Sample records for agents including uv

  1. Advanced UV Source for Biological Agent Destruction

    DTIC Science & Technology

    2006-01-01

    protection against chemical agents. The AUVS can be inserted into HVAC air ducts to eliminate BW agents, used to purify water, and / or used to reduce...operating costs are very low. The technology has been shown to be very effective for destroying Bacillus pumilus endospores that are significantly more...resistant to UV than anthrax spores . Up to7 orders of magnitude (7 logs) kill of B. pumilus spores have been demonstrated with the AUVS technology

  2. Altered UV absorbance and cytotoxicity of chlorinated sunscreen agents.

    PubMed

    Sherwood, Vaughn F; Kennedy, Steven; Zhang, Hualin; Purser, Gordon H; Sheaff, Robert J

    2012-12-01

    Sunscreens are widely utilized due to the adverse effects of ultraviolet (UV) radiation on human health. The safety of their active ingredients as well as that of any modified versions generated during use is thus of concern. Chlorine is used as a chemical disinfectant in swimming pools. Its reactivity suggests sunscreen components might be chlorinated, altering their absorptive and/or cytotoxic properties. To test this hypothesis, the UV-filters oxybenzone, dioxybenzone, and sulisobenzone were reacted with chlorinating agents and their UV spectra analyzed. In all cases, a decrease in UV absorbance was observed. Given that chlorinated compounds can be cytotoxic, the effect of modified UV-filters on cell viability was examined. Chlorinated oxybenzone and dioxybenzone caused significantly more cell death than unchlorinated controls. In contrast, chlorination of sulisobenzone actually reduced cytotoxicity of the parent compound. Exposing a commercially available sunscreen product to chlorine also resulted in decreased UV absorbance, loss of UV protection, and enhanced cytotoxicity. These observations show chlorination of sunscreen active ingredients can dramatically decrease UV absorption and generate derivatives with altered biological properties.

  3. UV-generated free radicals (FR) in skin: Their prevention by sunscreens and their induction by self-tanning agents

    NASA Astrophysics Data System (ADS)

    Jung, K.; Seifert, M.; Herrling, Th.; Fuchs, J.

    2008-05-01

    In the past few years, the cellular effects of ultraviolet (UV) irradiation induced in skin have become increasingly recognized. Indeed, it is now well known that UV irradiation induces structural and cellular changes in all the compartments of skin tissue. The generation of reactive oxygen species (ROS) is the first and immediate consequence of UV exposure and therefore the quantitative determination of free radical reactions in the skin during UV radiation is of primary importance for the understanding of dermatological photodamage. The RSF method (radical sun protection factor) herein presented, based on electron spin resonance spectroscopy (ESR), enables the measurement of free radical reactions in skin biopsies directly during UV radiation. The amount of free radicals varies with UV doses and can be standardized by varying UV irradiance or exposure time. The RSF method allows the determination of the protective effect of UV filters and sunscreens as well as the radical induction capacity of self-tanning agents as dihydroxyacetone (DHA). The reaction of the reducing sugars used in self-tanning products and amino acids in the skin layer (Maillard reaction) leads to the formation of Amadori products that generate free radicals during UV irradiation. Using the RSF method three different self-tanning agents were analyzed and it was found, that in DHA-treated skin more than 180% additional radicals were generated during sun exposure with respect to untreated skin. For this reason the exposure duration in the sun must be shortened when self-tanners are used and photoaging processes are accelerated.

  4. Preparation of O/I1-type Emulsions and S/I1-type Dispersions Encapsulating UV-Absorbing Agents.

    PubMed

    Aramaki, Kenji; Kimura, Minami; Masuda, Kazuki

    2015-01-01

    Oil-in-cubic phase (O/I1) emulsions encapsulating the cosmetic UV absorbing agents 2-ethylhexyl 4-methoxycinnamate (EHMC), 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (octocrylene, OCR) and 1-(4-tertbutylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione (Avobenzone, TBMP) were prepared by vortex mixing accompanied by a heating-cooling process. A ternary phase diagram in a water/C12EO25/EHMC system at 25°C was constructed and the two-phase equilibrium of an oil phase and an I1 phase, which is necessary to prepare the O/I1-type emulsions, was confirmed. Also, the melting of the I1 phase into a fluid micellar solution phase was confirmed, allowing emulsification by a heating-cooling process. The O/I1-type emulsions were formulated in the ternary system as well as a quaternary system. The four-component system contained an additional cosolvent, isopropyl myristate (IPM). The use of the cosolvent allows the use of reduced amounts of EHMC, which is desirable because EHMC can cause temporary skin irritation. Formulation of the O/I1-type emulsions with other UV absorbing agents (OCR and TBMP) was also possible using the same emulsification method. When IPM was changed to tripalmitin, which has a melting point greater than room temperature, a solid-oil dispersion in I1 phase was formed. We have termed this a "solidin-cubic phase (S/I1) type dispersion". These novel emulsions have not been reported previously. The UV absorbability of the O/I1-type emulsions and S/I1-type dispersions that encapsulate the UV absorbing agents was confirmed by measurement of UV absorption spectra.

  5. UV Radiation and the Skin

    PubMed Central

    D’Orazio, John; Jarrett, Stuart; Amaro-Ortiz, Alexandra; Scott, Timothy

    2013-01-01

    UV radiation (UV) is classified as a “complete carcinogen” because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R) gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance. PMID:23749111

  6. UV radiation and the skin.

    PubMed

    D'Orazio, John; Jarrett, Stuart; Amaro-Ortiz, Alexandra; Scott, Timothy

    2013-06-07

    UV radiation (UV) is classified as a "complete carcinogen" because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R) gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance.

  7. Development of piperic acid derivatives from Piper nigrum as UV protection agents.

    PubMed

    Choochana, Piyapong; Moungjaroen, Jirapan; Jongkon, Nathjanan; Gritsanapan, Wandee; Tangyuenyongwatana, Prasan

    2015-04-01

    There is a need for the discovery of novel natural and semi-synthetic sunscreen that is safe and effective. Piperine has a UV absorption band of 230-400 nm with high molar absorptivity. This compound has a high potential to be developed to sunscreen. This study develops new UV protection compounds from piperine by using chemical synthesis. Piperine was isolated from Piper nigrum L. (Piperaceae) fruits, converted to piperic acid by alkaline hydrolysis, and prepared as ester derivatives by chemical synthesis. The piperate derivatives were prepared as 5% o/w emulsion, and the SPF values were evaluated. The best compound was submitted to cytotoxicity test using MTT assay. Piperic acid was prepared in 86.96% yield. Next, piperic acid was reacted with alcohols using Steglich reaction to obtain methyl piperate, ethyl piperate, propyl piperate, isopropyl piperate, and isobutyl piperate in 62.39-92.79% yield. All compounds were prepared as 5% oil in water emulsion and measured its SPF and UVA/UVB values using an SPF-290S analyzer. The SPF values (n = 6) of the piperate derivatives were 2.68 ± 0.17, 8.89 ± 0.46, 6.86 ± 0.91, 16.37 ± 1.8, and 9.68 ± 1.71. The UVA/UVB ratios of all compounds ranged from 0.860 to 0.967. Cytotoxicity of isopropyl piperate was evaluated using human skin fibroblast cells and the IC50 was equal to 120.2 μM. From the results, isopropyl piperate is an outstanding compound that can be developed into a UV protection agent.

  8. Skin protection efficacy from UV irradiation and skin penetration property of polysaccharide-benzophenone conjugates as a sunscreen agent.

    PubMed

    Heo, Sukyoung; Hwang, Hee Sook; Jeong, Yohan; Na, Kun

    2018-09-01

    Sunscreen materials have been developed to protect skin from UV radiation. However, many organic sunscreen materials are small molecules and absorbed into human skin after topical application and lead to systemic side effects. To improve the adverse effects of conventional sunscreen materials, we designed a sunscreen agent using an organic sunscreen material and a polymer. Dioxybenzone, an organic sunscreen compound is selected and polymerized with natural polymer pullulan. Polymerization not only provides a long polymer backbone to dioxybenzone, but also keeps the distance between benzene rings of the dioxybenzone and prevents reduction of photoabsorption intensity. UV/vis spectrophotometry confirmed that dioxybenzone-pullulan polymer (DOB-PUL) and dioxybenzone (DOB) demonstrated similar UV absorption. To measure the accumulation of sunscreen materials on skin, Franz diffusion cell was used to confirm the accumulation of DOB and lack of penetration of DOB-PUL. Most importantly, DOB showed higher plasma concentration after multiple applications compared to that of DOB-PUL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Investigating the stability of gadolinium based contrast agents towards UV radiation.

    PubMed

    Birka, Marvin; Roscher, Jörg; Holtkamp, Michael; Sperling, Michael; Karst, Uwe

    2016-03-15

    Since the 1980s, the broad application of gadolinium(Gd)-based contrast agents for magnetic resonance imaging (MRI) has led to significantly increased concentrations of Gd in the aqueous environment. Little is known about the stability of these highly polar xenobiotics under environmental conditions, in wastewater and in drinking water treatment. Therefore, the stability of frequently applied Gd-based MRI contrast agents towards UV radiation was investigated. The hyphenation of hydrophilic interaction liquid chromatography (HILIC) with inductively coupled plasma mass spectrometry (ICP-MS) and of HILIC with electrospray ionization mass spectrometry (ESI-MS) provided quantitative elemental information as well as structural information. The contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A showed a high stability in irradiation experiments applying a wavelength range from 220 nm to 500 nm. Nevertheless, the degradation of Gd-BOPTA as well as the formation of Gd-containing transformation products was observed by means of HILIC-ICP-MS. Matrix-dependent irradiation experiments showed a degradation of Gd-BOPTA down to 3% of the initial amount in purified water after 300 min, whereas the degradation was slowed down in drinking water and surface water. Furthermore, it was observed that the sum of species continuously decreased with proceeding irradiation in all matrices. After irradiation in purified water for 300 min only 16% of the sum of species was left. This indicates a release of Gd(III) ions from the complex in course of irradiation. HILIC-ESI-MS measurements revealed that the transformation products mostly resulted from O-dealkylation and N-dealkylation reactions. In good correlation with retention times, the majority of transformation products were found to be more polar than Gd-BOPTA itself. Based on accurate masses, sum formulas were obtained and structures could be proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Role of ultraviolet (UV) disinfection in infection control and environmental cleaning.

    PubMed

    Qureshi, Zubair; Yassin, Mohamed H

    2013-06-01

    Ultraviolet (UV) radiation is capable of disinfecting surfaces, water and air. The UV technology was used for many years. However, safer and more effective delivery systems of UV radiation, make it a very useful option for disinfection. Effective disinfection of environmental surfaces is a key step in the prevention of spread of infectious agents. The traditional manual cleaning is essential in assuring adequate elimination of contamination. However, terminal cleaning is frequently suboptimal or unpredictable in many circumstances. UV-C radiation is an adjunctive disinfectant new technology that could kill a wide array of microorganisms including both vegetative and spore forming pathogens. The technology is getting more affordable and has produced consistent reproducible significant reduction of bacterial contamination.

  11. Status of miniature integrated UV resonance fluorescence and Raman sensors for detection and identification of biochemical warfare agents

    NASA Astrophysics Data System (ADS)

    Hug, William F.; Bhartia, Rohit; Taspin, Alexandre; Lane, Arthur; Conrad, Pamela; Sijapati, Kripa; Reid, Ray D.

    2005-11-01

    Laser induced native fluorescence (LINF) is the most sensitive method of detection of biological material including microorganisms, virus', and cellular residues. LINF is also a sensitive method of detection for many non-biological materials as well. The specificity with which these materials can be classified depends on the excitation wavelength and the number and location of observation wavelengths. Higher levels of specificity can be obtained using Raman spectroscopy but a much lower levels of sensitivity. Raman spectroscopy has traditionally been employed in the IR to avoid fluorescence. Fluorescence rarely occurs at wavelength below about 270nm. Therefore, when excitation occurs at a wavelength below 250nm, no fluorescence background occurs within the Raman fingerprint region for biological materials. When excitation occurs within electronic resonance bands of the biological target materials, Raman signal enhancement over one million typically occurs. Raman sensitivity within several hundred times fluorescence are possible in the deep UV where most biological materials have strong absorption. Since the Raman and fluorescence emissions occur at different wavelength, both spectra can be observed simultaneously, thereby providing a sensor with unique sensitivity and specificity capability. We will present data on our integrated, deep ultraviolet, LINF/Raman instruments that are being developed for several applications including life detection on Mars as well as biochemical warfare agents on Earth. We will demonstrate the ability to discriminate organic materials based on LINF alone. Together with UV resonance Raman, higher levels of specificity will be demonstrated. In addition, these instruments are being developed as on-line chemical sensors for industrial and municipal waste streams and product quality applications.

  12. Protective Role of Comfrey Leave Extracts on UV-induced Zebrafish Fin Damage

    PubMed Central

    Cheng, Chien-Chung; Chou, Chi-Yuan; Chang, Yao-Chin; Wang, Hsuan-Wen; Wen, Chi-Chung; Chen, Yau-Hung

    2014-01-01

    In zebrafish, UV exposure leads to fin malformation phenotypes including fin reduction or absence. The present study evaluated UV-protective activities of comfrey leaves extracts in a zebrafish model by recording fin morphological changes. Chemopreventive effects of comfrey leave extracts were evaluated using Kaplan-Meier analysis and Cox proportional hazards regression. The results showed that (1) the mean times of return to normal fin in the UV+comfrey (50 and 100 ppm) groups were 3.43 and 2.86 days and were quicker compared with that in the UV only group (4.21 days); (2) zebrafish fins in the UV+comfrey (50 and 100 ppm) groups were 2.05 and 3.25 times more likely to return to normal than those in the UV only group; and (3) comfrey leave extracts had UV-absorbance abilities and significantly reduced ROS production in UV-exposed zebrafish embryos, which may attenuate UV-mediated apoptosis. In conclusion, comfrey leaves extracts may have the potential to be developed as UV-protective agents to protect zebrafish embryos from UV-induced damage. PMID:25352712

  13. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    PubMed

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  14. UV-Enhanced IR Raman System for Identifying Biohazards

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert; Moynihan, Philip; Lane, Arthur

    2003-01-01

    An instrumentation system that would include an ultraviolet (UV) laser or light-emitting diode, an infrared (IR) laser, and the equivalent of an IR Raman spectrometer has been proposed to enable noncontact identification of hazardous biological agents and chemicals. In prior research, IR Raman scattering had shown promise as a means of such identification, except that the Raman-scattered light was often found to be too weak to be detected or to enable unambiguous identification in practical applications. The proposed system would utilize UV illumination as part of a two-level optical-pumping scheme to intensify the Raman signal sufficiently to enable positive identification.

  15. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is such...

  16. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is such...

  17. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is such...

  18. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks

    PubMed Central

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress. PMID:26765540

  19. New UV-source catalogs, UV spectral database, UV variables and science tools from the GALEX surveys

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; de la Vega, Alexander; Shiao, Bernard; Bohlin, Ralph

    2018-03-01

    We present a new, expanded and improved catalog of Ultraviolet (UV) sources from the GALEX All-Sky Imaging survey: GUVcat_AIS (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017). The catalog includes 83 million unique sources (duplicate measurements and rim artifacts are removed) measured in far-UV and near-UV. With respect to previous versions (Bianchi et al. in Mon. Not. R. Astron. Soc. 411:2770 2011a, Adv. Space Res. 53:900-991, 2014), GUVcat_AIS covers a slightly larger area, 24,790 square degrees, and includes critical corrections and improvements, as well as new tags, in particular to identify sources in the footprint of extended objects, where pipeline source detection may fail and custom-photometry may be necessary. The UV unique-source catalog facilitates studies of density of sources, and matching of the UV samples with databases at other wavelengths. We also present first results from two ongoing projects, addressing respectively UV variability searches on time scales from seconds to years by mining the GALEX photon archive, and the construction of a database of ˜120,000 GALEX UV spectra (range ˜1300-3000 Å), including quality and calibration assessment and classification of the grism, hence serendipitous, spectral sources.

  20. Prospects of topical protection from ultraviolet radiation exposure: a critical review on the juxtaposition of the benefits and risks involved with the use of chemoprotective agents.

    PubMed

    Bora, Nilutpal Sharma; Mazumder, Bhaskar; Chattopadhyay, Pronobesh

    2018-05-01

    Solar ultraviolet (UV) radiation exposure is known to cause inevitable damage to human skin via different mechanisms which include disruption of genetic material and generation of free radicals. In the ever emerging field of photoprotective agents, there have been constant endeavors to uphold the standards for optimum protection from solar UV-induced damages which include alarming conditions ranging from severe keratosis to malignant transformation of skin cells. Out of the various methods available for photoprotection, chemical photoprotective agents are most popular due to its ease of applicability, availability, and efficacy. However, the benevolences of chemophotoprotective agents are not excluded from the fact that all chemical agents are bound to suffer predestined consequences of toxicity and unwanted side effects. The present article focuses on the basic knowledge pertaining to achieve adequate sun protection and also on the beneficial and risk factors of using chemical agents as photoprotective formulations. The article highlights the US Food and Drug Administration (FDA) approved and unapproved UV filters; and also sheds light on the overall measures to protect an individual from UV radiation exposure, dispel misconceptions and present the newer technologies that are available in the market to accomplish ideal sun protection.

  1. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    moderate and high doses of UV and ionizing radiation induce cell death by necrosis and generate systemic inflammatory response syndrome (SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMODS),and finally, toxic multiple organ failure (TMOF). [D.Popov et al.2012, Fliedner T.et al. 2005, T. Azizova et al. 2004] UV-B is a complete carcinogen that is absorbed by DNA and directly damages DNA. DNA damage induced by UV-B irradiation typically includes the formation of cyclobutane pyrimidine dimmers (CPD) and 6-4 photoproducts (6-4P)[IARC, Working Group Reports, M.Saraiya et al. 2004]. The pre-vaccinated animals seem to have a blunted injury response relative to the unvaccinated animals, presumably by reduction in the inflammatory response and secondary injury effects. The mechanism of action of the antiradiation vaccine, needs further evaluation. Conclusion: A UV antiradiation vaccine appears to demonstrate efficacy as a prophylactic agent for acute solar burns and toxicity. An antiradiation UV vaccine could be used in conjunction with adjunctive measures, e.g. antioxidants and UV barriers to reduce UV radiation toxicity. The authors of this experiments would like to propose further development work of the antiradiation UV vaccine to enhance the armamentarium for prophylaxis and prevention of the various forms skin cancer.

  2. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed Central

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  3. Effect of chemical peeling on the skin in relation to UV irradiation.

    PubMed

    Funasaka, Yoko; Abdel-Daim, Mohamed; Kawana, Seiji; Nishigori, Chikako

    2012-07-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. However, it needs to be clarified whether the repetitive procedure of chemical peeling on photodamaged skin is safe and whether the different chemicals used for peeling results in similar outcomes or not. In this article, we reviewed the effect of peeling or peeling agents on the skin in relation to ultraviolet (UV) radiation. The pretreatment of peeling agents usually enhance UV sensitivity by inducing increased sunburn cell formation, lowering minimum erythematous dose and increasing cyclobutane pyrimidine dimers. However, this sensitivity is reversible and recovers to normal after 1-week discontinuation. Using animals, the chronic effect of peeling and peeling agents was shown to prevent photocarcinogenesis. There is also an in vitro study using culture cells to know the detailed mechanisms of peeling agents, especially on cell proliferation and apoptotic changes via activating signalling cascades and oxidative stress. It is important to understand the effect of peeling agents on photoaged skin and to know how to deal with UV irradiation during the application of peeling agents and treatment of chemical peeling in daily life. © 2012 John Wiley & Sons A/S.

  4. Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene.

    PubMed

    Shang, Yanfang; Duan, Zhibing; Huang, Wei; Gao, Qiang; Wang, Chengshu

    2012-01-01

    Insect pathogenic fungi like Beauveria bassiana have been developed as environmentally friendly biocontrol agents against arthropod pests. However, restrictive environmental factors, including solar ultraviolet (UV) radiation frequently lead to inconsistent field performance. To improve resistance to UV damage, we used Agrobacterium-mediated transformation to engineer B. bassiana with an exogenous tyrosinase gene. The results showed that the mitotically stable transformants produced larger amounts of yellowish pigments than the wild-type strain, and these imparted significantly increased UV-resistance. The virulence of the transgenic isolate was also significantly increased against the silkworm Bombyx mori and the mealworm Tenebrio molitor. This study demonstrated that genetic engineering of B. bassiana with a tyrosinase gene is an effective way to improve fungal tolerance against UV damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. An Expanded UV Irradiance Database from TOMS Including the Effects of Ozone, Clouds, and Aerosol Attenuation

    NASA Technical Reports Server (NTRS)

    Herman, J.; Krotkov, N.

    2003-01-01

    The TOMS UV irradiance database (1978 to 2003) has been expanded to include five new products (noon irradiance at 305,310,324, and 380 nm, and noon erythemal-weighted irradiance), in addition to the existing erythemal daily exposure, that permit direct comparisons with ground-based measurements from spectrometers and broadband instruments. The new data are available on http://toms.gsfc.nasa.gov/>http://toms.gsfc.nasa.gov. Comparisons of the TOMS estimated irradiances with ground-based instruments are given along with a review of the sources of known errors, especially the recent improvements in accounting for aerosol attenuation. Trend estimations from the new TOMS irradiances permit the clear separation of changes caused by ozone and those caused by aerosols and clouds. Systematic differences in cloud cover are shown to be the most important factor in determining regional differences in UV radiation reaching the ground for locations at the same latitude (e.g., the summertime differences between Australia and the US southwest).

  6. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging.

    PubMed

    Jung, Hana; Lee, Eunjoo H; Lee, Tae Hoon; Cho, Man-Ho

    2016-09-01

    Solar ultraviolet (UV) radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs), such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM) and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK) signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.

  7. Skin protection against UV light by dietary antioxidants.

    PubMed

    Fernández-García, Elisabet

    2014-09-01

    There is considerable interest in the concept of additional endogenous photoprotection by dietary antioxidants. A number of efficient micronutrients are capable of contributing to the prevention of UV damage in humans. These compounds protect molecular targets by scavenging reactive oxygen species, including excited singlet oxygen and triplet state molecules, and also modulate stress-dependent signaling and/or suppress cellular and tissue responses like inflammation. Micronutrients present in the diet such as carotenoids, vitamins E and C, and polyphenols contribute to antioxidant defense and may also contribute to endogenous photoprotection. This review summarizes the literature concerning the use of dietary antioxidants as systemic photoprotective agents towards skin damage induced by UVA and UVB. Intervention studies in humans with carotenoid-rich diets have shown photoprotection. Interestingly, rather long treatment periods (a minimum of 10 weeks) were required to achieve this effect. Likewise, dietary carotenoids exert their protective antioxidant function in several in vitro and in vivo studies when present at sufficiently high concentration. A combination of vitamins E and C protects the skin against UV damage. It is suggested that daily consumption of dietary polyphenols may provide efficient protection against the harmful effects of solar UV radiation in humans. Furthermore, the use of these micronutrients in combination may provide an effective strategy for protecting human skin from damage by UV exposure.

  8. UV-visible sensors based on polymorphous silicon

    NASA Astrophysics Data System (ADS)

    Guedj, Cyril S.; Cabarrocas, Pere R. i.; Massoni, Nicolas; Moussy, Norbert; Morel, Damien; Tchakarov, Svetoslav; Bonnassieux, Yvan

    2003-09-01

    UV-based imaging systems can be used for low-altitude rockets detection or biological agents identification (for instance weapons containing ANTHRAX). Compared to conventional CCD technology, CMOS-based active pixel sensors provide several advantages, including excellent electro-optical performances, high integration, low voltage operation, low power consumption, low cost, long lifetime, and robustness against environment. The monolithic integration of UV, visible and infrared detectors on the same uncooled CMOS smart system would therefore represent a major advance in the combat field, for characterization and representation of targets and backgrounds. In this approach, we have recently developped a novel technology using polymorphous silicon. This new material, fully compatible with above-IC silicon technology, is made of nanometric size ordered domains embedded in an amorphous matrix. The typical quantum efficiency of detectors made of this nano-material reach up to 80 % at 550 nm and 30 % in the UV range, depending of the design and the growth parameters. Furthermore, a record dark current of 20 pA/cm2 at -3 V has been reached. In addition, this new generation of sensors is significantly faster and more stable than their amorphous silicon counterparts. In this paper, we will present the relationship between the sensor technology and the overall performances.

  9. High performance UV and thermal cure hybrid epoxy adhesive

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Iwasaki, S.; Kanari, M.; Li, B.; Wang, C.; Lu, D. Q.

    2017-06-01

    New type one component UV and thermal curable hybrid epoxy adhesive was successfully developed. The hybrid epoxy adhesive is complete initiator free composition. Neither photo-initiator nor thermal initiator is contained. The hybrid adhesive is mainly composed of special designed liquid bismaleimide, partially acrylated epoxy resin, acrylic monomer, epoxy resin and latent curing agent. Its UV light and thermal cure behavior was studied by FT-IR spectroscopy and FT-Raman spectroscopy. Adhesive samples cured at UV only, thermal only and UV + thermal cure conditions were investigated. By calculated conversion rate of double bond in both acrylic component and maleimide compound, satisfactory light curability of the hybrid epoxy adhesive was confirmed quantitatively. The investigation results also showed that its UV cure components, acrylic and bismalimide, possess good thermal curability too. The initiator free hybrid epoxy adhesive showed satisfactory UV curability, good thermal curability and high adhesion performance.

  10. Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter.

    PubMed

    Said, T; Dutot, M; Martin, C; Beaudeux, J-L; Boucher, C; Enee, E; Baudouin, C; Warnet, J-M; Rat, P

    2007-03-01

    The majority of chemical solar filters are cytotoxic, particularly on sensitive ocular cells (corneal and conjunctival cells). Consequently, a non-cytotoxic UV filter would be interesting in dermatology, but more especially in ophthalmology. In fact, light damage to the eye can be avoided thanks to a very efficient ocular antioxidant system; indeed, the chromophores absorb light and dissipate its energy. After middle age, a decrease in the production of antioxidants and antioxidative enzymes appears with accumulation of endogenous molecules that are phototoxic. UV radiations can induce reactive oxygen species formation, leading to various ocular diseases. Because most UV filters are cytotoxic for the eye, we investigated the anti-UV properties of Calophyllum inophyllum oil in order to propose it as a potential vehicle, free of toxicity, with a natural UV filter action in ophthalmic formulation. Calophyllum inophyllum oil, even at low concentration (1/10,000, v/v), exhibited significant UV absorption properties (maximum at 300nm) and was associated with an important sun protection factor (18-22). Oil concentrations up to 1% were not cytotoxic on human conjunctival epithelial cells, and Calophyllum inophyllum oil appeared to act as a cytoprotective agent against oxidative stress and DNA damage (85% of the DNA damage induced by UV radiations were inhibited with 1% Calophyllum oil) and did not induce in vivo ocular irritation (Draize test on New Zealand rabbits). Calophyllum inophyllum oil thus exhibited antioxidant and cytoprotective properties, and therefore might serve, for the first time, as a natural UV filter in ophthalmic preparations.

  11. Air pollution effects field research facility: 3. UV-B exposure and monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEvers, J.A.; Hileman, M.S.; Edwards, N.T.

    1993-03-01

    The Oak Ridge National Laboratory Outdoor UltraViolet-B (UV-B) Exposure and Monitoring Facility was developed in 1980 to provide well-controlled and -monitored exposure of specific terrestrial plant. species to elevated levels of ultraviolet (UV) radiation. The introduction of various anthropogenic agents into the earth`s stratosphere has resulted in a decrease in the volume of ozone (O{sub 3}) present here. The decrease in O{sub 3} has resulted in an increase in the level of UV radiation reaching thee earth`s surface. Of particular interest is the level of UV-B, because it has the most detrimental effect on living tissue. A thorough understanding ofmore » the effects of elevated levels of UV-B on living tissue is critical to the formulation of economic policy regarding production of such agents and alternative strategies. The UV region of interest is referred to as UV-B and corresponds to radiation with a wavelength of 290 to 320 nm. Design, operation, and performance of the automated generation, exposure, and monitoring system are described. The system has proved to be reliable and easy to maintain and operate, and it provides significant flexibility in exposure programs. The system software is described, and detailed listings are provided. The ability to expose plants to controlled set point percentages of UV-B above the ambient level was developed.« less

  12. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansson, J.; Keyse, S.M.; Lindahl, T.

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurementsmore » of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.« less

  13. The SOS Chromotest applied for screening plant antigenotoxic agents against ultraviolet radiation.

    PubMed

    Fuentes, J L; García Forero, A; Quintero Ruiz, N; Prada Medina, C A; Rey Castellanos, N; Franco Niño, D A; Contreras García, D A; Córdoba Campo, Y; Stashenko, E E

    2017-09-13

    In this work, we investigated the usefulness of the SOS Chromotest for screening plant antigenotoxic agents against ultraviolet radiation (UV). Fifty Colombian plant extracts obtained by supercritical fluid (CO 2 ) extraction, twelve plant extract constituents (apigenin, carvacrol, β-caryophyllene, 1,8-cineole, citral, p-cymene, geraniol, naringenin, pinocembrin, quercetin, squalene, and thymol) and five standard antioxidant and/or photoprotective agents (curcumin, epigallocatechin gallate, resveratrol, α-tocopherol, and Trolox®) were evaluated for their genotoxicity and antigenotoxicity against UV using the SOS Chromotest. None of the plant extracts, constituents or agents were genotoxic in the SOS Chromotest at tested concentrations. Based on the minimal extract concentration that significantly inhibited UV-genotoxicity (CIG), five plant extracts were antigenotoxic against UV as follows: Baccharis nítida (16 μg mL -1 ) = Solanum crotonifolium (16 μg mL -1 ) > Hyptis suaveolens (31 μg mL -1 ) = Persea caerulea (31 μg mL -1 ) > Lippia origanoides (62 μg mL -1 ). Based on CIG values, the flavonoid compounds showed the highest antigenotoxic potential as follows: apigenin (7 μM) > pinocembrin (15 μM) > quercetin (26 μM) > naringenin (38 μM) > epigallocatechin gallate (108 μM) > resveratrol (642 μM). UV-genotoxicity inhibition with epigallocatechin gallate, naringenin and resveratrol was related to its capability for inhibiting protein synthesis. A correlation analysis between compound antigenotoxicity estimates and antioxidant activity evaluated by the oxygen radical absorbance capacity (ORAC) assay showed that these activities were not related. The usefulness of the SOS Chromotest for bioprospecting of plant antigenotoxic agents against UV was discussed.

  14. Fibrous Filter to Protect Building Environments from Polluting Agents: A Review

    NASA Astrophysics Data System (ADS)

    Chavhan, Md. Vaseem; Mukhopadhyay, Arunangshu

    2016-04-01

    This paper discusses the use of fibrous filter to protect the building environments from air born polluting agents and especially of concern chemical, biological and radiological agents. Air-filtration includes removal of particulate from air and toxic gases from air. In air filtration, particulate which are mostly biological and radioactive types of agents can be removed by using mechanical and electrostatic filters. Some biological agents, which cannot be removed by air filtration alone, special techniques like antimicrobial finish, UV germicides, coated filters etc. are required. Biocide agent can be added into the fibre itself by grafting reaction to impart antimicrobial activity. Chemical agents like toxic gases can be removed by integrating adsorbents and sorbents in filters or by fibre modifications. It is also possible to impart catalytic conversion properties into the fibre to remove volatile gasous. Radioactive agents can be removed by particulate filter if present in the form of aerosol or by gas cleaning by the use of specific fibre impregnate.

  15. Photodegradation of the antineoplastic cyclophosphamide: a comparative study of the efficiencies of UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2 processes.

    PubMed

    Lutterbeck, Carlos Alexandre; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-02-01

    Anticancer drugs are harmful substances that can have carcinogenic, mutagenic, teratogenic, genotoxic, and cytotoxic effects even at low concentrations. More than 50 years after its introduction, the alkylating agent cyclophosphamide (CP) is still one of the most consumed anticancer drug worldwide. CP has been detected in water bodies in several studies and is known as being persistent in the aquatic environment. As the traditional water and wastewater treatment technologies are not able to remove CP from the water, different treatment options such as advanced oxidation processes (AOPs) are under discussion to eliminate these compounds. The present study investigated the degradation of CP by three different AOPs: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The light source was a Hg medium-pressure lamp. Prescreening tests were carried out and afterwards experiments based on the optimized conditions were performed. The primary elimination of the parent compounds and the detection of transformation products (TPs) were monitored with LC-UV-MS/MS analysis, whereas the degree of mineralization was monitored by measuring the dissolved organic carbon (DOC). Ecotoxicological assays were carried out with the luminescent bacteria Vibrio fischeri. CP was completely degraded in all treatments and UV/Fe(2+)/H2O2 was the fastest process, followed by UV/H2O2 and UV/TiO2. All the reactions obeyed pseudo-first order kinetics. Considering the mineralization UV/Fe(2+)/H2O2 and UV/TiO2 were the most efficient process with mineralization degrees higher than 85%, whereas UV/H2O2 achieved 72.5% of DOC removal. Five transformation products were formed during the reactions and identified. None of them showed significant toxicity against V. fischeri. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Fungal Gene Mutation Analysis Elucidating Photoselective Enhancement of UV-C Disinfection Efficiency Toward Spoilage Agents on Fruit Surface.

    PubMed

    Zhu, Pinkuan; Li, Qianwen; Azad, Sepideh M; Qi, Yu; Wang, Yiwen; Jiang, Yina; Xu, Ling

    2018-01-01

    Short-wave ultraviolet (UV-C) treatment represents a potent, clean and safe substitute to chemical sanitizers for fresh fruit preservation. However, the dosage requirement for microbial disinfection may have negative effects on fruit quality. In this study, UV-C was found to be more efficient in killing spores of Botrytis cinerea in dark and red light conditions when compared to white and blue light. Loss of the blue light receptor gene Bcwcl1 , a homolog of wc-1 in Neurospora crassa , led to hypersensitivity to UV-C in all light conditions tested. The expression of Bcuve1 and Bcphr1 , which encode UV-damage endonuclease and photolyase, respectively, were strongly induced by white and blue light in a Bcwcl1 -dependent manner. Gene mutation analyses of Bcuve1 and Bcphr1 indicated that they synergistically contribute to survival after UV-C treatment. In vivo assays showed that UV-C (1.0 kJ/m 2 ) abolished decay in drop-inoculated fruit only if the UV-C treatment was followed by a dark period or red light, while in contrast, typical decay appeared on UV-C irradiated fruits exposed to white or blue light. In summary, blue light enhances UV-C resistance in B. cinerea by inducing expression of the UV damage repair-related enzymes, while the efficiency of UV-C application for fruit surface disinfection can be enhanced in dark or red light conditions; these principles seem to be well conserved among postharvest fungal pathogens.

  17. Sunscreen Agents in the Environment: Determination by HPLC-ESI-MS/MS and GC-MS and Calculation of Phototoxicity

    EPA Science Inventory

    Ultraviolet (UV) filters, also known as sunscreen agents, are chemicals widely used in cosmetics, sunscreens, and plastics to block UV radiation from the sun. There have been studies that show some sunscreen agents demonstrate estrogenicity and multiple hormonal activities in vi...

  18. N-acetylcysteine protects melanocytes against oxidative stress/damage and delays onset of UV-induced melanoma in mice

    PubMed Central

    Cotter, Murray A.; Thomas, Joshua; Cassidy, Pamela; Robinette, Kyle; Jenkins, Noah; Scott, R. Florell; Leachman, Sancy; Samlowski, Wolfram E.; Grossman, Douglas

    2008-01-01

    UV radiation is the major environmental risk factor for melanoma and a potent inducer of oxidative stress, which is implicated in the pathogenesis of several malignancies. We evaluated whether the thiol antioxidant N-acetylcysteine (NAC) could protect melanocytes from UV-induced oxidative stress/damage in vitro and from UV-induced melanoma in vivo. In melan-a cells, a mouse melanocyte line, NAC (1–10 mM) conferred protection from several UV-induced oxidative sequelae including production of intracellular peroxide, formation of the signature oxidative DNA lesion 8-oxoguanine (8-OG), and depletion of free reduced thiols (primarily glutathione). Mice transgenic for hepatocyte growth factor and Survivin, previously shown to develop melanoma following a single neonatal dose of UV irradiation, were administered NAC (7 mg/ml, mother’s drinking water) transplacentally and through nursing until two weeks after birth. Delivery of NAC in this manner reduced thiol depletion and blocked formation of 8-OG in skin following neonatal UV treatment. Mean onset of UV-induced melanocytic tumors was significantly delayed in NAC-treated compared to control mice (21 vs. 14 weeks, p=0.0003). Our data highlight the potential importance of oxidative stress in the pathogenesis of melanoma, and suggest that NAC may be useful as a chemopreventive agent. PMID:17908992

  19. Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo.

    PubMed

    Jin, Xing-Ji; Kim, Eun Ju; Oh, In Kyung; Kim, Yeon Kyung; Park, Chi-Hyun; Chung, Jin Ho

    2010-06-01

    Polyunsaturated fatty acids (PUFAs) are known to play important roles in various physiological and pathological processes. Recent studies have shown that some omega-3 (omega-3) PUFAs, such as eicosapentaenoic acid (EPA) and dodecahexaenoic acid (DHA), have protective effects on acute and chronic UV-induced changes. However, the effects of other omega-3 PUFAs including 11,14,17-eicosatrienoic acid (20:3) (ETA) on UV-induced skin damages are poorly understood. In this study, we investigated the cutaneous photoprotective effects of ETA in hairless mice in vivo. Female HR-1 hairless mice were topically treated with vehicle (ethanol:polyethylene glycol=30:70) only, 0.1% ETA, or 1% ETA once a day for 3 successive days after one time UV irradiation (200 mJ/cm(2)) on dorsal skins. Skin biopsy was carried out on the fourth day (72 hr after UV irradiation). We found that topical treatment with ETA attenuated UV-induced epidermal and dermal thickness and infiltration of inflammatory cells, and impairment of skin barrier function. In addition, ETA suppressed the expression of IL-1beta, COX-2, and MMP-13 induced by UV irradiation. Our results show that the topical application of ETA protects against UV-induced skin damage in hairless mice and suggest that ETA can be a potential agent for preventing and/or treating UV-induced inflammation and photoaging.

  20. Treating cell culture media with UV irradiation against adventitious agents: minimal impact on CHO performance.

    PubMed

    Yen, Sandi; Sokolenko, Stanislav; Manocha, Bhavik; Blondeel, Eric J M; Aucoin, Marc G; Patras, Ankit; Daynouri-Pancino, Farnaz; Sasges, Michael

    2014-01-01

    Sterility of cell culture media is an important concern in biotherapeutic processing. In large scale biotherapeutic production, a unit contamination of cell culture media can have costly effects. Ultraviolet (UV) irradiation is a sterilization method effective against bacteria and viruses while being non-thermal and non-adulterating in its mechanism of action. This makes UV irradiation attractive for use in sterilization of cell culture media. The objective of this study was to evaluate the effect of UV irradiation of cell culture media in terms of chemical composition and the ability to grow cell cultures in the treated media. The results showed that UV irradiation of commercial cell culture media at relevant disinfection doses impacted the chemical composition of the media with respect to several carboxylic acids, and to a minimal extent, amino acids. The cumulative effect of these changes, however, did not negatively influence the ability to culture Chinese Hamster Ovary cells, as evaluated by cell viability, growth rate, and protein titer measurements in simple batch growth compared with the same cells cultured in control media exposed to visible light. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  1. Excimer UV lamp irradiation induced grafting on synthetic polymers

    NASA Astrophysics Data System (ADS)

    Praschak, D.; Bahners, T.; Schollmeyer, E.

    Surface modifications on polyethyleneterephthalate (PET) films following excimer UV lamp irradiation induced grafting were studied. Characteristics of the modifications depending on the conditions during the irradiation were analysed using contact-angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Depending on the conditions during the irradiation different surface modifications were obtained, which can generally be classified regarding the hydrophilic or hydrophobic characteristics of the resulting surface. It is shown that not every substance that meets the general demands will be grafted on synthetic polymers using excimer UV radiation. Examples of agents that can simply be grafted onto polymer surfaces and those that undergo further crosslinking, building up thin films are listed. Agents used for grafting on polymers are 1,5-hexadiene, perfluoro-4-methyl-pent-2-ene, polyethyleneglycol 200, monosilane and polyethylene. The transferability of the effects achieved to substrates such as polyparaphenylene terephthalamide or polymetaphenylene isophthalamide is shown.

  2. Aluminum Mirror Coatings for UVOIR Telescope Optics Including the Far UV

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatha; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Ayala, Michael; Shaklan, Stuart; Scowen, Paul; Del Hoyo, Javier; Quijada, Manuel

    2015-01-01

    NASA Cosmic Origins (COR) Program identified the development of high reflectivity mirror coatings for large astronomical telescopes particularly for the far ultra violet (FUV) part of the spectrum as a key technology requiring significant materials research and process development. In this paper we describe the challenges and accomplishments in producing stable high reflectance aluminum mirror coatings with conventional evaporation and advanced Atomic Layer Deposition (ALD) techniques. We present the current status of process development with reflectance of approx. 55 to 80% in the FUV achieved with little or no degradation over a year. Keywords: Large telescope optics, Aluminum mirror, far UV astrophysics, ALD, coating technology development.

  3. UV-B-Responsive Association of the Arabidopsis bZIP Transcription Factor ELONGATED HYPOCOTYL5 with Target Genes, Including Its Own Promoter[W][OPEN

    PubMed Central

    Binkert, Melanie; Kozma-Bognár, László; Terecskei, Kata; De Veylder, Lieven; Nagy, Ferenc; Ulm, Roman

    2014-01-01

    In plants subjected to UV-B radiation, responses are activated that minimize damage caused by UV-B. The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) acts downstream of the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) and promotes UV-B-induced photomorphogenesis and acclimation. Expression of HY5 is induced by UV-B; however, the transcription factor(s) that regulate HY5 transcription in response to UV-B and the impact of UV-B on the association of HY5 with its target promoters are currently unclear. Here, we show that HY5 binding to the promoters of UV-B-responsive genes is enhanced by UV-B in a UVR8-dependent manner in Arabidopsis thaliana. In agreement, overexpression of REPRESSOR OF UV-B PHOTOMORPHOGENESIS2, a negative regulator of UVR8 function, blocks UV-B-responsive HY5 enrichment at target promoters. Moreover, we have identified a T/G-box in the HY5 promoter that is required for its UV-B responsiveness. We show that HY5 and its homolog HYH bind to the T/GHY5-box cis-acting element and that they act redundantly in the induction of HY5 expression upon UV-B exposure. Therefore, HY5 is enriched at target promoters in response to UV-B in a UVR8 photoreceptor-dependent manner, and HY5 and HYH interact directly with a T/G-box cis-acting element of the HY5 promoter, mediating the transcriptional activation of HY5 in response to UV-B. PMID:25351492

  4. Synthesis and evaluation of novel caged DNA alkylating agents bearing 3,4-epoxypiperidine structure.

    PubMed

    Kawada, Yuji; Kodama, Tetsuya; Miyashita, Kazuyuki; Imanishi, Takeshi; Obika, Satoshi

    2012-07-14

    Previously, we reported that the 3,4-epoxypiperidine structure, whose design was based on the active site of DNA alkylating antitumor antibiotics, azinomycins A and B, possesses prominent DNA cleavage activity. In this report, novel caged DNA alkylating agents, which were designed to be activated by UV irradiation, were synthesized by the introduction of four photo-labile protecting groups to a 3,4-epoxypiperidine derivative. The DNA cleavage activity and cytotoxicity of the caged DNA alkylating agents were examined under UV irradiation. Four caged DNA alkylating agents showed various degrees of bioactivity depending on the photosensitivity of the protecting groups.

  5. Technical Testing of Deep-UV Solid-State Sources for Fluorescence Lifetime Measurements in the Frequency Domain

    DTIC Science & Technology

    2007-02-01

    fluxes at wavelengths short enough for excitation of fluorescence in basic biological fluorophores and bacterial agents. In particular, deep- UV LEDs ...can be used for excitation of aromatic amino acids, whereas near- UV LEDs are suitable for excitation of autofluorescent coenzymes. The SUVOS AlGaN... LEDs as well as commercial InGaN near- UV LEDs were tested for spectral purity and the possibility of high-frequency modulation up to 200 MHz and

  6. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  7. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR

    NASA Astrophysics Data System (ADS)

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K.; Sharma, Ramesh C.

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ˜5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly.

  8. [Light protection: principles of UV protection].

    PubMed

    Stege, H; Mang, R

    2006-05-01

    UV radiation is responsible for the induction of epithelial and melanocytic skin cancer, photoaging, and photodermatoses. UV protection is necessary to prevent damage caused by non-physiologic exposure. UV protection includes not only reduction of sun exposure but also use of sun protective filters, UV protective clothes, DNA repair enzymes, and antioxidant supplementation. Consumers are uncertain about the possibilities and limitations of commercial sun protection measures. Dermatologists must explain protective measures to the general public which continues to believe that UV-tanned skin is healthy. The sunscreen market is a highly competitive but lucrative market. The range of products with different designations and promises makes difficult for both consumers and dermatologists to determine what is sensible UV protection.

  9. Alternative strawberry disease management strategy: combing low UV-C irradiation in dark, disabling pathogen’s UV-C repair mechanism, and preventing pathogen establishment with biocontrol agents

    USDA-ARS?s Scientific Manuscript database

    The limitations of current fungicides necessitate a search for new approaches. Low-dose or sub-lethal UV-C irradiation (12.36 J/m2) alone is not effective in controlling fungal diseases, especially when the plants are exposed to UV-C irradiation during the day. We found, however, that application ...

  10. A thermal after-effect of UV irradiation of muscle glycogen phosphorylase b

    PubMed Central

    Eronina, Tatiana B.; Chebotareva, Natalia A.; Kleymenov, Sergey Yu.; Shubin, Vladimir V.; Kurganov, Boris I.

    2017-01-01

    Different test systems are used to characterize the anti-aggregation efficiency of molecular chaperone proteins and of low-molecular-weight chemical chaperones. Test systems based on aggregation of UV-irradiated protein are of special interest because they allow studying the protective action of different agents at physiological temperatures. The kinetics of UV-irradiated glycogen phosphorylase b (UV-Phb) from rabbit skeletal muscle was studied at 37°C using dynamic light scattering in a wide range of protein concentrations. It has been shown that the order of aggregation with respect to the protein is equal to unity. A conclusion has been made that the rate-limiting stage of the overall process of aggregation is heat-induced structural reorganization of a UV-Phb molecule, which contains concealed damage. PMID:29216272

  11. Evaluation of Combined Peracetic acid and UV treatment for ...

    EPA Pesticide Factsheets

    The current study evaluates the effectiveness of the combined application of Peracetic acid and ultraviolet radiation as alternative disinfectant agents to the traditional chlorination of wastewater effluents. Various pathogens (E. coli, enterococci and fecal coliforms) were evaluated in the study. Four experiments were conducted using low to high PAA levels and UV dosages. E. coli and enterococci were resistant to low to moderate PAA dosage (0.5- 1 mg/L). These microbes can be removed effectively at high PAA dosage (2.5 mg/L) with 30 min contact time. Fecal coliforms were completely inactivated even at a low PAA dose of 0.7 mg/L. E. coli was more susceptible to UV disinfection than enterococci at low UV dosages. Enterococci required at least 40 mJ/cm2 for 2.5 log inactivation. In combined PAA + UV treatment, low UV intensities between 7 – 40 mJ/cm2 showed poor disinfection performance at a low PAA concentration of 1.5 mg/L. High UV intensities of 120 and 60 mJ/cm2 inactivated all the pathogens to below detection levels even at low to moderate PAA (0.7 mg/L and 1 mg/L) pretreatment concentration. Combined PAA + UV treatment at 1 mg/L (for 15 and 30 min contact time) + 120 and 60 mJ/cm2 did not show any regrowth of microbes, whereas PAA only disinfection with 15 min contact time showed regrowth of enterococci and fecal coliforms. UV only disinfection showed E. coli regrowth. • This pilot scale study was designed for providing necessary parameter optimization

  12. The TROPOMI surface UV algorithm

    NASA Astrophysics Data System (ADS)

    Lindfors, Anders V.; Kujanpää, Jukka; Kalakoski, Niilo; Heikkilä, Anu; Lakkala, Kaisa; Mielonen, Tero; Sneep, Maarten; Krotkov, Nickolay A.; Arola, Antti; Tamminen, Johanna

    2018-02-01

    The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI) and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.

  13. Photostability of cosmetic UV filters on mammalian skin under UV exposure.

    PubMed

    Stiefel, Constanze; Schwack, Wolfgang; Nguyen, Yen-Thi Hai

    2015-01-01

    Previous studies showed that the common UV filter substances benzophenone-3 (BP-3), butyl methoxydibenzoylmethane (BM-DBM), octocrylene (OCR), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate (EHS) and ethylhexyl triazone (EHT) were able to react with amino side chains of different proteins in vitro. To transfer the results to mammalian skin conditions, sunscreen products were applied on both prepared fresh porcine skin and glass plates, followed by UV irradiation and the determination of depletion of the respective UV filters. Significantly lower recoveries of the UV filters extracted from skin samples than from glass plates indicated the additional reaction of the UV filters with skin constituents, when proteins will be the most important reactants. Among the products tested, BP-3 showed the greatest differences in recoveries between glass and skin samples of about 13% and 24% after 2 and 4 h of irradiation, respectively, followed by EHS > BM-DBM > OCR > EHMC > EHT. The obtained results raise the question, whether the common in vitro evaluations of sunscreens, using inert substrate materials like roughened quartz or polymethyl methacrylate (PMMA) plates are really suitable to fully replace in vivo methods, as they cannot include skin-typical reactions. © 2014 The American Society of Photobiology.

  14. UV tanning advertisements in high school newspapers.

    PubMed

    Freeman, Scott; Francis, Shayla; Lundahl, Kristy; Bowland, Terri; Dellavalle, Robert P

    2006-04-01

    To examine the increasing use of UV tanning parlors by adolescents, despite the World Health Organization recommendation that no one under the age of 18 years use UV tanning devices. We examined tanning advertisements in a sample of public high school newspapers published between 2001 and 2005 in 3 Colorado counties encompassing the Denver metropolitan area. Tanning advertisements appeared in newspapers from 11 (48%) of 23 schools. Newspaper issues (N = 131) contained 40 advertisements placed by 18 tanning parlors. Advertisements commonly offered discounts (19 of 40) including unlimited tanning offers (15 of 40). Thirteen advertisements featured non-UV tanning treatments, and 2 advertisements mentioned parental consent or accompaniment for UV tanning. UV radiation, a classified carcinogen, is commonly and specifically marketed to adolescents through high school newspaper advertising. Public health skin cancer prevention policies should include the prohibition of UV tanning advertising to minors.

  15. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments.

    PubMed

    Kim, Ilho; Yamashita, Naoyuki; Tanaka, Hiroaki

    2009-10-01

    Photodegradation characteristics of pharmaceuticals and personal care products (PPCPs) and the effectiveness of H(2)O(2) addition for PPCPs photodegradation during UV treatment were examined in this study. Average k (1st order rate constant) value for all the PPCPs investigated increased by a factor of 1.3 by H(2)O(2) addition during UV treatment using biologically treated water (TW) spiked with the 30 PPCPs. Therefore, the effectiveness of H(2)O(2) addition for PPCPs removal during UV treatment in real wastewater treatment process was expected. It could be also known that H(2)O(2) addition would improve photodegradation rates of PPCPs highly resistant for UV treatment such as DEET, ethenzamide and theophylline. UV dose required for 90% degradation of each PPCP was calculated from k values obtained in UV and UV/H(2)O(2) treatment experiments using TW spiked with 30 PPCPs. For UV treatment, UV dose required for degrading each PPCP by 90% of initial concentration ranged from 38 mJ cm(-2) to 5644 mJ cm(-2), indicating that most of PPCPs will not be removed sufficiently in UV disinfection process in wastewater treatment plant. For UV/H(2)O(2) treatment, all the PPCPs except seven PPCPs including cyclophosphamide and 2-QCA were degraded by more than 90% by UV irradiation for 30 min (UV dose: 691 mJ cm(-2)), indicating that H(2)O(2) addition during UV treatment will be highly effective for improving the degradation of PPCPs by UV, even though much higher UV dose is still necessary comparing to for UV disinfection.

  16. Attenuation of UV-B exposure-induced inflammation by abalone hypobranchial gland and gill extracts

    PubMed Central

    Kuanpradit, Chitraporn; Jaisin, Yamaratee; Jungudomjaroen, Sumon; Mitu, Shahida Akter; Puttikamonkul, Srisombat; Sobhon, Prasert; Cummins, Scott F.

    2017-01-01

    , including cellmetabolites and peptides, may provide new agents for skin anti-inflammation, preventing damage due to UV-B. PMID:28358420

  17. Low gloss UV-cured coatings for aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Mark; Muschar, Harry

    A method of applying a low gloss coating to a substrate such as the exterior surface of an aircraft is disclosed. The coating composition comprising a polyene, a polythiol, a flatting agent and a coloring pigment is applied to the substrate and given a first dosage of UV radiation followed by a second dosage in which the second dosage is greater than the first resulting in an ultralow gloss coating.

  18. The World Space Observatory Ultraviolet (WSO-UV), as a bridge to future UV astronomy

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Gómez de Castro, A. I.; Sachkov, M.; Vallejo, J. C.; Marcos-Arenal, P.; Kanev, E.; Savanov, I.; Shugarov, A.; Sichevskii, S.

    2018-04-01

    Ultraviolet (UV) astronomy is a vital branch of space astronomy. Many dozens of short-term UV-experiments in space, as well as long-term observatories, have brought a very important knowledge on the physics and chemistry of the Universe during the last decades. Unfortunately, no large UV-observatories are planned to be launched by most of space agencies in the coming 10-15 years. Conversely, the large UVOIR observatories of the future will appear not earlier than in 2030s. This paper briefly describes the projects that have been proposed by various groups. We conclude that the World Space Observatory-Ultraviolet (WSO-UV) will be the only 2-m class UV telescope with capabilities similar to those of the HST for the next decade. The WSO-UV has been described in detail in previous publications, and this paper updates the main characteristics of its instruments and the current state of the whole project. It also addresses the major science topics that have been included in the core program of the WSO-UV, making this core program very relevant to the current state of the UV-astronomy. Finally, we also present here the ground segment architecture that will implement this program.

  19. Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation.

    PubMed

    Zhuang, Yongliang; Hou, Hu; Zhao, Xue; Zhang, Zhaohui; Li, Bafang

    2009-08-01

    Collagen (JC) was extracted from jellyfish (Rhopilema esculentum) and hydrolyzed to prepare collagen hydrolysate (JCH). The protective effects of JC and JCH against UV-induced damages to mice skin were evaluated and compared in this article. JC and JCH could alleviate the UV-induced abnormal changes of antioxidative indicators, including the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities and the contents of glutathione (GSH) and malondiaidehyde (MDA). JC and JCH could protect skin lipid and collagen from the UV radiation damages. Furthermore, the changes of total ceramide and glycosaminoglycan in skin were recovered significantly by JC and JCH. The action mechanisms mainly involved the antioxidative properties and the repairing to endogenous collagen synthesis of JC and JCH in vivo. JCH with the lower molecular weight showed much higher effects than JC. The results indicated that JCH was a novel antiphotoaging agent from natural resources.

  20. Oxidative degradation of tetramethylammonium hydroxide (TMAH) by UV/persulfate and associated acute toxicity assessment.

    PubMed

    Huang, Jingting; Wang, Kai-Sung; Liang, Chenju

    2017-07-29

    Tetramethylammonium hydroxide (TMAH) is widely used in high-tech industries as a developing agent. Ultraviolet (UV) light-activated persulfate (PS, S 2 O 8 2- ) can be used to generate strongly oxidative sulfate radicals, and it also exhibits the potential to treat TMAH-containing wastewater. This study initially investigated the effect of S 2 O 8 2- concentration and UV strength on the UV/S 2 O 8 2- process for the degradation of TMAH in a batch reactor. The results suggested that 15 watts (W) of UV-activated S 2 O 8 2- at concentrations of 10 or 50 mM resulted in pseudo-first-order TMAH degradation rate constants of 3.1-4.2 × 10 -2 min -1 , which was adopted for determining the hydraulic retention time (HRT) in a continuous stirred tank reactor (CSTR). The operating conditions (15 W UV/10 mM S 2 O 8 2- ) with a HRT of 129 min resulted in stable residual concentrations of S 2 O 8 2- and TMAH at approximately 2.6 mM and 20 mg L -1 in effluent, respectively. Several TMAH degradation intermediates including trimethylamine, dimethylamine, and methylamine were also detected. The effluent was adjusted to a neutral pH and evaluated for its biological acute toxicity using Cyprinus carpio as a bioassay organism. The "bio-acute toxicity unit" (TU a ) was determined to be 1.41, which indicated that the effluent was acceptable for being discharged into an aquatic ecosystem.

  1. The UV Survey Mission Concept, CETUS

    NASA Astrophysics Data System (ADS)

    Heap, Sara; and the CETUS Team

    2018-01-01

    In March 2017, NASA selected CETUS for study of a Probe-class mission concept. W. Danchi is the CETUS PI, and S. Heap is the Science PI. CETUS is primarily a UV survey telescope to complement survey telescopes of the 2020’s including E-ROSITA, Subaru Hyper Suprime Cam and Prime-Focus Spectrograph, WFIRST, and the Square Kilometer Array. CETUS comprises a 1.5-m wide-field telescope and three science instruments: a wide-field (1045” on a side) far-UV and near-UV camera; a similarly wide-field near-UV multi-object spectrograph utilizing a next-generation micro-shutter array; and a single-object spectrograph with options of spectral region (far-UV or near-UV) and spectral resolving power (2,000 or 40,000). The survey instruments will operate simultaneously thereby producing wide-field images in the near-UV and far-UV and a spectrogram containing near-UV spectra of up to 100 sources free of spectral overlap and astronomical background. ln concert with other survey telescopes, CETUS will focus on understanding galaxy evolution at cosmic noon (z~1-2).

  2. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR.

    PubMed

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K; Sharma, Ramesh C

    2013-08-01

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ~5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. UV spectroscopy including ISM line absorption: of the exciting star of Abell 35

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.

    Reliable spectral analysis that is based on high-resolution UV observations requires an adequate, simultaneous modeling of the interstellar line absorption and reddening. In the case of the central star of the planetary nebula Abell 35, BD-22 3467, we demonstrate our current standard spectral-analysis method that is based on the Tübingen NLTE Model-Atmosphere Package (TMAP). We present an on- going spectral analysis of FUSE and HST/STIS observations of BD-22 3467.

  4. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.

    PubMed

    Chan, Minnie; Almutairi, Adah

    2016-01-21

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.

  5. Development of UV-B screening compounds in response to variation in ambient levels of UV-B radiation

    NASA Astrophysics Data System (ADS)

    Sullivan, Joe H.; Xu, Chenping; Gao, Wei; Slusser, James R.

    2005-08-01

    The induction of UV-B screening compounds in response to exposure to UV-B radiation is a commonly reported response and is generally considered to be an adaptive response of plants for protection from UVinduced damage. However, a number of questions remain to be answered including the importance of qualitative and localization differences among species in providing protection, indirect consequences of changes in leaf secondary chemistry on ecological processes and the dose response of metabolite accumulation. In this study we utilized UV monitoring data provided on site by the USDA UV-B Monitoring and Research Program to monitor the changes in UV-screening compounds in soybeans under a range of UV-B levels due to natural variation in ambient UV-B radiation. Soybean cultivars Essex, Clark and Clark-magenta, an isoline of Clark that produces minimal levels of flavonols, were grown beneath shelters covered either with polyester to block most UV-B radiation or teflon which is nearly transparent in the UV range and harvested at regular intervals for pigment and protein analysis. Daily levels of weighted UV-B varied from <1 to >7 kJ m-2. Increases in UV-screening compounds showed a positive dose response to UV-B radiation in all cultivars with Essex showing the steepest dose response. UV-A also induced screening compounds in all species The hydroxycinnimates of the magenta isoline showed a steep dose response to UV-A and a rather constant (non dose specific) but small additional increment in response to UV-B. The Clark isoline, which produced primarily the flavonol quercetin, showed a dose response to UV-B intermediate between that of Clark-magenta and Essex. All three cultivars show similar tolerance to UV-B in field conditions indicating that UV-induced pigment production is adequate to protect them from excessive UV-B damage.

  6. Using CeSiC for UV spectrographs for the WSO/UV

    NASA Astrophysics Data System (ADS)

    Reutlinger, A.; Gál, C.; Brandt, C.; Haberler, P.; Zuknik, K.-H.; Sedlmaier, T.; Shustov, B.; Sachkov, M.; Moisheev, A.; Kappelmann, N.; Barnstedt, J.; Werner, K.

    2017-11-01

    The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project lead by the Russian Federal Space Agency (Roscosmos) with the objective of high performance observations in the ultraviolet range. The 1.7 m WSO/UV telescope feeds UV spectrometers and UV imagers. The UV spectrometers comprise two high resolution Echelle spectrographs for the 100 - 170 nm and 170 - 300 nm wavelength range and a long slit spectrograph for the 100 - 300 nm band. All three spectrometers represent individual instruments that are assembled and aligned separately. In order to save mass while maintaining high stiffness, the instruments are combined to a monoblock. Cesic has been selected to reduce CTE related distortions of the instruments. In contrast to aluminium, the stable structure of Cesic is significantly less sensitive to thermal gradients. No further mechanism for focus correction with high functional, technical and operational complexity and dedicated System costs are necessary. Using Cesic also relaxes the thermal control requirements of +/-5°C, which represents a considerable cost driver for the S/C design. The WUVS instrument is currently studied in the context of a phase B2 study by Kayser-Threde GmbH including a Structural Thermal Model (STM) for verification of thermal and mechanical loads, stability due to thermal distortions and Cesic manufacturing feasibility.

  7. UV Induced Oxidation of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)

    2007-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.

  8. UV-B Radiation Contributes to Amphibian Population Declines

    NASA Astrophysics Data System (ADS)

    Blaustein, Andrew

    2007-05-01

    UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.

  9. The effects of near-UV radiation on elasmobranch lens cytoskeletal actin.

    PubMed

    Zigman, S; Rafferty, N S; Scholz, D L; Lowe, K

    1992-08-01

    The role of near-UV radiation as a cytoskeletal actin-damaging agent was investigated. Two procedures were used to analyse fresh smooth dogfish (Mustelus canis) eye lenses that were incubated for up to 22 hr in vitro, with elasmobranch Ringer's medium, and with or without exposure to a near-UV lamp (emission principally at 365 nm; irradiance of 2.5 mW cm-2). These were observed histologically using phalloidin-rhodamine specific staining and by transmission electron microscopy. In addition, solutions of purified polymerized rabbit muscle actin were exposed to the same UV conditions and depolymerization was assayed by ultracentrifugation and high-pressure liquid chromatography. While the two actins studied do differ very slightly in some amino acid sequences, they would react physically nearly identically. The results showed that dogfish lenses developed superficial opacities due to near-UV exposure. Whole mounts of lens epithelium exhibited breakdown of actin filaments in the basal region of the cells within 18 hr of UV exposure. TEM confirmed the breakdown of actin filaments due to UV exposure. SDS-PAGE and immunoblotting positively identified actin in these cells. Direct exposure of purified polymerized muscle actin in polymerizing buffer led to an increase in actin monomer of approximately 25% in the UV-exposed solutions within 3-18 hr, whether assayed by ultracentrifugation or HPLC. The above indicates that elasmobranch lens epithelial cells contain UV-labile actin filaments, and that near-UV radiation, as is present in the sunlit environment, can break down the actin structure in these cells. Furthermore, breakdown of purified polymerized muscle actin does occur due to near-UV light exposure.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Design, synthesis and biological evaluation of novel hydroxy-phenyl-1H-benzimidazoles as radical scavengers and UV-protective agents.

    PubMed

    Bino, Alessia; Baldisserotto, Anna; Scalambra, Emanuela; Dissette, Valeria; Vedaldi, Daniela Ester; Salvador, Alessia; Durini, Elisa; Manfredini, Stefano; Vertuani, Silvia

    2017-12-01

    An ever-increasing incidence of skin neoplastic diseases is registered. Therefore, it is important to protect the skin from the UV radiation that reaches the epidermis and dermis but also to block ROS generated by them. Our attention was attracted in developing new compounds provided with both UV filtering and antioxidant capacities. To this end, 2-phenyl-1H-benzimidazole-5-sulfonic acid (PBSA), a known UV filter, was selected as lead compound for its lack of antioxidant activity, high water solubility and good safety profile. PBSA was sequentially modified introducing hydroxyls on the phenyl ring and also substituting the functional group in position 5 of the benzimidazole ring. At the end of the synthetic study, a new, very potent class of antioxidants has been obtained. Surprisingly some of the developed molecules, while devoid of significant UV-filtering activity was endowed with potent UV-filtering booster capability if associated with known commercial UVB and UVA filters.

  11. Growth of a mat-forming photograph in the presence of UV radiation

    NASA Technical Reports Server (NTRS)

    Pierson, Beverly K.; Ruff, A. L.

    1989-01-01

    Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.

  12. Multifunctional AgNPs@Wool: colored, UV-protective and antioxidant functional textiles

    NASA Astrophysics Data System (ADS)

    Shabbir, Mohd; Mohammad, Faqeer

    2018-02-01

    Nanomaterials have great impact on textile industry for multifunctional and smart clothing as per the need of present, and further, green nanotechnology is the current hotspot of research and industrial developments. Silver nanoparticles (AgNPs) are synthesized (in situ) by using natural compounds of plant extracts (naphthoquinones, phenolics/flavonoids, polyphenols) as reducing or stabilizing agents, and simultaneously deposited on wool fabric for coloration, UV protection and antioxidant properties. UV-visible spectroscopy is used to monitor the route of biosynthesis of nanoparticles and transmission electron microscopy for morphological characteristics of synthesized AgNPs. Spherical and almost oval-shaped AgNPs were synthesized by naphthoquinones, polyphenols and flavonoids, respectively. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy were used for the AgNPs@Wool fabrics characterization. SEM-EDX analysis and XRD patterns confirmed the successful deposition of silver nanoparticles on wool. Coloration characteristics in terms of color strength (K/S) and CIEL*a*b*c*h° values, UV protection abilities in terms of UV transmittance and UV protection factor, and % antioxidant activity of AgNPs@Wool are suggestive of good-to-excellent results.

  13. Simultaneous determination of multiclass preservatives including isothiazolinones and benzophenone-type UV filters in household and personal care products by micellar electrokinetic chromatography.

    PubMed

    Lopez-Gazpio, Josu; Garcia-Arrona, Rosa; Millán, Esmeralda

    2015-04-01

    In this work, a simple and reliable micellar electrokinetic chromatography method for the separation and quantification of 14 preservatives, including isothiazolinones, and two benzophenone-type UV filters in household, cosmetic and personal care products was developed. The selected priority compounds are widely used as ingredients in many personal care products, and are included in the European Regulation concerning cosmetic products. The electrophoretic separation parameters were optimized by means of a modified chromatographic response function in combination with an experimental design, namely a central composite design. After optimization of experimental conditions, the BGE selected for the separation of the targets consisted of 60 mM SDS, 18 mM sodium tetraborate, pH 9.4 and 10% v/v methanol. The MEKC method was checked in terms of linearity, LODs and quantification, repeatability, intermediate precision, and accuracy, providing appropriate values (i.e. R(2) ≥ 0.992, repeatability RSD values ˂9%, and accuracy 90-115%). Applicability of the validated method was successfully assessed by quantifying preservatives and UV filters in commercial consumer products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Attenuation of UV-B exposure-induced inflammation by abalone hypobranchial gland and gill extracts.

    PubMed

    Kuanpradit, Chitraporn; Jaisin, Yamaratee; Jungudomjaroen, Sumon; Akter Mitu, Shahida; Puttikamonkul, Srisombat; Sobhon, Prasert; Cummins, Scott F

    2017-05-01

    , the contents of abalone extract, including cellmetabolites and peptides, may provide new agents for skin anti‑inflammation, preventing damage due to UV-B.

  15. UV-photodegradation of desipramine: Impact of concentration, pH and temperature on formation of products including their biodegradability and toxicity.

    PubMed

    Khaleel, Nareman D H; Mahmoud, Waleed M M; Olsson, Oliver; Kümmerer, Klaus

    2016-10-01

    Desipramine (DMI) is a widely used tricyclic antidepressant, and it is the major metabolite of imipramine (IMI) and lofepramine (LMI); IMI and LMI are two of the most commonly used tricyclic antidepressants. If DMI enters the aquatic environment, it can be transformed by the environmental bacteria or UV radiation. Therefore, photolysis of DMI in water was performed using a simulated sunlight Xenon-lamp and a UV-lamp. Subsequently, the biodegradability of DMI and its photo-transformation products (PTPs) formed during its UV photolysis was studied. The influence of variable conditions, such as initial DMI concentration, solution pH, and temperature, on DMI UV photolysis behavior was also studied. The degree of mineralization of DMI and its PTPs was monitored. A Shimadzu HPLC-UV apparatus was used to follow the kinetic profile of DMI during UV-irradiation; after that, ion-trap and high-resolution mass spectrometry coupled with chromatography were used to monitor and identify the possible PTPs. The environmentally relevant properties and selected toxicity properties of DMI and the non-biodegradable PTPs were predicted using different QSAR models. DMI underwent UV photolysis with first-order kinetics. Quantum yields were very low. DOC values indicated that DMI formed new PTPs and was not completely mineralized. Analysis by means of high-resolution mass spectrometry revealed that the photolysis of DMI followed three main photolysis pathways: isomerization, hydroxylation, and ring opening. The photolysis rate was inversely proportional to initial DMI concentration. The pH showed a significant impact on the photolysis rate of DMI, and on the PTPs in terms of both formation kinetics and mechanisms. Although temperature was expected to increase the photolysis rate, it showed a non-significant impact in this study. Results from biodegradation tests and QSAR analysis revealed that DMI and its PTPs are not readily biodegradable and that some PTPs may be human and/or eco

  16. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H₂O₂, UV/HSO₅⁻ and UV/S₂O₈²⁻.

    PubMed

    Luo, Congwei; Ma, Jun; Jiang, Jin; Liu, Yongze; Song, Yang; Yang, Yi; Guan, Yinghong; Wu, Daoji

    2015-09-01

    This study comparatively investigated atrazine (ATZ) degradation by irradiation at the wavelength of 254 nm in the presence of peroxides including hydrogen peroxide (H2O2), peroxymonosulfate (HSO5(-)), and persulfate (S2O8(2-)) at various initial ATZ concentrations and oxidant dosages. The effects of water matrix, such as carbonate/bicarbonate (HCO3(-)/CO3(2-)), chloride ions (Cl(-)), and natural organic matter (NOM), were evaluated on these three advanced oxidation processes. A simple steady-state kinetic model was developed based on the initial rates of ATZ destruction, which could well describe the apparent pseudo-first-order rate constants (k(app), s(-1)) of ATZ degradation in these three processes. The specific roles of reactive species (i.e., HO·, SO4(-·), CO3(-·), and Cl2(-·)) under various experimental conditions were quantitatively evaluated based on their steady-state concentrations obtained from this model. Modeling results showed that the steady-state concentrations of HO· and SO4(-·) decreased with the increase of CO3(2-)/HCO3(-) concentration, and the relative contribution of HO· to ATZ degradation significantly decreased in UV/H2O2 and UV/HSO5(-) systems. On the other hand, the scavenging effect of HCO3(-)/CO3(2-) on the relative contribution of SO4(-·) to ATZ degradation was lower than that on HO·. The presence of Cl(-) (0.5-10 mM) significantly scavenged SO4(-·) but had slightly scavenging effect on HO· at the present experimental pH, resulting in greater decrease of k(app) in the UV/S2O8(2-) than UV/H2O2 and UV/HSO5(-) systems. Higher levels of Cl2(-·) were generated in the UV/S2O8(2-) than those in the UV/H2O2 and UV/HSO5(-) systems at the same Cl(-) concentrations. NOM significantly decreased k(app) due to its effects of competitive UV absorption and radical scavenging with the latter one being dominant. These results improve the understanding of the effects of water constituents for ATZ degradation in the UV-based oxidation

  17. A UV-B-specific signaling component orchestrates plant UV protection

    PubMed Central

    Brown, Bobby A.; Cloix, Catherine; Jiang, Guang Huai; Kaiserli, Eirini; Herzyk, Pawel; Kliebenstein, Daniel J.; Jenkins, Gareth I.

    2005-01-01

    UV-B radiation in sunlight has diverse effects on humans, animals, plants, and microorganisms. UV-B can cause damage to molecules and cells, and consequently organisms need to protect against and repair UV damage to survive in sunlight. In plants, low nondamaging levels of UV-B stimulate transcription of genes involved in UV-protective responses. However, remarkably little is known about the underlying mechanisms of UV-B perception and signal transduction. Here we report that Arabidopsis UV RESISTANCE LOCUS 8 (UVR8) is a UV-B-specific signaling component that orchestrates expression of a range of genes with vital UV-protective functions. Moreover, we show that UVR8 regulates expression of the transcription factor HY5 specifically when the plant is exposed to UV-B. We demonstrate that HY5 is a key effector of the UVR8 pathway, and that it is required for survival under UV-B radiation. UVR8 has sequence similarity to the eukaryotic guanine nucleotide exchange factor RCC1, but we found that it has little exchange activity. However, UVR8, like RCC1, is located principally in the nucleus and associates with chromatin via histones. Chromatin immunoprecipitation showed that UVR8 associates with chromatin in the HY5 promoter region, providing a mechanistic basis for its involvement in regulating transcription. We conclude that UVR8 defines a UV-B-specific signaling pathway in plants that orchestrates the protective gene expression responses to UV-B required for plant survival in sunlight. PMID:16330762

  18. Causative Agents of Aspergillosis Including Cryptic Aspergillus Species and A. fumigatus.

    PubMed

    Toyotome, Takahito

    2016-01-01

    Aspergillosis is an important deep mycosis. The causative agents are Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, and Aspergillus terreus, of which A. fumigatus is the most prevalent. Cryptic Aspergillus spp., which morphologically resemble representative species of each Aspergillus section, also cause aspergillosis. Most of the cryptic species reveal different susceptibility patterns and/or different secondary metabolite profiles, also called exometabolome in this manuscript, from those representative species. On the other hand, azole-resistant A. fumigatus strains in clinical specimens and in the environment have been reported. Therefore, it is imperative to precisely identify the species, including cryptic Aspergillus spp., and evaluate the susceptibility of isolates.In this manuscript, some of the causative cryptic Aspergillus spp. are briefly reviewed. In addition, the exometabolome of Aspergillus section Fumigati is described. Finally, azole resistance of A. fumigatus is also discussed, in reference to several studies from Japan.

  19. A novel research model for evaluating sunscreen protection in the UV-A1.

    PubMed

    Figueiredo, Sônia Aparecida; de Moraes, Dayane Cristina; Vilela, Fernanda Maria Pinto; de Faria, Amanda Natalina; Dos Santos, Marcelo Henrique; Fonseca, Maria José Vieira

    2018-01-01

    The use of a broad spectrum sunscreen is considered one of the main and most popular measures for preventing the damaging effects of ultraviolet radiation (UVR) on the skin. In this study we have developed a novel in vitro method to assess sunscreens efficacy to protect calcineurin enzyme activity, a skin cell marker. The photoprotective efficacy of sunscreen products was assessed by measuring the UV-A1 radiation-induced depletion of calcineurin (Cn) enzyme activity in primary neonatal human dermal fibroblast (HDFn) cell lysates. After exposure to 24J/cm 2 UV-A1 radiation, the sunscreens containing larger amounts of UV-A1 filters (brand B), the astaxanthin (UV-A1 absorber) and the Tinosorb® M (UV-A1 absorber) were capable of preventing loss of Cn activity when compared to the sunscreens formulations of brand A (low concentration of UV-A1 filters), with the Garcinia brasiliensis extract (UV-B absorber) and with the unprotected cell lysate and exposed to irradiation (Irradiated Control - IC). The Cn activity assay is a reproducible, accurate and selective technique for evaluating the effectiveness of sunscreens against the effects of UV-A1 radiation. The developed method showed that calcineurin activity have the potential to act as a biological indicator of UV-A1 radiation-induced damages in skin and the assay might be used to assess the efficacy of sunscreens agents and plant extracts prior to in vivo tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. UV lasers for drilling and marking applications.

    PubMed

    Hannon, T

    1999-10-01

    Lasers emitting ultraviolet (UV) light have unique capabilities for precision micromachining and marking plastic medical devices. This review of the benefits offered by laser technology includes a look at recently developed UV diode-pumped solid-state lasers and their key features.

  1. Defined UV protection by apparel textiles.

    PubMed

    Hoffmann, K; Laperre, J; Avermaete, A; Altmeyer, P; Gambichler, T

    2001-08-01

    This article was written to update information on test methods and standards for determining the UV protection of apparel textiles and on factors affecting UV protective properties of fabrics, from dermatological and textile technological viewpoints. Articles from dermatological and textile technological journals published from 1990 to 2001 were identified from MEDLINE, Excerpta Medica/EMBASE, World Textiles, and Textile Technology Digest. Peer-reviewed dermatological articles, textile technological research articles, and normative publications were selected. Independent data extraction was performed by several observers. Spectrophotometry is the preferred method for determining UV protection factor of textile materials. Various textile qualities affect the UV protection factor of a finished garment; important elements are the fabric porosity, type, color, weight, and thickness. The application of UV absorbers in the yarns significantly improves the UV protection factor of a garment. With wear and use, several factors can alter the UV protective properties of a textile, including stretch, wetness, and degradation due to laundering. Standards in the field exist in Australia and Great Britain, and organizations such as the European Standardization Commission in Europe and the American Association of Textile Chemists and Colorists and the American Society for Testing and Materials in the United States are also establishing standards for the determination and labeling of sun protective clothing. Various textile qualities and conditions of wear and use affect UV protective properties of apparel textiles. The use of UV blocking fabrics can provide excellent protection against the hazards of sunlight; this is especially true for garments manufactured as UV protective clothing.

  2. Influence of the absorption behavior of sunscreens in the short-wavelength UV range (UVB) and the long-wavelength UV range (UVA) on the relation of the UVB absorption to sun protection factor

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Juergen; Schanzer, Sabine; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2010-09-01

    The absorption of filter substances in sunscreens, reducing the incident ultraviolet (UV) radiation, is the basis for the protecting ability of such formulations. The erythema-correlated sun protection factor (SPF), depending mainly on the intensity of the UVB radiation, is the common value to quantify the efficacy of the formulations avoiding sunburn. An ex vivo method combining tape stripping and optical spectroscopy is applied to measure the absorption of sunscreens in the entire UV spectral range. The obtained relations between the short-wavelength UV (UVB) absorption and the SPF confirm a clear influence of the long-wavelength UV (UVA) absorption on the SPF values. The data reflect the historical development of the relation of the concentration of UVB and UVA filters in sunscreens and points to the influence of additional ingredients, e.g., antioxidants and cell-protecting agents on the efficacy of the products.

  3. Polyurethane acrylate networks including cellulose nanocrystals: a comparison between UV and EB- curing

    NASA Astrophysics Data System (ADS)

    Furtak-Wrona, K.; Kozik-Ostrówka, P.; Jadwiszczak, K.; Maigret, J. E.; Aguié-Béghin, V.; Coqueret, X.

    2018-01-01

    A water-based polyurethane (PUR) acrylate water emulsion was selected as a radiation curable matrix for preparing nanocomposites including cellulose nanocrystals (CNC) prepared by controlled hydrolysis of Ramie fibers. Cross-linking polymerization of samples prepared in the form of films or of 1 mm-thick bars was either initiated by exposure to the 395 nm light of a high intensity LED lamp or by treatment with low energy electron beam (EB). The conversion level of acrylate functions in samples submitted to increasing radiation doses was monitored by Fourier Transform Infrared Spectroscopy (FTIR). Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were used to characterize changes in the glass transition temperature of the PUR-CNC nanocomposites as a function of acrylate conversion and of CNC content. Micromechanical testing indicates the positive effect of 1 wt% CNC on Young's modulus and on the tensile strength at break (σ) of cured nanocomposites. The presence of CNC in the PUR acrylate matrix was shown to double the σ value of the nanocomposite cured to an acrylate conversion level of 85% by treatment with a 25 kGy dose under EB, whereas no increase of σ was observed in UV-cured samples exhibiting the same acrylate conversion level. The occurrence of grafting reactions inducing covalent linkages between the polysaccharide nanofiller and the PUR acrylate matrix during the EB treatment is advanced as an explanation to account for the improvement observed in samples cured under ionizing radiation.

  4. Photodegradation of 4-tert-butylphenol in aqueous solution by UV-C, UV/H2O2 and UV/S2O8(2-) system.

    PubMed

    Wu, Yanlin; Zhu, Xiufen; Chen, Hongche; Dong, Wenbo; Zhao, Jianfu

    2016-01-01

    The photolytic degradation of 4-tert-butylphenol (4-t-BP) in aqueous solution was investigated using three kinds of systems: UV-C directly photodegradation system, UV/H2O2 and UV/S2O8(2-) system. Under experimental conditions, the degradation rate of 4-t-BP was in the order: UV/S2O8(2-) > UV/H2O2 > UV-C. The reaction kinetics of UV/S2O8(2-) system were thoroughly investigated. The increase of S2O8(2-) concentration enhanced the 4-t-BP degradation rate, which was inhibited when the concentration of S2O8(2-) exceeded 4.0 mM. The highest efficacy in 4-t-BP degradation was obtained at pH 6.5. The oxidation rate of 4-t-BP could be accelerated by increasing the reaction temperature and irradiation intensity. The highest rate constant (kobs = 8.4 × 10(-2) min(-1)) was acquired when the reaction temperature was 45 °C. The irradiation intensity was measured by irradiation distance, and the optimum irradiation distance was 10 cm. Moreover, the preliminary mechanism of 4-t-BP degradation was studied. The bond scission of the 4-t-BP molecule occurred by the oxidation of SO4(•-), which dimerized and formed two main primary products. Under the conditions of room temperature (25 °C ± 1 °C) and low concentration of K2S2O8 (0.5 mM), 35.4% of total organic carbon (TOC) was removed after 8.5-h irradiation. The results showed that UV/S2O8(2-) system was effective for the degradation of 4-t-BP.

  5. Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.

    PubMed

    Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng

    2016-05-01

    Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development and validation of an LC-UV method for the quantification and purity determination of the novel anticancer agent C1311 and its pharmaceutical dosage form.

    PubMed

    den Brok, Monique W J; Nuijen, Bastiaan; Hillebrand, Michel J X; Grieshaber, Charles K; Harvey, Michael D; Beijnen, Jos H

    2005-09-01

    C1311 (5-[[2-(diethylamino)ethyl]amino]-8-hydroxyimidazo [4,5,1-de]-acridin-6-one-dihydrochloride trihydrate) is the lead compound from the group of imidazoacridinones, a novel group of rationally designed anticancer agents. The pharmaceutical development of C1311 necessitated the availability of an assay for the quantification and purity determination of C1311 active pharmaceutical ingredient (API) and its pharmaceutical dosage form. A reversed-phase liquid chromatographic method (RP-LC) with ultraviolet (UV) detection was developed, consisting of separation on a C18 column with phosphate buffer (60 mM; pH 3 with 1 M citric acid)-acetonitrile-triethylamine (83:17:0.05, v/v/v) as the mobile phase and UV-detection at 280 nm. The method was found to be linear over a concentration range of 2.50-100 microg/mL, precise and accurate. Accelerated stress testing showed degradation products, which were well separated from the parent compound, confirming its stability-indicating capacity. Moreover, the use of LC-MS and on-line photo diode array detection enabled us to propose structures for four degradation products. Two of these products were also found as impurities in the API and more abundantly in an impure lot of API.

  7. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent.

    PubMed

    Hu, Sixiao; Hsieh, You-Lo

    2015-10-20

    Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Next step in Studying the Ultraviolet Universe: WSO-UV

    NASA Astrophysics Data System (ADS)

    Shustov, Boris M.; Sachkov, Mikhail; Gomez De Castro, Ana

    The World Space Observatory-Ultraviolet (WSO-UV) is an international space mission born as a response to the growing up demand for UV facilities by the astronomical community. In the horizon of the next 10 years, the WSO-UV will be the only 2-meters class mission in the after-HST epoch that will guarantee access to UV wavelength domain. The project is managed by an international consortium led by the Federal Space Agency (ROSCOSMOS, Russia). Here we describe the WSO-UV project with its general objectives and main features, the details and status of instrumentation that includes WUVS (spectrographs) and the ISSIS instrument (Field Camera Unit), WSO-UV ground segment, science management plan, the WSO-UV key science issues and prospects of high resolution spectroscopic studies with WSO-UV.

  9. Tholins as Coloring Agents on Pluto

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.; Materese, C. K.; Imanaka, H.; Dalle Ore, C.; Sandford, S. A.; Nuevo, M.

    2015-12-01

    The shape of the reflectance spectrum of Pluto recorded with telescopes, 0.3-1.0 μm, shows the planet's yellow-red color (1). Additionally, multi-filter images of Pluto with the MVIC camera on the New Horizons spacecraft report concentrations of the coloring agent(s) in some regions of the surface, and apparent near absence in other regions. Tholins are refractory organic solids of complex structure and high molecular weight, with a wide range of color ranging from yellow and orange to dark red, and through tan to black. They are readily synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface (2), or the same molecules in the gas phase (3). Energy in the form of UV light, electrons, protons, or coronal discharge are all effective to one degree or another in producing various types of tholins; details of the composition and yield vary with experimental conditions. Chemical analysis of ice tholins shows carboxylic acids, urea, and HCN and other nitriles. Aromatic/olefinic, amide, and other functional groups are identified in XANES analysis (4). The ice tholins produce by e- irradiation have a higher concentration of N than UV ice tholins, with N/C ~0.9 (versus ~0.5 for UV tholins) and O/C~0.2. EUV photolysis of Pluto atmosphere analog yields pale yellow solids relatively transparent in the visual, and with aliphatic CH bonds prominent in IR spectra. This material may be responsible for Pluto's hazes (5). Various tholins are the principal coloring agents on Pluto's surface, probably Charon's colored region, and on numerous other outer Solar System bodies (6). Refs: 1. Cruikshank, D. P. et al. 2014 DPS abstract #419.04; 2. Cruikshank et al. 2015 Icarus 246, 82; 3. Krasnopolsky & Cruikshank 1999 JGR 104 E9, 21,979; 4. Materese, C. K. et al. 2014 Ap.J. 788:111, June 20; 5. Imanaka, H. et al. 2014 DPS abstract #419.10; 6. Cruikshank, D. P. et al. 2005 Adv. Space Res. 36, 178.

  10. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation.

    PubMed

    Moore, Henna M; Bai, Baoyan; Boisvert, François-Michel; Latonen, Leena; Rantanen, Ville; Simpson, Jeremy C; Pepperkok, Rainer; Lamond, Angus I; Laiho, Marikki

    2011-10-01

    The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.

  11. UV-A radiation effects on higher plants: Exploring the known unknown.

    PubMed

    Verdaguer, Dolors; Jansen, Marcel A K; Llorens, Laura; Morales, Luis O; Neugart, Susanne

    2017-02-01

    Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  13. UV radiation, vitamin D, and cancer: how to measure the vitamin D synthetic capacity of UV sources?

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina; Orlova, Tatiana

    2005-09-01

    UV irradiation is widely used in phototherapy. Regardless of the fact that UV overexposure is liable to cause adverse health effect, in appropriate doses UV radiation initiates synthesis of vitamin D in skin that is absolutely essential for human health. As it proved, most people in northern industrial countries have a level of vitamin D in their bodies that is insufficient for optimum health, especially in winter. These low levels of vitamin D are now known to be associated with a wide spectrum of serious disease much of which leads on to premature death. The diseases associated with D deficiency involve more than a dozen types of cancer including colon, breast and prostate, as well as the classic bone diseases: rickets, osteoporosis and osteomalacia. Irradiation with artificial UV sources can prevent the vitamin D deficiency. However, in view of different irradiation spectra of UV lamps, their ability to initiate vitamin D synthesis is different. The reliable method based on an in vitro model of vitamin D synthesis has been developed for direct measurement in situ of the vitamin D synthetic capacity of artificial UV sources during a phototherapeutic procedure

  14. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. 700.13 Section 700.13 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS...

  15. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. 700.13 Section 700.13...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics...

  16. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. 700.13 Section 700.13...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics...

  17. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. 700.13 Section 700.13...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics...

  18. Enhancement of SV40 transformation by treatment of C3H2K cells with uv light and caffeine. I. Combined effect of uv light and caffeine. [Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, T.; Anzai, K.; Andoh, T.

    1975-08-01

    Treatment of cultured mouse cells, C3H2K, with uv light and/or caffeine enhanced the frequency of SV40-induced transformation. This enhancement depends upon the doses of uv and caffeine and the mode of combination of these agents. Irradiation of cells with increasing doses of uv just before infection resulted in approximately 2-fold enhancement of the transformation frequency up to a dose of 90 ergs/mm/sup 2/ and 3.3-fold at 150 ergs/mm/sup 2/. Addition of 1 mM caffeine to the medium for 4 days subsequent to infection brought about a 2-fold enhancement. When cells were irradiated and treated with 1 mM caffeine, the enhancementmore » was approximately 4-fold up to a uv dose of 90 ergs/mm/sup 2/ and 5.9-fold at 150 ergs/mm/sup 2/. When 0.1 to 4 mM caffeine was added for 4 days postinfection, the absolute number of transformations increased, and an enhancement ratio of 1.3 to 6.8 resulted. After the addition of the same increasing doses of caffeine to uv-irradiated cells (75 ergs/mm/sup 2/), the enhancement of transformation frequency was even higher ranging 2.0 to 13.3. The transformation frequencies thus obtained by the double treatment were always higher than those predicted if uv and caffeine acted additively. The transformation frequency was little affected by the addition of dibutyrylcyclic AMP and theophylline.« less

  19. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism.

    PubMed

    Liu, Yiqing; He, Xuexiang; Duan, Xiaodi; Fu, Yongsheng; Fatta-Kassinos, Despo; Dionysiou, Dionysios D

    2016-05-15

    Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. UV Disinfection System for Cabin Air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung

    Ultraviolet (UV) radiation is commonly used for disinfection of water. As a result of advancements made in the last 10-15 years, the analysis and design of UV disinfection systems for water is well developed. UV disinfection is also used for disinfection of air; however, despite the fact the UV-air systems have a longer record of application than UV-water systems, the methods used to analyze and design UV-air disinfection systems remain quite empirical. It is well-established that the effectiveness of UV-air systems is strongly affected by the type of microorganisms, the irradiation level/type (lamp power and wavelength), duration of irradiation (exposure time), air movement pattern (mixing degree), and relative humidity. This paper will describe ongoing efforts to evaluate, design and test a UV-air system based on first principles. Specific issues to be addressed in this work will include laboratory measurements of relevant kinetics (i.e., UV dose-response behavior) and numerical simulations designed to represent fluid mechanics and the radiation intensity field. UV dose-response behavior of test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (e.g., bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to an environmental chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm2 accomplished 90% (1 log10 units) of the B. subtilis spore inactivation, whereas 99 % (2 log10 units) inactivation was accomplished at this same UV dose under 20% RH conditions. However, at higher doses, the result was opposite of that in low dose. Reactor behavior is simulated using an integrated application

  1. Radiochromic film dosimetry for UV-C treatments of apple fruit

    USDA-ARS?s Scientific Manuscript database

    Radiochromic films were evaluated for their suitability to estimate UV-C doses and dose uniformity on apple fruit surface. Parameters investigated included film type, color changes of the films in response to different UV-C doses, color stability of films, UV-C light intensity, and temperature. In...

  2. Development of a low cost UV index datalogger and comparison between UV index sensors

    NASA Astrophysics Data System (ADS)

    Gomes, L. M.; Ventura, L.

    2018-02-01

    Ultraviolet radiation (UVR) is the part of radiation emitted by the Sun, with range between 280 nm and 400 nm, and that reaches the Earth's surface. The UV rays are essential to the human because it stimulates the production of vitamin D but this radiation may be related to several health problems, including skin cancer and ocular diseases like pterygium, photokeratitis, cataract and more. To inform people about UV radiation, it is adopted the Ultraviolet Index (UVI). This UVI consists in a measure of solar UV radiation level, which contributes to cause sunburn on skin, also known as Erythema, and is indicated as an integer number between 1 and 14, associated to categories from low to extreme respectively. The aim of this work was to develop a low cost UVI datalogger capable of measuring three different UVI sensors simultaneously, record their data with timestamp and serve the measures online through a dedicated server, so general public can access their data and see the current UV radiation conditions. We also compared three different UVI sensors (SGlux UV cosine, Skye SKU440 and SiLabs SI1145) between them and with meteorological models during a period of months to verify their compliance. With five months data, we could verify the sensors working characteristics and decide which among them are the most suitable for research purposes.

  3. The Response of Human Skin Commensal Bacteria as a Reflection of UV Radiation: UV-B Decreases Porphyrin Production

    PubMed Central

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L.; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  4. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    PubMed

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  5. Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime.

    PubMed

    García-Cela, Maria Esther; Marín, Sonia; Reyes, Monica; Sanchis, Vicent; Ramos, Antonio J

    2016-04-01

    Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia. © 2015 Society of Chemical Industry.

  6. Changes in UV absorption of sunscreens after UV irradiation

    NASA Astrophysics Data System (ADS)

    Tarras-Wahlberg, N.; Stenhagen, G.; Larkö, O.; Rosén, A.; Wennberg, A.-M.; Wennerström, O.

    2000-03-01

    In the present investigation we have studied the change in the absorption spectrum of some photoactive organic species in sunscreens after UVA and UVB irradiation in a dose normally encountered during a full day in the sun. The absorbance of 2-ethylhexyl 4-methoxycinnamate was reduced significantly, while 3-(4-methylbenzyliden)camphor seemed to be rather stable. The benzophenones studied seemed to be relatively stable. In the case of 4-tert.butyl-4´-methoxy-dibenzoylmethane there was a rapid decrease in the UVA absorption leading to unsatisfactory protection in the UVA region. 4-Isopropyl-dibenzoylmethane also lost most of its UV protective capacity after irradiation with UVA. UVB seemed to have a minor effect on all the samples. The present study including gas chromatography and mass spectrometry analysis indicates that some of the photoactive organic species commonly used today in sunscreens are unstable following UV irradiation.

  7. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  8. Pathway-specific effect of caffeine on protection against UV irradiation-induced apoptosis in corneal epithelial cells.

    PubMed

    Wang, Ling; Lu, Luo

    2007-02-01

    To define the role of molecular interaction between the UV-induced JNK (c-Jun N-terminal kinase) cascade and corneal epithelial cell apoptosis and protection against apoptosis by caffeine. Rabbit and human corneal epithelial cells were cultured in DMEM/F12 medium containing 10% FBS and 5 microg/mL insulin at 37 degrees C in 5% CO(2). DNA fragmentation and ethidium bromide/acridine orange (EB/AO) nuclear staining were performed to detect cell death. Western blot, immunoprecipitation, and kinase assays were used to measure UV-induced mitogen-activated protein (MAP) kinase activity. UV irradiation-induced apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and MAKK4 (SEK1) upstream from JNK was caffeine sensitive. Caffeine (1,3,7-trimethylxanthine), an agent that is one of the most popular additions to food consumed in the world and a potential enhancer of chemotherapy, effectively protected corneal epithelial cells against apoptosis by its specific effect on the JNK cascade. Theophylline (1,3-dimethylxanthine) exhibited an effect similar to that of caffeine on prevention of UV irradiation-induced apoptosis. However, alterations of either intracellular cAMP or Ca(2+) levels did not alter the effect of caffeine on the JNK signaling pathway. In addition, the blockade of PI3K-like kinases by wortmannin had no impact on the protective effect of caffeine against UV irradiation-induced apoptosis, suggesting that the protective effect of caffeine acts through a specific mechanism involving UV irradiation-induced activation of ASK1 and SEK1. In contrast, caffeine had no effects on melphalan-, hyperosmotic stress-, or IL-1beta-induced activation of the JNK signaling pathway in these cells. UV irradiation stress-induced activation of the ASK1-SEK1-JNK signaling pathway leading to apoptosis is a caffeine-sensitive process, and caffeine, as a multifunctional agent in cells, can specifically interact with the pathway to protect against apoptosis.

  9. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    PubMed

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes.

    PubMed

    Rodríguez-Chueca, J; Laski, E; García-Cañibano, C; Martín de Vidales, M J; Encinas, Á; Kuch, B; Marugán, J

    2018-07-15

    The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H 2 O 2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H 2 O 2 /UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H 2 O 2 /UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m 3 ·order). Even H 2 O 2 /UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H 2 O 2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Surface disinfection by exposure to germicidal UV light.

    PubMed

    Katara, G; Hemvani, N; Chitnis, S; Chitnis, V; Chitnis, D S

    2008-01-01

    The present study was aimed to design a simple model to check efficacy of germicidal UV tube, to standardise the position, distance and time for UV light and also to find out its efficacy against medically important bacteria, the bacterial spores and fungi. The microbial cultures tested included gram positive and gram negative bacteria, bacterial spores and fungal spores. The microbes streaked on solid media were exposed to UV light. The inactivation of the order of four logs was observed for bacteria. UV light can have efficient inactivation of bacteria up to a distance of eight feet on either side and exposure time of 30 minutes is adequate.

  12. UV-vis spectrophotometric determination of trinitrotoluene (TNT) with trioctylmethylammonium chloride as ion pair assisted and disperser agent after dispersive liquid-liquid microextraction.

    PubMed

    Larki, Arash; Nasrabadi, Mehdi Rahimi; Pourreza, Nahid

    2015-06-01

    In the present study, a simple, fast and inexpensive method based on dispersive liquid-liquid microextraction (DLLME) prior to microvolume UV-vis spectrophotometry was developed for the preconcentration and determination of trinitrotoluene (TNT). The procedure is based on the color reaction of TNT in alkaline medium and extraction into CCl4 as an ion pair assisted by trioctylmethylammonium chloride, which also acts as a disperser agent. Experimental parameters affecting the DLLME method such as pH, concentration of sodium hydroxide, amount of trioctylmethylammonium chloride, type and volume of extraction solvent were investigated and optimized. Under the optimum conditions, the limit of detection (LOD) was 0.9ng/mL and the calibration curve was linear in the range of 3-200ng/mL. The relative standard deviation for 25 and 100ng/mL of TNT were 3.7% and 1.5% (n=6), respectively. The developed DLLME method was applied for the determination of TNT in different water and soil samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Photocarcinogenesis by methoxypsoralen, neutral red, proflavine, and long UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaria, L.; Bianchi, A.; Arnaboldi, A.

    1985-01-01

    A study of the photosensitizing effects of 8-methoxypsoralen (MOP), neutral red (NR), and proflavine (PF) on the skin of female Swiss albino mice, strain 955, was carried out using fractionated exposure to long ultraviolet light (300-400 nm) and visible light (tungsten emission). The results (1) confirmed MOP photocarcinogenicity, (2) demonstrated that both NR and PF are photocarcinogens, and, further, (3) showed that the above UV light with 2.6% of fluence at 313 nm is a long-term carcinogenic agent even though the total dose of 313 nm was 100 times less than the minimal UV tumorigenic dose in mice. The tumorsmore » were mammary adenocarcinomas, carcinomas of skin appendages, carcino-mixo-sarcomas, lymphomas, and one case of thyroid adenocarcinoma. The implications of the above data regarding the controversy about oncogenic risks in photochemotherapy are discussed.« less

  14. UV-cured adhesives for carbon fiber composite applications

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  15. Distribution and nature of UV absorbers on Triton's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    Substantial evidence suggests that a UV spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAMs exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SaM material. We hope to determine if UV-SAMs on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAMs has been determined, further constraints on their composition cable made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  16. Distribution and nature of UV absorbers on Triton's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    Substantial evidence suggests that a UV Spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAM's exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SAM material. We hope to determine if UV-SAM's on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAM's has been determined, further constraints on their composition can be made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on Voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  17. UV astronomy throughout the ages: a historical perspective

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    2018-05-01

    Astronomers have long recognized the critical need for ultraviolet imaging, photometry and spectroscopy of stars, planets, and galaxies, but this need could not be satisfied without access to space and the development of efficient instrumentation. When UV measurements became feasible, first with rockets and then with satellites, major discoveries came rapidly. It is true in the UV spectral region as in all others, that significant increases in sensitivity, spectral resolution, and time domain coverage have led to significant new understanding of astrophysical phenomena. I will describe a selection of these discoveries made in each of three eras: (1) the early history of rocket instrumentation and Copernicus, the first UV satellite, (2) the discovery phase pioneered by the IUE, FUSE and EUVE satellites, and (3) the full flowering of UV astronomy with the successful operation of HST and its many instruments. I will also mention a few areas where future UV instrumentation could lead to new discoveries. This review concentrates on developments in stellar and interstellar UV spectroscopy; the major discoveries in galactic, extragalactic, and solar system research are beyond the scope of this review. The important topic of UV technologies and detectors, which enable the remarkable advances in UV astronomy are also not included in this review.

  18. Tholins as Coloring Agents on Pluto and Other Icy Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale

    2016-01-01

    Tholins are refractory organic solids of complex structure and high molecular weight, with a wide range of color ranging from yellow and orange to dark red, and through tan to black. They are made in the laboratory by energy deposition (photons or charged particles) in gases and ices containing the simple molecules (e.g., N2, CH4, CO) found in planetary atmospheres or condensed on planetary surfaces. They are widely implicated in providing the colors and albedos, particularly in the region 0.3-1.0 microns, of several outer Solar System bodies, including Pluto, as well as aerosols in planetary atmospheres such as Titan. Recent color images of Pluto with the New Horizons spacecraft show concentrations of coloring agent(s) in some regions of the surface, and apparent near-absence in other regions. Tholins that may to some degree represent surface chemistry on Pluto have been synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface, or the same molecules in the gas phase. Details of the composition and yield vary with experimental conditions. Chemical analysis of Pluto ice tholins shows evidence of amides, carboxylic acids, urea, carbodiimides, and nitriles. Aromatic/olefinic, amide, and other functional groups are identified in XANES analysis. The ice tholins produced by e- irradiation have a higher concentration of N than UV ice tholins, with N/C approx. 0.9 (versus approx. 0.5 for UV tholins) and O/C approx.0.2. Raman spectra of the electron tholin show a high degree of structural disorder, while strong UV fluorescence indicates a large aromatic content. EUV photolysis of a Pluto gaseous atmosphere analog yields pale yellow solids relatively transparent in the visual, and with aliphatic CH bonds prominent in IR spectra. This or similar material may be responsible for Pluto's hazes.

  19. Índice UV

    EPA Pesticide Factsheets

    Información general sobre el Índice UV que proporciona un pronóstico del riesgo esperado de sobreexposición a la radiación ultravioleta (UV) del sol. El índice UV va acompañado de recomendaciones para protegerse del sol.

  20. Direct-to-diffuse UV Solar Irradiance Ratio for a UV rotating Shadowband Spectroradiometer and a UV Multi-filter Rotating Shadowband Radiometer

    NASA Astrophysics Data System (ADS)

    Lantz, K.; Kiedron, P.; Petropavlovskikh, I.; Michalsky, J.; Slusser, J.

    2008-12-01

    . Two spectroradiometers reside that measure direct and diffuse UV solar irradiance are located at the Table Mountain Test Facility, 8 km north of Boulder, CO. The UV- Rotating Shadowband Spectrograph (UV-RSS) measures diffuse and direct solar irradiance from 290 - 400 nm. The UV Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) measures diffuse and direct solar irradiance in seven 2-nm wide bands, i.e. 300, 305, 311, 317, 325, and 368 nm. The purpose of the work is to compare radiative transfer model calculations (TUV) with the results from the UV-Rotating Shadowband Spectroradiometer (UV-RSS) and the UV-MFRSR to estimate direct-to-diffuse solar irradiance ratios (DDR) that are used to evaluate the possibility of retrieving aerosol single scattering albedo (SSA) under a variety of atmospheric conditions: large and small aerosol loading, large and small surface albedo. For the radiative transfer calculations, total ozone measurements are obtained from a collocated Brewer spectrophotometer.

  1. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    PubMed Central

    Zhan, Janis Ya-Xian; Wang, Xiu-Fen; Liu, Yu-Hong; Zhang, Zhen-Biao; Wang, Lan; Chen, Jian-Nan; Huang, Song; Zeng, Hui-Fang; Lai, Xiao-Ping

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent. PMID:26903706

  2. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation.

    PubMed

    Zhan, Janis Ya-Xian; Wang, Xiu-Fen; Liu, Yu-Hong; Zhang, Zhen-Biao; Wang, Lan; Chen, Jian-Nan; Huang, Song; Zeng, Hui-Fang; Lai, Xiao-Ping

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent.

  3. Modeling Ultraviolet (UV) Light Emitting Diode (LED) Energy Propagation in Reactor Vessels

    DTIC Science & Technology

    2014-03-27

    21 Table 4: UV Mercury Lamps , UV LED Bulbs, and Visible LED Bulb Advantages and Disadvantages...over low pressure mercury lamps include smaller size, minimal start up time, and no hazardous material. Projections show UV LEDs will follow similar

  4. Comets in UV

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  5. Distribution and nature of UV absorbers on Trition's surface

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    Substantial evidence suggests that a UV (ultraviolet) Spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAM's exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SAM material. We hope to determine if UV-SAM's on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAM's has been determined, further constraints on their composition can be made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on Voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.

  6. UV-fibers: two decades of improvements for new applications

    NASA Astrophysics Data System (ADS)

    Klein, Karl-Friedrich; Khalilov, Valery K.

    2015-03-01

    Multimode UV-fibers with high-OH synthetic silica core and F-doped silica cladding have been available for over 40 years. At the beginning, the spectral UV-range above 250 nm wavelength was commonly used, because the generation of UV-absorbing defect centers prevented reliable light transfer below 250 nm; even light from a low-power broadband deuterium-lamp was sufficient to damage these UV-fibers of the 1st generation. However, even then, applications in the field of spectroscopy, laser light delivery, sensors and process control were discussed and improvements of fiber quality in this very interesting UVC range required by researchers and industrial end-users. Starting in 1993 with hydrogen-loaded fibers, further modification in preform and fiber manufacturing including additional fiber treatments lead to currently available hydrogen-free UV-fiber (4th generation) with significantly improved stability in the UVC, enabling routine use of optical fibers in this field. In addition to the UV-fiber improvements, some selected UV fiber-optic applications using broadband deuterium-lamps will be discussed. Finally, there is still room for further improvements, especially in combination with newly available pulsed UV light sources, which are low-cost, small sized and highly reliable.

  7. Innovative Approach to Validation of Ultraviolet (UV) Reactors ...

    EPA Pesticide Factsheets

    Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & surface water pathogen inactivation including viruses for low-pressure and medium-pressure UV systems. Evaluation objectives of the study: Practical approach for validating LP and MP UV reactors for virus & cryptosporidium inactivation using various test microbes, i.e., MS2, B. pumilus, AD2, T1; Apply UV dose algorithms based on theory vs empirical that predict log-I and RED as a function of the UV sensitivity of the microbe (combined variable criteria), flow, lamp-sensor output, DL-ASCFs, w/wo UVT; Assess capabilities of test microbe for predicting target pathogen, assess credibility with second test microbe vs bracketing; Evaluate UV lamp sensor technology that accounts for germicidal contributions of low-and high-wavelength UV light within MP reactors; Address approaches for propagating and assaying AD2, B. pumilus, MS2, and methods for determining low and high wavelength ASCFs using collimated beam LP & MP UV lamps; Determine & apply low and high wavelength ASCFs to predict cryptosporidium and adenovirus credit using MS2, or B. pumilus, T1 test data; Simplify Validation-Factor (VF) analysis of uncertainties/biases; Develop recommendations document from recent lessons learned applicabl

  8. A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property.

    PubMed

    Ren, Guina; Song, Yuanming; Li, Xiangming; Wang, Bo; Zhou, Yanli; Wang, Yuyan; Ge, Bo; Zhu, Xiaotao

    2018-07-15

    Development of an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding by a simple method is highly desirable, yet it remains a challenge that current technologies have been unable to fully address. Herein, the original fabric is immersed into the solution containing ZnO nanoparticle and PDMS (polydimethylsiloxane), and the fiber surfaces are uniformly covered by a ZnO-PDMS layer after thermal treatment at 110 °C for 30 min. Droplets of water and corrosive liquids including strong acid, strong alkali, and saturated salt solution display sphere shape on the ZnO-PDMS coated fabric surface. The stable binding of ZnO-PDMS layer onto the fibers allows for the fabric coating with robust superhydrophobicity, and the coated fabric still displays superhydrophobicity after hand twisting, knife scratching, finger touching, and even cycles of sandpaper abrasion. The ZnO-PDMS coated fabric can also keep its superhydrophobic property when exposed to long term UV illumination, demonstrating its UV resistance. Moreover, the uniformly distribution of ZnO nanoparticles on fibers allows the ZnO-PDMS coated fabric to display UV shielding property. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Piperine attenuates UV-R induced cell damage in human keratinocytes via NF-kB, Bax/Bcl-2 pathway: An application for photoprotection.

    PubMed

    Verma, Ankit; Kushwaha, Hari N; Srivastava, Ajeet K; Srivastava, Saumya; Jamal, Naseem; Srivastava, Kriti; Ray, Ratan Singh

    2017-07-01

    Chronic ultraviolet radiation (UV-R) exposure causes skin disorders like erythema, edema, hyperpigmentation, photoaging and photocarcinogenesis. Recent research trends of researchers have focused more attention on the identification and use of photo stable natural agents with photoprotective properties. Piperine (PIP), as a plant alkaloid, is an important constituent present in black pepper (Piper nigrum), used widely in ayurvedic and other traditional medicines and has broad pharmacological properties. The study was planned to photoprotective efficacy of PIP in human keratinocyte (HaCaT) cell line. We have assessed the UV-R induced activation of transcription factor NF-κB in coordination with cell death modulators (Bax/Bcl-2 and p21). The LC-MS/MS analysis revealed that PIP was photostable under UV-A/UV-B exposure. PIP (10μg/ml) attenuates the UV-R (A and B) induced phototoxicity of keratinocyte cell line through the restoration of cell viability, inhibition of ROS, and malondialdehyde generation. Further, PIP inhibited UV-R mediated DNA damage, prevented micronuclei formation, and reduced sub-G1 phase in cell cycle, which supported against photogenotoxicity. This study revealed that PIP pretreatment strongly suppressed UV-R induced photodamages. Molecular docking studies suggest that PIP binds at the active site of NF-κB, and thus, preventing its translocation to nucleus. In addition, transcriptional and translational analysis advocate the increased expression of NF-κB and concomitant decrease in IkB-α expression under UV-R exposed cells, favouring the apoptosis via Bax/Bcl-2 and p21 pathways. However, PIP induced expression of IkB-α suppress the NF-κB activity which resulted in suppression of apoptotic marker genes and proteins that involved in photoprotection. Therefore, we suggest the applicability of photostable PIP as photoprotective agent for human use. Copyright © 2017. Published by Elsevier B.V.

  10. GALEX Study of the UV Variability of Nearby Galaxies and a Deep Probe of the UV Luminosity Function

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric

    2005-01-01

    The proposal has two aims - a deep exposure of NGC 300, about a factor of 10 deeper than the GALEX all-sky survey; and an examination of the UV variability. The data were received just prior to a series of proposal deadlines in early spring. A subsequent analysis delay includes a move from SAO to the University of Texas - San Antonio. Nevertheless, we have merged the data into a single deep exposure as well as undertaking a preliminary examination of the variability. No UV halo is present as detected in the GALEX observation of M83. No UV bursts are visible; however a more stringent limit will only be obtained through a differencing of the sub-images. Papers: we expect 2 papers at about 12 pages/paper to flow from this project. The first paper will report on the time variability while the second will focus on the deep UV image obtained from stacking the individual observations.

  11. Conjunctival UV autofluorescence--prevalence and risk factors.

    PubMed

    Wolffsohn, James S; Drew, Tom; Sulley, Anna

    2014-12-01

    Autofluorescence of ultraviolet (UV) light has been shown to occur in localised areas of the bulbar conjunctiva, which map to active cellular changes due to UV and environmental exposure. This study examined the presence of conjunctival UV autofluorescence in eye care practitioners (ECPs) across Europe and the Middle East and its associated risk factors. Images were captured of 307 ECPs right eyes in the Czech Republic, Germany, Greece, Kuwait, Netherlands, Sweden, Switzerland, United Arab Emirates and the United Kingdom using a Nikon D100 camera and dual flash units through UV filters. UV autofluorescence was outlined using ImageJ software and the nasal and temporal area quantified. Subjects were required to complete a questionnaire on their demographics and lifestyle including general exposure to UV and refractive correction. Average age of the subjects was 38.5±12.2 years (range 19-68) and 39.7% were male. Sixty-two percent of eyes had some conjunctival damage as indicated by UV autofluorescence. The average area of damage was higher (p=0.005) nasally (2.95±4.52mm(2)) than temporally (2.19±4.17mm(2)). The area of UV damage was not related to age (r=0.03, p=0.674), gender (p=0.194), self-reported sun exposure lifestyle (p>0.05), geographical location (p=0174), sunglasses use (p>0.05) or UV-blocking contact lens use (p>0.05), although it was higher in those wearing contact lenses with minimal UV-blocking and no spectacles (p=0.015). The area of UV damage was also less nasally in those who wore contact lenses and spectacles compared to those with no refractive correction use (p=0.011 nasal; p=0.958 temporal). UV conjunctival damage is common even in Europe, Kuwait and UAE, and among ECPs. The area of damage appears to be linked with the use of refractive correction, with greater damage nasally than temporally which may be explained by the peripheral light focusing effect. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights

  12. Decontamination Efficiency of a DBD Lamp Containing an UV-C Emitting Phosphor.

    PubMed

    Caillier, Bruno; Caiut, José Maurício Almeida; Muja, Cristina; Demoucron, Julien; Mauricot, Robert; Dexpert-Ghys, Jeanette; Guillot, Philippe

    2015-01-01

    Among different physical and chemical agents, the UV radiation appears to be an important route for inactivation of resistant microorganisms. The present study introduces a new mercury-free Dielectric Barrier Discharge (DBD) flat lamp, where the biocide action comes from the UV emission produced by rare-earth phosphor obtained by spray pyrolysis, following plasma excitation. In this study, the emission intensity of the prototype lamp is tuned by controlling gas pressure and electrical power, 500 mbar and 15 W, corresponding to optimal conditions. In order to characterize the prototype lamp, the energetic output, temperature increase following lamp ignition and ozone production of the source were measured. The bactericidal experiments carried out showed excellent results for several gram-positive and gram-negative bacterial strains, thus demonstrating the high decontamination efficiency of the DBD flat lamp. Finally, the study of the external morphology of the microorganisms after the exposure to the UV emission suggested that other mechanisms than the bacterial DNA damage could be involved in the inactivation process. © 2015 The American Society of Photobiology.

  13. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254nm activation of persulfate.

    PubMed

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-03-15

    Oxytetracycline (OTC), an important broad-spectrum antibiotic, has been detected extensively in various environmental systems, which may have a detrimental impact on ecosystem and human health through the development of drug resistant bacteria and pathogens. In this study, the degradation of OTC was evaluated by UV-254nm activated persulfate (PS). The observed UV fluence based pseudo first-order rate constant (kobs) was found to be the highest at near neutral pH conditions (pH 5.5-8.5). Presence of various natural water constituents had different effects on OTC degradation, with a significant enhancement in the presence of bicarbonate or Cu(2+). Limited elimination of total organic carbon (TOC) and PS was observed during the mineralization of OTC. Transformation byproducts in the presence and absence of hydroxyl radical scavenging agent tert-butanol (t-BuOH) were identified using ultra-high definition accurate-mass quadrupole time-of-flight liquid chromatography/mass spectrometer (LC-QTOF/MS). Potential OTC degradation mechanism was subsequently proposed revealing four different reaction pathways by SO4(-) reaction including hydroxylation (+16Da), demethylation (-14Da), decarbonylation (-28Da) and dehydration (-18Da). This study suggests that UV-254nm/PS is a promising treatment technology for the control of water pollution caused by emerging contaminants such as OTC. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Binding of anti-prion agents to glycosaminoglycans: Evidence from electronic absorption and circular dichroism spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zsila, Ferenc; Gedeon, Gabor

    2006-08-11

    The polyanionic glycosaminoglycans (GAGs) are intimately involved in the pathogenesis of protein conformational disorders such as amyloidosis and prion diseases. Several cationic agents are known to exhibit anti-prion activity but their mechanism of action is poorly understood. In this study, UV absorption and circular dichroism (CD) spectroscopic techniques were used to investigate the interaction between heparin and chondroitin-6-sulfate and anti-prion drugs including acridine, quinoline, and phenothiazine derivatives. UV band hypochromism of ({+-})-quinacrine, ({+-})-primaquine, tacrine, quinidine, chlorpromazine, and induced CD spectra of ({+-})-quinacrine upon addition of GAGs provided evidence for the GAG binding of these compounds. The association constants ({approx}10{sup 6}-10{supmore » 7} M{sup -1}) estimated from the UV titration curves show high-affinity drug-heparin interactions. Ionic strength-dependence of the absorption spectra suggested that the interaction between GAGs and the cationic drugs is principally electrostatic in nature. Drug binding differences of heparin and chondroitin-6-sulfate were attributed to their different negative charge density. These results call the attention to the alteration of GAG-prion/GAG-amyloid interactions by which these compounds might exert their anti-prion/anti-amyloidogenic activities.« less

  15. Molecular Mechanisms of UV-Induced Apoptosis and Its Effects on Skin Residential Cells: The Implication in UV-Based Phototherapy

    PubMed Central

    Lee, Chih-Hung; Wu, Shi-Bei; Hong, Chien-Hui; Yu, Hsin-Su; Wei, Yau-Huei

    2013-01-01

    The human skin is an integral system that acts as a physical and immunological barrier to outside pathogens, toxicants, and harmful irradiations. Environmental ultraviolet rays (UV) from the sun might potentially play a more active role in regulating several important biological responses in the context of global warming. UV rays first encounter the uppermost epidermal keratinocytes causing apoptosis. The molecular mechanisms of UV-induced apoptosis of keratinocytes include direct DNA damage (intrinsic), clustering of death receptors on the cell surface (extrinsic), and generation of ROS. When apoptotic keratinocytes are processed by adjacent immature Langerhans cells (LCs), the inappropriately activated Langerhans cells could result in immunosuppression. Furthermore, UV can deplete LCs in the epidermis and impair their migratory capacity, leading to their accumulation in the dermis. Intriguingly, receptor activator of NF-κB (RANK) activation of LCs by UV can induce the pro-survival and anti-apoptotic signals due to the upregulation of Bcl-xL, leading to the generation of regulatory T cells. Meanwhile, a physiological dosage of UV can also enhance melanocyte survival and melanogenesis. Analogous to its effect in keratinocytes, a therapeutic dosage of UV can induce cell cycle arrest, activate antioxidant and DNA repair enzymes, and induce apoptosis through translocation of the Bcl-2 family proteins in melanocytes to ensure genomic integrity and survival of melanocytes. Furthermore, UV can elicit the synthesis of vitamin D, an important molecule in calcium homeostasis of various types of skin cells contributing to DNA repair and immunomodulation. Taken together, the above-mentioned effects of UV on apoptosis and its related biological effects such as proliferation inhibition, melanin synthesis, and immunomodulations on skin residential cells have provided an integrated biochemical and molecular biological basis for phototherapy that has been widely used in the

  16. UV exposure in cars.

    PubMed

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  17. Evaluating UV-C LED disinfection performance and ...

    EPA Pesticide Factsheets

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research included an evaluation of genomic damage. Inactivation by the LEDs was compared with the efficacy of conventional UV sources, the low-pressure (LP) and medium-pressure (MP) mercury vapor lamps. The work also calculated the electrical energy per order of reduction of the microorganisms by the five UV sources.For E. coli, all five UV sources yielded similar inactivation rates. For MS2 coliphage, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was significantly more effective than the LP UV and UVC LED sources. When considering electrical energy per order of reduction, the LP UV lamp was the most efficient for E. coli and MS2, and the MPUV and LPUV were equally efficient for HAdV2 and B. pumilus spores. Among the UVC LEDs, the 280 nm LED unit required the least energy per log reduction of E. coli and HAdV2. The 280 nm and 260|280 nm LED units were equally efficient per log reduction of B. pumilus spores, and the 260 nm LED unit required the lowest energy per order of reduction of MS2 coliphage. The combination of the 260 nm and 280 nm UV LED wavelengths was also evaluated for potential synergistic effects. No dual-wavelength synergy was detected for inactivation of

  18. Modeling marine oily wastewater treatment by a probabilistic agent-based approach.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Ye, Xudong

    2018-02-01

    This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Quantitative determination of a-Arbutin, ß-Arbutin, Kojic acid, nicotinamide, hydroquinone, resorcinol, 4-methoxyphenol, 4-ethoxyphenol and ascorbic acid from skin whitening Products by HPLC-UV

    USDA-ARS?s Scientific Manuscript database

    Development of an analytical method for the simultaneous determination of multifarious skin whitening agents will provide an efficient tool to analyze skin whitening cosmetics. An HPLC-UV method was developed for quantitative analysis of six commonly used whitening agents, a-arbutin, ß-arbutin, koji...

  20. Coordinated photomorphogenic UV-B signaling network captured by mathematical modeling.

    PubMed

    Ouyang, Xinhao; Huang, Xi; Jin, Xiao; Chen, Zheng; Yang, Panyu; Ge, Hao; Li, Shigui; Deng, Xing Wang

    2014-08-05

    Long-wavelength and low-fluence UV-B light is an informational signal known to induce photomorphogenic development in plants. Using the model plant Arabidopsis thaliana, a variety of factors involved in UV-B-specific signaling have been experimentally characterized over the past decade, including the UV-B light receptor UV resistance locus 8; the positive regulators constitutive photomorphogenesis 1 and elongated hypocotyl 5; and the negative regulators cullin4, repressor of UV-B photomorphogenesis 1 (RUP1), and RUP2. Individual genetic and molecular studies have revealed that these proteins function in either positive or negative regulatory capacities for the sufficient and balanced transduction of photomorphogenic UV-B signal. Less is known, however, regarding how these signaling events are systematically linked. In our study, we use a systems biology approach to investigate the dynamic behaviors and correlations of multiple signaling components involved in Arabidopsis UV-B-induced photomorphogenesis. We define a mathematical representation of photomorphogenic UV-B signaling at a temporal scale. Supplemented with experimental validation, our computational modeling demonstrates the functional interaction that occurs among different protein complexes in early and prolonged response to photomorphogenic UV-B.

  1. Modeling the natural UV irradiation and comparative UV measurements at Moussala BEO (BG)

    NASA Astrophysics Data System (ADS)

    Tyutyundzhiev, N.; Angelov, Ch; Lovchinov, K.; Nitchev, Hr; Petrov, M.; Arsov, T.

    2018-03-01

    Studies of and modeling the impact of natural UV irradiation on the human population are of significant importance for human activity and economics. The sharp increase of environmental problems – extraordinary temperature changes, solar irradiation abnormalities, icy rains – raises the question of developing novel means of assessing and predicting potential UV effects. In this paper, we discuss new UV irradiation modeling based on recent real-time measurements at Moussala Basic Environmental Observatory (BEO) on Moussala Peak (2925 m ASL) in Rila Mountain, Bulgaria, and highlight the development and initial validation of portable embedded devices for UV-A, UV-B monitoring using open-source software architecture, narrow bandpass UV sensors, and the popular Arduino controllers. Despite the high temporal resolution of the VIS and UV irradiation measurements, the results obtained reveal the need of new assumptions in order to minimize the discrepancy with available databases.

  2. Effects of UV radiation on phytoplankton

    NASA Astrophysics Data System (ADS)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    et al., 1986; Worrest, 1986; NOAA, 1987; Smith, 1989; Smith and Baker, 1989; Voytek, 1990; Häder, 1993; Acevedo and Nolan, 1993; Holm-Hansen et al., 1993; Vincent and Roy, 1993; Biggs and Joyner, 1994; Williamson and Zagarese, 1994; Karentz, 1994; Cullen and Neale, 1993; Cullen and Neale, 1994]. As Hader et al. have summarized [UNEP, 1989; UNEP, 1991], "UV-B radiation in aquatic systems: 1) affects adaptive strategies (e.g., motility, orientation); 2) impairs important physiological functions (e.g., photosynthesis and enzymatic reactions); and 3) threatens marine organisms during their developmental stages (e.g., the young of finfish, shrimp larvae, crab larvae)". Possible consequences to aquatic systems include: reduced biomass production; changes in species composition and biodiversity; and alterations of aquatic ecosystems and biogeochemical cycles associated with the above changes. Within the past four years, our knowledge with respect to the environmental effects of ozone-related increased levels of UV-B has increased significantly, and numerous efforts have been directed toward process-oriented studies of UV responses in plants and animals. Consensus is building toward the view that current levels of UV play a major role as an ecological determinant, influencing both survival and distribution, and are thus deserving of increased study independent of ozone-related UV-B increases. This review outlines U.S. research subsequent to 1991 and emphasizes studies concerned with phytoplankton.

  3. Transcriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magna.

    PubMed

    Giraudo, Maeva; Cottin, Guillaume; Esperanza, Marta; Gagnon, Pierre; Silva, Amila O De; Houde, Magali

    2017-12-01

    Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gp x ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by

  4. Response of biological uv dosimeters to the simulated extraterrestrial uv radiation

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Rontó, G.; Kerékgyártó, T.; Kovács, G.; Lammer, H.

    In the Laboratory polycrystalline uracil thin layer and bacteriophage T7 detectors have been developed for UV dosimetry on the EarthSs surface. Exponential response of the uracil polycrystal has been detected both by absorption spectroscopy and measurements of the refractive index under the influence of terrestrial solar radiation or using UV-C sources. In UV biological dosimetry the UV dose scale is additive starting at a value of zero according to the definition of CIE (Technical Report TC-6-18). The biological dose can be defined by a measured end-effect. In our dosimeters (phage T7 and uracil dosimeter) exposed to natural (terrestrial) UV radiation the proportion of pyrimidin photoproducts among the total photoproducts is smaller than 0.1 and the linear correlation between the biological and physical dose is higher than 0.9. According to the experimental data this linear relationship is often not valid. We observed that UV radiation did not only induce dimerisation but shorter wavelengths caused monomerisation of pyrimidin dimers. Performing the irradiation in oxygen free environment and using a Deuterium lamp as UV source, we could increase monomerisation against dimerisation thus the DNA-based dosimetrySs additivity rule is not fulfilled in these conditions. In this study we will demonstrate those non-linear experiments which constitute the basis of our biological experiments on the International Space Station.

  5. The effect of UV exposure and heat treatment on crystallization behavior of photosensitive glasses

    NASA Astrophysics Data System (ADS)

    Kıbrıslı, Orhan; Ersundu, Ali Erçin

    2018-05-01

    In this study, photosensitive glasses in the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, silver, tin, antimony) and halogenides (NaF and KBr) were synthesized through a conventional melt-quenching technique. The crystallization mechanism was investigated for solely heat-treated and UV-exposed + heat-treated samples using differential thermal analysis (DTA), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) techniques to understand the effect of UV exposure on crystallization behavior of photosensitive glasses. Accordingly, non-isothermal DTA measurements were performed at different heating rates to determine crystallization peak, T p, and onset, T c, temperatures. For solely heat-treated samples, the kinetic parameters such as the Avrami constant, n, and morphology index, m, were calculated as 1 from the Ozawa method indicating surface crystallization and the value of crystallization activation energy was calculated as 944 kJ/mol using modified Kissinger method. On the contrary, bulk crystallization was found to be predominant for UV exposed + heat-treated samples revealing that UV exposure is the primary cause of bulk crystallization in photosensitive glasses.

  6. Combined micro-Raman/UV-visible/fluorescence spectrometer for high-throughput analysis of microsamples.

    PubMed

    Noh, Jermim; Suh, Yung Doug; Park, Yong Ki; Jin, Seung Min; Kim, Soo Ho; Woo, Seong Ihl

    2007-07-01

    Combined micro-Raman/UV-visible (vis)/fluorescence spectroscopy system, which can evaluate an integrated array of more than 10,000 microsamples with a minimuma size of 5 microm within a few hours, has been developed for the first time. The array of microsamples is positioned on a computer-controlled XY translation microstage with a spatial resolution of 1 mum so that the spectra can be mapped with micron precision. Micro-Raman spectrometers have a high spectral resolution of about 2 cm(-1) over the wave number range of 150-3900 cm(-1), while UV-vis and fluorescence spectrometers have high spectral resolutions of 0.4 and 0.1 nm over the wavelength range of 190-900 nm, respectively. In particular, the signal-to-noise ratio of the micro-Raman spectroscopy has been improved by using a holographic Raman grating and a liquid-nitrogen-cooled charge-coupled device detector. The performance of the combined spectroscopy system has been demonstrated by the high-throughput screening of a combinatorial ferroelectric (i.e., BaTi(x)Zr(1-x)O(3)) library. This system makes possible the structure analysis of various materials including ferroelectrics, catalysts, phosphors, polymers, alloys, and so on for the development of novel materials and the ultrasensitive detection of trace amounts of pharmaceuticals and diagnostic agents.

  7. Construction of Nontoxic Polymeric UV-Absorber with Great Resistance to UV-Photoaging

    PubMed Central

    Huang, Zhong; Ding, Aishun; Guo, Hao; Lu, Guolin; Huang, Xiaoyu

    2016-01-01

    In this article, we developed a series of new nontoxic polymeric UV-absorbers through covalently attaching a benzophenone derivative onto the main chain of poly(vinyl chloride) (PVC) via mild and quantitative click chemistry. Azide groups were firstly introduced into the backbone of PVC via a nucleophilic reaction without affecting polymeric skeleton. Copper-catalyzed Husigen-Click cycloaddition reaction was performed between the pendant azide groups of PVC and alkynyl of (2-hydroxy-4-(prop-2-ynyloxy)phenyl)(phenyl)methanone at ambient temperature for affording the desired PVC-based UV-absorbers (PVC-UV) with different amounts of benzophenone moieties, which displayed great resistance to photoaging without degradation while exposed to UV irradiation. These polymeric UV-absorbers also showed good solubilities in common organic solvents and no cytotoxicity vs. HaCat cell. Small amounts of PVC-UV were homogeneously mixed with PVC as additive for stabilizing PVC against UV-photoaging without degradation and releasing small molecule even after 200 h while keeping thermal stability. This route of polymeric additive clearly paved an efficient way for solving the puzzle of separation of small molecule additive. PMID:27138547

  8. Comparison of Nitrilotriacetic Acid and [S,S]-Ethylenediamine-N,N'-disuccinic Acid in UV-Fenton for the Treatment of Oil Sands Process-Affected Water at Natural pH.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-10-04

    The application of UV-Fenton processes with two chelating agents, nitrilotriacetic acid (NTA) and [S,S]-ethylenediamine-N,N'-disuccinic acid ([S,S]-EDDS), for the treatment of oil sands process-affected water (OSPW) at natural pH was investigated. The half-wave potentials of Fe(III/II)NTA and Fe(III/II)EDDS and the UV photolysis of the complexes in Milli-Q water and OSPW were compared. Under optimum conditions, UV-NTA-Fenton exhibited higher efficiency than UV-EDDS-Fenton in the removal of acid extractable organic fraction (66.8% for the former and 50.0% for the latter) and aromatics (93.5% for the former and 74.2% for the latter). Naphthenic acids (NAs) removals in the UV-NTA-Fenton process (98.4%, 86.0%, and 81.0% for classical NAs, NAs + O (oxidized NAs with one additional oxygen atom), and NAs + 2O (oxidized NAs with two additional oxygen atoms), respectively) under the experimental conditions were much higher than those in the UV-H 2 O 2 (88.9%, 48.7%, and 54.6%, correspondingly) and NTA-Fenton (69.6%, 35.3%, and 44.2%, correspondingly) processes. Both UV-NTA-Fenton and UV-EDDS-Fenton processes presented promoting effect on the acute toxicity of OSPW toward Vibrio fischeri. No significant change of the NTA toxicity occurred during the photolysis of Fe(III)NTA; however, the acute toxicity of EDDS increased as the photolysis of Fe(III)EDDS proceeded. NTA is a much better agent than EDDS for the application of UV-Fenton process in the treatment of OSPW.

  9. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  10. Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device.

    PubMed

    Boyce, John M; Farrel, Patricia A; Towle, Dana; Fekieta, Renee; Aniskiewicz, Michael

    2016-06-01

    OBJECTIVE To evaluate ultraviolet C (UV-C) irradiance, UV-C dosage, and antimicrobial effect achieved by a mobile continuous UV-C device. DESIGN Prospective observational study. METHODS We used 6 UV light sensors to determine UV-C irradiance (W/cm2) and UV-C dosage (µWsec/cm2) at various distances from and orientations relative to the UV-C device during 5-minute and 15-minute cycles in an ICU room and a surgical ward room. In both rooms, stainless-steel disks inoculated with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores were placed next to sensors, and UV-C dosages and log10 reductions of target organisms achieved during 5-minute and 15-minute cycles were determined. Mean irradiance and dosage readings were compared using ANOVA. RESULTS Mean UV-C irradiance was nearly 1.0E-03 W/cm2 in direct sight at a distance of 1.3 m (4 ft) from the device but was 1.12E-05 W/cm2 on a horizontal surface in a shaded area 3.3 m (10 ft) from the device (P4 to 1-3 for MRSA, >4 to 1-2 for VRE and >4 to 0 log10 for C. difficile spores, depending on the distance from, and orientation relative to, the device with 5-minute and 15-minute cycles. CONCLUSION UV-C irradiance, dosage, and antimicrobial effect received from a mobile UV-C device varied substantially based on location in a room relative to the UV-C device. Infect Control Hosp Epidemiol 2016;37:667-672.

  11. Pigmentation after single and multiple UV-exposures depending on UV-spectrum.

    PubMed

    Ravnbak, M H; Wulf, H C

    2007-04-01

    Minimal pigmentation dose (MMD) after a single UV-exposure is well investigated. Whereas only few studies have established MMD after multiple UV-exposures and mainly in fair-skinned persons. The purpose of this study was to establish MMD 1 week after, respectively, one and five UV-exposures in volunteers with a large variation in constitutive pigmentation. A total of 52 volunteers (skin Types II-V) had skin pigmentation quantified by reflectance spectroscopy. They were UV-exposed on the back for 1 and 5 days using a Solar Simulator, narrowband UVB, broadband UVA and UVA1. For all sources a higher dose was needed the more pigmented the skin, except for UVA1. After one UV-exposure, we found a significant positive linear correlation between UV-dose to one MMD, skin type and pre-exposure skin pigmentation. After five UV-exposures the positive linear correlation between UV-dose and MMD and skin type was only significant for narrow band UVB, pre-exposure skin pigmentation was significant also for Solar Simulator. For UVA and particularly UVA1 the MMD was independent of pre-exposure pigmentation. The number of SED to MMD is therefore almost the same for very fair-skinned and dark-skinned persons. Pre-exposure pigmentation was clearly more predictive of MMD than skin type. 50% of MMD equals a pigmentation increase of 1%. The shorter the wavelengths the higher the SED to produce MMD. Solar was the least melanogenic and UVA1 the most melanogenic. For the UVB-sources a higher dose was needed the more pigmented the skin. For UVA the MMD was independent of pre-exposure pigmentation.

  12. The UVR8 UV-B Photoreceptor: Perception, Signaling and Response

    PubMed Central

    Tilbrook, Kimberley; Arongaus, Adriana B.; Binkert, Melanie; Heijde, Marc; Yin, Ruohe; Ulm, Roman

    2013-01-01

    Ultraviolet-B radiation (UV-B) is an intrinsic part of sunlight that is accompanied by significant biological effects. Plants are able to perceive UV-B using the UV-B photoreceptor UVR8 which is linked to a specific molecular signaling pathway and leads to UV-B acclimation. Herein we review the biological process in plants from initial UV-B perception and signal transduction through to the known UV-B responses that promote survival in sunlight. The UVR8 UV-B photoreceptor exists as a homodimer that instantly monomerises upon UV-B absorption via specific intrinsic tryptophans which act as UV-B chromophores. The UVR8 monomer interacts with COP1, an E3 ubiquitin ligase, initiating a molecular signaling pathway that leads to gene expression changes. This signaling output leads to UVR8-dependent responses including UV-B-induced photomorphogenesis and the accumulation of UV-B-absorbing flavonols. Negative feedback regulation of the pathway is provided by the WD40-repeat proteins RUP1 and RUP2, which facilitate UVR8 redimerization, disrupting the UVR8-COP1 interaction. Despite rapid advancements in the field of recent years, further components of UVR8 UV-B signaling are constantly emerging, and the precise interplay of these and the established players UVR8, COP1, RUP1, RUP2 and HY5 needs to be defined. UVR8 UV-B signaling represents our further understanding of how plants are able to sense their light environment and adjust their growth accordingly. PMID:23864838

  13. Comparisons Between Ground Measurements of Broadband UV Irradiance (300-380 nm) and TOMS UV Estimates at Moscow for 1979-2000

    NASA Technical Reports Server (NTRS)

    Yurova, Alla Y.; Krotkov, Nicholay A.; Herman, Jay R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We show the comparisons between ground-based measurements of spectrally integrated (300 nm to 380 nm) ultraviolet (UV) irradiance with satellite estimates from the Total Ozone Mapping Spectrometer (TOMS) total ozone and reflectivity data for the whole period of TOMS measurements (1979-2000) over the Meteorological Observatory of Moscow State University (MO MSU), Moscow, Russia. Several aspects of the comparisons are analyzed, including effects of cloudiness, aerosol, and snow cover. Special emphasis is given to the effect of different spatial and temporal averaging of ground-based data when comparing with low-resolution satellite measurements (TOMS footprint area 50-200 sq km). The comparisons in cloudless scenes with different aerosol loading have revealed TOMS irradiance overestimates from +5% to +20%. A-posteriori correction of the TOMS data accounting for boundary layer aerosol absorption (single scattering albedo of 0.92) eliminates the bias for cloud-free conditions. The single scattering albedo was independently verified using CIMEL sun and sky-radiance measurements at MO MSU in September 2001. The mean relative difference between TOMS UV estimates and ground UV measurements mainly lies within 1 10% for both snow-free and snow period with a tendency to TOMS overestimation in snow-free period especially at overcast conditions when the positive bias reaches 15-17%. The analysis of interannual UV variations shows quite similar behavior for both TOMS and ground measurements (correlation coefficient r=0.8). No long-term trend in the annual mean bias was found for both clear-sky and all-sky conditions with snow and without snow. Both TOMS and ground data show positive trend in UV irradiance between 1979 and 2000. The UV trend is attributed to decreases in both cloudiness and aerosol optical thickness during the late 1990's over Moscow region. However, if the analyzed period is extended to include pre-TOMS era (1968-2000 period), no trend in ground UV irradiance is

  14. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer

    PubMed Central

    Damiani, Elisabetta; Ullrich, Stephen E.

    2016-01-01

    Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. PMID:27073146

  15. Solar UV irradiation conditions on the surface of Mars.

    PubMed

    Rontó, Györgyi; Bérces, Attila; Lammer, Helmut; Cockell, Charles S; Molina-Cuberos, Gregorio J; Patel, Manish R; Selsis, Franck

    2003-01-01

    The UV radiation environment on planetary surfaces and within atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is a driving force of chemical and organic evolution and serves also as a constraint in biological evolution. In this work we modeled the transmission of present and early solar UV radiation from 200 to 400 nm through the present-day and early (3.5 Gyr ago) Martian atmosphere for a variety of possible cases, including dust loading, observed and modeled O3 concentrations. The UV stress on microorganisms and/or molecules essential for life was estimated by using DNA damaging effects (specifically bacteriophage T7 killing and uracil dimerization) for various irradiation conditions on the present and ancient Martian surface. Our study suggests that the UV irradiance on the early Martian surface 3.5 Gyr ago may have been comparable with that of present-day Earth, and though the current Martian UV environment is still quite severe from a biological viewpoint, we show that substantial protection can still be afforded under dust and ice.

  16. Standardization of UV LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Larason, T. C.; Yoon, H. W.

    2015-09-01

    Traditionally used source spectral-distribution or detector spectral-response based standards cannot be applied for accurate UV LED measurements. Since the CIE standardized rectangular-shape spectral response function for UV measurements cannot be realized with small spectral mismatch when using filtered detectors, the UV measurement errors can be several times ten percent or larger. The UV LEDs produce broadband radiation and both their peaks or spectral bandwidths can change significantly. The detectors used for the measurement of these LEDs also have different spectral bandwidths. In the discussed example, where LEDs with 365 nm peak are applied for fluorescent crack-recognition using liquid penetrant (non-destructive) inspection, the broadband radiometric LED (signal) measurement procedure is standardized. A UV LED irradiance-source was calibrated against an FEL lamp standard to determine its spectral irradiance. The spectral irradiance responsivity of a reference UV meter was also calibrated. The output signal of the reference UV meter was calculated from the spectral irradiance of the UV source and the spectral irradiance responsivity of the reference UV meter. From the output signal, both the integrated irradiance (in the reference plane of the reference meter) and the integrated responsivity of the reference meter were determined. Test UV meters calibrated for integrated responsivity against the reference UV meter, can be used to determine the integrated irradiance from a field UV source. The obtained 5 % (k=2) measurement uncertainty can be decreased when meters with spectral response close to a constant value are selected.

  17. UV light and urban pollution: bad cocktail for mosquitoes?

    PubMed

    Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud'homme, Sophie M; Régent-Kloeckner, Myriam; Raveton, Muriel; Reynaud, Stéphane

    2014-01-01

    Mosquito breeding sites consist of water pools, which can either be large open areas or highly covered ponds with vegetation, thus with different light exposures combined with the presence in water of xenobiotics including polycyclic aromatic hydrocarbons (PAHs) generated by urban pollution. UV light and PAHs are abiotic factors known to both affect the mosquito insecticide resistance status. Nonetheless, their potential combined effects on the mosquito physiology have never been investigated. The present article aims at describing the effects of UV exposure alongside water contamination with two major PAH pollutants (fluoranthene and benzo[a]pyrene) on a laboratory population of the yellow fever mosquito Aedes aegypti. To evaluate the effects of PAH exposure and low energetic UV (UV-A) irradiation on mosquitoes, different parameters were measured including: (1) The PAH localization and its impact on cell mortality by fluorescent microscopy; (2) The detoxification capacities (cytochrome P450, glutathione-S-transferase, esterase); (3) The responses to oxidative stress (Reactive Oxygen Species-ROS) and (4) The tolerance of mosquito larvae to a bioinsecticide (Bacillus thuringiensis subsp. israelensis-Bti) and to five chemical insecticides (DDT, imidacloprid, permethrin, propoxur and temephos). Contrasting effects regarding mosquito cell mortality, detoxification and oxidative stress were observed as being dependent on the pollutant considered, despite the fact that the two PAHs belong to the same family. Moreover, UV is able to modify pollutant effects on mosquitoes, including tolerance to three insecticides (imidacloprid, propoxur and temephos), cell damage and response to oxidative stress. Taken together, our results suggest that UV and pollution, individually or in combination, are abiotic parameters that can affect the physiology and insecticide tolerance of mosquitoes; but the complexity of their direct effect and of their interaction will require further

  18. Controlling Legionella and Pseudomonas aeruginosa re-growth in therapeutic spas: implementation of physical disinfection treatments, including UV/ultrafiltration, in a respiratory hydrotherapy system.

    PubMed

    Leoni, E; Sanna, T; Zanetti, F; Dallolio, L

    2015-12-01

    The study aimed to assess the efficacy of an integrated water safety plan (WSP) in controlling Legionella re-growth in a respiratory hydrotherapy system located in a spa centre, supplied with sulphurous water, which was initially colonized by Legionella pneumophila. Heterotrophic plate counts, Pseudomonas aeruginosa, Legionella spp. were detected in water samples taken 6-monthly from the hydrotherapy equipment (main circuit, entry to benches, final outlets). On the basis of the results obtained by the continuous monitoring and the changes in conditions, the original WSP, including physical treatments of water and waterlines, environmental surveillance and microbiological monitoring, was integrated introducing a UV/ultrafiltration system. The integrated treatment applied to the sulphurous water (microfiltration/UV irradiation/ultrafiltration), waterlines (superheated stream) and distal outlets (descaling/disinfection of nebulizers and nasal irrigators), ensured the removal of Legionella spp. and P. aeruginosa and a satisfactory microbiological quality over time. The environmental surveillance was successful in evaluating the hazard and identifying the most suitable preventive strategies to avoid Legionella re-growth. Ultrafiltration is a technology to take into account in the control of microbial contamination of therapeutic spas, since it does not modify the chemical composition of the water, thus allowing it to retain its therapeutic properties.

  19. Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes

    NASA Astrophysics Data System (ADS)

    Blumthaler, M.; Ambach, W.; Rehwald, W.

    1992-03-01

    Daily totals of UV-A and UV-B radiation fluxes and global radiation were measured since 1981 at Jungfraujoch (3576 m) a.s.l.) and in Innsbruck (577 m a.s.l.) in their seasonal course. The altitude effect of annual totals yields 19%/1000 m (UV-B), 11%/1000 m (UV-A) and 9%/1000 m (global radiation) with reference to Innsbruck station. The ratio of the daily totals of UV-B/global radiation shows a significant seasonal course with the maximum in summer, whereas the ratio of the daily totals of UV-A/global radiation shows no significant seasonal variation. The biological effective doses of erythema reaction, delayed tanning and immediate tanning by UV-A and UV-B radiant exposure are reported in the seasonal course at Jungfraujoch and in Innsbruck.

  20. Degradation of acrylamide by the UV/chlorine advanced oxidation process.

    PubMed

    Gao, Ze-Chen; Lin, Yi-Li; Xu, Bin; Pan, Yang; Xia, Sheng-Ji; Gao, Nai-Yun; Zhang, Tian-Yang; Chen, Ming

    2017-11-01

    The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 10 9  M -1  s -1 . The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The impact of solar UV radiation on the early biosphere

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation

  2. Comparison of classical fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2 for the degradation of cyclohexanoic acid.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2017-05-01

    The treatment of a naphthenic acid model compound, cyclohexanoic acid, with classical Fenton, UV-H 2 O 2 , UV-Fenton, nitrilotriacetic acid (NTA)-Fenton, UV-NTA-Fenton, and UV photolysis of Fe-NTA processes at pHs 3 and 8 was investigated. At 1.47 mM H 2 O 2 , 0.089 mM Fe, and 0.18 mM NTA, the UV-NTA-Fenton process at pH 3 exhibited the highest H 2 O 2 decomposition (100% in 25 min), CHA removal (100% in 12 min) with a rate constant of 0.27 ± 0.025 min -1 , and NTA degradation (100% in 6 min). Due to the formation of H 2 O 2 -Fe(III)NTA adduct, the total Fe concentration in the UV-NTA-Fenton system (0.063 mM at the end of the reaction) at pH 8 was much higher than that in the UV photolysis of Fe(III)NTA process (0.024 mM). The co-complexing effect of borate buffer helped to keep iron soluble; however, it imposed a negative influence on the CHA degradation in the UV-NTA-Fenton process (68% CHA removal in 60 min in the borate buffer compared to 92% in MilliQ water). The results demonstrated that the most efficient process for the CHA degradation under the experimental conditions was the UV-NTA-Fenton process at pH 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. UV Disinfection of Wastewater and Combined Sewer Overflows.

    PubMed

    Gibson, John; Drake, Jennifer; Karney, Bryan

    2017-01-01

    Municipal wastewater contains bacteria, viruses, and other pathogens that adversely affect the environment, human health, and economic activity. One way to mitigate these effects is a final disinfection step using ultraviolet light (UVL). The advantages of UVL disinfection, when compared to the more traditional chlorine, include no chlorinated by-products, no chemical residual, and relatively compact size. The design of most UV reactors is complex. It involves lamp selection, power supply design, optics, and hydraulics. In general, medium pressure lamps are more compact, powerful, and emit over a wider range of light than the more traditional low pressure lamps. Low pressure lamps, however, may be electrically more efficient. In UV disinfection, the fraction of surviving organisms (e.g. E. coli) will decrease exponentially with increasing UV dose. However, the level of disinfection that can be achieved is often limited by particle-associated organisms. Efforts to remove or reduce the effects of wastewater particles will often improve UV disinfection effectiveness. Regrowth, photoreactivation, or dark repair after UV exposure are sometimes cited as disadvantages of UV disinfection. Research is continuing in this area, however there is little evidence that human pathogens can photoreactivate in environmental conditions, at doses used in wastewater treatment. The UV disinfection of combined sewer overflows, a form of wet weather pollution, is challenging and remains largely at the research phase. Pre-treatment of combined sewer overflows (CSOs) with a cationic polymer to induce fast settling, and a low dose of alum to increase UV transmittance, has shown promise at the bench scale.

  4. Radiation damage of all-silica fibers in the UV region

    NASA Astrophysics Data System (ADS)

    Gombert, Joerg; Ziegler, M.; Assmus, J.; Klein, Karl-Friedrich; Nelson, Gary W.; Clarkin, James P.; Pross, H.; Kiefer, J.

    1999-04-01

    Since several years, UVI-fibers having higher solarization- resistance are well known stimulating new fiber-optic applications in the UV-region below 250 nm. Besides the description of the improved transmission properties of UV- light from different UV-sources, the mechanisms of improvement have been discussed in detail. The UV-defects, mainly the E'- center with the UV-absorption band around 215 nm, were passivated by using hydrogen-doping. Besides DUV-light, ionizing radiation like Gamma-radiation or X-rays can create similar defects in the UV-region. In the past, the radiation- damage in the UV-region was studied on silica bulk samples: again, E'-centers were generated. Up to now, no UV- transmission through a 1 m long fiber during or after Gamma- radiation had been observed. However, the hydrogen in the UVI- fibers behaves the same for Gamma-irradiation, leading to a passivation of the radiation-induced defects and an improved transmission in the UV-C region below 250 nm. On this report, the influence of total dose and fiber diameter on the UV- damage after irradiation will be described and discussed. In addition, we will include annealing studies, with and without UV-light. Based on our results, the standard process of Gamma- sterilization with a total dose of approx. 2 Mrad can be used for UVI-fibers resulting in a good UV-transmission below 320 nm. Excimer-laser light at 308 nm (XeCl) and 248 nm (KrF) and deuterium-lamp light with the full spectrum starting at 200 nm can also be transmitted.

  5. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    PubMed

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Solar UV variability

    NASA Technical Reports Server (NTRS)

    Donnelly, Richard F.

    1989-01-01

    Measurements from the Solar Backscatter Ultraviolet (SBUV) provide solar UV flux in the 160 to 400 nm wavelength range, backed up by independent measurement in the 115 to 305 nm range from the Solar Mesosphere Explorer (SME). The full disc UV flux from spatially resolved measurements of solar activity was modeled, which provides a better understanding of why the UV variations have their observed temporal and wavelength dependencies. Long term, intermediate term, and short term variations are briefly examined.

  7. Immobilized WO3 nanoparticles on graphene oxide as a photo-induced antibacterial agent against UV-resistant Bacillus pumilus

    NASA Astrophysics Data System (ADS)

    Hosseini, Farshad; Rasuli, Reza; Jafarian, Vahab

    2018-04-01

    We present the antibacterial and photo-catalytic activity of immobilized WO3 nanoparticles on graphene oxide sheets. WO3 nanoparticles were immobilized on graphene oxide using the arc discharge method in arc currents of 5, 20, 40 and 60 A. Tauc plots of the UV-visible spectra show that the band gap of the prepared samples decreases (to ~2.7 eV) with respect to the WO3 nanoparticles. Photo-catalytic activity was examined by the degradation of rhodamine B under ultra-violet irradiation and the results show that the photo-catalytic activity of WO3 nanoparticles is increased by immobilizing them on graphene oxide sheets. In addition, the photo-degradation yield of the samples prepared by the 5 A arc current is 84% in 120 min, which is more than that of the other samples. The antibacterial activity of the prepared samples was studied against Bacillus pumilus (B. pumilus) bacteria, showing high resistance to ultra-violet exposure. Our results show that the bare and immobilized WO3 nanoparticles become more active under UV irradiation and their antibacterial properties are comparable with Ag nanoparticles. Besides this, the results show that although the photo-catalytic activity of the post-annealed samples at 500 °C is less than the as-prepared samples, it is, however, more active against B. pumilus bacteria under UV irradiation.

  8. Investigation of UV photocurable microcapsule inner crosslink extent

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Meng, Shuangshuang; Lai, Weidong; Yu, Haiyang; Fu, Guangsheng

    2008-11-01

    UV photocuring technology has encountered increased applications in recent years, which finds a variety of applications on protective coating of the optical-fiber, ink and optical recording materials. Combined with techniques of photohardenable, microcapsule, heat-sensitive and interface-polymerization method, a novel photoheat sensitive recording material of non-silver salt is explored in this thesis. Microcapsules are particulate substance with a core and shell structure, where photopolymerizable composition, monofunctional/polyfunctional diluents, photopolymerization initiator, photosensitivity enhancing agent and dye precursor are encapsulated as the internal phase. In this paper introduced the characteristics and curing mechanism of photo-sensitive microcapsule materials. The photocuring process may be a complex-function with photopolymerizable compound and photopolymerization initiator. For the sake of high photocuring speed and degree, optimal photo-sensitive materials were selected. In order to match with the light source excitation wavelength and absorb more wider ultraviolet band, combined type of photo-polymerization initiators were employed. With the kinds and dosage of photopolymerization initiator changing, the photocuring speed and quality can be ameliorated. Through studying the UV-visible absorption spectrum and infra-red spectrum of the material , the optical response property of the inner compound can be obtained.

  9. Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs

    NASA Astrophysics Data System (ADS)

    Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko

    2009-02-01

    Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.

  10. An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation.

    PubMed

    Bianchini, Roberto; Calucci, Lucia; Caretti, Cecilia; Lubello, Claudio; Pinzino, Calogero; Piscicelli, Michela

    2002-09-01

    EPR spectroscopy was applied to obtain qualitative and quantitative information on the radicals produced in disinfection processes of wastewater for agricultural reuse. The DEPMPO spin trap was employed to detect hydroxyl and carbon-centered short living radicals in two different peracetic acid solutions and a hydrogen peroxide solution used for water disinfection either in the absence or in the presence of UV-C irradiation. Moreover, three different kinds of water (wastewater, demineralized water, distilled water) were analysed in order to assess the contribution of Fenton reactions to the radical production. The spectroscopic results were discussed in relation to the efficiency of the different oxidizing agents and UV irradiation in wastewater disinfection evaluated as Escherichia Coli, Faecal and Total Coliforms inactivation.

  11. Airborne pipeline leak detection: UV or IR?

    NASA Astrophysics Data System (ADS)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  12. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  13. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-06-21

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

  14. Comparative investigation of X-ray contrast medium degradation by UV/chlorine and UV/H2O2.

    PubMed

    Kong, Xiujuan; Jiang, Jin; Ma, Jun; Yang, Yi; Pang, Suyan

    2018-02-01

    The degradation of iopamidol and diatrizoate sodium (DTZ) by UV/chlorine was carried out according to efficiency, mechanism, and oxidation products, and compared to that by UV/H 2 O 2 . The pseudo-first order rate (k') of iopamidol and DTZ was accelerated by UV/chlorine compared to that by UV and chlorine alone. k' of iopamidol and DTZ by UV/chlorine increased with increasing chlorine dosage. Both of iopamidol and DTZ could not be effectively removed by UV/H 2 O 2 compared to that by UV/chlorine. Secondary radicals (Cl 2 - and ClO) rather than primary radicals (HO and Cl) were demonstrated to be mainly responsible for the enhanced removal of iopamidol and DTZ by UV/chlorine. The oxidation products of iopamidol and DTZ resulting from UV/chlorine and UV/H 2 O 2 process were identified, and differences existed in the two systems. IO 3 - (the desired sink of I - ) was the major inorganic product in the UV/chlorine process whereas I - was the predominant inorganic product in the UV/H 2 O 2 process. The formation of chlorine-containing products during the degradation of iopamidol and DTZ by UV/chlorine was also observed. H-abstraction, additions, de-iodination were shared during the degradation of iopamidol by UV/chlorine and UV/H 2 O 2 . Neutral pH condition was preferred for the removal of iopamidol and DTZ by UV/chlorine. UV/chlorine could also be applied in real waters for the removal of iopamidol and DTZ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Roles of Salmonella typhimurium umuDC and samAB in UV mutagenesis and UV sensitivity.

    PubMed Central

    Nohmi, T; Yamada, M; Watanabe, M; Murayama, S Y; Sofuni, T

    1992-01-01

    Expression of the umuDC operon is required for UV mutagenesis and most chemical mutagenesis in Escherichia coli. The closely related species Salmonella typhimurium has two sets of umuDC-like operons; the samAB operon is located in a 60-MDa cryptic plasmid, while the S. typhimurium umuDC (umuDCST) operon resides in a chromosome. The roles of these two umuDC-like operons in UV mutagenesis and UV sensitivity of S. typhimurium were investigated. A pBR322-derived plasmid carrying the samAB operon more efficiently restored UV mutability to a umuD44 strain and a umuC122::Tn5 strain of E. coli than a plasmid carrying the umuDCST operon did. When the umuDCST operon was specifically deleted from the chromosome of S. typhimurium TA2659, the resulting strain was not UV mutable and was more sensitive to the killing effect of UV irradiation than the parent strain was. Curing of the 60-MDa cryptic plasmid carrying the samAB operon did not influence the UV mutability of strain TA2659 but did increase its resistance to UV killing. A pSC101-derived plasmid carrying the samAB operon did not restore UV mutability to a umuD44 strain of E. coli, whereas pBR322- or pBluescript-derived plasmids carrying the samAB operon efficiently did restore UV mutability. We concluded that the umuDCST operon plays a major role in UV mutagenesis in S. typhimurium and that the ability of the samAB operon to promote UV mutagenesis is strongly affected by gene dosage. Possible reasons for the poor ability of samAB to promote UV mutagenesis when it is present on low-copy-number plasmids are discussed. Images PMID:1400244

  16. UV water disinfector

    DOEpatents

    Gadgil, Ashok; Garud, Vikas

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system, and an air-suspended bare UV lamp. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir.

  17. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    NASA Astrophysics Data System (ADS)

    Bogdan, Janusz; Zarzyńska, Joanna; Pławińska-Czarnak, Joanna

    2015-08-01

    Nanotechnology contributes towards a more effective eradication of pathogens that have emerged in hospitals, veterinary clinics, and food processing plants and that are resistant to traditional drugs or disinfectants. Since new methods of pathogens eradication must be invented and implemented, nanotechnology seems to have become the response to that acute need. A remarkable achievement in this field of science was the creation of self-disinfecting surfaces that base on advanced oxidation processes (AOPs). Thus, the phenomenon of photocatalysis was practically applied. Among the AOPs that have been most studied in respect of their ability to eradicate viruses, prions, bacteria, yeasts, and molds, there are the processes of TiO2/UV and ZnO/UV. Titanium dioxide (TiO2) and zinc oxide (ZnO) act as photocatalysts, after they have been powdered to nanoparticles. Ultraviolet (UV) radiation is an agent that determines their excitation. Methods using photocatalytic properties of nanosized TiO2 and ZnO prove to be highly efficient in inactivation of infectious agents. Therefore, they are being applied on a growing scale. AOP-based disinfection is regarded as a very promising tool that might help overcome problems in food hygiene and public health protection. The susceptibility of infectious agents to photocatalylic processes can be generally arranged in the following order: viruses > prions > Gram-negative bacteria > Gram-positive bacteria > yeasts > molds.

  18. Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products.

    PubMed

    Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Xu, Zi-Bin; Lee, Min-Yong; Hu, Hong-Ying

    2018-05-15

    UV based advanced oxidation processes (UV-AOPs) that efficiently eliminate organic pollutants during water treatment have been the subject of numerous investigations. Most organic pollutants are not completely mineralized during UV-AOPs but are partially oxidized into transformation products (TPs), thereby adding complexity to the treated water and posing risks to humans, ecological systems, and the environment. While the degradation kinetics and mechanisms of pollutants have been widely documented, there is little information about the risks associated with TPs. In this review, we have collated recent knowledge about the harmful TPs that are generated in UV/H 2 O 2 and UV photocatalysis, two UV-AOPs that have been studied extensively. Toxic and assimilable TPs were ubiquitously observed in more than 80% of UV-AOPs of organic pollutants, of which the toxicity and assimilability levels changed with variations in the reaction conditions, such as the UV fluence and oxidant dosage. Previous studies and modeling assessments showed that toxic and assimilable TPs may be generated during hydroxylation, dealkylation, decarboxylation, and deamination. Among various reactions, TPs generated from dealkylation and decarboxylation were generally less and more toxic than the parent pollutants, respectively; TPs generated from decarboxylation and deamination were generally less and more assimilable than the parent pollutants, respectively. There is also potential concern about the sensory-unpleasant TPs generated by oxidations and subsequent metabolism of microorganisms. In this overview, we stress the need to include both the concentrations of organic pollutants and the evaluations of the risks from TPs for the quality assessments of the water treated by UV-AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The influence of UV radiation on protistan evolution

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1999-01-01

    Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.

  20. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    PubMed Central

    Nikafshar, Saeid; Zabihi, Omid; Ahmadi, Mojtaba; Mirmohseni, Abdolreza; Taseidifar, Mojtaba; Naebe, Minoo

    2017-01-01

    Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV) damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR) analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM) imaging. Additionally, the glass transition temperatures (Tg) before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light. PMID:28772538

  1. Dual-wavelength recording, a simple algorithm to eliminate interferences due to UV-absorbing substances in capillary electrophoresis.

    PubMed

    Seaux, Liesbeth; Van Houcke, Sofie; Dumoulin, Els; Fiers, Tom; Lecocq, Elke; Delanghe, Joris R

    2014-08-01

    Analytical interferences have been described due to the presence of various exogenous UV-absorbing substances in serum. Iodine-based X-ray contrast agents and various antibiotics have been reported to interfere with interpretation of serum protein pherograms, resulting in false diagnosis of paraproteinemia. In the present study, we have explored the possibility of measuring UV absorbance at two distinct wavelengths (210 and 246 nm) to distinguish between true and false paraproteins on a Helena V8 clinical electrophoresis instrument. This study demonstrates that most substances potentially interfering with serum protein electrophoresis show UV-absorption spectra that are distinct from those of serum proteins. Scanning at 246 nm allows detection of all described interfering agents. Comparing pherograms recorded at both wavelengths (210 and 246 nm) enables to distinguish paraproteins from UV-absorbing substances. In case of a true paraprotein, the peak with an electrophoretic mobility in the gamma-region decreases, whereas the X-ray contrast media and antibiotics show an increased absorption when compared to the basic setting (210 nm). The finding of iodine-containing contrast media interfering with serum protein electrophoresis is not uncommon. In a clinical series, interference induced by contrast media was reported in 54 cases (of 13 237 analyses), corresponding with a prevalence of 0.4%. In the same series, 1631 true paraproteins (12.3%) were detected. Implementation of the proposed algorithm may significantly improve the interpretation of routine electrophoresis results. However, attention should still be paid to possible interference due to presence of atypical proteins fractions (e.g., tumor markers, C3). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polyhydroxylated fatty alcohols derived from avocado suppress inflammatory response and provide non-sunscreen protection against UV-induced damage in skin cells.

    PubMed

    Rosenblat, Gennady; Meretski, Shai; Segal, Joseph; Tarshis, Mark; Schroeder, Avi; Zanin-Zhorov, Alexandra; Lion, Gilead; Ingber, Arieh; Hochberg, Malka

    2011-05-01

    Exposing skin to ultraviolet (UV) radiation contributes to photoaging and to the development of skin cancer by DNA lesions and triggering inflammatory and other harmful cellular cascades. The present study tested the ability of unique lipid molecules, polyhydroxylated fatty alcohols (PFA), extracted from avocado, to reduce UVB-induced damage and inflammation in skin. Introducing PFA to keratinocytes prior to their exposure to UVB exerted a protective effect, increasing cell viability, decreasing the secretion of IL-6 and PGE(2), and enhancing DNA repair. In human skin explants, treating with PFA reduced significantly UV-induced cellular damage. These results support the idea that PFA can play an important role as a photo-protective agent in UV-induced skin damage.

  3. Influence of uvA on the erythematogenic and therapeutic effects of uvB irradiation in psoriasis; photoaugmentation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, J.; Schothorst, A.A.; Suurmond, D.

    1981-01-01

    The effect of repeated exposure to an additive dose of long ultraviolet (uvA) radiation on the erythemogenic and therapeutic effects of middle ultraviolet (uvB) irradiation was investigated in 8 patients with psoriasis. The surface of the backs of these patients was divided into 2 parts, 1 of which received only uvB irradiation 4 times a week and the other uvA + uvB. uvB was provided by Philips TL-12 lamps and uvA by glass-filtered Philips TL-09 lamps. uvA was held constantly at 10 J/cm2, whereas uvB alone were evaluated by 4 tests during the treatment to determine the minimal erythema dosemore » (MED). Test I (at the start of the therapy) showed a photoaugmentative effect which was no longer apparent in Test III (third week). Test III showed a reversal of the ratios of the MEDs of the sites irradiated with the uvA + uvB and uvB (MED A + B/MED B). This is ascribed to the marked pigmentation which appeared after repeated irradiation with the uvA + uvB combination. Comparison showed for the improvement of the psoriasis no distinct differences between uvA + uvB irradiation and uvB alone, but the former had the cosmetic advantage of giving pleasing tan.« less

  4. A C. elegans homolog for the UV-hypersensitivity syndrome disease gene UVSSA.

    PubMed

    Babu, Vipin; Schumacher, Björn

    2016-05-01

    The transcription-coupled repair pathway (TC-NER) plays a vital role in removing transcription-blocking DNA lesions, particularly UV-induced damage. Clinical symptoms of the two TC-NER-deficiency syndromes, Cockayne syndrome (CS) and UV-hypersensitivity syndrome (UVSS) are dissimilar and the underlying molecular mechanism causing this difference in disease pathology is not yet clearly understood. UV-stimulated scaffold protein A (UVSSA) has been identified recently as a new causal gene for UVSS. Here we describe a functional homolog of the human UVSSA gene in the nematode Caenorhabditis elegans, uvs-1 (UVSSA-like-1). Mutations in uvs-1 render the animals hypersensitive to UV-B irradiation and transcription-blocking lesion-inducing illudin-M, similar to mutations in TC-NER deficient mutants. Moreover, we demonstrate that TC-NER factors including UVS-1 are required for the survival of the adult animals after UV-treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. UV holographic filters

    NASA Astrophysics Data System (ADS)

    Kalyashova, Zoya N.

    2017-11-01

    A new approach to UV holographic filter's manufacturing, when the filters are the volume reflection holograms, working in UV region in the second Bragg diffraction order, is offered. The method is experimentally realized for wavelength of 266 nm.

  6. Validation of an Innovative Satellite-Based UV Dosimeter

    NASA Astrophysics Data System (ADS)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  7. Challenges of UV light processing of low UVT foods and beverages

    NASA Astrophysics Data System (ADS)

    Koutchma, Tatiana

    2010-08-01

    Ultraviolet (UV) technology holds promise as a low cost non-thermal alternative to heat pasteurization of liquid foods and beverages. However, its application for foods is still limited due to low UV transmittance (LUVT). LUVT foods have a diverse range of chemical (pH, Brix, Aw), physical (density and viscosity) and optical properties (absorbance and scattering) that are critical for systems and process designs. The commercially available UV sources tested for foods include low and medium pressure mercury lamps (LPM and MPM), excimer and pulsed lamps (PUV). The LPM and excimer lamps are monochromatic sources whereas emission of MPM and PUV is polychromatic. The optimized design of UV-systems and UV-sources with parameters that match to specific product spectra have a potential to make UV treatments of LUVT foods more effective and will serve its further commercialization. In order to select UV source for specific food application, processing effects on nutritional, quality, sensorial and safety markers have to be evaluated. This paper will review current status of UV technology for food processing along with regulatory requirements. Discussion of approaches and results of measurements of chemico-physical and optical properties of various foods (fresh juices, milk, liquid whey proteins and sweeteners) that are critical for UV process and systems design will follow. Available UV sources did not prove totally effective either resulting in low microbial reduction or UV over-dosing of the product thereby leading to sensory changes. Beam shaping of UV light presents new opportunities to improve dosage uniformity and delivery of UV photons in LUVT foods.

  8. Catalogue of UV sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Beitia-Antero, L.; Gómez de Castro, A. I.

    2017-03-01

    The Galaxy Evolution Explorer (GALEX) ultraviolet (UV) database contains the largest photometric catalogue in the ultraviolet range; as a result GALEX photometric bands, Near UV band (NUV) and the Far UV band (FUV), have become standards. Nevertheless, the GALEX catalogue does not include bright UV sources due to the high sensitivity of its detectors, neither sources in the Galactic plane. In order to extend the GALEX database for future UV missions, we have obtained synthetic FUV and NUV photometry using the database of UV spectra generated by the International Ultraviolet Explorer (IUE). This database contains 63,755 spectra in the low dispersion mode (λ / δ λ ˜ 300) obtained during its 18-year lifetime. For stellar sources in the IUE database, we have selected spectra with high Signal-To-NoiseRatio (SNR) and computed FUV and NUV magnitudes using the GALEX transmission curves along with the conversion equations between flux and magnitudes provided by the mission. Besides, we have performed variability tests to determine whether the sources were variable (during the IUE observations). As a result, we have generated two different catalogues: one for non-variable stars and another one for variable sources. The former contains FUV and NUV magnitudes, while the latter gives the basic information and the FUV magnitude for each observation. The consistency of the magnitudes has been tested using White Dwarfs contained in both GALEX and IUE samples. The catalogues are available through the Centre des Donées Stellaires. The sources are distributed throughout the whole sky, with a special coverage of the Galactic plane.

  9. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  10. UV water disinfector

    DOEpatents

    Gadgil, A.; Garud, V.

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system and an air-suspended bare UV lamp are disclosed. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir. 7 figs.

  11. UV SEDs of early-type cluster galaxies: a new look at the UV upturn

    NASA Astrophysics Data System (ADS)

    Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.

    2018-05-01

    Using GALEX, Ultraviolet Optical Telescope (UVOT), and optical photometry, we explore the prevalence and strength of the Ultraviolet (UV) upturn in the spectra of quiescent early-type galaxies in several nearby clusters. Even for galaxies with completely passive optical colours, there is a large spread in vacuum UV colour consistent with almost all having some UV upturn component. Combining GALEX and UVOT data below 3000 Å, we generate for the first time comparatively detailed UV spectral energy distributions for Coma cluster galaxies. Fitting the UV upturn component with a blackbody, 26 of these show a range of characteristic temperatures (10 000-21 000K) for the UV upturn population. Assuming a single temperature to explain GALEX-optical colours could underestimate the fraction of galaxies with UV upturns and mis-classify some as systems with residual star formation. The UV upturn phenomenon is not an exclusive feature found only in giant galaxies; we identify galaxies with similar (or even bluer) FUV - V colours to the giants with upturns over a range of fainter luminosities. The temperature and strength of the UV upturn are correlated with galaxy mass. Under the plausible hypothesis that the sources of the UV upturn are blue horizontal branch stars, the most likely mechanism for this is the presence of a substantial (between 4 per cent and 20 per cent) Helium-rich (Y > 0.3) population of stars in these galaxies, potentially formed at z ˜ 4 and certainly at z > 2; this plausibly sets a lower limit of {˜ } {0.3- 0.8} × 10^{10} M⊙ to the in situ stellar mass of ˜L* galaxies at this redshift.

  12. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate.

    PubMed

    Yang, Yi; Lu, Xinglin; Jiang, Jin; Ma, Jun; Liu, Guanqi; Cao, Ying; Liu, Weili; Li, Juan; Pang, Suyan; Kong, Xiujuan; Luo, Congwei

    2017-07-01

    The frequent detection of sulfamethoxazole (SMX) in wastewater and surface waters gives rise of concerns about their ecotoxicological effects and potential risks to induce antibacterial resistant genes. UV/hydrogen peroxide (UV/H 2 O 2 ) and UV/persulfate (UV/PDS) advanced oxidation processes have been demonstrated to be effective for the elimination of SMX, but there is still a need for a deeper understanding of product formations. In this study, we identified and compared the transformation products of SMX in UV, UV/H 2 O 2 and UV/PDS processes. Because of the electrophilic nature of SO 4 - , the second-order rate constant for the reaction of sulfate radical (SO 4 - ) with the anionic form of SMX was higher than that with the neutral form, while hydroxyl radical (OH) exhibited comparable reactivity to both forms. The direct photolysis of SMX predominately occurred through cleavage of the NS bond, rearrangement of the isoxazole ring, and hydroxylation mechanisms. Hydroxylation was the dominant pathway for the reaction of OH with SMX. SO 4 - favored attack on NH 2 group of SMX to generate a nitro derivative and dimeric products. The presence of bicarbonate in UV/H 2 O 2 inhibited the formation of hydroxylated products, but promoted the formation of the nitro derivative and the dimeric products. In UV/PDS, bicarbonate increased the formation of the nitro derivative and the dimeric products, but decreased the formation of the hydroxylated dimeric products. The different effect of bicarbonate on transformation products in UV/H 2 O 2 vs. UV/PDS suggested that carbonate radical (CO 3 - ) oxidized SMX through the electron transfer mechanism similar to SO 4 - but with less oxidation capacity. Additionally, SO 4 - and CO 3 - exhibited higher reactivity to the oxazole ring than the isoxazole ring of SMX. Ecotoxicity of transformation products was estimated by ECOSAR program based on the quantitative structure-activity relationship analysis as well as by experiments using

  13. The optimal UV exposure time for vitamin D3 synthesis and erythema estimated by UV observations in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2016-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) from spectral UV measurements during 2006-2010. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied to the broadband UV measured by UV-Biometer at 6 sites in Korea Thus, the optimal UV exposure time for vitamin D3 synthesis and erythema was estimated for diurnal, seasonal, and annual scales over Korea. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice

  14. Biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum exposed to enhanced UV-B radiation.

    PubMed

    Yao, Xiaoqin; Chu, Jian-Zhou; Ma, Chun-Hui; Si, Chao; Li, Ji-Gang; Shi, Xiao-Fei; Liu, Chao-Nan

    2015-08-01

    The article studied UV-B effects on biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum. The experiment about UV-B effects on biochemical traits in flowers included six levels of UV-B treatments (0 (UV0), 50 (UV50), 200 (UV200), 400 (UV400), 600 (UV600) and 800 (UV800) μWcm(-2)). UV400, UV600 and UV800 treatments significantly increased the contents of hydrogen peroxide, malondialdehyde and UV-B absorbing compounds, and the activity of phenylalanine ammonia lyase enzyme over the control. The contents of chlorogenic acid and flavone in flowers were significantly increased by UV-B treatments (except for UV50 and UV800). Two-dimensional gel electrophoresis was utilized to analyze proteomic changes in flowers with or without UV-B radiation. Results indicated that 43 protein spots (>1.5-fold difference in volume) were detected, including 19 spots with a decreasing trend and 24 spots with an increasing trend, and 19 differentially expressed protein spots were successfully indentified by MALDI-TOF MS. The indentified proteins were classified based on functions, the most of which were involved in photosynthesis, respiration, protein biosynthesis and degradation and defence. An overall assessment using biochemical and differential proteomic data revealed that UV-B radiation could affect biochemical reaction and promote secondary metabolism processes in postharvest flowers. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  16. Comparative study of diethyl phthalate degradation by UV/H2O2 and UV/TiO2: kinetics, mechanism, and effects of operational parameters.

    PubMed

    Song, Chengjie; Wang, Liping; Ren, Jie; Lv, Bo; Sun, Zhonghao; Yan, Jing; Li, Xinying; Liu, Jingjing

    2016-02-01

    The photodegradation of diethyl phthalate (DEP) by UV/H2O2 and UV/TiO2 is studied. The DEP degradation kinetics and multiple crucial factors effecting the clearance of DEP are investigated, including initial DEP concentration ([DEP]0), initial pH values (pH0), UV light intensity, anions (Cl(-), NO(3-), SO4 (2-), HCO3 (-), and CO3 (2-)), cations (Mg(2+), Ca(2+), Mn(2+), and Fe(3+)), and humic acid (HA). Total organic carbon (TOC) removal is tested by two treatments. And, cytotoxicity evolution of DEP degradation intermediates is detected. The relationship between molar ratio ([H2O2]/[DEP] or [TiO2]/[DEP]) and degradation kinetic constant (K) is also studied. And, the cytotoxicity tests of DEP and its degradation intermediates in UV/H2O2 and UV/TiO2 treatments are researched. The DEP removal efficiency of UV/H2O2 treatment is higher than UV/TiO2 treatment. The DEP degradation fitted a pseudo-first-order kinetic pattern under experimental conditions. The K linearly related with molar ratio in UV/H2O2 treatment while nature exponential relationship is observed in the case of UV/TiO2. However, K fitted corresponding trends better in H2O2 treatment than in TiO2 treatment. The Cl(-) is in favor of the DEP degradation in UV/H2O2 treatment; in contrast, it is disadvantageous to the DEP degradation in UV/TiO2 treatment. Other anions are all disadvantageous to the DEP degradation in two treatments. Fe(3+) promotes the degradation rates significantly. And, all other cations in question inhibit the degradation of DEP. HA hinders DEP degradation in two treatments. The intermediates of DEP degradation in UV/TiO2 treatment are less toxic to biological cell than that in UV/H2O2 treatment.

  17. Agent oriented programming

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1994-01-01

    The goal of our research is a methodology for creating robust software in distributed and dynamic environments. The approach taken is to endow software objects with explicit information about one another, to have them interact through a commitment mechanism, and to equip them with a speech-acty communication language. System-level applications include software interoperation and compositionality. A government application of specific interest is an infrastructure for coordination among multiple planners. Daily activity applications include personal software assistants, such as programmable email, scheduling, and new group agents. Research topics include definition of mental state of agents, design of agent languages as well as interpreters for those languages, and mechanisms for coordination within agent societies such as artificial social laws and conventions.

  18. Supplementing the Digitized Sky Survey for UV-Mission Planning

    NASA Technical Reports Server (NTRS)

    McLean, Brian

    2004-01-01

    The Space Telescope Science Institute worked on a project to augment the Digitized Sky Survey archive by completing the scanning and processing of the POSS-I blue survey. This will provide an additional valuable resource to support UV-mission planning. All of the data will be made available through the NASA optical/UV archive (MAST) at STScI. The activities completed during this project are included.

  19. The UV Sensor Onboard the Mars Science Laboratory Mission: Correction and Generation of UV Fluxes

    NASA Astrophysics Data System (ADS)

    Vicente-Retortillo, Á.; Martinez, G.; Renno, N. O.; Lemmon, M. T.; Gomez-Elvira, J.

    2017-12-01

    The Rover Environmental Monitoring Station UV sensor (UVS) onboard the Mars Science Laboratory mission has completed more than 1750 sols of measurements, providing an unprecedented coverage ranging from diurnal to interannual times scales [1,2]. The UVS is comprised of six photodiodes to measure the UV flux in the ranges 200-380, 320-380, 280-320, 200-280, 230-290 and 300-350 nm [3]. UV fluxes in units of W/m2 can be found in the NASA Planetary Data System (PDS). However, dust deposition on the UVS and a non-physical discontinuity in the calibration functions when the solar zenith angle is above 30º cause errors in these fluxes that increase with time. We have developed a technique to correct UV fluxes from the effects of dust degradation and inconsistencies in the angular response of the UVS. The photodiode output currents (available in the PDS as lower-level TELRDR products), ancillary data records (available in the PDS as ADR products) and dust opacity values derived from Mastcam observations are used for performing the corrections. The corrections have been applied to the UVA band (320-380 nm) for the first 1000 sols of the mission, providing excellent results [4]. We plan to correct the UV fluxes on each of the six UVS bands and to make these results available in the PDS. Data products generated by this study will allow comparisons of the UV radiation environment at Gale crater with that at the locations of the future missions ExoMars 2020 and Mars 2020, as well as the assessment of the potential survivability of biological contaminants brought to Mars from Earth. References: [1] Smith, M. D., et al. (2016), Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes, Icarus, 280, 234-248. [2] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, Geophys. Res. Lett., 44, 3502-3508. [3] Gómez-Elvira, J., et al. (2012), REMS: The environmental sensor

  20. On-line high-performance liquid chromatography-ultraviolet-nuclear magnetic resonance method of the markers of nerve agents for verification of the Chemical Weapons Convention.

    PubMed

    Mazumder, Avik; Gupta, Hemendra K; Garg, Prabhat; Jain, Rajeev; Dubey, Devendra K

    2009-07-03

    This paper details an on-flow liquid chromatography-ultraviolet-nuclear magnetic resonance (LC-UV-NMR) method for the retrospective detection and identification of alkyl alkylphosphonic acids (AAPAs) and alkylphosphonic acids (APAs), the markers of the toxic nerve agents for verification of the Chemical Weapons Convention (CWC). Initially, the LC-UV-NMR parameters were optimized for benzyl derivatives of the APAs and AAPAs. The optimized parameters include stationary phase C(18), mobile phase methanol:water 78:22 (v/v), UV detection at 268nm and (1)H NMR acquisition conditions. The protocol described herein allowed the detection of analytes through acquisition of high quality NMR spectra from the aqueous solution of the APAs and AAPAs with high concentrations of interfering background chemicals which have been removed by preceding sample preparation. The reported standard deviation for the quantification is related to the UV detector which showed relative standard deviations (RSDs) for quantification within +/-1.1%, while lower limit of detection upto 16mug (in mug absolute) for the NMR detector. Finally the developed LC-UV-NMR method was applied to identify the APAs and AAPAs in real water samples, consequent to solid phase extraction and derivatization. The method is fast (total experiment time approximately 2h), sensitive, rugged and efficient.

  1. UV Tolerance of Spoilage Microorganisms and Acid-Shocked and Acid-Adapted Escherichia coli in Apple Juice Treated with a Commercial UV Juice-Processing Unit.

    PubMed

    Usaga, Jessie; Padilla-Zakour, Olga I; Worobo, Randy W

    2016-02-01

    The enhanced thermal tolerance and survival responses of Escherichia coli O157:H7 in acid and acidified foods is a major safety concern for the production of low-pH products, including beverages. Little is known about this phenomenon when using UV light treatments. This study was conducted to evaluate the effects of strain (E. coli O157:H7 strains C7927, ATCC 35150, ATCC 43895, and ATCC 43889 and E. coli ATCC 25922) and physiological state (control-unadapted, acid adapted, and acid shocked) on the UV tolerance of E. coli in apple juice treated under conditions stipulated in current U.S. Food and Drug Administration regulations. A greater than 5-log reduction of E. coli was obtained under all tested conditions. A significant effect of strain (P < 0.05) was observed, but the physiological state did not influence pathogen inactivation (P ≥ 0.05). The UV sensitivity of three spoilage microorganisms (Aspergillus niger, Penicillium commune, and Alicyclobacillus acidoterrestris) was also determined at UV doses of 0 to 98 mJ/cm(2). Alicyclobacillus was the most UV sensitive, followed by Penicillium and Aspergillus. Because of the nonsignificant differences in UV sensitivity of E. coli in different physiological states, the use of an unadapted inoculum would be adequate to conduct challenge studies with the commercial UV unit used in this study at a UV dose of 14 mJ/cm(2). The high UV tolerance of spoilage microorganisms supports the need to use a hurdle approach (e.g., coupling of refrigeration, preservatives, and/or other technologies) to extend the shelf life of UV-treated beverages.

  2. An ESR study of the UV degradation of FEP

    NASA Technical Reports Server (NTRS)

    George, G. A.; Hill, D. J. T.; Odonnell, J. H.; Pomery, P. J.; Rasoul, F.

    1992-01-01

    Spacecraft in low earth orbit are subjected to significant levels of high energy radiation, including ultraviolet (UV) and visible ultraviolet (VUV) wavelengths. The effects of UV radiation are enhanced over those at the surface of the earth, where the only incident wavelengths are greater than 290 nm. In low earth orbit the incident UV wavelengths extend below 290 nm into the VUV region, where the Lyman alpha-emissions of atomic hydrogen occur at 121 nm. In addition to electromagnetic radiation, in low earth orbit polymer materials may also be subjected to atomic oxygen particle radiation, which will result in direct oxidation of the polymer.

  3. Skin protective effect of guava leaves against UV-induced melanogenesis via inhibition of ORAI1 channel and tyrosinase activity.

    PubMed

    Lee, Dong-Ung; Weon, Kwon Yeon; Nam, Da-Yeong; Nam, Joo Hyun; Kim, Woo Kyung

    2016-12-01

    Ultraviolet (UV) irradiation is a major environmental factor affecting photoageing, which is characterized by skin wrinkle formation and hyperpigmentation. Although many factors are involved in the photoageing process, UV irradiation is thought to play a major role in melanogenesis. Tyrosinase is the key enzyme in melanin synthesis; therefore, many whitening agents target tyrosinase through various mechanisms, such as direct interference of tyrosinase catalytic activity or inhibition of tyrosinase mRNA expression. Furthermore, the highly selective calcium channel ORAI1 has been shown to be associated with UV-induced melanogenesis. Thus, ORAI1 antagonists may have applications in the prevention of melanogenesis. Here, we aimed to identify the antimelanogenesis agents from methanolic extract of guava leaves (Psidium guajava) that can inhibit tyrosinase and ORAI1 channel. The n-butanol (47.47%±7.503% inhibition at 10 μg/mL) and hexane (57.88%±7.09% inhibition at 10 μg/mL) fractions were found to inhibit ORAI1 channel activity. In addition, both fractions showed effective tyrosinase inhibitory activity (68.3%±0.50% and 56.9%±1.53% inhibition, respectively). We also confirmed that the hexane fraction decreased the melanin content induced by UVB irradiation and the ET-1-induced melanogenesis in murine B16F10 melanoma cells. These results suggest that the leaves of P. guajava can be used to protect against direct and indirect UV-induced melanogenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Optical Properties of Synthesized Nanoparticles ZnS Using Methacrylic Acid as the Capping Agent

    NASA Astrophysics Data System (ADS)

    Nazerdeylami, Somayeh; Saievar Iranizad, Esmaiel; Molaei, Mehdi

    Optical analysis (UV-vis spectroscopy) of solution of ZnS nanoparticles prepared at room temperature by a chemical capping method using methacrylic acid (MAA) capping agent at concentration of 0.05, 0.2, 0.5 and 1.17 molar is investigated. The spectroscopy results indicate increasing of band gap of ZnS through increasing concentration of the methacrylic acid as capping agent in the solution. According to the relation of Effective Mass Approximation, it is concluded that the size of nanoparticles decreased with the increasing concentration of the capping agent in the tested solutions. The size of the particles is found to be in 1.77-2.05 nm range.

  5. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer.

    PubMed

    Damiani, Elisabetta; Ullrich, Stephen E

    2016-07-01

    Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. UV emissions of Jupiter: exploration of the high-latitude regions through the UV spectrograph on NASA's Juno mission

    NASA Astrophysics Data System (ADS)

    Hue, Vincent; Gladstone, Randy; Versteeg, Maarten; Greathouse, Thomas K.; Davis, Michael; Gerard, Jean-Claude; Grodent, Denis; Bonfond, Bertrand

    2016-10-01

    The Juno mission offers the opportunity to study Jupiter, from its inner structure to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) planned for July 4th 2016, will place Juno in a 53.5 days capture orbit. A period reduction maneuver will be performed two orbits later to place Juno into 14-days elliptical orbits for the duration of the nominal mission, which includes 36 orbits. Juno-UVS is a UV spectrograph with a bandpass of 70 ≤ λ ≤ 205 nm, designed to characterize Jupiter UV emissions. One of the main additions of UVS compared to its predecessors is a 2.54 mm tantalum shielding, to protect it from the harsh radiation environment at Jupiter, and a scan mirror, to allow for targeting specific auroral regions during perijove passes. The scan mirror is located at the front end of the instrument and will be used to look at +/- 30° perpendicular to the Juno spin plane. The entrance slit of UVS has a dog-bone shape composed by three sections with field of views of 0.2°x2.5°, 0.025°x2.0° and 0.2°x2.5°, as projected onto the sky. It will provide new constraints on Jupiter's auroral nightside morphology and spectral features as well as the vertical structure of these emissions. It will bring remote-sensing constraints for the onboard waves and particle instruments (JADE, JEDI, Waves and MAG). The ability to change the pointing will allow relating the observed UV brightness of the regions magnetically connected to where Juno flies with the particles and waves measurements. We will discuss the planned observations and scientific targets for the nominal mission orbital sequence, which will consist of three UV datasets per orbit. We will present the results from the first orbit. As Juno orbit evolves during the mission, we will also present how these objectives evolve over time.

  7. High-power UV-LED degradation: Continuous and cycled working condition influence

    NASA Astrophysics Data System (ADS)

    Arques-Orobon, F. J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V.

    2015-09-01

    High-power (HP) UV-LEDs can replace UV lamps for real-time fluoro-sensing applications by allowing portable and autonomous systems. However, HP UV-LEDs are not a mature technology, and there are still open issues regarding their performance evolution over time. This paper presents a reliability study of 3 W UV-LEDs, with special focus on LED degradation for two working conditions: continuous and cycled (30 s ON and 30 s OFF). Accelerated life tests are developed to evaluate the influence of temperature and electrical working conditions in high-power LEDs degradation, being the predominant failure mechanism the degradation of the package. An analysis that includes dynamic thermal and optical HP UV-LED measurements has been performed. Static thermal and stress simulation analysis with the finite element method (FEM) identifies the causes of package degradation. Accelerated life test results prove that HP UV-LEDs working in cycled condition have a better performance than those working in continuous condition.

  8. UV protection for sunglasses: revisiting the standards

    NASA Astrophysics Data System (ADS)

    Masili, Mauro; Schiabel, Homero; Ventura, Liliane

    2014-02-01

    In a continuing work of establishing safe limits for UV protection on sunglasses, we have estimated the incident UV radiation for the 280 nm - 400 nm range for 5500 locations in Brazil. Current literature establishes safe limits regarding ultraviolet radiation exposure in the spectral region 180nm-400nm for weighted and unweighted UV radiant exposure. British Standard BSEN1836(2005) and American Standard ANZI Z80.3(2009) require the UV protection in the spectral range 280nm-380nm, and The Brazilian Standard for sunglasses protection, NBR15111(20013), currently requires protection for the 280nm - 400nm range as established by literature. However, none of them take into account the total (unweighted) UVA radiant exposure.Calculations of these limits have been made for 5500 Brazilian locations which included the geographic position of the city; altitude, inclination angle of the Earth; typical atmospheric data (ozone column; water vapor and others) as well as scattering from concrete, grass, sand, water, etc.. Furthermore, regarding UV safety for the ocular media, the resistance to irradiance test required on this standard of irradiating the lenses for 25 continuous hours with a 450W sunlight simulator leads to a correspondence of 26 hours and 10 minutes of continuous exposure to the Sun. Moreover, since the sun irradiance in Brazil is quite large, integrations made for the 280-400 nm range shows an average of 45% of greater ultraviolet radiant exposure than for the 280-380 nm range. Suggestions on the parameters of these tests are made in order to establish safe limits according to the UV irradiance in Brazil.

  9. The Austrian UV monitoring network

    NASA Astrophysics Data System (ADS)

    Blumthaler, Mario; Klotz, Barbara; Schwarzmann, Michael; Schreder, Josef

    2017-02-01

    The Austrian UV Monitoring network is operational since 1998 providing a large data set of erythemally weighted UV irradiance recorded with broadband UV biometer at 12 stations distributed all over Austria. In order to obtain high quality data all biometer are recalibrated once a year, the detectors are checked regularly for humidity and quality control is done routinely. The collected data are processed and then published on the website http://www.uv-index.at where the UV-Index of all measurement sites is presented in near real time together with a map of the distribution of the UV-Index over Austria. These UV-Index data together with measurements of global radiation and ozone levels from OMI are used to study long term trends for the stations of the monitoring network. Neither for all weather conditions nor for clear sky conditions is a statistically significant trend found for the UV-Index (with one exception) and for ozone. Furthermore, the radiation amplification factor (RAF) is determined experimentally from the power law correlation between UV-Index and ozone level for the site Innsbruck (577 m above sea level, 47.26°N, 11.38°E) for 19°solar elevation. A value of 0.91 ± 0.05 is found for the RAF for clear sky days with low ground albedo and a value of 1.03 ± 0.08 for days with high ground albedo (snow cover).

  10. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  11. UV-LIGA technique for ECF micropumps using back UV exposure and self-alignment

    NASA Astrophysics Data System (ADS)

    Han, D.; Xia, Y.; Yokota, S.; Kim, J. W.

    2017-12-01

    This paper proposes and develops a novel UV-LIGA technique using back UV exposure and self-alignment to realize high aspect ratio micromachining (HARM) in high power density electro-conjugate fluid (ECF) micropumps. ECF is a functional fluid designed to be able to generate strong and active jet flow (ECF jetting) between anode and cathode in ECF when high DC voltage is applied. We have developed high power density ECF micropumps consisting of triangular prism and slit electrode pairs (TPSEs) fabricated by HARM. The traditional UV-LIGA technique for HARM is mainly divided into two approaches: (a) single thick layer and (b) multiple thin layers. Both methods have limitations—deformed molds in the former and misalignment between layers in the latter. Using the finite element method software COMSOL Multiphysics, we demonstrate that the deformed micro-molds critically impair the performance of ECF micropumps. In addition, we experimentally prove that the misalignment would easily trigger electric discharge in the ECF micropumps. To overcome these limitations, we conceive a new concept utilizing the seed electrode layer for electroforming as the UV shield and pattern photoresist (KMPR) by back UV exposure. The seed electrode layer should be composed of a non-transparent conductor (Au/Ti) for patterning and a transparent conductor (ITO) for wiring. Instead of ITO, we propose the concept of transparency-like electrodes comprised of thin metal line patterns. To verify this concept, KMPR layers with thicknesses of 70, 220, and 500 µm are experimentally investigated. In the case of 500 µm KMPR thickness, the concept of transparency-like electrode was partially proved. As a result, TPSEs with a height of 440 µm were successfully fabricated. Characteristic experiments demonstrated that ECF micropumps (367 mW cm-3) fabricated by back UV achieved almost the same output power density as ECF micropumps (391 mW cm-3) fabricated by front UV. This paper proves that the proposed

  12. UV Signatures of Ices: Moons in the Solar System

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.; Retherford, K. D.; Vilas, F.

    2017-12-01

    Using Earth-orbiting telescopes such as the International Ultraviolet Explorer and the Hubble Space Telescope, significant advances have been made in the area of ultraviolet observations of solar system objects. More in-depth studies have been made using interplanetary probes such as Galileo, Cassini and Lunar Reconnaissance Orbiter (LRO). While the UV spectral range has traditionally been used to study atmospheric and auroral processes, there is much to be learned by examining solid surfaces in the UV, including surface composition, weathering processes and effects, and the generation of thin atmospheres. Here we focus on moons in the solar system, including Earth's moon and the Saturnian satellites. The diagnostic UV signature of H2O is used to study ice in the lunar polar regions as well as hydration at lower latitudes, in observations from LRO LAMP. The water ice signature is nearly ubiquitous in the Saturn system; Cassini UVIS datasets are used to study grain sizes, exogenic processes/effects and non-ice species.

  13. Listeria monocytogenes Behaviour in Presence of Non-UV-Irradiated Titanium Dioxide Nanoparticles

    PubMed Central

    Ammendolia, Maria Grazia; Iosi, Francesca; De Berardis, Barbara; Guccione, Giuliana; Superti, Fabiana; Conte, Maria Pia; Longhi, Catia

    2014-01-01

    Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs) are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS) with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts. PMID:24416327

  14. Listeria monocytogenes behaviour in presence of non-UV-irradiated titanium dioxide nanoparticles.

    PubMed

    Ammendolia, Maria Grazia; Iosi, Francesca; De Berardis, Barbara; Guccione, Giuliana; Superti, Fabiana; Conte, Maria Pia; Longhi, Catia

    2014-01-01

    Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs) are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS) with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts.

  15. Photochromic Properties of Tungsten Oxide/Methylcellulose Composite Film Containing Dispersing Agents.

    PubMed

    Yamazaki, Suzuko; Ishida, Hiroki; Shimizu, Dai; Adachi, Kenta

    2015-12-02

    Tungsten oxide-based photochromic films which changed reversibly in air between colorless- transparent in the dark and dark blue under UV irradiation were prepared by using methylcellulose as a film matrix and polyols such as ethylene glycol (EG), propylene glycol (PG), and glycerin (Gly) as dispersing agents. Influence of the dispersing agents and water in the films on the photochromic behavior was systematically studied. Under UV irradiation, absorption bands around 640 and 980 nm increased and the coloring rate was the following order: Gly > EG > PG. An increase in the amounts of dispersing agents or water accelerated the coloring rate. By increasing the water content of the film, a new absorption peak appeared at ca. 775 nm and the Raman spectra indicated a shift of W-O-W stretching vibration to lower wavenumber which was due to the formation of hydrogen bonding. All absorption spectra were fit by three Lorentz functions, whose bands were ascribed to various packing of WO6 octahedra. After the light was turned off, the formation of W(5+) was stopped and bleaching occurred by the reaction with O2 in air to recover its original transparent state. We anticipate that the biodegradable photochromic films developed in this study can be applied in recyclable display medium and especially in detachable films for glass windows whose light transmission properties are changed by sunlight, i.e., for usage as an alternative of smart windows without applying voltage.

  16. Penetration of UV Radiation in the Earth's Oceans

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Lubin, Dan

    2005-01-01

    This project was a collaboration between SIO/UCSD and NASA/GSFC to develop a global estimation of the penetration of UV light into open ocean waters, and into coastal waters. We determined the ocean UV reflectance spectra seen by satellites above the atmosphere by combining existing sophisticated radiative transfer models with in situ UV Visible data sets to improve coupled radiance estimates both underwater and within the atmosphere. Results included improved estimates of surface spectral irradiance, 0.3-1.0 micron, and estimates of photosynthetic inhibition, DNA mutation, and CO production. Data sets developed under this proposal have been made publicly available via submission to the SeaWiFS Bio-Optical Archive and Storage System. Numerous peer-reviewed publications and conference proceedings and abstracts resulted from the work supported by this research award.

  17. Sensitization of human carcinoma cells to alkylating agents by small interfering RNA suppression of 3-alkyladenine-DNA glycosylase.

    PubMed

    Paik, Johanna; Duncan, Tod; Lindahl, Tomas; Sedgwick, Barbara

    2005-11-15

    One of the major cytotoxic lesions generated by alkylating agents is DNA 3-alkyladenine, which can be excised by 3-alkyladenine DNA glycosylase (AAG). Inhibition of AAG may therefore result in increased cellular sensitivity to chemotherapeutic alkylating agents. To investigate this possibility, we have examined the role of AAG in protecting human tumor cells against such agents. Plasmids that express small interfering RNAs targeted to two different regions of AAG mRNA were transfected into HeLa cervical carcinoma cells and A2780-SCA ovarian carcinoma cells. Stable derivatives of both cell types with low AAG protein levels were sensitized to alkylating agents. Two HeLa cell lines with AAG protein levels reduced by at least 80% to 90% displayed a 5- to 10-fold increase in sensitivity to methyl methanesulfonate, N-methyl-N-nitrosourea, and the chemotherapeutic drugs temozolomide and 1,3-bis(2-chloroethyl)-1-nitrosourea. These cells showed no increase in sensitivity to UV light or ionizing radiation. After treatment with methyl methanesulfonate, AAG knockdown HeLa cells were delayed in S phase but accumulated in G2-M. Our data support the hypothesis that ablation of AAG activity in human tumor cells may provide a useful strategy to enhance the efficacy of current chemotherapeutic regimens that include alkylating agents.

  18. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  19. Silicon-Induced UV Transparency in Phosphate Glasses and Its Application to the Enhancement of the UV Type B Emission of Gd3.

    PubMed

    Jiménez, José A

    2017-05-10

    The silicon route to improve the ultraviolet (UV) transparency in phosphate glasses is investigated and further exploited to enhance the UV type B (280-320 nm) emission of gadolinium(III) relevant for biomedical applications. The glasses were synthesized with a barium phosphate composition by melt-quenching in ambient atmosphere and the optical properties investigated by optical absorption and photoluminescence (PL) spectroscopy including emission decay kinetics. An improvement in the UV transparency was gradually developed for the glasses melted merely with increasing amounts of Si powder. A particular PL in the visible was also exhibited for such glasses under excitation at 275 nm, consistent with the presence of Si-induced defects. For Si-Gd codoped glasses, the UV transparency was likewise manifested, while the UV emission from Gd 3+ around 312 nm was enhanced with the increase in Si concentration (up to ∼6.7 times). Moreover, along with the Gd 3+ PL intensity enhancement, a linear correlation was revealed between the increase in decay times for the Gd 3+6 P 7/2 -emitting state and the amount of silicon. It is then suggested that the improved PL properties of gadolinium(III) originate from the increased UV transparency of the host and the consequent precluding of a nonradiative energy transfer from Gd 3+ to the matrix. Accordingly, a role of Si as PL quenching inhibitor is supported. The demonstrated efficacy of the Si-Gd codoping concept realized by a facile glass synthesis procedure may appeal to the application of the UV-emitting glasses for phototherapy lamps.

  20. UV dose measurements of photosensitive dermatosis patients by polycrystalline GaN-based portable self-data-acquisition UV monitors.

    PubMed

    Yagi, Shigeru; Iwanaga, Takeshi; Kojima, Hiroshi; Shoji, Yoshio; Suzuki, Seiji; Seno, Kunihiro; Mori, Hisayoshi; Tokura, Yoshiki; Takigawa, Masahiro; Moriwaki, Shin-Ichi

    2002-12-01

    We have developed a UV monitor with polycrystalline (poly-) gallium nitride (GaN) UV sensors and evaluated its performance from the viewpoint of its effectiveness for use with photosensitive dermatosis patients. The poly-GaN UV sensor is sensitive to UV light from 280 to 410 nm even without optical filters. The UV monitor is a portable self-data-acquisition instrument with a minimum detection level (defined as average UV intensity over 290 to 400 nm) of 2 microW/cm2 and can store UV dose data for 128 days. It allows easy measurement of four orders of magnitude of ambient UV intensity and dose from indoor light to direct solar radiation in summer. Trial use of the UV monitor by five xeroderma pigmentosum patients started in June 2000 and was carried out for 1 year. It was demonstrated that the UV monitor was useful in improving their quality of life.

  1. Visualization of UV exposure of the human body based on data from a scanning UV-measuring system.

    PubMed

    Hoeppe, P; Oppenrieder, A; Erianto, C; Koepke, P; Reuder, J; Seefeldner, M; Nowak, D

    2004-09-01

    In general, measurements of UV radition are related to horizontal surfaces, as in the case of the internationally standardized and applied UV index, for example. In order to obtain more relevant information on UV exposure of humans the new measuring system ASCARATIS (Angle SCAnning RAdiometer for determination of erythemally weighted irradiance on TIlted Surfaces) was developed and built. Three systems of ASCARATIS have been in operation at different locations in Bavaria for 3 years, providing erythemally weighted UV irradiation data for 27 differently inclined surfaces every 2 min. On the basis of these data virtual three-dimensional models of the human body surface consisting of about 20,000 triangles could be created and each of these triangles coloured according to its UV irradiation. This allowed the UV exposure of the human body to be visualized for any kind of body posture and spatial orientation on the basis of real measuring data. The results of the UV measurements on inclined surfaces have shown that measuring UV radiation on horizontal surfaces, as done routinely worldwide, often underestimates the UV exposure of the human skin. Especially at times of the day or year with low solar elevations the UV exposure of parts of the human skin can be many times higher than that of the horizontal surface. Examples of three-dimensional modelling of the human UV irradiation are shown for different times of the day and year, altitudes above sea level, body postures and genders. In these examples the UV "hotspots" can be detected and, among other things, used to inform and educate the public about UV radiation.

  2. Impact of biofibers and coupling agents on the weathering characteristics of composites polymer degradation and stability

    USDA-ARS?s Scientific Manuscript database

    This paper explores the ultraviolet (UV) weathering performance of high density polyethylene (HDPE) composites with different biofiber fillers and coupling agent. Biofiber polymer composite (BFPC) material samples were prepared using oak, cotton burr and stem (CBS) or guayule bagasse as fiber source...

  3. Role of UV light in photodamage, skin aging, and skin cancer: importance of photoprotection.

    PubMed

    Gonzaga, Evelyn R

    2009-01-01

    Solar, and particularly UV, radiation causes molecular and cellular damage with resultant histopathologic and clinical degenerative changes, leading in turn to photosensitivity, photo-aging, and skin cancer. While our bodies have some natural UV defenses, additional protection from the sun is essential, including sun avoidance, physical protection, and sunscreen use. Sun avoidance includes limiting exposure during peak UV times (10am-4pm), avoiding UV-reflective surfaces such as sand, snow and water, and eliminating photosensitizing drugs. Physical protection includes wearing photoprotective clothing such as a broad-brimmed hat and long sleeves and use of UV-blocking films on windows. Sunscreen containing avobenzone, titanium dioxide, zinc oxide or encamsule should be used daily and frequently reapplied. To guard against the UVB spectrum, zinc oxide and titanium dioxide are particularly recommended. Sunscreen is generally under-applied at only 25% of the recommended dose, seriously compromising photoprotection. Dosage guidelines recommend using more than half a teaspoon each on head and neck area and each arm, and more than a teaspoon each on anterior torso, posterior torso, and each leg (approximately 2 mg/cm(2)).

  4. UV-blocking spectacle lens protects against UV-induced decline of visual performance.

    PubMed

    Liou, Jyh-Cheng; Teng, Mei-Ching; Tsai, Yun-Shan; Lin, En-Chieh; Chen, Bo-Yie

    2015-01-01

    Excessive exposure to sunlight may be a risk factor for ocular diseases and reduced visual performance. This study was designed to examine the ability of an ultraviolet (UV)-blocking spectacle lens to prevent visual acuity decline and ocular surface disorders in a mouse model of UVB-induced photokeratitis. Mice were divided into 4 groups (10 mice per group): (1) a blank control group (no exposure to UV radiation), (2) a UVB/no lens group (mice exposed to UVB rays, but without lens protection), (3) a UVB/UV400 group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [UV400 coating]), and (4) a UVB/photochromic group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [photochromic coating]). We investigated UVB-induced changes in visual acuity and in corneal smoothness, opacity, and lissamine green staining. We also evaluated the correlation between visual acuity decline and changes to the corneal surface parameters. Tissue sections were prepared and stained immunohistochemically to evaluate the structural integrity of the cornea and conjunctiva. In blank controls, the cornea remained undamaged, whereas in UVB-exposed mice, the corneal surface was disrupted; this disruption significantly correlated with a concomitant decline in visual acuity. Both the UVB/UV400 and UVB/photochromic groups had sharper visual acuity and a healthier corneal surface than the UVB/no lens group. Eyes in both protected groups also showed better corneal and conjunctival structural integrity than unprotected eyes. Furthermore, there were fewer apoptotic cells and less polymorphonuclear leukocyte infiltration in corneas protected by the spectacle lenses. The model established herein reliably determines the protective effect of UV-blocking ophthalmic biomaterials, because the in vivo protection against UV-induced ocular damage and visual acuity decline was easily defined.

  5. The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan

    2008-12-01

    Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.

  6. Virus Sensitivity Index of UV disinfection.

    PubMed

    Tang, Walter Z; Sillanpää, Mika

    2015-01-01

    scenarios such as under sunlight and different virus aggregates. The correlation analysis shows that viruses will be about 40% more sensitive to sunlight than to UV254. On the other hand, virus size of 500 nm will reduce their VSI by 10%. This is the first attempt to use VSI to predict the required fluence at any given Log I. The equation can be used to quantitatively evaluate other parameters influencing UV disinfection. These factors include environmental species, antibiotic-resistant bacteria or genes, photo and dark repair, water quality such as suspended solids, and UV transmittance.

  7. Rural-urban migration including formal and informal workers in the urban sector: an agent-based numerical simulation study

    NASA Astrophysics Data System (ADS)

    Branco, Nilton; Oliveira, Tharnier; Silveira, Jaylson

    2012-02-01

    The goal of this work is to study rural-urban migration in the early stages of industrialization. We use an agent-based model and take into account the existence of informal and formal workers on the urban sector and possible migration movements, dependent on the agents' social and private utilities. Our agents are place on vertices of a square lattice, such that each vertex has only one agent. Rural, urban informal and urban formal workers are represented by different states of a three-state Ising model. At every step, a fraction a of the agents may change sectors or migrate. The total utility of a given agent is then calculated and compared to a random utility, in order to check if this agent turns into an actual migrant or changes sector. The dynamics is carried out until an equilibrium state is reached and equilibrium variables are then calculated and compared to available data. We find that a generalized Harris-Todaro condition is satisfied [1] on these equilibrium regimes, i.e, the ratio between expected wages between any pair of sectors reach a constant value. [4pt] [1] J. J. Silveira, A. L. Esp'indola and T. J. Penna, Physica A, 364, 445 (2006).

  8. Quantitative Determination of α-Arbutin, β-Arbutin, Kojic Acid, Nicotinamide, Hydroquinone, Resorcinol, 4-Methoxyphenol, 4-Ethoxyphenol, and Ascorbic Acid from Skin Whitening Products by HPLC-UV.

    PubMed

    Wang, Yan-Hong; Avonto, Cristina; Avula, Bharathi; Wang, Mei; Rua, Diego; Khan, Ikhlas A

    2015-01-01

    An HPLC-UV method was developed for the quantitative analysis of nine skin whitening agents in a single injection. These compounds are α-arbutin, β-arbutin, kojic acid, nicotinamide, resorcinol, ascorbic acid, hydroquinone, 4-methoxyphenol, and 4-ethoxyphenol. The separation was achieved on a reversed-phase C18 column within 30 min. The mobile phase was composed of water and methanol, both containing 0.1% acetic acid (v/v). The stability of the analytes was evaluated at different pH values between 2.3 and 7.6, and the extraction procedure was validated for different types of skin whitening product matrixes, which included two creams, a soap bar, and a capsule. The best solvent system for sample preparation was 20 mM NaH2PO4 containing 10% methanol at pH 2.3. The analytical method was validated for accuracy, precision, LOD, and LOQ. The developed HPLC-UV method was applied for the quantitation of the nine analytes in 59 skin whitening products including creams, lotions, sera, foams, gels, mask sheets, soap bars, tablets, and capsules.

  9. Preparation of UV-protective kefiran/nano-ZnO nanocomposites: physical and mechanical properties.

    PubMed

    Shahabi-Ghahfarrokhi, Iman; Khodaiyan, Faramarz; Mousavi, Mohammad; Yousefi, Hossein

    2015-01-01

    In this study, we investigated the effect of ZnO nanoparticles (ZN) as a UV-protective agent of kefiran biopolymers. Our results showed that with increasing ZN content, the tensile strength, elongation at break, and tensile energy to break the kefiran film and nanocomposites also increased. Kefiran nanocomposites with a ZN content higher than 2% produced a UV-protective film with good visual properties, low sensibility to water, and low water-vapor permeability. The thermal properties of all specimens, analyzed by DSC, showed that the ZN content had a negative effect on Tg and a positive effect on nanocomposites' melting point. TEM, SEM micrography and XRD spectrum analysis confirmed the hypothesis that ZNs act like a ball bearing, making movement of kefiran chains easier and increasing elongation at break, while simultaneously decreasing the Tg of kefiran nanocomposites. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeong-Min; Choi, Ji Ye; Yi, Joo Mi

    2015-06-05

    Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A–G (XPA–XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated inmore » the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway. - Highlights: • NDR1 is a novel XPA-interacting protein. • NDR1 accumulates in the nucleus in response to UV irradiation. • NDR1 modulates NER (nucleotide excision repair) by modulating the UV-induced DNA-damage checkpoint response.« less

  11. Ultraviolet radiation exposure from UV-transilluminators.

    PubMed

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at < or =25 cm from the UV-transilluminator's filter surface. Daily exposure time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  12. Research on APD-based non-line-of-sight UV communication system

    NASA Astrophysics Data System (ADS)

    Wang, Rongyang; Wang, Ling; Li, Chao; Zhang, Wenjing; Yuan, Yonggang; Xu, Jintong; Zhang, Yan; Li, Xiangyang

    2010-10-01

    In this paper, specific issues in designing an avalanche photodiode (APD)-based non-line-of-sight (NLOS) ultraviolet (UV) communication system are investigated. A proper wavelength of the UV LEDs and a system configuration should be considered carefully to assure the feasibility of this system. Using the single scattering model, the received optical power at the sensitive area of the APD can be calculated. According to the calculation, it revealed that the scattered ultraviolet signal level was very low; therefore, a post signal processing circuit was necessary. The authors put forward the key components of the circuit based on the compromise between signal bandwidth and gain. The performance of this circuit was evaluated by means of software simulation, and continued work was involved to improve its signal noise ratio (SNR). The transmitter used in this system was 365 nm UV LED array. Strictly speaking, this was not the practical outdoor UV communication system. Since the scattering coefficient of 365 nm UV only drops a little compared with solar blind UV, the research-grade UV communication could be carried out in a darkroom without a great influence. By combining an APD with a compound parabolic concentrator (CPC) optical system, the effective collection area and field of view (FOV) of the detector could be adjusted. Several issues were also raised to improve the performance of UV communication system, including using more powerful UV LEDs and choosing suitable modulation schemes.

  13. Measurements of Raman scattering in the middle ultraviolet band from persistent chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Kullander, Fredrik; Landström, Lars; Lundén, Hampus; Mohammed, Abdesalam; Olofsson, Göran; Wästerby, Pär.

    2014-05-01

    The very low Raman scattering cross section and the fluorescence background limit the measuring range of Raman based instruments operating in the visible or infrared band. We are exploring if laser excitation in the middle ultraviolet (UV) band between 200 and 300 nm is useful and advantageous for detection of persistent chemical warfare agents (CWA) on various kinds of surfaces. The UV Raman scattering from tabun, mustard gas, VX and relevant simulants in the form of liquid surface contaminations has been measured using a laboratory experimental setup with a short standoff distance around 1 meter. Droplets having a volume of 1 μl were irradiated with a tunable pulsed laser swept within the middle UV band. A general trend is that the signal strength moves through an optimum when the laser excitation wavelength is swept between 240 and 300 nm. The signal from tabun reaches a maximum around 265 nm, the signal from mustard gas around 275 nm. The Raman signal from VX is comparably weak. Raman imaging by the use of a narrow bandpass UV filter is also demonstrated.

  14. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Mohankandhasamy; Kim, Yu Jun; Gao, Haiyan

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs andmore » Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.« less

  15. Sulfamethazine degradation in water by the VUV/UV process: Kinetics, mechanism and antibacterial activity determination based on a mini-fluidic VUV/UV photoreaction system.

    PubMed

    Li, Mengkai; Wang, Chen; Yau, Miaoling; Bolton, James R; Qiang, Zhimin

    2017-01-01

    A mini-fluidic VUV/UV photoreaction system (MVPS) was developed in our previous study, and it was demonstrated as a powerful tool for studies on pollutant degradation by the VUV/UV process. In this study, we investigated the VUV/UV photodegradation of sulfamethazine (SMN), one of the most frequently detected antibiotics in the environment. The determination methods of photochemical kinetic parameters (e.g., photon fluence-based rate constant and quantum yield) were developed based on the MVPS. The photon fluence-based reaction rate constants for SMN degradation by UV alone and VUV/UV processes were determined as 0.07 × 10 3 and 4.11 × 10 3  m 2  einstein -1 , respectively, while their quantum yields were calculated as 0.019 and 0.369, respectively. The second-order reaction rate constant between hydroxyl radical (HO • ) and SMN was determined to be 8.9 × 10 9  M -1  s -1 in VUV/UV irradiation experiments, which were conducted without addition of any other chemical. The pH effect on the SMN degradation by the VUV/UV process arose principally from SMN and HO speciation. In addition, six byproducts were identified and the potential degradation pathways of SMN including hydroxylation and SO 2 elimination were proposed. The antibacterial activity of the SMN solution, assessed by the growth inhibition tests of Escherichia coli, decreased by about 80% after VUV/UV treatment up to a photon fluence of 3.58 × 10 -3  einstein m -2 . This study has developed methods for the determination of photochemical kinetic parameters using the newly developed MVPS and has demonstrated that the VUV/UV process is an effective technology to remove sulfonamide antibiotics in water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. UV lifetime demonstrator for space-based applications

    NASA Astrophysics Data System (ADS)

    Albert, Michael; Puffenburger, Kent; Schum, Tom; Fitzpatrick, Fran; Litvinovitch, Slava; Jones, Darrell; Rudd, Joseph; Hovis, Floyd

    2016-05-01

    A long-lived UV laser is an enabling technology for a number of high-priority, space-based lidar instruments. These include next generation cloud and aerosol lidars that incorporates a UV channel, direct detection 3-D wind lidars, and ozone DIAL (differential absorption lidar) systems. In previous SBIR funded work we developed techniques for increasing the survivability of components in high power UV lasers and demonstrated improved operational lifetimes. In this Phase III ESTO funded effort we are designing and building a TRL (Technology Readiness Level) 6 demonstrator that will have increased output power and a space-qualifiable package that is mechanically robust and thermally-stable. For full space compatibility, thermal control will be through pure conductive cooling. Contamination control processes and optical coatings will be chosen that are compatible with lifetimes in excess of 1 billion shots. The 1064nm output will be frequency tripled to provide greater than 100 mJ pulses of 355 nm light at 150 Hz. The laser module build was completed in the third quarter of 2015 at which time a series of life tests were initiated. The first phase of the lifetime testing is a 532 nm only test that is expected to complete in April 2016. The 532 nm lifetest will be followed by a 4 month half power UV life test and then a four month full power UV life test. The lifetime tests will be followed by thermal/vacuum (TVAC) and vibration testing to demonstrate that the laser optics module design is at TRL 6.

  17. Optical system for UV-laser technological equipment

    NASA Astrophysics Data System (ADS)

    Fedosov, Yuri V.; Romanova, Galina E.; Afanasev, Maxim Ya.

    2017-09-01

    Recently there has been an intensive development of intelligent industrial equipment that is highly automated and can be rapidly adjusted for certain details. This equipment can be robotics systems, automatic wrappers and markers, CNC machines and 3D printers. The work equipment considered is the system for selective curing of photopolymers using a UV-laser and UV-radiation in such equipment that leads to additional technical difficulties. In many cases for transporting the radiation from the laser to the point processed, a multi-mirror system is used: however, such systems are usually difficult to adjust. Additionally, such multi-mirror systems are usually used as a part of the equipment for laser cutting of metals using high-power IR-lasers. For the UV-lasers, using many mirrors leads to crucial radiation losses because of many reflections. Therefore, during the development of the optical system for technological equipment using UV-laser we need to solve two main problems: to transfer the radiation for the working point with minimum losses and to include the system for controlling/handling the radiation spot position. We introduce a system for working with UV-lasers with 450mW of power and a wavelength of 0.45 μm based on a fiber system. In our modelling and design, we achieve spot sizes of about 300 μm, and the designed optical and mechanical systems (prototypes) were manufactured and assembled. In this paper, we present the layout of the technological unit, the results of the theoretical modelling of some parts of the system and some experimental results.

  18. The effects of emulsifying agents on disposition of lipid-soluble drugs included in fat emulsion.

    PubMed

    Suzuki, Yasuyuki; Masumitsu, Yasushi; Okudaira, Kazuho; Hayashi, Masahiro

    2004-02-01

    The uses for drug delivery systems of two soybean oil fat emulsions prepared with an emulsifying agent, phosphatidyl choline (PC) or Pluronic F-127 (PLU), were examined comparatively in vivo and in vitro. In the presence of lipoprotein lipase (LPL) in vitro, the mean particle size of the PLU emulsion changed less than that of the PC emulsion. The production of non-esterified fatty acid (NEFA) from the PLU emulsion in the presence of LPL was smaller than that from the PC emulsion. These in vitro results indicate that the PLU emulsion is more stable than the PC emulsion. Plasma NEFA concentration following intravenous administration of the emulsions decreased with time for the PC emulsion, but was kept lower and constant for the PLU emulsion, supporting the in vitro stability data. The order of plasma cyclosporine A (CsA) concentration following intravenous administration in the above two emulsions and the mixed solution of polyethylene glycol 400 (PEG) and dimethylamide (DMA) in rats was PLU emulsion>PC emulsion>PEG/DMA solution. The plasma concentration was maintained higher and tissue distribution lower for the PLU emulsion than for other formulations. The uptake of oil violet (OV) into the rat parenchymal cells from the PLU emulsion was approximately half that from the PC emulsion, but the uptake into the Kupffer cells was almost equal in both emulsions. In conclusion, these emulsifying agents can control plasma elimination and tissue distribution of lipophilic drugs included in the emulsion. The use of the emulsion formulation makes it possible to avoid side effects through the reduction of drug uptake into non-targeted tissues.

  19. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    PubMed

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Targeted therapy against EGFR and VEGFR using ZD6474 enhances the therapeutic potential of UV-B phototherapy in breast cancer cells.

    PubMed

    Sarkar, Siddik; Rajput, Shashi; Tripathi, Amit Kumar; Mandal, Mahitosh

    2013-10-20

    The hypoxic environment of tumor region stimulated the up regulation of growth factors responsible for angiogenesis and tumor proliferation. Thus, targeting the tumor vasculature along with the proliferation by dual tyrosine kinase inhibitor may be the efficient way of treating advanced breast cancers, which can be further enhanced by combining with radiotherapy. However, the effectiveness of radiotherapy may be severely compromised by toxicities and tumor resistance due to radiation-induced adaptive response contributing to recurrence and metastases of breast cancer. The rational of using ZD6474 is to evaluate the feasibility and efficacy of combined VEGFR2 and EGFR targeting with concurrent targeted and localized UV-B phototherapy in vitro breast cancer cells with the anticipation to cure skin lesions infiltrated with breast cancer cells. Breast cancer cells were exposed to UV-B and ZD6474 and the cell viability, apoptosis, invasion and motility studies were conducted for the combinatorial effect. Graphs and statistical analyses were performed using Graph Pad Prism 5.0. ZD6474 and UV-B decreased cell viability in breast cancers in combinatorial manner without affecting the normal human mammary epithelial cells. ZD6474 inhibited cyclin E expression and induced p53 expression when combined with UV-B. It activated stress induced mitochondrial pathway by inducing translocation of bax and cytochrome-c. The combination of ZD6474 with UV-B vs. either agent alone also more potently down-regulated the anti-apoptotic bcl-2 protein, up-regulated pro-apoptotic signaling events involving expression of bax, activation of caspase-3 and caspase-7 proteins, and induced poly (ADP-ribose) polymerase resulting in apoptosis. ZD6474 combined with UV-B inhibited invasion of breast cancer cells in vitro as compared to either single agent, indicating a potential involvement of pro-angiogenic growth factors in regulating the altered expression and reorganization of cytoskeletal proteins

  1. Microchannel detector array for X-rays and UV

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1976-01-01

    Device employs sensitive photoelectric electrodes and solid-state memory, can be used at visible UV and X ray wavelengths, includes nonmagnetic proximity focusing, and is immune to high energy charged-particle background.

  2. Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes.

    PubMed

    Ji, Yuefei; Yang, Yan; Zhou, Lei; Wang, Lu; Lu, Junhe; Ferronato, Corinne; Chovelon, Jean-Marc

    2018-04-15

    The widespread occurrence of pharmaceuticals and their metabolites in natural waters has raised great concerns about their potential risks on human health and ecological systems. This study systematically investigates the degradation of sulfasalazine (SSZ) and its two human metabolites, sulfapyridine (SPD) and 5-aminosalicylic acid (5-ASA), by UV and UV/peroxydisulfate (UV/PDS) processes. Experimental results show that SPD and 5-ASA were readily degraded upon UV 254 nm direct photolysis, with quantum yields measured to be (8.6 ± 0.8) × 10 -3 and (2.4 ± 0.1) × 10 -2  mol Einstein -1 , respectively. Although SSZ was resistant to direct UV photolysis, it could be effectively removed by both UV/H 2 O 2 and UV/PDS processes, with fluence-based pseudo-first-order rate constants determined to be 0.0030 and 0.0038 cm 2  mJ -1 , respectively. Second-order rate constant between SO 4 •- and SSZ was measured as (1.33 ± 0.01) × 10 9  M -1 s -1 by competition kinetic method. A kinetic model was established for predicting the degradation rate of SSZ in the UV/PDS process. Increasing the dosage of PDS significantly enhanced the degradation of SSZ in the UV/PDS process, which can be well predicted by the developed kinetic model. Natural water constituents, such as natural organic matter (NOM) and bicarbonate (HCO 3 - ), influenced the degradation of SSZ differently. The azo functional group of SSZ molecule was predicted as the reactive site susceptible to electrophilic attack by SO 4 •- by frontier electron densities (FEDs) calculations. Four intermediate products arising from azo bond cleavage and SO 2 extrusion were identified by solid phase extraction-liquid chromatography-triple quadrupole mass spectrometry (SPE-LC-MS/MS). Based on the products identified, detailed transformation pathways for SSZ degradation in the UV/PDS system were proposed. Results reveal that UV/PDS could be an efficient approach for remediation of water

  3. Finding the UV-Visible Path Forward: Proceedings of the Community Workshop to Plan the Future of UV/Visible Space Astrophysics

    NASA Astrophysics Data System (ADS)

    Scowen, Paul A.; Tripp, Todd; Beasley, Matt; Ardila, David; Andersson, B.-G.; Maíz Apellániz, Jesús; Barstow, Martin; Bianchi, Luciana; Calzetti, Daniela; Clampin, Mark; Evans, Christopher J.; France, Kevin; García García, Miriam; Gomez de Castro, Ana; Harris, Walt; Hartigan, Patrick; Howk, J. Christopher; Hutchings, John; Larruquert, Juan; Lillie, Charles F.; Matthews, Gary; McCandliss, Stephan; Polidan, Ron; Perez, Mario R.; Rafelski, Marc; Roederer, Ian U.; Sana, Hugues; Sanders, Wilton T.; Schiminovich, David; Thronson, Harley; Tumlinson, Jason; Vallerga, John; Wofford, Aida

    2017-07-01

    We present the science cases and technological discussions that came from the workshop titled “Finding the ultraviolet (UV)-Visible Path Forward” held at NASA GSFC 2015 June 25-26. The material presented outlines the compelling science that can be enabled by a next generation space-based observatory dedicated for UV-visible science, the technologies that are available to include in that observatory design, and the range of possible alternative launch approaches that could also enable some of the science. The recommendations to the Cosmic Origins Program Analysis Group from the workshop attendees on possible future development directions are outlined.

  4. UV-B measurements in India

    NASA Astrophysics Data System (ADS)

    Prasad, B. S. N.; Gayathri, H. B.; Muralikrishnan, N.

    1992-01-01

    Global UV-B flux (sum of direct and diffuse radiations) data at four wavelengths 280, 290, 300 and 310 nm are recorded at several locations in India as part of Indian Middle Atmosphere Programme (IMAP). The stations have been selected considering distinct geographic features and possible influence of atmospheric aerosols and particulates on the ground reaching UV-B flux. Mysore (12.6°N, 76.6°E) has been selected as a continental station largely free from any industrial pollution and large scale bio-mass burning. An examination of the ground reaching UV-B flux at Mysore shows a marked dirunal and seasonal asymmetry. This can be attributed to the seasonally varying atmospheric aerosols and particulates which influence the scattering of UV-B radiation. The available parameterization models are used to reproduce the experimental UV-B irradiance by varying the input parameters to the model. These results on the dirunal and seasonal variation of global UV-B flux from experiment and models are discussed in this paper.

  5. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    NASA Astrophysics Data System (ADS)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  6. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms.

    PubMed

    Rattanakul, Surapong; Oguma, Kumiko

    2018-03-01

    To demonstrate the effectiveness of UV light-emitting diodes (UV-LEDs) to disinfect water, UV-LEDs at peak emission wavelengths of 265, 280, and 300 nm were adopted to inactivate pathogenic species, including Pseudomonas aeruginosa and Legionella pneumophila, and surrogate species, including Escherichia coli, Bacillus subtilis spores, and bacteriophage Qβ in water, compared to conventional low-pressure UV lamp emitting at 254 nm. The inactivation profiles of each species showed either a linear or sigmoidal survival curve, which both fit well with the Geeraerd's model. Based on the inactivation rate constant, the 265-nm UV-LED showed most effective fluence, except for with E. coli which showed similar inactivation rates at 265 and 254 nm. Electrical energy consumption required for 3-log 10 inactivation (E E,3 ) was lowest for the 280-nm UV-LED for all microbial species tested. Taken together, the findings of this study determined the inactivation profiles and kinetics of both pathogenic bacteria and surrogate species under UV-LED exposure at different wavelengths. We also demonstrated that not only inactivation rate constants, but also energy efficiency should be considered when selecting an emission wavelength for UV-LEDs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    PubMed

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  8. Vacuum isostatic micro/macro molding of PTFE materials for laser beam shaping in environmental applications: large scale UV laser water purification

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd; Ohar, Orest

    2009-08-01

    Accessibility to fresh clean water has determined the location and survival of civilizations throughout the ages [1]. The tangible economic value of water is demonstrated by industry's need for water in fields such as semiconductor, food and pharmaceutical manufacturing. Economic stability for all sectors of industry depends on access to reliable volumes of good quality water. As can be seen on television a nation's economy is seriously affected by water shortages through drought or mismanagement and as such those water resources must therefore be managed both for the public interest and the economic future. For over 50 years ultraviolet water purification has been the mainstay technology for water treatment, killing potential microbiological agents in water for leisure activities such as swimming pools to large scale waste water treatment facilities where the UV light photo-oxidizes various pollutants and contaminants. Well tailored to the task, UV provides a cost effective way to reduce the use of chemicals in sanitization and anti-biological applications. Predominantly based on low pressure Hg UV discharge lamps, the system is plagued with lifetime issues (~1 year normal operation), the last ten years has shown that the technology continues to advance and larger scale systems are turning to more advanced lamp designs and evaluating solidstate UV light sources and more powerful laser sources. One of the issues facing the treatment of water with UV lasers is an appropriate means of delivering laser light efficiently over larger volumes or cross sections of water. This paper examines the potential advantages of laser beam shaping components made from isostatically micro molding microstructured PTFE materials for integration into large scale water purification and sterilization systems, for both lamps and laser sources. Applying a unique patented fabrication method engineers can form micro and macro scale diffractive, holographic and faceted reflective structures

  9. Transcriptomic Profiling of Soybean in Response to High-Intensity UV-B Irradiation Reveals Stress Defense Signaling

    PubMed Central

    Yoon, Min Young; Kim, Moon Young; Shim, Sangrae; Kim, Kyung Do; Ha, Jungmin; Shin, Jin Hee; Kang, Sungtaeg; Lee, Suk-Ha

    2016-01-01

    The depletion of the ozone layer in the stratosphere has led to a dramatic spike in ultraviolet B (UV-B) intensity and increased UV-B light levels. The direct absorption of high-intensity UV-B induces complex abiotic stresses in plants, including excessive light exposure, heat, and dehydration. However, UV-B stress signaling mechanisms in plants including soybean (Glycine max [L.]) remain poorly understood. Here, we surveyed the overall transcriptional responses of two soybean genotypes, UV-B-sensitive Cheongja 3 and UV-B-resistant Buseok, to continuous UV-B irradiation for 0 (control), 0.5, and 6 h using RNA-seq analysis. Homology analysis using UV-B-related genes from Arabidopsis thaliana revealed differentially expressed genes (DEGs) likely involved in UV-B stress responses. Functional classification of the DEGs showed that the categories of immune response, stress defense signaling, and reactive oxygen species (ROS) metabolism were over-represented. UV-B-resistant Buseok utilized phosphatidic acid-dependent signaling pathways (based on subsequent reactions of phospholipase C and diacylglycerol kinase) rather than phospholipase D in response to UV-B exposure at high fluence rates, and genes involved in its downstream pathways, such as ABA signaling, mitogen-activated protein kinase cascades, and ROS overproduction, were upregulated in this genotype. In addition, the DEGs for TIR-NBS-LRR and heat shock proteins are positively activated. These results suggest that defense mechanisms against UV-B stress at high fluence rates are separate from the photomorphogenic responses utilized by plants to adapt to low-level UV light. Our study provides valuable information for deep understanding of UV-B stress defense mechanisms and for the development of resistant soybean genotypes that survive under high-intensity UV-B stress. PMID:28066473

  10. MicroRNAs in Skin Response to UV Radiation

    PubMed Central

    Syed, Deeba N.; Khan, Mohammad Imran; Shabbir, Maria; Mukhtar, Hasan

    2014-01-01

    Solar ultraviolet (UV) radiation, an ubiquitous environmental carcinogen, is classified depending on the wave-length, into three regions; short-wave UVC (200–280 nm), mid-wave UVB (280–320 nm), and long-wave UVA (320–400 nm). The human skin, constantly exposed to UV radiation, particularly the UVB and UVA components, is vulnerable to its various deleterious effects such as erythema, photoaging, immunosuppression and cancer. To counteract these and for the maintenance of genomic integrity, cells have developed several protective mechanisms including DNA repair, cell-cycle arrest and apoptosis. The network of damage sensors, signal transducers, mediators, and various effector proteins is regulated through changes in gene expression. MicroRNAs (miRNAs), a group of small non-coding RNAs, act as post-transcriptional regulators through binding to complementary sequences in the 3′-untranslated region of their target genes, resulting in either translational repression or target degradation. Recent studies show that miRNAs add an additional layer of complexity to the intricately controlled cellular responses to UV radiation. This review summarizes our current knowledge of the role of miRNAs in the regulation of the human skin response upon exposure to UV radiation. PMID:23834148

  11. Encapsulation of the UV filters ethylhexyl methoxycinnamate and butyl methoxydibenzoylmethane in lipid microparticles: effect on in vivo human skin permeation.

    PubMed

    Scalia, S; Mezzena, M; Ramaccini, D

    2011-01-01

    Lipid microparticles loaded with the UVB filter ethylhexyl methoxycinnamate (EHMC) and the UVA filter butyl methoxydibenzoylmethane (BMDBM) were evaluated for their effect on the sunscreen agent's percutaneous penetration. Microparticles loaded with EHMC or BMDBM were prepared by the melt emulsification technique using stearic acid or glyceryl behenate as lipidic material, respectively, and hydrogenate phosphatidylcholine as the surfactant. Nonencapsulated BMDBM and EHMC in conjunction with blank microparticles or equivalent amounts of the 2 UV filters loaded in the lipid microparticles were introduced into oil-in-water emulsions and applied to human volunteers. Skin penetration was investigated in vivo by the tape-stripping technique. For the cream with the nonencapsulated sunscreen agents, the percentages of the applied dose diffused into the stratum corneum were 32.4 ± 4.1% and 30.3 ± 3.3% for EHMC and BMDBM, respectively. A statistically significant reduction in the in vivo skin penetration to 25.3 ± 5.5% for EHMC and 22.7 ± 5.4% for BMDBM was achieved by the cream containing the microencapsulated UV filters. The inhibiting effect on permeation attained by the lipid microparticles was more marked (45-56.3% reduction) in the deeper stratum corneum layers. The reduced percutaneous penetration of BMDBM and EHMC achieved by the lipid microparticles should preserve the UV filter efficacy and limit potential toxicological risks. Copyright © 2011 S. Karger AG, Basel.

  12. Juno Ultraviolet Spectrograph (Juno-UVS) Observations of Jupiter during Approach

    NASA Astrophysics Data System (ADS)

    Gladstone, Randy; Versteeg, Maarten; Greathouse, Thomas K.; Hue, Vincent; Davis, Michael; Gerard, Jean-Claude; Grodent, Denis; Bonfond, Bertrand

    2016-10-01

    We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes all important ultraviolet (UV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4 x 4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Prior to Jupiter Orbit Insertion (JOI) on July 5, Juno approach observations provide a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions (e.g., polar emissions) may be controlled or at least affected by the solar wind. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions (~40 minutes per hour

  13. Efficiency of ocular UV protection by clear lenses

    PubMed Central

    Rifai, Katharina; Hornauer, Matthias; Buechinger, Ramona; Schoen, Roland; Barraza-Bernal, Maria; Habtegiorgis, Selam; Glasenapp, Carsten; Wahl, Siegfried; Mappes, Timo

    2018-01-01

    Ocular UV doses accumulate all-day, not only during periods of direct sun exposure. The UV protection efficiency of three clear lenses was evaluated experimentally, validated by simulation, and compared to non-UV protection: a first spectacle lens with a tailored UV absorber, a second spectacle lens, minimizing UV back reflections, as well as a third spectacle lens, combining both. A tailored UV-absorber efficiently reduced overall UV irradiance to 7 %, whereas reduction of back-reflections still left UV irradiance at 42 %. Thus, clear lenses with a tailored UV absorber efficiently protect the eye from UV, supplementing sun glasses wear to an all-day protection scenario. PMID:29675331

  14. Efficiency of ocular UV protection by clear lenses.

    PubMed

    Rifai, Katharina; Hornauer, Matthias; Buechinger, Ramona; Schoen, Roland; Barraza-Bernal, Maria; Habtegiorgis, Selam; Glasenapp, Carsten; Wahl, Siegfried; Mappes, Timo

    2018-04-01

    Ocular UV doses accumulate all-day, not only during periods of direct sun exposure. The UV protection efficiency of three clear lenses was evaluated experimentally, validated by simulation, and compared to non-UV protection: a first spectacle lens with a tailored UV absorber, a second spectacle lens, minimizing UV back reflections, as well as a third spectacle lens, combining both. A tailored UV-absorber efficiently reduced overall UV irradiance to 7 %, whereas reduction of back-reflections still left UV irradiance at 42 %. Thus, clear lenses with a tailored UV absorber efficiently protect the eye from UV, supplementing sun glasses wear to an all-day protection scenario.

  15. UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation.

    PubMed

    Han, Mira; Ban, Jae-Jun; Bae, Jung-Soo; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-11-14

    The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.

  16. Appearance-based interventions to reduce UV exposure: A systematic review.

    PubMed

    Persson, Sofia; Benn, Yael; Dhingra, Katie; Clark-Carter, David; Owen, Alison L; Grogan, Sarah

    2018-05-01

    sun protection. Previous reviews identified methodological issues with research on this topic, which included limited a priori power calculations and a general lack of long-term follow-ups. What does this study add? This review concludes that photoageing information in combination with UV photo is associated with a medium positive effect size on sun protection intentions. Photoageing can be manipulated according to theoretical constructs (e.g., Theory of Alternative Behaviours), which may contribute to its effectiveness. Issues such as homogeneity of settings and participants and limited a priori power calculations in the included studies have been identified. This review specifically recommends that future research is conducted in locations with less overall sun exposure, and with a more diverse participant range (e.g., more males and older participants). © 2018 The British Psychological Society.

  17. Effect of UV-ozone treatment on poly(dimethylsiloxane) membranes: surface characterization and gas separation performance.

    PubMed

    Fu, Ywu-Jang; Qui, Hsuan-zhi; Liao, Kuo-Sung; Lue, Shingjiang Jessie; Hu, Chien-Chieh; Lee, Kueir-Rarn; Lai, Juin-Yih

    2010-03-16

    A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.

  18. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane.

    PubMed

    Luo, Nan; Zhong, Hui; Yang, Min; Yuan, Xing; Fan, Yaobo

    2016-01-01

    Experimental design and response surface methodology (RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide (AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride) (PVDF) composite membrane (GFRP-CM). The factors considered for experimental design were the UV (ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0-0.25 wt.%, solvent of N-Dimethylacetamide (DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and energy dispersive X-ray spectroscopy (EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM. Copyright © 2015. Published by Elsevier B.V.

  19. Molecular cloning and functional analysis of a UV-B photoreceptor gene, MdUVR8 (UV Resistance Locus 8), from apple.

    PubMed

    Zhao, Cheng; Mao, Ke; You, Chun-Xiang; Zhao, Xian-Yan; Wang, Shu-Hui; Li, Yuan-Yuan; Hao, Yu-Jin

    2016-06-01

    UVR8 (UV Resistance Locus 8) is an ultraviolet-B (UV-B; 280-315nm) light receptor that is involved in regulating many aspects of plant growth and development. UV-B irradiation can increase the development of flower and fruit coloration in many fruit trees, such as grape, pear and apple. Previous investigations of the structure and functions of UVR8 in plants have largely focused on Arabidopsis. Here, we isolated the UVR8 gene from apple (Malus domestica) and analyzed its function in transgenic Arabidopsis. Genomic and protein sequence analysis showed that MdUVR8 shares high similarity with the AtUVR8 protein from Arabidopsis, including the conserved seven-bladed β-propeller, the C27 region, the 3 "GWRHT" motifs and crucial amino-acid residues (14 Trps, 2 Args). A point mutation prediction and three-dimensional structural analysis of MdUVR8 indicated that it has a similar structure to AtUVR8 and that the crucial residues are also important in MdUVR8. In terms of transcript levels, MdUVR8 expression was up-regulated by UV-B light, which suggests that its expression follows a 24-h circadian rhythm. Using heterologous expression of MdUVR8 in both uvr8-1 mutant and wild-type (WT) Arabidopsis, we found that MdUVR8 regulates hypocotyl elongation and gene expression under UV-B light. These data provide functional evidence for a role of MdUVR8 in controlling photomorphogenesis under UV-B light and indicate that the function of UVR8 is conserved between Arabidopsis and apple. Furthermore, we examined the interaction between MdUVR8 and MdCOP1 (constitutive photomorphogenic1) using a yeast two-hybrid assay and a co-immunoprecipitation assay. This interaction provides a direction for investigating the regulatory mechanisms of the UV-B-light pathway in apple. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Cosmic Evolution Through UV Spectroscopy (CETUS): A NASA Probe-Class Mission Concept

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; CETUS Team

    2017-01-01

    CETUS is a probe-class mission concept proposed for study to NASA in November 2016. Its overarching objective is to provide access to the ultraviolet (~100-400 nm) after Hubble has died. CETUS will be a major player in the emerging global network of powerful, new telescopes such as E-ROSITA, DESI, Subaru/PFS, GMT, LSST, WFIRST, JWST, and SKA. The CETUS mission concept provisionally features a 1.5-m telescope with a suite of instruments including a near-UV multi-object spectrograph (200-400 nm) complementing Subaru/PFS observations, wide-field far-UV and near-UV cameras, and far-UV and near-UV spectrographs that can be operated in either high-resolution or low-resolution mode. We have derived the scope and specific science requirements for CETUS for understanding the evolutionary history of galaxies, stars, and dust, but other applications are possible.

  1. GALEX studies on UV properties of Nearby Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Rhee, J.; Rich, R. M.; Sohn, Y.-J.; Lee, Y.-W.; Gil de Paz, A.; Deharveng, J.-M.; Donas, J.; Boselli, A.; Rey, S.-C.; Yi, S. K.; GALEX Team

    2005-12-01

    We present the results of surface photometry on the far-UV (FUV) and near-UV (NUV) images of 23 nearby elliptical galaxies and spiral bulges taken from the GALEX (Galaxy Evolution Explorer). Surface brightness profiles of most galaxies are consistent with de Vaucouleurs' r1/4 law except for some cases more consistent with exponential profiles. We analyze the radial profiles of UV color, (FUV - NUV), and Mg2 line index to investigate a correlation between the gradients of UV color and metal abundance for early-type galaxies. UV color gradients are calculated by applying least square fitting to UV color profile up to effective radius, while Mg2 line strength gradients are compiled for 12 galaxies from previous works. For the 12 early-type galaxies, we find that UV color profiles have a trend to become bluer inward and there is a weak correlation between the gradients of UV color and Mg2 line strength in the sense that galaxies with larger UV color gradients tend to have stronger metal abundance gradients. We also explore the properties of the GALEX-measured ultraviolet rising flux in 96 nearby elliptical galaxies, as a function Lick Mg2 index and velocity dispersion. We include 36 galaxies in the Virgo cluster from the sample of Boselli et al (2005). We find no correlation between the Mg2 index, and log σ and FUV-r. This confirms the findings of Rich et al (2005) for a sample of GALEX/SDSS quiescent early-type galaxies. This is true both for the integrated light, and for nuclear colors. We find a weak correlation between Mg2 and FUV-NUV. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology.

  2. UV DISINFECTION GUIDANCE MANUAL FOR THE ...

    EPA Pesticide Factsheets

    Provides technical information on selection, design and operation of UV systems; provides regulatory agencies with guidance and the necessary tools to assess UV systems at the design, start-up, and routine operation phase; provides manufacturers with the testing and performance standards for UV components and systems for treating drinking water. Provide guidance to water systems, regulators and manufacturers on UV disinfection of drinking water.

  3. UV filters for lighting of plants

    NASA Astrophysics Data System (ADS)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-03-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In

  4. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkolnik, Evgenya L.; Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: barman@lpl.arizona.edu

    2014-10-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation andmore » evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.« less

  5. UV filters for lighting of plants

    NASA Technical Reports Server (NTRS)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-01-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In

  6. Topical antifungal agents: an update.

    PubMed

    Diehl, K B

    1996-10-01

    So many topical antifungal agents have been introduced that it has become very difficult to select the proper agent for a given infection. Nonspecific agents have been available for many years, and they are still effective in many situations. These agents include Whitfield's ointment, Castellani paint, gentian violet, potassium permanganate, undecylenic acid and selenium sulfide. Specific antifungal agents include, among others, the polyenes (nystatin, amphotericin B), the imidazoles (metronidazole, clotrimazole) and the allylamines (terbinafine, naftifine). Although the choice of an antifungal agent should be based on an accurate diagnosis, many clinicians believe that topical miconazole is a relatively effective agent for the treatment of most mycotic infections. Terbinafine and other newer drugs have primary fungicidal effects. Compared with older antifungal agents, these newer drugs can be used in lower concentrations and shorter therapeutic courses. Studies are needed to evaluate the clinical efficacies and cost advantages of both newer and traditional agents.

  7. Milk phospholipid's protective effects against UV damage in skin equivalent models

    NASA Astrophysics Data System (ADS)

    Dargitz, Carl; Russell, Ashley; Bingham, Michael; Achay, Zyra; Jimenez-Flores, Rafael; Laiho, Lily H.

    2012-03-01

    Exposure of skin tissue to UV radiation has been shown to cause DNA photodamage. If this damaged DNA is allowed to replicate, carcinogenesis may occur. DNA damage is prevented from being passed on to daughter cells by upregulation of the protein p21. p21 halts the cells cycle allowing the cell to undergo apoptosis, or repair its DNA before replication. Previous work suggested that milk phospholipids may possess protective properties against UV damage. In this study, we observed cell morphology, cell apoptosis, and p21 expression in tissue engineered epidermis through the use of Hematoxylin and Eosin staining, confocal microscopy, and western blot respectively. Tissues were divided into four treatment groups including: a control group with no UV and no milk phospholipid treatment, a group exposed to UV alone, a group incubated with milk phospholipids alone, and a group treated with milk phospholipids and UV. All groups were incubated for twenty-four hours after treatment. Tissues were then fixed, processed, and embedded in paraffin. Performing western blots resulted in visible p21 bands for the UV group only, implying that in every other group, p21 expression was lesser. Numbers of apoptotic cells were determined by observing the tissues treated with Hoechst dye under a confocal microscope, and counting the number of apoptotic and total cells to obtain a percentage of apoptotic cells. We found a decrease in apoptotic cells in tissues treated with milk phospholipids and UV compared to tissues exposed to UV alone. Collectively, these results suggest that milk phospholipids protect cell DNA from damage incurred from UV light.

  8. Using XMM-OM UV Data to Study Cluster Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Miller, Neal A.; O'Steen, R.

    2010-01-01

    The XMM-Newton satellite includes an Optical Monitor (XMM-OM) for the simultaneous observation of its X-ray targets at UV and optical wavelengths. On account of XMM's excellent characteristics for the observation of the hot intracluster medium, a large number of galaxy clusters have been observed by XMM and there is consequently a large and virtually unused database of XMM-OM UV data for galaxies in the cores of these clusters. We have begun a program to capitalize on such data, and describe here our efforts on a subsample of ten nearby clusters having XMM-OM, GALEX, and SDSS data. We present our methods for photometry and calibration of the XMM-OM UV data, and briefly present some applications including galaxy color magnitude diagrams (and identification of the red sequence, blue cloud, and green valley) and SED fitting (and galaxy stellar masses and star formation histories). Support for this work is provided by NASA Award Number NNX09AC76G.

  9. THE UV-BRIGHT QUASAR SURVEY (UVQS): DR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroe, TalaWanda R.; Tumlinson, Jason; Prochaska, J. Xavier

    2016-07-01

    We present the first data release (DR1) from our UV-bright Quasar Survey for new z  ∼ 1 active galactic nuclei (AGNs) across the sky. Using simple GALEX UV and WISE near-IR color selection criteria, we generated a list of 1450 primary candidates with FUV < 18.5 mag. We obtained discovery spectra, primarily on 3 m-class telescopes, for 1040 of these candidates and confirmed 86% as AGNs, with redshifts generally at z  > 0.5. Including a small set of observed secondary candidates, we report the discovery of 217 AGNs with FUV < 18 mag that previously had no reported spectroscopic redshift. These are excellent potential targets formore » UV spectroscopy before the end of the Hubble Space Telescope mission. The main data products are publicly available through the Mikulski Archive for Space Telescopes.« less

  10. Hybrid 2D patterning using UV laser direct writing and aerosol jet printing of UV curable polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Obata, Kotaro; Schonewille, Adam; Slobin, Shayna; Hohnholz, Arndt; Unger, Claudia; Koch, Jürgen; Suttmann, Oliver; Overmeyer, Ludger

    2017-09-01

    The hybrid technique of aerosol jet printing and ultraviolet (UV) laser direct writing was developed for 2D patterning of thin film UV curable polydimethylsiloxane (PDMS). A dual atomizer module in an aerosol jet printing system generated aerosol jet streams from material components of the UV curable PDMS individually and enables the mixing in a controlled ratio. Precise control of the aerosol jet printing achieved the layer thickness of UV curable PDMS as thin as 1.6 μm. This aerosol jet printing system is advantageous because of its ability to print uniform thin-film coatings of UV curable PDMS on planar surfaces as well as free-form surfaces without the use of solvents. In addition, the hybrid 2D patterning using the combination of UV laser direct writing and aerosol jet printing achieved selective photo-initiated polymerization of the UV curable PDMS layer with an X-Y resolution of 17.5 μm.

  11. Characterising and testing deep UV LEDs for use in space applications

    NASA Astrophysics Data System (ADS)

    Hollington, D.; Baird, J. T.; Sumner, T. J.; Wass, P. J.

    2015-12-01

    Deep ultraviolet (DUV) light sources are used to neutralise isolated test masses in highly sensitive space-based gravitational experiments. An example is the LISA Pathfinder charge management system, which uses low-pressure mercury lamps. A future gravitational-wave observatory such as eLISA will use UV light-emitting diodes (UV LEDs), which offer numerous advantages over traditional discharge lamps. Such devices have limited space heritage but are now available from a number of commercial suppliers. Here we report on a test campaign that was carried out to quantify the general properties of three types of commercially available UV LEDs and demonstrate their suitability for use in space. Testing included general electrical and UV output power measurements, spectral stability, pulsed performance and temperature dependence, as well as thermal vacuum, radiation and vibration survivability.

  12. Light-emitting Ga-oxide nanocrystals in glass: a new paradigm for low-cost and robust UV-to-visible solar-blind converters and UV emitters.

    PubMed

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Paleari, Alberto; Lorenzi, Roberto

    2014-01-01

    Wide-bandgap nanocrystals are an inexhaustible source of tuneable functions potentially addressing most of the demand for new light emitting systems. However, the implementation of nanocrystal properties in real devices is not straightforward if a robust and stable optical component is required as a final result. The achievement of efficient light emission from dense dispersions of Ga-oxide nanocrystals in UV-grade glass can be a breakthrough in this regard. Such a result would permit the fabrication of low cost UV-to-visible converters for monitoring UV-emitting events on a large-scale - from invisible hydrogen flames to corona dispersions. From this perspective, γ-Ga₂O₃ nanocrystals are developed by phase separation in Ga-alkali-germanosilicate glasses, obtaining optical materials based on a UV transparent matrix. Band-to-band UV-excitation of light emission from donor-acceptor pair (DAP) recombination is investigated for the first time in embedded γ-Ga₂O₃. The analysis of the decay kinetics gives unprecedented evidence that nanosized confinement of DAP recombination can force a nanophase to the efficient response of exactly balanced DAPs. The results, including a proof of concept of UV-to-visible viewer, definitely demonstrate the feasibility of workable glass-based fully inorganic nanostructured materials with emission properties borrowed from Ga₂O₃ single-crystals and tailored by the nanocrystal size.

  13. Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2011-07-20

    This report summarizes work carried out by the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Team for the period of January 1, 2011 through June 30, 2011. It discusses highlights, overall progress, period goals, and collaborations and lists papers and presentations. To learn more about our project, please visit our UV-CDAT website (URL: http://uv-cdat.org). This report will be forwarded to the program manager for the Department of Energy (DOE) Office of Biological and Environmental Research (BER), national and international collaborators and stakeholders, and to researchers working on a wide range of other climate model, reanalysis, and observation evaluation activities. Themore » UV-CDAT executive committee consists of Dean N. Williams of Lawrence Livermore National Laboratory (LLNL); Dave Bader and Galen Shipman of Oak Ridge National Laboratory (ORNL); Phil Jones and James Ahrens of Los Alamos National Laboratory (LANL), Claudio Silva of Polytechnic Institute of New York University (NYU-Poly); and Berk Geveci of Kitware, Inc. The UV-CDAT team consists of researchers and scientists with diverse domain knowledge whose home institutions also include the National Aeronautics and Space Administration (NASA) and the University of Utah. All work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Working directly with BER climate science analysis projects, this consortium will develop and deploy data and computational resources useful to a wide variety of stakeholders, including scientists, policymakers, and the general public. Members of this consortium already collaborate with other institutions and universities in researching data discovery, management, visualization, workflow analysis, and provenance. The UV-CDAT team will address the following high-level visualization requirements: (1) Alternative parallel streaming statistics and analysis pipelines

  14. Application of Independent Component Analysis to Legacy UV Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Richards, Gordon

    2017-08-01

    We propose to apply a novel analysis technique to UV spectroscopy ofquasars in the HST archive. We endeavor to analyze all of thearchival quasar spectra, but will first focus on those quasars thatalso have optical spectroscopy from SDSS. An archival investigationby Sulentic et al. (2007) revealed 130 known quasars with UV coverageof CIV complementing optical emission line coverage. Today, thesample has grown considerably and now includes COS spectroscopy. Ourproposal includes a proof-of-concept demonstration of the power of atechnique called Independent Component Analysis (ICA). ICA allows usto reduce complexity of of quasar spectra to just a handful ofnumbers. In addition to providing a uniform set of traditional linemeasurements (and carefully calibrated redshifts), we will provide ICAweights to the community with examples of how they can be used to doscience that previously would have been quite difficult. The time isripe for such an investigation because 1) it has been a decade sincethe last significant archival investigation of UV emission lines fromHST quasars, 2) the future is uncertain for obtaining new UV quasarspectroscopy, and 3) the rise of machine learning has provided us withpowerful new tools. Thus our proposed work will provide a true UVlegacy database for quasar-based investigations.

  15. UV Radiation in an Urban Canyon in Southeast Queensland

    NASA Astrophysics Data System (ADS)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  16. New agents for prostate cancer.

    PubMed

    Agarwal, N; Di Lorenzo, G; Sonpavde, G; Bellmunt, J

    2014-09-01

    The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has been revolutionized by the arrival of multiple novel agents in the past 2 years. Immunotherapy in the form of sipuleucel-T, androgen axis inhibitors, including abiraterone acetate and enzalutamide, a chemotherapeutic agent, cabazitaxel, and a radiopharmaceutical, radium-223, have all yielded incremental extensions of survival and have been recently approved. A number of other agents appear promising in early studies, suggesting that the armamentarium against castrate-resistant prostate cancer is likely to continue to expand. Emerging androgen pathway inhibitors include androgen synthesis inhibitors (TAK700), androgen receptor inhibitors (ARN-509, ODM-201), AR DNA binding domain inhibitors (EPI-001), selective AR downregulators or SARDs (AZD-3514), and agents that inhibit both androgen synthesis and receptor binding (TOK-001/galeterone). Promising immunotherapeutic agents include poxvirus vaccines and CTLA-4 inhibitor (ipilimumab). Biologic agents targeting the molecular drivers of disease are also being investigated as single agents, including cabozantinib (Met and VEGFR2 inhibitor) and tasquinimod (angiogenesis and immune modulatory agent). Despite the disappointing results seen from studies evaluating docetaxel in combination with other agents, including GVAX, anti-angiogentic agents (bevacizumab, aflibercept, lenalinomide), a SRC kinase inhibitor (dasatinib), endothelin receptor antagonists (atrasentan, zibotentan), and high-dose calcitriol (DN-101), the results from the trial evaluating docetaxel in combination with the clusterin antagonist, custirsen, are eagerly awaited. New therapeutic hurdles consist of discovering new targets, understanding resistance mechanisms, the optimal sequencing and combinations of available agents, as well as biomarkers predictive for benefit. Novel agents targeting bone metastases are being developed following the success of zoledronic acid

  17. The Ultraviolet Spectrograph (UVS) on Juno

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Persyn, S.; Eterno, J.; Slater, D. C.; Davis, M. W.; Versteeg, M. H.; Persson, K. B.; Siegmund, O. H.; Marquet, B.; Gerard, J.; Grodent, D. C.

    2008-12-01

    Juno, a NASA New Frontiers mission, plans for launch in August 2011, a 5-year cruise (including a flyby of Earth in October 2013 for a gravity boost), and 14 months around Jupiter after arriving in August 2016. The spinning (2 RPM), solar-powered Juno will study Jupiter from a highly elliptical orbit, in which the spacecraft (for about 6 hours once every 11 days) dives down over the north pole, skims the outermost atmosphere, and rises back up over the south pole. This orbit allows Juno avoid most of the intense particle radiation surrounding the planet and provides an excellent platform for investigating Jupiter's polar magnetosphere. Part of the exploration of Jupiter's polar magnetosphere will involve remote sensing of the far-ultraviolet H and H2 auroral emissions, plus gases such as methane and acetylene which add their absorption signature to the H2 emissions. This hydrocarbon absorption can be used to estimate the energy of the precipitating electrons; since more energetic electrons penetrate deeper into the atmosphere and the UV emissions they produce will show more absorption. Juno will carry an Ultraviolet Spectrograph (UVS) to make spectral images of Jupiter's aurora. UVS is a UV imaging spectrograph sensitive to both extreme and far ultraviolet emissions in the 70-205~nm range that will characterize the morphology and spectral nature of Jupiter's auroral emissions. Juno UVS consists of two separate sections: a dedicated telescope/spectrograph assembly and a vault electronics box. The telescope/spectrograph assembly contains a telescope which feeds a 0.15-m Rowland circle spectrograph. The telescope has an input aperture 40×40~mm2 and uses an off-axis parabolic primary mirror. A flat scan mirror situated at the front end of the telescope (used to target specific auroral features at up to ±30° perpendicular to the Juno spin plane) directs incoming light to the primary. The light is then focused onto the spectrograph entrance slit, which has a 'dog

  18. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    PubMed

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-05

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Time and Place as Modifiers of Personal UV Exposure.

    PubMed

    Diffey, Brian L

    2018-05-30

    It is a common belief that, if we want to limit our sun exposure during outdoor recreational activities and holidays in order to avoid sunburn or reduce our risk of skin cancer, we need to reach for the bottle of sunscreen or cover up with clothing. As important as these measures are, there is another way to enjoy our time outdoors and still benefit from the experience. In this article, we consider the impact of time, place, and behaviour outdoors on our exposure to solar ultraviolet (UV) radiation. Some of the simple actions we can take in controlling our UV exposure include being aware of the position of the sun in the sky, understanding how we can use the UV index to guide our outdoor exposure, and the importance of reducing our sun exposure around the middle of the day. Finally we review our preferred holiday activities and destinations, and the influence of outdoor leisure pursuits. By planning where and when we spend our leisure time in the sun, we can maximise our enjoyment whilst limiting our UV exposure.

  20. Accelerating CR-39 Track Detector Processing by Utilizing UV

    NASA Astrophysics Data System (ADS)

    Sparling, Jonathan; Padalino, Stephen; McLean, James; Sangster, Craig; Regan, Sean

    2017-10-01

    The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C, producing micron-scale signal pits at the nuclear track sites. It has been shown that illuminating CR-39 with UV light prior to etching increases bulk and track etch rates, especially when combined with elevated temperature. Spectroscopic analysis for amorphous solids has helped identify which UV wavelengths are most effective at enhancing etch rates. Absorption peaks found in the near infrared range provide for efficient sample heating, and may allow targeting cooperative IR-UV chemistry. Avoiding UV induced noise can be achieved through variations in absorption depths with wavelength. Vacuum drying and water absorption tests allow measurement of the resulting variation of bulk etch rate with depth. Funded in part by the NSF and an Department of Energy Grant through the Lab of Laser Energetics.

  1. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    NASA Astrophysics Data System (ADS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  2. Males do not see only red: UV wavelengths and male territorial aggression in the three-spined stickleback ( Gasterosteus aculeatus)

    NASA Astrophysics Data System (ADS)

    Rick, Ingolf P.; Bakker, Theo C. M.

    2008-07-01

    Animal colour signals serve important functions in intraspecific interactions, including species recognition, mate choice and agonistic behaviour. An increasing interest concerns ultraviolet (UV) wavelengths, for instance studies on the effect of UV in mating decisions. More recently, some studies also established that UV signals affect intrasexual interactions. We studied the role of UV during aggressive encounters between male three-spined sticklebacks ( Gasterosteus aculeatus), a species in which UV has an effect on female and male mate choice and shoaling behaviour. To that aim, we compared the aggressive response of a territorial male to male intruders, either seen in UV-including (UV+) or UV-lacking (UV-) conditions. Our prediction was that, if UV wavelengths are used in male-male competition, a territorial male should show less competitive behaviour towards an intruder representing a lower threat, i.e. the one presented without UV light. Male sticklebacks showed significantly lower levels of aggression towards male opponents lacking an UV component to their coloration than male opponents possessing this colour component. Discrimination was not influenced by a difference in brightness between the UV+ and UV- stimuli. Finally, we present some reflectance-spectrophotometrical data of two skin regions (cheek and abdomen) of the experimental males and analysed relationships between colorimetric variables, body variables and behaviour. Our study emphasises that UV visual cues are of importance in different communicational tasks in the three-spined stickleback.

  3. Evaluation of disinfection by-product formation during chlor(am)ination from algal organic matter after UV irradiation.

    PubMed

    Chen, Shi; Deng, Jing; Li, Lei; Gao, Naiyun

    2018-02-01

    This study evaluated the effect of low-pressure ultraviolet (UV) irradiation on the formation of disinfection by-products (DBPs) from algal organic matter of Microcystis aeruginosa during subsequent chlorination and chloramination. The algal organic matter includes extracellular organic matter (EOM) and intracellular organic matter (IOM). The fluorescence excitation-emission matrix spectra indicated that the humic/fulvic acid-like organics of EOM and the protein-like organics of IOM may be preferentially degraded by UV treatment. UV irradiation with low specific UV absorbance values was effective in reducing the formation of trihalomethanes and dichloroacetic acid from EOM and IOM during the subsequent chlorination. During the UV-chloramine process, higher UV dose (1000 mJ/cm 2 ) led to the decrease of the formation of dichloroacetic acid, trichloroacetic acid, and haloketones from IOM by an average of 24%. Furthermore, UV irradiation can slightly increase the bromine substitution factors (BSFs) of haloacetic acids from EOM during chlorination, including dihaloacetic acids and trihaloacetic acids in the presence of bromide (50 μg/L). However, UV irradiation did not shift the formation of DBPs from IOM to more brominated species, since the BSFs of trihalomethanes, dihaloacetic acids, trihaloacetic acids, and dihaloacetonitriles almost kept unchanged during UV-chlorine process. As for UV-chloramine process, UV irradiation decreased the BSFs of trihalomethanes, while increased the BSFs of dihaloacetic acid for both EOM and IOM. Overall, the UV pretreatment process is a potential technology in treating algae-rich water.

  4. Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation.

    PubMed

    Miller, Charles D; Rangel, Drauzio; Braga, Gilberto U L; Flint, Stephan; Kwon, Sun-Il; Messias, Claudio L; Roberts, Donald W; Anderson, Anne J

    2004-01-01

    Metarhizium anisopliae isolates have a wide insect host range, but an impediment to their commercial use as a biocontrol agent of above-ground insects is the high susceptibility of spores to the near-UV present in solar irradiation. To understand stress responses in M. anisopliae, we initiated studies of enzymes that protect against oxidative stress in two strains selected because their spores differed in sensitivity to UV-B. Spores of the more near-UV resistant strain in M. anisopliae 324 displayed different isozyme profiles for catalase-peroxidase, glutathione reductase, and superoxide dismutase when compared with the less resistant strain 2575. A transient loss in activity of catalase-peroxidase and glutathione reductase was observed during germination of the spores, whereas the intensity of isozymes displaying superoxide dismutase did not change as the mycelium developed. Isozyme composition for catalase-peroxidases and glutathione reductase in germlings changed with growth phase. UV-B exposure from lamps reduced the activity of isozymes displaying catalase-peroxidase and glutathione reductase activities in 2575 more than in 324. The major effect of solar UV-A plus UV-B also was a reduction in catalase-peroxidases isozyme level, a finding confirmed by measurement of catalase specific activity. Impaired growth of M. anisopliae after near-UV exposure may be related to reduced abilities to handle oxidative stress.

  5. Diffractive laser beam homogenizer including a photo-active material and method of fabricating the same

    DOEpatents

    Bayramian, Andy J; Ebbers, Christopher A; Chen, Diana C

    2014-05-20

    A method of manufacturing a plurality of diffractive optical elements includes providing a partially transmissive slide, providing a first piece of PTR glass, and directing first UV radiation through the partially transmissive slide to impinge on the first piece of PTR glass. The method also includes exposing predetermined portions of the first piece of PTR glass to the first UV radiation and thermally treating the exposed first piece of PTR glass. The method further includes providing a second piece of PTR glass and directing second UV radiation through the thermally treated first piece of PTR glass to impinge on the second piece of PTR glass. The method additionally includes exposing predetermined portions of the second piece of PTR glass to the second UV radiation, thermally treating the exposed second piece of PTR glass, and repeating providing and processing of the second piece of PTR glass using additional pieces of PTR glass.

  6. Sensing and Responding to UV-A in Cyanobacteria

    PubMed Central

    Moon, Yoon-Jung; Kim, Seung Il; Chung, Young-Ho

    2012-01-01

    Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress. PMID:23208372

  7. Wavelengths, f-Values, and Cross Sections in the UV Spectra of Astrophysical Atoms, Ions, and Molecules

    NASA Technical Reports Server (NTRS)

    Crane, Phil (Technical Monitor); Raymond, John C.; Parkinson, W. H.

    2004-01-01

    Contents include the following: Improved UV wavelengths, energy levels, and f-values for iron group ions. Update of Kurucz database of wavelengths and f-values. Publication of improved UV photodissociation cross sections for H2O. UV photoabsorption cross sections for CO bands. Service Activities and Data Outreach.

  8. Photodegradation and ecotoxicology of acyclovir in water under UV254 and UV254/H2O2 processes.

    PubMed

    Russo, Danilo; Siciliano, Antonietta; Guida, Marco; Galdiero, Emilia; Amoresano, Angela; Andreozzi, Roberto; Reis, Nuno M; Li Puma, Gianluca; Marotta, Raffaele

    2017-10-01

    The photochemical and ecotoxicological fate of acyclovir (ACY) through UV 254 direct photolysis and in the presence of hydroxyl radicals (UV 254 /H 2 O 2 process) were investigated in a microcapillary film (MCF) array photoreactor, which provided ultrarapid and accurate photochemical reaction kinetics. The UVC phototransformation of ACY was found to be unaffected by pH in the range from 4.5 to 8.0 and resembled an apparent autocatalytic reaction. The proposed mechanism included the formation of a photochemical intermediate (ϕ ACY  = (1.62 ± 0.07)·10 -3  mol ein -1 ) that further reacted with ACY to form by-products (k' = (5.64 ± 0.03)·10 -3  M -1  s -1 ). The photolysis of ACY in the presence of hydrogen peroxide accelerated the removal of ACY as a result of formation of hydroxyl radicals. The kinetic constant for the reaction of OH radicals with ACY (k OH/ACY ) determined with the kinetic modeling method was (1.23 ± 0.07)·10 9  M -1  s -1 and with the competition kinetics method was (2.30 ± 0.11)·10 9  M -1  s -1 with competition kinetics. The acute and chronic effects of the treated aqueous mixtures on different living organisms (Vibrio fischeri, Raphidocelis subcapitata, D. magna) revealed significantly lower toxicity for the samples treated with UV 254 /H 2 O 2 in comparison to those collected during UV 254 treatment. This result suggests that the addition of moderate quantity of hydrogen peroxide (30-150 mg L -1 ) might be a useful strategy to reduce the ecotoxicity of UV 254 based sanitary engineered systems for water reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Tuneable powerful UV laser system with UV noise eater

    NASA Astrophysics Data System (ADS)

    Kobtsev, Sergey; Radnatarov, Daba; Khripunov, Sergey; Zarudnev, Yurii

    2018-02-01

    The present work for the first time presents the study of a laser system delivering into the fibre up to 250 mW of CW radiation tuneable across the 275-310-nm range with the output line width less than 5 GHz and stability of UV output power within 1%. This system can automatically set the output radiation wavelength within the range of 275-310 nm to the precision of 2 pm. UV output power stabilisation is provided by a newly proposed by the authors noise eating technology. This paper discusses details of the developed technology and the results of its application.

  10. A novel method to quantify the adulteration of extra virgin olive oil with low-grade olive oils by UV-vis.

    PubMed

    Torrecilla, José S; Rojo, Ester; Domínguez, Juan C; Rodríguez, Francisco

    2010-02-10

    A simple and novel method to quantify adulterations of extra virgin olive oil (EVOO) with refined olive oil (ROO) and refined olive-pomace oil (ROPO) is described here. This method consists of calculating chaotic parameters (Lyapunov exponent, autocorrelation coefficients, and two fractal dimensions, CPs) from UV-vis scans of adulterated EVOO samples. These parameters have been successfully linearly correlated with the ROO or ROPO concentrations in 396 EVOO adulterated samples. By an external validation process, when the adulterating agent concentration is less than 10%, the integrated CPs/UV-vis model estimates the adulterant agent concentration with a mean correlation coefficient (estimated versus real concentration of low grade olive oil) greater than 0.97 and a mean square error of less than 1%. In light of these results, this detector is suitable not only to detect adulterations but also to measure impurities when, for instance, a higher grade olive oil is transferred to another storage tank in which lower grade olive oil was stored that had not been adequately cleaned.

  11. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility.

    PubMed

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim; Køster, Brian; Lund, Paul-Anker; Ibler, Kristina Sophie; Eriksen, Paul

    2017-10-10

    Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale and conduct of dosimeter deployment and campaign in-field measurements including failures and shortcomings affecting overall data collection are presented. Nationwide measurements for more than three hundred and fifty workers from several different professions were collected in the summer of 2016. On average, each worker's exposure was measured for a 2-week period, which included both work and leisure. Data samples of exposure at work during a Midsummer day show differences across professions. A construction worker received high-level occupational UV exposure most of the working day, except during lunch hour, accumulating to 5.1 SED. A postal service worker was exposed intermittently around noon and in the afternoon, preceded by no exposure forenoon when packing mail, accumulating to 1.6 SED. A crane fitter was exposed only during lunch hour, accumulating to 0.7 SED. These findings are in line with our specialist knowledge as occupational physicians. Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed

  12. The response of aggregated Pseudomonas putida CP1 cells to UV-C and UV-A/B disinfection.

    PubMed

    Maganha de Almeida, Ana C; Quilty, Bríd

    2016-11-01

    UV radiation is a spread method used worldwide for the disinfection of water. However, much of the research on the disinfection of bacterial cells by UV has focused on planktonic cells. Many bacterial cells in nature are present in clumps or aggregates, and these aggregates, which are more resistant to disinfection than their planktonic counterparts, can be problematic in engineered water systems. The current research used Pseudomonas putida (P. putida) CP1, an environmental and non-pathogenic microorganism which autoaggregates when grown under certain conditions, as a model organism to simulate aggregated cells. The study investigated the response of both the planktonic and the aggregated forms of the bacterium to UV-C (λ = 253.7 nm) and UV-A/B (λ > 300 nm) disinfection at laboratory scale in a minimal medium. The planktonic cells of P. putida CP1 were inactivated within 60 s by UV-C and in 60 min by UV-A/B; however, the aggregated cells required 120 min of UV-C treatment and 240 min of UV-A/B radiation to become inactive. The size of the aggregate was reduced following UV treatment. Although all the cells had lost culturability, viability as measured by the LIVE/DEAD ® stain and epifluorescence microscopy was not completely lost and the cells all demonstrated regrowth after overnight incubation in the dark.

  13. Dual UV/thermally curable plastisols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, C.R.

    1983-10-01

    Photoactive, thermally curable plastisol compositions are made by mixing a thermoplastic (preferably poly(vinyl chloride)), a (meth)acrylate, a thermal initiator, a photoinitiator, and a conventional plasticizer. A short exposure of these compositions to UV results in a tack-free skin cure. Heating after UV irradiation gives simultaneous crosslinking and fusion. These dual UV/thermally curable plastisols are useful as adhesives, sealants, encapsulants, and in many other applications.

  14. Theoretical modeling of UV-Vis absorption and emission spectra in liquid state systems including vibrational and conformational effects: explicit treatment of the vibronic transitions.

    PubMed

    D'Abramo, Marco; Aschi, Massimiliano; Amadei, Andrea

    2014-04-28

    Here, we extend a recently introduced theoretical-computational procedure [M. D'Alessandro, M. Aschi, C. Mazzuca, A. Palleschi, and A. Amadei, J. Chem. Phys. 139, 114102 (2013)] to include quantum vibrational transitions in modelling electronic spectra of atomic molecular systems in condensed phase. The method is based on the combination of Molecular Dynamics simulations and quantum chemical calculations within the Perturbed Matrix Method approach. The main aim of the presented approach is to reproduce as much as possible the spectral line shape which results from a subtle combination of environmental and intrinsic (chromophore) mechanical-dynamical features. As a case study, we were able to model the low energy UV-vis transitions of pyrene in liquid acetonitrile in good agreement with the experimental data.

  15. High-Performance Visible-Blind UV Phototransistors Based on n-Type Naphthalene Diimide Nanomaterials.

    PubMed

    Song, Inho; Lee, Seung-Chul; Shang, Xiaobo; Ahn, Jaeyong; Jung, Hoon-Joo; Jeong, Chan-Uk; Kim, Sang-Wook; Yoon, Woojin; Yun, Hoseop; Kwon, O-Pil; Oh, Joon Hak

    2018-04-11

    This study investigates the performance of single-crystalline nanomaterials of wide-band gap naphthalene diimide (NDI) derivatives with methylene-bridged aromatic side chains. Such materials are found to be easily used as high-performance, visible-blind near-UV light detectors. NDI single-crystalline nanoribbons are assembled using a simple solution-based process (without solvent-inclusion problems), which is then applied to organic phototransistors (OPTs). Such OPTs exhibit excellent n-channel transistor characteristics, including an average electron mobility of 1.7 cm 2 V -1 s -1 , sensitive UV detection properties with a detection limit of ∼1 μW cm -2 , millisecond-level responses, and detectivity as high as 10 15 Jones, demonstrating the highly sensitive organic visible-blind UV detectors. The high performance of our OPTs originates from the large face-to-face π-π stacking area between the NDI semiconducting cores, which is facilitated by methylene-bridged aromatic side chains. Interestingly, NDI-based nanoribbon OPTs exhibit a distinct visible-blind near-UV detection with an identical detection limit, even under intense visible light illumination (for example, 10 4 times higher intensity than UV light intensity). Our findings demonstrate that wide-band gap NDI-based nanomaterials are highly promising for developing high-performance visible-blind UV photodetectors. Such photodetectors could potentially be used for various applications including environmental and health-monitoring systems.

  16. UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon.

    PubMed

    An, Dong; Westerhoff, Paul; Zheng, Mengxin; Wu, Mengyuan; Yang, Yu; Chiu, Chao-An

    2015-04-15

    A new method of ultraviolet light (UV) activated persulfate (PS) oxidation was investigated to regenerate granular activated carbon (GAC) in drinking water applications. The improvements in iodine and methylene blue numbers measured in the GAC after ultraviolet- (UV) activated persulfate suggested that the GAC preloaded with natural organic matter (NOM) was chemically regenerated. An experimental matrix for UV-activated persulfate regeneration included a range of persulfate doses and different UV wavelengths. Over 87% of the initial iodine number for GAC was restored under the optimum conditions, perfulfate dosage 60 g/L and UV exposure 1.75 × 10(4) mJ/cm(2). The persulfate dosages had little effect on the recovery of the methylene blue number, which was approximately 65%. Persulfate activation at 185 nm was superior to activation at 254 nm. UV activation of persulfate in the presence of GAC produced acid, lowering the solution pH. Higher persulfate concentrations and UV exposure resulted in greater GAC regeneration. Typical organic and inorganic byproducts (e.g., benzene compounds and sulfate ions) were measured as a component of treated water quality safety. This study provides a proof-of-concept that can be used to optimize pilot-scale and full-scale UV-activated persulfate for regeneration of NOM-saturated GAC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2006-01-01

    In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.

  18. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.

    PubMed

    Zhang, Ying; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Gamal El-Din, Mohamed

    2017-07-01

    Naphthenic acids (NAs) are a highly complex mixture of organic compounds naturally present in bitumen and identified as the primary toxic constituent of oil sands process-affected water (OSPW). This work investigated the degradation of cyclohexanoic acid (CHA), a model NA compound, and natural occurring NAs during the UV photolysis of Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton processes. The results indicated that in the UV-Fe(III)NTA process at pH 8, the CHA removal increased with increasing NTA dose (0.18, 0.36 and 0.72 mM), while it was independent of the Fe(III) dose (0.09, 0.18 and 0.36 mM). Moreover, the three Fe concentrations had no influence on the photolysis of the Fe(III)NTA complex. The main responsible species for the CHA degradation was hydroxyl radical (OH), and the role of dissolved O 2 in the OH generation was found to be negligible. Real OSPW was treated with the UV-Fe(III)NTA and UV-NTA-Fenton advanced oxidation processes (AOPs). The removals of classical NAs (O 2 -NAs), oxidized NAs with one additional oxygen atom (O 3 -NAs) and with two additional oxygen atoms (O 4 -NAs) were 44.5%, 21.3%, and 25.2% in the UV-Fe(III)NTA process, respectively, and 98.4%, 86.0%, and 81.0% in the UV-NTA-Fenton process, respectively. There was no influence of O 2 on the NA removal in these two processes. The results also confirmed the high reactivity of the O 2 -NA species with more carbons and increasing number of rings or double bond equivalents. This work opens a new window for the possible treatment of OSPW at natural pH using these AOPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. UV response on dielectric properties of nano nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Pandey, Kamal Kumar; Tripathi, Pankaj Kumar; Misra, Abhishek Kumar; Manohar, Rajiv

    2018-03-01

    In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB) and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz-10 MHz in the nematic mesophase range.

  20. Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell.

    PubMed

    Iskander, Syeed Md; Novak, John T; Brazil, Brian; He, Zhen

    2017-11-01

    The presence of UV quenching compounds in landfill leachate can negatively affect UV disinfection in a wastewater treatment plant when leachate is co-treated. Herein, a microbial fuel cell (MFC) was investigated to remove UV quenchers from a landfill leachate with simultaneous bioelectricity generation. The key operating parameters including hydraulic retention time (HRT), anolyte recirculation rate, and external resistance were systematically studied to maximize energy recovery and UV absorbance reduction. It was found that nearly 50% UV absorbance was reduced under a condition of HRT 40 days, continuous anolyte recirculation, and 10 Ω external resistance. Further analysis showed a total reduction of organics by 75.3%, including the reduction of humic acids, fulvic acids, and hydrophilic fraction concentration as TOC. The MFC consumed 0.056 kWh m -3 by its pump system for recirculation and oxygen supply. A reduced HRT of 20 days with periodical anode recirculation (1 hour in every 24 hours) and 39 Ω external resistance (equal to the internal resistance of the MFC) resulted in the highest net energy of 0.123 kWh m -3 . Granular activated carbon (GAC) was used as an effective post-treatment step and could achieve 89.1% UV absorbance reduction with 40 g L -1 . The combined MFC and GAC treatment could reduce 92.9% of the UV absorbance and remove 89.7% of the UV quenchers. The results of this study would encourage further exploration of using MFCs as an energy-efficient method for removing UV quenchers from landfill leachate.

  1. Influence of the UV Environment on the Synthesis of Prebiotic Molecules.

    PubMed

    Ranjan, Sukrit; Sasselov, Dimitar D

    2016-01-01

    Ultraviolet radiation is common to most planetary environments and could play a key role in the chemistry of molecules relevant to abiogenesis (prebiotic chemistry). In this work, we explore the impact of UV light on prebiotic chemistry that might occur in liquid water on the surface of a planet with an atmosphere. We consider effects including atmospheric absorption, attenuation by water, and stellar variability to constrain the UV input as a function of wavelength. We conclude that the UV environment would be characterized by broadband input, and wavelengths below 204 nm and 168 nm would be shielded out by atmospheric CO2 and water, respectively. We compare this broadband prebiotic UV input to the narrowband UV sources (e.g., mercury lamps) often used in laboratory studies of prebiotic chemistry and explore the implications for the conclusions drawn from these experiments. We consider as case studies the ribonucleotide synthesis pathway of Powner et al. (2009) and the sugar synthesis pathway of Ritson and Sutherland (2012). Irradiation by narrowband UV light from a mercury lamp formed an integral component of these studies; we quantitatively explore the impact of more realistic UV input on the conclusions that can be drawn from these experiments. Finally, we explore the constraints solar UV input places on the buildup of prebiotically important feedstock gasses like CH4 and HCN. Our results demonstrate the importance of characterizing the wavelength dependence (action spectra) of prebiotic synthesis pathways to determine how pathways derived under laboratory irradiation conditions will function under planetary prebiotic conditions.

  2. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part ii; UV-B radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type B (UV-B) radiation effects on medicinal plants have been recently investigated in the context of climate change, but the modifications generated by UV-B radiation might be used to increase the content of antioxidants, including phenolic compounds. To generate information on the effect of exposure to artificial UV-B radiation at different highdoses in the antioxidant content of damiana plants in an in vitro model. Damiana plantlets (tissue cultures in Murashige- Skoog medium) were irradiated with artificial UV-B at 3 different doses (1) 0.5 ± 0.1 mW cm-2 (high) for 2 h daily, (2) 1 ± 0,1 mW cm-2 (severe) for 2 h daily, or (3) 1 ± 0.1 mW cm-2 for 4 h daily during 3 weeks. The concentration of photosynthetic pigments (chlorophylls a and b, carotenoids), vitamins (C and E) and total phenolic compounds, the enzymatic activity of superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1), as well as total antioxidant capacity and lipid peroxidation levels were quantified to assess the effect of high artificial UV-B radiation in the antioxidant content of in vitro damiana plants. Severe and high doses of artificial UV-B radiation modified the antioxidant content by increasing the content of vitamin C and decreased the phenolic compound content, as well as modified the oxidative damage of damiana plants in an in vitro model. UV-B radiation modified the antioxidant content in damiana plants in an in vitro model, depending on the intensity and duration of the exposure. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. Rates of nickel(II) capture from complexes with NTA, EDDA, and related tetradentate chelating agents by the hexadentate chelating agents EDTA and CDTA: Evidence of a "semijunctive" ligand exchange pathway

    NASA Astrophysics Data System (ADS)

    Boland, Nathan E.; Stone, Alan T.

    2017-09-01

    Many siderophores and metallophores produced by soil organisms, as well as anthropogenic chelating agent soil amendments, rely upon amine and carboxylate Lewis base groups for metal ion binding. UV-visible spectra of metal ion-chelating agent complexes are often similar and, as a consequence, whole-sample absorbance measurements are an unreliable means of monitoring the progress of exchange reactions. In the present work, we employ capillary electrophoresis to physically separate Ni(II)-tetradentate chelating agent complexes (NiL) from Ni(II)-hexadentate chelating agent complexes (NiY) prior to UV detection, such that progress of the reaction NiL + Y → NiY + L can be conveniently monitored. Rates of ligand exchange for Ni(II) are lower than for other +II transition metal ions. Ni(II) speciation in environmental media is often under kinetic rather than equilibrium control. Nitrilotriacetic acid (NTA), with three carboxylate groups all tethered to a central amine Lewis base group, ethylenediamine-N,N‧-diacetic acid (EDDA), with carboxylate-amine-amine-carboxylate groups arranged linearly, plus four structurally related compounds, are used as tetradentate chelating agents. Ethylenediaminetetraacetic acid (EDTA) and the structurally more rigid analog trans-cyclohexaneethylenediaminetetraacetic acid (CDTA) are used as hexadentate chelating agents. Effects of pH and reactant concentration are explored. Ni(II) capture by EDTA was consistently more than an order of magnitude faster than capture by CDTA, and too fast to quantify using our capillary electrophoresis-based technique. Using NiNTA as a reactant, Ni(II) capture by CDTA is independent of CDTA concentration and greatly enhanced by a proton-catalyzed pathway at low pH. Using NiEDDA as reactant, Ni(II) capture by CDTA is first order with respect to CDTA concentration, and the contribution from the proton-catalyzed pathway diminished by CDTA protonation. While the convention is to assign either a disjunctive

  4. Skin tumor development after UV irradiation and photodynamic therapy is unaffected by short-term pretreatment with 5-fluorouracil, imiquimod and calcipotriol. An experimental hairless mouse study.

    PubMed

    Bay, Christiane; Togsverd-Bo, Katrine; Lerche, Catharina M; Haedersdal, Merete

    2016-01-01

    Photodynamic therapy (PDT) delays ultraviolet (UV) radiation-induced squamous cell carcinomas (SCCs) in hairless mice. Efficacy may be enhanced by combining PDT with antineoplastic or pro-differentiating agents. We investigated if pretreatment with 5-fluorouracil (5FU), imiquimod (IMIQ) or calcipotriol (CAL) before PDT further delays tumor onset. Hairless mice (n=224) were exposed 3 times weekly to 3 standard erythema doses (SED) of UV radiation. Methyl-aminolevulinate (MAL)-PDT sessions were given on days 45 and 90 before SCC development. Three applications of topical 5FU, IMIQ or CAL were given before each PDT session. Fluorescence photography quantified protoporphyrin IX (PpIX) formation. PDT delayed UV-induced SCC development by 59 days (212 days UV-MAL-PDT vs. 153 days UV-control, P<0.001). Pretreatment with 5FU, IMIQ or CAL before PDT did not further delay SCC onset compared to PDT alone (207 days UV-5FU-MAL-PDT, 215 days UV-IMIQ-MAL-PDT, 206 days UV-CAL-MAL-PDT vs. 212 days UV-MAL-PDT, P=ns). PpIX fluorescence intensified by 5FU-pretreatment (median 21,392 au UV-5FU-MAL-PDT, P=0.011), decreased after IMIQ-pretreatment (12,452 au UV-IMIQ-MAL-PDT, P<0.001), and was unaffected by CAL-pretreatment (19,567 au UV-CAL-MAL-PDT, P=ns) compared to MAL alone (18,083 au UV-MAL-PDT). Short-term three-day pretreatment with 5FU, IMIQ and CAL before PDT does not further delay tumor onset in UV-exposed hairless mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. UV clothing and skin cancer.

    PubMed

    Tarbuk, Anita; Grancarić, Ana Marija; Situm, Mirna; Martinis, Mladen

    2010-04-01

    Skin cancer incidence in Croatia is steadily increasing in spite of public and governmental permanently measurements. It is clear that will soon become a major public health problem. The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet (UV) radiation. The future designers of UV protective materials should be able to block totally the ultraviolet radiation. The aim of this paper is to present results of measurements concerning UV protecting ability of garments and sun-screening textiles using transmission spectrophotometer Cary 50 Solarscreen (Varian) according to AS/NZS 4399:1996; to show that standard clothing materials are not always adequate to prevent effect of UV radiation to the human skin; and to suggest the possibilities for its improvement for this purpose.

  6. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli.

    PubMed

    Li, Guo-Qiang; Wang, Wen-Long; Huo, Zheng-Yang; Lu, Yun; Hu, Hong-Ying

    2017-12-01

    Studies on ultraviolet light-emitting diode (UV-LED) water disinfection have shown advantages, such as safety, flexible design, and lower starting voltages. However, information about reactivation after UV-LED disinfection is limited, which is an important issue of UV light-based technology. In this study, the photoreactivation and dark repair of Escherichia coli after UV-LEDs and low pressure (LP) UV disinfection were compared. Four UV-LED units, 265 nm, 280 nm, the combination of 265 + 280 (50%), and 265 + 280 (75%) were tested. 265 nm LEDs was more effective than 280 nm LEDs and LP UV lamps for E. coli inactivation. No synergic effect for disinfection was observed from the combination of 265 and 280 nm LEDs. 265 nm LEDs had no different reactivation performances with that of LP UV, while 280 nm LEDs could significantly repress photoreactivation and dark repair at a low irradiation intensity of 6.9 mJ/cm 2 . Furthermore, the UV-induced damage of 280 nm LEDs was less repaired which was determined by endonuclease sensitive site (ESS) assay. The impaired protein activities by 280 nm LEDs might be one of the reasons that inhibited reactivation. A new reactivation rate constant, K max , was introduced into the logistic model to simulate the reactivation data, which showed positive relationship with the maximum survival ratio and was more reasonable to interpret the results of photoreactivation and dark repair. This study revealed the distinct roles of different UV lights in disinfection and reactivation, which is helpful for the future design of UV-LED equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. HPLC-UV Method for the Identification and Screening of Hydroquinone, Ethers of Hydroquinone and Corticosteroids Possibly Used as Skin-Whitening Agents in Illicit Cosmetic Products.

    PubMed

    Gimeno, Pascal; Maggio, Annie-Françoise; Bancilhon, Marjorie; Lassu, Nelly; Gornes, Hervé; Brenier, Charlotte; Lempereur, Laurent

    2016-03-01

    Corticosteroids, hydroquinone and its ethers are regulated in cosmetics by the Regulation 1223/2009. As corticosteroids are forbidden to be used in cosmetics and cannot be present as contaminants or impurities, an identification of one of these illicit compounds deliberately introduced in these types of cosmetics is enough for market survey control. In order to quickly identify skin-whitening agents present in illegal cosmetics, this article proposes an HPLC-UV method for the identification and screening of hydroquinone, 3 ethers of hydroquinone and 39 corticosteroids that may be found in skin-whitening products. Two elution gradients were developed to separate all compounds. The main solvent gradient (A) allows the separation of 39 compounds among the 43 compounds considered in 50 min. Limits of detection on skin-whitening cosmetics are given. For compounds not separated, a complementary gradient elution (B) using the same solvents is proposed. Between 2004 and 2009, a market survey on "skin-whitening cosmetic" was performed on 150 samples and highlights that more than half of the products tested do not comply with the Cosmetic Regulation 1223/2009 (amending the Council Directive 76/768/EEC). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The Aspergillus nidulans npkA gene encodes a Cdc2-related kinase that genetically interacts with the UvsBATR kinase.

    PubMed Central

    Fagundes, Marcia R V Z Kress; Lima, Joel Fernandes; Savoldi, Marcela; Malavazi, Iran; Larson, Roy E; Goldman, Maria H S; Goldman, Gustavo H

    2004-01-01

    The DNA damage response is a protective mechanism that ensures the maintenance of genomic integrity. We have used Aspergillus nidulans as a model system to characterize the DNA damage response caused by the antitopoisomerase I drug, camptothecin. We report the molecular characterization of a p34Cdc2-related gene, npkA, from A. nidulans. The npkA gene is transcriptionally induced by camptothecin and other DNA-damaging agents, and its induction in the presence of camptothecin is dependent on the uvsBATR gene. There were no growth defects, changes in developmental patterns, increased sensitivity to DNA-damaging agents, or effects on septation or growth rate in the A. nidulans npkA deletion strain. However, the DeltanpkA mutation can partially suppress HU sensitivity caused by the DeltauvsBATR and uvsD153ATRIP checkpoint mutations. We demonstrated that the A. nidulans uvsBATR gene is involved in DNA replication and the intra-S-phase checkpoints and that the DeltanpkA mutation can suppress its intra-S-phase checkpoint deficiency. There is a defect in both the intra-S-phase and DNA replication checkpoints due to the npkA inactivation when DNA replication is slowed at 6 mm HU. Our results suggest that the npkA gene plays a role in cell cycle progression during S-phase as well as in a DNA damage signal transduction pathway in A. nidulans. PMID:15342504

  9. Organic UV filters in personal care products in Switzerland: a survey of occurrence and concentrations.

    PubMed

    Manová, Eva; von Goetz, Natalie; Hauri, Urs; Bogdal, Christian; Hungerbühler, Konrad

    2013-07-01

    Organic ultraviolet (UV) filters are a group of compounds designed to absorb UV radiation and hence protect our skin against UV-induced damage. Apart from traditional sunscreens, they can be found in many other categories of personal care products (PCPs). These include skin care, facial makeup and lip care products, which are often used simultaneously, and on a regular basis. The frequency of occurrence as well as concentrations of organic UV filters contained in PCPs change over time. Furthermore, in Switzerland the exact UV filter concentrations are confidential. To date, only limited data are available for the levels of organic UV filters in PCPs, and these data refer mainly to sunscreens. In this paper, we provide an up-to-date frequency of occurrence and concentrations of organic UV filters in PCPs, including for the first time PCPs used in everyday life. A total of 116 PCPs was selected on the basis of a product-use questionnaire and distributed among seven PCP categories: lip care products, lipsticks, face creams, liquid makeup foundations, aftershaves, hand creams, and sunscreens. Concentrations of 22 organic UV filters were measured in the selected PCPs. The most frequently occurring UV filters were butyl methoxydibenzoylmethane (BMBM) detected in 82 products (71%), ethylhexyl methoxycinnamate (EHMC) in 59 products (51%) and octocrylene (OCT) in 50 products (43%). BMBM, EHMC and OCT concentrations averaged 2.6%, 4.0%, and 6.0%, respectively. Overall, UV filter concentrations in PCPs applied regularly throughout the year can be as high as those in sunscreens that are primarily used for sun protection and hence applied only on selected days. PCPs that are used on a regular basis, and often simultaneously, thus represent an important and, as yet, unquantified source of UV filter exposure. This study provides essential information for aggregate exposure assessments that combine data on concentrations of individual UV filters widely used in a variety of PCP

  10. Tolerance of the eriophyid mite Aceria salsolae to UV-A light and implications for biological control of Russian thistle.

    PubMed

    Moran, Patrick J; Wibawa, M Irene; Smith, Lincoln

    2017-12-01

    Aceria salsolae (Acari: Eriophyidae) is being evaluated as a candidate biological control agent of Russian thistle (Salsola tragus, Chenopodiaceae), a major invasive weed of rangelands and dryland crops in the western USA. Prior laboratory host range testing under artificial lighting indicated reproduction on non-native Bassia hyssopifolia and on a native plant, Suaeda calceoliformis. However, in field tests in the native range, mite populations released on these 'nontarget' plants remained low. We hypothesized that UV-A light, which can affect behavior of tetranychid mites, would affect populations of the eriophyid A. salsolae differently on the target and nontarget plant species, decreasing the mite's realized host range. Plants were infested with A. salsolae under lamps that emitted UV-A, along with broad-spectrum lighting, and the size of mite populations and plant growth was compared to infested plants exposed only to broad-spectrum light. Russian thistle supported 3- to 55-fold larger mite populations than nontarget plants regardless of UV-A treatment. UV-A exposure did not affect mite populations on Russian thistle or S. calceoliformis, whereas it increased populations 7-fold on B. hyssopifolia. Main stems on nontarget plants grew 2- to 6-fold faster than did Russian thistle under either light treatment. The two nontarget plants attained greater volume under the control light regime than UV-A, but Russian thistle was unaffected. Although Russian thistle was always the superior host, addition of UV-A light to the artificial lighting regime did not reduce the ability of A. salsolae to reproduce on the two nontarget species, suggesting that UV-B or other environmental factors may be more important in limiting mite populations in the field.

  11. Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light.

    PubMed

    Mezzanotte, V; Antonelli, M; Citterio, S; Nurizzo, C

    2007-11-01

    Disinfection tests were carried out at pilot scale to compare the disinfection efficiency of ozone, sodium hypochlorite (NaOCl), peracetic acid (PAA), and UV irradiation. Total coliforms, fecal coliforms, and Escherichia coli were monitored as reference microorganisms. Total heterotrophic bacteria (THB) were also enumerated by cytometry. At similar doses, NaOCl was more effective than PAA, and its action was less affected by contact time. The results obtained by ozonation were comparable for total coliforms, fecal coliforms, and E. coli. On the contrary, some differences among the three indicators were observed for NaOCl, PAA, and UV. Differences increased with increasing values of the disinfectant concentration times contact time (C x t) and were probably the result of different initial counts, as total coliforms include fecal coliforms, which include E. coli. The UV irradiation lead to complete E. coli removals, even at low doses (10 to 20 mJ/cm2). Total heterotrophic bacteria appeared to be too wide a group to be a good disinfection indicator; no correlation was found among THB inactivation, dose, and contact time.

  12. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions.

    PubMed

    Zholobak, N M; Ivanov, V K; Shcherbakov, A B; Shaporev, A S; Polezhaeva, O S; Baranchikov, A Ye; Spivak, N Ya; Tretyakov, Yu D

    2011-01-10

    UV-shielding property, photocatalytic activity and cytotoxicity (including photocytotoxicity) of citrate-stabilized ceria colloid solutions were studied. It was established that UV-shielding property (namely, the sun protection factor, the critical absorption wavelength and the UVA/UVB-ratio) of ceria nanoparticles are as good as those of titanium dioxide and zinc oxide nanoparticles. It was further demonstrated that ceria nanoparticles possesses substantially lower photocatalytic activity, which additionally decreases upon decrease in ceria particle size. It was found that colloid ceria solutions are non-toxic to mouse fibroblasts (L929) and fibroblast-like cells of African Green monkey (VERO). Moreover, ceria nanoparticles are capable to protect these cells from UV-irradiation-induced damage. It was proposed that nanocrystalline ceria could be used not only as UV-blocking material, but also as prophylactic and even therapeutic compound for sunburns treatment. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. ACTION OF MUTAGENIC AGENTS ON AUXOTROPHIC STRAINS OF STREPTOMYCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarai, M.

    1962-01-01

    The mutagenic effect on Streptomyces auxotrophs of uv and x irradiation and of some chemical agerts was studied. From the observed reverse mutations it was concluded that uv and probably x irradiation have an optimal mutagenic dose. With nine auxotrophic strains it was shown that under the same conditions different gene loci reacted differently to the same mutagenic agent. With uy radiation, mutations occurred most frequently at doses falling within the range of 3500 to 4000 erg/mm/sup 2/. With such doses, the average mutation frequency for singly deficient mutants was 0.8 x 10/sup -6/, for doubly deficient mutants 8.4 xmore » 10/sup -8/. An analysis of the number of mutations as compared to the number of survivors in two biochemical mutants (N-4 and N-11) showed that with N- 4 the highest number of mutations was obtained at doses of 3500 to 4500 erg/mm/ sup 2/, namely, 12 to 15 per 10 surviving conidia, and with strain N-11, the highest frequency was obtained in the same dose range, namely, three to four mutations per 10/sup 6/ surviving conidia. The optimal dose of irradiation corresponds to 90 to 97% lethality. It was shown that, unlike the results with uv irradiation, with x rays no such definite relation existed between optimal dose and frequency of mutations. The highest mutation frequency occurred at doses of 20,000 to 25,000 r, which corresponded to 85 to 91% lethality. Of the chemical substances examined, a definite mutagenic action was exerted by acridine orange, streptomycin, hydroxylamine, phenyl, isocyannte, and 8-quinolinol. The maximum mutagenic frequency for survivors was 41.4 x 10/sup -6/ after uv irradiation (biochemical mutant arg 3-; frequency of sportaneous back mutation, 0.041 x 10/sup -6/). With x irradiation the maximum mutagenic frequency was 3.42 x 10/sup -6/ (biochemical mutant meth 1-; frequency of spontaneous back mutation, 0.28 X 10/sup -6/). With chemical agents the maximum mutation frequencies for the initial conidia number were as

  14. UV actinometer film

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.; Gupta, A.; Pitts, J.

    1980-01-01

    Cumulative UV radiation can be measured by low-cost polymer film that is unaffacted by visible light. Useful for virtually any surface, film can help paint and plastics manufacturers determine how well their products stand up against UV radiation. Actinometer film uses photochemically sensitive compound that changes its chemical composition in response to solar radiation. Extent of chemical conversion depends on length exposure and can be measured by examining film sample with spectrophotometer. Film can be exposed from several seconds up to month.

  15. Personalized cumulative UV tracking on mobiles & wearables.

    PubMed

    Dey, S; Sahoo, S; Agrawal, H; Mondal, A; Bhowmik, T; Tiwari, V N

    2017-07-01

    Maintaining a balanced Ultra Violet (UV) exposure level is vital for a healthy living as the excess of UV dose can lead to critical diseases such as skin cancer while the absence can cause vitamin D deficiency which has recently been linked to onset of cardiac abnormalities. Here, we propose a personalized cumulative UV dose (CUVD) estimation system for smartwatch and smartphone devices having the following novelty factors; (a) sensor orientation invariant measurement of UV exposure using a bootstrap resampling technique, (b) estimation of UV exposure using only light intensity (lux) sensor (c) optimal UV exposure dose estimation. Our proposed method will eliminate the need for a dedicated UV sensor thus widen the user base of the proposed solution, render it unobtrusive by eliminating the critical requirement of orienting the device in a direction facing the sun. The system is implemented on android mobile platform and validated on 1200 minutes of lux and UV index (UVI) data collected across several days covering morning to evening time frames. The result shows very impressive final UVI estimation accuracy. We believe our proposed solution will enable the future wearable and smartphone users to obtain a seamless personalized UV exposure dose across a day paving a way for simple yet very useful recommendations such as right skin protective measure for reducing risk factors of long term UV exposure related diseases like skin cancer and, cardiac abnormality.

  16. Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV.

    PubMed

    Kwon, Minhwan; Yoon, Yeojoon; Kim, Seonbaek; Jung, Youmi; Hwang, Tae-Mun; Kang, Joon-Wun

    2018-10-01

    The aim of this study is to evaluate the micropollutant removal capacity of a 275 nm light-emitting diode (LED)-UV/chlorine system. The sulfamethoxazole, ibuprofen, and nitrobenzene removal efficiencies of this system were compared with those of a conventional 254 nm low-pressure (LP)-UV system as a function of the UV dose. In a direct photolysis system, the photon reactivity of sulfamethoxazole is higher than that of nitrobenzene and ibuprofen at both wavelengths. The molar absorption coefficients and quantum yields of each micropollutant were as follows: sulfamethoxazole (ε SMX, 275 nm protonated  = 17,527 M -1  cm -1 , Φ SMX, 275 nm protonated  = 0.239, ε SMX, 275 nm deprotonated  = 8430 M -1  cm -1 , and Φ SMX, 275 nm deprotonated  = 0.026), nitrobenzene (ε NB, 275 nm  = 7176 M -1  cm -1 and Φ NB, 275 nm  = 0.057), and ibuprofen (ε NB, 275 nm  = 200 M -1  cm -1 and Φ IBF, 275 nm  = 0.067). The photon reactivity of chlorine species, i.e., HOCl and OCl-, were determined at 275 nm (ε HOCl, 275 nm  = 28 M -1  cm -1 , Φ HOCl, 275 nm  = 1.97, ε OCl-, 275 nm  = 245 M -1  cm -1 , and Φ OCl-, 275 nm  = 0.8), which indicate that the decomposition rate of OCl - is higher and that of HOCl is lower by 275 nm photolysis than that by 254 nm photolysis (ε HOCl, 254 nm  = 60 M -1  cm -1 , Φ HOCl, 254 nm  = 1.46, ε OCl-, 254 nm  = 58 M -1  cm -1 , and Φ OCl-, 254 nm  = 1.11). In the UV/chlorine system, the removal rates of ibuprofen and nitrobenzene were increased by the formation of OH and reactive chlorine species. The 275-nm LED-UV/chlorine system has higher radical yields at pH 7 and 8 than the 254 nm LP-UV/chlorine system. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Fiber optic systems in the UV region

    NASA Astrophysics Data System (ADS)

    Huebner, Michael; Meyer, H.; Klein, Karl-Friedrich; Hillrichs, G.; Ruetting, Martin; Veidemanis, M.; Spangenberg, Bernd; Clarkin, James P.; Nelson, Gary W.

    2000-05-01

    Mainly due to the unexpected progress in manufacturing of solarization-reduced all-silica fibers, new fiber-optic applications in the UV-region are feasible. However, the other components like the UV-sources and the detector- systems have to be improved, too. Especially, the miniaturization is very important fitting to the small-sized fiber-optic assemblies leading to compact and mobile UV- analytical systems. Based on independent improvements in the preform and fiber processing, UV-improved fibers with different properties have been developed. The best UV-fiber for the prosed applications is selectable by its short and long-term spectral behavior, especially in the region from 190 to 350 nm. The spectrum of the UV-source and the power density in the fiber have an influence on the nonlinear transmission and the damaging level; however, hydrogen can reduce the UV-defect concentration. After determining the diffusion processes in the fiber, the UV-lifetime in commercially available all-silica fibers can be predicted. Newest results with light from deuterium-lamps, excimer- lasers and 5th harmonics of Nd:YAG laser will be shown. Many activities are in the field of UV-sources. In addition to new UV-lasers like the Nd:YAG laser at 213 nm, a new low- power deuterium-lamp with smaller dimensions has been introduced last year. Properties of this lamp will be discussed, taking into account some of the application requirements. Finally, some new applications with UV-fiber optics will be shown; especially the TLC-method can be improved significantly, combining a 2-row fiber-array with a diode-array spectrometer optimized for fiber-optics.

  18. Evaluation of tourists' UV exposure in Paris.

    PubMed

    Mahé, E; Corrêa, M P; Godin-Beekmann, S; Haeffelin, M; Jégou, F; Saiag, P; Beauchet, A

    2013-03-01

    Ultraviolet (UV) exposure is one of the most important risk factor for skin cancers. If UV hazard has been evaluated in tropical countries or in some population - children, outdoor activities - little information is available about UV hazard in high latitude towns like Paris, considered as the most 'charismatic city' in the world. To evaluate UV exposure in Paris in spring, in sun and shade, in real life conditions. We evaluated erythemal UV exposure, during four sunny days in May-June in eight Paris touristic sites during peak hours (2 days), and during two walks in touristic downtown of Paris. Measures were performed in sun and shade. UV radiation exposure was evaluated with UV index performed with a 'Solarmeter ultraviolet index (UVI)' and UV dose with 'standard erythema dose' (SED) and 'minimal erythema dose' (MED) calculations. Despite 'average' UVI in sunny conditions, a 4-h sun exposure reaches 13-20 SED and 3-10 MED according to phototype. Clouds were inefficient to protect against UV. Shade of places reduces moderately UVI (50-60%) in forecourts. Exposure during 1-h walk reach at least one MED in real life conditions for skin phototypes I-IV. UV risk for tourist is quite high in spring in Paris. UVI remains high despite high cloud fraction. Shade reduces UVI, but UV protection factor is only 2-3 in large places such as Place Notre Dame and Place Charles de Gaulle. So sun protection campaigns should be proposed, and sun protective strategies could be integrated in urban planning. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  19. Further comparison of MODTRAN 5 to measured data in the UV band

    NASA Astrophysics Data System (ADS)

    Smith, Leon; Richardson, Mark; Ayling, Richard; Barlow, Nick

    2014-10-01

    The ability to accurately model background radiation from the sun is important in understanding the operation of missile systems with ultraviolet (UV) guard channels. In theory a missile system's UV channel detects a target's silhouette, caused by its `negative contrast' with respect to background UV radiation. The variation in background levels of UV will therefore have an effect on the operability of a missile system that utilises a UV channel. In this paper an update on the measurement and comparison of background UV-A radiation to data produced by Moderate Resolution Atmospheric Transmission 5 (MODTRAN®5) is given. In the past surface flux and radiance data calculated using MODTRAN®5 has been compared to data from the World Ozone and Ultraviolet Data Centre (WOUDC) archive, and measurements taken by the author at the Defence Academy of the UK. With the aid of spectral measurement equipment, new measurements have been made and compared with the radiance profiles produced by MODTRAN®5, including measurements made throughout both winter and summer months. Also discussed are the effects of scattering and absorption by different cloud types on the amount of radiation observed at the Earth's surface.

  20. Enhancing the far-UV sensitivity of silicon CMOS imaging arrays

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Bai, Yibin; Ryu, Kevin K.; Gregory, J. A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winter, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.

    2014-07-01

    We report our progress toward optimizing backside-illuminated silicon PIN CMOS devices developed by Teledyne Imaging Sensors (TIS) for far-UV planetary science applications. This project was motivated by initial measurements at Southwest Research Institute (SwRI) of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures described in Bai et al., SPIE, 2008, which revealed a promising QE in the 100-200 nm range as reported in Davis et al., SPIE, 2012. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include: 1) Representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory (LL); 2) Preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; 3) Detector fabrication was completed through the pre-MBE step; and 4) Initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments. Early results suggest that potential challenges in optimizing the UV-sensitivity of silicon PIN type CMOS devices, compared with similar UV enhancement methods established for CCDs, have been mitigated through our newly developed methods. We will discuss the potential advantages of our approach and briefly describe future development steps.

  1. Reaction behaviors of decomposition of monocrotophos in aqueous solution by UV and UV/O processes.

    PubMed

    Ku, Y; Wang, W; Shen, Y S

    2000-02-01

    The decomposition of monocrotophos (cis-3-dimethoxyphosphinyloxy-N-methyl-crotonamide) in aqueous solution by UV and UV/O(3) processes was studied. The experiments were carried out under various solution pH values to investigate the decomposition efficiencies of the reactant and organic intermediates in order to determine the completeness of decomposition. The photolytic decomposition rate of monocrotophos was increased with increasing solution pH because the solution pH affects the distribution and light absorbance of monocrotophos species. The combination of O(3) with UV light apparently promoted the decomposition and mineralization of monocrotophos in aqueous solution. For the UV/O(3) process, the breakage of the >C=C< bond of monocrotophos by ozone molecules was found to occur first, followed by mineralization by hydroxyl radicals to generate CO(3)(2-), PO4(3-), and NO(3)(-) anions in sequence. The quasi-global kinetics based on a simplified consecutive-parallel reaction scheme was developed to describe the temporal behavior of monocrotophos decomposition in aqueous solution by the UV/O(3) process.

  2. Survival of Spacecraft-Associated Microorganisms under Simulated Martian UV Irradiation

    PubMed Central

    Newcombe, David A.; Schuerger, Andrew C.; Benardini, James N.; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-01-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined. PMID:16332797

  3. Survival of spacecraft-associated microorganisms under simulated martian UV irradiation.

    PubMed

    Newcombe, David A; Schuerger, Andrew C; Benardini, James N; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-12-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.

  4. The Jovian UV aurorae as seen by Juno-UVS

    NASA Astrophysics Data System (ADS)

    Bonfond, Bertrand; Gladstone, Randy; Grodent, Denis; Hue, Vincent; Gérard, Jean-Claude; Versteeg, Maarten; Greathouse, Thomas; Davis, Michael; Bolton, Scott; Levin, Steven; Connerney, John; Bagenal, Fran

    2017-04-01

    The Juno spacecraft was inserted in orbit around Jupiter on July 4th 2016. Its highly elongated polar orbit brings it <5000 km above the cloud tops every 53,5 days, allowing spectacular and unprecedented views of its polar aurorae. The Juno-UVS instrument is an imaging spectrograph observing perpendicularly to the Juno spin axis. It is equipped with a moving scan mirror at the entrance of the instrument that allows the field of view to be directed up to +/-30° away from the spin plane. The 70-205 nm bandpass comprises key UV auroral emissions such as the H2 bands and the H Lyman alpha line, as well as hydrocarbon absorption bands. We present polar maps of the aurorae at Jupiter for the first three first few periapses. These maps offer the first high resolution observations of the night-side aurorae. We will discuss the observed auroral morphology, including the satellite footprints, the outer emissions, the main emission and the polar emissions. We will also show maps of the color ratio, comparing the relative intensity of wavelengths subject to different degrees of absorption by CH4. Such measurements directly relate to the energy of the precipitating particles, since the more energetic the particles, the deeper they penetrate and the stronger the resulting methane absorption. For example, we will show evidence of longitudinal shifts between the brightness peaks and color ratio peaks in several auroral features. Such shifts may be interpreted as the result of the differential particle drift in plasma injection signatures.

  5. Quality assurance of the UV irradiances of the UV-B Monitoring and Research Program: the Mauna Loa test case

    NASA Astrophysics Data System (ADS)

    Zempila, Melina Maria; Davis, John; Janson, George; Olson, Becky; Chen, Maosi; Durham, Bill; Simpson, Scott; Straube, Jonathan; Sun, Zhibin; Gao, Wei

    2017-09-01

    The USDA UV-B Monitoring and Research Program (UVMRP) is an ongoing effort aiming to establish a valuable, longstanding database of ground-based ultraviolet (UV) solar radiation measurements over the US. Furthermore, the program aims to achieve a better understanding of UV variations through time, and develop a UV climatology for the Northern American section. By providing high quality radiometric measurements of UV solar radiation, UVMRP is also focusing on advancing science for agricultural, forest, and range systems in order to mitigate climate impacts. Within these foci, the goal of the present study is to investigate, analyze, and validate the accuracy of the measurements of the UV multi-filter rotating shadowband radiometer (UV-MFRSR) and Yankee (YES) UVB-1 sensor at the high altitude, pristine site at Mauna Loa, Hawaii. The response-weighted irradiances at 7 UV channels of the UV-MFRSR along with the erythemal dose rates from the UVB-1 radiometer are discussed, and evaluated for the period 2006-2015. Uncertainties during the calibration procedures are also analyzed, while collocated groundbased measurements from a Brewer spectrophotometer along with model simulations are used as a baseline for the validation of the data. Besides this quantitative research, the limitations and merits of the existing UVMRP methods are considered and further improvements are introduced.

  6. Deep UV LEDs

    NASA Astrophysics Data System (ADS)

    Han, Jung; Amano, Hiroshi; Schowalter, Leo

    2014-06-01

    Deep ultraviolet (DUV) photons interact strongly with a broad range of chemical and biological molecules; compact DUV light sources could enable a wide range of applications in chemi/bio-sensing, sterilization, agriculture, and industrial curing. The much shorter wavelength also results in useful characteristics related to optical diffraction (for lithography) and scattering (non-line-of-sight communication). The family of III-N (AlGaInN) compound semiconductors offers a tunable energy gap from infrared to DUV. While InGaN-based blue light emitters have been the primary focus for the obvious application of solid state lighting, there is a growing interest in the development of efficient UV and DUV light-emitting devices. In the past few years we have witnessed an increasing investment from both government and industry sectors to further the state of DUV light-emitting devices. The contributions in Semiconductor Science and Technology 's special issue on DUV devices provide an up-to-date snapshot covering many relevant topics in this field. Given the expected importance of bulk AlN substrate in DUV technology, we are pleased to include a review article by Hartmann et al on the growth of AlN bulk crystal by physical vapour transport. The issue of polarization field within the deep ultraviolet LEDs is examined in the article by Braut et al. Several commercial companies provide useful updates in their development of DUV emitters, including Nichia (Fujioka et al ), Nitride Semiconductors (Muramoto et al ) and Sensor Electronic Technology (Shatalov et al ). We believe these articles will provide an excellent overview of the state of technology. The growth of AlGaN heterostructures by molecular beam epitaxy, in contrast to the common organo-metallic vapour phase epitaxy, is discussed by Ivanov et al. Since hexagonal boron nitride (BN) has received much attention as both a UV and a two-dimensional electronic material, we believe it serves readers well to include the

  7. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    NASA Astrophysics Data System (ADS)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result

  8. Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: Byproducts and pathways.

    PubMed

    Moon, Bo-Ram; Kim, Tae-Kyoung; Kim, Moon-Kyung; Choi, Jaewon; Zoh, Kyung-Duk

    2017-10-01

    The removal and degradation pathways of microcystin-LR (MC-LR, [M+H] +  = 995.6) in UV-B photolysis and UV-B/H 2 O 2 processes were examined using liquid chromatography-tandem mass spectrometry. The UV/H 2 O 2 process was more efficient than UV-B photolysis for MC-LR removal. Eight by-products were newly identified in the UV-B photolysis ([M+H] +  = 414.3, 417.3, 709.6, 428.9, 608.6, 847.5, 807.4, and 823.6), and eleven by-products were identified in the UV-B/H 2 O 2 process ([M+H] +  = 707.4, 414.7, 429.3, 445.3, 608.6, 1052.0, 313.4, 823.6, 357.3, 245.2, and 805.7). Most of the MC-LR by-products had lower [M+H] + values than the MC-LR itself during both processes, except for the [M+H] + value of 1052.0 during UV-B photolysis. Based on identified by-products and peak area patterns, we proposed potential degradation pathways during the two processes. Bond cleavage and intramolecular electron rearrangement by electron pair in the nitrogen atom were the major reactions during UV-B photolysis and UV-B/H 2 O 2 processes, and hydroxylation by OH radical and the adduct formation reaction between the produced by-products were identified as additional pathways during the UV-B/H 2 O 2 process. Meanwhile, the degradation by-products identified from MC-LR during UV-B/H 2 O 2 process can be further degraded by increasing H 2 O 2 dose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels1[OPEN

    PubMed Central

    Fina, Julieta; AbdElgawad, Hamada; Prinsen, Els

    2017-01-01

    Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family. PMID:28400494

  10. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  11. Solar UV dose patterns in Italy.

    PubMed

    Meloni, D; Casale, G R; Siani, A M; Palmieri, S; Cappellani, F

    2000-06-01

    Since 1992 solar ultraviolet (UV) spectral irradiance (290-325 nm) has been measured at two Italian stations of Rome (urban site) and Ispra (semirural site) using Brewer spectrophotometry. The data collected under all sky conditions, are compared with the output of a sophisticated radiative transfer model (System for Transfer of Atmospheric Radiation--STAR model). The STAR multiple scattering scheme is able to cope with all physical processes relevant to the UV transfer through the atmosphere. The experience so far acquired indicates that, in spite of the unavoidable uncertainties in the input parameters (ozone, aerosol, surface albedo, pressure, temperature, relative humidity, cloud cover), measured and computed clear sky iradiances are in reasonable agreement. The STAR model is applied to build up the solar UV geographic patterns in Italy: the daily dose in the range 290-325 nm is computed at about 70 sites where a thorough and homogeneous climatology is available. For each month the concept of an idealized "standard day" is introduced and the surface distribution of solar UV field determined. The map of solar UV patterns for Italy, available for the first time, meets the study requirements in the field of skin and eye epidemiology, as well as in other investigations dealing with the impact of UV on the biosphere. The results are interpreted in terms of atmospheric and meteorological parameters modulating UV radiation reaching the ground.

  12. Aerosol Absorption Effects in the TOMS UV Algorithm

    NASA Technical Reports Server (NTRS)

    Torres, O.; Krotkov, N.; Bhartia, P. K.

    2004-01-01

    The availability of global long-term estimates of surface UV radiation is very important, not only for preventive medicine considerations, but also as an important tool to monitor the effects of the stratospheric ozone recovery expected to occur in the next few decades as a result of the decline of the stratospheric chlorine levels. In addition to the modulating effects of ozone and clouds, aerosols also affect the levels of UV-A and W-B radiation reaching the surface. Oscillations in surface W associated with the effects of aerosol absorption may be comparable in magnitude to variations associated with the stratospheric ozone recovery. Thus, the accurate calculation of surface W radiation requires that both the scattering and absorption effects of tropospheric aerosols be taken into account. Although absorption effects of dust and elevated carbonaceous aerosols are already accounted for using Aerosol Index technique, this approach does not work for urban/industrial aerosols in the planetary boundary layer. The use of the new TOMS long-term global data record on UV aerosol absorption optical depth, can improve the accuracy of TOMS spectral UV products, by properly including the spectral attenuation effects of carbonaceous, urban/industrial and mineral aerosols. The TOMS data set on aerosol properties will be discussed, and results of its use in the TOMS surface W algorithm will be presented.

  13. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin.

    PubMed

    Wang, Frank; Smith, Noah R; Tran, Bao Anh Patrick; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2014-04-01

    Solar UV irradiation causes photoaging, characterized by fragmentation and reduced production of type I collagen fibrils that provide strength to skin. Exposure to UV-B irradiation (280-320 nm) causes these changes by inducing matrix metalloproteinase 1 and suppressing type I collagen synthesis. The role of UV-A irradiation (320-400 nm) in promoting similar molecular alterations is less clear yet important to consider because it is 10 to 100 times more abundant in natural sunlight than UV-B irradiation and penetrates deeper into the dermis than UV-B irradiation. Most (approximately 75%) of solar UV-A irradiation is composed of UV-A1 irradiation (340-400 nm), which is also the primary component of tanning beds. To evaluate the effects of low levels of UV-A1 irradiation, as might be encountered in daily life, on expression of matrix metalloproteinase 1 and type I procollagen (the precursor of type I collagen). In vivo biochemical analyses were conducted after UV-A1 irradiation of normal human skin at an academic referral center. Participants included 22 healthy individuals without skin disease. Skin pigmentation was measured by a color meter (chromometer) under the L* variable (luminescence), which ranges from 0 (black) to 100 (white). Gene expression in skin samples was assessed by real-time polymerase chain reaction. Lightly pigmented human skin (L* >65) was exposed up to 4 times (1 exposure/d) to UV-A1 irradiation at a low dose (20 J/cm2), mimicking UV-A levels from strong sun exposure lasting approximately 2 hours. A single exposure to low-dose UV-A1 irradiation darkened skin slightly and did not alter matrix metalloproteinase 1 or type I procollagen gene expression. With repeated low-dose UV-A1 irradiation, skin darkened incrementally with each exposure. Despite this darkening, 2 or more exposures to low-dose UV-A1 irradiation significantly induced matrix metalloproteinase 1 gene expression, which increased progressively with successive exposures. Repeated UV-A1

  14. UV Habitable Zones Further Constrain Possible Life

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Where should we search for life in the universe? Habitable zones are traditionallydetermined based on the possibility of liquid water existing on a planet but ultraviolet (UV) radiation also plays a key role.The UV Habitable ZoneSchematic showing how the traditional habitable zones location and width changes around different types of stars. The UV habitable zone also hasdifferent locations and widths depending on the mass and metallicity of the star. [NASA/Kepler Mission/Dana Berry]Besides the presence of liquid water, there are other things life may need to persist. For life as we know it, one important elementis moderate UV radiation: if a planet receives too little UV flux, many biological compounds cant be synthesized. If it receives too much, however, then terrestrial biological systems (e.g. DNA) can be damaged.To determinethe most likely place to findpersistent life, we should therefore look for the region where a stars traditional habitable zone, within which liquid water is possible, overlaps with its UV habitable zone, within which the UV flux is at the right level to support life.Relationship between the stellar mass and location of the boundaries of the traditional and UV habitable zones for a solar-metallicity star. din and dout denote inner and outer boundaries, respectively. ZAMS and TMS denote when the star joins and leaves the main sequence, respectively. The traditional and UV habitable zones overlap only for stars of 11.5 solar masses. [Adapted from Oishi and Kamaya 2016]Looking for OverlapIn a recent study, two scientists from the National Defense Academy of Japan, Midori Oishi and Hideyuki Kamaya, explored howthe location of this UV habitable zone and that of its overlap with the traditional habitable zone might be affected by a stars mass and metallicity.Oishi and Kamaya developed a simple evolutional model of the UV habitable zone in stars in the mass range of 0.084 solar masses with metallicities of roughly solar metallicity (Z=0.02), a

  15. Chemiexcitation of Melanin Derivatives Induces DNA Photoproducts Long after UV Exposure

    PubMed Central

    Premi, Sanjay; Wallisch, Silvia; Mano, Camila M.; Weiner, Adam B.; Bacchiocchi, Antonella; Wakamatsu, Kazumasa; Bechara, Etelvino J. H.; Halaban, Ruth; Douki, Thierry; Brash, Douglas E.

    2015-01-01

    Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPD), DNA photoproducts that are typically created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Here we show that in melanocytes, CPD are generated for >3 hours after exposure to UVA, a major component of the radiation in sunlight and in tanning beds. These “dark CPD” constitute the majority of CPD and include the cytosine-containing CPD that initiate UV-signature C→T mutations. Dark CPD arise when UV-induced reactive oxygen and nitrogen species combine to excite an electron in fragments of the pigment melanin. This creates a quantum triplet state that has the energy of a UV photon but that induces CPD by energy transfer to DNA in a radiation-independent manner. Melanin may thus be carcinogenic as well as protective against cancer. These findings also validate the long-standing suggestion that chemically-generated excited electronic states are relevant to mammalian biology. PMID:25700512

  16. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.

    PubMed

    Fang, Jingyun; Zhao, Quan; Fan, Chihhao; Shang, Chii; Fu, Yun; Zhang, Xiangru

    2017-09-01

    When a bromide-containing water is treated by the ultraviolet (UV)/chlorine process, hydroxyl radicals (HO) and halogen radicals such as Cl or Br are formed due to the UV photolysis of free halogens. These reactive species may induce the formation of bromate, which is a probable human carcinogen. Bromate formation in the UV/chlorine process using low pressure (LP) and medium pressure (MP) lamps in the presence of bromide was investigated in the present study. The UV/chlorine process significantly enhanced bromate formation as compared to dark chlorination. The bromate formation was elevated with increasing UV fluence, bromide concentration, and pH values under both LP and MP UV irradiations. It was significantly enhanced at pH 9 compared to those at pH 6 and 7 with MP UV irradiation, while it was slightly enhanced at pH 9 with LP UV. The formation by UV/chlorine process started with the formation of free bromine (HOBr/OBr - ) through the reaction of chlorine and bromide, followed by a subsequent oxidation of free bromine and formation of BrO and bromate by reacting with radicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland.

    PubMed

    Vienneau, Danielle; de Hoogh, Kees; Hauri, Dimitri; Vicedo-Cabrera, Ana M; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-06-16

    Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. We investigated the effects of radon and UV exposure on skin cancer mortality. Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation. The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100 Bq/m 3 radon and 1.11 (1.01, 1.23) per W/m 2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21], p =0.09). There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825.

  18. Degradation of 40 selected pharmaceuticals by UV/H2O2.

    PubMed

    Wols, B A; Hofman-Caris, C H M; Harmsen, D J H; Beerendonk, E F

    2013-10-01

    The occurrence of pharmaceuticals in source waters is increasing. Although UV advanced oxidation is known to be an effective barrier against micropollutants, degradation rates are only available for limited amounts of pharmaceuticals. Therefore, the degradation of a large group of pharmaceuticals has been studied in this research for the UV/H2O2 process under different conditions, including pharmaceuticals of which the degradation by UV/H2O2 was never reported before (e.g., metformin, paroxetine, pindolol, sotalol, venlafaxine, etc.). Monochromatic low pressure (LP) and polychromatic medium pressure (MP) lamps were used for three different water matrices. In order to have well defined hydraulic conditions, all experiments were conducted in a collimated beam apparatus. Degradation rates for the pharmaceuticals were determined. For those compounds used in this research that are also reported in literature, measured degradation results are in good agreement with literature data. Pharmaceutical degradation for only photolysis with LP lamps is small, which is increased by using a MP lamp. Most of the pharmaceuticals are well removed when applying both UV (either LP or MP) and H2O2. However, differences in degradation rates between pharmaceuticals can be large. For example, ketoprofen, prednisolone, pindolol are very well removed by UV/H2O2, whereas metformin, cyclophosphamide, ifosfamide are very little removed by UV/H2O2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Disinfection of biological agents in the field using a mobile ...

    EPA Pesticide Factsheets

    Report The Army’s Net Zero Initiative is an energy-conservation program that focuses on energy as well as water and waste usage procedures. All Net Zero projects are geared toward helping the military installation or community become more sustainable and resilient, with an emphasis on taking a systems approach. Net Zero projects must advance the state of the science and are focused on three general topic areas: water, energy, and waste, and the nexuses among them. This project examined the inactivation and/or removal of biological contaminants in dirty wash water using a portable ozone-UV AOP process. The strain of E. coli used in these experiments is not a biological warfare agent, but acts as a surrogate for certain of the vegetative biological agents such as the enterohemorrhagic strain designated E. coli 0157:H7.

  20. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation.

    PubMed

    Lee, Yunho; Gerrity, Daniel; Lee, Minju; Gamage, Sujanie; Pisarenko, Aleksey; Trenholm, Rebecca A; Canonica, Silvio; Snyder, Shane A; von Gunten, Urs

    2016-04-05

    UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.

  1. Comparison of UV-C and Pulsed UV Light Treatments for Reduction of Salmonella, Listeria monocytogenes, and Enterohemorrhagic Escherichia coli on Eggs.

    PubMed

    Holck, Askild L; Liland, Kristian H; Drømtorp, Signe M; Carlehög, Mats; McLEOD, Anette

    2018-01-01

    Ten percent of all strong-evidence foodborne outbreaks in the European Union are caused by Salmonella related to eggs and egg products. UV light may be used to decontaminate egg surfaces and reduce the risk of human salmonellosis infections. The efficiency of continuous UV-C (254 nm) and pulsed UV light for reducing the viability of Salmonella Enteritidis, Listeria monocytogenes, and enterohemorrhagic Escherichia coli on eggs was thoroughly compared. Bacterial cells were exposed to UV-C light at fluences from 0.05 to 3.0 J/cm 2 (10 mW/cm 2 , for 5 to 300 s) and pulsed UV light at fluences from 1.25 to 18.0 J/cm 2 , resulting in reductions ranging from 1.6 to 3.8 log, depending on conditions used. Using UV-C light, it was possible to achieve higher reductions at lower fluences compared with pulsed UV light. When Salmonella was stacked on a small area or shielded in feces, the pulsed UV light seemed to have a higher penetration capacity and gave higher bacterial reductions. Microscopy imaging and attempts to contaminate the interior of the eggs with Salmonella through the eggshell demonstrated that the integrity of the eggshell was maintained after UV light treatments. Only minor sensory changes were reported by panelists when the highest UV doses were used. UV-C and pulsed UV light treatments appear to be useful decontamination technologies that can be implemented in continuous processing.

  2. UV-blocking potential of oils and juices.

    PubMed

    Gause, S; Chauhan, A

    2016-08-01

    Sunscreens are commonly used to protect the body from damage caused by UV light. Some components of organic sunscreens have been shown to pass through the skin during wear which could raise toxicity concerns for these compounds. This study explores the potential for oils and fruit and vegetable juices to be substitutes for these compounds. The absorptivity of various oils (canola oil, citronella oil, coconut oil, olive oil, soya bean oil, vitamin E, as well as aloe vera) and fruit and vegetable juices (acerola, beet, grape, orange carrot, purple carrot and raspberry) was measured in vitro. The mean absorptivity was compared with FDA-approved UV absorbers to gauge the potential of the natural products. The most promising candidates were incorporated into formulations, and the UV transmittance of a 20-μm-thick film of the formulation was measured. The formulations were also imaged by light microscopy and scanning electron microscopy. The absorptivity of oils was at least two orders of magnitude lower compared to the commercial UV blockers. The fruit juice powders were more effective at UV blocking but still showed an order of magnitude lower absorptivity compared to commercial UV blockers. The UV blocking from most natural oils is insufficient to obtain a significant UV protection. Formulations containing 50wt% purple carrot showed good UV-blocking capabilities and represent a promising ingredient for sunscreen and cosmetic applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. UV Reconstruction Algorithm And Diurnal Cycle Variability

    NASA Astrophysics Data System (ADS)

    Curylo, Aleksander; Litynska, Zenobia; Krzyscin, Janusz; Bogdanska, Barbara

    2009-03-01

    UV reconstruction is a method of estimation of surface UV with the use of available actinometrical and aerological measurements. UV reconstruction is necessary for the study of long-term UV change. A typical series of UV measurements is not longer than 15 years, which is too short for trend estimation. The essential problem in the reconstruction algorithm is the good parameterization of clouds. In our previous algorithm we used an empirical relation between Cloud Modification Factor (CMF) in global radiation and CMF in UV. The CMF is defined as the ratio between measured and modelled irradiances. Clear sky irradiance was calculated with a solar radiative transfer model. In the proposed algorithm, the time variability of global radiation during the diurnal cycle is used as an additional source of information. For elaborating an improved reconstruction algorithm relevant data from Legionowo [52.4 N, 21.0 E, 96 m a.s.l], Poland were collected with the following instruments: NILU-UV multi channel radiometer, Kipp&Zonen pyranometer, radiosonde profiles of ozone, humidity and temperature. The proposed algorithm has been used for reconstruction of UV at four Polish sites: Mikolajki, Kolobrzeg, Warszawa-Bielany and Zakopane since the early 1960s. Krzyscin's reconstruction of total ozone has been used in the calculations.

  4. UV-B photoreceptor-mediated signalling in plants.

    PubMed

    Heijde, Marc; Ulm, Roman

    2012-04-01

    Ultraviolet-B radiation (UV-B) is a key environmental signal that is specifically perceived by plants to promote UV acclimation and survival in sunlight. Whereas the plant photoreceptors for visible light are rather well characterised, the UV-B photoreceptor UVR8 was only recently described at the molecular level. Here, we review the current understanding of the UVR8 photoreceptor-mediated pathway in the context of UV-B perception mechanism, early signalling components and physiological responses. We further outline the commonalities in UV-B and visible light signalling as well as highlight differences between these pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Effects of climate change and UV-B on materials.

    PubMed

    Andrady, Anthony L; Hamid, Halim S; Torikai, Ayako

    2003-01-01

    The outdoor service life of common plastic materials is limited by their susceptibility to solar ultraviolet radiation. Of the solar wavelengths the UV-B component is particularly efficient in bringing about photodamage in synthetic and naturally occurring materials. This is particularly true of plastics, rubber and wood used in the building and agricultural industries. Any depletion in the stratospheric ozone layer and resulting increase in the UV-B component of terrestrial sunlight will therefore tend to decrease the service life of these materials. The extent to which the service life is reduced is, however, difficult to estimate as it depends on several factors. These include the chemical nature of the material, the additives it contains, the type and the amount of light-stabilizers (or protective coatings) used, and the amount of solar exposure it receives. Concomitant climate change is likely to increase the ambient temperature and humidity in some of the same regions likely to receive increased UV-B radiation. These factors, particularly higher temperatures, are also well known to accelerate the rate of photodegradation of materials, and may therefore further limit the service life of materials in these regions. To reliably assess the damage to materials as a consequence of ozone layer depletion, the wavelength sensitivity of the degradation process, dose-response relationships for the material and the effectiveness of available stabilizers need to be quantified. The data needed for the purpose are not readily available at this time for most of the commonly used plastics or wood materials. Wavelength sensitivity of a number of common plastic materials and natural biopolymers are available and generally show the damage (per photon) to decrease exponentially with the wavelength. Despite the relatively higher fraction of UV-A in sunlight, the UV-B content is responsible for a significant part of light-induced damage of materials. The primary approach to

  6. Assay of common sunscreen agents in suncare products by high-performance liquid chromatography on a cyanopropyl-bonded silica column.

    PubMed

    Simeoni, Silvia; Tursilli, Rosanna; Bianchi, Anna; Scalia, Santo

    2005-06-15

    A rapid high-performance liquid chromatographic method was developed for the simultaneous assay of eight of the most common sunscreen agents (octyl-methoxycinnamate, oxybenzone, butyl-methoxydibenzoylmethane, octyl-salicilate, methylbenzylidene camphor, octyl-dimethylamminobenzoate, phenylbenzimidazole sulphonic acid and octocrylene) in sun protection products. Evaluation of the influence of different stationary phases and eluents on the separation selectivity showed that optimal resolution was obtained on a cyanopropyl-silica column eluted with methanol-acetonitrile-tetrahydrofuran-aqueous acetic acid. A small adjustment of the proposed chromatographic system (reduction in the aqueous content of the mobile phase) permitted also the determination of the extremely hydrophobic UV filter, methylene bis-benzotriazolyl tetramethylbutylphenol along with three other sunscreen agents, octyl-methoxycinnamate, oxybenzone, butyl-methoxydibenzoylmethane. Recoveries of the UV filters from the spiked formulation were between 95.7 and 103.7% and the precision of the method was better than 6.1% relative standard deviation. The developed HPLC procedure is suitable for quality control and photostability analyses of commercial suncare products.

  7. UV testing of solar cells: Effects of antireflective coating, prior irradiation, and UV source

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.

    1993-01-01

    Short-circuit current degradation of electron irradiated double-layer antireflective-coated cells after 3000 hours ultraviolet (UV) exposure exceeds 3 percent; extrapolation of the data to 10(exp 5) hours (11.4 yrs.) gives a degradation that exceeds 10 percent. Significant qualitative and quantitative differences in degradation were observed in cells with double- and single-layer antireflective coatings. The effects of UV-source age were observed and corrections were made to the data. An additional degradation mechanism was identified that occurs only in previously electron-irradiated solar cells since identical unirradiated cells degrade to only 6 +/- 3 percent when extrapolated 10(exp 5) hours of UV illumination.

  8. Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.

    PubMed

    Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna

    2010-05-03

    The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Inhibition of the RhoA GTPase Activity Increases Sensitivity of Melanoma Cells to UV Radiation Effects

    PubMed Central

    Espinha, Gisele; Osaki, Juliana Harumi; Costa, Erico Tosoni; Forti, Fabio Luis

    2016-01-01

    Ultraviolet radiation is the main cause of DNA damage to melanocytes and development of melanoma, one of the most lethal human cancers, which leads to metastasis due to uncontrolled cell proliferation and migration. These phenotypes are mediated by RhoA, a GTPase overexpressed or overactivated in highly aggressive metastatic tumors that plays regulatory roles in cell cycle progression and cytoskeleton remodeling. This work explores whether the effects of UV on DNA damage, motility, proliferation, and survival of human metastatic melanoma cells are mediated by the RhoA pathway. Mutant cells expressing dominant-negative (MeWo-RhoA-N19) or constitutively active RhoA (MeWo-RhoA-V14) were generated and subjected to UV radiation. A slight reduction in migration and invasion was observed in MeWo and MeWo-RhoA-V14 cells but not in MeWo-RhoA-N19 cells, which presented inefficient motility and invasiveness associated with stress fibers fragmentation. Proliferation and survival of RhoA-deficient cells were drastically reduced by UV compared to cells displaying normal or high RhoA activity, suggesting increased sensitivity to UV. Loss of RhoA activity also caused less efficient DNA repair, with elevated levels of DNA lesions such as strand breaks and cyclobutane pyrimidine dimers (CPDs). Thus, RhoA mediates genomic stability and represents a potential target for sensitizing metastatic tumors to genotoxic agents. PMID:26823948

  10. Optical-to-UV correlations and particle fluxes for M dwarf exoplanet host stars

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison

    2017-01-01

    UV stellar radiation can significantly impact planetary atmospheres through heating and photochemistry, even regulating production of potential biomarkers. M dwarfs emit the majority of their UV radiation in the form of emission lines, and the incident UV radiation on habitable-zone planets is significant owing to their small orbital radii. Only recently have the UV spectral energy distributions (SEDs) of average M dwarfs been explored (e.g., the MUSCLES Treasury Survey). Emission lines tracing hot plasma in the stellar chromosphere and transition region dominate the far-UV spectra, even for optically inactive M dwarfs (i.e., those displaying Hα absorption spectra). Lyα (1216 Å) is the strongest of the UV emission lines, but resonant scattering from the interstellar medium makes direct observations of the intrinsic Lyα emission of even nearby stars challenging. I reconstruct the intrinsic Lyα profiles using an MCMC technique and use them to estimate the extreme-UV SED.Monitoring the long-term (years-to-decades) UV activity of M dwarfs will be important for assessing the potential habitability of short-period planets, but will only be feasible from the ground via optical proxies. Therefore, I also quantify correlations between UV and optical emission lines of the MUSCLES stars and other M dwarfs, for use when direct UV observations of M dwarf exoplanet host stars are not available. Recent habitability studies of M dwarf exoplanets have sought to address the impact of frequent flaring and are just beginning to include the damaging impact of stellar energetic particles that are typically associated with large flares. Working under the necessary assumption of solar-like particle production, I present a new technique for estimating >10 MeV proton flux during far-UV flares, and analyze a sample of the flares observed in the MUSCLES Treasury Survey.

  11. Fundamental Scaling of Microplasmas and Tunable UV Light Generation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manginell, Ronald P.; Sillerud, Colin Halliday; Hopkins, Matthew M.

    2016-11-01

    The temporal evolution of spectral lines from microplasma devices (MD) was studied, including impurity transitions. Long-wavelength emission diminishes more rapidly than deep UV with decreasing pulse width and RF operation. Thus, switching from DC to short pulsed or RF operation, UV emissions can be suppressed, allowing for real-time tuning of the ionization energy of a microplasma photo-ionization source, which is useful for chemical and atomic physics. Scaling allows MD to operate near atmospheric pressure where excimer states are efficiently created and emit down to 65 nm; laser emissions fall off below 200 nm, making MD light sources attractive for deepmore » UV use. A first fully-kinetic three-dimensional model was developed that explicitly calculates electron-energy distribution function. This, and non-continuum effects, were studied with the model and how they are impacted by geometry and transient or DC operation. Finally, a global non-dimensional model was developed to help explain general trends MD physics.« less

  12. The assessment of UV resources over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Chubarova, Natalia; Zhdanova, Yekaterina

    2013-05-01

    The spatial and temporal distribution of UV resources was assessed over Northern Eurasia by using RT modeling (8 stream DISORT RT code) with 1×1 degree grid and month resolution. For this purpose a special dataset of main input geophysical parameters (total ozone content, aerosol characteristics, surface UV albedo, and UV cloud modification factor) has been developed. To define the UV resources both erythemally-weighted and vitamin D irradiances were used. In order to better quantify vitamin D irradiance threshold we accounted for a body exposure fraction S as a function of surface effective temperature. The UV resources are defined by using several classes and subclasses: UV deficiency, UV optimum, and UV excess. They were evaluated for clear and typical cloudy conditions for different skin types. We show that for typical cloudy conditions in winter (January) there are only few regions in Europe at the south of Spain (southward 43°N) with conditions of UV optimum for people with skin type 2 and no such conditions for people with skin type 4. In summer (July) UV optimum for skin 2 is observed northward 63°N with a boundary biased towards higher latitudes at the east, while for skin type 4 these conditions are observed over the most territory of Northern Eurasia.

  13. Small-scale purification of butyrylcholinesterase from human plasma and implementation of a μLC-UV/ESI MS/MS method to detect its organophosphorus adducts.

    PubMed

    John, Harald; Breyer, Felicitas; Schmidt, Christian; Mizaikoff, Boris; Worek, Franz; Thiermann, Horst

    2015-10-01

    Human butyrylcholinesterase (hBChE) is a serine hydrolase (EC 3.1.1.8) present in all mammalian tissues and the bloodstream. Similar to acetylcholinesterase, the enzyme reacts with organophosphorus compounds (OP) like nerve agents or pesticides that cause enzyme inhibition (BChE adducts). These adducts represent valuable biomarkers for analytical verification of OP exposure. For establishment of these mass spectrometry based methods sufficient amounts of hBChE in high purity are required. Unfortunately, commercial lots are of inappropriate purity thus favouring in-house isolation. Therefore, we developed a small scale procedure to isolate hBChE from citrate plasma. After precipitation by polyethylene glycol (8% w/v and 20% w/v PEG 6000) hBChE was purified from plasma by four consecutive chromatographic steps including anion exchange, affinity extraction and size exclusion. Protein elution was monitored on-line by UV-absorbance (280 nm) followed by continuous fractionation for off-line analysis of (1) hBChE enzyme activity by Ellman assay, (2) protein purity by gel electrophoresis, and (3) protein identity by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Numerous major impurities separated from hBChE were identified. The purified material was used for in vitro incubation with diverse OP to establish a μ-liquid chromatography-ultra violet detection/electrospray ionization tandem-mass spectrometric method (μLC-UV/ESI MS/MS) for detection of hBChE adducts suitable for verification analysis. Analytical data for diverse OP pesticides including deuterated analogues as well as G- and V-type nerve agents and their precursor are summarized. This method was successfully applied to plasma samples provided by the Organisation for the Prohibition of Chemical Weapons (OPCW) for the 4th Biomedical Exercise. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Effect of UV-B radiation on UV absorbing compounds and pigments of moss and lichen of Schirmacher oasis region, East Antarctica.

    PubMed

    Singh, J; Gautam, S; Bhushan Pant, A

    2012-12-22

    The survival of Antarctic flora under ozone depletion depends on their ability to acclimate against increasing UV—B radiation by employing photo protective mechanisms either by avoiding or repairing UV—B damage. A fifteen days experiment was designed to study moss (Bryum argenteum) and lichen (Umbilicaria aprina) under natural UV—B exposure and under UV filter frames at the Maitri region of Schirmacher oasis, East Antarctica. Changes in UV absorbing compounds, phenolics, carotenoids and chlorophyll content were studied for continuous fifteen days and significant changes were observed in the UV exposed plants of B. argenteum and U. aprina. The change in the UV absorbing compounds was more significant in B. argenteum (P<0.0001) than U. aprina (P<0.0002). The change in phenolic contents and total carotenoid content was significant (P<0.0001) in both B. argenteum and lichen U. aprina indicating that the increase in UV absorbing compounds, phenolic contents and total carotenoid content act as a protective mechanism against the deleterious effect of UV—B radiations.

  15. Short- and long-term physiological responses of grapevine leaves to UV-B radiation.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomés, E; Aguirreolea, J; Pascual, I

    2013-12-01

    The present study aimed at evaluating the short- and long-term effects of UV-B radiation on leaves of grapevine Vitis vinifera (cv. Tempranillo). Grapevine fruit-bearing cuttings were exposed to two doses of supplemental biologically effective UV-B radiation (UV-BBE) under glasshouse-controlled conditions: 5.98 and 9.66kJm(-2)d(-1). The treatments were applied either for 20d (from mid-veraison to ripeness) or 75d (from fruit set to ripeness). A 0kJm(-2)d(-1) UV-B treatment was included as control. The main effects of UV-B were observed after the short-term exposure (20d) to 9.66kJm(-2)d(-1). Significant decreases in net photosynthesis, stomatal conductance, sub-stomatal CO2 concentration, the actual photosystem II (PSII) efficiency, total soluble proteins and de-epoxidation state of the VAZ cycle were observed, whereas the activities of several antioxidant enzymes increased significantly. UV-B did not markedly affect dark respiration, photorespiration, the maximum potential PSII efficiency (Fv/Fm), non-photochemical quenching (NPQ), as well as the intrinsic PSII efficiency. However, after 75d of exposure to 5.98and 9.66kJm(-2)d(-1) UV-B most photosynthetic and biochemical variables were unaffected and there were no sign of oxidative damage in leaves. The results suggest a high long-term acclimation capacity of grapevine to high UV-B levels, associated with a high accumulation of UV-B absorbing compounds in leaves, whereas plants seemed to be tolerant to moderate doses of UV-B. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Direct and Indirect Effects of UV-B Exposure on Litter Decomposition: A Meta-Analysis

    PubMed Central

    Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng

    2013-01-01

    Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter

  17. UV RADIATION MEASUREMENTS/ATMOSPHERIC CHARACTERIZATION

    EPA Science Inventory

    Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...

  18. Benchmark studies of UV-vis spectra simulation for cinnamates with UV filter profile.

    PubMed

    Garcia, Ricardo D'A; Maltarollo, Vinícius G; Honório, Káthia M; Trossini, Gustavo H G

    2015-06-01

    Skin cancer is a serious public health problem worldwide, being incident over all five continents and affecting an increasing number of people. As sunscreens are considered an important preventive measure, studies to develop better and safer sunscreens are crucial. Cinnamates are UVB filters with good efficiency and cost-benefit, therefore, their study could lead to the development of new UV filters. A benchmark to define the most suitable density functional theory (DFT) functional to predict UV-vis spectra for ethylhexyl methoxycinnamate was performed. Time-dependent DFT (TD-DFT) calculations were then carried out [B3LYP/6-311 + G(d,p) and B3P86/6-311 + G(d,p) in methanol environment] for seven cinammete derivatives implemented in the Gaussian 03 package. All DFT/TD-DFT simulations were performed after a conformational search with the Monte-Carlo method and MMFF94 force field. B3LYP and B3P86 functionals were better at reproducing closely the experimental spectra of ethylhexyl methoxycinnamate. Calculations of seven cinnamates showed a λmax of around 310 nm, corroborating literature reports. It was observed that the energy for the main electronic transition was around 3.95 eV and could be explained by electron delocalization on the aromatic ring and ester group, which is important to UV absorption. The methodology employed proved to be suitable for determination of the UV spectra of cinnamates and could be used as a tool for the development of novel UV filters.

  19. UV line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1992-01-01

    The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.

  20. Improving UV protection by clothing--recent developments.

    PubMed

    Osterwalder, Uli; Rohwer, Hauke

    2002-01-01

    The assessment of UV transmittance of clothing and the determination of the UV protection factor (UPF) are now well established and the influencing factors such as type of fiber, color, and fabric construction are known. Quick and reliable instruments to measure UV transmittance are crucial. Besides expensive scientific laboratory instruments, a low-cost UV meter is now available for this purpose. The questions arise as to what can be done about a given garment and whether there are ways to improve textiles by the consumer. The many opportunities to improve UV protection of clothing along the textile chain of manufacturing are discussed. The latest possibility for improving the UV-protective properties of clothing is now available at the fabric care stage in every household. A UV absorber can be brought into contact with a fabric during the wash or rinse cycle of a laundry operation. The high UV transmittance of 30% of a thin, bleached cotton swatch in the dry state (UPF 3), can be reduced tenfold to about 3% (UPF >30) in ten washes cycles. This is more than the effect achieved by dyestuffs. The detergent should contain about 0.1-0.3% of the special UV absorber. The same effect can be achieved as early as after one wash cycle with a higher concentration provided by a special laundry additive. Yet another form of application is via rinse cycle fabric conditioner. To make these new types of improvement of fabrics visible the Skin Cancer Foundation now provides the possibility for laundry products to qualify for the "Seal of Recommendation".

  1. UV radiation and skin cancer in Norway.

    PubMed

    Medhaug, I; Olseth, J A; Reuder, J

    2009-09-04

    A distinct increase in skin cancer incidences is observed since the registration started in Norway in the 1950s. As UV radiation is assumed to be the main risk factor for skin cancer, hourly values of the UV irradiance were reconstructed for the period 1957-2005 for 17 of the Norwegian counties (58-70 degrees N). For reconstruction, a radiation transfer model is run with total ozone amount and cloud information as meteorological input. Reconstructed hourly erythemally weighted UV irradiances for about 5 years are compared to measurements at four stations, two stations representing the north-south extension of Norway, and two stations at about 60 degrees N representing the eastern inland - Western coastal contrasts. The agreement between reconstructed and measured UV varies between 0% for the northernmost site to 10-15% overestimation for the other locations. For clear sky, a reasonable agreement between reconstructed and measured data was found for all stations, while for overcast, an overestimation of 10-20% was found for all but the northernmost station. Both the cancer incidences and the reconstructed UV values have a distinct north-south increase. The UV increase towards south is mostly due to increasing solar elevation. The west to east increase is much smaller, and differences in UV are due to differences in both cloud optical thickness and total cloud amount. One additional outcome from this work is that long-term UV-data are reconstructed for Norway, data that can be used in further biological and medical studies related to UV effects.

  2. Corneal epithelium and UV-protection of the eye.

    PubMed

    Ringvold, A

    1998-04-01

    To study UV-absorption and UV-induced fluorescence in the bovine corneal epithelium. Spectrophotometry and spectrofluorimetry. The corneal epithelium absorbs UV-B radiation mainly owing to its content of protein, RNA, and ascorbate. Some of the absorbed energy is transformed to the less biotoxic UV-A radiation by fluorescence. RNA and ascorbate reduce tissue fluorescence. The corneal epithelium acts as a UV-filter, protecting internal eye structures through three different mechanisms: (1) Absorption of UV-B roughly below 310 nm wavelength. (2) Fluorescence-mediated ray transformation to longer wavelengths. (3) Fluorescence reduction. The extremely high ascorbate concentration in the corneal epithelium has a key role in two of these processes.

  3. Lifetime testing UV LEDs for use in the LISA charge management system

    NASA Astrophysics Data System (ADS)

    Hollington, D.; Baird, J. T.; Sumner, T. J.; Wass, P. J.

    2017-10-01

    As a future charge management light source, UV light-emitting diodes (UV LEDs) offer far superior performance in a range of metrics compared to the mercury lamps used in the past. As part of a qualification program a number of short wavelength UV LEDs have been subjected to a series of lifetime tests for potential use on the laser interferometer space antenna (LISA) mission. These tests were performed at realistic output levels for both fast and continuous discharging in either a DC or pulsed mode of operation and included a DC fast discharge test spanning 50 days, a temperature dependent pulsed fast discharge test spanning 21 days and a pulsed continuous discharge test spanning 507 days. Two types of UV LED have demonstrated lifetimes equivalent to over 25 years of realistic mission usage with one type providing a baseline for LISA and the other offering a backup solution.

  4. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

    PubMed Central

    de Hoogh, Kees; Hauri, Dimitri; Vicedo-Cabrera, Ana M.; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-01-01

    Background: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. Objectives: We investigated the effects of radon and UV exposure on skin cancer mortality. Methods: Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation. Results: The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100Bq/m3 radon and 1.11 (1.01, 1.23) per W/m2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21], p=0.09). Conclusions: There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825 PMID:28686556

  5. Effect of Co doping, capping agent and optical-structural studies of ZnO:Co2+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Taheri Otaqsara, S. M.

    2011-08-01

    Co2+ doped ZnO nanoparticles (NPs) using PEG as a capping agent were prepared by colloidal wet-chemical method. The structure, morphology and characteristics of as-prepared samples were investigated. X-ray diffraction patterns studies revealed wurtzite crystal phase. STM-TEM micrographs show a spherical shape and nearly well distribution with an average particle size of ~15-20 nm. UV-VIS spectra show the presence of exciton peak at 349 nm which can be effectively tuned versus cobalt doping and PEG concentration. PL studies were done under the excitation of 347 nm, which exhibited a UV (~386 nm) and visible (blue-orange) emission peak because of free-exciton recombination and oxygen vacancy.

  6. Zirconia coated stir bar sorptive extraction combined with large volume sample stacking capillary electrophoresis-indirect ultraviolet detection for the determination of chemical warfare agent degradation products in water samples.

    PubMed

    Li, Pingjing; Hu, Bin; Li, Xiaoyong

    2012-07-20

    In this study, a sensitive, selective and reliable analytical method by combining zirconia (ZrO₂) coated stir bar sorptive extraction (SBSE) with large volume sample stacking capillary electrophoresis-indirect ultraviolet (LVSS-CE/indirect UV) was developed for the direct analysis of chemical warfare agent degradation products of alkyl alkylphosphonic acids (AAPAs) (including ethyl methylphosphonic acid (EMPA) and pinacolyl methylphosphonate (PMPA)) and methylphosphonic acid (MPA) in environmental waters. ZrO₂ coated stir bar was prepared by adhering nanometer-sized ZrO₂ particles onto the surface of stir bar with commercial PDMS sol as adhesion agent. Due to the high affinity of ZrO₂ to the electronegative phosphonate group, ZrO₂ coated stir bars could selectively extract the strongly polar AAPAs and MPA. After systematically optimizing the extraction conditions of ZrO₂-SBSE, the analytical performance of ZrO₂-SBSE-CE/indirect UV and ZrO₂-SBSE-LVSS-CE/indirect UV was assessed. The limits of detection (LODs, at a signal-to-noise ratio of 3) obtained by ZrO₂-SBSE-CE/indirect UV were 13.4-15.9 μg/L for PMPA, EMPA and MPA. The relative standard deviations (RSDs, n=7, c=200 μg/L) of the corrected peak area for the target analytes were in the range of 6.4-8.8%. Enhancement factors (EFs) in terms of LODs were found to be from 112- to 145-fold. By combining ZrO₂ coating SBSE with LVSS as a dual preconcentration strategy, the EFs were magnified up to 1583-fold, and the LODs of ZrO₂-SBSE-LVSS-CE/indirect UV were 1.4, 1.2 and 3.1 μg/L for PMPA, EMPA, and MPA, respectively. The RSDs (n=7, c=20 μg/L) were found to be in the range of 9.0-11.8%. The developed ZrO₂-SBSE-LVSS-CE/indirect UV method has been successfully applied to the analysis of PMPA, EMPA, and MPA in different environmental water samples, and the recoveries for the spiked water samples were found to be in the range of 93.8-105.3%. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Biological damage of UV radiation in environments of F-type stars

    NASA Astrophysics Data System (ADS)

    Sato, Satoko

    I investigate the general astrobiological significance of F-type main-sequence stars with special consideration to stellar evolutionary aspects due to nuclear evolution. DNA is taken as a proxy for carbon-based macromolecules following the assumption that exobiology is most likely based on hydrocarbons. The DNA action spectrum is utilized to represent the relative damage of the stellar UV radiation. Planetary atmospheric attenuation is taken into account in the form of parameterized attenuation functions. My work is motivated by previous studies indicating that the UV environment of solar-like stars is one of the most critical elements in determining the habitability of exoplanets and exomoons. It contributes further to the exploration of the exobiological suitability of stars that are hotter and emit much higher photospheric UV fluxes than the Sun. I found that the damage inflicted on DNA for planets at Earth-equivalent positions is between 2.5 and 7.1 times higher than for solar-like stars, and there are intricate relations for the time-dependence of damage during stellar main-sequence evolution. If atmospheric attenuation is included, however, less damage is obtained in alignment to the attenuation parameters. Also, the outer part of late F-type stars have similar UV conditions to Earth. Therefore, F-type circumstellar environments should not be excluded from candidates for habitable places on the grounds of higher stellar UV emission than the Sun. Besides the extensive theoretical component of this study, emphasis is furthermore placed on applications to observed planetary systems including CoRoT-3, WASP-14, HD 197286, HD 179949, upsilon And, and HD 86264.

  8. Demonstration of UV LED versatility when paired with molded UV transmitting glass optics to produce unique irradiance patterns

    NASA Astrophysics Data System (ADS)

    Jasenak, Brian

    2017-02-01

    Ultraviolet light-emitting diode (UV LED) adoption is accelerating; they are being used in new applications such as UV curing, germicidal irradiation, nondestructive testing, and forensic analysis. In many of these applications, it is critically important to produce a uniform light distribution and consistent surface irradiance. Flat panes of fused quartz, silica, or glass are commonly used to cover and protect UV LED arrays. However, they don't offer the advantages of an optical lens design. An investigation was conducted to determine the effect of a secondary glass optic on the uniformity of the light distribution and irradiance. Glass optics capable of transmitting UV-A, UV-B, and UV-C wavelengths can improve light distribution, uniformity, and intensity. In this work, two simulation studies were created to illustrate distinct irradiance patterns desirable for potential real world applications. The first study investigates the use of a multi-UV LED array and optic to create a uniform irradiance pattern on the flat two dimensional (2D) target surface. The uniformity was improved by designing both the LED array and molded optic to produce a homogenous pattern. The second study investigated the use of an LED light source and molded optic to improve the light uniformity on the inside of a canister. The case study illustrates the requirements for careful selection of LED based on light distribution and subsequent design of optics. The optic utilizes total internal reflection to create optimized light distribution. The combination of the LED and molded optic showed significant improvement in uniformity on the inner surface of the canister. The simulations illustrate how the application of optics can significantly improve UV light distribution which can be critical in applications such as UV curing and sterilization.

  9. Capillary electrophoresis hyphenated with UV-native-laser induced fluorescence detection (CE/UV-native-LIF).

    PubMed

    Couderc, François; Ong-Meang, Varravaddheay; Poinsot, Véréna

    2017-01-01

    Native laser-induced fluorescence using UV lasers associated to CE offers now a large related literature, for now 30 years. The main works have been performed using very expensive Ar-ion lasers emitting at 257 and 275 nm. They are not affordable for routine analyses, but have numerous applications such as protein, catecholamine, and indolamine analysis. Some other lasers such as HeCd 325 nm have been used but only for few applications. Diode lasers, emitting at 266 nm, cheaper, are extensively used for the same topics, even if the obtained sensitivity is lower than the one observed using the costly UV-Ar-ion lasers. This review presents various CE or microchips applications and different UV lasers used for the excitation of native fluorescence. We showed that CE/Native UV laser induced fluorescence detection is very sensitive for detection as well as small aromatic biomolecules than proteins containing Trp and Tyr amino acids. Moreover, it is a simple way to analyze biomolecules without derivatization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Proceedings of the Agent 2002 Conference on Social Agents : Ecology, Exchange, and Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macal, C., ed.; Sallach, D., ed.

    2003-04-10

    Welcome to the ''Proceedings'' of the third in a series of agent simulation conferences cosponsored by Argonne National Laboratory and The University of Chicago. The theme of this year's conference, ''Social Agents: Ecology, Exchange and Evolution'', was selected to foster the exchange of ideas on some of the most important social processes addressed by agent simulation models, namely: (1) The translation of ecology and ecological constraints into social dynamics; (2) The role of exchange processes, including the peer dependencies they create; and (3) The dynamics by which, and the attractor states toward which, social processes evolve. As stated in themore » ''Call for Papers'', throughout the social sciences, the simulation of social agents has emerged as an innovative and powerful research methodology. The promise of this approach, however, is accompanied by many challenges. First, modeling complexity in agents, environments, and interactions is non-trivial, and these representations must be explored and assessed systematically. Second, strategies used to represent complexities are differentially applicable to any particular problem space. Finally, to achieve sufficient generality, the design and experimentation inherent in agent simulation must be coupled with social and behavioral theory. Agent 2002 provides a forum for reviewing the current state of agent simulation scholarship, including research designed to address such outstanding issues. This year's conference introduces an extensive range of domains, models, and issues--from pre-literacy to future projections, from ecology to oligopolistic markets, and from design to validation. Four invited speakers highlighted major themes emerging from social agent simulation.« less

  11. UV Tanning Equipment | Radiation Protection | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Sun lamps and tanning equipment emit ultraviolet (UV) rays. People who are exposed to UV rays over a long period of time are more likely to develop skin cancer. People with light skin are in more danger because their skin is more sensitive to UV rays.

  12. Venus Upper Clouds and the UV Absorber From MESSENGER/MASCS Observations

    NASA Astrophysics Data System (ADS)

    Pérez-Hoyos, S.; Sánchez-Lavega, A.; García-Muñoz, A.; Irwin, P. G. J.; Peralta, J.; Holsclaw, G.; McClintock, W. M.; Sanz-Requena, J. F.

    2018-01-01

    One of the most intriguing, long-standing questions regarding Venus's atmosphere is the origin and distribution of the unknown UV absorber, responsible for the absorption band detected at the near-UV and blue range of Venus's spectrum. In this work, we use data collected by Mercury Atmospheric and Surface Composition Spectrometer (MASCS) spectrograph on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission during its second Venus flyby in June 2007 to address this issue. Spectra range from 0.3 μm to 1.5 μm including some gaseous H2O and CO2 bands, as well as part of the SO2 absorption band and the core of the UV absorption. We used the NEMESIS radiative transfer code and retrieval suite to investigate the vertical distribution of particles in the equatorial atmosphere and to retrieve the imaginary refractive indices of the UV absorber, assumed to be well mixed with Venus's small mode 1 particles. The results show a homogeneous equatorial atmosphere, with cloud tops (height for unity optical depth) at 75 ± 2 km above surface. The UV absorption is found to be centered at 0.34 ± 0.03 μm with a full width at half maximum of 0.14 ± 0.01 μm. Our values are compared with previous candidates for the UV aerosol absorber, among which disulfur oxide (S2O) and dioxide disulfur (S2O2) provide the best agreement with our results.

  13. Test of the mechanism of UV-induced K/sup +/ efflux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, T.M.; Huerta, A.J.

    1987-04-01

    UV radiation and certain plant pathogens stimulate a net efflux of K/sup +/ from cultured plant cells. Many aspects of the efflux are uncertain, including the counterion(s) involved. In the case of UV irradiation of rose cells, Murphy and Wilson suggest a coordinate loss of K/sup +/ and HCO/sub 3//sup -/; in contrast, Atkinson et al. suggest that treatment of tobacco cells with Erwinia pectate lyase introduces a counterflux of K/sup +/ and H/sup +/. In respiring cells, the cytoplasm and medium are buffered by respiratory CO/sub 2/, and it is difficult to distinguish between the two mechanisms. Still, themore » two models predict different influences of external pH on the rate of K/sup +/ flux. The authors have found that increasing pH from 4 to 8 by use of MES-TRIS buffer, pH state, or controlled external CO/sub 2/ concentration does not significantly decrease the rate of UV-induced K/sup +/ efflux. This evidence does not support the application of the K/sup +//H/sup +/ counterflux model to the case of the UV-irradiated rose cells.« less

  14. Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films

    NASA Astrophysics Data System (ADS)

    Patil, S. B.; Singh, A. K.

    2010-02-01

    In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density ( Jsc) and open circuit voltage ( Voc) i.e. 99 μA/cm 2 and 376 mV respectively, under 10 mW/cm 2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.

  15. Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme

    PubMed Central

    Ferroni, Lorenzo; Klisch, Manfred; Pancaldi, Simonetta; Häder, Donat-Peter

    2010-01-01

    Mycosporine-like amino acids (MAAs) and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW−1), concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm). The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm) and UV-B (280–320 nm) range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments. PMID:20161974

  16. UV reflection properties of plumage and skin of domesticated turkeys (Meleagris gallopavo f. dom.) as revealed by UV photography.

    PubMed

    Bartels, T; Lütgeharm, J-H; Wähner, M; Berk, J

    2017-12-01

    Reflection and fluorescence properties of feathered and non-feathered body regions of white- and bronze-colored fattening turkeys of various ages were examined by ultraviolet (UV) photography. The examinations were carried out on 20 white-feathered fattening turkeys (B.U.T. 6; 10 males, 10 females) and 20 bronze-feathered fattening turkeys (Grelier 708; 10 males, 10 females) over a period of 21 weeks. The turkeys were photographed once a wk under long-wave UV (UVA) radiation illumination (λ = 344-407 nm) using a digital camera. A bandpass filter was used for UV reflectography to filter out the visible components of the used light source. A longpass filter was used for UV fluorescence photography to avoid blurring in the image due to chromatic aberration as a result of UV illumination. We found that natal down feathers of white-feathered turkeys showed an intense yellowish-green fluorescence under UVA light. UVA fluorescence also was shown by the natal downs of the slightly melanized plumage areas of bronze turkeys. Vaned feathers of white fattening turkeys reflected UVA radiation. Freshly molted feathers were optically distinguishable from the previous feather generation due to their more intense UVA reflection. In bronze turkeys, both the bright end seams of the dark pennaceous feathers and rectrices and the bright banding of primary and secondary remiges reflected UVA radiation. Intense UVA fluorescence was recognizable in day-old chicks of both color variants on the scutellate scales of the legs and toes. In male turkeys of both color variants, UVA-reflecting parts were recognizable with increasing age on the featherless head region. The UVA-fluorescent and UVA-reflective characteristics of the plumage of fattening turkeys were closely related to the plumage color, the feather type, the molting state, and the age of the birds. Further research is needed regarding the UVA-reflecting properties of the turkey plumage and the effects of full-spectrum illumination

  17. Development of a method for the characterization and operation of UV-LED for water treatment.

    PubMed

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2017-10-01

    Tremendous improvements in semiconductor technology have made ultraviolet light-emitting diodes (UV-LEDs) a viable alternative to conventional UV sources for water treatment. A robust and validated experimental protocol for studying the kinetics of microorganism inactivation is key to the further development of UV-LEDs for water treatment. This study proposes a protocol to operate UV-LEDs and control their output as a polychromatic radiation source. In order to systematically develop this protocol, the results of spectral power distribution, radiation profile, and radiant power measurements of a variety of UV-LEDs are presented. A wide range of UV-LEDs was selected for this study, covering various UVA, UVB, and UVC wavelengths, viewing angles from 3.5° to 135°, and a variety of output powers. The effects of operational conditions and measurement techniques were investigated on these UV-LEDs using a specially designed and fabricated setup. Operating conditions, such as the UV-LED electrical current and solder temperature, were found to significantly affect the power and peak wavelength output. The measurement techniques and equipment, including the detector size, detector distance from the UV-LED, and potential reflection from the environment, were shown to influence the results for many of the UV-LEDs. The results obtained from these studies were analyzed and applied to the development of a protocol for UV-LED characterization. This protocol is presented as a guideline that allows the operation and control of UV-LEDs in any structure, as well as accurately measuring the UV-LED output. Such information is essential for performing a reliable UV-LED assessment for the inactivation of microorganisms and for obtaining precise kinetic data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. MOF-5(Zn)-Fe2O4 nanocomposite based magnetic solid-phase microextraction followed by HPLC-UV for efficient enrichment of colchicine in root of colchicium extracts and plasma samples.

    PubMed

    Bahrani, Sonia; Ghaedi, Mehrorang; Dashtian, Kheibar; Ostovan, Abbas; Mansoorkhani, Mohammad Javad Khoshnood; Salehi, Amin

    2017-11-01

    In present work, facile method is developed for determination of colchicine in human plasma sample, autumn and spring root of colchicium extracts by ultrasound assisted dispersive magnetic solid phase microextraction followed by HPLC-UV method (UAD-MSPME-HPLC-UV). Magnetic (Fe 2 O 4 -nanoparticles) metal organic framework-5, (MOF-5(Zn)-Fe 2 O 4 NPs) was synthesized by dispersing MOF-5 and Fe(NO 3 ) 3 .9H 2 O in ethylene glycol (as capping agent) and NaOH (pH adjustment agent) by hydrothermal method. The prepared sorbent was characterized via XRD and SEM analysis and applied as magnetic solid phase in UAD-MSPME-HPLC-UV method. In this method, colchicine molecules were sorbed on MOF-5(Zn)-Fe 2 O 4 NPs sorbent by various mechanisms like ion exchange, hydrogen bonding and electrostatic, ᴨ-ᴨ, hard-hard and dipole-ion interaction followed by exposing sonication waves as incremental mass transfer agent and then the sorbent was separated from the sample matrix by an external magnetic fields. Subsequently, accumulated colchicine were eluted by small volume of desorption organic solvent. Influence of operational variables such as MOF-5(Zn)-Fe 2 O 4 NPs mass, volume of extracting solvent and sonication time on response property (recovery) were studied and optimized by central composite design (CCD) combined with desirability function (DF) approach. Under optimum condition, the method has wide linear calibration rang (0.5-1700ngmL -1 ) with reasonable detection limit (0.13ngmL -1 ) and R 2 =0.9971. Finally, the UAD-MSPME-HPLC-UV method was successfully applied for determination of colchicine autumn and spring root of colchicium extracts and plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nondestructive Intervention to Multi-Agent Systems through an Intelligent Agent

    PubMed Central

    Han, Jing; Wang, Lin

    2013-01-01

    For a given multi-agent system where the local interaction rule of the existing agents can not be re-designed, one way to intervene the collective behavior of the system is to add one or a few special agents into the group which are still treated as normal agents by the existing ones. We study how to lead a Vicsek-like flocking model to reach synchronization by adding special agents. A popular method is to add some simple leaders (fixed-headings agents). However, we add one intelligent agent, called ‘shill’, which uses online feedback information of the group to decide the shill's moving direction at each step. A novel strategy for the shill to coordinate the group is proposed. It is strictly proved that a shill with this strategy and a limited speed can synchronize every agent in the group. The computer simulations show the effectiveness of this strategy in different scenarios, including different group sizes, shill speed, and with or without noise. Compared to the method of adding some fixed-heading leaders, our method can guarantee synchronization for any initial configuration in the deterministic scenario and improve the synchronization level significantly in low density groups, or model with noise. This suggests the advantage and power of feedback information in intervention of collective behavior. PMID:23658695

  20. Assimilation of DMSP/SSUSI UV data into IDA4D

    NASA Astrophysics Data System (ADS)

    Gelinas, L. J.; Bust, G. S.; Brinkman, D. G.; Straus, P. R.; Swartz, R. L.

    2014-12-01

    Ionospheric Data Assimilation Four-Dimensional (IDA4D) is a continuous-time, three-dimensional imaging algorithm that can produce 4D electron density specifications for various science investigations [e.g., Bust et al., 2007]. IDA4D is based on three-dimensional variational (3DVAR) data assimilation [Daley and Barker, 2001]. The algorithm combines various data sources and their associated error covariances with a background model (in this case the IRI) and its covariances to produce an ionospheric specification with formal uncertainties. IDA4D employs a Gauss- Markov Kalman filter technique similar to that used by operational assimilation models. The model can ingest a broad spectrum of data types that are either linearly or non-linearly related to electron density, including ground-based TEC, space-based TEC as measured by GPS occultation sensors and UV emissions associated with nightside recombination of O+. IDA4D has been undergoing testing at The Aerospace Corporation to determine its performance with respect to combinations of input data sets under different conditions (solar minimum, solar maximum, geomagnetic activity). The results presented here summarize the performance of IDA4D when UV data is ingested, both with and without additional TEC measurements. The UV data used in the study summarized here are 135.6 nm emissions measured the SSUSI instruments on F16 and F18 DMSP. We discuss the process by which UV data is ingested into IDA4D, including data binning, error estimation and correction of 135.6 nm contamination from mutual neutralization of O+ and O-. Model performance is then assessed using comparisons to various ground truth data, including ISR data, Jason VTEC, CNOF/S in-situ plasma density and ionosonde-derived NmF2 values. The results of this study show that UV data improves model performance, particularly when TEC data coverage is sparse. Bust, G. S., G. Crowley, T. W. Garner, T. L. Gaussiran II, R. W. Meggs, C. N. Mitchell, P. S. J. Spencer, P

  1. Near-visible light and UV photoprotection in the treatment of melasma: a double-blind randomized trial.

    PubMed

    Castanedo-Cazares, Juan Pablo; Hernandez-Blanco, Diana; Carlos-Ortega, Blanca; Fuentes-Ahumada, Cornelia; Torres-Álvarez, Bertha

    2014-02-01

    Melasma is an acquired hyperpigmentation on sun-exposed areas. Multiple approaches are used to treat it, but all include broad ultraviolet (UV)-spectrum sunscreens. Visible light (VL) can induce pigmentary changes similar to those caused by UV radiation on darker-skinned patients. To assess the efficacy of sunscreen with broad-spectrum UV protection that contains iron oxide as a VL-absorbing pigment (UV-VL) compared with a regular UV-only broad-spectrum sunscreen for melasma patients exposed to intense solar conditions. Sixty-eight patients with melasma were randomized in two groups to receive either UV-VL sunscreen or UV-only sunscreen, both with sun protection factor ≥ 50, over 8 weeks. All patients received 4% hydroquinone as a depigmenting treatment. At onset and at conclusion of the study, they were assessed by the Melasma Activity and Severity Index (MASI; a subjective scale), colorimetry (L*) and histological analysis of melanin. Sixty-one patients concluded the study. At 8 weeks, the UV-VL group showed 15%, 28% and 4% greater improvements than the UV-only group in MASI scores, colorimetric values and melanin assessments, respectively. UV-VL sunscreen enhances the depigmenting efficacy of hydroquinone compared with UV-only sunscreen in treatment of melasma. These findings suggest a role for VL in melasma pathogenesis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Critical dimensional linewidth calibration using UV microscope and laser interferometry

    NASA Astrophysics Data System (ADS)

    Li, Qi; Gao, Si-tian; Li, Wei; Lu, Ming-zhen; Zhang, Ming-kai

    2013-10-01

    In order to calibrate the critical dimensional (CD) uncertainty of lithography masks in semiconductor manufacturing, NIM is building a two dimensional metrological UV microscope which has traceable measurement ability for nanometer linewidths and pitches. The microscope mainly consists of UV light receiving components, piezoelectric ceramics (PZT) driven stage and interferometer calibration framework. In UV light receiving components they include all optical elements on optical path. The UV light originates from Köhler high aperture transmit/reflect illumination sources; then goes through objective lens to UV splitting optical elements; after that, one part of light attains UV camera for large range calibration, the other part of light passes through a three dimensional adjusted pinhole and is collected by PMT for nanoscale scanning. In PZT driven stage, PZT stick actuators with closed loop control are equipped to push/pull a flexural hinge based platform. The platform has a novel designed compound flexural hinges which nest separate X, Y direction moving mechanisms within one layer but avoiding from mutual cross talk, besides this, the hinges also contain leverage structures to amplify moving distance. With these designs, the platform can attain 100 μm displacement ranges as well as 1 nm resolution. In interferometer framework a heterodyne multi-pass interferometer is mounted on the platform, which measures X-Y plane movement and Z axis rotation, through reference mirror mounted on objective lens tube and Zerodur mirror mounted on PZT platform, the displacement is traced back to laser wavelength. When development is finished, the apparatus can offer the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.

  3. TOMS UV Algorithm: Problems and Enhancements. 2

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay; Herman, Jay; Bhartia, P. K.; Seftor, Colin; Arola, Antti; Kaurola, Jussi; Kroskinen, Lasse; Kalliskota, S.; Taalas, Petteri; Geogdzhaev, I.

    2002-01-01

    Satellite instruments provide global maps of surface ultraviolet (UV) irradiance by combining backscattered radiance measurements with radiative transfer models. The models are limited by uncertainties in input parameters of the atmosphere and the surface. We evaluate the effects of possible enhancements of the current Total Ozone Mapping Spectrometer (TOMS) surface UV irradiance algorithm focusing on effects of diurnal variation of cloudiness and improved treatment of snow/ice. The emphasis is on comparison between the results of the current (version 1) TOMS UV algorithm and each of the changes proposed. We evaluate different approaches for improved treatment of pixel average cloud attenuation, with and without snow/ice on the ground. In addition to treating clouds based only on the measurements at the local time of the TOMS observations, the results from other satellites and weather assimilation models can be used to estimate attenuation of the incident UV irradiance throughout the day. A new method is proposed to obtain a more realistic treatment of snow covered terrain. The method is based on a statistical relation between UV reflectivity and snow depth. The new method reduced the bias between the TOMS UV estimations and ground-based UV measurements for snow periods. The improved (version 2) algorithm will be applied to re-process the existing TOMS UV data record (since 1978) and to the future satellite sensors (e.g., Quik/TOMS, GOME, OMI on EOS/Aura and Triana/EPIC).

  4. Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma

    PubMed Central

    Anna, Brozyna; Blazej, Zbytek; Jacqueline, Granese; Andrew, Carlson J.; Jeffrey, Ross; Andrzej, Slominski

    2008-01-01

    Summary Melanoma consists 4–5 % of all skin cancers, but it contributes to 71–80 % of skin cancers deaths. UV light affects cell and tissue homeostasis due to its damaging effects on DNA integrity and modification of expression of a plethora of genes. DNA repair systems protect cells from UV-induced lesions. Several animal models of melanoma have been developed (Xiphophorus, Opossum Monodelphis domestica, mouse models and human skin engrafts into other animals). This review discusses possible links between UV and genes significantly related to melanoma but does not discuss melanoma genetics. These include oncogenes, tumor suppressor genes, genes related to melanocyte-keratinocyte and melanocyte-matrix interaction, growth factors and their receptors, CRH, ACTH, α-MSH, glucocorticoids, ID1, NF-kappaB and vitamin D3. PMID:18846265

  5. UV/H2O2 and UV/PDS Treatment of Trimethoprim and Sulfamethoxazole in Synthetic Human Urine: Transformation Products and Toxicity.

    PubMed

    Zhang, Ruochun; Yang, Yongkui; Huang, Ching-Hua; Li, Na; Liu, Hang; Zhao, Lin; Sun, Peizhe

    2016-03-01

    Elimination of pharmaceuticals in source-separated human urine is a promising approach to minimize the pharmaceuticals in the environment. Although the degradation kinetics of pharmaceuticals by UV/H2O2 and UV/peroxydisulfate (PDS) processes has been investigated in synthetic fresh and hydrolyzed urine, comprehensive evaluation of the advanced oxidation processes (AOPs), such as product identification and toxicity testing, has not yet been performed. This study identified the transformation products of two commonly used antibiotics, trimethoprim (TMP) and sulfamethoxazole (SMX), by UV/H2O2 and UV/PDS in synthetic urine matrices. The effects of reactive species, including •OH, SO4(•-), CO3(•-), and reactive nitrogen species, on product generation were investigated. Multiple isomeric transformation products of TMP and SMX were observed, especially in the reaction with hydroxyl radical. SO4(•-) and CO3(•-) reacted with pharmaceuticals by electron transfer, thus producing similar major products. The main reactive species deduced on the basis of product generation are in good agreement with kinetic simulation of the advanced oxidation processes. A strain identified as a polyphosphate-accumulating organism was used to investigate the antimicrobial activity of the pharmaceuticals and their products. No antimicrobial property was detected for the transformation products of either TMP or SMX. Acute toxicity employing luminescent bacterium Vibrio qinghaiensis indicated 20-40% higher inhibitory effect of TMP and SMX after treatment. Ecotoxicity was estimated by quantitative structure-activity relationship analysis using ECOSAR.

  6. Characteristic correlation study of UV disinfection performance for ballast water treatment

    NASA Astrophysics Data System (ADS)

    Ba, Te; Li, Hongying; Osman, Hafiiz; Kang, Chang-Wei

    2016-11-01

    Characteristic correlation between ultraviolet disinfection performance and operating parameters, including ultraviolet transmittance (UVT), lamp power and water flow rate, was studied by numerical and experimental methods. A three-stage model was developed to simulate the fluid flow, UV radiation and the trajectories of microorganisms. Navier-Stokes equation with k-epsilon turbulence was solved to model the fluid flow, while discrete ordinates (DO) radiation model and discrete phase model (DPM) were used to introduce UV radiation and microorganisms trajectories into the model, respectively. The UV dose statistical distribution for the microorganisms was found to move to higher value with the increase of UVT and lamp power, but moves to lower value when the water flow rate increases. Further investigation shows that the fluence rate increases exponentially with UVT but linearly with the lamp power. The average and minimum resident time decreases linearly with the water flow rate while the maximum resident time decrease rapidly in a certain range. The current study can be used as a digital design and performance evaluation tool of the UV reactor for ballast water treatment.

  7. A novel class of Saccharomyces cerevisiae mutants specifically UV-sensitive to "petite" induction.

    PubMed

    Moustacchi, E; Perlman, P S; Mahler, H R

    1976-11-17

    A mutant of Saccharomyces cerevisiae has been isolated which, though exhibiting a normal response to nuclear genetic damage by ultraviolet light (UV), is more sensitive than its wild type specifically in the production of the cytoplasmic (rho-) mutation by this agent. Some of the features of this mutation which has been designated uvsrho 5 are: i) The mutation is recessive, it exhibits a Mendelian, and hence presumably nuclear, pattern of segregation, but manifests its effects specifically and pleiotropically on mitochondrial functions. ii) Mutant cells resemble their wild type parents in a) growth characteristics on glucose; b) in their UV induced dose response to lethality or nuclear mutation and c) the ability of their mitochondrial genome, upon mating with appropriate testers, of transmitting and recombining various markers, albeit with enhanced efficiency. Similarly, d) they are able to modulate the expression of mitochondrial mutagenesis by ethidium bromide. Thus their mitochondrial DNA appears genetically as competent as that of the wild type. iii) Mutant cells differ from their wild type parents in a) growth characteristics on glycerol; b) susceptibility to induction of the mitochondrial (rho-) mutation by various mutagens, in that the rate of spontaneous mutation is slightly and that by UV is significantly enhanced, whild that by ethidium bromide is greatly diminished. Conversely, c) modulating influences resulting in the repair of initial damage are diminished fro UV and stimulated in the case of Berenil. iv) The amount of mitochondrial DNA per cell appears elevated in the mutant, relative to wild type, and its rate of degradation subsequent to a mutagenic exposure to either UV or ethidium bromide is diminished. v) A self-consistent scheme to account for this and all other information so far available for the induction and modulation of the (rho-) mutation is presented. In a previous study it was shown that some nuclear mutants of Saccharomyces cerevisiae

  8. UV disinfection in drinking water supplies.

    PubMed

    Hoyer, O

    2000-01-01

    UV disinfection has become a practical and safely validatable disinfection procedure by specifying the requirements for testing and monitoring in DVGW standard W 294. A standardized biodosimetric testing procedure and monitoring with standardized UV sensors is introduced and successfully applied. On-line monitoring of irradiance can be counterchecked with handheld reference sensors and makes it possible that UV systems can be used for drinking water disinfection with the same level of confidence and safety as is conventional chemical disinfection.

  9. UV-observations with a Brewer spectrophotometer at Hohenpeissenberg

    NASA Technical Reports Server (NTRS)

    Vandersee, Winfried; Koehler, U.

    1994-01-01

    Regular spectral UV-B measurements with a Brewer spectrophotometer have been performed at Hohenpeissenberg since 1990. Intercomparison of the Brewer instrument with other UV-B monitoring devices have shown agreement to within plus or minus 10 percent. Comparisons of UV-B spectra measured on fair weather days reveal the well known increasing influence of ozone on UV-B irradiance with decreasing wavelengths. The integral amplification factor the erythemal irradiance reaches values up to 2.8, which can be diminished by increasing turbidity. The influence of cirrus cloud on the UV-B is also shown.

  10. UV Catalysis, Cyanotype Photography, and Sunscreens

    NASA Astrophysics Data System (ADS)

    Lawrence, Glen D.; Fishelson, Stuart

    1999-09-01

    This laboratory experiment is intended for a chemistry course for non-science majors. The experiment utilizes one of the earliest photographic processes, the cyanotype process, to demonstrate UV catalysis of chemical reactions. In addition to making photographic prints from negatives, the process can be used to test the effectiveness of sunscreens and the relative efficacy of the SPF (sun protection factor) rating of sunscreens. This is an inexpensive process, requiring solutions of ammonium ferric citrate and potassium ferricyanide, with options to use hydrogen peroxide and ammonium hydroxide solutions. Students can prepare their own UV-sensitized paper with the indicated chemicals and watch the photographic image appear as it is exposed to sunlight or fluorescent UV lamps in a light box designed for use in this experiment. The laboratory experiment should stimulate discussion of UV catalysis, photographic processes and photochemistry, sunscreens, and UV damage to biological organisms. The chemicals used are relatively nontoxic, and the procedure is simple enough to be used by groups of diverse ages and abilities.

  11. Hormone-controlled UV-B responses in plants.

    PubMed

    Vanhaelewyn, Lucas; Prinsen, Els; Van Der Straeten, Dominique; Vandenbussche, Filip

    2016-08-01

    Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. UV scale calibration transfer from an improved pyroelectric detector standard to field UV-A meters and 365 nm excitation sources

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Podobedov, V. B.; Cooksey, C. C.

    2017-05-01

    Calibration of the emitted radiation from UV sources peaking at 365 nm, is necessary to perform the ASTM required 1 mW/cm2 minimum irradiance in certain military material (ships, airplanes etc) tests. These UV "black lights" are applied for crack-recognition using fluorescent liquid penetrant inspection. At present, these nondestructive tests are performed using Hg-lamps. Lack of a proper standard and the different spectral responsivities of the available UV meters cause significant measurement errors even if the same UV-365 source is measured. A pyroelectric radiometer standard with spectrally flat (constant) response in the UV-VIS range has been developed to solve the problem. The response curve of this standard determined from spectral reflectance measurement, is converted into spectral irradiance responsivity with <0.5% (k=2) uncertainty as a result of using an absolute tie point from a Si-trap detector traceable to the primary standard cryogenic radiometer. The flat pyroelectric radiometer standard can be used to perform uniform integrated irradiance measurements from all kinds of UV sources (with different peaks and distributions) without using any source standard. Using this broadband calibration method, yearly spectral calibrations for the reference UV (LED) sources and irradiance meters is not needed. Field UV sources and meters can be calibrated against the pyroelectric radiometer standard for broadband (integrated) irradiance and integrated responsivity. Using the broadband measurement procedure, the UV measurements give uniform results with significantly decreased uncertainties.

  13. Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method.

    PubMed

    Vilhunen, Sari; Vilve, Miia; Vepsäläinen, Mikko; Sillanpää, Mika

    2010-07-15

    A re-circulated flow-through photoreactor was used to evaluate the ultraviolet (UV) photolysis and UV/H(2)O(2) oxidation process in the purification of three different water matrices. Chemically coagulated and electrocoagulated surface water, groundwater contaminated with creosote wood preservative and 1,2-dichloroethane (DCE) containing washing water from the plant manufacturing tailor-made ion-exchange resins were used as sample waters. The organic constituents of creosote consist mainly of harmful polycyclic aromatic hydrocarbons (PAH) whereas 1,2-DCE is a toxic volatile organic compound (VOC). Besides analyzing the specific target compounds, total organic carbon (TOC) analysis and measurement of change in UV absorbance at 254 nm (UV(254)) were performed. Initial TOC, UV(254) and pH varied significantly among treated waters. Initial H(2)O(2) concentrations 0-200 mg/l were used. The UV/H(2)O(2) treatment was efficient in removing the hazardous target pollutants (PAHs and 1,2-DCE) and natural organic matter (NOM). In addition, high removal efficiency for TOC was achieved for coagulated waters and groundwater. Also, the efficiency of direct photolysis in UV(254) removal was significant except in the treatment of 1,2-DCE containing washing water. Overall, UV(254) and TOC removal rates were high, except in case of washing water, and the target pollutants were efficiently decomposed with the UV/H(2)O(2) method. 2010 Elsevier B.V. All rights reserved.

  14. Transmittance of tinted and UV-blocking disposable contact lenses.

    PubMed

    Harris, M G; Haririfar, M; Hirano, K Y

    1999-03-01

    Tinted and ultraviolet (UV)-blocking disposable contact lenses have become increasingly popular over the last decade. Wearers of UV-blocking contact lenses could benefit greatly by protecting their eyes from potential UV radiation damage. A Uvikon 930 dual beam spectrophotometer was used to measure three enhancement-tinted lenses (royal blue, evergreen, and aqua), two types of UV-blocking lenses, and two types of non-UV-blocking lenses. Enhancement-tinted lenses did show a decrease in transmittance at certain wavelengths on the visible spectrum, but they did not reduce the transmittance of UV radiation to the extent of the UV-blocking lenses designed specifically for this purpose.

  15. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    PubMed

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  16. Enhanced resistance of the Pamirs high-mountain strain of Cryptococcus albidus to UV radiation of an ecological range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strakhovskaya, M.G.; Lavrukhina, O.G.; Fraikin, G.Y.

    The results of a comparative analysis of the resistance of Pamirs high-mountain and lowland strains of the yeast Cryptococcus albidus to UV radiation of an ecological range are presented. A high-mountain strain, adapted to elevated UV radiation in its habitat, was found to be more resistant to UV light of a total ecorange (290-400 nm), including medium-wave (290-320 nm) and long-wave (320-400 nm) UV ranges. The enhanced UV light resistance of the high-mountain strain can be explained by efficient functioning of the excision DNA repair system. 7 refs., 3 tabs.

  17. Urban forest influences on exposure to UV radiation and potential consequences for human health

    Treesearch

    Gordon M. Heisler

    2010-01-01

    This chapter explores the literature on ultraviolet (UV) irradiance in urban ecosystems with respect to the likely effects on human health. The focus was the question of whether the health effects of UV radiation should be included in the planning of landscape elements such as trees and shading structures, especially for high use pedestrian areas and school play...

  18. Environmental occurrence and distribution of organic UV stabilizers and UV filters in the sediment of Chinese Bohai and Yellow Seas.

    PubMed

    Apel, Christina; Tang, Jianhui; Ebinghaus, Ralf

    2018-04-01

    Organic UV stabilizers and UV filters are applied to industrial materials and cosmetics worldwide. In plastics they prevent photo-induced degradation, while in cosmetics they protect human skin against harmful effects of UV radiation. This study reports on the occurrence and distribution of organic UV stabilizers and UV filters in the surface sediment of the Chinese Bohai and Yellow Seas for the first time. In total, 16 out of 21 analyzed substances were positively detected. Concentrations ranged from sub-ng/g dw to low ng/g dw. The highest concentration of 25 ng/g dw was found for octocrylene (OC) in the Laizhou Bay. In the study area, characteristic composition profiles could be identified. In Korea Bay, the dominating substances were OC and ethylhexyl salicylate (EHS). All other analytes were below their method quantification limit (MQL). Around the Shandong Peninsula, highest concentrations of benzotriazole derivatives were observed in this study with octrizole (UV-329) as the predominant compound, reaching concentrations of 6.09 ng/g dw. The distribution pattern of UV-329 and bumetrizole (UV-326) were related (Pearson correlation coefficient r > 0.98, p « 0.01 around the Shandong Peninsula), indicating an identical input pathway and similar environmental behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A novel approach for UV-patterning with binary polymer brushes.

    PubMed

    Li, Lifu; Nakaji-Hirabayashi, Tadashi; Kitano, Hiromi; Ohno, Kohji; Saruwatari, Yoshiyuki; Matsuoka, Kazuyoshi

    2018-01-01

    A mixed self-assembled monolayer (SAM) of an initiator (3-(2-bromo-2-isobutyryloxy)propyl triethoxysilane) for atom transfer radical polymerization (ATRP) and an agent (6-(triethoxysilyl)hexyl 2-(((methylthio)carbonothioyl)thio)-2-phenylacetate) for reversible addition-fragmentation chain transfer (RAFT) polymerization was constructed on the surface of a silicon wafer or glass plate by a silane coupling reaction. When a UV light at 254nm was irradiated at the mixed SAM through a photomask, the surface density of the bromine atom at the end of BPE in the irradiated region was drastically reduced by UV-driven scission of the BrC bond, as observed by X-ray photoelectron spectroscopy. Consequently, the surface-initiated (SI)-ATRP of 2-ethylhexyl methacrylate (EHMA) was used to easily construct the poly(EHMA) (PEHMA) brush domain. Subsequently, SI-RAFT polymerization of a zwitterionic vinyl monomer, carboxymethyl betaine (CMB), was performed. Using the sequential polymerization, the PCMB and PEHMA brush domains on the solid substrate could be very easily patterned. Patterning proteins and cells with the binary polymer brush is expected because the PCMB brush indicated strong suppression of protein adsorption and cell adhesion, and the PEHMA brush had non-polar properties. This technique is very simple and useful for regulating the shape and size of bio-fouling and anti-biofouling domains on solid surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. UV lifetime laser demonstrator for space-based applications

    NASA Astrophysics Data System (ADS)

    Albert, Michael; Puffenburger, Kent; Schum, Tom; Fitzpatrick, Fran; Litvinovitch, Slava; Jones, Darrell; Rudd, Joseph; Hovis, Floyd

    2015-09-01

    A long-lived UV laser is an enabling technology for a number of high-priority, space-based lidar instruments. These include next generation cloud and aerosol lidars that incorporates a UV channel, direct detection 3-D wind lidars, and ozone DIAL (differential absorption lidar) system. In previous SBIR funded work we developed techniques for increasing the survivability of components in high power UV lasers and demonstrated improved operational lifetimes. In this Phase III ESTO funded effort we are designing and building a TRL (Technology Readiness Level) 6 demonstrator that will have increased output power and a space-qualifiable package that is mechanically robust and thermally-stable. For full space compatibility, thermal control will be through pure conductive cooling. Contamination control processes and optical coatings will be chosen that are compatible with lifetimes in excess of 1 billion shots. The 1064nm output will be frequency tripled to provide greater than 100mJ pulses of 355nm light at 150 Hz. After completing the laser module build in the third quarter of 2015 we will initiate lifetime testing, followed by thermal/vacuum (TVAC) and vibration testing to demonstrate that the design is at TRL 6.

  1. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa; Zargar, Mohsen; Abdollahi, Yadollah

    2010-01-01

    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO3 were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller–Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles. PMID:21116328

  2. Influence of UV dose on the UV/H2O2 process for the degradation of carbamazepine in wastewater.

    PubMed

    Somathilake, Purnima; Dominic, John Albino; Achari, Gopal; Langford, Cooper H; Tay, Joo-Hwa

    2018-05-02

    This study evaluates the influence of UV dose on degradation of carbamazepine (CBZ) in wastewater under UV-C (λ = 254 nm) photolysis with and without H 2 O 2 . The rate of degradation of CBZ exhibited a direct dependence on the intensity of incident UV irradiation as the rate of degradation was observed to increase linearly (R 2  = 0.98) with UV intensity between 1.67 and 8.95 × 10 17 photons/s. More than 95% of the CBZ that spiked in wastewater rapidly degraded within 4 min with a first-order rate constant of 1.2 min -1 for an optimum H 2 O 2 dose of 100 mg/L. Bench-scale continuous flow reactor experiments also showed that CBZ degraded with first-order kinetics at a rate constant of 1.02 min -1 . The kinetic parameters obtained for a continuous bench-scale reactor were in good agreement with the relationships developed through batch experiments with only a marginal deviation of ± 6.5%. The relationship between UV intensity and CBZ degradation rate obtained in this study was extrapolated to the UV disinfection unit of a wastewater treatment plant to predict possible degradation of CBZ during UV disinfection. The addition of 100 mg/L of H 2 O 2 to the secondary-treated effluent entering the UV disinfection unit is predicted to achieve over 60% degradation of CBZ.

  3. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  4. Towards producing novel fish gelatin films by combination treatments of ultraviolet radiation and sugars (ribose and lactose) as cross-linking agents.

    PubMed

    Bhat, Rajeev; Karim, A A

    2014-07-01

    Developing novel fish gelatin films with better mechanical properties than mammalian gelatin is a challenging but promising endeavor. Studies were undertaken to produce fish gelatin films by combining treatments with different sugars (ribose and lactose) followed 'by' 'and' ultraviolet (UV) radiation, as possible cross-linking agents. Increase in tensile strength and percent elongation at break was recorded, which was more significant in films without sugars that were exposed to UV radiation. Films with added ribose showed decreased solubility after UV treatment and exhibited higher swelling percentage than films with added lactose, which readily dissolved in water. FTIR spectra of all the films showed identical patterns, which indicated no major changes to have occurred in the functional groups as a result of interaction between gelatin, sugars and UV irradiation. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for food packaging purposes.

  5. UV-induced effects on chlorination of creatinine.

    PubMed

    Weng, Shih Chi; Li, Jing; Wood, Karl V; Kenttämaa, Hilkka I; Williams, Peggy E; Amundson, Lucas M; Blatchley, Ernest R

    2013-09-15

    Ultraviolet (UV) irradiation is commonly employed for water treatment in swimming pools to complement conventional chlorination, and to reduce the concentration of inorganic chloramine compounds. The approach of combining UV irradiation and chlorination has the potential to improve water quality, as defined by microbial composition. However, relatively little is known about the effects of this process on water chemistry. To address this issue, experiments were conducted to examine the effects of sequential UV254 irradiation/chlorination, as will occur in recirculating system of swimming pools, on disinfection byproduct (DBP) formation. Creatinine, which is present in human sweat and urine, was selected as the target precursor for these experiments. Enhanced formation of dichloromethylamine (CH3NCl2) and inorganic chloramines was observed to result from post-chlorination of UV-irradiated samples. Chlorocreatinine was found to be more sensitive to UV254 irradiation than creatinine; UV254 irradiation of chlorocreatinine resulted in opening of the ring structure, thereby yielding a series of intermediates that were more susceptible to free chlorine attack than their parent compound. The quantum yields for photodegradation of creatinine and chlorocreatinine at 254 nm were estimated at 0.011 ± 0.002 mol/E and 0.144 ± 0.011 mol/E, respectively. The N-Cl bond was found to be common to UV-sensitive chlorinated compounds (e.g., inorganic chloramines, CH3NCl2, and chlorocreatinine); compounds that were less susceptible to UV-based attack generally lacked the N-Cl bond. This suggested that the N-Cl bond is susceptible to UV254 irradiation, and cleavage of the N-Cl bond appears to open or promote reaction pathways that involve free chlorine, thereby enhancing formation of some DBPs and promoting loss of free chlorine. Proposed reaction mechanisms to describe this behavior based on creatinine as a precursor are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. UV Studies of Jupiter's Aerosols and Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Pryor, Wayne

    2004-01-01

    This project funded research related to our involvement in the Galileo Ultraviolet Spectrometer experiment. Pryor was a Co-I on that experiment, which recently ended when Galileo crashed into Jupiter's atmosphere. It also funded related research on HST observations of Jupiter's atmosphere, and Cassini observations of Jupiter's atmosphere, and ground-based studies of Jupiter's atmosphere using the facilities of McDonald Observatory. Specific activities related to this grant include study of UV spectra returned by Galileo UVS and Cassini UVIS, development of simple models to explain these spectra, participation in archiving activities for these data sets, travel to conferences, and publication of scientific papers. Highlights of our Jupiter research efforts include: 1.) evidence for heavy hydrocarbons in Jupiter's atmosphere (from HST) (Clarke et al. poster), that may be the source of Jupiter's stratospheric aerosols, 2.) detection of auroral flares in Jupiter's atmosphere from Galileo (Pryor et al., 2001). 3.) establishing a connection between coronal mass ejections and auroral outbursts (Gurnett et al., 2002), and 4) establishing a connection between short-term variations in Jupiter's auroral emissions and radio emissions (Pryor et al. presented at AGU in 2002, paper in preparation).

  7. Polyethyleneimine Capped Silver Nanoclusters as Efficient Antibacterial Agents.

    PubMed

    Xu, Dong; Wang, Qingyun; Yang, Tao; Cao, Jianzhong; Lin, Qinlu; Yuan, Zhiqin; Li, Le

    2016-03-18

    Development of efficient antibacterial agents is critical for human health. In the present study, we investigated the antibacterial activity of polyethyleneimine (PEI)-capped silver nanoclusters (PEI-AgNCs), based on the fact that nanoclusters normally have higher surface-to-volume ratios than traditional nanomaterials and PEI itself has a strong antimicrobial capacity. We synthesized stable silver nanoclusters by altering PEI molecular weight from 0.6 kDa to 25 kDa and characterized them by UV-Vis absorption and fluorescence spectroscopy and high resolution transmission electron microscopy. The sizes of AgNCs were around 2 nm in diameter and were little influenced by the molecular weight of PEIs. The antibacterial abilities of the four PEI-AgNCs were explored on agar plate and in liquid systems. Our results revealed that the antibacterial activity of PEI-AgNCs is excellent and the reduction of PEI molecular weight could result in the increased antibacterial capacity of PEI-AgNCs. Such proposed new materials might be useful as efficient antibacterial agents in practical clinical applications.

  8. Responses of Yeast Biocontrol Agents to Environmental Stress

    PubMed Central

    Sui, Yuan; Wisniewski, Michael; Droby, Samir

    2015-01-01

    Biological control of postharvest diseases, utilizing wild species and strains of antagonistic yeast species, is a research topic that has received considerable attention in the literature over the past 30 years. In principle, it represents a promising alternative to chemical fungicides for the management of postharvest decay of fruits, vegetables, and grains. A yeast-based biocontrol system is composed of a tritrophic interaction between a host (commodity), a pathogen, and a yeast species, all of which are affected by environmental factors such as temperature, pH, and UV light as well as osmotic and oxidative stresses. Additionally, during the production process, biocontrol agents encounter various severe abiotic stresses that also impact their viability. Therefore, understanding the ecological fitness of the potential yeast biocontrol agents and developing strategies to enhance their stress tolerance are essential to their efficacy and commercial application. The current review provides an overview of the responses of antagonistic yeast species to various environmental stresses, the methods that can be used to improve stress tolerance and efficacy, and the related mechanisms associated with improved stress tolerance. PMID:25710368

  9. Development and validation of liquid chromatographic and UV derivative spectrophotometric methods for the determination of famciclovir in pharmaceutical dosage forms.

    PubMed

    Srinubabu, Gedela; Sudharani, Batchu; Sridhar, Lade; Rao, Jvln Seshagiri

    2006-06-01

    A high-performance liquid chromatographic method and a UV derivative spectrophotometric method for the determination of famciclovir, a highly active antiviral agent, in tablets were developed in the present work. The various parameters, such as linearity, precision, accuracy, specificity, robustness, limit of detection and limit of quantitation were studied according to International Conference on Harmonization guidelines. HPLC was carried out by using the reversed-phase technique on an RP-18 column with a mobile phase composed of 50 mM monobasic phosphate buffer and methanol (50 : 50; v/v), adjusted to pH 3.05 with orthophosphoric acid. The mobile phase was pumped at a flow rate of 1 ml/min and detection was made at 242 nm with UV dual absorbance detector. The first derivative UV spectrophotometric method was performed at 226.5 nm. Statistical analysis was done by Student's t-test and F-test, which showed no significant difference between the results obtained by the two methods. The proposed methods are highly sensitive, precise and accurate and therefore can be used for its Intended purpose.

  10. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    PubMed

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  11. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  12. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments.

    PubMed

    Wenhai, Chu; Tengfei, Chu; Erdeng, Du; Deng, Yang; Yingqing, Guo; Naiyun, Gao

    2016-02-01

    Ultraviolet/persulfate (UV/PS) has been widely used to generate sulfate radicals for degradation of water organic pollutants in previous studies. However, its impacts on disinfection byproduct formation during post-chlorination of degraded compounds is unclear. The objective of this study was to evaluate the impacts of UV irradiation, PS oxidation, and the combined UV/PS advanced oxidation process (AOP) pre-treatments on halomethane formation during the following chlorination of chloramphenicol (CAP), a model antibiotic commonly found in wastewater-impacted water. Results showed that CAP could be transformed to more trichloromethane (TCM) than monochloromethane (MCM) and dichloromethane (DCM) in the presence of excess chlorine. UV photolysis, PS oxidation and UV/PS AOP all directly decomposed CAP to produce halomethanes (HMs) before post-chlorination. Moreover, UV and UV/PS pre-treatments both enhanced the formation of all the HMs in the subsequent chlorination. PS pre-oxidation decreased the TCM formation during post-chlorination, but increased the yields of MCM, DCM and total HMs. UV pre-irradiation significantly increased the bromide utilization of HMs, whereas UV/PS pre-oxidation decreased the bromine incorporation and utilization of HMs from the chlorination of CAP in a low-bromide water. UV irradiation, PS oxidation, and UV/PS AOP can inactivate pathogens and degrade organic pollutants, but this benefit should be weighed against a potential risk of the increased halomethane formation from degraded organic pollutants with and without post-chlorination. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.

    PubMed

    Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank

    2016-01-01

    Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.

  14. Influence of low ozone episodes on erythemal UV-B radiation in Austria

    NASA Astrophysics Data System (ADS)

    Schwarz, Matthias; Baumgartner, Dietmar J.; Pietsch, Helga; Blumthaler, Mario; Weihs, Philipp; Rieder, Harald E.

    2017-06-01

    This study investigates the influence of low ozone episodes on UV-B radiation in Austria during the period 1999 to 2015. To this aim observations of total column ozone (TCO) in the Greater Alpine Region (Arosa, Switzerland; Hohenpeissenberg, Germany; Hradec Kralove, Czech Republic; Sonnblick, Austria), and erythemal UV-B radiation, available from 12 sites of the Austrian UV-B monitoring network, are analyzed. As previous definitions for low ozone episodes are not particularly suited to investigate effects on UV radiation, a novel threshold approach—considering anomalies—is developed to provide a joint framework for the analysis of extremes. TCO and UV extremes are negatively correlated, although modulating effects of sunshine duration impact the robustness of the statistical relationship. Therefore, information on relative sunshine duration (SDrel), available at (or nearby) UV-B monitoring sites, is included as explanatory variable in the analysis. The joint analysis of anomalies of both UV index (UVI) and total ozone (∆UVI, ∆TCO) and SDrel across sites shows that more than 65% of observations with strongly negative ozone anomalies (∆TCO < -1) led to positive UVI anomalies. Considering only days with strongly positive UVI anomaly (∆UVI > 1), we find (across all sites) that about 90% correspond to negative ∆TCO. The remaining 10% of days occurred during fair weather conditions (SDrel ≥ 80%) explaining the appearance of ∆UVI > 1 despite positive TCO anomalies. Further, we introduce an anomaly amplification factor (AAF), which quantifies the expected change of the ∆UVI for a given change in ∆TCO.

  15. Comments on a Method to Measure Sucralose Using UV Photodegradation Followed by UV Spectrophotometry.

    PubMed

    Fang, Te; Andrews, Susan A; Hofmann, Ron

    2017-05-01

    A simple and quick method to measure sucralose in aqueous solution at concentrations in the order of 0.1-1.2 g·L-1 proposed by Idris et al. uses UV irradiation prior to UV spectrophotometry. The photolysis of sucralose forms a photoactive compound characterized by maximum absorbance at approximately 270 nm. The conditions required for sucralose photolysis, however, had not been completely reported. In this work, the procedure described by Idris et al. was replicated using a low-pressure UV lamp to irradiate sucralose samples with a wider range of initial concentrations (0.04-10 g·L-1) with known fluences. It was determined that care must be taken to ensure that the same fluence is applied for both calibration and measurement steps because the absorbance of the sucralose photolysis product is a function of the applied fluence. The way the samples are irradiated also has an impact on the results in that the method exhibits a greater linear range if an apparatus is used that maximizes the fluence rate (e.g., by placing samples closer to the UV source or using a higher-intensity lamp).

  16. UV filters for lighting of plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doehring, T.; Koefferlein, M.; Thiel, S.

    1994-12-31

    Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The ageing of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replacemore » glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.« less

  17. Silylated Acid Hardened Resist [SAHR] Technology: Positive, Dry Developable Deep UV Resists

    NASA Astrophysics Data System (ADS)

    Thackeray, James W.; Bohland, John F.; Pavelchek, , Edward K.; Orsula, George W.; McCullough, Andrew W.; Jones, Susan K.; Bobbio, Stephen M.

    1990-01-01

    This paper describes continuing efforts in the development of Acid Hardened Resist (AHR) systems for use in deep UV photolithography. The Silylated AHR (SAHR) process treats a highly absorbing resist, such as XP-8928, with trimethylsilyldiethylamine. The exposed, crosslinked areas show virtually no reactivity with the silylating agent, and the unexposed areas incorporate 10 to 12% by weight silicon in the film. The silicon appears to incorporate from the exterior in a constant concentration, consistent with Case II diffusion. Subsequent dry etching leads to a positive tone image. The contrast is 5, and the photospeed is ~10 mJ/cm2. Resolution of 0.5 μm line/space pairs has been demonstrated, although substantial proximity effects are encountered.

  18. How UV Light Touches the Brain and Endocrine System Through Skin, and Why.

    PubMed

    Slominski, Andrzej T; Zmijewski, Michal A; Plonka, Przemyslaw M; Szaflarski, Jerzy P; Paus, Ralf

    2018-05-01

    The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.

  19. Initial observations of Jupiter's aurora from Juno's Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Versteeg, M.; Greathouse, T.; Hue, V.; Davis, M. W.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Bagenal, F.; Mauk, B.; Kurth, W. S.; McComas, D. J.; Valek, P. W.

    2016-12-01

    Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes important far-ultraviolet (FUV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4x4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape, with three sections of 2.55°x0.2°, 2.0°x0.025°, and 2.55°x0.2° (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses FUV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. The two mirrors and the grating are coated with MgF2 to improve FUV reflectivity. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Here we present the first near-Jupiter results from the UVS instrument following measurements made during PJ1, Juno's first perijove pass with its instruments powered on and taking data.

  20. UV-biosensor for visual indication of vitamin D synthesis

    NASA Astrophysics Data System (ADS)

    Orlova, T. N.; Terenetskaya, I. P.

    2008-04-01

    Excessive UV doses have adverse effects on human health, but proper amount of UV is beneficial for people and is essential in the natural production of vitamin D# in skin. Most of broadband UV-radiometers that have an output in sunburn units are incapable to record correctly the vitamin D synthetic capacity of sunlight because of the difference between the CIE erythema and 'Vitamin D synthesis' action spectra. The liquid-crystalline UV sensor based on provitamin D photoconversions has been developed for direct observation of vitamin D synthesis under UV irradiation. UV-induced transformation of provitamin D in cholesteric liquid-crystalline matrix is accompanied by the change of cholesteric pitch value in the LC cell. The developed UV biosensor makes possible both instrumental and visual monitoring of the vitamin D synthetic capacity of sunlight and/or artificial UV source.

  1. A combinaison of UV curing technology with ATL process

    NASA Astrophysics Data System (ADS)

    Balbzioui, I.; Hasiaoui, B.; Barbier, G.; L'hostis, G.; Laurent, F.; Ibrahim, A.; Durand, B.

    2017-10-01

    In order to reduce the time and the cost of manufacturing composite, UV curing technology combined with automated tape placement process (ATL) based on reverse approach by working with a fixed head was studied in this article. First, a brief description of the developed head placement is presented. Mechanical properties are then evaluated by varying process parameters, including compaction force and tape placement speed. Finally, a parametric study is carried out to identify suitable materials and process parameters to manufacture a photo composite material with high mechanical performances. The obtained results show that UV curing is a very good alternative for thermal polymerization because of its fast cure speed due to less dependency on temperature.

  2. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes.

    PubMed

    Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke

    2018-05-15

    Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Contrast echocardiography: new agents.

    PubMed

    Miller, Andrew P; Nanda, Navin C

    2004-04-01

    In this report, we review the history, rationale, current status and future directions of contrast agents in echocardiography. First, we discuss the historic development of contrast agents through a review of important physical principles of microbubbles in ultrasonography. Second, we identify attributes of an ideal contrast agent and review those that are currently available or in the "pipeline" for clinical use. Third, we review indications for contrast echocardiography, including endocardial border detection, perfusion quantification and reperfusion assessment, and validate these observations by comparisons with other imaging modalities. Then, we briefly review different methodologies of performing a contrast study, including interrupted, real-time and a hybrid modality. Finally, we identify novel future applications of the newest contrast agents. These newer concepts in contrast echocardiography should form a foundation for nearly limitless application of echocardiography in improved anatomical assessment, perfusion imaging and even special applications, such as detection of vascular inflammation and site-specific drug delivery.

  4. The Ultraviolet Sky: final catalogs of unique UV sources from GALEX, and characterization of the UV-emitting sources across the sky, and of the Milky Way extinction

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; Conti, A.; Shiao, B.; Keller, G. R.; Thilker, D. A.

    2014-01-01

    The legacy of the Galaxy Evolution Explorer (GALEX), which imaged the sky at Ultraviolet (UV) wavelengths for about 9 years, is its unprecedented database with more than 200 million source measurements in far-UV (FUV) and near-UV (NUV), as well as wide-field imaging of extended objects. GALEX's data, the first substantial sky surveys at UV wavelengths, offer an unprecedented view of the sky and a unique opportunity for an unbiased characterization of several classes of astrophysical objects, such as hot stars, QSOs at red-shift about 1, UV-peculiar QSOs, star-forming galaxies, among others. Bianchi et al. (2013, J. Adv. Space Res. (2013), DOI: http://dx.doi.org/10.1016/j.asr.2013.07.045) have constructed final catalogs of UV sources, with homogeneous quality, eliminating duplicate measurements of the same source ('unique' source catalogs), and excluding rim artifacts and bad photometry. The catalogs are constructed improving on the recipe of Bianchi et al. 2011 (MNRAS, 411, 2770, which presented the earlier version of these catalogs) and include all data for the major surveys, AIS and MIS. Considering the fields where both FUV and NUV detectors were exposed, the catalogs contain about 71 and 16.6 million unique sources respectively. We show several maps illustrating the content of UV sources across the sky, globally, and separately for bright/faint, hot, stellar/extragalactic objects. We matched the UV-source catalogs with optical-IR data from the SDSS, GSC2, 2MASS surveys. We are also in the process of matching the catalogs with preliminary PanSTARRS1 (PS1) 3pi survey photometry which already provides twice the sky coverage of SDSS, at slightly fainter magnitude limits. The sources' SED from FUV to optical wavelengths enables classification, derivation of the object physical parameters, and ultimately also a map of the Milky Way extinction. The catalogs will be available on MAST, Vizier (where the previous version already is), and in reduced form (for agile

  5. Effect of matrix components on UV/H2O2 and UV/S2O8(2-) advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities.

    PubMed

    Yang, Yi; Pignatello, Joseph J; Ma, Jun; Mitch, William A

    2016-02-01

    When reverse osmosis brines from potable wastewater reuse plants are discharged to poorly-flushed estuaries, the concentrated organic contaminants are a concern for receiving water ecosystems. UV/hydrogen peroxide (UV/H2O2) and UV/persulfate (UV/S2O8(2-)) advanced oxidation processes (AOPs) may reduce contaminant burdens prior to discharge, but the effects of the high levels of halide, carbonate and effluent organic matter (EfOM) normally present in these brines are unclear. On the one hand, these substances may reduce process efficiency by scavenging reactive oxygen species (ROS), hydroxyl (OH) and sulfate (SO4(-) radicals. On the other, the daughter radicals generated by halide and carbonate scavenging may themselves degrade organics, offsetting the effect of ROS scavenging. UV/H2O2 and UV/S2O8(2-) AOPs were compared for degradation of five pharmaceuticals spiked into brines obtained from two reuse facilities and the RO influent from one of them. For UV/H2O2, EfOM scavenged ∼75% of the OH, reducing the degradation efficiency of the target contaminants to a similar extent; halide and carbonate scavenging and the reactivities of associated daughter radicals were less important. For UV/S2O8(2-), anions (mostly Cl(-)) scavenged ∼93% of the SO4(-). Because daughter radicals of Cl(-) contributed to contaminant degradation, the reduction in contaminant degradation efficiency was only ∼75-80%, with the reduction driven by daughter radical scavenging by EfOM. Conversion of SO4(-) to more selective halogen and carbonate radicals resulted in a wider range of degradation efficiencies among the contaminants. For both AOPs, 250 mJ/cm(2) average fluence achieved significant removal of four pharmaceuticals, with significantly better performance by UV/S2O8(2-) treatment for some constituents. Accounting for the lower brine flowrates, the energy output to achieve this fluence in brines is comparable to that often applied to RO permeates. However, much higher fluence was

  6. Skin β-endorphin mediates addiction to UV light.

    PubMed

    Fell, Gillian L; Robinson, Kathleen C; Mao, Jianren; Woolf, Clifford J; Fisher, David E

    2014-06-19

    UV light is an established carcinogen, yet evidence suggests that UV-seeking behavior has addictive features. Following UV exposure, epidermal keratinocytes synthesize proopiomelanocortin (POMC) that is processed to melanocyte-stimulating hormone, inducing tanning. We show that, in rodents, another POMC-derived peptide, β-endorphin, is coordinately synthesized in skin, elevating plasma levels after low-dose UV. Increases in pain-related thresholds are observed and reversed by pharmacologic opioid antagonism. Opioid blockade also elicits withdrawal signs after chronic UV exposure. This effect was sufficient to guide operant behavioral choices to avoidance of opioid withdrawal (conditioned place aversion). These UV-induced nociceptive and behavioral effects were absent in β-endorphin knockout mice and in mice lacking p53-mediated POMC induction in epidermal keratinocytes. Although primordial UV addiction, mediated by the hedonic action of β-endorphin and anhedonic effects of withdrawal, may theoretically have enhanced evolutionary vitamin D biosynthesis, it now may contribute to the relentless rise in skin cancer incidence in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Applicability of UV resistant Bacillus pumilus endospores as a ...

    EPA Pesticide Factsheets

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a propagation method that utilizes a commercially available medium to produce UV tolerant B. pumilus endospores with a consistent UV sensitivity. It is further demonstrated that the endospores B. pumilus strain (ATCC 27142), produced using this protocol (half strength Columbia broth, 5 days incubation, with 0.1mM MnSO4), display a UV dose-response that is similar to that of HAdV. Endospore stocks could be stored in ethanol for up to two month at 4C without a significant change in UV sensitivity. Synergistic endospore damage by pre-pasteurization of water samples was observed, suggesting post-pasteurization only of UV treated water samples. UV tolerant B. pumilus endospores are a potential surrogate of HAdV for UV treatment performance tests in water utilities which do not have in-house research virology laboratories. This article describes the usefulness of Bacillus pumilus endspores as a viable surrogate for adeno virus in UV disinfection studies.

  8. Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2004-01-01

    Background Depletion of stratospheric ozone has raised terrestrial levels of ultraviolet-B radiation (UV-B), an environmental change linked to an increased risk of skin cancer and with potentially deleterious consequences for plants. To better understand the processes of UV-B acclimation that result in altered plant morphology and physiology, we investigated gene expression in different organs of maize at several UV-B fluence rates and exposure times. Results Microarray hybridization was used to assess UV-B responses in directly exposed maize organs and organs shielded by a plastic that absorbs UV-B. After 8 hours of high UV-B, the abundance of 347 transcripts was altered: 285 were increased significantly in at least one organ and 80 were downregulated. More transcript changes occurred in directly exposed than in shielded organs, and the levels of more transcripts were changed in adult compared to seedling tissues. The time course of transcript abundance changes indicated that the response kinetics to UV-B is very rapid, as some transcript levels were altered within 1 hour of exposure. Conclusions Most of the UV-B regulated genes are organ-specific. Because shielded tissues, including roots, immature ears, and leaves, displayed altered transcriptome profiles after exposure of the plant to UV-B, some signal(s) must be transmitted from irradiated to shielded tissues. These results indicate that there are integrated responses to UV-B radiation above normal levels. As the same total UV-B irradiation dose applied at three intensities elicited different transcript profiles, the transcriptome changes exhibit threshold effects rather than a reciprocal dose-effect response. Transcriptome profiling highlights possible signaling pathways and molecules for future research. PMID:15003119

  9. Inactivation of bacteria via photosensitization of vitamin K3 by UV-A light.

    PubMed

    Xu, Fei; Vostal, Jaroslav G

    2014-09-01

    This study investigated inactivation of bacteria with ultraviolet light A irradiation in combination with vitamin K3 as a photosensitizer. Six bacteria including Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, and Escherichia coli suspended in vitamin K3 aqueous solution were exposed to ultraviolet light A. Five of six bacteria, with the exception of Pseudomonas aeruginosa, were reduced by eight logs with 1600 μM of vitamin K3 and 5.8 J cm(-2) UV-A irradiation. Pseudomonas aeruginosa was reduced by four logs under these conditions. Reactive oxygen species including singlet oxygen, hydroxyl radical and superoxide anion radical were generated in vitamin K3 aqueous solution under UV-A irradiation. These results suggest that vitamin K3 and UV-A irradiation may be effective for bacterial inactivation in environmental and medical applications. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. Conversational Agents in E-Learning

    NASA Astrophysics Data System (ADS)

    Kerry, Alice; Ellis, Richard; Bull, Susan

    This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.

  11. PULSED UV: REALITIES OF ENHANCED DISINFECTION

    EPA Science Inventory

    Quantitative measurements of the light output from low pressure (LP), medium pressure (MP) and the pulsed UV lamps were made using calibrated spectrometry, chemical actinometry and biodosimetry approaches to compare their relative efficiency in producing germicidal UV energy. Fur...

  12. Molecular Viability Testing of UV-Inactivated Bacteria.

    PubMed

    Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A

    2017-05-15

    PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli , Aeromonas hydrophila , and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment. IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection. Copyright © 2017 American Society for Microbiology.

  13. UV/Visible Telescope with Hubble Disposal

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  14. Extrapolating Accelerated UV Weathering Data: Perspective From PVQAT Task Group 5 (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.; Annigoni, E.; Ballion, A.

    2015-02-01

    Taskgroup 5 (TG5) is concerned with a accelerated aging standard incorporating factors including ultraviolet radiation, temperature, and moisture. Separate experiments are being conducted in support of a test standard via the regional sub-groups in Asia, Europe, and the United States. The authors will describe the objectives and timeline for the TG5 interlaboratory study being directed out of the USA. Qualitative preliminary data from the experiment is presented. To date, the encapsulation transmittance experiment has: replicated behaviors of fielded materials (including specimen location- and formulation additive-specific discoloration); demonstrated coupling between UV aging and temperature; demonstrated that degradation in EVA results frommore » UV- aging; and obtained good qualitative comparison between Xe and UVA-340 sources for EVA. To date, the encapsulation adhesion experiment (using the compressive shear test to quantify strength of attachment) has demonstrated that attachment strength can decrease drastically (>50%) with age; however, early results suggest significant factor (UV, T, RH) dependence. Much remains to be learned about adhesion.« less

  15. PPCP degradation by chlorine-UV processes in ammoniacal water: new reaction insights, kinetic modeling and DBP formation.

    PubMed

    Zhang, Ruochun; Meng, Tan; Huang, Ching-Hua; Ben, Weiwei; Yao, Hong; Liu, Ruini; Sun, Peizhe

    2018-06-15

    The combination of chlorine and UV (i.e. chlorine-UV process) has been attracting more attentions in recent years due to its ready incorporation into existing water treatment facilities to remove PPCPs. However, limited information is available on the impact of total ammonia nitrogen (TAN). This study investigated two model PPCPs, N,N-diethyl-3-toluamide (DEET) and caffeine (CAF), in the two stages of chlorine-UV process (i.e. chlorination and UV/chlor(am)ine) to elucidate the impact of TAN. During chlorination, the degradation of DEET and CAF was positively correlated with the overall consumption of total chlorine by TAN. Reactive nitrogen intermediates, including HNO/NO- and ONOOH/ONOO-, along with OH were identified as major contributors to the removal of DEET and CAF. During UV irradiation, DEET and CAF were degraded under UV/chlorine or UV/NH2Cl conditions. OH and Cl were the major reactive species to degrade DEET and CAF under UV/NH2Cl conditions, whereas OCl played a major role for degrading CAF under UV/chlorine conditions. Numerical models were developed to predict the removal of DEET and CAF under chlorination-UV process. Chlorinated disinfection byproducts were detected. Overall, this study presented kinetic features and mechanistic insights on the degradation of PPCPs under chlorine-UV process in ammoniacal water.

  16. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes.

    PubMed

    Qin, Lang; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Tian, Fu-Xiang; Zhang, Tian-Yang; Zhu, Wen-Qian; Huang, He; Gao, Nai-Yun

    2014-11-15

    Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    NASA Astrophysics Data System (ADS)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  18. Exponentially increasing incidences of cutaneous malignant melanoma in Europe correlate with low personal annual UV doses and suggests 2 major risk factors.

    PubMed

    Merrill, Stephen J; Ashrafi, Samira; Subramanian, Madhan; Godar, Dianne E

    2015-01-01

    For several decades the incidence of cutaneous malignant melanoma (CMM) steadily increased in fair-skinned, indoor-working people around the world. Scientists think poor tanning ability resulting in sunburns initiate CMM, but they do not understand why the incidence continues to increase despite the increased use of sunscreens and formulations offering more protection. This paradox, along with lower incidences of CMM in outdoor workers, although they have significantly higher annual UV doses than indoor workers have, perplexes scientists. We found a temporal exponential increase in the CMM incidence indicating second-order reaction kinetics revealing the existence of 2 major risk factors. From epidemiology studies, we know one major risk factor for getting CMM is poor tanning ability and we now propose the other major risk factor may be the Human Papilloma Virus (HPV) because clinicians find β HPVs in over half the biopsies. Moreover, we uncovered yet another paradox; the increasing CMM incidences significantly correlate with decreasing personal annual UV dose, a proxy for low vitamin D3 levels. We also discovered the incidence of CMM significantly increased with decreasing personal annual UV dose from 1960, when it was almost insignificant, to 2000. UV and other DNA-damaging agents can activate viruses, and UV-induced cytokines can hide HPV from immune surveillance, which may explain why CMM also occurs in anatomical locations where the sun does not shine. Thus, we propose the 2 major risk factors for getting CMM are intermittent UV exposures that result in low cutaneous levels of vitamin D3 and possibly viral infection.

  19. Exponentially increasing incidences of cutaneous malignant melanoma in Europe correlate with low personal annual UV doses and suggests 2 major risk factors

    PubMed Central

    Merrill, Stephen J; Ashrafi, Samira; Subramanian, Madhan; Godar, Dianne E

    2015-01-01

    For several decades the incidence of cutaneous malignant melanoma (CMM) steadily increased in fair-skinned, indoor-working people around the world. Scientists think poor tanning ability resulting in sunburns initiate CMM, but they do not understand why the incidence continues to increase despite the increased use of sunscreens and formulations offering more protection. This paradox, along with lower incidences of CMM in outdoor workers, although they have significantly higher annual UV doses than indoor workers have, perplexes scientists. We found a temporal exponential increase in the CMM incidence indicating second-order reaction kinetics revealing the existence of 2 major risk factors. From epidemiology studies, we know one major risk factor for getting CMM is poor tanning ability and we now propose the other major risk factor may be the Human Papilloma Virus (HPV) because clinicians find β HPVs in over half the biopsies. Moreover, we uncovered yet another paradox; the increasing CMM incidences significantly correlate with decreasing personal annual UV dose, a proxy for low vitamin D3 levels. We also discovered the incidence of CMM significantly increased with decreasing personal annual UV dose from 1960, when it was almost insignificant, to 2000. UV and other DNA-damaging agents can activate viruses, and UV-induced cytokines can hide HPV from immune surveillance, which may explain why CMM also occurs in anatomical locations where the sun does not shine. Thus, we propose the 2 major risk factors for getting CMM are intermittent UV exposures that result in low cutaneous levels of vitamin D3 and possibly viral infection. PMID:26413188

  20. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  1. Ultraviolet protective properties of branded and unbranded sunglasses available in the Indian market in UV phototherapy chambers.

    PubMed

    Dongre, Atul M; Pai, Gitanjali G; Khopkar, Uday S

    2007-01-01

    Patients receiving phototherapy for various dermatoses are at increased risk of eye damage due to ultraviolet (UV) rays. They are prescribed UV protective sunglasses by dermatologists but their exact protecting effects are not known. To study the ultraviolet protective properties of branded and unbranded UV protective sunglasses available in the Indian market, in UV phototherapy chambers. Sixteen different branded and unbranded UV protective sunglasses were collected from two opticians in Mumbai. Baseline irradiance of the UV chamber was calculated by exposing the photosensitive probe of UV photometer in the chamber. Then, the photosensitive probe of the UV photometer was covered with the UV protective glass to be studied and irradiance was noted. Such readings were taken for each of the UV protective sunglasses. The percentage reduction in the UV rays' penetration of different UV protective sunglasses was calculated. Thirteen sunglasses provided > 80% reduction in UVA rays penetration, of which four were branded (out of the four branded studied) and nine were unbranded (out of the 12 unbranded studied). More than 70% reduction in UVB penetration was provided by 12 sunglasses, which included 10 unbranded and two branded sunglasses. All branded sunglasses provided good protection against UVA penetration, but UVB protection provided by both branded and unbranded sunglasses was not satisfactory. A few unbranded sunglasses had poor efficacy for UVA and UVB spectra; one branded glass had poor efficacy for protection against the UVB spectrum. The efficacy of sunglasses used for phototherapy should be assessed before use.

  2. The genetic architecture of UV floral patterning in sunflower.

    PubMed

    Moyers, Brook T; Owens, Gregory L; Baute, Gregory J; Rieseberg, Loren H

    2017-07-01

    The patterning of floral ultraviolet (UV) pigmentation varies both intra- and interspecifically in sunflowers and many other plant species, impacts pollinator attraction, and can be critical to reproductive success and crop yields. However, the genetic basis for variation in UV patterning is largely unknown. This study examines the genetic architecture for proportional and absolute size of the UV bullseye in Helianthus argophyllus , a close relative of the domesticated sunflower. A camera modified to capture UV light (320-380 nm) was used to phenotype floral UV patterning in an F 2 mapping population, then quantitative trait loci (QTL) were identified using genotyping-by-sequencing and linkage mapping. The ability of these QTL to predict the UV patterning of natural population individuals was also assessed. Proportional UV pigmentation is additively controlled by six moderate effect QTL that are predictive of this phenotype in natural populations. In contrast, UV bullseye size is controlled by a single large effect QTL that also controls flowerhead size and co-localizes with a major flowering time QTL in Helianthus . The co-localization of the UV bullseye size QTL, flowerhead size QTL and a previously known flowering time QTL may indicate a single highly pleiotropic locus or several closely linked loci, which could inhibit UV bullseye size from responding to selection without change in correlated characters. The genetic architecture of proportional UV pigmentation is relatively simple and different from that of UV bullseye size, and so should be able to respond to natural or artificial selection independently. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Standardization of Broadband UV Measurements for 365 nm LED Sources

    PubMed Central

    Eppeldauer, George P.

    2012-01-01

    Broadband UV measurements are evaluated when UV-A irradiance meters measure optical radiation from 365 nm UV sources. The CIE standardized rectangular-shape UV-A function can be realized only with large spectral mismatch errors. The spectral power-distribution of the 365 nm excitation source is not standardized. Accordingly, the readings made with different types of UV meters, even if they measure the same UV source, can be very different. Available UV detectors and UV meters were measured and evaluated for spectral responsivity. The spectral product of the source-distribution and the meter’s spectral-responsivity were calculated for different combinations to estimate broad-band signal-measurement errors. Standardization of both the UV source-distribution and the meter spectral-responsivity is recommended here to perform uniform broad-band measurements with low uncertainty. It is shown what spectral responsivity function(s) is needed for new and existing UV irradiance meters to perform low-uncertainty broadband 365 nm measurements. PMID:26900516

  4. Putative neuroprotective agents in neuropsychiatric disorders.

    PubMed

    Dodd, Seetal; Maes, Michael; Anderson, George; Dean, Olivia M; Moylan, Steven; Berk, Michael

    2013-04-05

    In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. DETECTION OF INFECTIOUS ADENOVIRUS IN TERTIARY TREATED AND UV DISINFECTED WASTEWATER DURING A UV DISINFECTION PILOT STUDY

    EPA Science Inventory

    An infectious enteric adenovirus was isolated from urban wastewater receiving tertiary treatment and ultraviolet (UV) disinfection. A pilot study was undertaken to investigate the efficacy of UV disinfection (low pressure, high intensity radiation) of total and fecal coliform bac...

  6. Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2.

    PubMed

    Yoon, Younggun; Chung, Hay Jung; Wen Di, Doris Yoong; Dodd, Michael C; Hur, Hor-Gil; Lee, Yunho

    2017-10-15

    This study assessed the inactivation efficiency of plasmid-encoded antibiotic resistance genes (ARGs) both in extracellular form (e-ARG) and present within Escherichia coli (intracellular form, i-ARG) during water treatment with chlorine, UV (254 nm), and UV/H 2 O 2 . A quantitative real-time PCR (qPCR) method was used to quantify the ARG damage to amp R (850 bp) and kan R (806 bp) amplicons, both of which are located in the pUC4K plasmid. The plate count and flow cytometry methods were also used to determine the bacterial inactivation parameters, such as culturability and membrane damage, respectively. In the first part of the study, the kinetics of E. coli inactivation and ARG damage were determined in phosphate buffered solutions. The ARG damage occurred much more slowly than E. coli inactivation in all cases. To achieve 4-log reduction of ARG concentration at pH 7, the required chlorine exposure and UV fluence were 33-72 (mg × min)/L for chlorine and 50-130 mJ/cm 2 for UV and UV/H 2 O 2 . After increasing pH from 7 to 8, the rates of ARG damage decreased for chlorine, while they did not vary for UV and UV/H 2 O 2 . The i-ARGs mostly showed lower rates of damage compared to the e-ARGs due to the protective roles of cellular components against oxidants and UV. The contribution of OH radicals to i-ARG damage was negligible in UV/H 2 O 2 due to significant OH radical scavenging by cellular components. In all cases, the ARG damage rates were similar for amp R versus kan R , except for the chlorination of e-ARGs, in which the damage to amp R occurred faster than that to kan R . Chlorine and UV dose-dependent ARG inactivation levels determined in a wastewater effluent matrix could be reasonably explained by the kinetic data obtained from the phosphate buffered solutions and the expected oxidant (chlorine and OH radicals) demands by water matrix components. These results can be useful in optimizing chlorine and UV-based disinfection systems to achieve ARG

  7. Influence of UV lamp, sulfur(IV) concentration, and pH on bromate degradation in UV/sulfite systems: Mechanisms and applications.

    PubMed

    Xiao, Qian; Wang, Ting; Yu, Shuili; Yi, Peng; Li, Lei

    2017-03-15

    Bromate (BrO 3 - ) is a possible human carcinogen regulated worldwide at a strict standard of 10 μg/L in drinking water. Removal of BrO 3 - by advanced reduction processes (ARPs) has attracted much attention due to its high reduction efficiency and easier combination with ultraviolet (UV) disinfection. In this study, we employed a UV/sulfite process to degrade BrO 3 - and studied the effects of UV lamp, sulfur(IV) concentration, and pH on effectiveness of the system in degrading BrO 3 - . Low-pressure UV lamps (UV-L) instead of medium-pressure UV lamps (UV-M) were selected because of the high ultraviolet-C (UV-C) efficiency of UV-L. The increased sulfur(IV) concentration is proportionally correlated with enhanced degradation kinetics. BrO 3 - reduction was improved by increasing pH when pH is within 6.0-9.0, and principal component analysis demonstrated that pH is the most influential factor over sulfur(IV) concentration and type of UV lamp. Degradation mechanisms at different pH levels were subsequently investigated. Results showed that the reduction reactions are induced by hydrated electron (e aq - ) at pH > 9.0, by H at pH 4.0, and by both e aq - and H at pH 7.0. Effective quantum efficiency for the formation of e aq - and H in the photocatalytic systems was determined to be 0.109 ± 0.001 and 0.034 ± 0.001 mol E -1 , respectively. Furthermore, mass balance calculation of bromine and sulfur at pH 7 showed that bromide, sulfate and possibly dithionate ions were the major products, and a degradation pathway was proposed accordingly. Moreover, UV/sulfite processes could reduce the initial bromate concentration of 0.1 mM by 82% and 95% in the presence and absence of O 2 in tap water respectively, and 99% in the absence of O 2 in deionized water within 20 min at pH 9.0 and 2.0 mM sulfur (IV). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Burnout among Extension Agents in the Ohio Cooperative Extension Service.

    ERIC Educational Resources Information Center

    Igodan, O. Chris; Newcomb, L. H.

    A study examined the extent and causes of burnout among extension agents in Ohio. From the 241 extension agents working in the 88 counties of Ohio, researchers selected a random sample of 101 agents. Included in the sample were 34 agriculture agents, 33 home economics agents. Included in the sample agents were asked to complete a survey…

  9. [UV-radiation--sources, wavelength, environment].

    PubMed

    Hölzle, Erhard; Hönigsmann, Herbert

    2005-09-01

    The UV-radiation in our environment is part of the electromagnetic radiation, which emanates from the sun. It is designated as optical radiation and reaches from 290-4,000 nm on the earth's surface. According to international definitions UV irradiation is divided into short-wave UVC (200-280 nm), medium-wave UVB (280-320 nm), and long-wave UVA (320-400 nm). Solar radiation which reaches the surface of the globe at a defined geographical site and a defined time point is called global radiation. It is modified quantitatively and qualitatively while penetrating the atmosphere. Besides atmospheric conditions, like ozone layer and air pollution, geographic latitude, elevation, time of the season, time of the day, cloudiness and the influence of indirect radiation resulting from stray effects in the atmosphere and reflection from the underground play a role in modifying global radiation, which finally represents the biologically effective radiation. The radiation's distribution on the body surface varies according to sun angle and body posture. The cumulative UV exposure is mainly influenced by outdoor profession and recreational activities. The use of sun beds and phototherapeutic measures additionally may contribute to the cumulative UV dose.

  10. Adsorption study of a macro-RAFT agent onto SiO2-coated Gd2O3:Eu3+ nanorods: Requirements and limitations

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Melro, Liliana; de Camargo Chaparro, Thaissa; de Souza Filho, Isnaldi Rodrigues; Ananias, Duarte; Bourgeat-Lami, Elodie; dos Santos, Amilton Martins; Barros-Timmons, Ana

    2017-02-01

    The use of a macromolecular RAFT (macro-RAFT) agent to encapsulate anisotropic nano-objects via emulsion polymerization is an emerging route to prepare polymer/inorganic colloidal nanocomposites. However, a number of requirements have to be fulfilled. This work aims at highlighting the effects of the preparative procedure and dispersion method on the amount of macro-RAFT agent adsorbed onto SiO2-coated Gd2O3:Eu3+ nanorods. The adsorption of macro-RAFT agent was studied using the depletion method with UV-vis spectrophotometry. Measurements were performed at a fixed concentration of nanorods and varying concentrations of the macro-RAFT agent in aqueous dispersion at room temperature. The adsorption isotherms showed that for the same initial macro-RAFT agent concentration, the highest adsorption capacity of the macro-RAFT agent on nanorods was usually achieved for non-calcined thin SiO2-coated nanorods under mild bath sonication.

  11. Effect of UV and UV/H2O2 in the presence of chloramines on NDMA formation potential of tramadol.

    PubMed

    Radjenovic, Jelena; Farré, Maria José; Gernjak, Wolfgang

    2012-08-07

    This study evaluates the effect of UV-C and UV-C/H(2)O(2) in the presence of chloramines on the N-nitrosodimethylamine formation potential (NDMA FP) of tramadol as a model precursor. The experiments were performed at high initial concentrations of TMDL (i.e., 20 mg/L) in order to elucidate the structures of TMDL byproducts. Twenty-four byproducts were identified in UV-C, UV-C/monochloramine, and UV/H(2)O(2)/monochloramine oxidation of tramadol using MS(3) capabilities of a hybrid quadrupole-linear ion trap mass spectrometer, combined with online hydrogen/deuterium (H/D) exchange experiments. Oxidative cleavage of methoxy and methoxybenzene moiety, O-demethylation, hydroxylation, and cyclohexane ring-opening were identified as major reaction mechanisms of tramadol in UV oxidation. Addition of monochloramine decreased the degradation rates of tramadol and its byproducts and yielded several monochlorinated derivatives. The oxidation rates were significantly enhanced in the presence of H(2)O(2), and byproducts of oxidative benzene ring-opening were detected. The majority of the identified byproducts are likely to have a higher NDMA FP than the parent compound due to a reduced steric hindrance and/or insertion of electron-donating hydroxyl groups in the N,N-dimethylamine side chain. This was confirmed by the results of NDMA FP tests, which showed that the formation of NDMA was enhanced up to four times depending on the process conditions in UV alone and in UV and UV/H(2)O(2) in the presence of monochloramine. Prolonged oxidation by hydroxyl radicals in UV/H(2)O(2)/monochloramine process mineralized some of the byproducts and slightly reduced the NDMA FP at the end of the treatment. The obtained degradation pathway of tramadol allowed the correlation of changes in NDMA FP during oxidation with its major oxidative transformation reactions. This manuscript demonstrates the significance of oxidation byproducts as NDMA precursors and emphasizes the need for their

  12. Long-Term Comparisons of OMI Surface UV Irradiances to a NILU_UV Multi-Filter Radiometer in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Zempila, Melina Maria; Koukouli, Maria Elissavet; Bais, Alkiviadis; Arola, Antii; Fountoulakis, Ilias; Kouremeti, Natalia; Kazadzis, Stelios; Balis, Dimitrios

    2016-08-01

    The evaluation of the surface UV irradiances, derived from the Ozone Monitoring Instrument (OMI) onboard the AURA satellite, with those extracted from a Norwegian Institute for Air Research UV multi-filter actinometer (NILU-UV) situated in the Laboratory of Atmospheric Physics (LAP) in the Aristotle University of Thessaloniki (40.69°N, 22.96°E) is presented in this study.The NILU-UV data have been compared with the OMI/Aura overpass and local noon irradiances at 305, 310, 324 and 380 nm for a 10 year period over Thessaloniki between 2005 and 2014.The OMI irradiances were found to overestimate the NILU-UV observations in Thessaloniki between 4.5% and 13.5% for the 305nm wavelength and between 1.5% and 10.0% for the 310nm case. For the 324nm and 380nm, the satellite-deduced local-noon time comparisons showed a satellite under-estimation of 3.75% and 4.15% respectively whereas the overpass-time comparisons range between -1.55% and -1.90% for the same wavelengths.

  13. Development of high power UV irradiance meter calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Yin, Dejin; Li, Tiecheng

    2016-09-01

    With the rapid development of China's economy, many industries have more requirements for UV light applications, such as machinery manufacturing, aircraft manufacturing using high power UV light for detection, IT industry using high power UV light for curing component assembly, building materials, ink, paint and other industries using high power UV light for material aging test etc. In these industries, there are many measuring instruments for high power UV irradiance which are need to traceability. But these instruments are mostly imported instruments, these imported UV radiation meter are large range, wide wavelength range and high accuracy. They have exceeded our existing calibration capability. Expand the measuring range and improve the measurement accuracy of UV irradiance calibration device is a pressing matter of the moment. The newly developed high power UV irradiance calibration device is mainly composed of high power UV light, UV filter, condenser, UV light guide, optical alignment system, standard cavity absolute radiometer. The calibration device is using optical alignment system to form uniform light radiation field. The standard is standard cavity absolute radiometer, which can through the electrical substitution method, by means of adjusting and measuring the applied DC electric power at the receiver on a heating wire, which is equivalent to the thermo-electromotive force generated by the light radiation power, to achieve absolute optical radiation measurement. This method is the commonly used effective method for accurate measurement of light irradiation. The measuring range of calibration device is (0.2 200) mW/cm2, and the uncertainty of measurement results can reached 2.5% (k=2).

  14. A Study of Local Time Variations of Jupiter's Ultraviolet Aurora using Juno-UVS

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Gladstone, R.; Versteeg, M. H.; Hue, V.; Kammer, J.; Davis, M. W.; Bolton, S. J.; Levin, S.; Connerney, J. E. P.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bunce, E. J.

    2017-12-01

    Juno's Ultraviolet Spectrograph (Juno-UVS) offers unique views of Jupiter's auroras never before obtained in the UV, observing at all local times (unlike HST observations, limited to the illuminated disk). With Juno's 2-rpm spin period, the UVS long slit rapidly scans across Jupiter observing narrow stripes or swaths of Jupiter's poles, from 5 hours prior to perijove until 5 hours after perijove. By rotating a mirror interior to the instrument, UVS can view objects from 60 to 120 degrees off the spacecraft spin axis. This allows UVS to map out the entire auroral oval over multiple spins, even when Juno is very close to Jupiter. Using the first 8 perijove passes, we take a first look for local time effects in Jupiter's northern and southern auroras. We focus on the strength of auroral oval emissions and polar emissions found poleward of the main oval. Some unique polar emissions of interest include newly discovered polar flare emissions that start off as small localized points of emission but quickly (10's of sec) evolve into rings. These emissions evolve in such a way as to be reminiscent of raindrops striking a pond.

  15. Characterization and optimization of an inkjet-printed smart textile UV-sensor cured with UV-LED light

    NASA Astrophysics Data System (ADS)

    Seipel, S.; Yu, J.; Periyasamy, A. P.; Viková, M.; Vik, M.; Nierstrasz, V. A.

    2017-10-01

    For the development of niche products like smart textiles and other functional high-end products, resource-saving production processes are needed. Niche products only require small batches, which makes their production with traditional textile production techniques time-consuming and costly. To achieve a profitable production, as well as to further foster innovation, flexible and integrated production techniques are a requirement. Both digital inkjet printing and UV-light curing contribute to a flexible, resource-efficient, energy-saving and therewith economic production of smart textiles. In this article, a smart textile UV-sensor is printed using a piezoelectric drop-on-demand printhead and cured with a UV-LED lamp. The UVcurable ink system is based on free radical polymerization and the integrated UVsensing material is a photochromic dye, Reversacol Ruby Red. The combination of two photoactive compounds, for which UV-light is both the curer and the activator, challenges two processes: polymer crosslinking of the resin and color performance of the photochromic dye. Differential scanning calorimetry (DSC) is used to characterize the curing efficiency of the prints. Color measurements are made to determine the influence of degree of polymer crosslinking on the developed color intensities, as well as coloration and decoloration rates of the photochromic prints. Optimized functionality of the textile UV-sensor is found using different belt speeds and lamp intensities during the curing process.

  16. Formation of the UV Spectrum of Molecular Hydrogen in the Sun

    NASA Astrophysics Data System (ADS)

    Jaeggli, S. A.; Judge, P. G.; Daw, A. N.

    2018-03-01

    Ultraviolet (UV) lines of molecular hydrogen have been observed in solar spectra for almost four decades, but the behavior of the molecular spectrum and its implications for solar atmospheric structure are not fully understood. Data from the High-Resolution Telescope Spectrometer (HRTS) instrument revealed that H2 emission forms in particular regions, selectively excited by a bright UV transition region and chromospheric lines. We test the conditions under which H2 emission can originate by studying non-LTE models, sampling a broad range of temperature stratifications and radiation conditions. Stratification plays the dominant role in determining the population densities of H2, which forms in greatest abundance near the continuum photosphere. However, opacity due to the photoionization of Si and other neutrals determines the depth to which UV radiation can penetrate to excite the H2. Thus the majority of H2 emission forms in a narrow region, at about 650 km in standard one-dimensional (1D) models of the quiet Sun, near the τ = 1 opacity surface for the exciting UV radiation, generally coming from above. When irradiated from above using observed intensities of bright UV emission lines, detailed non-LTE calculations show that the spectrum of H2 seen in the quiet-Sun Solar Ultraviolet Measurement of Emitted Radiation atlas spectrum and HRTS light-bridge spectrum can be satisfactorily reproduced in 1D stratified atmospheres, without including three-dimensional or time-dependent thermal structures. A detailed comparison to observations from 1205 to 1550 Å is presented, and the success of this 1D approach to modeling solar UV H2 emission is illustrated by the identification of previously unidentified lines and upper levels in HRTS spectra.

  17. UV Impacts Avoided by the Montreal Protocol

    NASA Technical Reports Server (NTRS)

    Newman, Paul; McKenzie, Richard

    2010-01-01

    Temporal and geographical variabilities in the future "World Expected" UV environment are compared with the "World Avoided", which would have occurred without the Montreal Protocol on protection of the ozone layer and its subsequent amendments and adjustments. Based on calculations of clear-sky UV irradiances, the effects of the Montreal Protocol have been hugely beneficial to avoid the health risks, such as skin cancer, which are associated with high UV, while there is only a small increase in health risks, such as vitamin D deficiency, that are associated with low UV. However, interactions with climate change may lead to changes in cloud and albedo, and possibly behavioural changes which could also be important.

  18. UV impacts avoided by the Montreal Protocol.

    PubMed

    Newman, Paul A; McKenzie, Richard

    2011-07-01

    Temporal and geographical variabilities in the future "world expected" UV environment are compared with the "world avoided", which would have occurred without the Montreal Protocol on Substances That Deplete the Ozone Layer and its subsequent amendments and adjustments. Based on calculations of clear-sky UV irradiances, the effects of the Montreal Protocol have been hugely beneficial to avoid the health risks, such as skin cancer, which are associated with high UV, while there is only a small increase in health risks, such as vitamin D deficiency, that are associated with low UV. However, interactions with climate change may lead to changes in cloud and albedo, and possibly behavioural changes that could also be important.

  19. Joint chemical agent detector (JCAD): the future of chemical agent detection

    NASA Astrophysics Data System (ADS)

    Laljer, Charles E.

    2003-08-01

    The Joint Chemical Agent Detector (JCAD) has continued development through 2002. The JCAD has completed Contractor Validation Testing (CVT) that included chemical warfare agent testing, environmental testing, electromagnetic interferent testing, and platform integration validation. The JCAD provides state of the art chemical warfare agent detection capability to military and homeland security operators. Intelligence sources estimate that over twenty countries have active chemical weapons programs. The spread of weapons of mass destruction (and the industrial capability for manufacture of these weapons) to third world nations and terrorist organizations has greatly increased the chemical agent threat to U.S. interests. Coupled with the potential for U.S. involvement in localized conflicts in an operational or support capacity, increases the probability that the military Joint Services may encounter chemical agents anywhere in the world. The JCAD is a small (45 in3), lightweight (2 lb.) chemical agent detector for vehicle interiors, aircraft, individual personnel, shipboard, and fixed site locations. The system provides a common detection component across multi-service platforms. This common detector system will allow the Joint Services to use the same operational and support concept for more efficient utilization of resources. The JCAD detects, identifies, quantifies, and warns of the presence of chemical agents prior to onset of miosis. Upon detection of chemical agents, the detector provides local and remote audible and visual alarms to the operators. Advance warning will provide the vehicle crew and other personnel in the local area with the time necessary to protect themselves from the lethal effects of chemical agents. The JCAD is capable of being upgraded to protect against future chemical agent threats. The JCAD provides the operator with the warning necessary to survive and fight in a chemical warfare agent threat environment.

  20. UV habitable zones around M stars

    NASA Astrophysics Data System (ADS)

    Buccino, Andrea P.; Lemarchand, Guillermo A.; Mauas, Pablo J. D.

    2007-12-01

    During the last decade there was a change in paradigm, which led to consider that terrestrial-type planets within liquid-water habitable zones (LW-HZ) around M stars can also be suitable places for the emergence and evolution of life. Since many dMe stars emit large amount of UV radiation during flares, in this work we analyze the UV constrains for living systems on Earth-like planets around dM stars. We apply our model of UV habitable zone (UV-HZ; Buccino, A.P., Lemarchand, G.A., Mauas, P.J.D., 2006. Icarus 183, 491-503) to the three planetary systems around dM stars (HIP 74995, HIP 109388 and HIP 113020) observed by IUE and to two M-flare stars (AD Leo and EV Lac). In particular, HIP 74995 hosts a terrestrial planet in the LW-HZ, which is the exoplanet that most resembles our own Earth. We show, in general, that during the quiescent state there would not be enough UV radiation within the LW-HZ to trigger the biogenic processes and that this energy could be provided by flares of moderate intensity, while strong flares do not necessarily rule-out the possibility of life-bearing planets.

  1. Uric acid detection using uv-vis spectrometer

    NASA Astrophysics Data System (ADS)

    Norazmi, N.; Rasad, Z. R. Abdul; Mohamad, M.; Manap, H.

    2017-10-01

    The aim of this research is to detect uric acid (UA) concentration using Ultraviolet-Visible (UV-Vis) spectrometer in the Ultraviolet (UV) region. Absorption technique was proposed to detect different uric acid concentrations and its UV absorption wavelength. Current practices commonly take a lot of times or require complicated structures for the detection process. By this proposed spectroscopic technique, every concentration can be detected and interpreted into an absorbance value at a constant wavelength peak in the UV region. This is due to the chemical characteristics belong to the uric acid since it has a particular absorption cross-section, σ which can be calculated using Beer’s Lambert law formula. The detection performance was displayed using Spectrasuite sofware. It showed fast time response about 3 seconds. The experiment proved that the concentrations of uric acid were successfully detected using UV-Vis spectrometer at a constant absorption UV wavelength, 294.46 nm in a low time response. Even by an artificial sample of uric acid, it successfully displayed a close value as the ones reported with the use of the medical sample. It is applicable in the medical field and can be implemented in the future for earlier detection of abnormal concentration of uric acid.

  2. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater.

    PubMed

    Rubio, D; Nebot, E; Casanueva, J F; Pulgarin, C

    2013-10-15

    Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L(-1) Fe(2+) and 10 mg L(-1) of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH(•) radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3(-), the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe(3+)-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments. This study suggests H2O2/UV254 and photo-Fenton treatments for the

  3. On an improvement of UV index forecast: UV index diagnosis and forecast for Belsk, Poland, in Spring/Summer 1999

    NASA Astrophysics Data System (ADS)

    Krzyścin, J. W.; Jaroslawski, J.; Sobolewski, P.

    2001-10-01

    A forecast of the UV index for the following day is presented. The standard approach to the UV index modelling is applied, i.e., the clear-sky UV index is multiplied by the UV cloud transmission factor. The input to the clear-sky model (tropospheric ultraviolet and visible-TUV model, Madronich, in: M. Tevini (Ed.), Environmental Effects of Ultraviolet Radiation, Lewis Publisher, Boca Raton, /1993, p. 17) consists of the total ozone forecast (by a regression model using the observed and forecasted meteorological variables taken as the initial values of aviation (AVN) global model and their 24-hour forecasts, respectively) and aerosols optical depth (AOD) forecast (assumed persistence). The cloud transmission factor forecast is inferred from the 24-h AVN model run for the total (Sun/+sky) solar irradiance at noon. The model is validated comparing the UV index forecasts with the observed values, which are derived from the daily pattern of the UV erythemal irradiance taken at Belsk (52°N,21°E), Poland, by means of the UV Biometer Solar model 501A for the period May-September 1999. Eighty-one percent and 92% of all forecasts fall into /+/-1 and /+/-2 index unit range, respectively. Underestimation of UV index occurs only in 15%. Thus, the model gives a high security in Sun protection for the public. It is found that in /~35% of all cases a more accurate forecast of AOD is needed to estimate the daily maximum of clear-sky irradiance with the error not exceeding 5%. The assumption of the persistence of the cloud characteristics appears as an alternative to the 24-h forecast of the cloud transmission factor in the case when the AVN prognoses are not available.

  4. Optimizing UV Index determination from broadband irradiances

    NASA Astrophysics Data System (ADS)

    Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.

    2018-03-01

    A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0

  5. Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks

    DOE PAGES

    Erickson III, David J.; Sulzberger, Barbara; Zepp, Richard G.; ...

    2014-11-07

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solarmore » UV-B radiation. Mineralisation of organic matter results in the production and release of CO 2, whereas the biological pump is the main biological process for CO 2 removal by aquatic ecosystems. This research also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO 2, as well as of chemical and biological contaminants. Lastly,, interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.« less

  6. DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation

    PubMed Central

    Wang, Qi-En; Zhu, Qianzheng; Wani, Gulzar; El-Mahdy, Mohamed A.; Li, Jinyou; Wani, Altaf A.

    2005-01-01

    Nucleotide excision repair (NER) is the major DNA repair process that removes diverse DNA lesions including UV-induced photoproducts. There are more than 20 proteins involved in NER. Among them, XPC is thought to be one of the first proteins to recognize DNA damage during global genomic repair (GGR), a sub-pathway of NER. In order to study the mechanism through which XPC participates in GGR, we investigated the possible modifications of XPC protein upon UV irradiation in mammalian cells. Western blot analysis of cell lysates from UV-irradiated normal human fibroblast, prepared by direct boiling in an SDS lysis buffer, showed several anti-XPC antibody-reactive bands with molecular weight higher than the original XPC protein. The reciprocal immunoprecipitation and siRNA transfection analysis demonstrated that XPC protein is modified by SUMO-1 and ubiquitin. By using several NER-deficient cell lines, we found that DDB2 and XPA are required for UV-induced XPC modifications. Interestingly, both the inactivation of ubiquitylation and the treatment of proteasome inhibitors quantitatively inhibited the UV-induced XPC modifications. Furthermore, XPC protein is degraded significantly following UV irradiation in XP-A cells in which sumoylation of XPC does not occur. Taken together, we conclude that XPC protein is modified by SUMO-1 and ubiquitin following UV irradiation and these modifications require the functions of DDB2 and XPA, as well as the ubiquitin–proteasome system. Our results also suggest that at least one function of UV-induced XPC sumoylation is related to the stabilization of XPC protein. PMID:16030353

  7. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, Luca; Gröbner, Julian; Hülsen, Gregor; Bachmann, Luciano; Blumthaler, Mario; Dubard, Jimmy; Khazova, Marina; Kift, Richard; Hoogendijk, Kees; Serrano, Antonio; Smedley, Andrew; Vilaplana, José-Manuel

    2016-04-01

    The reliable quantification of ultraviolet (UV) radiation at the earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers (ASRMs) are small, light, robust and cost-effective instruments, and are increasingly used for spectral irradiance measurements. Within the European EMRP ENV03 project "Solar UV", new devices, guidelines and characterization methods have been developed to improve solar UV measurements with ASRMs, and support to the end user community has been provided. In order to assess the quality of 14 end user ASRMs, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the blind intercomparison revealed that ASRMs, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema-weighted UV index - in particular at large solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available ASRMs within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range of solar zenith angles. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 and 400 nm under all atmospheric conditions.

  8. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, L.; Gröbner, J.; Hülsen, G.; Bachmann, L.; Blumthaler, M.; Dubard, J.; Khazova, M.; Kift, R.; Hoogendijk, K.; Serrano, A.; Smedley, A. R. D.; Vilaplana, J.-M.

    2015-12-01

    The reliable quantification of ultraviolet (UV) radiation at the Earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers are small, light, robust and cost effective instruments and are increasingly used for spectral irradiance measurements. Within the European EMRP-ENV03 project "Solar UV", new devices, guidelines, and characterization methods have been developed to improve solar UV measurements with array spectroradiometers and support to the end-user community has been provided. In order to assess the quality of 14 end-user array spectroradiometers, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the intercomparison revealed that array spectroradiometers, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema weighted UV index - in particular at low solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available array spectroradiometer within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range or solar zenith angle. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 to 400 nm under all atmospheric conditions.

  9. UV exposure of elementary school children in five Japanese cities.

    PubMed

    Ono, Masaji; Munakata, Nobuo; Watanabe, Shaw

    2005-01-01

    A 1 week UV-exposure measurement and outdoor-activity pattern survey was conducted for elementary school children for four seasons at five sites in Japan, i.e. Sapporo (43 degrees 05' N, altitude 40 m), Tsukuba (36 degrees 05' N, 20 m), Tokyo (35 degrees 40' N, 45 m), Miyazaki (31 degrees 60' N, 40 m) and Naha (26 degrees 10' N, 5 m), and UV exposure was measured directly and estimated using outdoor-activity records. The study site with largest UV exposure was Miyazaki, a southern rural area. Comparing the results for boys and girls, UV exposure was larger in boys. UV exposure was large in spring and summer and small in winter. The total amount of UV exposure in spring and summer contributed 57.7-73.4% of total exposure for the year. As a whole, 8.1% and 1.8% of the schoolchildren were exposed to more than 1 minimum erythemal dose (MED) and 2 MED of solar UV in a day, respectively. The estimated yearly UV exposure ranged from 49 207 J/m2 in Miyazaki to 31 520 J/m2 in Tsukuba. The actual UV exposure correlated to potential UV exposure, estimated using outdoor-activity records and ambient UV irradiance, but the ratio differed by season and site. The yearly average of percent UV exposure to ambient UV on a horizontal plane ranged from 9.9% in Tokyo to 4.0% in Naha. In the questionnaire survey on outdoor-activity pattern, a short question "How long did you spend time outdoors between 0900 and 1500 h?" gives the best estimates of UV exposure.

  10. Porphyra-334, a mycosporine-like amino acid, attenuates UV-induced apoptosis in HaCaT cells.

    PubMed

    Suh, Sung-Suk; Oh, Se Kyung; Lee, Sung Gu; Kim, Il-Chan; Kim, Sanghee

    2017-06-27

    The main aim of the current research was to study the effect of porphyra-334, one of mycosporine-like amino acids (MAAs), well known as UV-absorbing compounds, on UVinduced apoptosis in human immortalized keratinocyte (HaCaT) cells. Due to their UV-screening capacity and ability to prevent UV-induced DNA damage, MAAs have recently attracted considerable attention in both industry and research in pharmacology. Herein, human HaCaT cells were used to determine the biological activities of porphyra- 334 by various in vitro assays, including proliferation, apoptosis and Western blot assays. The proliferation rate of UV-irradiated HaCaT cells was significantly decreased compared to the control group. Pretreatment with porphyra- 334 markedly attenuated the inhibitory effect of UV and induced a dramatic decrease in the apoptotic rate. Expression of active caspase-3 protein was increased in response to UV irradiation, while caspase-3 levels were similar between cells treated with porphyra-334 and the non-irradiated control group. Taken together, our data suggest that porphyra-334 inhibits UV-induced apoptosis in HaCaT cells through attenuation of the caspase pathway.

  11. UV radiation impacts body weight, oxygen consumption, and shelter selection in the intertidal vertebrate Girella laevifrons.

    PubMed

    Pulgar, José; Waldisperg, Melany; Galbán-Malagón, Cristóbal; Maturana, Diego; Pulgar, Victor M; Aldana, Marcela

    2017-02-01

    The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. New bactericidal UV light sources: excilamps

    NASA Astrophysics Data System (ADS)

    Sosnin, Edward A.; Lavrent'eva, Larisa V.; Erofeev, Mikhail V.; Masterova, Yana V.; Kuznetzova, Eugenia N.; Tarasenko, Victor F.

    2004-05-01

    A reliable bactericidal effect on Escherichia coli cells irradiation by excilamps has been established. Both on primary and secondary irradiation there exists the reciprocally proportional dependence between irradiation doze (or exposure time) and survived cells number. The microorganisms survived after primary irradiation are shown to have not changed sensitivity to excilamps irradiation. The best results have been obtained during XeBr-excilamp irradiation. Owing to their technical parameters, the excilamps are promising systems for UV-sterilization. Comparison of capacitive discharge excilamp characteristics with other conventional UV light sources in presented. A comparative study on UV doze effect of a barrier discharge KrCl-excilamp (λ = 222 nm) on Staphylococcus aureus and Escherichia coli inactivation was carried out. KrCl-excilamp emission power is 65 W, and emitting area is 0.1 m2. It has been demonstrated that Staphylococcus aureus cell sensitivity to UV radiation at this wavelength is higher than that of Escherichia coli.

  13. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    PubMed

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags 1 . Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  14. Effects of UV irradiation in a continuous turbulent flow UV reactor on microbiological and sensory characteristics of cow's milk.

    PubMed

    Rossitto, P V; Cullor, J S; Crook, J; Parko, J; Sechi, P; Cenci-Goga, B T

    2012-12-01

    The dairy industry under current pasteurization conditions (15 s at 72°C) and sanitary standards achieves a safe product with excellent quality. In an ever-competitive market there is still a need to improve product quality and extend shelf life of dairy products to increase competitiveness and open up new markets. In an attempt to test the effect of UV irradiation on microbiota of fluid milk, a continuous flow UV system at 254 nm was used to treat 3.5 and 2% fat milk at two UV doses (880 and 1,760 J liter(-1)). Milk was obtained from three processors, and two lots from each processor were assessed. To assess the impact on the most descriptive native microbiota in pasteurized milk after UV illumination, the product was held at two storage temperatures (4 and 7°C) and tested weekly for 5 weeks for aerobic plate counts (psychrotrophic and mesophilic bacteria), laboratory pasteurization counts, aerobic sporeformers, coliform organisms, and titratable acidity. Microbial counts for all tested microorganisms were lower in UV-treated milk when compared with control throughout storage at 4 and 7°C in both 3.5 and 2% fat milk. Sensory analysis indicated that there is a sensory defect associated with UV treatment at the wavelength used.

  15. Life and the solar uv environment on the early Earth

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Kovács, G.; Rontó, G.; Lammer, H.; Kargl, G.; Kömle, N.; Bauer, S.

    2003-04-01

    The solar UV radiation environment on planetary surfaces and within their atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is the driving force of chemical and organic evolution and serves also as a constraint in biological evolution. Studies of the solar UV environment of the early Earth 2.0 Gyr to 3.8 Gyr ago suggest that the terrestrial atmosphere was essentially anoxic, resulting in an ozone column abundance insufficient for protecting the planetary surface in the UV-B and the UV-C ranges. Since, short wavelength solar UV radiation in the UV-B ind UV-C range penetrated through the unprotected atmosphere to the surface on early Earth, associated biological consequences may be expected. For DNA-based terrestrial solar UV dosimetry, bacteriophage T7, isolated phage-DNA ind polycrystalline Uracil samples have been used. The effect of solar UV radiation can be measured by detecting the biological-structural consequences of the damage induced by UV photons. We show model calculations for the Biological Effective Dose (BED) rate of Uracil and bacteriophage T7, for various ozone concentrations representing early atmospheric conditions on Earth up to a UV protecting ozone layer comparable to present times. Further, we discuss experimental data which show the photo-reverse effect of Uracil molecules caused by short UV wavelengths. These photoreversion effect highly depend on the wavelength of the radiation. Shorter wavelength UV radiation of about 200 nm is strongly effective in monomerisation, while the longer wavelengths prefer the production of dimerisation. We could demonstrate experimentally, for the case of an Uracil thin-layer that the photo-reaction process of the nucleotides can be both, dimerization and the reverse process: monomerization. These results are important for the study of solar UV exposure on organisms in the terrestrial environment more than 2 Gyr ago where Earth had no UV protecting ozone layer as well as

  16. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight.

    PubMed

    Nicholson, Wayne L; Schuerger, Andrew C; Setlow, Peter

    2005-04-01

    The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments.

  17. Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.

    PubMed

    Telford, William G

    2004-09-01

    Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser diodes (NUVLDs) emitting in the 370-375-nm range have been evaluated as laser sources for cuvette-based flow cytometers. Several NUVLDs, ranging in wavelength from 370 to 374 nm and in power level from 1.5 to 10 mW, were mounted on a BD Biosciences LSR II and evaluated for their ability to excite cells labeled with the UV DNA binding dye DAPI, several UV phenotyping fluorochromes (including Alexa Fluor 350, Marina Blue, and quantum dots), and the fluorescent calcium chelator indo-1. NUVLDs at the 8-10-mW power range gave detection sensitivity levels comparable to more powerful solid-state and ion laser sources, using low-fluorescence microsphere beads as measurement standards. NUVLDs at all tested power levels allowed extremely high-resolution DAPI cell cycle analysis, and sources in the 8-10-mW power range excited Alexa Fluor 350, Marina Blue, and a variety of quantum dots at virtually the same signal-to-noise ratios as more powerful UV sources. These evaluations indicate that near-UV laser diodes installed on a cuvette-based flow cytometer performed nearly as well as more powerful solid-state UV lasers on the same instrumentation, and comparably to more powerful ion lasers on a jet-in-air system, and. Despite their limited power, integration of these small and inexpensive lasers into benchtop flow cytometers should allow the use of flow cytometric applications requiring UV excitation on a wide variety of instruments. Copyright 2004 Wiley-Liss, Inc.

  18. Multi-Agent Information Classification Using Dynamic Acquaintance Lists.

    ERIC Educational Resources Information Center

    Mukhopadhyay, Snehasis; Peng, Shengquan; Raje, Rajeev; Palakal, Mathew; Mostafa, Javed

    2003-01-01

    Discussion of automated information services focuses on information classification and collaborative agents, i.e. intelligent computer programs. Highlights include multi-agent systems; distributed artificial intelligence; thesauri; document representation and classification; agent modeling; acquaintances, or remote agents discovered through…

  19. Influence of UV irradiation on hydroxypropyl methylcellulose polymer films

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Shivananda, C. S.; Shetty, G. Rajesha; Harish, K. V.; Madhukumar, R.; Sangappa, Y.

    2018-05-01

    Hydroxypropyl Methylcellulose (HPMC) biopolymer films were prepared by solution casting technique and effects of UV irradiation on the structural and optical properties of the polymer films were analysed using X-ray Diffraction and UV-Visible studies. From XRD data, the microcrystalline parameters (crystallite size (LXRD) and crystallinity (Xc)) were calculated and found to be decreasing with UV irradiation due to photo-degradation process. From the UV-Vis absorption data, the optical bandgap (Eg), average numbers of carbon atoms per conjugation length (N) of the polymer chain and the refractive index (n) at 550 nm (average wavelength of visible light) of virgin and UV irradiated HPMC films were calculated. With increase in UV exposure time, the optical bandgap energy (Eg) increases, and hence average number of carbon atoms per conjugation length (N) decreases, supports the photo-degradation of HPMC polymer films. The refractive index of the HPMC films decreases after UV irradiation, due to photo-degradation induced chain rearrangements.

  20. The Hubble Deep UV Legacy Survey (HDUV)

    NASA Astrophysics Data System (ADS)

    Montes, Mireia; Oesch, Pascal

    2015-08-01

    Deep HST imaging has shown that the overall star formation density and UV light density at z>3 is dominated by faint, blue galaxies. Remarkably, very little is known about the equivalent galaxy population at lower redshifts. Understanding how these galaxies evolve across the epoch of peak cosmic star-formation is key to a complete picture of galaxy evolution. Here, we present a new HST WFC3/UVIS program, the Hubble Deep UV (HDUV) legacy survey. The HDUV is a 132 orbit program to obtain deep imaging in two filters (F275W and F336W) over the two CANDELS Deep fields. We will cover ~100 arcmin2 sampling the rest-frame far-UV at z>~0.5, this will provide a unique legacy dataset with exquisite HST multi-wavelength imaging as well as ancillary HST grism NIR spectroscopy for a detailed study of faint, star-forming galaxies at z~0.5-2. The HDUV will enable a wealth of research by the community, which includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. This poster provides an overview of the HDUV survey and presents the reduced data products and catalogs which will be released to the community, reaching down to 27.5-28.0 mag at 5 sigma. By directly sampling the rest-frame far-UV at z>~0.5, this will provide a unique legacy dataset with exquisite HST multi-wavelength imaging as well as ancillary HST grism NIR spectroscopy for a detailed study of faint, star-forming galaxies at z~0.5-2. The HDUV will enable a wealth of research by the community, which includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble

  1. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part I; UV-C radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type C (UV-C) radiation has higher energy than the UV-B radiation and has been less studied because it is completely absorbed by the ozone layer. However, artificial UV-C radiation can generate diverse modifications in the plants. Given that exposure to UV-C for short periods of time increases the antioxidant content, improving the appearance and shelf-life of products, its potential application in postharvest treatments to modify the antioxidant content of medicinal plants, such as damiana (Turnera diffusa), is novel and relevant. To determine the effects of UV-C radiation on enzymatic and non-enzymatic antioxidant defenses, as well as oxidative damage levels, in damiana (Turnera diffusa) plants in vitro. UV-C radiation decreased superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1) activities, the concentration of chlorophylls (a and b), carotenes, vitamin C, and total antioxidant capacity. UV-C radiation increased the phenolic compound levels in damiana. Loss of antioxidant defenses was higher in damiana plants exposed to higher UV-C doses and/or for longer periods. This study suggests that UV-C radiation induces oxidative stress, evidenced as increased protein carbonyls and phenolic compound content, in damiana (T. diffusa). Low dose, short exposure to UV-C stimulates phenolic compound content in damiana. Thus, controlled UV-C treatments could be used as postharvest treatment to increase phenolic compound content in damiana plants. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. A UV-Vis photoacoustic spectrophotometer.

    PubMed

    Wiegand, Joseph R; Mathews, L Dalila; Smith, Geoffrey D

    2014-06-17

    A novel photoacoustic spectrophotometer (PAS) for the measurement of gas-phase and aerosol absorption over the UV-visible region of the spectrum is described. Light from a broadband Hg arc lamp is filtered in eight separate bands from 300 to 700 nm using bandpass interference filters (centered at 301 nm, 314 nm, 364 nm, 405 nm, 436 nm, 546 nm, 578 and 687 nm) and modulated with an optical chopper before entering the photoacoustic cell. All wavelength bands feature a 20-s detection limit of better than 3.0 Mm(-1) with the exception of the lower-intensity 687 nm band for which it is 10.2 Mm(-1). Validation measurements of gas-phase acetone and nigrosin aerosol absorption cross sections at several wavelengths demonstrate agreement to within 10% with those measured previously (for acetone) and those predicted by Mie theory (for nigrosin). The PAS instrument is used to measure the UV-visible absorption spectrum of ambient aerosol demonstrating a dramatic increase in the UV region with absorption increasing by 300% from 405 to 301 nm. This type of measurement throughout the UV-visible region and free from artifacts associated with filter-based methods has not been possible previously, and we demonstrate its promise for classifying and quantifying different types of light-absorbing ambient particles.

  3. Quantification of 4'-geranyloxyferulic acid (GOFA) in honey samples of different origin by validated RP-HPLC-UV method.

    PubMed

    Genovese, Salvatore; Taddeo, Vito Alessandro; Fiorito, Serena; Epifano, Francesco

    2016-01-05

    Natural honey has been employed as a nutraceutical agent with benefits and therapeutic promises for humans for many centuries. It has been largely used as food and medicine by all generations, traditions, and civilizations, both ancient and modern. Several chemicals having beneficial effects for human health have been reported as components of natural honey and these include sugars, organic acids, aminoacids, minerals, and vitamins. Also some important phytochemicals have been described and these comprise tannins, flavonoids, terpenes, saponins, and alkaloids. In this note it is described the successful application of a RP HPLC-UV-vis method for the separation and quantification of 4'-geranyloxyferulic acid (GOFA) in four honey samples of different origin. Concentration values showed a great variation between the four samples tested, being chestnut honey the one richest in GOFA (7.87 mg/g). The findings described herein represent the first example reported in the literature of the characterization of an oxyprenylated phenylpropanoid in honey. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. UV-induced reaction kinetics of dilinoleoylphosphatidylethanolamine monolayers.

    PubMed Central

    Viitala, T; Peltonen, J

    1999-01-01

    The UV-induced reactivity of dilinoleoylphosphatidylethanolamine (DLiPE) Langmuir and Langmuir-Blodgett films has been studied by in situ measurements of the changes in the mean molecular area, UV-vis and Fourier transform infrared spectroscopy, and atomic force microscopy (AFM). Optimum orientation and packing density of the DLiPE molecules in the monolayer were achieved by adding uranyl acetate to the subphase. A first-order reaction kinetic model was successfully fitted to the experimental reaction kinetics data obtained at a surface pressure of 30 mN/m. Topographical studies of LB films by AFM were performed on bilayer structures as a function of subphase composition and UV irradiation time. The orientational effect of the uranyl ions on the monolayer molecules was observed as an enhanced homogeneity of the freshly prepared monomeric LB films. However, the long-term stability of these films proved to be bad; clear reorganization and loss of a true monolayer structure were evidenced by the AFM images. This instability was inhibited for the UV-irradiated films, indicating that the UV irradiation gave rise to a cross-linked structure. PMID:10233096

  5. UV LED lighting for automated crystal centring

    PubMed Central

    Chavas, Leonard M. G.; Yamada, Yusuke; Hiraki, Masahiko; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2011-01-01

    A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity. PMID:21169682

  6. Titanium dioxide/UV photocatalytic disinfection in fresh carrots.

    PubMed

    Cho, Mihee; Choi, Yoonjung; Park, Hyojin; Kim, Kwansik; Woo, Gun-Jo; Park, Jiyong

    2007-01-01

    Increased occurrences of fresh produce-related outbreaks of foodborne illness have focused attention on effective washing processes for fruits and vegetables. A titanium dioxide (TiO2) photocatalytic reaction under UV radiation provides a high rate of disinfection. The photo-killing effects of TiO2 on bacteria in liquid cultures under experimental conditions have been widely studied. However, the disinfection effects of the TiO2 photocatalytic reaction on fresh vegetables during a washing process have not been evaluated. Our objectives were to design a pilot-scale TiO2/UV photocatalytic reactor for fresh carrots and to compare the bactericidal effects of the TiO2/UV reaction against bacteria in liquid media and on carrots. TiO2/UV photocatalytic reactions for 40, 60, and 30 s were required for the complete killing of Escherichia coli, Salmonella Typhimurium, and Bacillus cereus (initial counts of approximately 6.7 log CFU/ml), respectively. The counts of total aerobic bacteria in fresh carrots and foodborne pathogenic bacteria in inoculated carrots were also measured. Counts of total aerobic bacteria were reduced by 1.8 log CFU/g after TiO2/UV photocatalytic disinfection for 20 min compared with a 1.1-log CFU/g reduction by UV alone. E. coli, Salmonella Typhimurium, and B. cereus (8 log CFU/ml) were inoculated onto carrots, and the number of surviving bacteria in carrots was determined after treatment. The TiO2/UV treatment exhibited 2.1-, 2.3-, and 1.8-log CFU/g reductions in the counts of E. coli, Salmonella Typhimurium, and B. cereus, respectively, compared with 1.3-, 1.2-, and 1.2-log CFU/g reductions by UV alone. The TiO2/UV photocatalyst reaction showed significant bactericidal effects, indicating that this process is applicable to nonthermal disinfection of fresh vegetables.

  7. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8(2-) oxidation systems.

    PubMed

    Sharma, Jyoti; Mishra, I M; Kumar, Vineet

    2015-06-01

    This work reports on the removal and mineralization of an endocrine disrupting chemical, Bisphenol A (BPA) at a concentration of 0.22 mM in aqueous solution using inorganic oxidants (hydrogen peroxide, H2O2 and sodium persulfate, Na2S2O8;S2O8(2-)) under UV irradiation at a wavelength of 254 nm and 40 W power (Io = 1.26 × 10(-6) E s(-1)) at its natural pH and a temperature of 29 ± 3 °C. With an optimum persulfate concentration of 1.26 mM, the UV/S2O8(2-) process resulted in ∼95% BPA removal after 240 min of irradiation. The optimum BPA removal was found to be ∼85% with a H2O2 concentration of 11.76 mM. At higher concentrations, either of the oxidants showed an adverse effect because of the quenching of the hydroxyl or sulfate radicals in the BPA solution. The sulfate-based oxidation process could be used over a wider initial pH range of 3-12, but the hydroxyl radical-based oxidation of BPA should be carried out in the acidic pH range only. The water matrix components (bicarbonate, chloride and humic acid) showed higher scavenging effect in hydroxyl radical-based oxidation than that in the sulfate radical-based oxidation of BPA. UV/S2O8(2-) oxidation system utilized less energy (307 kWh/m(3)) EE/O in comparison to UV/H2O2 system (509 kWh/m(3)) under optimum operating conditions. The cost of UV irradiation far outweighed the cost of the oxidants in the process. However, the total cost of treatment of persulfate-based system was much lower than that of H2O2-based oxidation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy.

    PubMed

    Shkolyar, Svetlana; Eshelman, Evan J; Farmer, Jack D; Hamilton, David; Daly, Michael G; Youngbull, Cody

    2018-04-01

    The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest priority targeted samples include aqueously formed sedimentary lithologies. On Earth, such lithologies can contain fossil biosignatures as aromatic carbon (kerogen). In this study, we analyzed nonextracted kerogen in a diverse suite of natural, complex samples using colocated UV excitation (266 nm) time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopies. We interrogated kerogen and its host matrix in samples to (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopies for detecting kerogen in high-priority targets in the search for possible biosignatures on Mars; (2) assess the effectiveness of time gating and UV laser wavelength in reducing fluorescence in Raman spectra; and (3) identify sample-specific issues that could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman spectroscopy is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that UV fluorescence spectroscopy is suited to identify kerogen. These results highlight the value of combining colocated Raman and fluorescence spectroscopies, similar to those obtainable by SHERLOC on Mars 2020, to strengthen the confidence of kerogen detection as a potential biosignature in complex natural samples. Key Words: Raman spectroscopy-Laser-induced fluorescence spectroscopy-Mars Sample Return-Mars 2020 mission-Kerogen-Biosignatures. Astrobiology 18, 431-453.

  9. Mirror coatings for large aperture UV optical infrared telescope optics

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Kunjithapatham; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Del Hoyo, Javier; Quijada, Manuel

    2017-09-01

    Large space telescope concepts such as LUVOIR and HabEx aiming for observations from far UV to near IR require advanced coating technologies to enable efficient gathering of light with important spectral signatures including those in far UV region down to 90nm. Typical Aluminum mirrors protected with MgF2 fall short of the requirements below 120nm. New and improved coatings are sought to protect aluminum from oxidizing readily in normal environment causing severe absorption and reduction of reflectance in the deep UV. Choice of materials and the process of applying coatings present challenges. Here we present the progress achieved to date with experimental investigations of coatings at JPL and at GSFC and discuss the path forward to achieve high reflectance in the spectral region from 90 to 300nm without degrading performance in the visible and NIR regions taking into account durability concerns when the mirrors are exposed to normal laboratory environment as well as high humidity conditions. Reflectivity uniformity required on these mirrors is also discussed.

  10. Photoreceptor-mediated bending towards UV-B in Arabidopsis.

    PubMed

    Vandenbussche, Filip; Tilbrook, Kimberley; Fierro, Ana Carolina; Marchal, Kathleen; Poelman, Dirk; Van Der Straeten, Dominique; Ulm, Roman

    2014-06-01

    Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  11. Rare-earth metal oxide doped transparent mesoporous silica plates under non-aqueous condition as a potential UV sensor.

    PubMed

    Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik

    2013-11-01

    Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.

  12. Anabolic agents and bone quality.

    PubMed

    Sibai, Tarek; Morgan, Elise F; Einhorn, Thomas A

    2011-08-01

    The definition of bone quality is evolving particularly from the perspective of anabolic agents that can enhance not only bone mineral density but also bone microarchitecture, composition, morphology, amount of microdamage, and remodeling dynamics. This review summarizes the molecular pathways and physiologic effects of current and potential anabolic drugs. From a MEDLINE search (1996-2010), articles were identified by the search terms "bone quality" (1851 articles), "anabolic agent" (5044 articles), "PTH or parathyroid hormone" (32,229 articles), "strontium" or "strontium ranelate" (283 articles), "prostaglandin" (77,539 articles), and "statin" or "statins" (14,233 articles). The search strategy included combining each with the phrase "bone quality." Another more limited search aimed at finding more novel potential agents. Parathyroid hormone is the only US Food and Drug Administration-approved bone anabolic agent in the United States and has been the most extensively studied in in vitro animal and human trials. Strontium ranelate is approved in Europe but has not undergone Food and Drug Administration trials in the United States. All the studies on prostaglandin agonists have used in vivo animal models and there are no human trials examining prostaglandin agonist effects. The advantages of statins include the long-established advantages and safety profile, but they are limited by their bioavailability in bone. Other potential pathways include proline-rich tyrosine kinase 2 (PYK2) and sclerostin (SOST) inhibition, among others. The ongoing research to enhance the anabolic potential of current agents, identify new agents, and develop better delivery systems will greatly enhance the management of bone quality-related injuries and diseases in the future.

  13. FIREBALL-2: Pioneering Space UV Baryon Mapping (Lead Institution)

    NASA Astrophysics Data System (ADS)

    Schiminovich, David

    This is the lead proposal of a multi-institutional submission. The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the Intergalactic Medium (IGM) for low redshift galaxies. This balloon is a modification of FIREBall-1 (FB-1), a path-finding mission built by our team with two successful flights. FB-1 provided the strongest constrains on IGM emission available from any instrument at the time. FIREBall-2 has been significantly upgraded compared to FB-1, and is nearly ready for integration and testing before an anticipated Spring 2016 launch from Ft. Sumner, New Mexico. The spectrograph has been redesigned and an upgraded detector system including a groundbreaking high QE, low-noise, UV CCD detector is under final testing and will improve instrument performance by more than an order of magnitude. CNES is providing the spectrograph, gondola, and flight support team, with construction of all components nearly complete. The initial FIREBall-2 launch is now scheduled for Spring 2016. FIREBall-2 combines several innovations: -First ever multi-object UV spectrograph -Arcsecond quality balloon pointing system, developed from scratch, improved from FB-1 -Partnership of national space agencies (NASA & CNES); highly leveraged NASA resources -A Schmidt corrector built into the UV grating for better optical performance and throughput -A total of four women trained in space experimental astrophysics, including 3 Columbia Ph.Ds. and 1 Caltech Ph.D. -A total of 7 graduate students trained on FIREBall-1 (3) and FIREBall-2 (4), with opportunities for more in future flights. FIREBall-2 will test key technologies and science strategies for a future mission to map IGM emission. Its flights will provide important training for the next generation of space astrophysicists working in UV instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the

  14. Intelligent Agent Architectures: Reactive Planning Testbed

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kahn, Philip

    1993-01-01

    An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected.

  15. Recent Advances on Endocrine Disrupting Effects of UV Filters.

    PubMed

    Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin

    2016-08-03

    Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.

  16. Morphology of the UV aurorae Jupiter during Juno's first perijove observations

    NASA Astrophysics Data System (ADS)

    Bonfond, B.; Gladstone, G. R.; Grodent, D.; Greathouse, T. K.; Versteeg, M. H.; Hue, V.; Davis, M. W.; Vogt, M. F.; Gérard, J.-C.; Radioti, A.; Bolton, S.; Levin, S. M.; Connerney, J. E. P.; Mauk, B. H.; Valek, P.; Adriani, A.; Kurth, W. S.

    2017-05-01

    On 27 August 2016, the NASA Juno spacecraft performed its first close-up observations of Jupiter during its perijove. Here we present the UV images and color ratio maps from the Juno-UVS UV imaging spectrograph acquired at that time. Data were acquired during four sequences (three in the north, one in the south) from 5:00 UT to 13:00 UT. From these observations, we produced complete maps of the Jovian aurorae, including the nightside. The sequence shows the development of intense outer emission outside the main oval, first in a localized region (255°-295° System III longitude) and then all around the pole, followed by a large nightside protrusion of auroral emissions from the main emission into the polar region. Some localized features show signs of differential drift with energy, typical of plasma injections in the middle magnetosphere. Finally, the color-ratio map in the north shows a well-defined area in the polar region possibly linked to the polar cap.

  17. The Ultraviolet Spectrograph (UVS) on ESA’s JUICE Mission

    NASA Astrophysics Data System (ADS)

    Gladstone, Randy; Retherford, K.; Steffl, A.; Eterno, J.; Davis, M.; Versteeg, M.; Greathouse, T.; Araujo, M.; Walther, B.; Persson, K.; Persyn, S.; Dirks, G.; McGrath, M.; Feldman, P.; Bagenal, F.; Spencer, J.; Schindhelm, E.; Fletcher, L.

    2013-10-01

    The Jupiter Icy Moons Explorer (JUICE) was selected in May 2012 as the first L-class mission of ESA’s Cosmic Vision Program. JUICE will launch in 2022 on a 7.6-year journey to the Jovian system, including a Venus and multiple Earth gravity assists, before entering Jupiter orbit in January 2030. JUICE will study the entire Jovian system for 3.5 years, concentrating on Europa, Ganymede, and Callisto, with the last 10 months spent in Ganymede orbit. The Ultraviolet Spectrograph (UVS) on JUICE was jointly selected by NASA and ESA as part of its ~130 kg payload of 11 scientific instruments. UVS is the fifth in a series of successful ultraviolet imaging spectrographs (Rosetta-Alice, New Horizons Pluto-Alice, LRO-LAMP) and is largely based on the most recent of these, Juno-UVS. It observes photons in the 55-210 nm wavelength range, at moderate spectral and spatial resolution along a 7.5-degree slit. A main entrance “airglow port” (AP) is used for most observations (e.g., airglow, aurora, surface mapping, and stellar occultations), while a separate “solar port” (SP) allows for solar occultations. Another aperture door, with a small hole through the centre, is used as a “high-spatial-resolution port” (HP) for detailed observations of bright targets. Time-tagging (pixel list mode) and programmable spectral imaging (histogram mode) allow for observational flexibility and optimal data management. As on Juno-UVS, the effects of penetrating electron radiation on electronic parts and data quality are substantially mitigated through contiguous shielding, filtering of pulse height amplitudes, management of high voltage settings, and careful use of radiation-hard, flight-tested parts. The science goals of UVS are to: 1) explore the atmospheres, plasma interactions, and surfaces of the Galilean satellites; 2) determine the dynamics, chemistry, and vertical structure of Jupiter’s upper atmosphere from equator to pole; and 3) investigate the Jupiter-Io connection by

  18. A new method to analyze UV stellar occultation data

    NASA Astrophysics Data System (ADS)

    Evdokimova, D.; Baggio, L.; Montmessin, F.; Belyaev, D.; Bertaux, J.-L.

    2017-09-01

    In this paper we present a new method of data processing and a classification of different types of stray light at SPICAV UV stellar occultations. The method was developed on a basis of Richardson-Lucy algorithm including: (a) deconvolution process of measured star light and (b) separation of extra emissions registered by the spectrometer.

  19. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    PubMed

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (<0.3 mg/L). Para-chlorobenzoic acid (pCBA) was used as a hydroxyl radical (HO) probe to quantify HO steady state concentrations. Compounds degraded by different mechanisms including, carbamazepine (CBZ, HO oxidation) and N-nitrosodimethylamine (NDMA, direct photolysis), were used to investigate the effect of iron on compound degradation for UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. UV-vis light transmittance through tinted contact lenses and the effect of color on values.

    PubMed

    Osuagwu, Uchechukwu L; Ogbuehi, Kelechi C

    2014-06-01

    To assess the transmittance, in the 200-700nm electromagnetic radiation spectrum, by popularly used tinted soft contact lenses (CLs). The spectra transmittances of ultraviolet (UV)-blocking (I Day Acuvue Define, Freshlook ONE DAY) and non-UV-blocking (Durasoft 3, Tutti, and NeoCosmo) tinted soft CLs were tested. The transmittance of each lens, including nine different colors of Freshlook CL was recorded on spectrophotometer, and the data used to also calculate a UV protection factor (PF) for each lens brand tested, with a higher value indicating a higher level of protection. The UV-blocking CLs significantly reduced UVC, UVB & UVA transmission and thereby meet the American National Standards Institution standard for class 2 UV blockers: a maximum of 30% transmittance of UVA and 5% transmittance of UVB wavelengths. In contrast, the Durasoft 3, Tutti, and NeoCosmo CLs demonstrated negligible UV-blockage. The Acuvue Define CL offered the greatest protection from UVC (PF=69) and UVB (PF=55), but with only 35% luminous transmittance, while the Freshlook CL (especially gemstone green) offered the best protection from UVA (PF=24) and showed about 55% translucency. Overall, the UV-blocking CLs performed equally well across the UV spectrum. Different colors of Freshlook CL transmitted statistically and clinically significantly different amounts of visible light but similar amounts of UVR. Freshlook and Acuvue Define CLs which are designated as UV-blockers significantly reduced UVR transmission to safe levels whereas Tutti, NeoCosmo and Durasoft 3 did not. Transmission within the Freshlook CL family was more dependent on color in the visible light spectrum, but not in the UV-spectrum, where the gemstone green performing best among the tested colors. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.