies..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.16 Lead and cooperating agencies. Lead agency, joint lead agency, and cooperating agency designation and responsibilities are covered in 40 CFR 1501.5...

  5. 33 CFR 230.16 - Lead and cooperating agencies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Lead and cooperating agencies..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.16 Lead and cooperating agencies. Lead agency, joint lead agency, and cooperating agency designation and responsibilities are covered in 40 CFR 1501.5...

  6. 33 CFR 230.16 - Lead and cooperating agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Lead and cooperating agencies..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.16 Lead and cooperating agencies. Lead agency, joint lead agency, and cooperating agency designation and responsibilities are covered in 40 CFR 1501.5...

  7. 45 CFR 1321.53 - Mission of the area agency.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... that the area agency shall proactively carry out, under the leadership and direction of the State...) Involve collaborative decision-making among public, private, voluntary, religious and fraternal.... The area agency on aging shall work with, or work to assure that community leadership works with...

  8. 45 CFR 1321.53 - Mission of the area agency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that the area agency shall proactively carry out, under the leadership and direction of the State...) Involve collaborative decision-making among public, private, voluntary, religious and fraternal.... The area agency on aging shall work with, or work to assure that community leadership works with...

  9. MERLIN (Methane Remote Sensing Lidar Mission): an Overview

    NASA Astrophysics Data System (ADS)

    Pierangelo, C.; Millet, B.; Esteve, F.; Alpers, M.; Ehret, G.; Flamant, P.; Berthier, S.; Gibert, F.; Chomette, O.; Edouart, D.; Deniel, C.; Bousquet, P.; Chevallier, F.

    2016-06-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase B, is a joint cooperation between France and Germany on the development, launch and operation of a methane (CH4) monitoring satellite. MERLIN is focused on global measurements of the spatial and temporal gradients of atmospheric CH4, the second most anthropogenic gas, with a precision and accuracy sufficient to constrain Methane fluxes significantly better than with the current observation network. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging). This payload is under the responsibility of the German space agency (DLR), while the platform (MYRIADE Evolutions product line) is developed by the French space agency (CNES). The IPDA technique relies on DIAL (Differential Absorption LIDAR) measurements using a pulsed laser emitting at two wavelengths, one wavelength accurately locked on a spectral feature of the methane absorption line, and the other wavelength free from absorption to be used as reference. This technique enables measurements in all seasons, at all latitudes. It also guarantees almost no contamination by aerosols or water vapour cross-sensitivity, and thus has the advantage of an extremely low level of systematic error on the dry-air column mixing ratio of CH4.

  10. Joint programmes in paediatric cardiothoracic surgery: a survey and descriptive analysis.

    PubMed

    DeCampli, William M

    2011-12-01

    Joint programmes, as opposed to regionalisation of paediatric cardiac care, may improve outcomes while preserving accessibility. We determined the prevalence and nature of joint programmes. We sent an online survey to 125 paediatric cardiac surgeons in the United States in November, 2009 querying the past or present existence of a joint programme, its mission, structure, function, and perceived success. A total of 65 surgeon responses from 65 institutions met the criteria for inclusion. Of the 65 institutions, 22 currently or previously conducted a joint programme. Compared with primary institutions, partner institutions were less often children's hospitals (p = 0.0004), had fewer paediatric beds (p = 0.005), and performed fewer cardiac cases (p = 0.03). Approximately 47% of partner hospitals performed fewer than 50 cases per year. The median distance range between hospitals was 41-60 miles, ranging from 5 to 1000 miles. Approximately 54% of partner hospitals had no surgeon working primarily on-site, and 31% of the programmes conducted joint conferences. Approximately 67% of the programmes limited the complexity of cases at the partner hospital, and 83% of the programmes had formal contracts between hospitals. Of the six programmes whose main mission was to increase referrals to the primary hospital, three were felt to have failed. Of the nine programmes whose mission was to increase regional quality, eight were felt to be successful. Joint programmes in paediatric cardiac surgery are common but are heterogeneous in structure and function. Programmes whose mission is to improve the quality of regional care seem more likely to succeed. Joint programmes may be a practical alternative to regionalisation to achieve better outcomes.

  11. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Seen from across the creek bordering runway 33 at the Shuttle Landing Facility, orbiter Discovery touches down after a successful mission of nine days and 3.6 million miles. Flying above it (left) is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  12. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed across the creek bordering runway 33, orbiter Discovery touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  13. 43 CFR 10010.11 - Lead agencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Lead agencies. 10010.11 Section 10010.11... Initiating the NEPA Process § 10010.11 Lead agencies. (a) The Commission will serve as lead, or, as appropriate, joint-lead agency for any NEPA procedure that is sponsored by or otherwise significantly involves...

  14. 43 CFR 10010.11 - Lead agencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Lead agencies. 10010.11 Section 10010.11... Initiating the NEPA Process § 10010.11 Lead agencies. (a) The Commission will serve as lead, or, as appropriate, joint-lead agency for any NEPA procedure that is sponsored by or otherwise significantly involves...

  15. 43 CFR 10010.11 - Lead agencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Lead agencies. 10010.11 Section 10010.11... Initiating the NEPA Process § 10010.11 Lead agencies. (a) The Commission will serve as lead, or, as appropriate, joint-lead agency for any NEPA procedure that is sponsored by or otherwise significantly involves...

  16. 43 CFR 10010.11 - Lead agencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Lead agencies. 10010.11 Section 10010.11... Initiating the NEPA Process § 10010.11 Lead agencies. (a) The Commission will serve as lead, or, as appropriate, joint-lead agency for any NEPA procedure that is sponsored by or otherwise significantly involves...

  17. The Herschel mission and observing opportunities

    NASA Astrophysics Data System (ADS)

    Pilbratt, G. L.

    Herschel is the fourth cornerstone mission in the European Space Agency (ESA) science programme. It will perform imaging photometry and spectroscopy in the far infrared and submillimetre part of the spectrum, covering approximately the 55--672 μm range and thus bridging the traditional space infrared range with the groundbased capabilities. The key science objectives emphasize fundamental issues connected to the formation and evolution of galaxies and stars and stellar systems. However, Herschel will be an observatory facility and its unique capabilities will be available to the entire astronomical community for a wide range of observations. Herschel is equipped with a passively cooled 3.5 m diameter classical Cassegrain telescope. The science payload complement two cameras/medium resolution spectrometers (PACS and SPIRE) and a very high resolution heterodyne spectrometer (HIFI) is housed in a superfluid helium cryostat. The ground segment is jointly developed by the ESA, the three instrument consortia, and NASA/IPAC. Herschel is scheduled to be launched into a transfer trajectory towards its operational orbit around the Earth-Sun L2 point by an Ariane 5 ECA (shared with the ESA cosmic background mapping mission Planck) in 2009. Once operational about half a year after launch, Herschel will offer 3 years of routine science operations. Almost 20 000 hours of observing time will nominally be made available for astronomy, 32% is guaranteed time, the remainder is open time which is offered to the worldwide general astronomical community through a standard competitive proposal procedure.

  18. Small planetary mission plan: Report to Congress

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document outlines NASA's small planetary projects plan within the context of overall agency planning. In particular, this plan is consistent with Vision 21: The NASA Strategic Plan, and the Office of Space Science and Applications (OSSA) Strategic Plan. Small planetary projects address focused scientific objectives using a limited number of mature instruments, and are designed to require little or no new technology development. Small missions can be implemented by university and industry partnerships in coordination with a NASA Center to use the unique services the agency provides. The timeframe for small missions is consistent with academic degree programs, which makes them an excellent training ground for graduate students and post-doctoral candidates. Because small missions can be conducted relatively quickly and inexpensively, they provide greater opportunity for increased access to space. In addition, small missions contribute to sustaining a vital scientific community by increasing the available opportunities for direct investigator involvement from just a few projects in a career to many.

  19. Artist's concept of ASTP mission profile

    NASA Image and Video Library

    1974-10-01

    S74-14949 (October 1974) --- Artist?s drawings and call-outs depict phases of the joint U.S.-USSR Apollo-Soyuz Test Project, an Earth-orbital mission which will feature rendezvous and docking of the respective spacecraft of the two nations. ASTP crewmen for the USSR include Aleksey A. Leonov and Valeriy N. Kubasov. The astronaut team includes astronauts Thomas P. Stafford, Vance D. Brand and Donald K. Slayton. The mission is scheduled to take place in summer 1975.

  20. Contested Ground: The Historical Debate Over NASA's Mission

    NASA Technical Reports Server (NTRS)

    Kay, W. D.

    2000-01-01

    This book manuscript studies in depth the development and maturation of the NASA mission from the inception of the organization until the present. This study is involved in a wide divergence of questions over roles and missions: the agency's R&D/operational activities, the decentralized/centralized approaches to management, the debate over methods of conducting business. A fundamental part of this work involves the analysis of not only how NASA has defined its role but how senior government leaders, the Congress, and society at large have viewed this matter. It is be especially useful in tracing the evolution of mission ideas in the space agency and, therefore, of great use to officials wrestling with this perennial issue.

  1. LEO and GEO missions

    NASA Technical Reports Server (NTRS)

    Mercanti, Enrico

    1987-01-01

    The occurrence of the Challenger disaster in early 1986 caused a severe reevaluation of the space program. Plans already established had to be drastically revised and new plans had to be made. NASA created the Space Leadership Planning Group (SLPG) to formulate space mission plans covering a 50 year period based on Agency goals and objectives responsive to the National Commission on Space recommendations. An interim view of the status of SLPG plans for low altitude and geosynchronous missions is presented.

  2. Priority Planetary Science Missions Identified

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    The U.S. National Research Council's (NRC) planetary science decadal survey report, released on 7 March, lays out a grand vision for priority planetary science missions for 2013-2022 within a tightly constrained fiscal environment. The cost-conscious report, issued by NRC's Committee on the Planetary Science Decadal Survey, identifies high-priority flagship missions, recommends a number of potential midsized missions, and indicates support for some smaller missions. The report states that the highest-priority flagship mission for the decade is the Mars Astrobiology Explorer-Cacher (MAX-C)—the first of three components of a NASA/European Space Agency Mars sample return campaign—provided that the mission scope can be reduced so that MAX-C costs no more than $2.5 billion. The currently estimated mission cost of $3.5 billion “would take up a disproportionate near-term share of the overall budget for NASA's Planetary Science Division,” the report notes.

  3. Joint stars phased array radar antenna

    NASA Astrophysics Data System (ADS)

    Shnitkin, Harold

    1994-10-01

    The Joint STARS phased array radar system is capable of performing long range airborne surveillance and was used during the Persian Gulf war on two E8-A aircraft to fly many around-the-clock missions to monitor the Kuwait and Iraq battlefield from a safe distance behind the front lines. This paper is a follow-on to previous publications on the subject of the Joint STARS antenna and deals mainly with mission performance and technical aspects not previously covered. Radar data of troop movements and armament installations will be presented, a brief review of the antenna design is given, followed by technical discussions concerning the three-port interferometry, gain and sidelobe design approach, cost control, range test implementation and future improvements.

  4. 75 FR 341 - FY 2010-FY 2011 Broad Agency Announcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Agency's strategic plan and mission goals, as well as to provide the general public with information and... and programs associated with the Agency's strategic plan and mission goals, as well as to provide the... systematic approach that links our strategic goals through multi-year plans to the daily activities of our...

  5. ESA and NASA agree new mission scenario for Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    2001-07-01

    After six months of investigations and analysis by a joint ESA/NASA Huygens Recovery Task Force (HRTF), senior management from the two space agencies and members of the Cassini-Huygens scientific community have endorsed several modifications to the mission. These will ensure a return close to 100% of the Huygens science data, with no impact on the nominal prime Cassini tour after the third Titan encounter. The modifications have been introduced because of a design flaw in the Huygens communication system. This problem meant that the Huygens receiver was unable to compensate for the frequency shift between the signal emitted by the Probe and the one received by the Orbiter, due to the Doppler shift (**). This would have resulted in the loss of most of the unique data returned from the Probe during its descent through Titan’s dense atmosphere. To ensure that as much data as possible is returned from the pioneering Probe, the HRTF proposed a new schedule for Cassini’s first orbits around Saturn. The agreed scenario involves shortening Cassini’s first two orbits around the ringed planet and adding a third which provides the required new geometry for the Huygens mission to Titan. In the new scenario, the arrival at Saturn on 1 July 2004 remains unchanged. However, Cassini’s first flyby of Titan will now occur on 26 October, followed by another on 13 December. The Huygens Probe will be released towards Titan on 25 December, for an entry into the moon’s atmosphere 22 days later, on 14 January 2005, seven weeks later than originally planned. To reduce the Doppler shift in the signal from Huygens, the Cassini Orbiter will fly over Titan’s cloud tops at a much higher altitude than originally planned - 65,000 km instead of 1,200 km. This higher orbit has the added advantage that Cassini will be able to preserve the four-year baseline tour through the Saturn system, by resuming its original orbital plan in mid-February 2005. “In any complex space mission problems

  6. KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands underneath Discovery in the Orbiter Processing Facility. From left are Mission Specialist Stephen Robinson, Pilot James Kelly, Mission Specialist Charles Camarda, astronaut John Young, Commander Eileen Collins and Mission Specialists Andrew Thomas, Wendy Lawrence and Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency. Young is associate director, Technical, at Johnson Space Center. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands underneath Discovery in the Orbiter Processing Facility. From left are Mission Specialist Stephen Robinson, Pilot James Kelly, Mission Specialist Charles Camarda, astronaut John Young, Commander Eileen Collins and Mission Specialists Andrew Thomas, Wendy Lawrence and Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency. Young is associate director, Technical, at Johnson Space Center. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  7. Orbit determination for ISRO satellite missions

    NASA Astrophysics Data System (ADS)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  8. Blast-Off on Mission: SPACE

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Part of NASA's mission is to inspire the next generation of explorers. NASA often reaches children - the inventors of tomorrow - through teachers, reporters, exhibit designers, and other third-party entities. Therefore, when Walt Disney Imagineering, the creative force behind the planning, design, and construction of Disney parks and resorts around the world, approached NASA with the desire to put realism into its Mission: SPACE project, the Agency was happy to offer its insight.

  9. Joint Polar Satellite System

    NASA Technical Reports Server (NTRS)

    Trenkle, Timothy; Driggers, Phillip

    2011-01-01

    The Joint Polar Satellite System (JPSS) is a joint NOAA/NASA mission comprised of a series of polar orbiting weather and climate monitoring satellites which will fly in a sun-synchronous orbit, with a 1330 equatorial crossing time. JPSS resulted from the decision to reconstitute the National Polar-orbiting Operational Environmental Satellite System (NPOESS) into two separate programs, one to be run by the Department of Defense (DOD) and the other by NOAA. This decision was reached in early 2010, after numerous development issues caused a series of unacceptable delays in launching the NPOESS system.

  10. Joint-Use Libraries

    ERIC Educational Resources Information Center

    Casstevens, Susan

    2017-01-01

    The joint-use library is a place where people of all ages, interests, and income levels can find items of interest at no personal cost. The mission of A. H. Meadows Public and High School Library in Midlothian, Texas, is to offer what other public libraries provide: educational and entertainment resources to a community. Yet, the staff also wants…

  11. STS-95 Mission Specialist Duque suits up during TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, representing the European Space Agency, suits up in the Operations and Checkout Building prior to his trip to Launch Pad 39-B. Duque and the rest of the STS-95 crew are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  12. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialists Andrew Thomas and Soichi Noguchi look at the leading edge of Discovery’s wing with RCC panels removed. Noguchi is with the Japanese Aerospace and Exploration Agency. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialists Andrew Thomas and Soichi Noguchi look at the leading edge of Discovery’s wing with RCC panels removed. Noguchi is with the Japanese Aerospace and Exploration Agency. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  13. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi looks at tile on the underside of the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi looks at tile on the underside of the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  14. 10 CFR 1040.123 - Consolidated or joint hearings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ACTIVITIES Enforcement Opportunity for Hearing § 1040.123 Consolidated or joint hearings. In cases in which... 10 Energy 4 2010-01-01 2010-01-01 false Consolidated or joint hearings. 1040.123 Section 1040.123... departments or agencies, where applicable, provide for the conduct of consolidated or joint hearings and for...

  15. NASDA President Communicates With Japanese Crew Member Aboard the STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. From the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC), NASDA President, Mr. Yamano, speaks to Payload Specialist Mamoru Mohri, a Japanese crew member aboard the STS-47 Spacelab J mission.

  16. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    NASA Technical Reports Server (NTRS)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  17. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    NASA Technical Reports Server (NTRS)

    Korth, David; LeBlanc, Troy; Mishkin, Andrew; Lee, Young

    2006-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  18. Space Weather Forecasting at the Joint Space Operations Center (JSpOC)

    NASA Astrophysics Data System (ADS)

    Nava, O.

    2012-12-01

    The Joint Space Operations Center (JSpOC) at Vandenberg Air Force Base is the command and control focal point for the operational employment of worldwide joint space forces. The JSpOC focuses on planning and executing US Strategic Command's Joint Functional Component Command for Space (JFCC SPACE) mission. Through the JSpOC, the Weather Specialty Team (WST) monitors space and terrestrial weather effects, plans and assesses weather impacts on military operations, and provides reach-back support for deployed theater solar and terrestrial needs. This presentation will detail how space weather affects the JSpOC mission set and how the scientific community can enhance the WST's capabilities and effectiveness.

  19. The Mothership Mission Architecture

    NASA Astrophysics Data System (ADS)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  20. 78 FR 57620 - Trade Mission to Philippines and Malaysia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Trade Mission to Philippines and Malaysia AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. SUMMARY: The... trade mission to Manila, Philippines and Kuala Lumpur, Malaysia scheduled for October 23-October 30...

  1. 41 CFR 101-28.302 - Mission of customer supply centers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Mission of customer... DISTRIBUTION 28.3-Customer Supply Centers § 101-28.302 Mission of customer supply centers. Customer supply... of frequently needed common-use expendable items for the accomplishment of customer agency missions. ...

  2. Joint US-USSR Long duration Antarctic Mars calibration Balloon (LAMB) mission

    NASA Technical Reports Server (NTRS)

    Floyd, S. R.; Trombka, J. I.; Evans, L. G.; Starr, R.; Squyres, S. W.; Surkov, Iu. A.; Moskaleva, L. P.; Shcheglov, O.; Mitugov, A. G.; Rester, A. C.

    1991-01-01

    The Long duration Antarctic Mars calibration Balloon (LAMB) project has been established at Goddard Space Flight Center for the evaluation and cross calibration of U.S. and USSR remote sensing gamma-ray and neutron detectors. These detectors are analogs of those flown on the Soviet Phobos mission around Mars and those to be flown on the upcoming U.S. Mars Observer mission. Cosmic rays, which are normally filtered out by the atmosphere, and the earth's magnetic field, will induce gamma-ray and neutron emissions from about a half ton of simulated Mars soil aboard the gondola. The cross calibration of these instruments should greatly facilitate the data analysis from both missions and play a role in U.S.-USSR cooperation in space.

  3. 10 CFR 4.64 - Consolidated or joint hearings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Consolidated or joint hearings. In cases in which the same or related facts are asserted to constitute... 10 Energy 1 2010-01-01 2010-01-01 false Consolidated or joint hearings. 4.64 Section 4.64 Energy... or agencies, where applicable, provide for the conduct of consolidated or joint hearings, and for the...

  4. Athena Mission Status

    NASA Astrophysics Data System (ADS)

    Lumb, D.

    2016-07-01

    Athena has been selected by ESA for its second large mission opportunity of the Cosmic Visions programme, to address the theme of the Hot and Energetic Universe. Following the submission of a proposal from the community, the technical and programmatic aspects of the mission design were reviewed in ESA's Concurrent Design Facility. The proposed concept was deemed to betechnically feasible, but with potential constraints from cost and schedule. Two parallel industry study contracts have been conducted to explore these conclusions more thoroughly, with the key aim of providing consolidated inputs to a Mission Consolidation Review that was conducted in April-May 2016. This MCR has recommended a baseline design, which allows the agency to solicit proposals for a community provided payload. Key design aspects arising from the studies are described, and the new reference design is summarised.

  5. Mission-Based Serious Games for Cross-Cultural Communication Training

    NASA Technical Reports Server (NTRS)

    Schrider, Peter J.; Friedland, LeeEllen; Valente, Andre; Camacho, Joseph

    2011-01-01

    Appropriate cross-cultural communication requires a critical skill set that is increasingly being integrated into regular military training regimens. By enabling a higher order of communication skills, military personnel are able to interact more effectively in situations that involve local populations, host nation forces, and multinational partners. The Virtual Cultural Awareness Trainer (VCAT) is specifically designed to help address these needs. VCAT is deployed by Joint Forces Command (JFCOM) on Joint Knowledge Online (JKO) as a means to provide online, mission-based culture and language training to deploying and deployed troops. VCAT uses a mix of game-based learning, storytelling, tutoring, and remediation to assist in developing the component skills required for successful intercultural communication in mission-based settings.

  6. The ExoMars 2016 Mission arriving at Mars

    NASA Astrophysics Data System (ADS)

    Svedhem, H.; Vago, J. L.

    2016-12-01

    The ExoMars 2016 mission was launched on a Proton rocket from Baikonur, Kazakhstan, on 14 March 2016 and is scheduled to arrive at Mars on 19 October 2016. ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The EDM is carried to Mars by the TGO and is separated three days before arrival at Mars. In addition to demonstrating the landing capability two scientific investigations are included with the EDM. The AMELIA investigation aims at characterising the Martian atmosphere during the entry and descent using technical and engineering sensors of the EDM, and the DREAMS suite of sensors that will characterise the environment of the landing site for a few days after the landing. ESA provides the TGO spacecraft and the Schiaparelli Lander demonstrator, ESA member states provide two of the TGO instruments and Roscosmos provides the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle all communications between the Earth and the Rover. The communication between TGO and the rover/lander is done through a UHF communications system, a contribution from NASA. This presentation will cover a description of the 2016 mission, including the spacecraft

  7. 7 CFR 1956.110 - Joint debtors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Joint debtors. 1956.110 Section 1956.110 Agriculture... REGULATIONS (CONTINUED) DEBT SETTLEMENT Debt Settlement-Community and Business Programs § 1956.110 Joint... offer. A separate Form FmHA or its successor agency under Public Law 103-354 1956-1 will be completed by...

  8. Lidar instruments for ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  9. The Spacelab J mission

    NASA Technical Reports Server (NTRS)

    Cremin, J. W.; Leslie, F. W.

    1990-01-01

    This paper describes Spacelab J (SL-J), its mission characteristics, features, parameters and configuration, the unique nature of the shared reimbursable cooperative effort with the National Space Development Agency (NASDA) of Japan and the evolution, content and objectives of the mission scientific experiment complement. The mission is planned for launch in 1991. This long module mission has 35 experiments from Japan as well as 9 investigations from the United States. The SL-J payload consists of two broad scientific disciplines which require the extended microgravity or cosmic ray environment: (1) materials science such as crystal growth, solidification processes, drop dynamics, free surface flows, gas dynamics, metallurgy and semiconductor technology; and (2) life science including cell development, human physiology, radiation-induced mutations, vestibular studies, embryo development, and medical technology. Through an international agreement with NASDA, NASA is preparing to fly the first Japanese manned, scientific, cooperative endeavor with the United States.

  10. Possible LISA Technology Applications for Other Missions

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey

    2018-01-01

    The Laser Interferometer Space Antenna (LISA) has been selected as the third large class mission launch opportunity of the Cosmic Visions Program by the European Space Agency (ESA). LISA science will explore a rich spectrum of astrophysical gravitational-wave sources expected at frequencies between 0.0001 and 0.1 Hz and complement the work of other observatories and missions, both space and ground-based, electromagnetic and non-electromagnetic. Similarly, LISA technology may find applications for other missions. This paper will describe the capabilities of some of the key technologies and discuss possible contributions to other missions.

  11. The STEP mission - Satellite test of the equivalence principle

    NASA Technical Reports Server (NTRS)

    Atzei, A.; Swanson, P.; Anselmi, A.

    1992-01-01

    The STEP experiment is a joint ESA/NASA mission candidate for selection as the next medium science project in the ESA scientific program. ESA and NASA have undertaken a joint feasibility study of STEP. The principles of STEP and details of the mission are presented and the mission and spacecraft are described. The primary objective of STEP is to measure differences in the rate of fall of test masses of different compositions to one part in 10 exp 17 of the total gravitational acceleration, a factor of 10 exp 8 improvement in sensitivity over previous experiments. STEP constitutes a comparison of gravitational and inertial mass or a test of the weak equivalence principle (WEP). A test of WEP that is six orders of magnitude more accurate than previous tests will reveal whether the underlying structure of the universe is filled with undiscovered small forces, necessitating a fundamental change in our theories of matter on all scales.

  12. Asteroid Impact Mission (aim) & Deflection Assessment: AN Opportunity to Understand Impact Dynamics and Modelling

    NASA Astrophysics Data System (ADS)

    Galvez, A.; Carnelli, I.; Fontaine, M.; Corral Van Damme, C.

    2012-09-01

    ESA's Future Preparation and Strategic Studies Office has carried out the Asteroid Impact Mission (AIM) study with the objective of defining an affordable and fully independent mission element that ESA could contribute to an Asteroid Impact Deflection Assessment campaign (AIDA), a joint effort of ESA, JHU/APL, NASA, OCA and DLR. The mission design foresees two independent spacecraft, one impactor (DART) and one rendezvous probe (AIM). The target of this mission is the binary asteroid system (65803) Didymos (1996 GT): one spacecraft, DART, would impact the secondary of the Didymos binary system while AIM would observe and measure any the change in the relative orbit. For this joint project, the timing of the experiment is set (maximum proximity of the target to Earth allowing for ground-based characterisation of the experiment) but the spacecraft are still able to pursue their missions fully independently. This paper describes in particular the AIM rendezvous mission concept.

  13. STS-71 Mission Highlights Resources Tape

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of the STS-71 Space Shuttle Orbiter Atlantis Commander Robert L. Gibson, Pilot Charles J. Precourt, Mission Specialists, Ellen S. Baker, Bonnie J. Dunbar, Gregory J. Harbaugh, and Payload Specialists, Norman E. Thagard, Vladimir Dezhurov, and Gennadiy Strekalov present an overview of their mission. It's primary objective is the first Mir docking with a space shuttle and crew transfer. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; on orbit activities; rendezvous with Mir; Shuttle/Mir joint activities; undocking; and the shuttle landing.

  14. SAC-C mission, an example of international cooperation

    NASA Astrophysics Data System (ADS)

    Colomb, F.; Alonso, C.; Hofmann, C.; Nollmann, I.

    In comp liance with the objectives established in the National Space Program, Argentina in Space 1997-2008 ((Plan Espacial Nacional, Argentina en el Espacio 1997-2008), the National Commission on Space Activities (Comisión Nacional de Actividades Espaciales - CONAE) undertook the design, construction, and launching of the SAC-C satellite in close collaboration with NASA. The purpose of this Mission is to carry out observations of interest both for the USA and Argentina, thus contributing effectively to NASA's Earth Science Program and to CONAE's National Space Program. The SAC-C is an international Earth observing satellite mission conceived as a partnership between CONAE and NASA, with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. A Delta II rocket successfully launched it on November 21st, 2000, from Vandenberg AFB, California, USA. Ten instruments on board the SAC-C perform different studies related to the ground and sea ecosystems, the atmosphere and the geomagnetic field. There are also technological experiments for determination of the satellite attitude and velocity as well as for the studies of the influence of space radiation on advanced electronic components . The inclusion of SAC-C in the AM Constellation, jointly with NASA satellites Landsat 7, EO 1 and Terra, is another example of important international cooperation which synergies the output of any single Mission. The Constellation has been working since March 2001 as a single mission and several cooperative activities have been undertaken including several jointly sponsored technical workshops and collaborative spacecraft navigation experiments. A flight campaign of the NASA AVIRIS instrument was performed in Argentine during January and February 2001, for calibration of SAC-C and EO 1 cameras and the development of joint scientific works. In Cordoba Space Center a jointly operated ground GPS reference

  15. Wireless Network Communications Overview for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2009-01-01

    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.

  16. 78 FR 49242 - Relief From Joint and Several Liability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Relief From Joint and Several Liability AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice... joint and several tax liability under section 6015 of the Internal Revenue Code (Code) and relief from... are husband and wife to file a joint Federal income tax return. Married individuals who choose to file...

  17. MISSION CONTROL CENTER (MCC) - APOLLO-SOYUZ TEST PROJECT (ASTP) - JSC

    NASA Image and Video Library

    1975-07-17

    S75-28683 (17 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. M.P. Frank, the American senior ASTP flight director, is seated at his console in the right foreground. He is watching the large television monitor which shows a view of the Soyuz spacecraft as seen from the Apollo spacecraft during rendezvous and docking maneuvers.

  18. STS-95 Mission Specialist Robinson suits up during TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Stephen K. Robinson, with the help of Carlos Gillis, of Lockheed Martin, suits up in the Operations and Checkout Building prior to his trip to Launch Pad 39-B. Robinson and the rest of the STS-95 crew are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  19. Data Management Coordinators Monitor STS-78 Mission at the Huntsville Operations Support Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  20. CMAQ's Support of EPA's Mission

    EPA Pesticide Factsheets

    At Federal, State, and Local agencies, CMAQ is often used when developing regulatory policies because it represents the state-of-the-science in air quality modeling. See how CMAQ supports the EPA mission of protecting human health and the environment.

  1. 2016 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs.

  2. Project Helios-A. [mission planning for solar probe

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Helios-A solar probe which will fly within 28 million miles of the sun is described as a joint American and German project. The spacecraft and instrument designs, planned experiments, and mission are briefly discussed.

  3. Lcross Lunar Impactor - Lessons Learned from a Small Satellite Mission

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel

    2010-01-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) launched with the Lunar Reconnaissance Orbiter (LRO) on June 18, 2009. While the science purpose of the LCROSS mission was to determine the presence of water-ice in a permanently-shadowed crater on the moon, the functional purpose was to be a pioneer for future low-cost, risk-tolerant small satellite NASA missions. Recent strategic changes at the Agency level have only furthered the importance of small satellite missions. NASA Ames Research Center and its industry partner, Northrop-Grumman, initiated this spacecraft project two-years after its co-manifest mission had started, with less than one-fifth the budget. With a $79M total cost cap (including operations and reserves) and 31-months until launch, LCROSS needed a game-changing approach to be successful. At the LCROSS Confirmation Review, the ESMD Associate Administrator asked the Project team to keep a close record of lessons learned through the course of the mission and share their findings with the Agency at the end of the mission. This paper summarizes the Project, the mission, its risk position, and some of the more notable lessons learned.

  4. LCROSS Lunar Impactor - Lessons Learned from a Small Satellite Mission

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel R.

    2010-01-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) launched with the Lunar Reconnaissance Orbiter (LRO) on June 18, 2009. While the science function of the LCROSS mission was to determine the presence of water-ice in a permanently-shadowed crater on the moon, the operational purpose was to be a pioneer for future low-cost, risk-tolerant small satellite NASA missions. Recent strategic changes at the Agency level have only furthered the importance of small satellite missions. NASA Ames Research Center and its industry partner, Northrop-Grumman, initiated this spacecraft project two-years after its co-manifest mission had started, with less than one-fifth the budget. With a $79M total cost cap (including operations and reserves) and 31-months until launch, LCROSS needed a game-changing approach to be successful. At the LCROSS Confirmation Review, the ESMD Associate Administrator asked the Project team to keep a close record of lessons learned through the course of the mission and share their findings with the Agency at the end of the mission. This paper summarizes the Project, the mission, its risk position, and some of the more notable lessons learned.

  5. The Prisma Hyperspectra Mission

    NASA Astrophysics Data System (ADS)

    Loizzo, R.; Ananasso, C.; Guarini, R.; Lopinto, E.; Candela, L.; Pisani, A. R.

    2016-08-01

    PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an Italian Space Agency (ASI) hyperspectral mission currently scheduled for the lunch in 2018. PRISMA is a single satellite placed on a sun- synchronous Low Earth Orbit (620 km altitude) with an expected operational lifetime of 5 years. The hyperspectral payload consists of a high spectral resolution (VNIR-SWIR) imaging spectrometer, optically integrated with a medium resolution Panchromatic camera. PRISMA will acquire data on areas of 30 km Swath width and with a Ground Sampling Distance (GSD) of 30 m (hyperspectral) and of 5 m Panchromatic (PAN). The PRISMA Ground Segment will be geographically distributed between Fucino station and ASI Matera Space Geodesy Centre and will include the Mission Control Centre, the Satellite Control Centre and the Instrument Data Handling System. The science community supports the overall lifecycle of the mission, being involved in algorithms definition, calibration and validation activities, research and applications development.

  6. Next Space Station Crew Previews Mission

    NASA Image and Video Library

    2017-10-11

    NASA astronaut Scott Tingle and crewmates Anton Shkaplerov of the Russian space agency Roscosmos and Norishege Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed their upcoming mission to the International Space Station in a news conference on Oct. 11 at NASA’s Johnson Space Center in Houston. Tingle, Shkaplerov and Kanai will launch to the space station aboard the Soyuz MS-07 spacecraft on Dec. 17 from the Baikonur Cosmodrome in Kazakhstan. They will join the station’s Expedition 54 crew, and return to Earth in April 2018 as members of Expedition 55. During a planned four-month mission, the station crew members will take part in about 250 research investigations and technology demonstrations not possible on Earth in order to advance scientific knowledge of Earth, space, physical and biological sciences. Science conducted on the space station continues to yield benefits for humanity and will enable future long-duration human and robotic exploration into deep space, including missions past the Moon and Mars. This will be the first spaceflight for Tingle and Kanai, and the third for Shkaplerov.

  7. The Joint Staff Strategic Information Technology Plan

    DTIC Science & Technology

    1995-09-01

    analyses or assessments. Gaming Division ( SAGD ) is responsible for: This element also addresses the modification of existing applications necessary to...Joint Military Net Assessment, and the Joint Strategic Planning System. SAGD Gaming Suite: SAGD’s mission has • undergone revision and expansion, As...situations using both gaming and analytical assessments. approaches. Table 3 gives characteristics of some of the types of applications that SAGD has • * 4

  8. Unveiling Mercury's Mysteries with BepiColombo - an ESA/JAXA Mission to Explore the Innermost Planet of our Solar System

    NASA Astrophysics Data System (ADS)

    Benkhoff, J.

    2017-12-01

    NASA's MESSENGER mission has fundamentally changed our view of the innermost planet. Mercury is in many ways a very different planet from what we were expecting. Now BepiColombo has to follow up on answering the fundamental questions that MESSENGER raised and go beyond. BepiColombo is a joint project between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). The Mission consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The mission scenario foresees a launch of both spacecraft with an ARIANE V in October 2018 and an arrival at Mercury in 2025. From their dedicated orbits the two spacecraft will be studying the planet and its environment. BepiColombo will study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury, the least explored planet in the inner Solar System. In addition, the BepiColombo mission will provide a rare opportunity to collect multi-point measurements in a planetary environment. This will be particularly important at Mercury because of short temporal and spatial scales in the Mercury's environment. The foreseen orbits of the MPO and MMO will allow close encounters of the two spacecrafts throughout the mission. The MPO scientific payload comprises eleven instruments/instrument packages; The MMO comprises 5 instruments/instrument packages to the the study of the environment. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The BepiColombo mission will complement and follow up the work of NASA's MESSENGER mission by

  9. Apollo Soyuz, mission evaluation report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.

  10. Mission Applications Support at NASA: The Proposal Surface Water and Ocean Topography Mission

    NASA Astrophysics Data System (ADS)

    Srinivasan, Margaret; Peterson, Craig; Callahan, Phil

    2013-09-01

    The NASA Applied Sciences Program is actively supporting an agency-wide effort to formalize a mission-level data applications approach. The program goal is to engage early-phase NASA Earth satellite mission project teams with applied science representation in the flight mission planning process. The end objective is to "to engage applications-oriented users and organizations early in the satellite mission lifecycle to enable them to envision possible applications and integrate end-user needs into satellite mission planning as a way to increase the benefits to the nation."Two mission applications representatives have been selected for each early phase Tier 2 mission, including the Surface Water and Ocean Topography (SWOT) mission concept. These representatives are tasked with identifying and organizing the applications communities and developing and promoting a process for the mission to optimize the reach of existing applications efforts in order to enhance the applications value of the missions. An early project-level awareness of mission planning decisions that may increase or decrease the utility of data products to diverse user and potential user communities (communities of practice and communities of potential, respectively) has high value and potential return to the mission and to the users.Successful strategies to enhance science and practical applications of projected SWOT data streams will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities.Some of the elements of this program include:• Identify early adopters of data products• Coordinate applications team, including;Project Scientist, Payload Scientist, ProjectManager, data processing lead• Describe mission and products sufficiently inearly stage of development to effectively incorporate all potential usersProducts and activities resulting from this effort will include (but are not limited to); workshops, workshop

  11. Feasibility study of a long duration balloon flight with NASA/GSFC and Soviet Space Agency Gamma Ray Spectrometers

    NASA Technical Reports Server (NTRS)

    Sharp, William E.; Knoll, Glenn

    1989-01-01

    A feasibility study of conducting a joint NASA/GSFC and Soviet Space Agency long duration balloon flight at the Antarctic in Jan. 1993 is reported. The objective of the mission is the verification and calibration of gamma ray and neutron remote sensing instruments which can be used to obtain geochemical maps of the surface of planetary bodies. The gamma ray instruments in question are the GRAD and the Soviet Phobos prototype. The neutron detectors are supplied by Los Alamos National Laboratory and the Soviet Phobos prototype. These are to be carried aboard a gondola that supplies the data and supplies the power for the period of up to two weeks.

  12. First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).

  13. First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  14. Benchmark Problems for Space Mission Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Leitner, Jesse A.; Folta, David C.; Burns, Richard

    2003-01-01

    To provide a high-level focus to distributed space system flight dynamics and control research, several benchmark problems are suggested for space mission formation flying. The problems cover formation flying in low altitude, near-circular Earth orbit, high altitude, highly elliptical Earth orbits, and large amplitude lissajous trajectories about co-linear libration points of the Sun-Earth/Moon system. These problems are not specific to any current or proposed mission, but instead are intended to capture high-level features that would be generic to many similar missions that are of interest to various agencies.

  15. Planetary protection implementation on future Mars lander missions

    NASA Astrophysics Data System (ADS)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  16. Planetary protection implementation on future Mars lander missions

    NASA Technical Reports Server (NTRS)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  17. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency, looks at the inside of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency, looks at the inside of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  18. KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialists Charles Camarda and Soichi Noguchi sit outside the crew hatch on the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. They and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins and Mission Specialists Charles Camarda and Soichi Noguchi sit outside the crew hatch on the orbiter Discovery. Noguchi is with the Japanese Aerospace and Exploration Agency. They and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  19. The GMES Sentinel-5 mission for operational atmospheric monitoring: status and developments

    NASA Astrophysics Data System (ADS)

    Sierk, Bernd; Bezy, Jean-Loup; Caron, Jerôme; Meynard, Roland; Veihelmann, Ben; Ingmann, Paul

    2017-11-01

    Sentinel-5 is an atmospheric monitoring mission planned in the frame of the joint EU/ESA initiative Global Monitoring for Environment and Security (GMES). The objective of the mission, planned to be launched in 2020, is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications.

  20. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Mission Commander Eileen Collins; Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center; and Mission Specialists Soichi Noguchi and Charles Camarda. In the foreground is Mission Specialist Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Pilot James Kelly and Mission Specialists Andy Thomas and Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Mission Commander Eileen Collins; Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center; and Mission Specialists Soichi Noguchi and Charles Camarda. In the foreground is Mission Specialist Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Pilot James Kelly and Mission Specialists Andy Thomas and Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  1. Rosetta Mission Selfie at 10 Miles

    NASA Image and Video Library

    2014-11-12

    The Philae lander of the European Space Agency Rosetta mission took this self-portrait of the spacecraft on Sept. 7, 2014, at a distance of about 10 miles 16 kilometers from comet 67P/Churyumov-Gerasimenko.

  2. Rosetta Mission Selfie at 30 Miles

    NASA Image and Video Library

    2014-11-11

    The Philae lander of the European Space Agency Rosetta mission took this self-portrait of the spacecraft on Sept. 7, 2014, at a distance of about 30 miles 50 kilometers from comet 67P/Churyumov-Gerasimenko.

  3. Summary of LaRC 2-inch Erectable Joint Hardware Heritage Test Data

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.

    2016-01-01

    As the National Space Transportation System (STS, also known as the Space Shuttle) went into service during the early 1980's, NASA envisioned many missions of exploration and discovery that could take advantage of the STS capabilities. These missions included: large orbiting space stations, large space science telescopes and large spacecraft for manned missions to the Moon and Mars. The missions required structures that were significantly larger than the payload volume available on the STS. NASA Langley Research Center (LaRC) conducted studies to design and develop the technology needed to assemble the large space structures in orbit. LaRC focused on technology for erectable truss structures, in particular, the joint that connects the truss struts at the truss nodes. When the NASA research in large erectable space structures ended in the early 1990's, a significant amount of structural testing had been performed on the LaRC 2-inch erectable joint that was never published. An extensive set of historical information and data has been reviewed and the joint structural testing results from this historical data are compiled and summarized in this report.

  4. Mars curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Among other attractions, 3-D images from Mars provided 'Wow!' glimpses of the Red Planet. In addition to the Mars activities, visitors were able to tour other space-related exhibits at the center.

  5. MISSION CONTROL CENTER (MCC) - APOLLO-SOYUZ TEST PROJECT (ASTP) - JSC

    NASA Image and Video Library

    1975-07-17

    S75-28682 (17 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. The large television monitor shows a view of the Soyuz spacecraft as seen from the Apollo spacecraft during rendezvous and docking maneuvers. Eugene F. Kranz, JSC Deputy Director of Flight Operations, is standing in the foreground. M.P. Frank, the American senior ASTP flight director, is partially obscured on the right.

  6. STS-87 Mission Specialist Takao Doi suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, gives a thumbs up in his launch and entry suit in the Operations and Checkout Building. He and the five other crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Dr. Doi is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Winston Scott during STS-87.

  7. TRMM (Tropical Rainfall Measuring Mission): A satellite mission to measure tropical rainfall

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne (Editor)

    1988-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is presented. TRMM is a satellite program being studied jointly by the United States and Japan which would carry out the systematic study of tropical rainfall required for major strides in weather and climate research. The scientific justification for TRMM is discussed. The implementation process for the scientific community, NASA management, and the other decision-makers and advisory personnel who are expected to evaluate the priority of the project is outlined.

  8. Missions to Venus

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  9. Process-Based Mission Assurance- Knowledge Management System

    NASA Astrophysics Data System (ADS)

    Kantzes, Zachary S.; Wander, Stephen; Otero, Suzanne; Vantine, William; Stuart, Richard

    2005-12-01

    The Process-Based Mission Assurance - Knowledge Management System (PBMA-KMS) implemented at the National Aeronautics and Space Administration (NASA) focuses on the practical application of the knowledge management (KM) theory and is based on a systems engineering management approach coupled to a continual improvement and risk management philosophy. Not to be confused with an Agency mandate, an intense focus has been placed on grassroots input to the future of the product. By providing emphasis to both Agency safety and mission success objectives and individual users' needs, the PBMA-KMS team has been able to be both reactive to Agency requirements and proactive to the needs of the community.PBMA-KMS is an excellent case study on how to use new approaches to facilitate and integrate safety into the culture of an organization. Principle discussion topics include: • Overarching themes,• Tactical approaches,• Highlights of key functionalities, and• Agency KM approach of managed Darwinism.PBMA-KMS can show how, by providing top-level guidance along with the necessary tools and support, the organization not only receives immediate value, but the long-ranging benefits of a more experienced, effective, and engaged workforce.

  10. Airborne and Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-421 Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) As of FY 2017...Information Program Name Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) DoD Component Army Responsible Office References SAR...UNCLASSIFIED 5 Mission and Description Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) products are software programmable

  11. The BRITE Constellation Nanosatellite Mission: Testing, Commissioning, and Operations

    NASA Astrophysics Data System (ADS)

    Pablo, H.; Whittaker, G. N.; Popowicz, A.; Mochnacki, S. M.; Kuschnig, R.; Grant, C. C.; Moffat, A. F. J.; Rucinski, S. M.; Matthews, J. M.; Schwarzenberg-Czerny, A.; Handler, G.; Weiss, W. W.; Baade, D.; Wade, G. A.; Zocłońska, E.; Ramiaramanantsoa, T.; Unterberger, M.; Zwintz, K.; Pigulski, A.; Rowe, J.; Koudelka, O.; Orleański, P.; Pamyatnykh, A.; Neiner, C.; Wawrzaszek, R.; Marciniszyn, G.; Romano, P.; Woźniak, G.; Zawistowski, T.; Zee, R. E.

    2016-12-01

    BRIght Target Explorer (BRITE) Constellation, the first nanosatellite mission applied to astrophysical research, is a collaboration among Austria, Canada and Poland. The fleet of satellites (6 launched; 5 functioning) performs precise optical photometry of the brightest stars in the night sky. A pioneering mission like BRITE—with optics and instruments restricted to small volume, mass and power in several nanosatellites, whose measurements must be coordinated in orbit—poses many unique challenges. We discuss the technical issues, including problems encountered during on-orbit commissioning (especially higher-than-expected sensitivity of the CCDs to particle radiation). We describe in detail how the BRITE team has mitigated these problems, and provide a complete overview of mission operations. This paper serves as a template for how to effectively plan, build and operate future low-cost niche-driven space astronomy missions. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNiTP MNiSW), and National Science Centre (NCN).

  12. Beyond Mission Command: Maneuver Warfare for Cyber Command and Control

    DTIC Science & Technology

    2015-05-18

    operation in an A2AD environment. 15. SUBJECT TERMS command and control; maneuver warfare; cyberspace; cyberspace operations; cyber warfare , mission...Some Principles of Cyber Warfare (NWC 2160) (U.S. Naval War College, Joint Military Operations Department, Newport, RI: U.S. Naval War College...research/ innovationleadership.pdf. Crowell, Richard M. Some Principles of Cyber Warfare (NWC 2160). U.S. Naval War College, Joint Military Operations

  13. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  14. KENNEDY SPACE CENTER, FLA. - The STS-114 crew gathers around the work stand holding the insert for Discovery’s nose cap. From left are Mission Specialists Soichi Noguchi, and Charles Camarda; Commander Eileen Collins; Mission Specialists Andrew Thomas and Wendy Lawrence; Pilot James Kelly; and Mission Specialist Stephen Robinson. Noguchi represents the Japanese Aerospace and Exploration Agency. The insert is being fitted with thermal protection system insulation blankets. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew gathers around the work stand holding the insert for Discovery’s nose cap. From left are Mission Specialists Soichi Noguchi, and Charles Camarda; Commander Eileen Collins; Mission Specialists Andrew Thomas and Wendy Lawrence; Pilot James Kelly; and Mission Specialist Stephen Robinson. Noguchi represents the Japanese Aerospace and Exploration Agency. The insert is being fitted with thermal protection system insulation blankets. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  15. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese space agency NASDA, poses on the deck of one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. He and other crew members Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson toured the ships. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese space agency NASDA, poses on the deck of one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. He and other crew members Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson toured the ships. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  16. Mission Statements: A Thematic Analysis of Rhetoric across Institutional Type

    ERIC Educational Resources Information Center

    Morphew, Christopher C.; Hartley, Matthew

    2006-01-01

    Mission statements are ubiquitous in higher education. Accreditation agencies demand them, strategic planning is predicated on their formulation, and virtually every college and university has one available for review. Moreover, higher education institutions are constantly revisiting and revising their mission statements: as recently as the…

  17. View of USSR flight controllers in Mission Control during touchdown

    NASA Image and Video Library

    1975-07-21

    S75-28659 (21 July 1975) --- An overall view of the group of Soviet Union flight controllers who served at the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. They are applauding the successful touchdown of the Soyuz spacecraft in Central Asia. The television monitor had just shown the land landing of the Soyuz descent vehicle.

  18. Phobos-Grunt ; Russian Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Marov, M.

    As an important milestone in the Mars exploration, space vehicle of new generation "Phobos-Grunt" is planned to be launched by the Russian Aviation and Space Agency. The project is optimized around Phobos sample return mission and follow up missions targeted to study some Main asteroid belt bodies, NEO , and short period comets. The principal constrain is "Soyuz-Fregat" rather than "Proton" launcher utilization to accomplish these challenging goals. The vehicle design incorporates innovative SEP technology involving electrojet engines that allowed us to increase significantly the missions energetic capabilities, as well as high autonomous on- board systems . Basic criteria underlining the "Phobos-Grunt" mission scenario, scientific objections and rationale, involving Mars observations during the vehicle insertion into Mars orbit and Phobos approach manoeuvres, are discussed and an opportunity for international cooperation is suggested.

  19. STS-99 Commander and Pilot for the SRTM Mission, Practice Flight in the Shuttle Training Aircraft

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This radar system produced unrivaled 3-D images of the Earth's Surface. The mission was launched at 12:31 on February 11, 2000 onboard the space shuttle Endeavour, and led by Commander Kevin Kregel. The crew was Pilot Dominic L. Pudwill Gorie and Mission Specialists Janet L. Kavandi, Janice E. Voss, Mamoru Mohri from the National Space Development Agency (Japanese Space Agency), and Gerhard P. J. Thiele from DARA (German Space Agency). This tape shows Commander Kregel and Pilot Gorie getting on board the Shuttle Training Aircraft and practicing approaches for the shuttle landing.

  20. Mission Specialist Pedro Duque smiles at camera while at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA), smiles for the camera from Launch Pad 39B. The STS-95 crew were making final preparations for launch, targeted for liftoff at 2 p.m. on Oct. 29. Other crew members not shown are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinsion, and and Payload Specialists John H. Glenn Jr., senator from Ohio, and Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The STS-95 mission is expected to last 8 days, 21 hours and 49 minutes, returning to KSC at 11:49 a.m. EST on Nov. 7.

  1. STS-87 Mission Specialist Scott in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Winston Scott is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39B by Danny Wyatt, NASA quality assurance specialist. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. Scott also performed a spacewalk on the STS-72 mission.

  2. The Collaborative Information Portal and NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan

    2005-01-01

    The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

  3. Visual Navigation - SARE Mission

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Kuba, Jose; Caruso, Daniel

    2007-01-01

    The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.

  4. The ARIEL mission reference sample

    NASA Astrophysics Data System (ADS)

    Zingales, Tiziano; Tinetti, Giovanna; Pillitteri, Ignazio; Leconte, Jérémy; Micela, Giuseppina; Sarkar, Subhajit

    2018-02-01

    The ARIEL (Atmospheric Remote-sensing Exoplanet Large-survey) mission concept is one of the three M4 mission candidates selected by the European Space Agency (ESA) for a Phase A study, competing for a launch in 2026. ARIEL has been designed to study the physical and chemical properties of a large and diverse sample of exoplanets and, through those, understand how planets form and evolve in our galaxy. Here we describe the assumptions made to estimate an optimal sample of exoplanets - including already known exoplanets and expected ones yet to be discovered - observable by ARIEL and define a realistic mission scenario. To achieve the mission objectives, the sample should include gaseous and rocky planets with a range of temperatures around stars of different spectral type and metallicity. The current ARIEL design enables the observation of ˜1000 planets, covering a broad range of planetary and stellar parameters, during its four year mission lifetime. This nominal list of planets is expected to evolve over the years depending on the new exoplanet discoveries.

  5. STS-71, Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Frike, Robert W., Jr.

    1995-01-01

    The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

  6. 5 CFR 1632.3 - Conduct of agency business.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Conduct of agency business. 1632.3... OBSERVATION OF MEETINGS § 1632.3 Conduct of agency business. Members shall not jointly conduct or dispose of official Board business other than in accordance with this part. ...

  7. Barratt signs mission decal in the JEM during Joint Operations

    NASA Image and Video Library

    2009-07-25

    S127-E-008623 (25 July 2009) --- Flight day 11 activities for the joint shuttle-station crews included the traditional autographing of the station. Astronaut Mike Barratt, Expedition 20 flight engineer, has the pen in this frame. Photo credit: NASA

  8. 76 FR 3157 - Joint Operations Center Relocation Project, Sacramento County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Water Resources (DWR), the lead State agency, will prepare a joint EIS/EIR for the proposed Joint... following departments: DWR's Division of Operations and Maintenance, Operations Control Office, State Water...

  9. Environmental Impact Statement for the Cassini Mission. Supplement 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Final Supplemental Environmental Impact Statement (FSEIS) to the 1995 Cassini mission Environmental Impact Statement (EIS) focuses on information recently made available from updated mission safety analyses. This information is pertinent to the consequence and risk analyses of potential accidents during the launch and cruise phases of the mission that were addressed in the EIS. The type of accidents evaluated are those which could potentially result in a release of plutonium dioxide from the three Radioisotope Thermoelectric Generators (RTGS) and the up to 129 Radioisotope Heater Units (RHUS) onboard the Cassini spacecraft. The RTGs use the heat of decay of plutonium dioxide to generate electric power for the spacecraft and instruments. The RHUs, each of which contains a small amount of plutonium dioxide, provide heat for controlling the thermal environment of the spacecraft and several of its instruments. The planned Cassini mission is an international cooperative effort of the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI) to conduct a 4-year scientific exploration of the planet Saturn, its atmosphere, moons, rings, and magnetosphere.

  10. 12 CFR 261b.3 - Conduct of agency business.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Conduct of agency business. 261b.3 Section 261b... SYSTEM RULES REGARDING PUBLIC OBSERVATION OF MEETINGS § 261b.3 Conduct of agency business. Members shall not jointly conduct or dispose of official agency business other than in accordance with this part. ...

  11. 12 CFR 261b.3 - Conduct of agency business.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Conduct of agency business. 261b.3 Section 261b... SYSTEM (CONTINUED) RULES REGARDING PUBLIC OBSERVATION OF MEETINGS § 261b.3 Conduct of agency business. Members shall not jointly conduct or dispose of official agency business other than in accordance with...

  12. NOAA's Joint Polar Satellite System's (JPSS) Proving Ground and Risk Reduction (PGRR) Program - Bringing JPSS Science into Support of Key NOAA Missions!

    NASA Astrophysics Data System (ADS)

    Sjoberg, W.; McWilliams, G.

    2017-12-01

    This presentation will focus on the continuity of the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) and key activities of the PGRR Initiatives. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. The JPSS Program Office has used two PGRR Project Proposals to establish an effective approach to managing its science and algorithm teams in order to focus on key NOAA missions. The presenter will provide details of the Initiatives and the processes used by the initiatives that have proven so successful. Details of the new 2017 PGRR Call-for-Proposals and the status of project selections will be discussed.

  13. A new European small platform: Proteus and prospected optical application missions

    NASA Astrophysics Data System (ADS)

    Dubois, J.-B.; Paoli, F.

    2018-04-01

    Progress in technology in recent years and new industrial approaches now make it possible to design valuable optical missions using a small-class satellite, like the PROTEUS multi mission platform. Some future space optical missions using existing or planned instruments, combined with the PROTEUS platform, have been assessed by AEROSPATIALE / SPACE and DEFENSE and/or the CNES (French National Space Agency).

  14. Joint Chiefs of Staff > Directorates > J1 | Manpower and Personnel

    Science.gov Websites

    Management J1 | Manpower and Personnel J2 | Joint Staff Intelligence J3 | Operations J4 | Logistics► J8 | Force Structure, Resources & Assessment Contact J1 Manpower and Personnel Home : Directorates : J1 | Manpower and Personnel Mission To provide the Chairman of the Joint Chiefs of Staff

  15. 77 FR 69619 - Draft Recommendations of Joint Outreach Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Team AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Availability of draft recommendations of Western/DOE Joint Outreach Team. SUMMARY: The Western Area Power Administration (Western), a... recommendations of the Western/DOE Joint Outreach Team (JOT) for review and comment by Western's customers, Tribes...

  16. China forced to delay its maiden mission to Mars

    NASA Astrophysics Data System (ADS)

    Li, Jiao

    2009-11-01

    Scientists in China are urging the government to build its own capability to launch a craft to Mars after the county's first satellite to the red planet was delayed last month. China's mission to Mars, the Yinghuo-1 orbiter, was postponed after the Russian Space Agency, Roscosmos, announced that its Phobos-Grunt mission will now be launched in 2011.

  17. Planetary protection and Mars: requirements and constraints on the 2016 and 2018 missions, and beyond

    NASA Astrophysics Data System (ADS)

    Rummel, J.; Kminek, G.; Conley, C.

    2011-10-01

    The suite of missions being planned currently by NASA and ESA as a partnership under the name "ExoMars" include an orbiter and an entry, descent, and landing demonstrator module (EDM) for the 2016 "ExoMars Trace Gas Orbiter" mission (ExoMars TGO), as well as a highly capable rover to be launched in 2018 to address the original ExoMars objectives (including the Pasteur payload). This 2018 ExoMars rover is expected to begin a series of missions leading to the first sample return mission from Mars, also conducted jointly between NASA, ESA, and their partners (JMSR). Each of these missions and mission components has a role in enabling future Mars exploration, including the search for life or life-related compounds on Mars, and each of them has the potential to carry confounding biological and organic materials into sensitive environments on Mars. Accordingly, this suite of missions will be subjected to joint planetary protection requirements applied by both ESA and NASA to their respective components, according to the COSPAR-delineated planetary protection policy to protect Mars from contamination, and eventually to provide for the protection of the Earth from potential life returned in a martian sample. This paper will discuss the challenges ahead for mission designers and the mission science teams, and will outline some of the potential pitfalls involved with different mission options.

  18. Phobos-Grunt: Russian sample return mission

    NASA Astrophysics Data System (ADS)

    Marov, M. Ya.; Avduevsky, V. S.; Akim, E. L.; Eneev, T. M.; Kremnev, R. S.; Kulikov, S. D.; Pichkhadze, K. M.; Popov, G. A.; Rogovsky, G. N.

    2004-01-01

    As an important milestone in the exploration of Mars and small bodies, a new generation space vehicle ``Phobos-Grunt'' is planned to be launched by the Russian Aviation and Space Agency. The project is optimized around a Phobos sample return mission and follow up missions targeted to study some main asteroid belt bodies, NEOs and short period comets. The principal constraint is use of the ``Soyuz-Fregat'' rather than the ``Proton'' launcher to accomplish these challenging goals. The vehicle design incorporates innovative SEP technology involving electrojet engines that allowed us to increase significantly the mission's energetic capabilities, as well as highly autonomous on-board systems. Basic criteria underlining the ``Phobos-Grunt'' mission scenario, scientific objectives and rationale including Mars observations during the vehicle's insertion into Mars orbit and Phobos approach maneuvers, are discussed and an opportunity for international cooperation is suggested.

  19. Advanced Research Projects Agency counterdrug program

    NASA Astrophysics Data System (ADS)

    Pennella, John J.

    1994-03-01

    The Department of Defense (DoD), in support of the National Drug Control Strategy, has designated that detecting and countering the production, trafficking and use of illegal drugs is a high priority national security mission. The Advanced Research Projects Agency (ARPA) Counterdrug Program is assisting DoD in this objective by developing technology and prototype systems to enhance the capabilities of the DoD and civilian law enforcement agencies, consistent with the DoD mission and the supply reduction goals of the National Drug Control Strategy. The objective of this paper is to summarize the current ARPA Counterdrug Program, with special emphasis on the current efforts and future plans for developing technology to meet the National needs for Non-Intrusive Inspection.

  20. What It Takes. Air Force Command of Joint Operations

    DTIC Science & Technology

    2009-01-01

    Iraq Assistance Group IDE intermediate developmental education IO international organization ISAF International Security and Assistance Force ISR...Operations Table A.1—Continued Joint Task Force Mission/Operation Start End Service Command Rank JTF–Joint Area Support Group (JASG) Iraqi Freedom...be of interest to a wide group of Air Force personnel involved in the development and func- tion of the service’s command organizations, including

  1. 75 FR 3209 - Mission Statement: U.S. Aerospace Business Development Mission to Canada, April 14-15, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... Business Development Mission to Canada, April 14-15, 2010 AGENCY: International Trade Administration... International Trade Administration, U.S. and Foreign Commercial Service is organizing a U.S. Aerospace Business... companies to gain valuable international business experience in a low risk, highly important aerospace...

  2. 76 FR 7152 - ICT Trade Mission to Saudi Arabia; Application Deadline Extended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... DEPARTMENT OF COMMERCE International Trade Administration ICT Trade Mission to Saudi Arabia; Application Deadline Extended AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. Timeframe for Recruitment and Applications Mission recruitment will be conducted in an open and...

  3. NASA Curation Preparation for Ryugu Sample Returned by JAXA's Hayabusa2 Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Righter, Kevin; Snead, Christopher J.; McCubbin, Francis M.; Pace, Lisa F.; Zeigler, Ryan A.; Evans, Cindy

    2017-01-01

    The NASA OSIRIS-REx and JAXA Hayabusa2 missions to near-Earth asteroids Bennu and Ryugu share similar mission goals of understanding the origins of primitive, organic-rich asteroids. Under an agreement between JAXA and NASA, there is an on-going and productive collaboration between science teams of Hayabusa2 and OSIRIS-REx missions. Under this agreement, a portion of each of the returned sample masses will be exchanged between the agencies and the scientific results of their study will be shared. NASA’s portion of the returned Hayabusa2 sample, consisting of 10% of the returned mass, will be jointly separated by NASA and JAXA. The sample will be legally and physically transferred to NASA’s dedicated Hayabusa2 curation facility at Johnson Space Center (JSC) no later than one year after the return of the Hayabusa2 sample to Earth (December 2020). The JSC Hayabusa2 curation cleanroom facility design has now been completed. In the same manner, JAXA will receive 0.5% of the total returned OSIRIS-REx sample (minimum required sample to return 60 g, maximum sample return capacity of 2 kg) from the rest of the specimen. No later than one year after the return of the OSIRIS-REx sample to Earth (September 2023), legal, physical, and permanent custody of this sample subset will be transferred to JAXA, and the sample subset will be brought to JAXA’s Extraterrestrial Sample Curation Center (ESCuC) at Institute of Space and Astronautical Science, Sagamihara City Japan.

  4. Space-Based Gravitational-wave Mission Concept Studies

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).

  5. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. Mission Specialists Soichi Noguchi (left) and Andrew Thomas (center) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. Noguchi is with the Japanese Aerospace Exploration Agency (JAXA). The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time becoming familiar with Shuttle and mission equipment. Mission Specialists Soichi Noguchi (left) and Andrew Thomas (center) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. Noguchi is with the Japanese Aerospace Exploration Agency (JAXA). The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.

  6. Beliefs about human agency influence the neural processing of gaze during joint attention.

    PubMed

    Caruana, Nathan; de Lissa, Peter; McArthur, Genevieve

    2017-04-01

    The current study measured adults' P350 and N170 ERPs while they interacted with a character in a virtual reality paradigm. Some participants believed the character was controlled by a human ("avatar" condition, n = 19); others believed it was controlled by a computer program ("agent" condition, n = 19). In each trial, participants initiated joint attention in order to direct the character's gaze toward a target. In 50% of trials, the character gazed toward the target (congruent responses), and in 50% of trials the character gazed to a different location (incongruent response). In the avatar condition, the character's incongruent gaze responses generated significantly larger P350 peaks at centro-parietal sites than congruent gaze responses. In the agent condition, the P350 effect was strikingly absent. Left occipitotemporal N170 responses were significantly smaller in the agent condition compared to the avatar condition for both congruent and incongruent gaze shifts. These data suggest that beliefs about human agency may recruit mechanisms that discriminate the social outcome of a gaze shift after approximately 350 ms, and that these mechanisms may modulate the early perceptual processing of gaze. These findings also suggest that the ecologically valid measurement of social cognition may depend upon paradigms that simulate genuine social interactions.

  7. 75 FR 9181 - Secretarial Indonesia Clean Energy Business Development Mission: Application Deadline Extended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Secretarial Indonesia Clean Energy Business Development Mission: Application Deadline Extended AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. Timeframe for Recruitment and Applications Mission recruitment will...

  8. 78 FR 57619 - Secretarial Infrastructure Business Development Mission to Mexico November 18-23, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... Development Mission to Mexico November 18-23, 2013 AGENCY: International Trade Administration, Department of..., 2013, regarding the Secretarial Infrastructure Business Development Mission to Mexico November 18-23... to Mexico November 18-23, 2013. Recruitment for this mission will conclude no later than September 20...

  9. Hydrogen Sorption Cryocoolers for the Planck Mission

    NASA Technical Reports Server (NTRS)

    Wade, L.; Bhandari, P.; Bowman, R.; Paine, C.; Morgante, G.; Lindensmith, C.; Crumb, D.; Prina, M.; Sugimura, R.; Rapp, D.

    1999-01-01

    Two continuous opertation 18K/20K sorption coolers are being developed by the Jet Propulsion Laboratory (JPL) as a NASA contribution to the European Space Agency (ESA) Planck mission that is currently planned for a 2007 launch.

  10. A seismic-network mission proposal as an example for modular robotic lunar exploration missions

    NASA Astrophysics Data System (ADS)

    Lange, C.; Witte, L.; Rosta, R.; Sohl, F.; Heffels, A.; Knapmeyer, M.

    2017-05-01

    In this paper it is intended to discuss an approach to reduce design costs for subsequent missions by introducing modularity, commonality and multi-mission capability and thereby reuse of mission individual investments into the design of lunar exploration infrastructural systems. The presented approach has been developed within the German Helmholtz-Alliance on Robotic Exploration of Extreme Environments (ROBEX), a research alliance bringing together deep-sea and space research to jointly develop technologies and investigate problems for the exploration of highly inaccessible terrain - be it in the deep sea and polar regions or on the Moon and other planets. Although overall costs are much smaller for deep sea missions as compared to lunar missions, a lot can be learned from modularity approaches in deep sea research infrastructure design, which allows a high operational flexibility in the planning phase of a mission as well as during its implementation. The research presented here is based on a review of existing modular solutions in Earth orbiting satellites as well as science and exploration systems. This is followed by an investigation of lunar exploration scenarios from which we derive requirements for a multi-mission modular architecture. After analyzing possible options, an approach using a bus modular architecture for dedicated subsystems is presented. The approach is based on exchangeable modules e.g. incorporating instruments, which are added to the baseline system platform according to the demands of the specific scenario. It will be described in more detail, including arising problems e.g. in the power or thermal domain. Finally, technological building blocks to put the architecture into practical use will be described more in detail.

  11. STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)

    NASA Image and Video Library

    1995-06-07

    S95-12706 (May 1995) --- Astronaut Koichi Wakata, representing Japan's National Space Development Agency (NASDA) and assigned as mission specialist for the STS-72 mission, checks over a copy of the flight plan. Wakata is on the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). He will join five NASA astronauts aboard Endeavour for a scheduled nine-day mission, now set for the winter of this year.

  12. Software Schedules Missions, Aids Project Management

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA missions require advanced planning, scheduling, and management, and the Space Agency has worked extensively to develop the programs and software suites necessary to facilitate these complex missions. These enormously intricate undertakings have hundreds of active components that need constant management and monitoring. It is no surprise, then, that the software developed for these tasks is often applicable in other high-stress, complex environments, like in government or industrial settings. NASA work over the past few years has resulted in a handful of new scheduling, knowledge-management, and research tools developed under contract with one of NASA s partners. These tools have the unique responsibility of supporting NASA missions, but they are also finding uses outside of the Space Program.

  13. The Hinode(Solar-B)Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Kosugi, T.; Matsuzaki, K.; Sakao, T.; Shimizu, T.; Sone, Y.; Tachikawa, S.; Minesugi, K.; Ohnishi, A.; Yamada, T.; Tsuneta, S.; hide

    2007-01-01

    The Hinode satellite (formerly Solar-B) of the Japan Aerospace Exploration Agency's Institute of Space and Astronautical Science (ISAS/JAXA) was successfully launched in September 2006. As the successor to the Yohkoh mission, it aims to understand how magnetic energy is transferred from the photosphere to the upper atmospheres and resulting in explosive energy releases. Hinode is an observatory style mission, with all the instruments being designed and built to work together to address the science aims. There are three instruments onboard: the Solar Optical Telescope (SOT), the EUV Imaging Spectrometer (EIS), and the X-ray Telescope (XRT). This paper overviews the mission, including the satellite, the scientific payload and operations. It will conclude with discussions on how the international science community can participate in the analysis of the mission data.

  14. 2015 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  15. Overview of the LARES Mission: orbit, error analysis and technological aspects

    NASA Astrophysics Data System (ADS)

    Ciufolini, Ignazio; Paolozzi, Antonio; Paris, Claudio

    2012-03-01

    LARES (LAser RElativity Satellite), is an Italian Space Agency (ASI) mission to be launched beginning of 2012 with the new European launch vehicle, VEGA; the launch opportunity was provided by the European Space Agency (ESA). LARES is a laser ranged satellite; it will be launched into a nearly circular orbit, with an altitude of 1450 km and an inclination of 69.5 degrees. The goal of the mission is the measurement of the Lense-Thirring effect with an uncertainty of few percent; such a small uncertainty will be achieved using LARES data together with data from the LAGEOS I (NASA) and LAGEOS II (NASA and ASI) satellites, and because GRACE mission (NASA-CSR and DLR-GFZ) is improving Earth's gravity field models. This paper describes LARES experiment along with the principal error sources affecting the measurement. Furthermore, some engineering aspects of the mission, in particular the structure and materials of the satellite (designed in order to minimize the non-gravitational perturbations), are described.

  16. 75 FR 56608 - Agency Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... SECURITIES AND EXCHANGE COMMISSION Agency Meeting Federal Register Citation of Previous Announcement: [To be published] Status: Open Meeting. Place: 100 F. Street, NE., Washington, DC. Date and Time of Previously Announced Meeting: September 15, 2010. Change In the Meeting: Room Change. The Joint...

  17. ESA's CCD test bench for the PLATO mission

    NASA Astrophysics Data System (ADS)

    Beaufort, Thierry; Duvet, Ludovic; Bloemmaert, Sander; Lemmel, Frederic; Prod'homme, Thibaut; Verhoeve, Peter; Smit, Hans; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Visser, Ivo

    2016-08-01

    PLATO { PLAnetary Transits and Oscillations of stars { is the third medium-class mission to be selected in the European Space Agency (ESA) Science and Robotic Exploration Cosmic Vision programme. Due for launch in 2025, the payload makes use of a large format (8 cm x 8 cm) Charge-Coupled Devices (CCDs), the e2v CCD270 operated at 4 MHz and at -70 C. To de-risk the PLATO CCD qualification programme initiated in 2014 and support the mission definition process, ESA's Payload Technology Validation section from the Future Missions Office has developed a dedicated test bench.

  18. STS-87 Mission Specialist Doi in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, is assisted with his ascent and re- entry flight suit by Dave Law, USA mechanical technician, in the white room at Launch Pad 39B as Dr. Doi prepares to enter the Space Shuttle orbiter Columbia on launch day. At right wearing glasses is Danny Wyatt, NASA quality assurance specialist. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. The 16-day mission will include a spacewalk by Dr. Doi and Mission Specialist Winston Scott.

  19. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed across the creek bordering runway 33, orbiter Discovery prepares to touch down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Flying above it is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  20. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Shuttle Training Aircraft (top) seems to chase orbiter Discovery as it touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  1. Joint Chiefs of Staff > Directorates > J5 | Strategic Plans and Policy

    Science.gov Websites

    Quadrilateral Logistics Forum J5 | Strategic Plans and Policy J6 | C4 & Cyber J7 | Joint Force Development J8 | Force Structure, Resources & Assessment Contact J5 Strategic Plans and Policy Home : Directorates : J5 | Strategic Plans and Policy Mission The Joint Staff J5 proposes strategies, plans, and

  2. 78 FR 7464 - Large Scale Networking (LSN) ; Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN) ; Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination...://www.nitrd.gov/nitrdgroups/index.php?title=Joint_Engineering_Team_ (JET)#title. SUMMARY: The JET...

  3. STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)

    NASA Image and Video Library

    1995-06-07

    S95-12703 (May 1995) --- Astronauts Koichi Wakata (left) and Daniel T. Barry check the settings on a 35mm camera during an STS-72 training session. Wakata is a mission specialist, representing Japan's National Space Development Agency (NASDA) and Barry is a United States astronaut assigned as mission specialist for the same mission. The two are on the aft flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC).

  4. 75 FR 44781 - Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ...; File No. 265-26] Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues AGENCY: Commodity... Meeting of Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues. SUMMARY: The Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues will hold a public meeting on August 11, 2010, from 9 a.m...

  5. 75 FR 66362 - Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ...; File No. 265-26] Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues AGENCY: Commodity... meeting of Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues. SUMMARY: The Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues will hold a public meeting on November 5, 2010, from 9 a.m...

  6. Hello World: Harnessing social media for the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Baldwin, E.; Mignone, C.; O'Flaherty, K. S.; Homfeld, A.-M.; Bauer, M.; McCaughrean, M. J.

    2015-10-01

    The European Space Agency's (ESA) comet-chasing Rosetta mission was launched in 2004, before social media became a popular tool for mainstream communication. By harnessing a range of platforms for communicating the key messages of this unprecedented space adventure as the spacecraft reached its destination ten years later, a wide range of new audiences were reached and could follow this once-in-a-lifetime mission.

  7. Joint Force Quarterly. Number 1, Summer 1993

    DTIC Science & Technology

    1993-01-01

    Contributors Joint Force Quarterly A PROFESSIONAL MILITARY JOURNAL Editor-in-Chief Alvin H. Bernstein Executive Editor Patrick M. Cronin Managing Editor Robert...understanding of the integrated employ- ment of land, sea, air, space, and special operations forces. The journal focuses on joint doctrine, coalition...other agency of the Federal Government. Por- tions of this journal are protected by copyright and may not be reproduced or extracted without the

  8. 24 CFR 943.151 - What procurement standards apply to a joint venture itself?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a joint venture itself? 943.151 Section 943.151 Housing and Urban Development Regulations Relating... HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT PUBLIC HOUSING AGENCY CONSORTIA AND JOINT VENTURES Subsidiaries, Affiliates, Joint Ventures in Public Housing § 943.151 What procurement standards apply to a...

  9. STS-87 Mission Specialist Doi addresses the media at the SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As STS-87 Commander Kevin Kregel looks on, Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan addresses members of the press and media at Kennedy Space Center's Shuttle Landing Facility after arriving for the final prelaunch activities leading up to the scheduled Nov. 19 liftoff. Other STS-87 crew members not pictured are Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., and Winston Scott; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite.

  10. STS-107 Crew Interviews: Laurel Clark, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist 4 Laurel Clark is seen during this preflight interview, where she gives a quick overview of the mission before answering questions about her inspiration to become an astronaut and her career path. Clark outlines her role in the mission in general, and specifically in conducting onboard science experiments. She discusses the following suite of experiments and instruments in detail: ARMS (Advanced Respiratory Monitoring System) and the European Space Agency's Biopack. Clark also mentions on-board activities and responsibilities during launch and reentry, mission training, and microgravity research. In addition, she touches on the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety and the value of international cooperation.

  11. Trust: The Key to the Success of Mission Command in the Joint Force

    DTIC Science & Technology

    2015-05-18

    Malaysia, Kuala Lumpur: International Conference on ISO9000. Schmidt, Todd A. “ Design , Mission Command and the Network: Enabling Organization...acknowledge that trust is one of the most important component of a decentralized command philosophy. Adding to this challenge is an increasingly...moving to mission command, we must acknowledge that trust is one of the most important components of a decentralized command philosophy. Adding to this

  12. STS-99 Mission Specialists Thiele and Mohri greet the media at SLF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After the crew arrival at KSC's Shuttle Landing Facility, STS-99 Mission Specialist Mamoru Mohri (Ph.D.), at right, talks to the media. At left is Mission Specialist Gerhard Thiele (Ph.D.). Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour is scheduled for Jan. 31 at 12:47 p.m. EST.

  13. 76 FR 31305 - Pacific Whiting; Advisory Panel and Joint Management Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... experienced in the harvesting, processing, marketing, management, conservation, or research of the offshore... Whiting; Advisory Panel and Joint Management Committee AGENCY: National Oceanic and Atmospheric.... SUMMARY: NMFS solicits nominations for the Advisory Panel (AP) and the Joint Management Committee (JMC) on...

  14. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Italian Space Agency (ASI) representative, Enrico Flamini, is introduced during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  15. Mission X in Japan, an Education Outreach Program Featuring Astronautical Specialties and Knowledge

    NASA Astrophysics Data System (ADS)

    Niihori, Maki; Yamada, Shin; Matsuo, Tomoaki; Nakao, Reiko; Nakazawa, Takashi; Kamiyama, Yoshito; Takeoka, Hajime; Matsumoto, Akiko; Ohshima, Hiroshi; Mukai, Chiaki

    In the science field, disseminating new information to the public is becoming increasingly important, since it can aid a deeper understanding of scientific significance and increase the number of future scientists. As part of our activities, we at the Japan Aerospace Exploration Agency (JAXA) Space Biomedical Research Office, started work to focus on education outreach featuring space biomedical research. In 2010, we launched the Mission X education program in Japan, named after “Mission X: Train Like an Astronaut” (hereinafter called “Mission X”), mainly led by NASA and European Space Agency (ESA). Mission X is an international public outreach program designed to encourage proper nutrition and exercise and teaching young people to live and eat like astronauts. We adopted Mission X's standpoint, and modified the program based on the originals to suit Japanese culture and the students' grade. Using astronauts as examples, this mission can motivate and educate students to instill and adopt good nutrition and physical fitness as life-long practices.Here we introduce our pilot mission of the “Mission X in Japan” education program, which was held in early 2011. We are continuing the education/public outreach to promote the public understanding of science and contribute to science education through lectures on astronautical specialties and knowledge.

  16. JOICFP included in GII mission to Ghana. Global Issues Initiative.

    PubMed

    1996-03-01

    Among countries in West Africa, Ghana is the main focus of the Global Issues Initiative (GII) on Population and AIDS and one of twelve priority countries selected for official development assistance (ODA) under the program. A ten-member project formulation mission sent to Ghana by the Ministry of Foreign Affairs (MOFA) of Japan was in the country during January 10-18. This mission was the first of its kind to be sent to Africa. It was led by the director of the Third Project Formulation Study Division, Project Formulation Study Department, Japan International Cooperation Agency (JICA), and included representatives of MOFA, JICA, and the Ministry of Health and Welfare, and an observer from UNAIDS. The mission's chief objective was to explore possibilities for Japanese cooperation in the areas of population, child health, and HIV/AIDS in line with the Mid-Term Health Strategy (MTHS) formulated in 1995 by the government of Ghana. The mission also explored the possibility of collaboration with major donors, international organizations, international agencies, and NGOs. The mission met with representatives of NGOs from population, women, AIDS, and health-related areas on January 13, who were then briefed upon Japan's Grant Assistance for Grassroots Project for local NGOs. Views were exchanged upon NGO activities.

  17. KENNEDY SPACE CENTER, FLA. - While touring the SRB Retrieval Ship Freedom Star, STS-114 Commander Eileen Collins and Mission Specialist Soichi Noguchi point at something on the Banana River. Noguchi is with the Japanese space agency NASDA. The ships routinely are docked at Hangar AF on the river. On their mission, the crew - which also includes Pilot James Kelly and Mission Specialist Stephen Robinson - will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - While touring the SRB Retrieval Ship Freedom Star, STS-114 Commander Eileen Collins and Mission Specialist Soichi Noguchi point at something on the Banana River. Noguchi is with the Japanese space agency NASDA. The ships routinely are docked at Hangar AF on the river. On their mission, the crew - which also includes Pilot James Kelly and Mission Specialist Stephen Robinson - will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  18. KENNEDY SPACE CENTER, FLA. - The STS-114 crew poses on deck with the captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. From left are Pilot James Kelly, Mission Specialist Soichi Noguchi, Capt. Bren Wade, Commander Eileen Collins and Mission Specialist Stephen Robinson. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew poses on deck with the captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. From left are Pilot James Kelly, Mission Specialist Soichi Noguchi, Capt. Bren Wade, Commander Eileen Collins and Mission Specialist Stephen Robinson. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  19. The Thermal Infrared Sensor on the Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis; Richardson, Cathy; Irons, James; Allen, Rick; Anderson, Martha; Budinoff, Jason; Casto, Gordon; Coltharp, Craig; Finneran, Paul; Forsbacka, Betsy; hide

    2010-01-01

    The Landsat Data Continuity Mission (LDCM), a joint NASA and USGS mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC} under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper outlines the design of the TIRS instrument and gives an example of its application to monitoring water consumption by measuring evapotranspiration.

  20. The Microscope Mission and Pre-Flight Performance Verification

    NASA Astrophysics Data System (ADS)

    Hudson, D.; Touboul, P.; Rodrigues, M.

    2006-04-01

    Recent developments in fundamental physics have renewed interest in disproving the equivalence principle. The MICROSCOPE mission will be the first test to capitalize on the advantages of space to achieve an accuracy of 10-15, more than two orders of magnitude better than current ground based results. It is a joint CNES, ONERA, and Observatoire de la Côte d'Azur mission in the CNES Myriade microsatellite program. The principle of the test is to place two masses of different material on precisely the same orbit and measure any difference in the forces required to maintain the common orbit. The test is performed by a differential electrostatic accelerometer containing two concentric cylindrical test masses. This paper will present both an overview of the mission, and a description of the accelerometer development and performance verification.

  1. 43 CFR 46.220 - How to designate lead agencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... document will meet their needs for adoption and application to their related decision(s). (b) In some cases...) In some cases, the Responsible Official may establish a joint lead relationship among several Federal... agencies. (a) In most cases, the Responsible Official should designate one Federal agency as the lead with...

  2. Systems Engineering Technical Authority: A Path to Mission Success

    NASA Technical Reports Server (NTRS)

    Andary, James F.; So, Maria M.; Breindel, Barry

    2008-01-01

    The systems engineering of space missions to study planet Earth has been an important focus of the National Aeronautics and Space Administration (NASA) since its inception. But all space missions are becoming increasingly complex and this fact, reinforced by some major mishaps, has caused NASA to reevaluate their approach to achieving safety and mission success. A new approach ensures that there are adequate checks and balances in place to maximize the probability of safety and mission success. To this end the agency created the concept of Technical Authority which identifies a key individual accountable and responsible for the technical integrity of a flight mission as well as a project-independent reporting path. At the Goddard Space Flight Center (GSFC) this responsibility ultimately begins with the Mission Systems Engineer (MSE) for each satellite mission. This paper discusses the Technical Authority process and then describes some unique steps that are being taken at the GSFC to support these MSEs in meeting their responsibilities.

  3. Independent Review of the Defense Logistics Agencys Roles and Missions

    DTIC Science & Technology

    2014-12-01

    remaining wholesale consumables missions of tires, packaged petroleum, oils , and lubricants, and gases and cylinders were transferred from the...housekeeping supplies and equipment. Class III: Petroleum, oils , and lubricants. Class IV: Construction materials. Class V: Ammunition. Class VI...own appropriated funds that are deposited 9 The Construction and Equipment program within DLA Troop Support provides some Class VII non- weapons

  4. STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.

  5. Determining Crust and Upper Mantle Structure by Bayesian Joint Inversion of Receiver Functions and Surface Wave Dispersion at a Single Station: Preparation for Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Jia, M.; Panning, M. P.; Lekic, V.; Gao, C.

    2017-12-01

    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission will deploy a geophysical station on Mars in 2018. Using seismology to explore the interior structure of the Mars is one of the main targets, and as part of the mission, we will use 3-component seismic data to constrain the crust and upper mantle structure including P and S wave velocities and densities underneath the station. We will apply a reversible jump Markov chain Monte Carlo algorithm in the transdimensional hierarchical Bayesian inversion framework, in which the number of parameters in the model space and the noise level of the observed data are also treated as unknowns in the inversion process. Bayesian based methods produce an ensemble of models which can be analyzed to quantify uncertainties and trade-offs of the model parameters. In order to get better resolution, we will simultaneously invert three different types of seismic data: receiver functions, surface wave dispersion (SWD), and ZH ratios. Because the InSight mission will only deliver a single seismic station to Mars, and both the source location and the interior structure will be unknown, we will jointly invert the ray parameter in our approach. In preparation for this work, we first verify our approach by using a set of synthetic data. We find that SWD can constrain the absolute value of velocities while receiver functions constrain the discontinuities. By joint inversion, the velocity structure in the crust and upper mantle is well recovered. Then, we apply our approach to real data from an earth-based seismic station BFO located in Black Forest Observatory in Germany, as already used in a demonstration study for single station location methods. From the comparison of the results, our hierarchical treatment shows its advantage over the conventional method in which the noise level of observed data is fixed as a prior.

  6. AIDA: the Asteroid Impact & Deflection Assessment mission

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste

    2016-07-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the

  7. Discovery STS-131 Mission Landing

    NASA Image and Video Library

    2010-04-20

    STS131-S-092 (20 April 2010) --- Japanese astronaut Naoko Yamazaki, left, and Dr. Kuniaki Shiraki, Executive Director, Japan Aerospace Exploration Agency (JAXA), talk near the space shuttle Discovery shortly after Discovery and the STS-131 crew landed at the Kennedy Space Center in Cape Canaveral, Fla., on April 20, 2010. NASA astronauts Alan Poindexter, commander; James P. Dutton Jr., pilot; Dorothy Metcalf-Lindenburger, Rick Mastracchio, Stephanie Wilson, Clayton Anderson and Japanese astronaut Naoko Yamazaki, all mission specialists, returned from their 15-day journey of more than 6.2 million miles. The STS-131 mission to the International Space Station delivered science racks, new crew sleeping quarters, equipment and supplies. Photo credit: NASA/Bill Ingalls

  8. Active Debris Removal mission design in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  9. Instrument demonstration effort for the CLARREO mission

    NASA Astrophysics Data System (ADS)

    Grandmont, Frédéric; Moreau, Louis; Bourque, Hugo; Taylor, Joe; Girard, Frédéric; Larouche, Martin; Veilleux, James

    2017-11-01

    NASA and other national agencies ask the National Research Council (NRC) once every decade to look out ten or more years into the future and prioritize research areas, observations, and notional missions to make those observations. The latest such scientific community consultation referred to as the Decadal Survey (DS), was completed in 2007 [1]. DS thematic panels developed 35 missions from more than 100 missions proposed, from which the DS Executive Committee synthesized 17 missions, with suggested order presented in three time-phased blocks. The first block with aim for near term launch (2010-2013) included four missions. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is one of them. The CLARREO mission was classified as a Small Mission to be contained in a 300 M US$ budgetary envelope. CLARREO will provide a benchmark climate record that is global, accurate in perpetuity, tested against independent strategies that reveal systematic errors, and pinned to international standards. The long term objective thus suggests that NOAA or NASA will fly the CLARREO instrument suite on an operational basis following the first scientific experiment The CLARREO missions will conduct the following observations: 1. Absolute spectrally-resolved measurements of terrestrial thermal emission with an absolute accuracy of 0.1 K in brightness temperature (3σ or 99% confidence limits.) The measurements should cover most of the thermal spectrum. 2. Absolute spectrally-resolved measurements of the solar radiation reflected from Earth. The measurements should cover the part of the solar spectrum most important to climate, including the near-ultraviolet, visible, and near-infrared. 3. Independent measurements of atmospheric temperature, pressure, and humidity using Global Positioning System (GPS) occultation measurements of atmospheric refraction. 4. Serve as a high accuracy calibration standard for use by the broadband CERES instruments on-orbit. Following

  10. STS-87 Mission Specialist Doi with EVA coordinator Laws participates in the CEIT for his mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi , Ph.D., of the National Space Development Agency of Japan, participates in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center (KSC). Glenda Laws, the extravehicular activity (EVA) coordinator, Johnson Space Center, stands behind Dr. Doi. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, Dr. Doi will be the first Japanese astronaut to perform a spacewalk. STS- 87 is scheduled for a Nov. 19 liftoff from KSC.

  11. 76 FR 73595 - Healthcare Technology, Policy & Trade Mission: Mexico City, Mexico, May 13-16, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... printed company directory; Networking reception at Ambassador's residence or other venue in Mexico City on... Mission: Mexico City, Mexico, May 13-16, 2012 AGENCY: International Trade Administration, Department of... policy and trade mission to Mexico City, May 13-16, 2012. This mission is intended to focus on a variety...

  12. Mission to Mars: food production and processing for the final frontier.

    PubMed

    Perchonok, Michele H; Cooper, Maya R; Catauro, Patricia M

    2012-01-01

    The food systems of the National Aeronautics and Space Administration (NASA) have evolved tremendously since the early manned spaceflights of the 1960s. To date, NASA's mission focus has been limited to exploration of low Earth orbit (LEO), and the agency's prepackaged food systems have been adequate to enable success of their parent programs. With NASA's mission focus increasing to achieve manned space exploration of the Martian surface, the agency is considering a significant departure from the prepackaged food systems of current and past space programs. NASA's Advanced Food Technology (AFT) project is presently investigating the introduction of a bioregenerative food system to support long duration habitat missions to the Martian surface. A bioregenerative food system is expected to impart less of a burden on critical mission resources, such as mass and volume, than a prepackaged, shelf-stable system. This review provides an introduction to past and present spaceflight food systems, and provides a broad examination of the research conducted to date to enable crop production and food processing on the Martian surface.

  13. MACSAT - A Near Equatorial Earth Observation Mission

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  14. Mars curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Among other things, students from Gulfport High School, who field a team each year in the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, offered young visitors a firsthand look at how robots work Hundreds of persons visited the INFINITY facility during the day, including media representatives from surrounding communities.

  15. STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)

    NASA Image and Video Library

    1995-06-07

    S95-12725 (May 1995) --- Astronaut Koichi Wakata, representing Japan's National Space Development Agency (NASDA) and assigned as mission specialist for the STS-72 mission, checks over a copy of the flight plan. Wakata is on the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). In the background is astronaut Brent W. Jett, pilot. The two will join four NASA astronauts aboard Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.

  16. Design of the optical communication system for the asteroid impact mission

    NASA Astrophysics Data System (ADS)

    Heese, C.; Sodnik, Z.; Carnelli, I.

    2017-09-01

    The Asteroid Impact Mission (AIM) is part of the joint Asteroid Impact and Deflection Assessment (AIDA) project of ESA, DLR, Observatoire de la Côte d'Ázur, NASA, and Johns Hopkins University Applied Physics Laboratory (JHU/APL).

  17. The Simbol-X Mission

    NASA Astrophysics Data System (ADS)

    Ferrando, P.; Arnaud, M.; Briel, U.; Cavazzuti, E.; Clédassou, R.; Counil, J. L.; Fiore, F.; Giommi, P.; Goldwurm, A.; Lamarle, O.; Laurent, P.; Lebrun, F.; Malaguti, G.; Mereghetti, S.; Micela, G.; Pareschi, G.; Piermaria, M.; Roques, J. P.; Santangelo, A.; Tagliaferri, G.

    2009-05-01

    The elucidation of key questions in astrophysics, in particular those related to black hole physics and census, and to particle acceleration mechanisms, necessitates to develop new observational capabilities in the hard X-ray domain with performances several orders of magnitude better than presently available. Relying on two spacecrafts in a formation flying configuration, Simbol-X will provide the world-wide astrophysics community with a single optics long focal length telescope. This observatory will have unrivaled performances in the hard X-ray domain, up to ~80 keV, as well as very good characteristics in the soft X-ray domain, down to ~0.5 keV. The Simbol-X mission has successfully passed a phase A study, jointly conducted by CNES and ASI, with the participation of German laboratories. It is now entering phase B studies with the participation of new international partners, for a launch in 2015. We give in this paper a general overview of the mission, as consolidated at the start of phase B.

  18. STS-99 Endeavour touches down at SLF after successful mission

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the waning light after sundown, Space Shuttle Endeavour touches down on KSC's Shuttle Landing Facility Runway 33 to complete the 11-day, 5-hour, 38-minute-long STS-99 mission. At the controls are Commander Kevin Kregel and Pilot Dominic Gorie. Also onboard the orbiter are Mission Specialists Janet Kavandi, Janice Voss, Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri is with the National Space Development Agency (NASDA) and Thiele is with the European Space Agency. The crew are returning from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.

  19. STS-99 Endeavour touches down at SLF after successful mission

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the waning light after sundown, Space Shuttle Endeavour touches down on KSC's Shuttle Landing Facility Runway 33 to complete the 11-day, 5-hour, 38-minute-long STS-99 mission. At the controls are Commander Kevin Kregel and Pilot Dominic Gorie. Also onboard the orbiter are Mission Specialists Janet Kavandi, Janice Voss, Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri is with the National Space Development Agency (NASDA) and Thiele is with the European Space Agency. The crew is returning from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.

  20. STS-99 Endeavour touches down at SLF after successful mission

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Space Shuttle Endeavour stirs up dust as its wheels touch down on KSC's Shuttle Landing Facility Runway 33 to complete the 11-day, 5-hour, 38-minute-long STS-99 mission. At the controls are Commander Kevin Kregel and Pilot Dominic Gorie. Also onboard the orbiter are Mission Specialists Janet Kavandi, Janice Voss, Mamoru Mohri of Japan and Gerhard Thiele of Germany. Mohri is with the National Space Development Agency (NASDA) and Thiele is with the European Space Agency. The crew is returning from the Shuttle Radar Topography Mission after mapping more than 47 million square miles of the Earth's surface. Main gear touchdown was at 6:22:23 p.m. EST Feb. 22 , landing on orbit 181 of the mission. Nose gear touchdown was at 6:22:35 p.m.. EST, and wheel stop at 6:23:25 p.m. EST. This was the 97th flight in the Space Shuttle program and the 14th for Endeavour, also marking the 50th landing at KSC, the 21st consecutive landing at KSC, and the 28th in the last 29 Shuttle flights.

  1. 76 FR 9819 - Agency Information Collection Activities: Proposed Collection; Generic Clearance for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... International Development. Due to an oversight, those agencies were inadvertently omitted. All Chief Financial Officers Act agencies should have been included in the joint notice. Shelley Metzenbaum, Associate Director...

  2. Writing the History of Space Missions: Rosetta and Mars Express

    NASA Astrophysics Data System (ADS)

    Coradini, M.; Russo, A.

    2011-10-01

    Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-­-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-­-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-­-1990s as an exemplar of a "flexible mission" that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.

  3. 36 CFR 219.13 - Coordination among Federal agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Sustainability § 219.13 Coordination among Federal agencies. The responsible official must provide early and... plans, or programs; and (c) The development, where appropriate and practicable, of joint resource...

  4. EarthCARE mission, overview, implementation approach and development status

    NASA Astrophysics Data System (ADS)

    Lefebvre, Alain; Hélière, Arnaud; Pérez Albiñana, Abelardo; Wallace, Kotska; Maeusli, Damien; Lemanczyk, Jerzy; Lusteau, Cyrille; Nakatsuka, Hirotaka; Tomita, Eiichi

    2016-05-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop the EarthCARE satellite mission with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere in order to include them correctly and reliably in climate and numerical weather prediction models. The satellite will be placed in a Sun-Synchronous Orbit at about 400 Km altitude and14h00 mean local solar time. The payload consisting of a High Spectral Resolution UV Atmospheric LIDar (ATLID), a 94GHz Cloud Profiling Radar (CPR) with Doppler capability, a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer will provide information on cloud and aerosol vertical structure of the atmosphere along the satellite track as well as information about the horizontal structures of clouds and radiant flux from sub-satellite cells. The presentation will cover the configuration of the satellite with its four instruments, the mission implementation approach, an overview of the ground segment and the overall mission development status.

  5. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological

  6. MetNet - Martian Network Mission

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.

    2009-04-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The actual practical mission development work started in January 2009 with participation from various countries and space agencies. The scientific rationale and goals as well as key mission solutions will be discussed. The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. This development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development.

  7. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  8. Resource Prospector Mission Animation (June 2018)

    NASA Image and Video Library

    2018-05-30

    Expanding human presence beyond low-Earth orbit will require the maximum possible use of local materials, so-called in-situ resources (ISRU). The Moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as providing significant exploration and science value. This video animation shows one mission concept under study by NASA called Resource Prospector (RP), an ISRU prospecting and technology demonstration mission. RP would scan the surface and sub-surface terrain, and demonstrate extraction of hydrogen and oxygen from lunar regolith to validate one possible ISRU approach. As NASA plans a series of progressive robotic missions to the lunar surface, the agency is considering a variety of approaches to evolve progressively larger landers leading to an eventual human lander capability. Part of this expanded lunar campaign includes early flight of select instruments from Resource Prospector to the Moon.

  9. 15 CFR 287.5 - Responsibilities of an Agency Standards Executive.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... missions, authorities, priorities, and budget. (c) Cooperate with NIST in carrying out agency responsibilities under the guidance in this part. (d) Consult with NIST, as necessary, in the development and... improvements in agency conformity assessment related activities. (g) Report to NIST, on a voluntary basis, on...

  10. Collaborative agency to support integrated care for children, young people and families: an action research study.

    PubMed

    Stuart, Kaz

    2014-04-01

    Collaboration was legislated in the delivery of integrated care in the early 2000s in the UK. This research explored how the reality of practice met the rhetoric of collaboration. The paper is situated against a theoretical framework of structure, agency, identity and empowerment. Collectively and contextually these concepts inform the proposed model of 'collaborative agency' to sustain integrated care. The paper brings sociological theory on structure and agency to the dilemma of collaboration. Participative action research was carried out in collaborative teams that aspired to achieve integrated care for children, young people and families between 2009 and 2013. It was a part time, PhD study in collaborative practice. The research established that people needed to be able to be jointly aware of their context, to make joint decisions, and jointly act in order to deliver integrated services, and proposes a model of collaborative agency derived from practitioner's experiences and integrated action research and literature on agency. The model reflects the effects of a range of structures in shaping professional identity, empowerment, and agency in a dynamic. The author proposes that the collaborative agency model will support integrated care, although this is, as yet, an untested hypothesis.

  11. The Spartan 1 mission

    NASA Technical Reports Server (NTRS)

    Cruddace, R. G.; Brandenstein, D. C.; Creighton, J. O.; Gutschewski, G.; Lucid, S. W.; Nagel, S. R.; Fabian, J. M.; Fenimore, E. E.; Shrewsberry, D. J.; Zimmermann, D.

    1990-01-01

    The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the Space Shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data.

  12. Exploiting the parallels - maximising the outreach potentials for the European Space Agency's Rosetta comet chaser mission

    NASA Astrophysics Data System (ADS)

    Pillinger, C. T.; Pillinger, J. M.

    2013-09-01

    The European Space Agency (ESA)'s comet chaser mission, Rosetta, has been more than a quarter of a century in coming to fruition. Whilst it might sound a long time humankind has been interested in comets for much longer. For over a thousand years depictions of comets have been appearing in Art 1 including many humorous cartoons 2. There are numerous cometary metaphors throughout literature. With this in mind we have recognised that there is a tremendous opportunity with comets to introduce science to different non-scientific audiences who would not necessarily believe they were interested in science. A similar approach was adopted with great success for the Beagle 2 involvement in ESA's Mars Express 3,4. By exploiting the perhaps sometimes less obvious connections to the Rosetta mission we hope to capture the attention of non-scientists and introduce them to science unawares - a case of a little sugar to help the medicine go down. It is our belief that the Rosetta mission has enormous potential for bringing science to the unconverted. We give here one example of a connection between Art and the Rosetta mission. By choosing the allegorical name Rosetta for its cometary mission, ESA have immediately invited comparison with the stone tablet which provided the key to translating the languages of ancient cultures, particularly Egyptian hieroglyphics. It is well known that a scientist, Thomas Young, foreign secretary of The Royal Society, made the break through which recognised the name Ptolemy in a cartouche on the Rosetta stone which can be seen today at the British Museum. The events concerning the 'capture' of the Rosetta stone were witnessed by scientists Sir William Hamilton (a renowned geophysicist as well as husband of Horatio Nelson's notorious mistress Lady Hamilton) and Edward Daniel Clarke, a geologist who would become first Professor of Mineralogy at Cambridge and an early meteoricist. Young's inspiration allowed Jean-Francois Champollion to decipher the

  13. Mission Specialist Smith is suited and ready for launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist Steven L. Smith signals he is suited up and ready for launch. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists C. Michel Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  14. Manned mission to Mars with periodic refueling from electrically propelled tankers

    NASA Technical Reports Server (NTRS)

    Gogan, Laura; Melko, Joseph; Wang, Fritz; Lourme, Daniel; Moha, Sophie Ben; Lardon, Christele; Richard, Muriel

    1992-01-01

    In a joint study by students from the Ecole Polytechnique Feminine, France, and the University of California, Los Angeles, a mission concept that had the objective of evaluating the feasibility of a non-nuclear, yet fast, manned mission to Mars was considered. Ion-engine propelled tankers are postulated that would provide mid-coarse refueling of LOX and LH2 to the manned ship. The scenario is therefore one of a 'split mission', yet with the added feature that the cargo ships include tankers for mid-course refueling. The present study is a continuation of one first conducted last year. Emphasis this year was on the design of the tanker fleet.

  15. Infusing Family-Centered Practices into Agency Administration. Project Ta-kos.

    ERIC Educational Resources Information Center

    Parham, Patricia; McMahon, Patricia

    This self-study manual for program administrators serving young special needs children and their families gives an overview of agency administration from the perspective of a family-centered approach. The areas of agency administration include: (1) family-centered philosophy and sound management practices; (2) governance; (3) mission; (4)…

  16. KSC-98pc344

    NASA Image and Video Library

    1998-03-09

    KENNEDY SPACE CENTER, FLA. -- The STS-90 Neurolab payload and two of the four Getaway Specials (GAS) await payload bay door closure in the orbiter Columbia today in Orbiter Processing Facility bay 3. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The mission is a joint venture of six space agencies and seven U.S. research agencies. Investigator teams from nine countries will conduct 31 studies in the microgravity environment of space. Other agencies participating in this mission include six institutes of the National Institutes of Health, the National Science Foundation, and the Office of Naval Research, as well as the space agencies of Canada, France, Germany, and Japan, and the European Space Agency (ESA)

  17. The Soft X-ray Imager (SXI) on the SMILE Mission

    NASA Astrophysics Data System (ADS)

    Sembay, S.; Branduardi-Raymont, G.; Drumm, P.; Escoubet, C. P.; Genov, G.; Gow, J.; Hall, D.; Holland, A.; Hudec, R.; Mas-Hesse, J. M.; Kennedy, T.; Kuntz, K. D.; Nakamura, R.; Ostgaard, N.; Ottensamer, R.; Raab, W.; Read, A.; Rebuffat, D.; Romstedt, J.; Schyns, E.; Sibeck, D. G.; Srp, A.; Steller, M.; Sun, T.; Sykes, J. M.; Thornhill, J.; Walsh, B.; Walton, D.; Wang, C.; Wei, F.; Wielders, A.; Whittaker, I. C.

    2016-12-01

    SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) is a space mission dedicated to study the interaction of the solar wind with the Earth's magnetic field. SMILE will investigate the dynamic response of the Earth's magnetosphere to the impact of the solar wind in a unique manner, never attempted before: it will combine soft X-ray imaging of the Earth's magnetic boundaries and magnetospheric cusps with simultaneous UV imaging of the Northern aurora, while simultaneously providing context measurements via an in situ plasma and magnetometer instrument package. SMILE is a joint European Space Agency (ESA) and Chinese Academy of Sciences (CAS) collaborative mission due for launch in 2021. This talk will describe the Soft X-ray Imager (SXI) on SMILE. The SXI is designed for good detection sensitivity of the soft X-rays (0.2 - 2.0 keV) produced in the Earth's exosphere by the solar wind charge exchange process. This process is the mechanism by which it is possible to globally image the Earth's dayside magnetosheath, magnetopause boundary, bowshock and cusps. The wide field of view of the instrument (27° x 16°) is achieved by the use of a micropore optic (MPO) with a Lobster-eye focusing geometry. The detector consists of two large format CCDs (each 8.1 cm x 6.8 cm sensitive area) providing high quantum efficiency and medium energy resolution for soft X-rays. The instrument design will be presented along with simulation results indicating the instrument sensitivity and science return.

  18. STS-123 and Expedition 16 crewmembers in the SM during Joint Operations

    NASA Image and Video Library

    2008-03-19

    S123-E-007259 (19 March 2008) --- The STS-123 and Expedition 16 crewmembers share a meal near the galley in the Zvezda Service Module of the International Space Station while Space Shuttle Endeavour is docked with the station. Pictured (from the left) are European Space Agency (ESA) astronaut Leopold Eyharts, STS-123 mission specialist; NASA astronauts Dominic Gorie, STS-123 commander; Gregory H. Johnson (partially obscured), STS-123 pilot; Robert L. Behnken and Japan Aerospace Exploration Agency (JAXA) astronaut Takao Doi, both STS-123 mission specialists.

  19. Life sciences experiments in the first Spacelab mission

    NASA Technical Reports Server (NTRS)

    Huffstetler, W. J.; Rummel, J. A.

    1978-01-01

    The development of the Shuttle Transportation System (STS) by the United States and the Spacelab pressurized modules and pallets by the European Space Agency (ESA) presents a unique multi-mission space experimentation capability to scientists and researchers of all disciplines. This capability is especially pertinent to life scientists involved in all areas of biological and behavioral research. This paper explains the solicitation, evaluation, and selection process involved in establishing life sciences experiment payloads. Explanations relative to experiment hardware development, experiment support hardware (CORE) concepts, hardware integration and test, and concepts of direct Principal Investigator involvement in the missions are presented as they are being accomplished for the first Spacelab mission. Additionally, discussions of future plans for life sciences dedicated Spacelab missions are included in an attempt to define projected capabilities for space research in the 1980s utilizing the STS.

  20. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  1. Triple F - A Comet Nucleus Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.; hide

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  2. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Kim, R.; Echeverry, J.

    The Joint Space Operations Center (JSpOC) is a command and control center focused on executing the Space Control mission of the Joint Functional Component Command for Space (JFCC-SPACE) to ensure freedom of action of United States (US) space assets, while preventing adversary use of space against the US. To accomplish this, the JSpOC tasks a network of space surveillance sensors to collect Space Situational Awareness (SSA) data on resident space objects (RSOs) in near earth and deep space orbits. SSA involves the ingestion of data sources and use of algorithms and tools to build, maintain, and disseminate situational awareness of RSOs in space. On the heels of emergent and complex threats to space assets, the JSpOC's capabilities are limited by legacy systems and CONOPs. The JSpOC Mission System (JMS) aims to consolidate SSA efforts across US agencies, international partners, and commercial partners. The JMS program is intended to deliver a modern service-oriented architecture (SOA) based infrastructure with increased process automation and improved tools to remove the current barriers to JSpOC operations. JMS has been partitioned into several developmental increments. Increment 1, completed and operational in early 2013, and Increment 2, which is expected to be completed in 2016, will replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. In 2017 JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources. Most importantly, Increment 3 is uniquely postured to evolve the JSpOC into the centralized and authoritative source for all Space Control applications by using its SOA to aggregate information and capabilities from across the community. To achieve this goal, Scitor Corporation has supported the JMS Program Office as it has entered into a partnership with AFRL/RD (Directed

  3. 22 CFR 228.34 - Joint ventures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Joint ventures. 228.34 Section 228.34 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT RULES ON SOURCE, ORIGIN AND NATIONALITY FOR COMMODITIES AND SERVICES FINANCED BY USAID Conditions Governing the Nationality of Suppliers of Services for USAID...

  4. Planetary Missions of the 20th Century*

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Huntress, W. T.; Shevalev, I. L.

    2002-09-01

    Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.

  5. NASDA President Isao Uchida greets STS-87 Mission Specialist Takao Doi, Ph.D., after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, at left, chats with STS-87 Mission Specialist Takao Doi, Ph.D., of NASDA, shortly after the landing of Columbia at Kennedy Space Center. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Winston Scott and Kalpana Chawla, Ph.D.; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  6. The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C., Jr. (Editor); Homick, Jerry L. (Editor)

    2003-01-01

    Neurolab (STS-90) represents a major scientific achievement that built upon the knowledge and capabilities developed during the preceding 15 successful Spacelab module missions. NASA proposed a dedicated neuroscience research flight in response to a Presidential declaration that the 1990's be the Decade of the Brain. Criteria were established for selecting research proposals in partnership with the National Institutes of Health (NM), the National Science Foundation, the Department of Defense, and a number of the International Space Agencies. The resulting Announcement of Opportunity for Neurolab in 1993 resulted in 172 proposals from scientists worldwide. After an NIH-managed peer review, NASA ultimately selected 26 proposals for flight on the Neurolab mission.

  7. Defense Commissary Agency Financial Reporting of Property, Plant, and Equipment.

    DTIC Science & Technology

    1998-03-27

    ort DEFENSE COMMISSARY AGENCY FINANCIAL REPORTING OF PROPERTY, PLANT, AND EQUIPMENT Report Number 98-097 March 27, 1998 Office of the Inspector...UNDER SECRETARY OF DEFENSE (COMPTROLLER) DIRECTOR, DEFENSE COMMISSARY AGENCY SUBJECT: Audit Report on Defense Commissary Agency Financial Reporting of...the costs of the capital assets used to p erform the DeCA mission were in accordance with DoD financial reporting policy, and whether the FY 1996 DeCA

  8. EDL Pathfinder Missions

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2016-01-01

    NASA is developing a long-term strategy for achieving extended human missions to Mars in support of the policies outlined in the 2010 NASA Authorization Act and National Space Policy. The Authorization Act states that "A long term objective for human exploration of space should be the eventual international exploration of Mars." Echoing this is the National Space Policy, which directs that NASA should, "By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid-2030s, send humans to orbit Mars and return them safely to Earth." Further defining this goal, NASA's 2014 Strategic Plan identifies that "Our long-term goal is to send humans to Mars. Over the next two decades, we will develop and demonstrate the technologies and capabilities needed to send humans to explore the red planet and safely return them to Earth." Over the past several decades numerous assessments regarding human exploration of Mars have indicated that landing humans on the surface of Mars remains one of the key critical challenges. In 2015 NASA initiated an Agency-wide assessment of the challenges associated with Entry, Descent, and Landing (EDL) of large payloads necessary for supporting human exploration of Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. This paper provides an overview of NASA's 2015 EDL assessment on understanding the key EDL risks with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies, that is, benefits of flight demonstration at Mars relative to terrestrial test, modeling, and analysis. The goal of the activity was to determine if a subscale demonstrator is necessary, or if NASA should take a direct path to a human-scale lander. This assessment also provided insight into how EDL advancements align with other Agency

  9. NASA Systems Analysis and Concepts Directorate Mission and Trade Study Analysis

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell; Guynn, Mark; Hahn, Andrew; Lepsch, Roger; Mazanek, Dan; Dollyhigh, Sam

    2006-01-01

    Mission analysis, as practiced by the NASA Langley Research Center's Systems Analysis and Concepts Directorate (SACD), consists of activities used to define, assess, and evaluate a wide spectrum of aerospace systems for given requirements. The missions for these systems encompass a broad range from aviation to space exploration. The customer, who is usually another NASA organization or another government agency, often predefines the mission. Once a mission is defined, the goals and objectives that the system will need to meet are delineated and quantified. A number of alternative systems are then typically developed and assessed relative to these goals and objectives. This is done in order to determine the most favorable design approaches for further refinement. Trade studies are performed in order to understand the impact of a requirement on each system and to select among competing design options. Items varied in trade studies typically include: design variables or design constraints; technology and subsystem options; and operational approaches. The results of trade studies are often used to refine the mission and system requirements. SACD studies have been integral to the decision processes of many organizations for decades. Many recent examples of SACD mission and trade study analyses illustrate their excellence and influence. The SACD-led, Agency-wide effort to analyze a broad range of future human lunar exploration scenarios for NASA s Exploration Systems Mission Directorate (ESMD) and the Mars airplane design study in support of the Aerial Regional-scale Environment Survey of Mars (ARES) mission are two such examples. This paper describes SACD's mission and trade study analysis activities in general and presents the lunar exploration and Mars airplane studies as examples of type of work performed by the SACD.

  10. Joint project of the international network of agencies for health technology assessment--Part 1: Survey results on diffusion, assessment, and clinical use of positron emission tomography.

    PubMed

    Hastings, John; Adams, Elizabeth J

    2006-01-01

    The International Network of Agencies for Health Technology Assessment (INAHTA) has been tracking activities associated with the clinical use of positron emission tomography (PET) in its members' healthcare systems since 1997 and published its first Joint Project report on PET in 1999. Part 1 of this Joint Project report presents survey results on diffusion, assessment activities, and policy for clinical use related to PET among INAHTA members since 1999. INAHTA members were surveyed in 2003-2004. Twenty-seven INAHTA agencies (69 percent response rate) from nineteen countries responded to the survey. Dedicated PET systems are the most universally installed systems to date. Mobile scanners and modified gamma cameras are used occasionally as lower cost alternatives, and interest in PET-computed tomography hybrid models is rising despite limited assessment of impact on service planning. PET was used and assessed most commonly for managing patients with cancer. All respondents reported having some form of public funding for clinical PET frequently linked to data collection for the purpose of gathering evidence to refine clinical use and guide resource allocation toward indications that maximize clinical and cost-effectiveness. The use of HTA within a continuous quality improvement framework can help optimize scarce resources for evaluation and use of high cost diagnostic technologies such as PET, particularly where potential clinical or cost-effectiveness is considerable but conclusive evidence is lacking.

  11. Tactical Radios: Multiservice Communications Procedures for Tactical Radios in a Joint Environment

    DTIC Science & Technology

    2002-06-01

    joint restricted frequency list (JRFL). It specifies the frequency allocations for communication and jamming missions restricted from use by...coordination commit- tee also builds the frequency list for the mission sets. In building the list, the committee should use JACS or RBECS software...restricted frequency list . A time and geographical listing of prioritized frequencies essential to an operation and restricted from targeting by friendly EP

  12. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Sekerak, Michael J.

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA'a future beyond-low-Earth-orbit, human-crewed exploration plans. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. This paper presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  13. NextGen UAS Research, Development and Demonstration Roadmap. Version 1.0

    DTIC Science & Technology

    2012-03-15

    Ministry of Defense, Ben Gurion University of the Negev , and Synergy LTD. Proposed Joint Agency Collaborations Human-Centered Integrated Ground... radiation . Other activities include two SIERRA missions and an Arctic mission with the IKHANA. SMD also supports a full-time staff position with the FAA

  14. STS-87 Mission Specialist Doi and his wife pose at LC 39B

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan poses with his wife, Hitomi Doi, in front of Kennedy Space Center's Launch Pad 39B during final prelaunch activities leading up to the scheduled Nov. 19 liftoff. The other STS-87 crew members are Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., and Winston Scott; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan- 201 deployable satellite.

  15. Managing External Relations: The Lifeblood of Mission Success

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2007-01-01

    The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.

  16. 75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... Sequestration--Geothermal Energy--Science Joint Workshop AGENCY: Office of Energy Efficiency and Renewable Energy, DOE. ACTION: Notice of the Carbon Sequestration--Geothermal Energy--Science Joint Workshop... Carbon Storage and Geothermal Energy, June 15-16, 2010. Experts from industry, academia, national labs...

  17. 78 FR 26398 - Public Comment and Public Meeting on Draft Revisions to the Foreign Missions and International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... proposals submitted by Federal government agencies for the NCPC review required by law. The Foreign Missions... revised Foreign Missions and International Organizations Element will be available online at http://www...

  18. Special Air Missions: A Path to the 21st Century

    DTIC Science & Technology

    1997-03-01

    C2 standpoint, this physical dislocation from the parent command maintains the personal service currently in place at each of the scheduling agencies... Coursebook , Air Command and Staff College) 51. 11Bishop, Robert D., Colonel, USAF, TRANSCOM briefing to ACSC, 4 Feb 97. 12Stephen Watkins, “Ship to Shore...Joint History Office. Excerpt from: Joint Operations Coursebook , Air Command and Staff College. Maxwell AFB, AL Jackson, Paul, ed., Jane’s All the

  19. STS-97 Mission Specialist Garneau during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Marc Garneau gets help with his boots from suit technician Tommy McDonald during pre-pack and fit check. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  20. Bridging the Technology Valley of Death in Joint Medical Development

    DTIC Science & Technology

    2015-11-01

    Force lieutenant colonel, is the Air Force Medical Support Agency Advanced Development Liaison Field Engineer in Falls Church, Virginia. Prusaczyk is...Awareness, communication and coordination may be mini - mal among Service S&T and AD programs. Joint Transition Planning Process A Joint Transition...Human Proof of Phase III NDA/BLA ling Approval, Launch Concept*** Launch Review Program Initiation Materiel Technology Engineering & Production

  1. 78 FR 57619 - Legal Services Trade Mission to China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Legal Services Trade Mission to China AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. SUMMARY: The United... amending the Notice published at 78 FR 20893, April 8, 2013, regarding the Executive-Led Legal Services...

  2. Decoder synchronization for deep space missions

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Cheung, K.-M.; Chauvin, T. H.; Rabkin, J.; Belongie, M. L.

    1994-01-01

    The Consultative Committee for Space Data Standards (CCSDS) recommends that space communication links employ a concatenated, error-correcting, channel-coding system in which the inner code is a convolutional (7,1/2) code and the outer code is a (255,223) Reed-Solomon code. The traditional implementation is to perform the node synchronization for the Viterbi decoder and the frame synchronization for the Reed-Solomon decoder as separate, sequential operations. This article discusses a unified synchronization technique that is required for deep space missions that have data rates and signal-to-noise ratios (SNR's) that are extremely low. This technique combines frame synchronization in the bit and symbol domains and traditional accumulated-metric growth techniques to establish a joint frame and node synchronization. A variation on this technique is used for the Galileo spacecraft on its Jupiter-bound mission.

  3. 78 FR 66269 - Safety Zone, Sea World Fireworks; Mission Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ...-AA00 Safety Zone, Sea World Fireworks; Mission Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION... waters of Mission Bay in San Diego, California for Sea World Fireworks on the evenings of November 15 and... firework event that is part of Sea World Christmas festivities. This safety zone is necessary to provide...

  4. 76 FR 22812 - Safety Zone; Sea World Fireworks; Mission Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...-AA00 Safety Zone; Sea World Fireworks; Mission Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION... navigable waters of Mission Bay in support of the Sea World Fireworks. This safety zone is necessary to... impracticable, because immediate action is needed to ensure the public's safety. Basis and Purpose Sea World is...

  5. STS-123 and Expedition 16 crewmembers eating in the SM during Joint Operations

    NASA Image and Video Library

    2008-03-19

    S123-E-007231 (19 March 2008) --- The STS-123 and Expedition 16 crewmembers share a meal near the galley in the Zvezda Service Module of the International Space Station while Space Shuttle Endeavour is docked with the station. Pictured (from the left) are European Space Agency (ESA) astronaut Leopold Eyharts, STS-123 mission specialist; NASA astronauts Dominic Gorie, STS-123 commander; Gregory H. Johnson, STS-123 pilot; Robert L. Behnken and Japan Aerospace Exploration Agency (JAXA) astronaut Takao Doi, both STS-123 mission specialists.

  6. 78 FR 51809 - Seventeenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  7. 78 FR 8684 - Fifteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint with EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  8. 78 FR 25134 - Sixteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  9. 78 FR 66418 - Eighteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  10. Veterinarians in Environmental Health: Opportunities for Veterinarians at the Environmental Protection Agency

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) was created in 1970 partially in response to widespread public concern about environmental degradation. The EPA mission is to protect human health and the environment and the Agency is tasked with enforcing our nation's envi...

  11. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    John Grunsfeld (far left), Associate Administrator for the Science Mission Directorate at NASA Headquarters, Dr. Francisco Javier Mendieta Jimenez, Director General of the Mexican Space Agency, NASA Administrator Charles Bolden, Leland Melvin, NASA Associate Administrator for Education and Al Condes (far right), Deputy Associate Administrator for International and Interagency Relations pose for a photo, Monday, March 18, 2013 at NASA Headquarters in Washington. A Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program was signed between the two agencies. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  12. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center, Mission Specialists Soichi Noguchi, Andy Thomas, Charles Camarda and Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Mission Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center, Mission Specialists Soichi Noguchi, Andy Thomas, Charles Camarda and Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Mission Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  13. Status of joint US/USSR experiments planned for the Cosmos '83 biosatellite mission

    NASA Technical Reports Server (NTRS)

    Souza, K. A.

    1982-01-01

    The plans and status of the fourth joint US/USSR biosatellite experiment, scheduled to be conducted in the last half of 1983, are discussed. These experiments will be conducted on board an unmanned Soviet spacecraft and will involve two restrained Rhesus monkeys and 10 pregnant rats, as well as a variety of small plant and radiation biology experiments. Three of the joint studies will use the monkeys for studies of biorhythms, calcium homeostasis, and the cardiovascular system. The fourth experiment will study rodent embryogenesis and neonatal behavior and development following in utero exposure to spaceflight. Specialized sensors and battery powered hardware have been designed, fabricated, and qualified for flight.

  14. Eyes that bind us: Gaze leading induces an implicit sense of agency.

    PubMed

    Stephenson, Lisa J; Edwards, S Gareth; Howard, Emma E; Bayliss, Andrew P

    2018-03-01

    Humans feel a sense of agency over the effects their motor system causes. This is the case for manual actions such as pushing buttons, kicking footballs, and all acts that affect the physical environment. We ask whether initiating joint attention - causing another person to follow our eye movement - can elicit an implicit sense of agency over this congruent gaze response. Eye movements themselves cannot directly affect the physical environment, but joint attention is an example of how eye movements can indirectly cause social outcomes. Here we show that leading the gaze of an on-screen face induces an underestimation of the temporal gap between action and consequence (Experiments 1 and 2). This underestimation effect, named 'temporal binding,' is thought to be a measure of an implicit sense of agency. Experiment 3 asked whether merely making an eye movement in a non-agentic, non-social context might also affect temporal estimation, and no reliable effects were detected, implying that inconsequential oculomotor acts do not reliably affect temporal estimations under these conditions. Together, these findings suggest that an implicit sense of agency is generated when initiating joint attention interactions. This is important for understanding how humans can efficiently detect and understand the social consequences of their actions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Mitsubishi Heavy Industries (HMI) H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard is during roll out at the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Credit: Mitsubishi Heavy Industries, Ltd. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Signing of agreement on information policy for ASTP mission

    NASA Technical Reports Server (NTRS)

    1974-01-01

    John P. Donnelly (seated right), NASA Assistant Administrator for Public Affairs, and Vladen S. Vereshchetin (seated left), Vice Chairman of Intercosmos, USSR Academy of Sciences, initial an agreement on information policy for the joint U.S.-USSR Apollo Soyuz Test Project mission during ceremonies in Moscow in September 1974. Other members of the joint public affairs delegation looking on are, standing left to right, Vladimir A. Denissenko, Tatyana Klotchkovsaya, Igor P. Rumyantsev, John W. King, Nicholas Timacheff, and Robert Shafer. King is the Public Affairs Officer at JSC. Timacheff is the language officer with the JSC ASTP office. Shafer is NASA Deputy Assitant Administrator for Public Affairs (television).

  17. The Asteroid Impact and Deflection Assessment (AIDA) mission: Science Proximity Operations

    NASA Astrophysics Data System (ADS)

    Barnouin, Olivier; Bellerose, Julie; Carnelli, Ian; Carrol, Kieran; Ciarletti, Valérie; Cheng, Andrew F.; Galvez, Andres; Green, Simon F.; Grieger, Bjorn; Hirabayashi, Masatoshi; Herique, Alain; Kueppers, Michael; Minton, David A.; Mellab, Karim; Michel, Patrick; Rivkin, Andrew S.; Rosenblatt, Pascal; Tortora, Paolo; Ulamec, Stephan; Vincent, Jean-Baptiste; Zannoni, Marco

    2016-10-01

    The moon of the near-Earth binary asteroid 65803 Didymos is the target of the Asteroid Impact and Deflection Assessment (AIDA) mission. This mission is a joint effort between NASA and ESA to investigate the effectiveness of a kinetic impactor in deflecting an asteroid. The mission is composed of two components: the NASA-led Double Asteroid Redirect Test (DART) that will impact Didymos' moon (henceforth Didymos B), and the ESA-led Asteroid Impact Mission (AIM) that will survey the Didymos system. Both will undertake proximity operations to characterize the physical and dynamical properties of the Didymos system that are of maximum importance in the joint AIDA mission to understand the factors at play when assessing the mometum transfer that follows DART's impact into Didymos B. Using much of ESA's Rosetta experience, the AIM mission will undertake proximity operations both before and after DART's impact. AIM's chracterization includes measuring the precise orbital configuration, masses, internal properties, surface geology and regolith properties of the primary and secondary, using visible and thermal imaging, radar measurements and radio science data. AIM will also release the small MASCOT-2 lander, as well as a suite of a CubeSats to help achieve these objectives. DART proximity observations include two phases of imaging. The first makes use of a suite of long range images that will add light curve data to what will be collected from Earth. These data will refine the orbit period of Didymos B, and provide constraints for modeling the shape of both Didymos A and B. The second phase begins just under an hour before impact when resolved imaging of the Didymos system provides further shape model constraints for the visble parts of both Didymos A and B, some possible constraints on the mass of Didymos B and key geological information of both objects and the impact site. In this presentation, we will summarize the proximity operations undertaken by both DART and AIM

  18. Sentinel-5: the new generation European operational atmospheric chemistry mission in polar orbit

    NASA Astrophysics Data System (ADS)

    Pérez Albiñana, Abelardo; Erdmann, Matthias; Wright, Norrie; Martin, Didier; Melf, Markus; Bartsch, Peter; Seefelder, Wolfgang

    2017-08-01

    Sentinel-5 is an Earth Observation instrument to be flown on the Metop Second Generation (Metop-SG) satellites with the fundamental objective of monitoring atmospheric composition from polar orbit. The Sentinel-5 instrument consists of five spectrometers to measure the solar spectral radiance backscattered by the earth atmosphere in five bands within the UV (270nm) to SWIR (2385nm) spectral range. Data provided by Sentinel-5 will allow obtaining the distribution of important atmospheric constituents such as ozone, on a global daily basis and at a finer spatial resolution than its precursor instruments on the first generation of Metop satellites. The launch of the first Metop-SG satellite is foreseen for 2021. The Sentinel-5 instrument is being developed by Airbus DS under contract to the European Space Agency. The Sentinel-5 mission is part of the Space Component of the Copernicus programme, a joint initiative by ESA, EUMETSAT and the European Commission. The Preliminary Design Review (PDR) for the Sentinel-5 development was successfully completed in 2015. This paper provides a description of the Sentinel-5 instrument design and data calibration.

  19. Forrester works at the P6 Truss during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07313 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  20. Forrester works at the P6 Truss during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07315 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  1. 78 FR 48855 - Secretarial Infrastructure Business Development Mission to Mexico November 18-23, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... Development Mission to Mexico November 18-23, 2013 AGENCY: International Trade Administration, Department of... a senior-executive Business Development Mission to Mexico from November 18-23, 2013. This business... for the fact that more than 18,000 U.S. companies have operations in Mexico, investing $150 billion in...

  2. The X-ray Astronomy Recovery Mission

    NASA Astrophysics Data System (ADS)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  3. Flat H Frangible Joint Evolution

    NASA Technical Reports Server (NTRS)

    Diegelman, Thomas E.; Hinkel, Todd J.; Benjamin, Andrew; Rochon, Brian V.; Brown, Christopher W.

    2016-01-01

    Space vehicle staging and separation events require pyrotechnic devices. They are single-use mechanisms that cannot be tested, nor can failure-tolerant performance be demonstrated in actual flight articles prior to flight use. This necessitates the implementation of a robust design and test approach coupled with a fully redundant, failure-tolerant explosive mechanism to ensure that the system functions even in the event of a single failure. Historically, NASA has followed the single failure-tolerant (SFT) design philosophy for all human-rated spacecraft, including the Space Shuttle Program. Following the end of this program, aerospace companies proposed building the next generation human-rated vehicles with off-the-shelf, non-redundant, zero-failure-tolerant (ZFT) separation systems. Currently, spacecraft and launch vehicle providers for both the Orion and Commercial Crew Programs (CCPs) plan to deviate from the heritage safety approach and NASA's SFT human rating requirements. Both programs' partners have base-lined ZFT frangible joints for vehicle staging and fairing separation. These joints are commercially available from pyrotechnic vendors. Non-human-rated missions have flown them numerous times. The joints are relatively easy to integrate structurally within the spacecraft. In addition, the separation event is debris free, and the resultant pyro shock is lower than that of other design solutions. It is, however, a serious deficiency to lack failure tolerance. When used for critical applications on human-rated vehicles, a single failure could potentially lead to loss of crew (LOC) or loss of mission (LOM)). The Engineering and Safety & Mission Assurance directorates within the NASA Johnson Space Center took action to address this safety issue by initiating a project to develop a fully redundant, SFT frangible joint design, known as the Flat H. Critical to the ability to retrofit on launch vehicles being developed, the SFT mechanisms must fit within the same

  4. Materials trade study for lunar/gateway missions.

    PubMed

    Tripathi, R K; Wilson, J W; Cucinotta, F A; Anderson, B M; Simonsen, L C

    2003-01-01

    The National Aeronautics and Space Administration (NASA) administrator has identified protection from radiation hazards as one of the two biggest problems of the agency with respect to human deep space missions. The intensity and strength of cosmic radiation in deep space makes this a 'must solve' problem for space missions. The Moon and two Earth-Moon Lagrange points near Moon are being proposed as hubs for deep space missions. The focus of this study is to identify approaches to protecting astronauts and habitats from adverse effects from space radiation both for single missions and multiple missions for career astronauts to these destinations. As the great cost of added radiation shielding is a potential limiting factor in deep space missions, reduction of mass, without compromising safety, is of paramount importance. The choice of material and selection of the crew profile play major roles in design and mission operations. Material trade studies in shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space mission's to two Earth-Moon co-linear Lagrange points (L1) between Earth and the Moon and (L2) on back side of the moon as seen from Earth, and to the Moon have been studied. It is found that, for single missions, current state-of-the-art knowledge of material provides adequate shielding. On the other hand, the choice of shield material is absolutely critical for career astronauts and revolutionary materials need to be developed for these missions. This study also provides a guide to the effectiveness of multifunctional materials in preparation for more detailed geometry studies in progress. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Massively Clustered CubeSats NCPS Demo Mission

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike

    2013-01-01

    Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.

  6. The NASA Decadal Survey Aerosol, Cloud, Ecosystems Mission

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Bontempi, Paula; Maring, Hal

    2011-01-01

    In 2007, the National Academy of Sciences delivered a Decadal Survey (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond) for NASA, NOAA, and USGS, which is a prioritization of future satellite Earth observations. The recommendations included 15 missions (13 for NASA, two for NOAA), which were prioritized into three groups or tiers. One of the second tier missions is the Aerosol, Cloud, (ocean) Ecosystems (ACE) mission, which focuses on climate forcing, cloud and aerosol properties and interactions, and ocean ecology, carbon cycle science, and fluxes. The baseline instruments recommended for ACE are a cloud radar, an aerosol/cloud lidar, an aerosol/cloud polarimeter, and an ocean radiometer. The instrumental heritage for these measurements are derived from the Cloudsat, CALIPSO, Glory, SeaWiFS and Aqua (MODIS) missions. In 2008, NASA HQ, lead by Hal Maring and Paula Bontempi, organized an interdisciplinary science working group to help formulate the ACE mission by refining the science objectives and approaches, identifying measurement (satellite and field) and mission (e.g., orbit, data processing) requirements, technology requirements, and mission costs. Originally, the disciplines included the cloud, aerosol, and ocean biogeochemistry communities. Subsequently, an ocean-aerosol interaction science working group was formed to ensure the mission addresses the broadest range of science questions possible given the baseline measurements, The ACE mission is a unique opportunity for ocean scientists to work closely with the aerosol and cloud communities. The science working groups are collaborating on science objectives and are defining joint field studies and modeling activities. The presentation will outline the present status of the ACE mission, the science questions each discipline has defined, the measurement requirements identified to date, the current ACE schedule, and future opportunities for broader community

  7. Hello, world: Harnessing social media for the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Baldwin, Emily; Mignone, Claudia; O'Flaherty, Karen; Homfeld, Anne-Mareike; Bauer, Markus; McCaughrean, Mark

    2015-04-01

    The European Space Agency's (ESA) comet-chasing Rosetta mission was launched in 2004, before social media became a popular tool for mainstream communication. By harnessing a range of platforms for communicating the key messages of this unprecedented mission as it reached its destination ten years later, new audiences were reached and a global impact was achieved. Rosetta-specific social media accounts - @ESA_Rosetta on Twitter, the Rosetta Mission Facebook page and the rosettamission Instagram account - were developed during 2013/14 and used alongside the traditional reporting line of the main ESA website and the Rosetta blog to build awareness about the mission. Coordinated with ESA's existing social media channels (Flickr, YouTube, G+, Twitter, Facebook and Livestream) and with the support of ESA's country desks and Rosetta partner agency accounts (including @philae2014), information could be shared in a number of European languages, ensuring a wide reach across Europe - and the world. We discuss the roles of the various social media accounts in supporting and promoting the competitions and social media campaigns that were built around the key mission milestones of 2014: waking up from deep space hibernation (January), arriving at Comet 67P/Churyumov-Gerasimenko (August) and naming the landing site for Philae ahead of the landing event in November. We discuss the different approach to each channel, such as the first person twitter accounts, the dialogue with and between blog users, and the discussions held live via G+ Hangouts with leading scientists and spacecraft operators. We compare and contrast the audiences, the interaction we had with them and how challenges were overcome. We also use the science-fiction-meets-science-fact Ambition short movie, and its "undercover" dissemination on social media, as an example of how the profile of the Rosetta mission was raised in a unique way. By using a variety of social media platforms to target different audiences with

  8. KENNEDY SPACE CENTER, FLA. - STS-114 Pilot James Kelly talks with Bren Wade, captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. Kelly and other crew members Commander Eileen Collins and Mission Specialists Soichi Noguchi and Stephen Robinson toured the ships. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

    NASA Image and Video Library

    2003-08-13

    KENNEDY SPACE CENTER, FLA. - STS-114 Pilot James Kelly talks with Bren Wade, captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. Kelly and other crew members Commander Eileen Collins and Mission Specialists Soichi Noguchi and Stephen Robinson toured the ships. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.

  9. Achieving recognition that mental health is part of the mission of CDC.

    PubMed

    Safran, Marc A

    2009-11-01

    For much of its history the U.S. Centers for Disease Control and Prevention (CDC) considered mental health to be outside of its mission. That assumption persisted even after CDC became a leading public health agency and began to face important mental health issues. This narrative describes how the organizational paradigm indicating that mental health was not mission related was challenged and superseded by a new paradigm recognizing mental health as part of CDC's public health mission. Even after the CDC Mental Health Work Group's establishment in 2000, CDC took eight more years to overcome powerful remnants of the old paradigm that had for so long excluded, minimized, or discouraged attention to mental health. The CDC Mental Health Work Group led the agency's mental health efforts without funding or dedicated staffing but with more than 100 CDC professionals from multiple disciplines and centers serving as voluntary members, in addition to their other CDC responsibilities.

  10. Combined release and radiation effects satellite (CRRES) - Spacecraft and mission

    NASA Astrophysics Data System (ADS)

    Johnson, M. H.; Kierein, John

    1992-08-01

    The CRRES mission is a joint NASA and U.S. Department of Defense undertaking to study the near-Earth space environment and the effects of the Earth's radiation environment on state-of-the-art microelectronic components. To perform these studies, CRRES was launched with a complex array of scientific payloads. These included 24 chemical canisters which were released during the first 13 months of the mission at various altitudes over ground observation sites and diagnostic facilities. The CRRES system was launched on July 25, 1990, from Cape Canaveral Air Force Station on an Atlas I expendable launch vehicle into a low-inclination geosynchronous transfer orbit. The specified mission duration was 1 year with a goal of 3 years. The satellite subsystems support the instrument payloads by providing them with electrical power, command and data handling, and thermal control. This review briefly describes the CRRES observatory and mission, and provides an introduction to the CRRES instrumentation technical notes contained within this issue.

  11. Multi-Mission Strategic Technology Prioritization Study

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Rodriquez, G.; Elfes, A.; Derleth, J.; Smith, J. H.; Manvi, R.; Kennedy, B.; Shelton, K.

    2004-01-01

    This viewgraph presentation provides an overview of a pilot study intended to demonstrate in an auditable fashion how advanced space technology development can best impact future NASA missions. The study was a joint project by staff members of NASA's Jet Propulsion Laboratory (JPL), and Goddard Space Flight Center (GSFC). The other goals of the study were to show an approach to deal effectively with inter-program analysis trades, and to explore the limits of these approaches and tools in terms of what can be realistically achieved.

  12. STS-90 Mission Specialist Williams arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Mission Specialist Dafydd (Dave) Williams with the Canadian Space Agency poses in the cockpit of his T-38 jet trainer aircraft after arriving at the KSC Shuttle Landing Facility along with other members of the crew from NASAs Johnson Space Center to begin Terminal Countdown Demonstration Test (TCDT) activities. The TCDT is held at KSC prior to each Space Shuttle flight to provide crews with the opportunity to participate in simulated countdown activities. Columbia is targeted for launch of STS-90 on April 16 at 2:19 p.m. EST and will be the second mission of 1998. The mission is scheduled to last nearly 17 days.

  13. Mars methane analogue mission: Mission simulation and rover operations at Jeffrey Mine and Norbestos Mine Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Qadi, A.; Cloutis, E.; Samson, C.; Whyte, L.; Ellery, A.; Bell, J. F.; Berard, G.; Boivin, A.; Haddad, E.; Lavoie, J.; Jamroz, W.; Kruzelecky, R.; Mack, A.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.

    2015-05-01

    The Canadian Space Agency (CSA), through its Analogue Missions program, supported a microrover-based analogue mission designed to simulate a Mars rover mission geared toward identifying and characterizing methane emissions on Mars. The analogue mission included two, progressively more complex, deployments in open-pit asbestos mines where methane can be generated from the weathering of olivine into serpentine: the Jeffrey mine deployment (June 2011) and the Norbestos mine deployment (June 2012). At the Jeffrey Mine, testing was conducted over 4 days using a modified off-the-shelf Pioneer rover and scientific instruments including Raman spectrometer, Picarro methane detector, hyperspectral point spectrometer and electromagnetic induction sounder for testing rock and gas samples. At the Norbestos Mine, we used the research Kapvik microrover which features enhanced autonomous navigation capabilities and a wider array of scientific instruments. This paper describes the rover operations in terms of planning, deployment, communication and equipment setup, rover path parameters and instrument performance. Overall, the deployments suggest that a search strategy of “follow the methane” is not practical given the mechanisms of methane dispersion. Rather, identification of features related to methane sources based on image tone/color and texture from panoramic imagery is more profitable.

  14. STS-99 Mission Specialist Thiele arrives for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Gerhard P.J. Thiele (Ph.D.), with the European Space Agency, arrives at KSC aboard a T-38 jet aircraft to prepare for launch of Endeavour Jan. 31 at 12:47 p.m. EST. Over the next few days, the crew will review mission procedures, conduct test flights in the Shuttle Training Aircraft and undergo routine preflight medical exams. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety.

  15. Collaborative agency to support integrated care for children, young people and families: an action research study

    PubMed Central

    Stuart, Kaz

    2014-01-01

    Abstract Introduction Collaboration was legislated in the delivery of integrated care in the early 2000s in the UK. This research explored how the reality of practice met the rhetoric of collaboration. Theory The paper is situated against a theoretical framework of structure, agency, identity and empowerment. Collectively and contextually these concepts inform the proposed model of ‘collaborative agency’ to sustain integrated care. The paper brings sociological theory on structure and agency to the dilemma of collaboration. Methods Participative action research was carried out in collaborative teams that aspired to achieve integrated care for children, young people and families between 2009 and 2013. It was a part time, PhD study in collaborative practice. Results The research established that people needed to be able to be jointly aware of their context, to make joint decisions, and jointly act in order to deliver integrated services, and proposes a model of collaborative agency derived from practitioner’s experiences and integrated action research and literature on agency. The model reflects the effects of a range of structures in shaping professional identity, empowerment, and agency in a dynamic. The author proposes that the collaborative agency model will support integrated care, although this is, as yet, an untested hypothesis. PMID:24868192

  16. Science to Support Informed Decision-Making: Examples from the US Environmental Protection Agency

    EPA Science Inventory

    The mission of the United States Environmental Protection Agency (US EPA) is to protect human health and the environment. We work to achieve our mission through a combination of applied research and technical guidance for localities, states, tribes, and regions to best manage the...

  17. Defense POW/MIA Accounting Agency (DPAA)

    Science.gov Websites

    Conflicts Recently Accounted For World War II Service Personnel Not Recovered Following WWII Korean War annual publication of the Defense POW/MIA Accounting Agency. It chronicles Worldwide mission of our world VIETNAM WAR COLD WAR OTHER CONFLICTS NEWS, STORIES & SUMMARIES USS Oklahoma Sailor Killed During World

  18. The Joint Space Operations Center Mission System and the Advanced Research, Collaboration, and Application Development Environment Status Update 2016

    NASA Astrophysics Data System (ADS)

    Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan

    2016-05-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.

  19. Landsat-7 Mission and Early Results

    NASA Technical Reports Server (NTRS)

    Dolan, S. Kenneth; Sabelhaus, Phillip A.; Williams, Darrel L.; Irons, James R.; Barker, John L.; Markham, Brian L.; Bolek, Joseph T.; Scott, Steven S.; Thompson, R. J.; Rapp, Jeffrey J.

    1999-01-01

    The Landsat-7 mission has the goal of acquiring annual data sets of reflective band digital imagery of the landmass of the Earth at a spatial resolution of 30 meters for a period of five years using the Enhanced Thematic Mapper Plus (ETM+) imager on the Landsat-7 satellite. The satellite was launched on April 15, 1999. The mission builds on the 27-year continuous archive of thematic images of the Earth from previous Landsat satellites. This paper will describe the ETM+ instrument, the spacecraft, and the ground processing system in place to accomplish the mission. Results from the first few months in orbit will be given, with emphasis on performance parameters that affect image quality, quantity, and availability. There will also be a discussion of the Landsat Data Policy and the user interface designed to make contents of the archive readily available, expedite ordering, and distribute the data quickly. Landsat-7, established by a Presidential Directive and a Public Law, is a joint program of the National Aeronautics and Space Administration (NASA) Earth Science Enterprise and the United States Geological Survey (USGS) Earth Resources Observing System (EROS) Data Center.

  20. Unique Results and Lessons Learned From the TSS Missions

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2016-01-01

    The Tethered Satellite System (TSS) Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development in the U.S. Altogether, the investment made by NASA and the Italian Space Agency (ASI) over the thirteen-year period of the TSS Program totaled approximately $400M-exclusive of the two Space Shuttle flights provided by NASA. Since those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated in earth orbit and shown to perform better than the preflight dynamic or electrodynamic theoretical predictions. While it is true that the TSS-1 and TSS-1R missions experienced technical difficulties, the causes of these early developmental problems are now known to have been engineering design flaws, material selection, and procedural issues that (1) are unrelated to the basic viability of space tether technology, and (2) can be readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology.

  1. Launch of the SELENE(Kaguya) Mission and their Science Goals

    NASA Astrophysics Data System (ADS)

    Kato, M.; Takizawa, Y.; Sasaki, S.

    2007-12-01

    Implementation of Lunar orbiting satellite SELENE(Kaguya) has completed after final integration tests of thermal- vacuum and electromagnetic compatibility in the end of February 2007. Through pre-shipping reviews the satellite was carried to JAXA Tanegashima Space Center. The SELENE(Kaguya) is just being launched in September 2007. The mission has started in 1999 FY as a joint project of ISAS and NASDA, which have been merged into a space agency JAXA in October 2003. The SELENE certainly identified as a JAXA's science mission is operated from the newly installed SOAC (SELENE Operation and data Analysis Center) of Sagamihara/JAXA. The SELENE will be inserted into lunar orbit three weeks after launch using phasing orbit turning around Earth-Moon system. The main satellite will settle into a circular polar orbit with 100km altitude after releasing two sub-satellites in about 40 days after launch. After deploying magnetometer mast and a pair of sounder antenna, initial checks of scientific instruments will be carried for two months. Key questions on lunar science are "gWhat's origin of the Moon?"h, "gHow does the Moon have evolved?"h, and "gWhat history does the lunar environment have passed?"h Science topics to be studied by using fourteen science instruments are surface composition of chemistry and mineralogy, evolution tectonics of surface including subsurface to 5 km depth, gravity field of whole moon and magnetic field distribution for the study on origin and evolution of the Moon. Lunar environment are investigated in observing charged and neutral particles impinged on the surface. High definition TV cameras are also onboard the SELENE for public outreach.

  2. 77 FR 14584 - Eleventh Meeting: RTCA Special Committee 217, Joint With EUROCAE Working Group-44, Terrain and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Committee 217, Joint With EUROCAE Working Group--44, Terrain and Airport Mapping Databases AGENCY: Federal... Special Committee 217, Joint with EUROCAE Working Group--44, Terrain and Airport Mapping Databases... Committee 217, Joint with EUROCAE Working Group--44, Terrain and Airport Mapping Databases. DATES: The...

  3. Axisymmetric shell analysis of the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Anderson, Melvin S.

    1989-01-01

    The Space Shuttle Challenger (STS 51-L) accident led to an intense investigation of the structural behavior of the solid rocket booster (SRB) tang and clevis field joints. The presence of structural deformations between the clevis inner leg and the tang, substantial enough to prevent the O-ring seals from eliminating hot gas flow through the joints, has emerged as a likely cause of the vehicle failure. This paper presents results of axisymmetric shell analyses that parametrically assess the structural behavior of SRB field joints subjected to quasi-steady-state internal pressure loading for both the original joint flown on mission STS 51-L and the redesigned joint recently flown on the Space Shuttle Discovery. Discussion of axisymmetric shell modeling issues and details is presented and a generic method for simulating contact between adjacent shells of revolution is described. Results are presented that identify the performance trends of the joints for a wide range of joint parameters.

  4. 48 CFR 301.608 - Training requirements for purchase cardholders, Approving Officials, and Agency/Organization...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REGULATION SYSTEM Career Development, Contracting Authority, and Responsibilities 301.608 Training... Arrangements). • CON 110 (Mission Support Planning). Purchase cardholders and Approving Officials Yearly... appropriations law. • CON 100 (Shaping Smart Business Arrangements). • CON 110 (Mission Support Planning). Agency...

  5. 48 CFR 301.608 - Training requirements for purchase cardholders, Approving Officials, and Agency/Organization...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REGULATION SYSTEM Career Development, Contracting Authority, and Responsibilities 301.608 Training... Arrangements). • CON 110 (Mission Support Planning). Purchase cardholders and Approving Officials Yearly... appropriations law. • CON 100 (Shaping Smart Business Arrangements). • CON 110 (Mission Support Planning). Agency...

  6. Russian Mission Control Center

    NASA Image and Video Library

    2004-04-20

    Helen Conijn, fiancée of European Space Agency astronaut Andre Kuipers of the Netherlands, far right, joins Renita Fincke, second from right, wife of Expedition 9 Flight Engineer and NASA International Space Station Science Officer Michael Fincke, along with family members at the Russian Mission Control Center outside Moscow, Wednesday, April 21, 2004 to view the docking of the Soyuz capsule to the International Space Station that brought Kuipers, Fincke and Expedition 9 Commander Gennady Padalka to the complex following their launch Monday from Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  7. NASDA President Isao Uchida shakes hands with STS-87 Mission Specialist Takao Doi, Ph.D., after land

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, at left, shakes hands with STS-87 Mission Specialist Takao Doi, Ph.D., of NASDA, shortly after the landing of Columbia at Kennedy Space Center. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34-minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Winston Scott and Kalpana Chawla, Ph.D.; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  8. Precipitation Education: Connecting Students and Teachers with the Science of NASA's GPM Mission

    NASA Astrophysics Data System (ADS)

    Weaver, K. L. K.

    2015-12-01

    for the comic book reflects the international and cross-cultural aspect of the GPM as a joint mission between NASA and the Japan Aerospace Exploration Agency. A limited run print version of the initial comic book is planned for Fall 2015, with an online version and supplemental resources such as a teacher guide available on the GPM education website.

  9. Update on the Fire (solar probe) mission study

    NASA Technical Reports Server (NTRS)

    Jones, W. Veron; Forman, Miriam A.

    1995-01-01

    Since mid-1994 the U.S. and Russia have been studying the technical feasibility of a joint solar probe mission as part of the 'Fire and Ice' concept to explore close to the Sun, and Pluto, together. In the current concept of the 'Fire' mission, separate spacecraft built by each country would be launched together, fly by Jupiter to shed orbital angular momentum and achieve a solar polar orbit, and arrive 3.6 years later at 4 and 10 R(sub s). The Fire mission would measure basic parameters of the modes of energy and momentum flow and transfer to the coronal plasma that are not observable remotely. Specifically, measurement of magnetic fields, waves, suprathermal particles, and critical features of the plasma particle composition and distribution function would be made from 4 to 30 R(sub s) where the solar wind is known to be accelerated. In addition, the Fire spacecraft should image coronal structures unambiguously and relate the underlying and flown-through structures to plasma characteristics measured in situ. Each country is developing a backup plan to pursue the solar probe objectives alone if the other side is unable to carry out its mission.

  10. 77 FR 47492 - Thirteenth Meeting: RTCA Special Committee 217, Terrain and Airport Mapping Databases, Joint With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Committee 217, Terrain and Airport Mapping Databases, Joint With EUROCAE WG-44 AGENCY: Federal Aviation... 217, Terrain and Airport Mapping Databases, Joint with EUROCAE WG-44. SUMMARY: The FAA is issuing this... Mapping Databases, Joint with EUROCAE WG-44. DATES: The meeting will be held September 10-14, 2012, from 9...

  11. LCROSS: A High Return, Small Satellite Mission

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel R.

    2010-01-01

    Early in 2006, the NASA Exploration Systems Mission Directorate (ESMD) held a competition for NASA Centers to propose innovative ideas for a secondary payload mission to launch with the Lunar Reconnaissance Orbiter (LRO) to the Moon. The successful proposal could cost no more than $80 million dollars (less was preferred), would have to be ready to launch with the LRO in 31 months, could weigh no more than 1000 kg (fuelled), and would be designated a risk-tolerant "Class D" mission. In effect, NASA was offering a fixed-price contract to the winning NASA team to stay within a cost and schedule cap by accepting an unusually elevated risk position. To address this Announcement of Opportunity to develop a cost-and-schedule-capped secondary payload mission to fly with LRO, NASA Ames Research Center (ARC) in Moffett Field, CA, USA embarked on a brainstorming effort termed "Blue Ice" in which a small team was asked to explore a number of mission scenarios that might have a good chance for success and still fit within the stated programmatic constraints. From this work, ARC developed and submitted six of the nineteen mission proposals received by ESMD from throughout the Agency, one of which was LCROSS - a collaborative effort between ARC and its industrial partner, Northrop-Grumman (NG) in Redondo Beach, CA, USA.

  12. Rosetta mission operations for landing

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Lodiot, Sylvain; Companys, Vicente

    2016-08-01

    The International Rosetta Mission of the European Space Agency (ESA) was launched on 2nd March 2004 on its 10 year journey to comet Churyumov-Gerasimenko and has reached it early August 2014. The main mission objectives were to perform close observations of the comet nucleus throughout its orbit around the Sun and deliver the lander Philae to its surface. This paper describers the activities at mission operations level that allowed the landing of Philae. The landing preparation phase was mainly characterised by the definition of the landing selection process, to which several parties contributed, and by the definition of the strategy for comet characterisation, the orbital strategy for lander delivery, and the definition and validation of the operations timeline. The definition of the landing site selection process involved almost all components of the mission team; Rosetta has been the first, and so far only mission, that could not rely on data collected by previous missions for the landing site selection. This forced the teams to include an intensive observation campaign as a mandatory part of the process; several science teams actively contributed to this campaign thus making results from science observations part of the mandatory operational products. The time allocated to the comet characterisation phase was in the order of a few weeks and all the processes, tools, and interfaces required an extensive planning an validation. Being the descent of Philae purely ballistic, the main driver for the orbital strategy was the capability to accurately control the position and velocity of Rosetta at Philae's separation. The resulting operations timeline had to merge this need of frequent orbit determination and control with the complexity of the ground segment and the inherent risk of problems when doing critical activities in short times. This paper describes the contribution of the Mission Control Centre (MOC) at the European Space Operations Centre (ESOC) to this

  13. Space-Based Gravitational-Wave Observatory (SGO) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey; McNamara, Paul; Jennrich, Oliver

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a space-based gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return.

  14. STS-95 Mission Specialist Pedro Duque in white room

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the environmental chamber known as the white room, STS-95 Mission Specialist Pedro Duque of Spain, with the European Space Agency, is prepared by white room crew members Danny Wyatt (left) and Travis Thompson (right) for entry into the Space Shuttle Discovery for his first flight into space. The STS-95 mission, targeted for launch at 2 p.m. EST on Oct. 29, is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7.

  15. [Social inequalities in health, missions of a regional healthcare agency].

    PubMed

    Ginot, Luc

    The presence of social inequalities in health requires a multi-faceted intervention, focusing on the social determinants as well as the provision of care and prevention strategies. Regional health agencies have important levers at their disposal, as illustrated by the example of the Île-de-France region. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. NASA's Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Picard, Martin; Quinn, Jacqueline; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.

    2012-01-01

    After the completion of the Apollo Program, space agencies didn't visit the moon for many years. But then in the 90's, the Clementine and Lunar Prospector missions returned and showed evidence of water ice at the poles. Then in 2009 the Lunar Crater Observation and Sensing Satellite indisputably showed that the Cabeus crater contained water ice and other useful volatiles. Furthermore, instruments aboard the Lunar Reconnaissance Orbiter (LRO) show evidence that the water ice may also be present in areas that receive several days of continuous sunlight each month. However, before we can factor this resource into our mission designs, we must understand the distribution and quantity of ice or other volatiles at the poles and whether it can be reasonably harvested for use as propellant or mission consumables. NASA, in partnership with the Canadian Space Agency (CSA), has been developing a payload to answer these questions. The payload is named RESOLVE. RESOLVE is on a development path that will deliver a tested flight design by the end of 2014. The team has developed a Design Reference Mission using LRO data that has RESOLVE landing near Cabeus Crater in May of2016. One of the toughest obstacles for RESOLVE's solar powered mission is its tight timeline. RESOLVE must be able to complete its objectives in the 5-7 days of available sunlight. The RESOLVE team must be able to work around obstacles to the mission timeline in real time. They can't afford to take a day off to replan as other planetary missions have done. To insure that this mission can be executed as planned, a prototype version of RESOLVE was developed this year and tested at a lunar analog site on Hawaii, known as Apollo Valley, which was once used to train the Apollo astronauts. The RESOLVE team planned the mission with the same type of orbital imagery that would be available from LRO. The simulation team prepositioned a Lander in Apollo Valley with RESOLVE on top mounted on its CSA rover. Then the mission

  17. 78 FR 6807 - Critical Infrastructure Protection and Cyber Security Trade Mission to Saudi Arabia and Kuwait...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... Cyber Security Trade Mission to Saudi Arabia and Kuwait, September 28-October 1, 2013 AGENCY... coordinating and sponsoring an executive-led Critical Infrastructure Protection and Cyber Security mission to... on the cyber security, critical infrastructure protection, and emergency management, ports of entry...

  18. Joint Command Decision Support System

    DTIC Science & Technology

    2011-06-01

    2010 Olympics and Paralympics games , about a hundred agencies and organizations were involved with the safety and security of the games . Accordingly...Joint Task Force Games (JTFG) staff members were augmented with other Command Staff from Canada Command and Canadian Operational Support Command...CANOSCOM) to create an operational HQ. The scenario used for demonstration was based on fictitious Olympic Games (Breton and Guitouni 2008). The scenario

  19. A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing

    DTIC Science & Technology

    2016-09-13

    AFRL-AFOSR-VA-TR-2016-0317 A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing Pavana...Composites and Bonded Joints using Additive Manufacturing AWARD NO.: FA9550-15-1-0216 AGENCY NAME: The Air Force Office of Scientific Research (AFOSR), Ar...20 3 Additive Manufacturing for Bonded Composite Joints 21 3.1 Introduction

  20. Nanosatellite missions - the future

    NASA Astrophysics Data System (ADS)

    Koudelka, O.; Kuschnig, R.; Wenger, M.; Romano, P.

    2017-09-01

    In the beginning, nanosatellite projects were focused on educational aspects. In the meantime, the technology matured and now allows to test, demonstrate and validate new systems, operational procedures and services in space at low cost and within much shorter timescales than traditional space endeavors. The number of spacecraft developed and launched has been increasing exponentially in the last years. The constellation of BRITE nanosatellites is demonstrating impressively that demanding scientific requirements can be met with small, low-cost satellites. Industry and space agencies are now embracing small satellite technology. Particularly in the USA, companies have been established to provide commercial services based on CubeSats. The approach is in general different from traditional space projects with their strict product/quality assurance and documentation requirements. The paper gives an overview of nanosatellite missions in different areas of application. Based on lessons learnt from the BRITE mission and recent developments at TU Graz (in particular the implementation of the OPS-SAT nanosatellite for ESA), enhanced technical possibilities for a future astronomy mission after BRITE will be discussed. Powerful on-board computers will allow on-board data pre-processing. A state-of-the-art telemetry system with high data rates would facilitate interference-free operations and increase science data return.

  1. Calculation of Operations Efficiency Factors for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Laubach, Sharon

    2014-01-01

    The duration of a mission--and subsequently, the minimum spacecraft lifetime--is a key component in designing the capabilities of a spacecraft during mission formulation. However, determining the duration is not simply a function of how long it will take the spacecraft to execute the activities needed to achieve mission objectives. Instead, the effects of the interaction between the spacecraft and ground operators must also be taken into account. This paper describes a method, using "operations efficiency factors", to account for these effects for Mars surface missions. Typically, this level of analysis has not been performed until much later in the mission development cycle, and has not been able to influence mission or spacecraft design. Further, the notion of moving to sustainable operations during Prime Mission--and the effect that change would have on operations productivity and mission objective choices--has not been encountered until the most recent rover missions (MSL, the (now-cancelled) joint NASA-ESA 2018 Mars rover, and the proposed rover for Mars 2020). Since MSL had a single control center and sun-synchronous relay assets (like MER), estimates of productivity derived from MER prime and extended missions were used. However, Mars 2018's anticipated complexity (there would have been control centers in California and Italy, and a non-sun-synchronous relay asset) required the development of an explicit model of operations efficiency that could handle these complexities. In the case of the proposed Mars 2018 mission, the model was employed to assess the mission return of competing operations concepts, and as an input to component lifetime requirements. In this paper we provide examples of how to calculate the operations efficiency factor for a given operational configuration, and how to apply the factors to surface mission scenarios. This model can be applied to future missions to enable early effective trades between operations design, science mission

  2. STS-85 Mission Specialist Robinson prepares to enter Discovery

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Mission Specialist Stephen K. Robinson prepares to enter the Space Shuttle orbiter Discovery at Launch Complex 39A just prior to launch, scheduled for 10:41 a.m. EDT. The primary payload on this mission is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earths atmosphere as a part of NASAs Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discoverys payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  3. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.

    PubMed

    Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim

    2016-01-01

    To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues

  4. Comparing NASA and ESA Cost Estimating Methods for Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Hunt, Charles D.; vanPelt, Michel O.

    2004-01-01

    To compare working methodologies between the cost engineering functions in NASA Marshall Space Flight Center (MSFC) and ESA European Space Research and Technology Centre (ESTEC), as well as to set-up cost engineering capabilities for future manned Mars projects and other studies which involve similar subsystem technologies in MSFC and ESTEC, a demonstration cost estimate exercise was organized. This exercise was a direct way of enhancing not only cooperation between agencies but also both agencies commitment to credible cost analyses. Cost engineers in MSFC and ESTEC independently prepared life-cycle cost estimates for a reference human Mars project and subsequently compared the results and estimate methods in detail. As a non-sensitive, public domain reference case for human Mars projects, the Mars Direct concept was chosen. In this paper the results of the exercise are shown; the differences and similarities in estimate methodologies, philosophies, and databases between MSFC and ESTEC, as well as the estimate results for the Mars Direct concept. The most significant differences are explained and possible estimate improvements identified. In addition, the Mars Direct plan and the extensive cost breakdown structure jointly set-up by MSFC and ESTEC for this concept are presented. It was found that NASA applied estimate models mainly based on historic Apollo and Space Shuttle cost data, taking into account the changes in technology since then. ESA used models mostly based on European satellite and launcher cost data, taking into account the higher equipment and testing standards for human space flight. Most of NASA's and ESA s estimates for the Mars Direct case are comparable, but there are some important, consistent differences in the estimates for: 1) Large Structures and Thermal Control subsystems; 2) System Level Management, Engineering, Product Assurance and Assembly, Integration and Test/Verification activities; 3) Mission Control; 4) Space Agency Program Level

  5. Mission X: Train Like an Astronaut Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  6. The SPICA mission

    NASA Astrophysics Data System (ADS)

    Sibthorpe, B.; Helmich, F.; Roelfsema, P.; Kaneda, H.; Shibai, H.

    2015-05-01

    SPICA is a mid and far-infrared space mission to be submitted as a candidate to ESA's fifth medium class mission call, due in early 2016. This will be a joint project between ESA and JAXA, with ESA taking the lead role. If selected, SPICA will launch in ˜2029 and operate for a goal lifetime of 5 years. The spacecraft will house a 2.5 m telescope actively cooled to 8 K, providing unprecedented sensitivity at mid-far infrared wavelengths. The low background environment and wavelength coverage provided by SPICA will make it possible to conduct detailed spectroscopic surveys of sources in both the local and distant Universe, deep into the most obscured regions. Using these data the evolution of galaxies over a broad and continuous range of cosmic time can be studied, spanning the era of peak star forming activity. SPICA will also provide unique access to, among others, the deep-lying water-ice spectral features and HD lines within planet forming discs. SPICA will conduct an extensive survey of both planet forming discs and evolved planetary systems, with the aim of providing the missing link between planet formation models and the large number of extrasolar planetary systems now being discovered.

  7. An Overview of the Smart Sensor Inter-Agency Reference Testbench (SSIART)

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond S.; Braham, Stephen P.; Dufour, Jean-Francois; Barton, Richard J.

    2012-01-01

    In this paper, we present an overview of a proposed collaboration between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA), which is designed to facilitate the introduction of commercial-off-the-shelf (COTS) radios for smart-sensing applications into international spaceflight programs and projects. The proposed work will produce test hardware reference designs, test software reference architectures and example implementations, test plans in reference test environments, and test results, all of which will be shared between the agencies and documented for future use by mission planners. The proposed collaborative structure together with all of the anticipated tools and results produced under the effort is collectively referred to as the Smart Sensor Inter-agency Reference Testbench or SSIART. It is intended to provide guidance in technology selection and in increasing the related readiness levels of projects and missions as well as the space industry.

  8. The SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  9. KSC-98pc345

    NASA Image and Video Library

    1998-03-09

    KENNEDY SPACE CENTER, FLA. -- The STS-90 Neurolab payload and two of the four Getaway Specials (GAS) await payload bay door closure in the orbiter Columbia today in Orbiter Processing Facility bay 3. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The GAS container on the left contains the COLLisions Into Dust Experiment, or COLLIDE, which will study low velocity collisions between space-borne particles in an attempt to better understand planetary ring dynamics. The STS-90 mission is a joint venture of six space agencies and seven U.S. research agencies. Agencies participating in this mission include six institutes of the National Institutes of Health, the National Science Foundation, and the Office of Naval Research, as well as the space agencies of Canada, France, Germany, and Japan, and the European Space Agency (ESA)

  10. Mission X: Train Like an Astronaut Pilot Study

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.; Olivotto, C.; Boese, A.; Spiero, F.; Galoforo, G.; Niihori, M.

    2011-01-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 14 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and inspire and motivate students to pursue careers in STEM fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, and United Kingdom hosted teams for the pilot this past spring, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing on 131 teams, more than 3700 students from 40 cities worldwide participated in the first round of Mission X. OUTCOMES AND BEST PRACTICES Members of the Mission X core team will highlight the outcomes of this international educational outreach pilot project, show video highlights of the challenge, provide the working group s initial assessment of the project and discuss the future potential of the effort. The team will also discuss ideas and best practices for international partnership in education outreach efforts from various agency perspectives and experiences

  11. The Lunar Reconnaissance Orbiter, a Planning Tool for Missions to the Moon

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Petro, N. E.

    2017-12-01

    The Lunar Reconnaissance Orbiter Mission was conceived as a one year exploration mission to pave the way for a return to the lunar surface, both robotically and by humans. After a year in orbit LRO transitioned to a science mission but has operated in a duel role of science and exploration ever since. Over the years LRO has compiled a wealth of data that can and is being used for planning future missions to the Moon by NASA, other national agencies and by private enterprises. While collecting this unique and unprecedented data set, LRO's science investigations have uncovered new questions that motivate new missions and targets. Examples include: when did volcanism on the Moon cease, motivating a sample return mission from an irregular mare patch such as Ina-D; or, is there significant water ice sequestered near the poles outside of the permanently shaded regions? In this presentation we will review the data products, tools and maps that are available for mission planning, discuss how the operating LRO mission can further enhance future missions, and suggest new targets motivated by LRO's scientific investigations.

  12. The Europa Jupiter System Mission

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Clark, K.; Erd, C.; Pappalardo, R.; Greeley, R. R.; Blanc, M.; Lebreton, J.; van Houten, T.

    2009-05-01

    Europa Jupiter System Mission (EJSM) will be an international mission that will achieve Decadal Survey and Cosmic Vision goals. NASA and ESA have concluded a joint study of a mission to Europa, Ganymede and the Jupiter system with orbiters developed by NASA and ESA; contributions by JAXA are also possible. The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). The JEO mission has been selected by NASA as the next Flagship mission to the out solar system. JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO would carry eleven and ten complementary instruments, respectively, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. EJSM will fully addresses high priority science objectives identified by the National Research Council's (NRC's) Decadal Survey and ESA's Cosmic Vision for exploration of the outer solar system. The Decadal Survey recommended a Europa Orbiter as the highest priority outer planet flagship mission and also identified Ganymede as a highly desirable mission target. EJSM would uniquely address several of the central themes of ESA's Cosmic Vision Programme, through its in-depth exploration of the Jupiter system and its evolution from origin to habitability. EJSM will investigate the potential habitability of the active ocean-bearing moons Europa and Ganymede, detailing the geophysical, compositional, geological and external processes that affect these icy worlds. EJSM would also explore Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the

  13. STS-97 Mission Specialist Noriega talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Carlos Noriega. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Marc Garneau, who is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  14. STS-97 Mission Specialist Tanner talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Joseph Tanner. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Marc Garneau, who is with the Canadian Space Agency, and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  15. STS-97 Mission Specialist Garneau talks to media after arrival for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After their arrival at the Shuttle Landing Facility, the STS-97 crew gather to address the media. At the microphone is Mission Specialist Marc Garneau, who is with the Canadian Space Agency. Behind him stand Commander Brent Jett, Pilot Michael Bloomfield and Mission Specialists Joseph Tanner and Carlos Noriega. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  16. 75 FR 15686 - Middle East Public Health Mission; Application Deadline Extended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... DEPARTMENT OF COMMERCE International Trade Administration Middle East Public Health Mission; Application Deadline Extended AGENCY: International Trade Administration, Department of Commerce. ACTION... public manner, including publication in the Federal Register, posting on the Commerce Department trade...

  17. Long Term Missions at the Sun-Earth Libration Point L1: ACE, SOHO, and WIND

    NASA Technical Reports Server (NTRS)

    Roberts, Craig E.

    2011-01-01

    Three heliophysics missions - the Solar Heliospheric Observatory (SOHO), the Advanced Composition Explorer (ACE), and the Global Geoscience WIND - have been orbiting the Sun-Earth interior libration point L1 continuously since 1996, 1997, and 2004, respectively. ACE and WIND (both NASA missions) and SOHO (an ESA-NASA joint mission) are all operated from the NASA Goddard Space Flight Center Flight Dynamics Facility. While ACE and SOHO have been dedicated libration point orbiters since their launches, WIND prior to 2004 flew a remarkable 10-year deep-space trajectory that featured 38 targeted lunar flybys. The L1 orbits and the mission histories of the three spacecraft are briefly reviewed, and the station-keeping techniques and orbit maneuver experience are discussed.

  18. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  19. The Gaia mission

    NASA Astrophysics Data System (ADS)

    Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J.-L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J.-M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J.-B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I.-C.; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H.-H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P.-M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A.-M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D.-W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A.-T.; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J.-M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-11-01

    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gaia

  20. KENNEDY SPACE CENTER, FLA. - The STS-114 mission crew walks through the Orbiter Processing Facility looking at the tiles underneath Atlantis. From left are Mission Specialists Andy Thomas, Stephen Robinson, Soichi Noguchi and Charles Camarda (pointing); Commander Eileen Collins; and Mission Specialist Wendy Lawrence. At far right Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. Not seen is Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - The STS-114 mission crew walks through the Orbiter Processing Facility looking at the tiles underneath Atlantis. From left are Mission Specialists Andy Thomas, Stephen Robinson, Soichi Noguchi and Charles Camarda (pointing); Commander Eileen Collins; and Mission Specialist Wendy Lawrence. At far right Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. Not seen is Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  1. BRIC-12,Mission Specialist Tognini handles the GN2 freezer.

    NASA Image and Video Library

    1999-07-24

    S93-E-5006 (23 July 1999) --- Astronaut Michel Tognini, mission specialist representing the French space agency (CNES), opens the gaseous nitorgen (GN2) freezer on Columbia's middeck. The freezer is flown in support of two plant growth experiments--Plant Growth Investigations in Microgravity (PGIM) and Biological Research in Canisters (BRIC). Throughout the mission Tognini periodically freezes samples from the experiments to provide glimpses of the plants in various stages of development. The photo was recorded with an electronic still camera (ESC) on Flight Day 1.

  2. Atmospheric Laboratory for Applications and Science (ATLAS), mission 1: Introduction

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The first Atmospheric Laboratory for Applications and Science (ATLAS 1) is a NASA mission with an international payload, with the European Space Agency providing operational support for the European investigations. The ATLAS 1 represents the first of a series of shuttle-borne payloads which are intended to study the composition of the middle atmosphere and its possible variations due to solar changes over the course of an 11-year solar cycle. One of the ATLAS missions will coincide with NASA's Upper Atmospheric Research Satellite (UARS) mission and will provide crucial parameters not measured by the instrument complement on the satellite. A first in this evolutionary program, the ATLAS 1 will carry a payload of instruments originally flown on the Spacelab 1 and Spacelab 3 missions. The ATLAS mission therefore exploits the shuttle capability to return sophisticated instruments to the ground for refurbishment and updating, and the multi-mission reflight of the instruments at intervals required by the scientific goals. In addition to the investigations specific to the ATLAS objectives, the first mission payload includes others that are intended to study or use the near earth environment.

  3. 78 FR 15349 - Trade Mission to Central America in Conjunction With the Trade Americas-Opportunities in Central...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Trade Mission to Central America in Conjunction With the Trade Americas--Opportunities in Central America Conference; July 15-19, 2013 AGENCY... (USFCS) is organizing a trade mission to Central America, in conjunction with the Trade Americas...

  4. 77 FR 42638 - Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... 1625-AA00 Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA AGENCY: Coast Guard... navigable waters of Mission Bay in support of the Sea World San Diego Fireworks. This safety zone is..., since immediate action is needed to ensure the public's safety. B. Basis and Purpose Sea World is...

  5. Ulysses, the end of an extraordinary mission

    NASA Astrophysics Data System (ADS)

    2008-06-01

    Ulysses, a pioneering ESA/NASA mission, was launched in October 1990 to explore uncharted territories - the regions above and below the Sun’s poles - and study our star’s sphere of influence, or heliosphere, in the four dimensions of space and time. Originally designed for a lifetime of five years, the mission has surpassed all expectations. The reams of data Ulysses has returned have forever changed the way scientists view the Sun and its effect on the space surrounding it. Media representatives interested in attending the press conference are invited to register using the attached form. Those not able to attend will have the opportunity to follow the press conference using the following phone number: +33 1 56785733 (listening-mode only). The programme of the event is as follows: The Ulysses Legacy Press Conference 12 June 2008, 15:30, Room 137, ESA Headquarters, 8-10 rue Mario-Nikis, Paris Event programme 15:30 Welcome, by David Southwood, ESA Director of Science and Robotic Exploration (with a joint ESA/NASA statement) 15:40 Ulysses: a modern-day Odyssey, by Richard Marsden, ESA Ulysses Project Scientist and Mission Manager 15:50 The Ulysses scientific legacy: Inside the heliosphere, by Richard Marsden,ESA Ulysses Project Scientist and Mission Manager 16:00 The Ulysses scientific legacy: Outside the heliosphere, by Ed Smith, NASA Ulysses Project Scientist 16:10 Ulysses, the over-achiever: challenges and successes of a 17-year-old mission, by Nigel Angold, ESA Ulysses Mission Operations Manager 16:20 Questions and Answers, Panelists: David Southwood, Richard Marsden, Ed Smith, Nigel Angold and Ed Massey (NASA Ulysses Project Manager) 16:40 Interview opportunities 17:30 End of event

  6. Grounding Student Affairs in a Catholic Charism: The Journey of One Faculty Member in Connecting Curriculum with Mission

    ERIC Educational Resources Information Center

    Whitney, Rich; Laboe, Mark

    2014-01-01

    The institutional mission of a university guides interactions among faculty, staff, students, and others and is instrumental in shaping the campus culture. As such, it is important that all members of a campus community not only understand the mission, but also have a sense of agency in determining how to live the mission through their work. This…

  7. A happy "thumbs up" from the crew of the Space Shuttle Endeavour and NASA Dryden Flight Research Center officials heralded the successful completion of mission STS-100

    NASA Image and Video Library

    2001-05-01

    A happy "thumbs up" from the crew of the Space Shuttle Endeavour and NASA Dryden Flight Research Center officials heralded the successful completion of mission STS-100. Standing by the shuttle's rocket nozzles from left to right: Scott E. Prazynski, mission specialist (U.S.); Yuri V. Lonchakov, mission specialist (Russia); Kent V. Rominger, commander (U.S.); Wally Sawyer, NASA Dryden Flight Research Center deputy director; Kevin Petersen, NASA Dryden Flight Research Center director; Umberto Guidoni, mission specialist (European Space Agency); John L. Phillips, mission specialist (U.S.); Jeffrey S. Ashby, pilot (U.S.); and Chris A. Hadfield, mission specialist (Canadian Space Agency). The mission landed at Edwards Air Force Base, California, on May 1, 2001.

  8. STS-99 Mission Specialist Thiele suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, smiles as he dons his launch and entry suit during final launch preparations. Known as the Shuttle Radar Topography Mission, liftoff is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course, using two antennae and a 200-foot- long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  9. Mission Assurance Modeling and Simulation: A Cyber Security Roadmap

    NASA Technical Reports Server (NTRS)

    Gendron, Gerald; Roberts, David; Poole, Donold; Aquino, Anna

    2012-01-01

    This paper proposes a cyber security modeling and simulation roadmap to enhance mission assurance governance and establish risk reduction processes within constrained budgets. The term mission assurance stems from risk management work by Carnegie Mellon's Software Engineering Institute in the late 19905. By 2010, the Defense Information Systems Agency revised its cyber strategy and established the Program Executive Officer-Mission Assurance. This highlights a shift from simply protecting data to balancing risk and begins a necessary dialogue to establish a cyber security roadmap. The Military Operations Research Society has recommended a cyber community of practice, recognizing there are too few professionals having both cyber and analytic experience. The authors characterize the limited body of knowledge in this symbiotic relationship. This paper identifies operational and research requirements for mission assurance M&S supporting defense and homeland security. M&S techniques are needed for enterprise oversight of cyber investments, test and evaluation, policy, training, and analysis.

  10. Eyharts in the SM during Joint Operations

    NASA Image and Video Library

    2008-03-19

    S123-E-007244 (19 March 2008) --- European Space Agency (ESA) astronaut Leopold Eyharts, STS-123 mission specialist, smiles for a photo near the galley in the Zvezda Service Module of the International Space Station while Space Shuttle Endeavour is docked with the station. Food and beverage packages float freely near Eyharts.

  11. Working Partnerships: A Joint Venture in Vocational Education.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    Joint Ventures in Vocational Education projects link participating businesses with secondary vocational programs in a cooperative relationship. These are voluntary arrangements between vocational programs and a public or private sector agency that combine the energies and resources of the partners to enrich various aspects of the vocational…

  12. Duke University: Licensing and Real Estate Joint Ventures.

    ERIC Educational Resources Information Center

    McDonald, Eugene J.

    1984-01-01

    Joint ventures undertaken by Duke University with industry are reported that illustrate the imaginative arrangements and economic and otherwise advantageous structures possible in co-ventures. They include patent and trademark licensing, travel agency commissions, a racquetball and health club, a hotel, and an office building. (MSE)

  13. Design of a Slowed-Rotor Compound Helicopter for Future Joint Service Missions

    NASA Technical Reports Server (NTRS)

    Silva, Christopher; Yeo, Hyeonsoo; Johnson, Wayne R.

    2010-01-01

    A slowed-rotor compound helicopter has been synthesized using the NASA Design and Analysis of Rotorcraft (NDARC) conceptual design software. An overview of the design process and the capabilities of NDARC are presented. The benefits of trading rotor speed, wing-rotor lift share, and trim strategies are presented for an example set of sizing conditions and missions.

  14. Wind Prelaunch Mission Operations Report (MOR)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Wind mission is the first mission of the Global Geospace Science (GGS) initiative. The Wind laboratory will study the properties of particles and waves in the region between the Earth and the Sun. Using the Moon s gravity to save fuel, dual lunar swing-by orbits enable the spacecraft to sample regions close to and far from the Earth. During the three year mission, Wind will pass through the bow shock of Earth's magnetosphere to begin a thorough investigation of the solar wind. Mission objectives require spacecraft measurements in two orbits: lunar swing- by ellipses out to distances of 250 Earth radii (RE) and a small orbit around the Lagrangian point L-l that remains between the Earth and the Sun. Wind will be placed into an initial orbit for approximately 2 years. It will then be maneuvered into a transition orbit and ultimately into a halo orbit at the Earth-Sun L-l point where it will operate for the remainder of its lifetime. The Wind satellite development was managed by NASA's Goddard Space Flight Center with the Martin Marietta Corporation, Astro-Space Division serving as the prime contractor. Overall programmatic direction was provided by NASA Headquarters, Office of Space Science. The spacecraft will be launched under a launch service contract with the McDonnell Douglas Corporation on a Delta II Expendable Launch Vehicle (ELV) within a November l-l4, 1994 launch window. The Wind spacecraft carries six U.S. instruments, one French instrument, and the first Russian instrument ever to fly on an American satellite. The Wind and Polar missions are the two components of the GGS Program. Wind is also the second mission of the International Solar Terrestrial Physics (ISTP) Program. The first ISTP mission, Geotail, is a joint project of the Institute of Space and Astronautical Science of Japan and NASA which launched in 1992. The Wind mission is planned to overlap Geotail by six months and Polar by one year

  15. Interlacing Mission, Strategic Planning, and Vision to Lean: Powerful DNA for Change

    ERIC Educational Resources Information Center

    Arnold, Alison; Flumerfelt, Shannon

    2012-01-01

    The authors' purpose for this article is to describe a K-12 public school district's journey to internalize and actualize its mission, strategic planning and vision as one coherent engagement using Lean principles and tools. Lean jointly comprises an organizational philosophy and management toolkit prominent in private, government, and nonprofit…

  16. Forrester works on the S1/S3 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-14

    S117-E-07217 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  17. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07190 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  18. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07289 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  19. Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission

    NASA Image and Video Library

    2007-06-13

    S117-E-07286 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.

  20. Rosetta Mission's "7 Hours of Terror" and Philae's Descent

    NASA Astrophysics Data System (ADS)

    Blanco, Philip

    2015-09-01

    In November 2014 the Rosetta mission to Comet 67P/Churyumov-Gerasimenko made the headlines when its Philae lander completed a successful unpowered descent onto the surface of the comet nucleus after "7 hours of terror" for the mission scientists. 67P's irregular shape and rotation made this task even more challenging. Philae fell almost radially towards 67P, as shown in an animation produced by the European Space Agency (ESA) prior to the event. Below, we investigate whether it is possible to model the spacecraft's descent time and impact speed using concepts taught in an introductory physics course.

  1. NAFTA Revised Procedures for Joint Review of Microbials and Semiochemicals

    EPA Pesticide Factsheets

    The Canadian Pest Management Regulatory Agency and EPA have established a process for the joint review of pest control products in which the new active ingredient is a microbial or an arthropod semiochemical (including pheromones).

  2. Agency Governance and Enforcement: The Influence of Mission on Environmental Decisionmaking

    ERIC Educational Resources Information Center

    Firestone, Jeremy

    2002-01-01

    Administrative agencies seeking to impose sanctions for regulatory violations can handle matters internally or through civil or criminal courts. Organizational culture, legal constraints, and political and private actors may influence governance and hence choice of enforcement venue. An enforcement behavior model is constructed and tested…

  3. Building a Quality Workforce. A Joint Initiative.

    ERIC Educational Resources Information Center

    Department of Commerce, Washington, DC.

    For this joint effort among three Cabinet Agencies, studies by a variety of organizations were reviewed and 134 business leaders and 34 education leaders in many communities throughout the United States were interviewed to determine what businesses find lacking among new entrants into the labor force and what employers' work force needs will be in…

  4. Cross support overview and operations concept for future space missions

    NASA Technical Reports Server (NTRS)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  5. OEI and OPA Issue a Joint Memorandum of Understanding (2002 Memo)

    EPA Pesticide Factsheets

    This MOU delineates certain interdependent functions, oversight responsibilities, and joint initiatives of the Office of Public Affairs (OPA) and the Office of Environmental Information (OEI) for the Agency's public Web site.

  6. Evaluation of the NASA Arc Jet Capabilities to Support Mission Requirements

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bruce, Walt; Gage, Peter; Horn, Dennis; Mastaler, Mike; Rigali, Don; Robey, Judee; Voss, Linda; Wahlberg, Jerry; Williams, Calvin

    2010-01-01

    NASA accomplishes its strategic goals through human and robotic exploration missions. Many of these missions require launching and landing or returning spacecraft with human or return samples through Earth's and other planetary atmospheres. Spacecraft entering an atmosphere are subjected to extreme aerothermal loads. Protecting against these extreme loads is a critical element of spacecraft design. The safety and success of the planned mission is a prime concern for the Agency, and risk mitigation requires the knowledgeable use of thermal protection systems to successfully withstand the high-energy states imposed on the vehicle. Arc jets provide ground-based testing for development and flight validation of re-entry vehicle thermal protection materials and are a critical capability and core competency of NASA. The Agency's primary hypersonic thermal testing capability resides at the Ames Research Center and the Johnson Space Center and was developed and built in the 1960s and 1970s. This capability was critical to the success of Apollo, Shuttle, Pioneer, Galileo, Mars Pathfinder, and Orion. But the capability and the infrastructure are beyond their design lives. The complexes urgently need strategic attention and investment to meet the future needs of the Agency. The Office of Chief Engineer (OCE) chartered the Arc Jet Evaluation Working Group (AJEWG), a team of experienced individuals from across the Nation, to capture perspectives and requirements from the arc jet user community and from the community that operates and maintains this capability and capacity. This report offers the AJEWG's findings and conclusions that are intended to inform the discussion surrounding potential strategic technical and investment strategies. The AJEWG was directed to employ a 30-year Agency-level view so that near-term issues did not cloud the findings and conclusions and did not dominate or limit any of the strategic options.

  7. Joint Forward Operating Base Elements of Command and Control

    NASA Astrophysics Data System (ADS)

    Summers, William C.

    2002-01-01

    Since the 1986 Goldwater-Nichols Act directed the Chairman of the Joint Chiefs of Staff to develop doctrine for the joint employment of the armed forces, tactics, techniques, and procedures have evolved at different rates depending on the competency. Whereas the command of joint air forces is well prescribed within the structure of the air operations center and its associated leadership, command of air assets at a joint forward operating base lacks guidance. Today, the United States prosecutes an air war over Afghanistan from bases in Uzbekistan, Pakistan, and Afghanistan. Elements of the United States Army, Air Force, and Marines combine at these geographically minute locations, each bringing a certain complement of support and command and control. Evidence from operations during the 1999 air war for Kosovo at Tirana Rinas Airport in Albania suggests that when these service elements meet at the airfield for the first time, there are problems associated with local procedure. At best, time is wasted creating local joint systems to overcome the difficulties. At worst, safety and mission accomplishment are jeopardized. This thesis will address the need to develop doctrine and a jointly integrated organization to support the command and control function at a forward operating base.

  8. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Thomas, F. P.

    1992-01-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  9. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, W. K.; Thomas, F. P.

    1992-10-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  10. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Architecture Overview and Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Johnson, B. R.; Miller, S. W.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions. Originally designed to support S-NPP and JPSS, the CGS has demonstrated its scalability and flexibility to incorporate all of these other important missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture will be upgraded to Block 2.0 in 2015 to satisfy several key objectives, including: "operationalizing" S-NPP, which had originally been intended as a risk reduction mission; leveraging lessons learned to date in multi-mission support; taking advantage of newer, more reliable and efficient technologies; and satisfying new requirements and constraints due to the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This

  11. 78 FR 15346 - Secretarial Infrastructure Business Development Mission to Brazil, Colombia and Panama; May 12-18...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... Development Mission to Brazil, Colombia and Panama; May 12-18, 2013 AGENCY: International Trade Administration...[aacute], Colombia and Panama City, Panama from May 12-18, 2013. This business development mission will... 12-18, 2013) Colombia and Panama (May 14-18, 2013) The delegation will be composed of 20-25 U.S...

  12. SPICE-Based Python Packages for ESA Solar System Exploration Mission's Geometry Exploitation

    NASA Astrophysics Data System (ADS)

    Costa, M.; Grass, M.

    2018-04-01

    This contribution outlines three Python packages to provide an enhanced and extended usage of SPICE Toolkit APIS providing higher-level functions and data quick-look capabilities focused on European Space Agency solar system exploration missions.

  13. Critical early mission design considerations for lunar data systems architecture

    NASA Technical Reports Server (NTRS)

    Hei, Donald J., Jr.; Stephens, Elaine

    1992-01-01

    This paper outlines recent early mission design activites for a lunar data systems architecture. Each major functional element is shown to be strikingly similar when viewed in a common reference system. While this similarity probably deviates with lower levels of decomposition, the sub-functions can always be arranged into similar and dissimilar categories. Similar functions can be implemented as objects - implemented once and reused several times like today's advanced integrated circuits. This approach to mission data systems, applied to other NASA programs, may result in substantial agency implementation and maintenance savings. In today's zero-sum-game budgetary environment, this approach could help to enable a lunar exploration program in the next decade. Several early mission studies leading to such an object-oriented data systems design are recommended.

  14. An Evolving Joint Acquisition Force

    DTIC Science & Technology

    2004-03-19

    COVERED - 4. TITLE AND SUBTITLE An Evolving Joint Acquisition Force 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ...Theodore Jennings 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) U.S. Army War...College,Carlisle Barracks,Carlisle,PA,17013-5050 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10

  15. The payload canister leaves the O&C with the Joint Airlock Module inside

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The payload canister, with the Joint Airlock Module inside, backs out of the Operations and Checkout Building for a short trip to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.

  16. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2007-01-01

    The NASA Ikhana unmanned aerial vehicle (UAV) is a General Atomics Aeronautical Systems Inc. (San Diego, California) MQ-9 Predator-B modified to support the conduct of Earth science missions for the NASA Science Mission Directorate and, through partnerships, other government agencies and universities. It can carry over 2000 lb of experiment payloads in the avionics bay and external pods and is capable of mission durations in excess of 24 hours at altitudes above 40,000 ft. The aircraft is remotely piloted from a mobile ground control station (GCS) that is designed to be deployable by air, land, or sea. On-board support capabilities include an instrumentation system and an Airborne Research Test System (ARTS). The Ikhana project will complete GCS development, science support systems integration, external pod integration and flight clearance, and operations crew training in early 2007. A large-area remote sensing mission is currently scheduled for Summer 2007.

  17. Mission requirements CSM-111/DM-2 Apollo/Soyuz test project

    NASA Technical Reports Server (NTRS)

    Blackmer, S. M.

    1974-01-01

    Test systems are developed for rendezvous and docking of manned spacecraft and stations that are suitable for use as a standard international system. This includes the rendezvous and docking of Apollo and Soyuz spacecraft, and crew transfer. The conduct of the mission will include: (1) testing of compatible rendezvous systems in orbit; (2) testing of universal docking assemblies; (3) verifying the techniques for transfer of cosmonauts and astronauts; (4) performing certain activities by U.S.A. and U.S.S.R. crews in joint flight; and (5) gaining of experience in conducting joint flights by U.S.A. and U.S.S.R. spacecraft, including, in case of necessity, rendering aid in emergency situations.

  18. Missions to the sun and to the earth. [planning of NASA Solar Terrestrial Program

    NASA Technical Reports Server (NTRS)

    Timothy, A. F.

    1978-01-01

    The program outlined in the present paper represents an optimized plan of solar terrestrial physics. It is constrained only in the sense that it involves not more than one new major mission per year for the Solar Terrestrial Division during the 1980-1985 period. However, the flight activity proposed, if accepted by the Agency and by Congress, would involve a growth in the existing Solar Terrestrial budget by more than a factor of 2. Thus, the program may be considered as somewhat optimistic when viewed in the broader context of the NASA goals and budget. The Agency's integrated FY 1980 Five Year Plan will show how many missions proposed will survive this planning process.

  19. Mission X: Train Like an Astronaut. International Fitness Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles

    2011-01-01

    The Mission X, Train like an Astronaut, pilot project was a 2-year effort directed by the International Life Science Working Group. The pilot was funded by the Human Research Program and was lead by the Human Research Program Education and Outreach (HRPEO) project and supported by a group of space agencies providing in-kind resources. The aim was to identify an international educational outreach concept that would promote a life science topic utilizing the education and outreach expertise of the various space agencies working on the utilization of the International Space Station. This in turn serves as an inspiration for the younger generation to aspire to go further in school, and provides insight into the capability of a participating country to ensure the effort provided value for their communities and children. The pilot project developed the necessary tools to promote communications between the partners and to use materials and expertise from all the countries? space agencies. The Mission X Website (trainlikeanastronaut.org) provided a single repository for the educational activities as well as a place for the Challenge Teams to provide their progress in the international fitness challenge. It also added to the International flavor as different countries were able to share and learn about what was happening with all those involved in the 6-week challenge period. A point system was utilized to promote constructive, cooperative competition in which 4164 students participated. The points were used to help FitKid, Astro Charlie, "Walk-To-The-Moon". The 18 physical and educational Mission X activities were made available on the Mission X website in seven languages. The Mission X pilot project was considered a success in 1) the design, development, and implementation of the multi-language website, 2) the expansion of healthy lifestyle awareness, and 3) the concept for drawing an international educational community together to highlight global topics in association

  20. 78 FR 29025 - Sea World San Diego Fireworks 2013 Season; Mission Bay, San Diego, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ...-AA00 Sea World San Diego Fireworks 2013 Season; Mission Bay, San Diego, CA AGENCY: Coast Guard, DHS... waters of Mission Bay in support of the Sea World San Diego Fireworks 2013 season. This safety zone is... Guard to establish safety zones (33 U.S.C 1221 et seq.). Sea World is sponsoring the Sea World Fireworks...